
DISI - Via Sommarive, 14 - 38123 POVO, Trento - Italy
http://disi.unitn.it

A SURVEY OF RUNTIME POLICY
ENFORCEMENT TECHNIQUES AND
IMPLEMENTATIONS

Gabriela Gheorghe and Bruno Crispo

September 2011

Technical Report # DISI-11-477

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Trento : UNITN-eprints

https://core.ac.uk/display/150083566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Abstract
Runtime techniques bring new promises of accuracy and flexibility in enforc-

ing security policies. While static security enforcement was previously studied
and classified, this work is the first to survey the state of the art on runtime security
enforcement. Our purpose is to encourage a better understanding of limitations
and advantages of enforcement techniques and their implementations. We clas-
sify techniques by criteria such as abstraction level, enforced policies and security
guarantees. We analyse several implementations of each technique, from the point
of view of trust model, policy language and performance overhead. Finally, we
discuss research issues for further investigation in policy enforcement.

1 Introduction
It is common to run applications without having their source code, and this comes
with security risks. The software can be buggy or malicious, and that may not be
known before executing it. For instance, on the background of Android’s booming
market [37], it has been shown that 28% of Android applications can access sensitive
data [98], and that the risk of downloading malicious, pirated, or repackaged Android
applications is very high [7]. At the other extreme, enterprise platforms (e.g., Cloud)
are also subject to loss of control over running applications, since resources and data
are owned by many, and it can be easy to misuse them [69]. In these cases, but also
in others (e.g., copyright protection), it is vital to draw the line between allowed and
disallowed application behaviour, such that malicious actions can be prevented, even if
source code is not available.

Allowed and disallowed application behaviour is specified in security policies.
Complying with security policies increases the protection of a computer system. For
instance, some policies are: “accounting data must never be sent on the network”,“the
Guest account cannot run the Disk Format utility”, “inputs to this form must always
be validated”, or a separation of duty policy like “a bank employee cannot authorize a
loan requested by him”. Enforcing such policies means to ensure that these policies are
complied with on a system where an untrusted program runs; the actions to ensure such
compliance can be done before the program runs, during the program’s execution, or
both before and during execution. In charge of policy enforcement is a security monitor
(also called enforcer, or execution monitor): a set of one or more mechanisms whose
task is to monitor the program’s execution, and react to malicious actions.

Security policy enforcement has been a flourishing domain in the area of formal
methods. The theory of finite-state automata has made big steps in how to specify
and enforce a large class of security policies onto an untrusted program [3, 83]. An
automaton, in this respect, is a state machine that models the secure states and transi-
tions between states for a given program; in runtime enforcement, it runs along with
the program, and whenever the program is about to execute an action that is disal-
lowed by the security policy, the automaton will raise a signal that the state transition
is no longer secure. The discussion on automata for enforcement is still ongoing, with
significant refinement in how an automata-based monitor can change the execution of
the running program [59, 62]. However, the practical implementations of security en-
forcers are lagging behind the progress on the theory side: other than several isolated

3



examples [11, 2, 28, 44, 26], it is hard to see how much of the theoretical advances are
absorbed into practical enforcement, or at least how disparate they are.

Policy enforcement seen from a static analysis perspective – checking that a pro-
gram complies or not with a policy by analysing its source – has been the subject of
excellent surveys in the past [78, 19, 31]. The same cannot be said for runtime en-
forcement – checking that a running program complies with a given policy, and taking
actions if it doesn’t – despite being an active research area with a broad range of ap-
plications (e.g., DRM, content validation, program monitoring, etc). This paper aims
to provide security researchers, security developers and security professionals with the
big picture of this domain, and an initial evaluation of the runtime enforcement tools
available today.

Along with a big picture, we want to systematize the methods that exist in prac-
tice to enforce security policies at runtime. We have analysed the different approaches
available to that end, and for our separation, we introduced two notions: an enforce-
ment technique and an enforcement implementation. While a technique is a general
way of solving a problem, an enforcement technique is a general way of enforcing a
set of policies. Techniques that are not necessarily enforcement techniques, but are
used in security implementations, are called by other researchers security mechanisms.
An enforcement implementation instantiates an enforcement technique on a particular
setting and target, and with a more particular set of tools.

From a system point of view, studying the relation between a technique, the policies
it enforces, and its guarantees is a daunting task: policies can use different languages to
express their constraints, the technique to enforce a policy can be implemented differ-
ently. The tradeoff is different in each case, and the researcher needs to understand the
policy semantics in order to pick mechanisms that work at the policy’s locus agendi,
or scope. For instance, a policy that prevents writing to any files can be imposed on
system calls (e.g., requiring system call wrapping), but can alternatively be enforced
with the help of an interpreter, or a program rewriter. In each case, the scope is differ-
ent (system call, runtime, or application level) hence the security guarantees over the
system will differ. We are aware that in our attempt to classify different approaches, a
rigorous comparison might not be possible: security policies vary greatly, just as their
enforcers and their context. Nevertheless, our analysis has the advantages of covering
and clustering a broad range of runtime enforcement approaches, and of providing hints
of where more rigorous security evaluation methods should go, for the large amount of
tools that exist to enforce security policies.

The survey proceeds as follows: after a short description of basic concepts in en-
forcement (Sect. 2), the paper presents the criteria we used to select the papers that
we have surveyed (Sect. 3), and then the criteria used in the assessment of runtime
enforcers (Sect. 4). Then, it continues with a taxonomy (Sect. 4.3) and a more detailed
overview of the types of runtime enforcement techniques that were analyzed (Sect. 5,
Sect. 6). The survey concludes with a high-level assessment and a discussion (Sect. 7).

4



2 Concepts
This section describes the main concepts used throughout the rest of the paper. First,
we will refer to the system as the environment where the (possibly malicious) programs
are running. For this survey, the system is a machine with several resources (memory,
CPU, disk, etc). Within the system, some programs are trusted, some are not; still, they
all request access to system resources. The untrusted programs will be analyzed by se-
curity tools to detect or correct misbehavior, and as such they will be called targets. We
tehn define security policies as restrictions over the behaviour of targets. After a brief
description of the classical concept of the reference monitor in security, which is an
essential model in security inspired from operating systems, we define policy enforce-
ment and we sketch automata as a known formalisation of the execution of a reference
monitor; last, we present program analysis as an enabler of policy enforcement.

2.1 Security Policies
Bishop sees security policy (hereafter just ‘policy’) as

“a specific statement of what is and is not allowed [..] If the system
always stays in states that are allowed, and users can only perform actions
that are allowed, the system is secure. If the system can enter a disallowed
state, or a if user can successfully execute a disallowed action, the system
is nonsecure.” [14]

Another definition comes from Sterne, who draws the line between a security policy
objective – a statement that protects an asset from unauthorised use – and an automated
security policy, that is a particular implementable statement in line with a well-defined
security objective [91]. In a more formal context, Schneider defines a security policy as
a restriction over a program execution; for him, there are three main kinds of security
policies: access control policies (about operations of users onto resources), information
flow policies (about the data that can be inferred about a program’s from observing
it), and availability policies (about users denying other users the usage of a system
resource) [83]. Security policies may refer to current program behaviour in relation to
program history, system conditions, program context.

2.2 The Reference Monitor
The reference monitor is a conceptual model that originated in operating systems and
was later adopted in security, in particular in access control. Its purpose was to pre-
vent unauthorised users from accessing a system. Anderson’s report [4] introduced the
reference monitor as a concept in access control by which an abstract entity guards all
accesses to a resource. Whenever a user attempts to invoke that resource, the refer-
ence monitor will intercept the invocation, determine whether it is legitimate or not,
and allow it to proceed only if it verifies a set of checks. From the initial report, the
reference monitor must satisfy three main properties: (1) complete mediation or non-
bypassability, in that the reference monitor implementation mediates all relevant user
accesses and cannot be bypassed; (2) tamperproofness, in that the reference monitor

5



PROGRAM 

MONITORING

POLICY 

EVALUATION

ACTION 

PERFORMING

POLICY ENFORCEMENT

POLICY

POLICY SPECIFICATION

1 2 3

Figure 1: The basic steps for policy enforcement: once a policy is specified, security
enforcement includes program monitoring, policy evaluation and action performing.
The arrows mean cause-effect relations.

implementation cannot be modified (or altered) by external entities; (3) the reference
monitor is small enough to allow for verifiability, in that the reference monitor imple-
mentation can be practically verified for correctness. The notion of reference moni-
tor has been associated with that of security kernel and of a Trusted Computing Base
(TCB). The security kernel is the concrete implementation of the reference monitor,
comprising hardware, software and firmware.

2.3 Policy Enforcement
When a program misbehaves with respect to a security policy, we say that a security
(policy) violation has occurred. Security policy enforcement is the set of actions, either
implicitly or explicitly stated in the policy, to keep the system as compliant as possible
with the policy. Since we are interested in policy enforcement that involves the program
runtime, we want to investigate the existing security approaches able to check if the
target adheres to the policy or not. Hence, we see security policy enforcement as a
series of actions organised in three categories, or steps (see Figure 1):

1. the enforcer needs to monitor the target for policy-relevant activity (e.g., system
calls, Java methods, API calls). Sometimes, monitoring can rely on instrumen-
tation – modifying some part of the program to produce extra data.

2. the enforcer evaluates if the target is about to violate the security policy;

3. the decision taken in Step 2 triggers a set of actions performed by the enforcer;
these actions are either punitive or remedial.

In formal methods, the most important mechanism for monitoring the execution of
a target, and enforcing a policy onto its execution, is the security automaton. This is a
finite-state automaton that models the execution by having the following elements [83]:

• a number of automaton states, out of which some are initial (at target startup);

• a number of input symbols that is set up by the security policy to be enforced;

• a transition function usually specified as transition predicates.

In Schneier’s view, such automaton would execute along with the target; at each step
the target would generate input for the automaton, and it would only be allowed to
proceed in its execution if the automaton would be able to make a transition to a new

6



state based on the input, and the transition function. Schneier’s model has generated
a large number of formal and practical contributions in security enforcement e.g., [60,
28, 30, 44, 62, 59, 94, 2, 10, 45, 11].

Automata theory for security enforcement refers to several types of automata: the
truncation automaton, that can recognize disallowed sequences of actions and halt the
program when they are about to happen [83, 3]; and the edit automaton, that puts
together insertion and suppression automata in order to allow for target modification
when a violation is about to happen [11, 60]. Recently, the mandatory results au-
tomata has been proposed as a more realistic formal model of enforcement, as Ligatti
and Reddy observed that the edit automata are impractical and impossible to imple-
ment in practice (edit automata assume unlimited prediction capabilities and buffer
storage) [62].

2.4 The two types of program analysis for enforcement
Policy enforcement can happen before target execution, during target execution, or both
before and after execution. The monitoring step in policy enforcement at execution
time can employ mechanisms of a program analysis branch called dynamic program
analysis. With hybrid enforcement that happens before and during program execution,
deriving information about the program before it is run benefits from another branch of
program analysis – static program analysis.

Static program analysis looks for patterns or properties (e.g., that the program will
not generate division by zero or buffer overflows) that hold for a finite set of execution
paths of a program. Static analysis considers several possible program behaviors and
builds a static model of the code in order to assess properties about thecode. An anal-
ysis that cannot prove a property about the program reports it as a potential violation,
and thus statis analysis is prone to false positives [19]. There are several overviews on
static analysis research [78, 19]. Some enforcement techniques, e.g., information flow
enforcers, use static program analysis.

Dynamic program analysis checks properties of a program based on information
elicited from running the program. It uses compiled or executable code, and divides
in offline analyses – that analyze program traces, and runtime analyses – that analyze
the actual program execution. Unlike static analysis, dynamic analysis is less prone to
produce false positives because it observes just the part of the program that executes
given a particular input, and the runtime effects onto the system memory, file system, or
network traffic. Analyzing dynamically only one program run at a time may be highly
dependent on the input data; if the program is safe for one input set, this might not
hold for another input set. The challenge for a good dynamic analysis is to test relevant
inputs, and so dynamic analysis tools are prone to false negatives (i.e., the program
could be declared secure when actually it is not). Some policy enforcement techniques
use dynamic program analysis to reason about the target and act on it.

Dynamic and static analyses are orthogonal. An emerging trend is to use a hybrid
approach, where static analysis at compile time is supplemented with employing dy-
namic analysis tools at runtime. There is a growing number of implementations that
use both approaches (e.g., Microsoft’s DebugAdvisor [8], NASA’s Copilot [77]).

7



T0. OBJECTIVE

T1. ABSTRACTION LEVEL

T2. LOCALITY

T3. TYPE

T4. CLASS OF POLICY ENFORCED

T5. GUARANTEES 

I1. TRUST MODEL

I2. POLICY LANGUAGE

I3. OVERHEAD

CRITERIA FOR ENFORCEMENT 

TECHNIQUES

CRITERIA FOR ENFORCEMENT 

IMPLEMENTATIONS

Figure 2: The evaluation criteria for enforcement techniques and implementations. The
criteria in bold are primary in our separation.

