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Coherent-state linear optical quantum computing gates using simplified diagonal superposition
resource states
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In this paper we explore the possibility of fundamental tests for coherent-state optical quantum computing
gates[T. C. Ralphet al, Phys. Rev. A68, 042319(2003] using sophisticated but not unrealistic quantum
states. The major resource required in these gates is a state diagonal to the basis states. We use the recent
observation that a squeezed single-photon §&(®|1)] approximates well an odd superposition of coherent
states(|a)—|—a)) to address the diagonal resource problem. The approximation only holds for relatively small
a, and hence these gates cannot be used in a scalable scheme. We explore the effects on fidelities and
probabilities in teleportation and a rotated Hadamard gate.
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I. INTRODUCTION Il. SQUEEZED SINGLE PHOTON AS A SUPERPOSITION
OF COHERENT STATES

Itl(;/vas Ipng believed thaﬁ. optlc_alt quatr_1tum bC(:mputmg It is shown in[4] that one can construct a universal set of
would require enormous noniinéar intéractions between OIOgjates used for quantum computing encoding a two-level sys-
tical modes in order to be a viable technology. This was

. . "'“Yem in coherent stategy) and |-a) provided « is large
mainly due to the requirement that the presence of a singlgnqghi.e., a~2). One requirement for constructing these

photon in an optical mode must control the path of anothegates is a source of states which are diagonal superpositions
photon(see, for example,1]). However, it has been shown of the hasis states: that is, states of the form
that linear interactions combined with post-selective mea-

surements induce enough nonlinearity so that in principle la) £ |- a). (1)
one can perform gquantum computations efficiefifly The
fundamental gates in this scheme work nondeterministicallyf-ollowing [4] we will call these states “cat states.” The state
but this can be overcome by quantum gate teleportdon with a plus sign is of even parity, so we will call it an even
To achieve near deterministic teleportation by linear interaccat state, and the minus sign is of odd party, so we will call
tions and post-selection requires a large linear network init @n odd cat state. The coherent amplitudeill sometimes
volving many modes prepared in single-photon stg2gs be referred to as the size of the cat state.

More recent|y an alternative proposa| which uses two co- A recent observation is that the odd cat state is well ap-
herent states and superpositions ther@ef, catlike states Proximated by a “squeezed” single-photon stff¢. The
for quantum computing has emergptl. Provided the two squeezed single-photon state is of a simple analytic form so
coherent states are sufficiently well seperated in phase spadbat the state can be written down and quantities of interest
the fundamental gates of this scheme are near deterministi¢an be calculated exactly. In terms of a vacuum state and
The gates described in this scheme consume equa| super@]nih”aﬁon and creation Operators the state can be written
sitions of coherent states as a resource. Generation of such . .
states at the large separations required is a formidable chal- S(n[1)=Sra'o), 2
lenge. However, as has been recently repof8dsuperpo- - A2 at2 _ _
sitions of coherent states that are not so well separated avéhereS(r)=e"2@=a called the “single-mode squeezing”
well approximated by squeezed single-photon states. Theperator or just the “squeezing operator.” Herés a real
photon-subtracted squeezed state is equivalent to thearameter. This operator reduces the noise seen in a quadra-
squeezed single-photon state and also well approximates tiiere measurement of the oscillator in the vacuum state by a
superposition of two coherent stat¢§]. Recently the factor ofe™. Because is assumed real, it is possible to show
photon-subtracted squeezed state has been generated expeee[8])
mentally[7], albeit with quite low fidelities due to losses in R R R
the experimental device. Here, we explore the possibility of a'S(r) = S(r)a'coshr + S(r)a sinhr (3
constructing some of the gates outlined[#] in this inter-
mediate regime using the squeezed single photon as tféd hence
superposition-state resource. We find it is possible to see the n a
desired effects with fairly higlithough not unix visibility. a's(r)|0) = (coshr)S(r)a'|0). (4)

The squeezing operator applied to the vacuum state gener-
ates the squeezed vacuum states. They can be expanded in
*Electronic address: lund@physics.ug.edu.au terms of photon number states as
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Fidelity photon state coefficients can be matched well by adjusting
s s e the squeezing level, provided that the next tdtime five-
photon term remains small. Eventually as increases these
0.98 higher terms cannot be matched and the fidelity falls.cAs
o 56 — oo the fidelity tends towards zero.
' At this point it is worthwhile to note that the squeezed
0.94 single-photon state does not need to be generated by the
most direct and obvious procedure implied by the name. Tak-
0.62 ing the adjoint of Eq(3) and rearranging terms leads to
0.9 aS(r) = S(r)a coshr + S(r)a' sinhr, (9
0.88 and applying this operator to the vacuum state g[\@s
FIG. 1. The maximum possible fidelity obtained using the aS(r)|0) = (sinhr)S(r)a’|0). (10)

squeezed single photon as a source of odd cat states with a giv

\ SN 10ton as ¢ . #®huation(10) shows that, up to a normalization constant, a
size a. This given size is varied along theaxis.

squeezed vacuum with a photon subtracted is equivalent to a

squeezed single-photon state. Photon subtraction is more

~ (- tanhr)"(2n1! )2 convenient experimentally and can be achieved conditionally

D= ol |2n). (5) by passing the squeezed vacuum through a weakly reflecting
' beam splitter and looking for a single-photon count at the

Using Egs.(4) and (5) one obtains the expansion for a reflected por{7].

squeezed single photon:

S(r)|oy=

o \coshr

[

. _« (=tanhr)"(2n+1)!
S(I')|1> - ngo (coshr)3/2 2'n!

[ll. COHERENT-STATE QUANTUM COMPUTING
AND TELEPORTATION

|2n+1). (6)

The “fidelity” is a measure of how close two states are. For- A. Coherent-state quantum computing

tunately all reference states that we wish to compare other As stated above one may consider the stdtesand
states to will be pure states. So here we callp|) the |-a) to be a basis for a two-level quantum system. If the two
fidelity where|y) is the desired pure state apds the den- states are sufficiently distinguishalfiee., «>2), one may
sity operator of the state actually generated. Computing thalso consider them to be an orthonormal basis for a two-level
fidelity of the state in Eq(6) with that of an odd cat state system[4] to a very good approximation. This two-level

with size @ one obtains guantum system is suitable for encoding quantum binary dig-
) its (qubitg. The phase of the coherent amplitudes., the
e’ 4o” 2 tanh plus or minus sighis utilized to encode information. It is
Fla,r) = o tannr (7) :

shown in[4] how one can build near-deterministic gates to
perform universal quantum computation using these states as
If one wishes to produce an odd cat state of sizge., @is  qubits. We will call the procedures described #) used for

a given constant then the fidelity is maximized whensat-  ynjversal quantum computing collectively as coherent-state

2(1 - g2 (coshr)?

isfies guantum computingCSQQ.
1 1 The one main resource that CSQC requires is a source of
r= arccosré \/5 + 6V9 +4a2)_ (8) states diagonal to the basis states., the even or odd cat

statg. One procedure which is crucial to gate operation is the
Substituting this relationship into E€7) reduces it to a func-  @bility to perform teleportation on qubits in this encoding.
tion for fidelity which depends om alone. This is the high- This can be performed by using an odd cat state as shown
est possible fidelity for a cat state of siaegiven that it was ~ |ater in this section. o
produced using the squeezed single-photon state. This func- Generating states diagonal to the coherent-state basis with
tion is plotted fora  [0,2] in Fig. 1. The high fidelity fore  !2rge coherent amplitude in a propagating optical mode is a
small is due to the odd cat state being dominated by itformidable challenge. However, as we have observed the
lowest-photon-number state; i.e., the odd cat statefoery squeezed single photon_ls a good approximation to_the diag-
small contains only a single photon. Wher0 is substi- onal states_prowdecbz is not too large. Generatlo_n of
tuted into Eq.(8), the result isr=0. Hence no squeezing is squeez_ed smgle-photon. states seems more experimentally
performed and the state is just a single photon. These twBccessible than alternative proposédee[5] in the short
states are identical giving unit fidelity. The fidelity remains {8rm motivating us to consider if in principle demonstrations
high for a small as the next dominant term in the odd catOf basic gate operations are possible using sqqeezed single
state for small is the three-photon term. The squeezing ofPhotons as our resource statBor example, consider=1.
the single photon will coherently add pairs of photons to theFrom Fig. 1 we observe th&(r)|1) is still an excellent ap-
single-photon state. Hence the ratio of the one- and thregsroximation to a cat state of this size while the overlap be-
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tween |@) and |-a) has already fallen t&—a|a)|?~0.02. pkla)y +vi—a) Count “0”
This suggests that interesting tests of principle can be carried

out in this “middle ground.”
0.5

2a) — |—V 2« 4 ”