3 Paper Selection Criteria
This paper overviews the most important runtime enforcement techniques as well as
some of their implementations. Since runtime program analysis has been active from
early ’90s, we have analysed over 100 academic papers published between 1993 and
2010 on various techniques and implementations in runtime enforcement. The main
criteria for this selection of papers were the earliest references, the most cited pa-
pers, and their presence in well-rated conference proceedings (IEEE S&P, USENIX,
CCS, SOSP, NDSS, POPL, ACSAC, ASIACCS, PLDI, OSDI, ESORICS) and journals
(ACM and IEEE Transactions). A few technical reports and theses are mentioned for
completeness.

We have analysed this material by splitting it into major enforcement techniques
and their implementations. This separation has been done in breadth: even though
an expert in a particular implementation might object to its unique placement in our
classification, our effort was to capture a broad picture rather than an in-depth one.

4 Criteria for Separating Techniques and Implementa-
tions

As shown in Fig. 2, we have compared enforcement techniques from three points of
view: abstraction level, objective or type of policies enforced, and locality. Then,
for the implementations of each technique, we looked at the policy language it uses,
its trust model, and its performance overhead. Since every implementation measures
performance in its own way, comparing overheads between very different implemen-
tations is a difficult task; our aim is to give an idea over an order of magnitude rather
than precise numbers.

Choosing these criteria was motivated by two viewpoints: (1) expected utility of
using a technique (guarantees and type of enforcement), compared to (2) possible lim-
itations or effort made to implement each technique. We tried to separate between
features of general techniques and more specific features of some better-known indi-
vidual implementations. While the former are more abstract, the latter are concrete and
give a better idea over how far the implementation goes in the direction of the method.

8



4.1 Criteria to assess enforcement techniques
For an enforcement technique we look to evaluate the following characteristics:

T0. Objective The objective refers to what an enforcement technique is focused on
protecting: either protecting the system from target behaviour, or protecting the
flow of data that the target manipulates. In both cases, the untrusted program
should not perform actions that are considered malicious by the policy, but the
difference resides in the effect of such actions: whereas in the first case, the
target corrupts the system, in the second case the target leaks data. The objective
is tightly related to T4 - Class of policies enforced.

T1. Abstraction level The abstraction level refers to the locus agendi – scope, or
location– of a technique is essential when analyzing security enforcement from
a system point of view. The levels of the software stack where runtime enforce-
ment can be located are shown in Fig. 3. There is a lower level – the operating
system with system calls and memory management – and the higher level – the
platform, runtime, and the application logic.

T2. Locality Locality refers to the size of the part of the program that is being analysed
by a technique so that a policy is enforced [95]. For Vanoverberghe and Piessens,
the locality is one event when the technique performs checks around one single
event in time; when the techniques examines multiple events, then the locality is
a sequence of events.

T3. Type Type refers to the effect of enforcement onto the program’s execution. There
are technique implementations that just flag the presence of unwanted events,
and others that transform programs such that their execution is compliant with
the policy.

T4. Class of policies enforced The class of enforced policies refers to what type of
policy a technique can enforce. Policies have been previously split in properties
(safety, renewal, liveness, soundness) and non-properties (information flow) [59].
Since the implementations we found are enforcing either access control or infor-
mation flow policies, we will refer to these policies.

T5. Guarantees Guarantees refer to the assurance with which the technique enacts
constraints. This assurance can refer to the guarantees given by Anderson [4],
that cover complete mediation, tamperproofness and verifyability.

Most enforcement techniques use a mechanism called interception (or interposi-
tion) in order to detect policy relevant events (service or resource requests together and
parameters). The relevant event is blocked until a decision and an action are performed,
and based on the type of action, we separate between implementations whose security
monitor stops executing when malicious behaviour is detected, and implementations
whose monitor continues to execute. In the first case, the consequence of the stopping
of the monitor can be that the monitored program is halted, or that it continues to run
but throws an exception or updates a security log. We call these implementations rec-
ognizers. On the other hand, there are also those implementations that transform the

9



OPERATING SYSTEM

RUNTIME

APPLICATION LOGIC

API, NATIVE, 

LIBRARY CALLS

SYSTEM CALLS, 

MEMORY 

MANAGEMENT

H
IG

H
E

R
 

A
B

S
T

R
A

C
T

IO
N

 L
E

V
E

L

PLATFORM 

LIBRARIES

L
O

W
E

R
 

A
B

S
T

R
A

C
T

IO
N

 

L
E

V
E

L

Figure 3: Abstraction levels in enforcement.

malicious target into a compliant one; we call them sanitizers. The security monitor, in
this case, continues to execute along with the target program, but suppresses or mod-
ifies the malicious actions before they happen. It can be argued that recognizers are
a subclass of sanitizers where the transformation operations are absent, but the choice
to separate them is motivated by a similar distinction between traditional security au-
tomata – also known as execution recognizers – and edit automata [59] – also known
as execution transformers.

Separating policies in categories, or classes, has been mentioned in a formal con-
text. Schneider showed that not all policies are enforceable and security automata can
only enforce safety properties; Hamlen showed there are several classes of enforce-
able properties (and policies) [46]: some that are statically enforceable, some that are
runtime enforceable, some that can be enforced by runtime program rewriting, and
some others that are not. Ligatti et al.[61] argued that Schneider’s execution monitor,
now called recognizer, can be more realistically extended into a monitor that can in-
sert and suppress actions in order to correct the target program if it misbehaves. Also,
while Bauer, Ligatti and Walker have classified security policies by the computational
resources that are available to the execution monitor [10], Fong suggested a classifica-
tion of policies from the type of information observed by the monitor, more specifically
the shallow access history [34]. Fong’s work is useful in practice in that it studies the
impact of the limited memory onto the model of automata in enforcement.

To our knowledge, apart from these (rather few) characterisations of properties,
there has been no further work in classifying types of security policies from a practical
perspective. We take on the initial categories sketched by Schneider – access control
policies and information flow policies, and also consider the usage control extension
presented in the UCON model [76]. Access control policies cover the constraints on a
target accessing a system resource. Usage control policies augment access constraints
with continuous checking, attribute updates as a result of the usage of the accessed
resource (i.e., state), as well as with the notions of obligations (i.e., commitments in
the future) [76]. The last class of policies is information flow policies, that prevent data
leaking to unwanted entities that could reason about program behaviour.

10



ENFORCEMENT 

OBJECTIVE

DATA FLOW

PROGRAM 

BEHAVIOUR

RECOGNIZERS

SANITIZERS

LOCALITY = 1

LOCALITY >= 1

TYPE

LOCALITY

ABSTRACTION 

LEVEL

HIGH

LOW

JVM-BASED

NON JVM-BASED

Figure 4: Two orthogonal criteria for classifying enforcement depending on policy
objective: techniques enforcing policies on data flow, and techniques enforcing policies
on program behaviour (with subsequent separation by type, locality and abstraction
level).

4.2 Criteria to assess enforcement implementations
The features of a technique extend over the concrete implementations of the technique:
abstraction level, type, locality, guarantees, objective / class of policies enforced. Still,
there are some aspects of individual enforcement implementations that give a more
concrete idea over the technique they implement: (I1). trust model and components;
(I2). policy language; (I3). performance overhead. These aspects are tightly related
to the technique: the trusted components, as well as the overhead, depend on the tech-
nique’s abstraction level; the policy language is tightly connected with the type of
technique, and with the class of policies that need be enforced. Figure 2 shows these
aspects together.

I1. Trust model. Each implementation is defined by the system entities it trusts,
what assets need to be protected and sometimes, where threats come from. To this
respect, we will assess existing enforcement techniques on the quantity and manner in
which they trust external components.

I2. Policy language. A security mechanism should not only be efficient but also
usable by security researchers or developers. In this sense, it is important to assess the
ease with which a user can write policies for a particular policy enforcement tool. This
aspect refers not to the expressiveness of the policy language but to its user-friendliness.

I3. Performance overheads. Whenever runtime mechanisms are discussed, their
impact on the overall application performance is important. In comparison to static
enforcement, runtime enforcement technique implementations bear the risk of burden-
ing the execution of the target every time they are used. It is generally very difficult
to measure accurately the performance overhead of an implementation against another
simply because the experiments use different assumptions and testbeds.

11



CALL 

INTERPOSITION

ENFORCEMENT ON PROGRAM 

BEHAVIOUR

LOCALITY = 1 LOCALITY >= 1

INLINED REFERENCE 

MONITOR

DYNAMIC ASPECT 

WEAVING

SOFTWARE FAULT 

ISOLATION

SOFTWARE DYNAMIC 

TRANSLATION

SAFE 

INTERPRETER

Section 4.1 Section 4.2 Section 5.1 Section 5.2 Section 5.3 Section 5.4

Figure 5: Taxonomy for runtime enforcement techniques on program behaviour and
locality.

4.3 Taxonomy of enforcement techniques
There are several orthogonal ways by which techniques can be analysed using the cri-
teria described in the previous section. Figure 4 and Figure 5 show several ways to
evaluate enforcement techniques. Figure 4 shows that techniques can be split by their
locality, their type and objective. From the point of view of the objective (or class of
policy enforced), there are two types of techniques: (1) those that enforce constraints
on program behaviour independent of the data that the program handles, and (2) those
that enforce constraints on data handled by the program, independent of program flow.
The former aim to constrain possibly malicious code from damaging the system, and
are associated with sandboxing – a generic approach in security that aims to minimize
the effects of the untrusted program over the system. These techniques can be further
separated by type (either sanitizers or recognizers), by locality (either one of greater
or equal to one), and by the coarse abstraction level shown in Figure 3 (high and low).
The latter kind of techniques focus on data propagation. We see policies on data flow
orthogonal to policies on program behaviour. Data flow techniques are usually sani-
tizers with locality greater or equal to one: information flow is a policy over several
executions rather than an individual one and so in order to enforce information flow,
a sequence of events is analysed at a time. They can further split into JVM-based
approaches and non-JVM approaches.

Figure 5 looks closer at enforcers on program behaviour from the point of view of
locality1. Locality is one for techniques that do interception and interpretation (since
these execute per call or per instruction), and at least one for the other techniques. Call
interposition is the enforcement technique that explicitly monitors the occurrence of
certain calls – specified by the security policy – and either blocks or changes them.
Safe interpreters are similar in that they execute (or interpret) one instruction or com-
mand at a time. Conversely, the techniques with higher locality are related to program
rewriting: software fault isolation changes memory addresses in object or assembler
code in order to prevent reads, writes, and branches to memory locations outside a
policy-specified region (known as a safety domain). Software fault isolation techniques
are source language independent. Inline reference monitors (IRMs) usually focus on

1The techniques in Figure 5 might have overlapping implementations or similar mechanisms. Our tax-
onomy is based on general features presented in the initial papers.

12



APPLICATION
POLICY 

ENGINE

KERNEL

Mod_JanusSystem call entry

JANUS

USER 

SPACE

KERNEL 

SPACE

O
p

e
n

(“fo
o
”)

re
s
u

lt

result

O
p

e
n
(“fo

o
”)

A
llo

w
/d

e
n

y

Open(“foo”)

Deny

Allow 

open(“foo”)

Figure 6: The Janus architecture

events closer to the application: method calls and returns, thread creation, and specific
security events. IRMs work on intermediate code and hence are specific to runtimes
like JVM and .NET. Software dynamic translation (SDT) for security is a more generic
technique that translates from compiled to binary code at runtime, sometimes with the
help of an interpreter. The added difference to interpreters is that SDT does not focus
on the execution as much as on the safe translation of chunks of code into a safe ver-
sion of executable code. These techniques are presented in more detail in the sections
indicated in Figure 5.

5 Low locality enforcement on program behaviour
In what follows, we will provide an overview on the main techniques with unit locality
and their implementations in runtime security policy enforcement. Each of them will
be described and discussed in terms of its strengths and limitations, taking into account
the assessment criteria enumerated in the previous section.

5.1 Call interposition techniques
Call interposition techniques exist at the system call level, but also at higher levels.
They can be either sanitizers or recognizers. Hereafter we focus on system call tech-
niques for two reasons: first, the bulk of the work in the state of the art concentrates
on system call research, and second, a big part of the discussion on enforcement with
system call interposition applies for calls at higher levels of abstraction.

System call interposition is motivated in that malicious behaviour can be reduced
to the system calls made to access the file system, network, or other sensitive resources.
Therefore, monitoring relevant system calls makes it possible to detect and counteract
a broad range of malicious behaviors. Tracing system calls at runtime provides a rich
amount of data: method call chains, method arguments, return values. The costs of
this approach depend on where interception mechanisms reside on the host OS – either
kernel-level or user-level mechanisms, and whether they block or alter the call chain.

System call interposition helps enforce access control policies and limit the domain
of action for untrusted programs. System call recognizers cover both kernel-level and

13



UNTRUSTED 

APPLICATION

SYSTEM CALL 

GATEWAY

SYSTRACE KERNEL 

POLICY MODULE

SYSTRACE USER-LEVEL 

MODULE

KERNEL 

POLICY

USER POLICY

SANDBOX

USER-SPACE

KERNEL SPACE

SYSTEM CALL 

REQUEST

SYSTEM CALL 

REPLY

Figure 7: The Systrace architecture

user-level areas. This has a big impact on two important aspects: portability and per-
formance. Kernel-based sandboxes can become difficult to port, since they depend on
a precise kernel structure and content. Policies on intercepting system calls, either for
kernel or user-space enforcers, ask for detailed knowledge on OS components, there-
fore are costly and difficult to develop. Enforcing such policies is also error prone when
it comes to replicating OS state, races, symbolic links and related issues [35].