B. Teleportation of coherent-state qubits l\/_ > I f > Count “odd
The most basic gate in the CSQC schelaier aX gate

which is simply a phase shift af) is the teleportation gate. 10)

This gate is also crucial in implementingZagate and re-
quired “projections” onto the space spanned by the two states o
|a) and|-a). So let us consider the properties of this gate in FIG. 2. A schematic diagram of the teleporter. The lower two
more detail (Initially we will be considering exact superpo- modes after the first beam splitter contain the entangled pair. The

sitions of coherent states and not the squeezed single-phot&p Mede contains the qubit. The Bell-state measurement is made
approximation. on one-half of the entanglement and the qubit by the second beam

splitter. Only one of the Bell-state measurements is accepted here
by the zero, odd count. When this occurs the lower mode contains
the input qubit without any corrections needed.

In order to perform teleportation one must be able to cre-
ate a Bell state and perform a measurement in the Bell basigate and the inverse of E€L2) to create the entangled Bell
[10]. Following[11] when two modes of the electromagnetic state. A Bell-state measurement is then performed on the
(EM) field are combined at an asymmetric 50:50 beam splitinput qubit and one-half of this entangled state as just de-
ter, the action written in terms of the Bell states using thescribed. A schematic diagram of this configuration is shown
encoding above is in Fig. 2.

As an example of how the entire state evolves during this
process we can write out the composite system of an arbi-
trary qubit and the Bell state from E¢l2) as

0.5
Qutput

1. CSQC Bell-state generation and Bell-state measurements

@)+ |- - a) = [0) ® (\2a) +|-\2a)), (1)

|, @)~ |- a,— @) — [0) ® (V2a) - |- \2a)),  (12)

w(a,a,a) = |a,— a,— @) + V(|- a,a,@) = |- a,— a,— @)).

la,— a) + |- a,a) — (| \“Ea) +|- \e“Ea)) ® [0y, (13 (15

_ _ Here the notation introduced above has been used to com-
la,— @) = |- a,a) — ([N2a) - |- V2a)) ® [0), (14)  bine modes and the entanglement is present in the second

. o and third modes. The modes in this state correspond to the
where the notatiofi, ) =|a) ®|B) has been used and nor- top (first labe), middle (second labg] and bottom(third

malization factors have been ignored. This transformatiorrabeD modes in Fig. 2. The teleportation procedure now re-
follows from the linear evolution of quantum states and the -

expected addition and subtraction of coherent-state ampl?Uires a Bell basis measurement on the qubit and one-half of
) A _th I ir. A lai his i lyi
tudes at a beam splitter. So the four Bell states can be di e entangled pair. As explained this is done by applying a

tinguished by measuring one mode to be the vacuum an 0:50 beam splitter on the first two modes:

then determining if the other mode contains an odd or even M(|o,\;§a, a)— |\Ea,0,—a)) + (|- \;Ea,om
state. For example, the first state is chosen if “zero” is mea- =
sured in the first mode and an even number in the second due -10,-V2a,- a)). (16)

to the even cat state present in this mode. The second stateffﬁen if the Bell state in Eq(12) is projected onto by per-

felectﬂed Wh:an co”untlng “zero” and “odcil‘,” tfle thlrc‘J‘ Staf,eforming al0,0dd number measurement, the state in the third
even” and “zero,” and the fourth state “odd” and “zero mode is

count pairs. Note that aaven number of photons includes
zero.This means that a “zero” and “zero” measurement pair wla) + v|- a) (17
can occur for the first and third states, leaving them undis-

tinguished. So if “even” excludes the possibility of zero, thena.‘”d successful teleportation has occurred. Note that to dis-

the states can be distinguished but when a “zero” and warolinguish thel0,0dd states from th¢0, even states requires

measurement occurs the measurement has failed. This isV&"Y efficient photon number resolving measurements. The

consequence of the nonorthogonality of the qubit encodingl.OSS of a single photon will change the odd resuit to an even