Higher level call interposition has the advantage that is closer to the developer’s
and user’s understanding of the target application. It is much easier to write security
constraints at a level closer to the application than to the core system. While the same
system call sequence can be exhibited by two applications, a sequence of method calls
is more likely to be specific to one target application. The security policy writer needs
to have application-specific knowledge of the API or method calls to monitor – and this
was not the case for system call level policies that are less dependent of the application
that generates the calls, but more dependent on the OS used. To name two well-known
examples, high-level call interceptor features are natively offered by Enterprise Java
Beans interceptors in J2EE [72], as well as by Apache Tomcat [6] servlets. Some high
level call interposition implementations are realized in .NET [94, 2] and in Java [40].

System call interposition is prone to tampering and bypassability problems. For
instance, a monitored process cannot have more than one single monitor [33]. If a ma-
licious user creates its own monitoring process and attaches it to any other (as a traced
process), then the user would gain full control over the monitoree; this may happen be-
cause the monitor is not necessarily a trusted process – it can also be user-defined. Also,
Garfinkel [35] observes that race conditions are the most frequent problems to occur
with system call interposition. A race condition happens when parameters of a system
call can change between the time they are checked by a security tool, and the moment
they are retrieved by the OS to perform the system call (Time-of-Check-Time-of-Use
or TCTU race). The cause is generally multi-threading or shared memory between
threads, so that the shared states between operations performed by system calls can be
altered. Worse, Garfinkel also shows that denying system calls may have side effects
e.g., security flaws due to privilege dropping, or even undermining program reliability.
These problems apply to higher-level call interposition as well.

14



5.1.1 System call recognizer implementations

System call recognizer implementations have been embedded in operating systems for
a long time. For example, the command strace, the ptrace system call or the
/proc virtual file system in Unix are mediator processes that can offer system call
recording and filtering.

Another method of system call interception is using call wrapping. A wrapper can
be used to trap specific calls and attach extra features to them. For instance, COLA [53]
works by replacing user-space dynamic library calls with their user-customized ver-
sions, but since the aim is functionality (e.g., user notifications when system calls hap-
pen) rather than security, COLA trusts the user and is ineffective against programs that
use system call instructions directly. Unlike COLA, that does not modify the kernel,
approaches like SLIC [38] are more secure for system call interposition in that they are
protected from malicious applications.

An example of a user-space system call filter is Janus [39] (see Fig. 6). Its focus
is to confine untrusted applications by intercepting and filtering malicious system calls
performed by ordinary users. Janus has a mod janus kernel module that performs
system call interposition, and a janus part that, given a policy specified by a user ,
decides which systems calls to allow. In case of a policy violation, Janus kills the
monitored program. All processes spawned by the target are sandboxed as their parents.

A similar idea but implemented at kernel-level is presented in TRON [13]. TRON
offers a discretionary access control for a single process by providing protection do-
mains (or sandboxes) for untrusted processes: each process executes in exactly one
protection domain that it cannot escape. The enforcement is done by a kernel al-
gorithm which examines a domain’s access rights to access a specific routine; if the
routine is not found in a domain or if the domain does not have the needed access
rights for that routine, a violation handler is invoked. The same approach is taken by
ChakraVyuha [23] and SubDomain [21]: limiting the privileges of target code over
system resources extends into enforcing mandatory access control for all system users.

5.1.2 System call sanitizer implementations

System call sanitizers can change the behavior of the intercepted system call by mod-
ifying the semantics of the call or its parameters. At user-level, system call modifying
by wrapping is proposed by Jain and Sekar [50]. They improve the original Janus with
Janus2, or J2, by reducing the number of context switches and dealing more flexibly
with system calls: their solution also permits parameter modification, apart from sim-
ply system call accepting or denying.

We have found mostly hybrid system call implementations, i.e. that include both
user and kernel level components. Hybrid architectures run simultaneously both kernel-
level and user-level mechanisms of enforcement. They offer the combined advantages
of the two approaches: the speed of the kernel-level mechanisms and the portability
and ease of development of the user-level ones. Sandboxes at this level have two sepa-
rate components: an interposition architecture provides access to system call data and
enforces policies typically within the kernel, and a policy engine that decides on the
resources the sandbox in user-space.

15



USER-SPACE

KERNEL SPACE

RESTRICTED 

INTERFACE

A
P

P
L

IC
A

T
IO

N

agent

agent

PROCESS

EMULATION LIBRARY

PROCESS

EMULATION LIBRARY

Figure 8: The Ostia architecture.

In Systrace [81], for instance, a kernel-level mechanism intercepts the system calls
of a monitored process, and informs a user-level monitor about them. Systrace gener-
ates policies interactively or, more interestingly, automatically by means of a training
session. The kernel policy module interposes when a system call is about to be started
or finished, and retrieves information about it. If it cannot decide by itself, it asks a
user-level daemon for a policy decision. This daemon monitors processes and has a
more extensive view over the system. The Systrace architecture is shown in Figure 7.

Ostia [36] follows a slightly different scheme compared to Systrace and some later
Janus implementations (J2 [35]). In order to invoke sensitive system resources, a typi-
cal system sends the requests of the sandboxed application to the kernel. Ostia replaces
this path with a delegation of responsibility to the sandbox broker (see Figure 8). This
broker mediates resources on behalf of the application, on the terms specified by a user
policy. The TCTU race noticed before [35] is solved: while in Systrace-like architec-
tures (approach also known as filtering architecture), permission checking is performed
by the application sandbox and the access granting comes from the OS, in Ostia the
user-level sandbox gets complete control to access resources (approach also known as
brokering architecture).

5.1.3 Assessment over call interposition implementations

Higher level interposition implementations are not as frequently discussed in the liter-
ature as system-call interposition ones. The implications of intercepting higher level
or lower level program events are discussed in [94, 92]. Erlingsson and Vanoverberghe
mention that a big difference resides in the expressiveness of the policies: system-call
level techniques are fine grained and their policies are expressive yet difficult to un-
derstand; application-level enforcement is coarser grained but the policies, albeit less
expressive, are simpler to read and understand within the practical context of the appli-
cation.

In terms of overhead, system call enforcement implementations can be fast at OS
level. For instance, Janus built on SLIC’s interposition mechanisms adds one extra
content-switch on each potentially malicious system call, to SLIC’s one-time installa-
tion cost of 2-8 microseconds plus the time for an extra procedure call. TRON incurs
hundreds of microseconds that will depend the number of policies.

16



Criterion System call implementations

Abstraction level Operating system
Guarantees mediation (full if in kernel), tamper-proof

Trusted components OS, system call wrappers, libraries
Policy class access control

Policy language very low level, not user-friendly
Overheads very low (ms), depends on no.system calls

Table 1: Summary on system call interception techniques and implementations.

In terms of security guarantees and trust model, system call interposition imple-
mentations offer tamperproofness and complete mediation if they are kernel based but
not if they are user-level sandboxes. Wrapping in the second case is circumventable
– a piece of code could anytime bypass a trapped call by invoking a machine-level
instruction – and therefore it must be seconded by some mechanisms that prohibit sub-
version. The TCB includes the OS and the call wrappers. Table 1 summarizes system
call interception implementations.

5.2 Safe Interpreters
A software interpreter introduces a virtual layer mediating interactions between a run-
ning program and the CPU. From a security standpoint, the biggest advantage of this
approach is that untrusted programs cannot directly reach system resources: all in-
structions have to pass through the interpreting mechanism which can perform security
checks before translating and executing the respective instructions.

Scripting languages come with their own interpreters and are highly portable since
the input code is translated in the same way on any platform or environment where
the interpreter is installed. For this reason, languages like JavaScript, ActiveX and
VBScript are popular browser security research topics. Scripts in these interpreted lan-
guages being frequently embedded in Web pages, accessing such a page leads to the
download and execution of the script by the interpreter on the user’s system. This can
be dangerous, hence it is important to keep such execution contained on the client side.
In 1998, the notion of safe interpreters was proposed, with the primary aim of contain-
ing the effects of the execution of untrusted scripts [5, 73]. By Anupam and Mayer, a
safe interpreter needs to ensure two things: 1) data security in the sense of confidential-
ity and integrity, and 2) user data privacy [5]. To achieve that, the interpreter needs to
isolate scripts that might execute unsafe commands (e.g., I/O, cd, execute, open), and
consequently to enforce access control for the objects in the context of the scripts. Se-
curity policies can be, therefore, about object access control, independence of contexts
of various scripts, and management of trust between them.

Interpreters enforce access control policies since they react to program behaviour
rather than data flow; still, it is only recently that research has been looking at informa-
tion flow policies within the browser’s interpreter. The level of abstraction is high since
scripts and interpreted languages are programs directly written by human users, and the
policies onto such program behaviour are easy to understand by a security developer.

17



The guarantees brought by safe interpreters are tamperproofness and mediation – but
there are documented cases when the interpreter can be bypassed [5, 104].

5.2.1 Safe interpreter implementations

A well-known scripting language –Tcl– was extended with security features to Safe-
Tcl [73]. Safe-Tcl employs a technique by which untrusted programs (called applets)
are executed in spaces separated from the trusted system core. The applets cannot in-
teract directly with the calling application (like an kernel space, in an OS analogy),
and are kept in a sandbox of the safe interpreter. Safe-Tcl has two interpreters: an
untrusted one called ‘safe’, and a trusted one called ‘master’. In order to use resources,
the applet needs to use ‘aliases’, which are commands to the master interpreter, that
guards system resources and decides to allow or deny alias requests. An alias is thus
a mapping between a command in the safe interpreter and a command in the master
interpreter. The master interpreter has complete control not only on the states and ex-
ecution of the safe interpreter, but also on how aliases are called from the applet. To
this end, the Safe-Tcl security policy is a set of Tcl scripts implementing the aliases
that the policy allows. The applet is completely separated from the policies, and has
the power to choose at most one security policy, as an alternative to a policy-less exe-
cution when it is only allowed to perform safe commands. Safe-Tcl does not associate
the ‘right’ policy with the ‘right’ applet: untrusted applications are allowed to choose
between policies and this freedom is not necessary even if the policy writer is trusted:
an application can choose a less restrictive policy than it should. The Safe-Tcl policies
we saw (e.g, limit socket access, the number of temporary files) require blocking of
unsafe actions, and hence we derive that Safe-Tcl is a recognizer implementation.

Another approach for access control enforcement with interpreters is that of Se-
cureJS, proposed by Anupam and Mayer [5]. Unlike Safe-Tcl, where there is a master
interpreter and restricted children interpreters, SecureJS focuses on the interfaces be-
tween the script and the browser, or the script and external entities like Java applets
and ActiveX scripts; its focus is to restrict the external interfaces and their methods
that involve scripts. It follows that this implementation’s threat sources are external
browser entities, unsafe scripts, while the browser and interpreter are trusted. Similar
to Safe-Tcl, Secure JS concentrates on separating between namespaces with different
script objects and restrictions, read-only and writable objects within a namespace, and
trust shared between namespaces for object reuse (hence the TCB can include high-
level objects). We see SecureJS as a recognizer: it either allows the calls between these
entities to happen, aborts the call, or asks the user for permission to allow the call.
Anupam and Mayer mention that policies are formulated as access control lists, but
SecureJS does not come with performance overhead evaluation since the target is to
repel a set of browser attacks.

Other JavaScript enforcement implementations for browser security are CoreScript [104],
ConScript [65] and that by Devriese and Piessens [26]. While the first two are built to
enforce access control policies, [26] looks at non-interference. CoreScript inserts se-
curity checks and warnings in the Java Script code that the interpreter will reliably
execute. CoreScript’s model is that of a sanitizer since it can also change the semantic
of the original code, and expresses its policies as edit automata. Its TCB includes a

18



Criterion Safe interpreter implementations

Abstraction level Application level
Guarantees tamper-proof, but not non-bypassability

Trusted components browser, helper modules,interpreter
Policy class access control

Policy language scripting languages, or customized
Overheads from 1 to 25% (peaks at 200%)

Table 2: Summary on safe interpreter techniques and implementations.

rewriting module, a policy module, and a special callback module that allows for fur-
ther security validation and rewriting on runtime-generated scripts. ConScript focuses
on policy safety in an adversarial environment by disallowing protected objects to flow
to user code, and protecting the integrity of access paths when invoking a function; its
purpose is to automatically produce expressive policies to protect a hosting Web page
from malicious third-party code and libraries. It is a recognizer implementation since,
from the 17 policy examples given, the action is to restrict or limit script functional-
ity so that just allowed behaviour happens, rather than to correct possibly malicious
actions.

5.2.2 Assessment over safe interpreters

An assessment over interpreters is shown in Table 2. These interpreter implementa-
tions bring mediation and tamperproofness guarantees, but non-bypassability does not
always hold. As far as the security policy language is concerned, interpreters like
Safe-Tcl require minute system knowledge ranging from system call API and ker-
nel structures, to proprietary low-level APIs. The policies are expressing events at
the same (high) level of abstraction with that of the mechanism enforcing the policy:
the language refers to individual calls. The TCB includes the interpreter and various
other callback/rewriting modules in the implementation designed to improve on non-
bypassability, or to counteract certain attacks.

Safe interpreters perform worse than system call interception because of the in-
terpretation overhead. Interpretation has a much lower performance than system call
interception e.g., it raises overhead from 2 to 10% more than for compiled code. This
is the main reason why interpreters are not used in complex applications. Nevertheless,
the performance overhead of instrumenting interpreters for browser security seems to
be much smaller – ConScript’s overhead is around 1%, apart from an initialization
overhead of tens of microseconds [65]. For the multi-execution technique in [26], the
combination of interpreter and either serial or parallel multi-execution give execution
overheads varying between 25 and 200%.

6 Higher locality enforcement on program behaviour
Higher locality for enforcement comes with program rewriting. Program rewriting
is a technique that aims to suppress security policy violations by changing parts of the

19



entire program at once (rather than one instruction at a time). An extensive study over
the policies enforceable by program rewriting is given in [46]. In particular, binary
rewriting is interesting in our work since it happens after compilation. Binary rewrit-
ing takes an application’s binaries and transforms them according to the purpose of
this process, be it code optimization, code migration from one architecture to another,
or binary instrumentation [103]. In this way, the enforcer is embedded in the target
program. There are two types of code rewriting [105]: static rewriting and dynamic
rewriting. The former changes the binaries on disk. In this case, the instrumentation
is done only once for several program runs, hence the rewriting overhead is fixed. The
other form of rewriting is dynamic rewriting, which changes the binaries in memory.
The instrumentation is done at runtime, and instruction insertion or removal is done on
the fly. Dynamic rewriting is sensitive to events that can only be observed at runtime as
library loads, external application executions, etc. The executable is not modified, but
the execution suffers from instrumentation overheads. Examples of dynamic rewriting
tools are Dyninst [16], Detours [49].

Types of rewriters There are several approaches to rewriting: to contain software
faults, to modify system calls or higher level calls, to control program flow, etc. We
classified the following approaches: software fault isolation, inlined reference moni-
tors, aspect weaving and control flow enforcement in the context of software dynamic
translation.

6.1 Software fault isolation
Software fault isolation (SFI) was introduced by Wahbe et al. [97] and offers low-level
code safety. It is a type of software address sandboxing: addresses are changed so
that they fall in a specific memory region. When an application is allowed to dynami-
cally load untrusted components, or modules, it is important that these modules do not
corrupt the host system, hence the need to isolate such modules within fault modules.
The SFI model is an encapsulation by which untrusted object code cannot operate on
memory addresses different than its own range. All non-CPU system resources are
accessed by system calls, so providing wrappers for the system calls to which the un-
trusted code can be redirected should be enough to contain malicious effects. Small
observes in [89] that SFI techniques can be implemented in several ways: in a com-
piler pass [88], a filter between the compiler and the assembler [89], or as a binary
editing tool like [97]. Managing such software-enforced spaces does not require main-
taining separate address spaces, because they target a single Unix process. SFI acts at
load time rather than runtime. Schneider argues that SFI is not part of the execution
monitoring mechanisms because, unlike them, it modifies the target before it is actually
run. Nevertheless, the instructions that SFI inserts can implement a security automa-
ton. SFI techniques are focused at enforcing low-level access control of untrusted code
to the underlying system.

From a security standpoint, SFI techniques can enforce very fine grained memory
access. They also help in what is known as control flow enforcement. This notion
relates to a known problem when executing third-party code: illegal code transfers.
Illegal code transfers refer to situations when, instead of giving control to legitimate
code, the system yields control to malicious code. This behavior is observed with e.g.,

20



return-to-libc attacks2; to counteract it, a security mechanism has to put restrictions on
where the program counter points to before the next instruction is executed.

6.1.1 SFI implementations

The original SFI implementation of Wahbe et al. [97] offers a user-level approach to
ensuring code safety and memory protection. First, it loads the untrusted code in a
designated memory space. What it monitors is any low-level instruction that jumps or
stores an address outside its memory area, for example procedure returns (represented
as jumps to registers). A part of the target application’s address space is logically sep-
arated from the rest of the space and called ‘fault-domain’. Software modules placed
in different fault domains can only communicate via explicit Remote Procedure Call
(RPC) calls. In order not to create any resource conflicts, the OS is modified in order
to know of the existence of fault domains and moreover, hardware page tables are also
programmed to securely leverage data sharing between fault domains.

There are several other SFI implementations among which we noted Naccio [32],
MiSFIT [89], Omniware [64]. Naccio comes in two flavours for the platform library:
Naccio for Win32 and Naccio for the JavaVM. Naccio/Win32 automates the process of
wrapper writing and modifies the target program too. Its abstraction level is still system
calls, but the focus is on wrapping the entire platform interface. Given some resource
(resources here include files, threads, network connections) descriptions and some con-
straints on resource usage, a policy generator automatically creates an abstract policy
suited for a particular platform and purpose, together with a modified version of a plat-
form library. Hooks are added to the target application to call the policy-enforcing
library and the desired policy file, instead of the original system call entries. Omni-
ware [64] targets mobile code safety; it is a portable virtual machine whose compiler
generates portable code for an abstract virtual machine, and then translates it into na-
tive fault-isolated code at runtime. In its turn, MiSFIT [89] addresses loads, jumps,
and stores, but cannot ensure protection against illegal reads. MiSFIT stands between
compiler and assembler; it fault-isolates loads, stores and calls and it processes unsafe
instructions by rejecting the program module, or transforming unsafe operations in safe
ones. MiSFIT is hence both a recognizer and sanitizer.

For control flow enforcement, DynamoRIO focuses on dynamic code optimization
and adds security by proposing the technique of program shepherding [52]. Program
shepherding restricts execution privileges for untrusted code and also restricts program
control flow. It monitors control flow transfers at runtime, by either (1) code origin,
(2) instruction class, source or target. Similarly, the RIO dynamic optimizer starts off
from an interpreter, and aims to achieve uncircumventable sandboxing by blocking
invalid control transfers. Program shepherding is reported to prevent violating code
to execute, and hence we classify it as a recognizer implementation. Further SFI im-
plementations for control flow enforcement are NativeClient [101], and control flow
integrity(CFI) [1]. CFI provides fine-grained integrity of the program control flow,
by a mixture of static verification (that computes a flow graph), binary rewriting (that
inserts runtime checks in the machine-code) and some runtime checks. CFI couples

2This is a buffer overflow attack that replaces the return address on the stack with the address of another
instruction, usually a call in the libc library.

21



Criteria SFI implementations

Abstraction OS and platform
Guarantees nonbypassability, tamproofness

Trust components OS, rewriter, compiler
Policy class access control

Policy language high-level (Naccio) otherwise very low level
Overheads low to medium, e.g., 9-45%

Table 3: Summary on some SFI techniques and implementations

well with IRMs: CFI ensures that runtime execution follows a given control graph, and
this is useful for IRM to make sure the extra checks they insert in the program will be
surely executed, and the security state updated. Also, CFI ensures safe regions in mem-
ory where the state keeping of the IRM can be done. While NativeClient processes x86
code to guarantees that the control flow will target just certain address ranges, CFI can
restrict the flow to any address within the control flow graph. In this way, CFI effi-
ciently blocks attacks to control-flow transfer, but cannot protect against attacks com-
plying with the legal control flow graph (e.g., changing arguments of system calls). To
solve this problem, XFI [29] builds on CFI and relies on IRM load-time verification to
ensure memory access control; hence it guarantees environment integrity. We see these
technique implementations as recognizers because of their blocking behaviour towards
malicious code.

6.1.2 Assessment over SFI implementations

Naccio cannot enforce constrained memory accesses and code structure constraints.
Its focus is on low-level safety rather than monitoring resource operations, but memory
and processor usage constraints cannot be enforced. Naccio is a recognizer since it
does not influence the actual behaviour of the program.

SFI implementations ensure integrity of the rewritten code, but can be circum-
ventable: because they do not impose conditions on the flow of the program, the target
can find ways of avoiding the checks of the rewriter [1]. The trusted computing base
for SFI rewriters usually includes the rewriter mechanism, the compiler and the OS.
Table 3 summarizes some features of SFI implementations.

As far as the security policy language is concerned, most of the implementations of
SFI requires detailed and very technical knowledge of the inner system. The language
refers to singular calls like loads and stores (e.g., Naccio) or groups of calls to monitor
(e.g., patterns similar to buffer overflow or return-to-libc). Naccio has the problem that
if the policy changes, the policy generator needs to be run again to produce an adapted
version of the policy-enforcing platform library. The specification language is easy to
use, because it is aimed at being accessible and platform independent. Also, Naccio’s
and Ariel’s enforcers are triggered by single specific calls [75], loads and stores. The
policies required for SFI instrumentation are very low-level.

The overheads of these implementations are not very big. This is because SFI cre-
ates logical fault domains in the context of one address space, and the remote procedure

22



SECURITY 

POLICY

ORIGINAL 

APPLICATION

SECURED 

APPLICATION
 

APPLICATION 

REWRITER

SECURED JVML APPLICATION
Runtime IRM

PoET REWRITER

+

PSLangPOLICY

TARGET 

PROGRAM

Dynamic code 

generation or 

loading

Figure 9: The inlining process on the left-hand side. The rewriter takes the application
code and a security policy as input, and produces a secured version of the application.
On the right-hand side, an implementation of this process with the Policy Enforcement
Toolkit IRM.

calls (RPC) among these domains are fast. Omniware reports that sandboxed code runs
just 9% slower than its non-sandboxed version. MiSFIT states that its read-write-call
protection takes from 1.4 to 3.2 times more to execute than unprotected code [89]. The
performance analysis of Naccio for JVM shows to perform better than JDK’s security
manager on short policies (i.e., with 84% rather than JDK’s 153%), but for complex
ones (e.g. limiting the number of bytes to be written or read from a location) the
overheads grow dramatically due to managing resource objects in memory. Also, on
SPEC2000 benchmarks, CFI is reported to have a 15% overhead compared to Na-
tiveClient’s 5% overhead [101], while XFI, adding data sandboxing to CFI, should in
theory be slower. Also, CFI is shown to perform faster than Program Shepherding, and
on the SPEC2000 benchmarks the overhead can reach 45% [1].

6.2 The Inlined Reference Monitor
The Inlined Reference Monitors (IRMs) combine, or inline, execution monitoring (de-
fined above) with the untrusted program (Fig. 9). They can act either as sanitizers or
recognizers. An IRM makes use of a trusted rewriter tool that inserts security code in
the target application in order to prevent any access control violations [28]. For that, it
needs three types of information [30]:

• the security events are operations declared sensitive by the security policy: API
calls on files, system calls, socket communication, etc.

• the security state refers to any kind of context information that the policy logic
requires in order to make a decision (for example, some information from the
execution history).

• the security update refers to what action the program should take whenever the
security event happens, as an update to a security state. The action can be any-
thing from a policy violation signal to a set of remedial actions (e.g., disable all
socket communication).

IRMs can be recognizers and sanitizers as well. The enforcement capabilities of
security automata evolved from initially halting the execution of the target to operation

23



suppressing or injecting. Alleviating the draconian behavior of the original security
automata are the edit automata [59] that were introduced later by Ligatti et al. These
new automata can truncate, insert and modify, if needed, the execution of the target.
Notice here that program rewriters modify programs, while edit automata can modify
steps in an execution. Introducing edit automata has led the way to more powerful
monitors: edit automata can ‘pretend’ they allow the target to execute until the mon-
itor eventually accepts it as legal (in other words, a sequence of untrusted actions is
suppressed and only if it is proved not to violate any policy, it is reinserted in the pro-
gram flow). As a result, further series of extensions have been brought to Schneider’s
preliminary work [46, 84, 60], by linking it to computational complexity and extend-
ing it to non-safety policy enforcement. Some notable conclusions are that intuitively,
if a policy is enforceable at runtime then it is enforceable by an IRM; most statically
enforceable policies are enforceable at execution time; some non-safety properties can
also be enforced at runtime, depending on the computational capabilities of the security
automaton modeling that execution.

6.2.1 IRM implementations

One of the first implementations to insert or inline monitoring code in the target pro-
gram was SASI [92]. Security Automata SFI Implementation (SASI) extends the
original SFI to execution monitoring – and to enforcement of any policy that can
be expressed as an automaton. SASI embeds the policy enforcer in the executable
code (x86 assembly language and Java Virtual Machine Language). The idea is that
any memory-access instruction is considered sensitive, so security checks are inserted
right before this instruction is executed on the target machine. These checks are non-
circumventable, ensure memory safety and eliminate calls outside of the program. A
rewriter module is in charge with merging of the original bytecode with the security
automaton of the policy. The inserted code causes the application to halt when the au-
tomaton rejects the input, hence SASI is for us a recognizer. Because SASI can describe
policies at a lower level than Naccio, it can enforce policies that Naccio cannot: con-
strained memory accesses, code structure constraints. Conversely, Naccio can enforce
policies that SASI cannot, since it modifies the behavior of the program. Naccio’s fo-
cus is on low-level safety rather than monitoring resource operations, but memory and
processor usage constraints cannot be enforced.

Erlingson and Schneider introduced the IRM [83, 28, 30, 84, 46] but there are
important contributions on applying or extending IRMs [94, 90, 10]. Erlingsson em-
phasised the use of automata with strongly-typed languages like Java and .NET [30, 84,
28]. He observed that the runtime checks performed by a Java 2 JVM consider stack in-
spection policies [30], while this does not hold for JVMs before Java 2. In other words,
more sophisticated security policies can only be run on new JVM versions; conversely,
policies not related to stack inspection could not be run on latest JVMs which do just
stack inspection. The solution would be to use an inlined reference monitor to per-
form stack inspection, so that changing security policies would not imply changing the
JVM. The suggested solution implements a Java bytecode IRM called Policy Enforce-
ment Toolkit (PoET). The security policies for PoET are specified using a Java-like
policy language: Policy Specification Language (PSLang). The integrity of the overall

24



reference monitor is guaranteed by the Java type safety, while the implementation is
two-fold: there is a security-passing style IRM and a “lazy IRM”. The former uses a
variable that stores security information from the runtime stack, and its security triggers
are: method calls and returns, thread creation, Java permission checking and privileged
blocks. The latter does not consider method calls and returns anymore, but manipu-
lates the Java runtime stack and adds thread creator methods and permission checking
in privileged code blocks. The gains of these implementations reside in very good per-
formance and flexibility to do enforcement on any application event, irrespective of the
JVM version.

Polymer is an approach that focuses more on policy writing and policy composi-
tion [11]. One of its novelties is that policies as Java methods that suggest how to
handle trigger actions, and what to do when the suggested actions are followed. The
design is similar to Naccio in that there is trusted policy compiler that compiles RMs
defined in Polymer into Java bytecode, as well as a bytecode rewriter that instruments
the target code according to the monitors. Polymer has the notion of a policy with
other policies as parameters – called a policy combinator– and the syntax allows for
conjunction combinators, precedence combinators, and selectors to select only one of
their subpolicies. Polymer’s TCB includes the policy compiler, the bytecode rewriter,
and custom JVM class loaders. Polymer is a sanitizer, since it can correct or modify
program behaviour.

6.2.2 Assessment over IRM implementations

As mentioned in Section 6.1, IRMs can be circumventable since they do not impose
conditions on the flow of the program, so the target can avoid the IRM rewriter [1].
Nevertheless, integrity is guaranteed. For SASI on x86 code, security code integrity is
achieved by employing memory protection mechanisms and by forbidding the target
code to reference external entities in an uncontrolled way. For SASI on JVM, Polymer,
and PoET, memory protection is by default enacted through Java type-safety; security
information (e.g., the security states, the calls executed as a response to security trig-
gers, etc) cannot be compromised because JVML forbids accessing code or data that
were not loaded by the classloader.

IRMs are getting large and complex, so there is a significant increase to the TCB
of the system. The trusted computing base for IRMs implementations usually includes
the rewriter mechanism, as well as a certain compiler and binary analysis module.
Schneider suggested leaving the IRM out of the TCB and verifying it with a static type
checker, which in its turn is lightweight and does not burden the TCB as much as the
whole rewriter.

In terms of policy language, security automata are a straightforward formal method
to specify policies but they become difficult to grasp for more complicated policies. In
SASI, having an automaton describe the policy makes a hard life to a non-expert. Still,
SASI’s expressiveness allows for enforcement triggers in the form of any instruction
chains (e.g., division by zero, stack access properties). Polymer’s Java-like syntax
makes it easy to understand and use, since policy concerns are modularized and such
modules are reusable; similarly but maybe not as user-friendly as Polymer, Erlingsson’s
stack inspection approaches have PSLang policies.

25



Criteria IRM implementations
Abstraction application and platform
Guarantees mediation, integrity, tamproofness

Trust components rewriter, policy compiler
Policy class access control

Policy language security automata or Java-like
Overheads low to medium, e.g., 0.1-30%

Table 4: Summary on some IRM techniques and implementations

The overheads in the case of PoET/PSLang, are encouraging (as good as JVM’s
internal stack inspection) because the focus in on specific stack inspection primitives
rather than arbitrary machine code instructions. Some initial measurements show rel-
ative overheads of between 14-60% compared to the JVM-resident stack inspection
(even faster in some cases); there numbers were drastically improved in an optimized
implementation so that the approach in [30] can be even faster than the JVM stack
inspection. SASI’s x86 performs almost as well as MiSFIT, with overheads of between
0.1 to 2.6%. For unoptimized Polymer, instrumented Java core libraries incur around 4
ms per method, and a monitored call about 0.6ms overhead.

6.3 Software Dynamic Translation
Software dynamic translation (SDT) is the translation from compiled code to binary
code at runtime. SDT translates each line of code in one language into machine lan-
guage instructions and, if using an interpreter, executes them. As mentioned in Sec-
tion 4.3, we separate interpreters (that are eventually used by SDT) from SDT because
SDT focuses on the translation of more than one instruction or command at a time,
while interpreters focus on the execution of a (translated or not) instruction at a time.
Safe interpreters transform the execution of an instruction, while SDT transform the
whole program or parts of it. Virtual machines are an important example of dynamic
translators; they fetch instructions, do a certain translation to the instructions, then pre-
pare the result to be executed. There is a large number of applications of software
translation: binary translation (translating binaries from one instruction set to another),
dynamic optimizers, debuggers, dynamic profilers.

6.3.1 SDT implementations

Some SDT implementations that aim for security are Valgrind [70], Strata [87], Dy-
namoRIO [52], and Java [63]. Valgrind is a powerful tool for dynamic binary instru-
mentation made to shadow in software every register and memory value with another
value that says something about it [70]. Valgrind uses dynamic binary recompilation:
(1) (re) compiles the target code, (2) disassembles the code into an intermediate form,
(3) instruments, or shadows, with analysis code, and (4) converts the result into ma-
chine code again. The resulting translated code is cached and rerun if needed. Java is a
SDT system where the Java interpreter stands between the bytecode to be executed and

26



STRATA 

VIRTUAL 

MACHINE

HOST CPU

A
P

P
 

T
E

X
T

P
O

L
IC

Y
 

T
E

X
T

POLICY 

SOURCE

UNTRUSTED 

EXECUTABLE

COMPILER

SECURITY 

LOADER

Figure 10: How policy code merges with target code in Strata.

system resources. Whether the executable code is interpreted or Just-In-Time compiled
into machine code, the virtual machine is the intermediate layer that ensures portabil-
ity and extra security. In Java, the interpreter only executes type-checked bytecode and
these security checks are done both at runtime and compile time3.

Another approach appears in Strata [87], which supports transparent enforcement
of security policies. Strata is a virtual machine that translates executable instructions
into safe operations, before executing them; user-defined policies decide whether one
instruction is safe and another is not. The policy entry points are usually system calls,
and an interpreter mechanism ensures that Strata executes code from within the policy.
As shown in Fig. 10 [56], the policy code is merged at runtime with application code to
correct unsafe behaviour, hence we see Strata as a sanitizer. In Strata, a machine code
interpreter can implement a large variety of policies. It does not support a strict policy
language: the claim is that any policy language can be used, provided that the developer
binds it to Strata constructs. The policies in several papers have a C syntax [87, 86, 48].

6.3.2 Assessment over SDT implementations

With the Java virtual machine and binary translators, dynamic translation offers a vir-
tualization layer that helps in both security and portability. SDT techniques in security
bring strong non-bypassability guarantees e.g., program shepherding guarantees that
its sandboxing around any program operation cannot be bypassed, and tamperproof-
ness. In terms of trust model, SDT ensures that as long as the OS, policy writer and
interpreter are trusted, the untrusted code cannot bypass the interpreter.

Concerning the security policy language, SDT require minute system knowledge
ranging from system call API and kernel structures, to proprietary low-level APIs and
security automata descriptions. SDT is approachable for security developers who can
write their own call wrappers (which eventually become access control policies).

SDT implementations show much lower performance than system call interception
e.g., from 2 to 10% lower. This is the main reason why software translation is not used
in complex applications. For instance, Strata has been shown to bring a performance
overhead of 30% which might be unacceptable. As an improvement, the concept of a
Just-In-Time compiler was added to the Java implementation, and further research has
been done to optimize the software translation process [85]. SDT implementations are
assessed in Table 11.

3From this point of view, Java can be listed both as a safe interpreter and an SDT technique.

27



Criteria SDT implementations

Abstraction level runtime and application logic level
Guarantees nonbypassable, tamperproof

Trusted comp. OS,interpreter,compiler
Policy class access control

Policy language low-level, or custom
Overheads low to medium e.g., 2-30%

Figure 11: Summary on SDT techniques and implementations

6.4 Dynamic Aspect Weavers
Aspect-Oriented Programming (AOP) is a software engineering paradigm focused on
separation of concerns in software development. Some application requirements (e.g.,
security) are concerns that transcend the entire application, and adding, changing or
removing them requires modifying the whole application. The AOP approach to solve
this problem is to weave the initial application with one or more aspects or concerns.
Aspects are high-level objectives and can regard customized system-wide logging, ex-
ception handling, performance optimizations, security, etc. Each aspect is associated
with the specification of where and when to invoke a certain piece of code - the advice.

This procedure implies a number of security-related advantages [96]: a global
means of performing security checking (as all the security code is located in one place),
separation of the development security concerns, as the developer would not have to
worry anymore about security issues along application development, and reusability
of security policies across applications. An example is given in [99]: in order to in-
sert authentication features throughout an information management system in a regular
OOP way, almost all class interfaces ought to be changed, as well as implementations
of existing methods that are considered sensitive.

Aspects can be woven with the application in two ways: compile-time binding, or
static from our point of view, and runtime binding4. Static aspect weaving happens
when an aspect weaver merges the source file of an aspect with the source code of a
class. Once this is done, a regular compiler could compile the resulting code as normal
code. An example of a static weaver is AspectJ [51]. Dynamic weaving happens at
runtime and enables and disables aspects on the fly. In this case aspects can be created
at different moments in time compared to the application, but their weaving together at
runtime requires that the application provides some sort of weaving support. Because
our work is targeted on runtime security enforcement, we will analyze runtime aspect
binding.

Dynamic aspect weaving is a technique at application level. The advantages gained
in this way – expressivity and flexibility in expressing and managing user-level policies
– are coupled with weaker guarantees of mediation and non-bypassability. The TCB is
larger since weavers have to rely on a number of lower-level mechanisms that would
rewrite the code as per the desired aspects.

4Aspect binding can also be done at load-time, but dynamic aspect binding has received most attention.

28



6.4.1 Dynamic Weavers Implementations

PROSE and Wool [79, 80] are Java-based AOP frameworks for dynamic aspect weav-
ing. The dynamic support for weaving and un-weaving aspects is located within the
JVM and is called Java Virtual Machine Aspect Interface (JVMAI). This is a native
interface by which the user can manage execution events related to aspect weaving:
the user can register requests, get event notifications, and control what happens once a
notification is raised. Whenever the currently executing instruction is a joinpoint, the
execution is suspended and PROSE calls the crosscut functionality of the aspects asso-
ciated with that joinpoint. At the cost of interpretation, JVMAI intercepts a wide range
of fine-grained events: method calls but also field access, class loading, and breakpoint
events. The lifecycle of aspects is independent of the Java application, and aspects can
be (un)dynamically plugged.

There are some approaches of weaving of access control concerns, with bytecode
rewriting rather than interpretation as above [45, 12, 25]. The SPoX implementation of
an aspect-oriented IRM suggests a rewriting algorithm whereby first, a security class
is inserted into the untrusted code, then to have all instructions that manipulate certain
security-relevant objects rewritten to duplicate its state in the security class; finally, to
rewrite all Java method returns to target the rewritten code that contains security checks.
SPoX is a recognizer, since the detection of a security violation leads to the program
termination. Alternatively, Tom, the approach presented in [25], does Java code rewrit-
ing for access control and suggests a method to map the policy environment, the access
request identification, and the weaving rules, to the untrusted program. This process
of mapping is an otherwise sensitive task for the Tom compiler. Tom’s authorization
decisions are reported to be more flexible than access allow and deny, and hence we
see Tom as a sanitizer.

The aspect-based security approaches we have seen are usually formal, base them-
selves on security automata and mostly focus on the language capabilities of express-
ing security policies and how these policies can be formalized to deliver more security
guarantees. Correctness is an issue: it needs to be proved that the advice, once merged
into the code, enforces the specified policy and does not interfere with the property that
should be satisfied by the rewritten code [24]. The verification of aspect correctness
has been approached with the help of model checking in [54].

Performance enhancements to PROSE are brought by Bockisch et al., who consider
another issue of aspect weaving: previous work covered crosscuts statically bound to
application code (e.g., a method call). An alternative is dynamic crosscuts - those
whose hooks cannot be directly associated with parts of the code (e.g.,“the control
flow of variable A contains variable B”, or a counter for the invocations of some meth-
ods) [15]. The problem is that dynamic aspect weaving, even as it is called dynamic,
is usually logically done in a static way: ‘dynamic’ checks are inserted at all possible
joinpoints (e.g., all instructions). This approach leaves no room for really dynamic
hooks and for runtime dependencies among these hooks. Bockisch et al. suggest pro-
grammatic aspect deployment [66]to postpone advice weawving. Their architecture
makes aspect weaving part of the virtual machine execution model.

29



Criteria Dynamic weaving implementations

Abstraction level application logic level
Guarantees tamperproof

Trusted components rewriter, interpreter, compiler, aspects
Policy class access control

Policy language automata, very high level
Overheads high or very high e.g., 50-100%

Table 5: Summary on dynamic weaving techniques and implementations

6.4.2 Assessment over dynamic aspect weavers

AOP techniques present considerable overheads depending on their approach to in-
terception and aspect weaving: reaching joinpoints, context retrieving at jointpoints,
retrieving the right advice to call, calling the advice and executing it. A study by Haupt
and Mezini reports some research on AOP performance based on the cost of class load-
ing, advice lifecycle management, and various AOP benchmarks [47]. Wool incurs 4
times more time than AspectJ, and is 19% faster than dynamic code translation. The
aspect-oriented IRM reported in [45] report a rewriting overhead of between 50 to 80%,
but these figures depend on the policy used, the number of dynamic checks and exact
weaving method.

Table 5 shows a coarse assessment over dynamic aspect weavers. Rewriters that
perform aspect weaving perform very well from the point of view of policy language:
the aspect language is usually easier to grasp and is dynamic, i.e., aspects can be woven
or unwoven dynamically. The downsides are in performance and integrity guarantees.

The security issues of applying aspects to an application have been discussed in the
state of the art [74, 99, 24]. Palmer emphasizes that in an untrusted environment, advice
from unknown sources may be malicious [74] and his solution is to use code contracts.
Sandas and Walker consider the notion of harmless advice, that is a block of code (an
advice) required to satisfy a non-interference property; the aim is not to alter program
invariants, but just use I/O capabilities and start of end certain program computations.
De Win et al. bring into discussion the security guarantees of weaving aspects and those
of composing security concerns [99]. Addressing this problem, the aspect-oriented in-
lined reference monitor [45] brings a policy specification language that merges aspects
and security automata; the result is that the rewritten (or interwoven) code is proved to
satisfy the desired property.

6.5 Enforcement on data flow
Policies of the type “no data from this file can be sent via e-mail” cannot be expressed
by means of access control, because access control cannot track the way any informa-
tion in a file is processed by some or any application. Information flow control (IFC)
tries to bridge this gap; it imposes that unauthorized principals must not gain access
to sensitive information – there must be no leakages to domains with lesser clearance.
Enforcing IFC policies can be achieved with dynamic data flow analysis. This analy-
sis can be performed at several abstraction levels: OS, runtime, library, and application

30



level. Dynamic data flow analysis associates several bits of information with a program
object, follows the flow of these bits throughout the program, and if needed modifies
these bits according to program statements. No entity other than the trusted monitor is
allowed to change value taint value.

There are implementations using taint analysis to ensure that a target application
(usually a Web application or a database) will not be subjected to attacks like SQL
injections, command injections, cross-site scripting, hidden field tampering, cookie
poisoning, format string attacks, or privilege escalation [18, 43, 71, 100, 22, 20, 58].
Repelling these attacks implies performing data flow control. At runtime this occurs in
its three basic steps: (1) tainting – data from untrusted sources is marked; (2) tracking
– all subsequent operations on tainted data are tracked; (3) asserting – if marked data
is used in illegitimate operations, a violation is asserted. While the approach above
is the same for all approaches, what differs is the abstraction level. TaintCheck [71]
and Dytan [20] instrument binaries and check jump addresses and memory locations
or system call arguments. Approaches like [100, 18, 58, 43] check C or Java methods.

IFC enforcement is, as of now, mostly static. It was only recently that dynamic taint
analysis has gained ground in handling implicit flows. The state of the art of practical
work in this area splits into two branches: JVM approaches and non-JVM approaches.
For both types of approaches, the enforcement is realized either by rewriting or trans-
lating the application bytecode [102, 93], or by a JVM-wide interception and correction
mechanism [17, 68].

6.5.1 JVM-based dynamic data flow trackers

Implementations based on the JVM aim to add information flow constraints to the Java
Virtual Machine [102, 68, 42, 17, 67]. The motivation is to strengthen security controls
for a language runtime that serves as a foundation for a large number of applications.
Haldar et al. add object mandatory access controls and enforce them dynamically on
bytecode [42]. This implies that taints are associated with Java objects, and that the
security sensitive events are field reads and writes and method calls. This approach
has been deemed rather coarse by subsequent works [17, 102, 68] that deal with a
wider range of information flows, multithreading and exception management. The la-
bel granularity of these latest approaches is that of pieces of data (derived from files, or
network resources or databases) - therefore taints can be associated with object fields,
stack contexts and heap contexts [68]. One of the prominent examples in static IFC
enforcement is JFlow [67], an enforcer that checks annotations to data flow both stat-
ically and dynamically; JFlow does dynamic label binding to variables, and performs
dynamic access control checks for each method’s access to data and its authority to
declassify data values.

6.5.2 Non-JVM dynamic data flow trackers

These approaches target the compiler, runtime libraries or OS [18, 93, 55]. They
usually require program source code, hence we do not see them as fully runtime ap-
proaches. For instance, some implementations perform static vulnerability analysis on
the code of an application [18, 55]: a special compiler fed with an IFC policy locates

31



the points where the input of the program might generate policy violations. At those
specific program locations, the compiler inserts calls to a runtime library and that li-
brary manages tag information as the program executes. RIFLE [93] emphasizes that,
for the user, an unsafe binary is the same as a trusted one, and relies on the policy writer
to protect its sensitive information. RIFLE translates the normal application binary into
a binary that runs on a special instruction set architecture (a RISC ISA), which is spe-
cialized to track both implicit and explicit data flows. A completely dynamic approach
is taken by TaintDroid [27], a runtime security solution for Android smartphones that
does not require application source code. TaintDroid tracks the way sensitive data is
handled across multiple applications, by instrumenting the Dalvik virtual machine in-
terpreter to track data variables contained in messages sent by various applications. All
taints are stored in a virtual taint map and checked at runtime when relevant events
happen, e.g., a program invokes a method on sensitive data.

6.5.3 New Trends: combining IFC and IRMs

Re-evaluating Schneider’s statement in an attempt to solve this problem gave rise to
new mostly-dynamic confidentiality policy enforcement tools [57, 82]. When combin-
ing static and dynamic analysis for non-interference, Le Guernic suggests two non-
interference monitors based on Edit automata and a special semantics of monitored
execution. Soundness and partial transparency (the solution is unaltered by the mon-
itor) are proven in both cases, and the novelty extends to not only detecting informa-
tion flows but also correcting forbidden flows at runtime [41]. Sabelfeld takes the
approach even further and argues that a purely dynamic analysis can fully enact IFC.
He states that classic static analyses ignore information leaks happening if a program
terminates, and proves that classic static analysis and dynamic enforcement both en-
sure termination-insensitive non-interference. For this property, the probability of an
attacker learning a large secret (rather than one bit) is negligible in polynomial time [9].

6.5.4 Assessment of data flow tracking implementations

Most of the dynamic IFC enforcement implementations are able to deter an attacker
from manipulating a faulty system by providing improper inputs. However, repelling
some attacks (i.e., buffer overflows, code injections) does not necessarily imply highly
secured information flows. Le Guernic observes that IFC implementations do not prove
soundness and noninterference [41]. Worse, their solutions seldom discuss their degree
of mediation. Approaches that modify Java bytecode [43, 102] suffer in that not all
method calls are instrumented, which means that IFC applies selectively and thus the
whole mechanism could be compromised by targeting native calls.

When it comes to expressing policies, usability of IFC policy languages remains a
problem. TaintCheck [71] tracks tainted byte values – those from untrusted sources,
or derived from tainted values – and can thus detect dangerous uses of tainted values;
it can check if a particular address range or register is tainted. Such a policy is very
difficult to specify by a security administrator or user without a deep understanding
of the instrumented program. [18] has a similarly low-level policy language. Some
JVM approaches [68, 42] follow a Java-like syntax for their policy language or a Poly-

32



Criterion Data Flow Trackers

Abstraction level OS, runtime, platform, application
Guarantees full mediation but not always proven
Policy class both access and usage control

Trust components the OS, runtime or platform libraries
Policy language complex, Java-like syntax in best case

Overheads very high with minimum overheads around 30%

Table 6: Summary on data flow tracking techniques and implementations.

mer [12] syntax. This choice makes it easier for the Java-aware security users to write
IFC policies.

In terms of performance, the overheads incurred by dynamic IFC implementations
are usually important, ranging from around 30% to 200%. TaintCheck uses an x86
emulator to operate on arbitrary binaries at the x86 instruction level, and consequently
that induces overheads far over 100%. While a similar performance problem applies to
Dytan [20], other approaches employ static analysis on source code [18, 68] or more
specific optimizations [20, 22]. The obtained performance overheads after employing
static analysis range from 7% to 100% [68, 17]. Perhaps one of the best performing
is TaintDroid, since it was built for a very constrained execution in terms of resources:
TaintDroid reports to be only 27% slower than Android, on an IPC microbenchmark.

The TCB of most IFC frameworks includes the OS or some hardware platforms [22].
In some cases trusting the OS is replaced with trusting a modified JVM middleware,
a binary rewriter, an interpreter or some emulation environment such as Valgrind [71].
RIFLE trusts the translation process and the ISA. Table 6 gives an overview of the data
flow tracking implementations we surveyed.

7 Discussion on runtime enforcement
Table 7 shows the most relevant implementations we have surveyed: for each imple-
mentation we mention its type (recognizer (R) or sanitizer (S)), its operation level (high
or low), and where it belongs in the taxonomy in Figure 5.

7.1 What can be observed from the state of the art
Generally, enforcers act in three main steps when enforcing a policy: one, to monitor
a running program or data flowing, the second, to detect that something unwanted
happened or is about to happen (e.g., program is asking for a disallowed operation,
or data is about to be handled by an unwanted call), and third, to act on the target in
order to produce a desired effect. For most implementations, the chosen approach is
to have an alternate control program that runs along with the target, blocks relevant
operations before they happen, decides their legitimacy and disallows or allows them.
This enforcement model of blocking every sensitive operation is always preventive,
and relies on the existence of constraints in the policy that can anticipate all symptoms

33



Technique Implementation Type Level

Call Interposition

Cola [53] R low
Janus [39] R low
TRON [13] R low
Ostia [36] S low
Systrace [81] S low
Janus2 [50] S low
SLIC [38] R low
ChakraVyuha [23] R low
SudDomain [21] R low
[94] S high
[40] S high

Safe Interpreter

Safe-Tcl [73] R high
SecureJS [5] R high
CoreScript [104] S high
Conscript [65] R high

SFI

[97] S low
Naccio [32] R low
MiSFIT [89] S,R low
Omniware [64] S low
NativeClient [101] S low
CFI [1] R low
XFI [29] R low
[88] S low

IRM

SASI [92] R high
[28] R high
[30] R high
[44] R high

Polymer [11] S high
[94] S high

SDT

Valgrind [70] S,R high
Strata [87] S high
Java S,R high
DynamoRIO [52] R low

Dynamic Weavers

Prose [79] S,R high
Wool [80] S,R high
Tom [25] S high
SPoX [45] R high

Data Flow Trackers

RIFLE [93] S low
TaintDroid [27] S low
[18] S,R high
[55] S,R high
[42] R high
[41] S high

TaintCheck [71] R low
Trishul [68] S,R high
Dytan [20] S,R high

Table 7: Summary on runtime enforcement implementations

34



of malicious behaviour. To counteract the limitations of such symptom prediction,
the security policy could concentrate on the effects of a violation rather than on its
symptoms. In that case, we would need an enforcement model that acts a-posteriori.
That is, it observes that the system is in a disallowed state already, and takes action to
complement that state.

Enforcement by halting the program when unwanted behaviour is about to happen
is sometimes not practical, being too restrictive. Knowing what calls to intercept and
process implies knowledge of the target application and also of a policy language to
express policy requirements. Since different behaviours of the target might map to the
same chains of calls, there are two alternatives: (1) to run the target in a secure environ-
ment where each call is monitored – but this approach is expensive – or (2) to rewrite
the code of the target so that it will not misbehave. Program rewriting is supported
by off-the-shelf tools (e.g., bytecode rewriters and aspect weavers), and delivers strong
enforcement guarantees independent of the platform. The problem is, however, that
the predominant enforcement model of rewriting is that of security automata. A secu-
rity automaton is not yet fully mature to fit real-world constraints. Albeit supported by
theoretical work, implementing security automata cannot yet properly correct the pro-
gram execution when a policy is violated and cannot monitor more than one program
implementation at a time. The automaton enforcement models can look at previous
program executions (with some memory constraints), but when making decisions it is
completely isolated – it cannot receive input from any other entity. Some other lim-
itations of security automata are: they assume the policy is already available as an
automata (which is usually difficult to obtain); their event histories may be problematic
for history-based policies [28]; they correct only side-effect-free transitions and also
cannot deal with information flows, concurrency and user sessions.

Policy languages tend to be similar at the same level of abstraction. A comparison
among some Janus, Systrace and Ostia policies demonstrate a similar syntax in defining
the sandboxed environment, with certain system paths allowed or denied, or reading or
writing to the network devices. This similarity is caused by the fact that these imple-
mentations are all built on the same Unix platform, and also that their target is the same
– system calls. Looking at further policy examples, the Safe-Tcl language [73] has con-
structs that require less deep knowledge about system internals, while Strata policies
written in C from [48], seem more tedious and error prone for system call interposition.
The Naccio and PSLang snippets given in [32] and [30], are perhaps more intuitive to
customize for different high-level application constraints. We have not included snip-
pets of data flow policies since they have the same semantics – i.e., to prevent classified
information to leak – so the policy is ‘hardcoded’ into the enforcer.

Overheads grow with abstraction level and the way the mechanism works. Roughly,
the further away from the machine and OS, the bigger the overheads. System call
interposition implementations have the best performance (depending on the frequency
of system calls); safe interpreters incur from 1 to 25%, SFI from 9 to 45%, IRMs from
0.1 to 30%, SDT from 2 to 30%, while aspect weaving and data flow trackers, over
30% overhead.

The large amount of work dedicated to securing data or information flows moti-
vated several discussions on the capabilities and limitations of static versus dynamic
techniques [17, 41]. Zdancewic argues that the challenge in information flow control

35



resides in motivating the need for this area of security and integrating it into existing
infrastructures, with complex security policies to be enforced.

7.2 Future directions and conclusions
Policies are static. It is very difficult (sometimes impossible) to change the policies
once they are set. Changing the policies to be enforced may requires changing the
events to be intercepted, and monitoring mechanisms would need to be reconfigured.
As a consequence, enforcement is localized – it is concentrated on one location, with
a fixed sequence of actions to follow. More research is needed to make enforcement
a more flexible and scalable process, with more features for security researchers or
developers.

Limited type of constraints enforced. Policies enforced on the target program are
limited to access control rules. There is not yet support for continuous decisions, at-
tribute mutability and state updates. Also, concurrency is a problem for security au-
tomata, since they cannot yet enforce policies on user sessions that carry history and
on concurrent programs.

Performance overheads need to be uniformly assessed. There are no common cri-
teria by which to assess the performance penalty of similar enforcement tools, and this
leaves an open door for further investigation. The performance analysis requires stan-
dardized tests (i.e. benchmarks or microbenchmarks) that pertain to the same level of
abstraction, as per Figure 3. More importantly, testing the same policies written in dif-
ferent policy languages for different mechanisms would give the correct idea over the
exact performance penalties.

The paper offered a walkthrough over the most important techniques in runtime
enforcement and discussed their strengths and limitations. We feel that this work would
be useful in identifying future steps in the area of security enforcement, but would also
help security experts choose the right mechanisms for securing their architecture.

8 Acknowledgments
This work has been partly supported by the EU under the project EU-NoE-NESSoS.

References
[1] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity.

In Proceedings of the 12th ACM conference on Computer and communications security,
CCS ’05, pages 340–353, New York, NY, USA, 2005. ACM.

[2] Irem Aktug and Katsiaryna Naliuka. ConSpec – a formal language for policy specifica-
tion. Electron. Notes Theor. Comput. Sci., 197(1):45–58, 2008.

[3] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21:181185, October
1985.

[4] James P. Anderson. Computer security technology planning study. ESD-TR-73-51, Elec-
tronic Systems Division, Air Force Systems Command, 2(1), 1972.

36



[5] Vinod Anupam and Alain Mayer. Security of web browser scripting languages: vulnera-
bilities, attacks, and remedies. In Proceedings of the 7th conference on USENIX Security
Symposium - Volume 7, pages 15–29, Berkeley, CA, USA, 1998. USENIX Association.

[6] Apache. Apache tomcat server. http://tomcat.apache.org, 2011.

[7] AppGenomeProject. App genome report february 2011. https://www.
mylookout.com/appgenome/, 2011.

[8] B. Ashok, Joseph Joy, Hongkang Liang, Sriram K. Rajamani, Gopal Srinivasa, and Vipin-
deep Vangala. Debugadvisor: a recommender system for debugging. In Proceedings of
the the 7th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, ESEC/FSE ’09, pages
373–382, New York, NY, USA, 2009. ACM.

[9] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-
insensitive noninterference leaks more than just a bit. In ESORICS ’08: Proceedings of
the 13th European Symposium on Research in Computer Security, pages 333–348, Berlin,
Heidelberg, 2008. Springer-Verlag.

[10] Lujo Bauer, Jarred Ligatti, and David Walker. More enforceable security policies. In
Foundations of Computer Security, Copenhagen, Denmark, July 2002. DIKU Technical
Report.

[11] Lujo Bauer, Jay Ligatti, and David Walker. Composing security policies with polymer.
SIGPLAN Not., 40:305–314, June 2005.

[12] Lujo Bauer, Jay Ligatti, and David Walker. Composing security policies with Polymer. In
Proc. ACM SIGPLAN conf. on Programming language design and implementation, pages
305–314, New York, NY, USA, 2005. ACM.

[13] Andrew Berman, Virgil Bourassa, and Erik Selberg. Tron: process-specific file protection
for the unix operating system. In Proceedings of the USENIX 1995 Technical Conference
Proceedings, TCON’95, pages 14–14, Berkeley, CA, USA, 1995. USENIX Association.

[14] M. Bishop. What is computer security? Security Privacy, IEEE, 1(1):67 – 69, jan.-feb.
2003.

[15] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus Ostermann. Virtual ma-
chine support for dynamic join points. In Proc. 3rd intl conf. on Aspect-oriented software
development, pages 83–92, New York, NY, USA, 2004. ACM.

[16] Bryan Buck and Jeffrey K. Hollingsworth. An API for runtime code patching. The Intl.
Journal of High Performance Computing Applications, 14:317–329, 2000.

[17] Deepak Chandra and Michael Franz. Fine-grained information flow analysis and enforce-
ment in a java virtual machine. Computer Security Applications Conference, Annual,
0:463–475, 2007.

[18] Walter Chang, Brandon Streiff, and Calvin Lin. Efficient and extensible security enforce-
ment using dynamic data flow analysis. In Proc. CCS ’08, pages 39–50, New York, NY,
USA, 2008. ACM.

[19] Brian Chess and Gary McGraw. Static analysis for security. IEEE Security and Privacy,
2(6):76–79, 2004.

[20] James Clause, Wanchun Li, and Alessandro Orso. Dytan: a generic dynamic taint analysis
framework. In ISSTA ’07: Proc. of the 2007 Intl. Symp. on Software testing and analysis,
pages 196–206, New York, NY, USA, 2007. ACM.

37

http://tomcat.apache.org
https://www.mylookout.com/appgenome/
https://www.mylookout.com/appgenome/


[21] Crispin Cowan, Steve Beattie, Greg Kroah-Hartman, Calton Pu, Perry Wagle, and Vir-
gil Gligor. Subdomain: Parsimonious server security. In Proceedings of the 14th
USENIX conference on System administration, pages 355–368, Berkeley, CA, USA, 2000.
USENIX Association.

[22] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: a flexible information
flow architecture for software security. In Proc. 34th annual Intl. Symp. on Computer
architecture, pages 482–493, New York, NY, USA, 2007. ACM.

[23] Asit Dan, Ajay Mohindra, Rajiv Ramaswami, and Dinkar Sitaram. Chakravyuha (CV): A
sandbox operating system environment for controlled execution of alien code, 1997.

[24] Daniel S. Dantas and David Walker. Harmless advice. In Proc. ACM SIGPLAN-SIGACT
symp. Principles of programming languages, pages 383–396, New York, NY, USA, 2006.
ACM.

[25] Anderson Santana de Oliveira, Eric Ke Wang, Claude Kirchner, and Helene Kirchner.
Weaving rewrite-based access control policies. In Proc. ACM workshop on Formal meth-
ods in security engineering, pages 71–80, New York, NY, USA, 2007. ACM.

[26] Dominique Devriese and Frank Piessens. Noninterference through secure multi-
execution. In Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP
’10, pages 109–124, Washington, DC, USA, 2010. IEEE Computer Society.

[27] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. Taintdroid: an information-flow tracking system for re-
altime privacy monitoring on smartphones. In Proceedings of the 9th USENIX conference
on Operating systems design and implementation, OSDI’10, pages 1–6, Berkeley, CA,
USA, 2010. USENIX Association.

[28] Ulfar Erlingsson. The inlined reference monitor approach to security policy enforcement.
PhD thesis, Cornell University, Ithaca, NY, USA, 2004.

[29] Úlfar Erlingsson, Martı́n Abadi, Michael Vrable, Mihai Budiu, and George C. Necula.
XFI: software guards for system address spaces. In Proceedings of the 7th symposium
on Operating systems design and implementation, OSDI ’06, pages 75–88, Berkeley, CA,
USA, 2006. USENIX Association.

[30] Ulfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack inspection. In
Proc. IEEE Symp. on Security and Privacy, Washington, DC, USA, 2000. IEEE Computer
Society.

[31] D. Evans and D. Larochelle. Improving security using extensible lightweight static anal-
ysis. Software, IEEE, 19(1):42–51, Jan/Feb 2002.

[32] David Evans and Andrew Twyman. Flexible policy-directed code safety. Security and
Privacy, IEEE Symposium on, 0:0032, 1999.

[33] Dan Farmer and Wietse Venema. Forensic Discovery. Addison-Wesley Professional Com-
puting Series, December 2004.

[34] Philip W. L. Fong. Access control by tracking shallow execution history. Security and
Privacy, IEEE Symposium on, 0:43, 2004.

[35] Tal Garfinkel. Traps and pitfalls: Practical problems in in system call interposition based
security tools. In Proc. Network and Distributed Systems Security Symposium, Reston,
VA, USA, February 2003. The Internet Society.

[36] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia: A delegating architecture for
secure system call interposition. In In Proc. Network and Distributed Systems Security
Symp., pages 187–201. NDSS, feb 2004.

38



[37] Gartner. Gartner Says Android to Command Nearly Half of Worldwide Smartphone Op-
erating System Market by Year-End 2012. http://www.gartner.com/it/page.
jsp?id=1622614, 2011.

[38] Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, and Thomas E. Anderson. Slic:
an extensibility system for commodity operating systems. In Proceedings of the annual
conference on USENIX Annual Technical Conference, ATEC ’98, pages 4–4, Berkeley,
CA, USA, 1998. USENIX Association.

[39] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure environment
for untrusted helper applications confining the wily hacker. In Proceedings of the 6th
conference on USENIX Security Symposium, Focusing on Applications of Cryptography -
Volume 6, Berkeley, CA, USA, 1996. USENIX Association.

[40] Tom Goovaerts, Bart De Win, and Wouter Joosen. Infrastructural support for enforcing
and managing distributed application-level policies. In Proceedings of the First Inter-
national Workshop on Run Time Enforcement for Mobile and Distributed Systems (REM
2007), volume 197, pages 31 – 43, 2008.

[41] Gurvan Le Guernic. Automaton-based confidentiality monitoring of concurrent programs.
In Proceedings of the 20th IEEE Computer Security Foundations Symposium, pages 218–
232, Washington, DC, USA, 2007. IEEE Computer Society.

[42] V. Haldar, D. Chandra, and M. Franz. Practical, dynamic information flow for virtual ma-
chines. In 2nd Intl. Workshop on Programming Language Interference and Dependence
(PLID’05), 2005.

[43] Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic taint propagation for Java.
In Proc. 21st Annual Computer Security Applications Conf., pages 303–311, Washington,
DC, USA, 2005. IEEE Computer Society.

[44] Kevin Hamlen, Greg Morrissett, and Fred B. Schneider. Certified in-lined reference mon-
itoring on .NET. In PLAS 06, New York, NY, USA, 2006. ACM Press.

[45] Kevin W. Hamlen and Micah Jones. Aspect-oriented in-lined reference monitors. In
Proc. ACM SIGPLAN workshop on Programming languages and analysis for security,
pages 11–20, New York, NY, USA, 2008. ACM.

[46] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability classes for
enforcement mechanisms. ACM Trans. Program. Lang. Syst., 28(1):175–205, 2006.

[47] Michael Haupt and Mira Mezini. Micro-measurements for dynamic aspect-oriented sys-
tems. In Mathias Weske and Peter Liggesmeyer, editors, Object-Oriented and Internet-
Based Technologies, volume 3263 of Lecture Notes in Computer Science, pages 277–305.
Springer Berlin Heidelberg, 2004.

[48] Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David Evans,
John C. Knight, Anh Nguyen-Tuong, and Jonathan Rowanhill. Secure and practical de-
fense against code-injection attacks using software dynamic translation. In Proc. of the
2nd Intl. Conf. on Virtual execution environments, pages 2–12, New York, NY, USA,
2006. ACM.

[49] Galen Hunt and Doug Brubacher. Detours: Binary interception of Win32 functions. In
In Proc. of the 3rd USENIX Windows NT Symp., pages 135–143. USENIX Association,
1999.

[50] K. Jain and R. Sekar. User-level infrastructure for system call interposition: A platform
for intrusion detection and confinement. In NDSS. Internet Society, 2000.

39

http://www.gartner.com/it/page.jsp?id=1622614
http://www.gartner.com/it/page.jsp?id=1622614


[51] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William
Griswold. Getting started with AspectJ. Commun. ACM, 44(10):59–65, 2001.

[52] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. Secure execution via
program shepherding. In Proceedings of the 11th USENIX Security Symposium, pages
191–206, Berkeley, CA, USA, 2002. USENIX Association.

[53] Eduardo Krell and Balachander Krishnamurthy. COLA: Customized overlaying. In Pro-
ceedings of the Winter USENIX Conference, pages 3–7. USENIX, 1992.

[54] Shriram Krishnamurthi and Kathi Fisler. Foundations of incremental aspect model-
checking. ACM Trans. Softw. Eng. Methodol., 16, April 2007.

[55] Lap Chung Lam and Tzi-cker Chiueh. A general dynamic information flow tracking
framework for security applications. In Proceedings of the 22nd Annual Computer Secu-
rity Applications Conference, pages 463–472, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[56] P. Lamanna. Adaptive Security Policies Enforced by Software Dynamic Translation. PhD
thesis, Faculty of the School of Engineering and Applied Science University of Virginia,
2002.

[57] Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David Schmidt. Automata-
based confidentiality monitoring. In Mitsu Okada and Ichiro Satoh, editors, Advances in
Computer Science - ASIAN 2006. Secure Software and Related Issues, volume 4435 of
Lecture Notes in Computer Science, pages 75–89. Springer Berlin / Heidelberg, 2007.

[58] Peng Li and Steve Zdancewic. Practical information-flow control in Web-based infor-
mation systems. In Proc. CSFW ’05, pages 2–15, Washington, DC, USA, 2005. IEEE
Computer Society.

[59] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement mechanisms for
run-time security policies. Intl. Journal of Information Security, 4:2–16, 2005.

[60] Jay Ligatti, Lujo Bauer, and David Walker. Enforcing non-safety security policies
with program monitors. In Proc. European Symp. Research in Computer Security (ES-
ORICS05, pages 355–373. Springer, 2005.

[61] Jay Ligatti, Lujo Bauer, and David Walker. Run-time enforcement of nonsafety policies.
ACM Trans. Inf. Syst. Secur., 12:19:1–19:41, January 2009.

[62] Jay Ligatti and Srikar Reddy. A theory of runtime enforcement, with results. In Proceed-
ings of the 15th European conference on Research in computer security, ESORICS’10,
pages 87–100, Berlin, Heidelberg, 2010. Springer-Verlag.

[63] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[64] Steven Lucco, Oliver Sharp, and Robert Wahbe. Omniware: A universal substrate for web
programming. In Proceedings of the 4th International World Wied Web Conferece, pages
359–368. O’Reilly and Associates, 1995.

[65] Leo A. Meyerovich and Benjamin Livshits. Conscript: Specifying and enforcing fine-
grained security policies for javascript in the browser. Security and Privacy, IEEE Sym-
posium on, 0:481–496, 2010.

[66] Mira Mezini and Klaus Ostermann. Conquering aspects with Caesar. In Proc. 2nd intl.
conf. on Aspect-oriented software development, pages 90–99, New York, NY, USA, 2003.
ACM.

40



[67] Andrew C. Myers. Jflow: practical mostly-static information flow control. In Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’99, pages 228–241, New York, NY, USA, 1999. ACM.

[68] Srijith K. Nair, Patrick N. D. Simpson, Bruno Crispo, and Andrew S. Tanenbaum. A
virtual machine based information flow control system for policy enforcement. Electron.
Notes Theor. Comput. Sci., 197(1):3–16, 2008.

[69] National Institute of Standards and Technology. Guidelines on Security and Privacy in
Public Cloud Computing. http://elastic.org/˜fche/mirrors/www.jya.
com/0003/SP-800-144.pdf, 2011.

[70] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN conference on Pro-
gramming language design and implementation, PLDI ’07, pages 89–100, New York, NY,
USA, 2007. ACM.

[71] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for automatic de-
tection, analysis, and signaturegeneration of exploits on commodity software. In NDSS.
IEEE Computer Society, 2005.

[72] Oracle. Enterprise Java Beans, 3.0 specification, 2011.

[73] John K. Ousterhout, Jacob Y. Levy, and Brent B. Welch. The safe-tcl security model. In
Mobile Agents and Security, pages 217–234, London, UK, 1998. Springer-Verlag.

[74] Doug Palmer. Dynamic aspect-oriented programming in an untrusted environment.
In Workshop on Foundations of Middleware Technologies (collocated with DOA’02).
Springer Verlag, November 2002.

[75] Raju Pandey and Brant Hashii. Providing fine-grained access control for mobile programs
through binary editing. Technical report, Proce. of the European Conf. on Object-Oriented
Programming, 1999.

[76] Jaehong Park and Ravi Sandhu. The UCONABC usage control model. ACM Trans. Inf.
Syst. Secur., 7(1):128–174, 2004.

[77] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A hard real-
time runtime monitor. In Proceedings of the 1st Intl. Conference on Runtime Verification,
LNCS. Springer, November 2010.

[78] M. Pistoia, S. Chandra, S. J. Fink, and E. Yahav. A survey of static analysis methods
for identifying security vulnerabilities in software systems. IBM Syst. J., 46(2):265–288,
2007.

[79] A. Popovici, G. Alonso, and T. Gross. AOP support for mobile systems. In OOPSLA’01
Workshop on Advanced Separation of Concerns in Object-Oriented Systems. ACM Inter-
national, 2001.

[80] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic weaving for aspect-
oriented programming. In Proceedings of the 1st international conference on Aspect-
oriented software development, AOSD ’02, pages 141–147, New York, NY, USA, 2002.
ACM.

[81] Niels Provos. Improving host security with system call policies. In SSYM’03: Proc. of the
12th Conf. on USENIX Security Symp., Berkeley, CA, USA, 2003. USENIX Association.

[82] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding the roller coaster of
information-flow control research. In Proc. International Conference on Perspectives of
System Informatics, Akademgorodok, Novosibirsk, Russia, June 2009. Springer-Verlag.

41

http://elastic.org/~fche/mirrors/www.jya.com/0003/SP-800-144.pdf
http://elastic.org/~fche/mirrors/www.jya.com/0003/SP-800-144.pdf


[83] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–
50, 2000.

[84] Fred B. Schneider, J. Gregory Morrisett, and Robert Harper. A language-based approach
to security. In Informatics - 10 Years Back. 10 Years Ahead., pages 86–101, London, UK,
2001. Springer-Verlag.

[85] K. Scott, N. Kumar, B. R. Childers, J. W. Davidson, and M. L. Soffa. Overhead reduc-
tion techniques for software dynamic translation. Parallel and Distributed Processing
Symposium, International, 11:200a, 2004.

[86] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson, and M. L. Soffa. Retar-
getable and reconfigurable software dynamic translation. In In CGO 03: Proc. of the Intl.
Symp. on Code generation and optimization, pages 36–47. IEEE Computer Society, 2003.

[87] Kevin Scott and Jack Davidson. Safe Virtual Execution Using Software Dynamic Trans-
lation. In ACSAC ’02: Proc. of the 18th Annual Computer Security Applications Conf.,
Washington, DC, USA, 2002. IEEE Computer Society.

[88] Scott M. Silver. Implementation and analysis of software based fault isolation. Technical
report, Darmouth College, Hanover, NH, USA, 1996.

[89] C. Small and M. Seltzer. Misfit: constructing safe extensible systems. Concurrency,
IEEE, 6(3):34–41, nov 1998.

[90] Yougang Song and Brett D. Fleisch. Utilizing binary rewriting for improving end-host
security. IEEE Trans. Parallel Distrib. Syst., 18(12):1687–1699, 2007.

[91] Daniel F. Sterne. On the Buzzword “Security Policy”. Security and Privacy, IEEE Sym-
posium on, 0:219, 1991.

[92] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security policies: a retro-
spective. In Proc. of the 1999 workshop on New security paradigms, pages 87–95, New
York, NY, USA, 2000. ACM.

[93] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome, G. A.
Reis, M. Vachharajani, and D.I. August. RIFLE: An architectural framework for user-
centric information-flow security. In In Proc. 37th Annual IEEE/ACM Intel. Symp. on
Microarchitecture, pages 243–254. IEEE Computer Society, 2004.

[94] Dries Vanoverberghe and Frank Piessens. A caller-side inline reference monitor for an
object-oriented intermediate language. In Proceedings of the 10th IFIP WG 6.1 inter-
national conference on Formal Methods for Open Object-Based Distributed Systems,
FMOODS ’08, pages 240–258, Berlin, Heidelberg, 2008. Springer-Verlag.

[95] Dries Vanoverberghe and Frank Piessens. Security enforcement aware software develop-
ment. Information and Software Technology, 51(7):1172 – 1185, 2009. Special Section:
Software Engineering for Secure Systems - Software Engineering for Secure Systems.

[96] John Viega, J. T. Bloch, and Pravir Ch. Applying aspect-oriented programming to security.
Cutter IT Journal, 14(2), February 2001.

[97] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. In SOSP ’93: Proc. ACM symp. on Operating systems
principles, pages 203–216, New York, NY, USA, 1993. ACM.

[98] Security Week. Study shows Android Market Outpacing Apple App
Store in Growth of Apps by 3x. http://www.securityweek.com/
study-shows-android-market-outpacing-apple-app-store-growth-apps-3x,
February 2011.

42

http://www.securityweek.com/study-shows-android-market-outpacing-apple-app-store-growth-apps-3x
http://www.securityweek.com/study-shows-android-market-outpacing-apple-app-store-growth-apps-3x


[99] Bart De Win, Wouter Joosen, and Frank Piessens. Developing secure applications through
aspect-oriented programming. In Aspect-Oriented Software Development, pages 633–
650. Addison-Wesley, 2005.

[100] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: a practical
approach to defeat a wide range of attacks. In Proc. 15th conf. USENIX Security Symp.,
Berkeley, CA, USA, 2006. USENIX Association.

[101] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Or-
mandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native Client: A sandbox
for portable, untrusted x86 native code. Communications of the ACM, 53(1):91–99, 2010.

[102] Sachiko Yoshihama, Takeo Yoshizawa, Yuji Watanabe, Michiharu Kudo, and Kazuko
Oyanagi. Dynamic information flow control architecture for web applications. In Proc.
ESORICS, volume 4734 of LNCS, pages 267–282. Springer, 2008.

[103] Jin You, Seong Seo, Young Kim, Jun Choi, Sang Lee, and Byung Kim. Kimchi: A binary
rewriting defense against format string attacks. In Jooseok Song, Taekyoung Kwon, and
Moti Yung, editors, Information Security Applications, volume 3786 of Lecture Notes in
Computer Science, pages 179–193. Springer Berlin - Heidelberg, 2006.

[104] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. Javascript instrumentation
for browser security. In Proceedings of the 34th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, POPL ’07, pages 237–249, New York,
NY, USA, 2007. ACM.

[105] Jingyu Zhou and Giovanni Vigna. Detecting attacks that exploit application-logic errors
through application-level auditing. In Proceedings of the 20th Annual Computer Security
Applications Conference, ACSAC ’04, pages 168–178, Washington, DC, USA, 2004.
IEEE Computer Society.

43


	Introduction
	Concepts
	Security Policies
	The Reference Monitor
	Policy Enforcement
	The two types of program analysis for enforcement

	Paper Selection Criteria
	Criteria for Separating Techniques and Implementations
	Criteria to assess enforcement techniques
	Criteria to assess enforcement implementations
	Taxonomy of enforcement techniques

	Low locality enforcement on program behaviour
	Call interposition techniques
	System call recognizer implementations
	System call sanitizer implementations
	Assessment over call interposition implementations

	Safe Interpreters
	Safe interpreter implementations
	Assessment over safe interpreters


	Higher locality enforcement on program behaviour
	Software fault isolation
	SFI implementations
	Assessment over SFI implementations

	The Inlined Reference Monitor
	IRM implementations
	Assessment over IRM implementations

	Software Dynamic Translation
	SDT implementations
	Assessment over SDT implementations

	Dynamic Aspect Weavers
	Dynamic Weavers Implementations
	Assessment over dynamic aspect weavers

	Enforcement on data flow
	JVM-based dynamic data flow trackers
	Non-JVM dynamic data flow trackers
	New Trends: combining IFC and IRMs
	Assessment of data flow tracking implementations


	Discussion on runtime enforcement
	What can be observed from the state of the art
	Future directions and conclusions

	Acknowledgments