When not working in the range of the squeezed single pho ®SUlt

ton approximation this “zero” and “zero” possibility can be _ N
made arbitrarily smaller by making large. 2. Corrections and probability of success
To perform teleportation one requires a prepared state in The other Bell basis measurement events can be used

one of the four Bell states. If one reverses the procedure gf osting the overall probability of success Howe\fe(,bit
the Bell-state measurement, then it can be seen that this tak g 9 P Y )

a nonentangled state to an entangled state. With the usage f§p) andZ (phase corrections must be applied to the output
the squeezed single-photon state in mind, one could use thidepending on which result was obtained. Thesorrection
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7/ 1 FIG. 3. (Color onling The probability of fail-
ure of the teleportation protocoP;,;) described
in the text as per Eq18) for «=0.5(a), a=1 (b),
and a=2 (c). The input state is of the formu
=cosf and v=€? sin 6. Note thatP; < 5.

(@)

can be applied by applying @& phase shift to the output easy correction away from performing teleportation. This is a

mode. TheZ correction is more difficult and needs to be result ofZ2 being the identity. The total probability of getting
applied when an even cat state is detected in the Bell-stato consecutive even results B .. However, one may
analysis. One possible solution proposed4h is to apply have obtained an odd result before finally getting the second

teleportation again in the hope that anot@ecorrection is ~ €ven. This will occur with probabilityPe,e PogdPeven SO if

required, canceling out the applied in the initial teleporta- _teleportatm_n_can be performed repeat_edly, th_en t_he probabil-
ity of obtaining successful teleportation which is an easy

tion. X . X

To estimate the overall probability of success of concat-Correcuon away from the input state will approach
enated teleportations one can sum over the probabilities of o
events that lead to successful teleportation. Here we will con- Psuce= Poda* > PeverPhadPeven (19
sider the case where the coherent-state Bell state is exact. As n=0

shown above, results of the forj@d, odd require no correc-
tion. It can be shown that results of the fotaud, O require
a X correction which we will assume can be implemented by ngen
flipping the reference phase. As showr] 112] the total prob- Psuce™ Podd+ T-p. (20)
ability of these result$P,qy) is % independent ofx. Note . . odd
that this probability is the maximum probability of successSincePyyq=5 and Pg,en=5— Py, this expression is
for teleportation using single-photon encodings. The results

2 3 Psucc=1 - 2(Pfail - I:)fzail : (21)

|0,even and|even, ) requireZ andXZ corrections, respec-
tively. If the even number is zero, then the two cannot bdf only a set maximum number of teleportations are allowed,
distinguished and the input state cannot be recovered. Thitien Eq.(19) is reduced by removing positive quantities
happens with probabilityp;,; which can be shown to be from the sum. Hencéy,. is the maximum probability of
success using this method. From the note alfygis less
e*\2 - 2e'2“2(,u+ ) 2 19 than% for all valuesa. This means thalg,..is greater than
o dP | 124 |2 2 o2d? ' or equal to;. As Py varies over all inputs states it is mini-
\/(2 267 ) (| + o] + 2675 Refwp* }) mized for some particular input state given a particular
This minimum can be traced asincreases as is done in Fig.
. . L 4. This shows that in principle this method is capable of
plots of this probability over all possible inputs states dor qubit teleportation using linear optics and photodetection

=0.5, 1, and 2 are shown in Fig. 3. The probability that . " N
remains must be attributed to the two even results in thgv'.th a probability greater thaé for all @. Whena=1 the

Bell-state measurement which now can be distinguished. wagnnimum Of Psuecis 0.67 which is |nd|c§1t|ve of Fhe middle
will call the probability of obtaining an even resuRy,q, ground nature of coherent-state encoding at this level.
which must be%—Pfa” by the argument just made. . . .

The probability that an “easy” correctidne., the identity C. Teleportation with the squeezed single photon

or anX) need be applied to teleportationRgy If, however, In order to perform teleportation in CSQC a source of odd
one obtains an even count with probabilRy,., then all is  coherent-state superpositions is required. Here we will ana-
not lost. When this state is teleported again, if an even resulyze the response of the teleportation fidelity when the
is obtained again with probability,,e, then the output is an squeezed single photon is used where an odd coherent-state

SinceP,yy<1, the sum evaluates to

which can be shown to be less than or equa%.tdfxample
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Probability of Success

0.5 1 1.5 2

FIG. 4. The minimum success probabiliti?s,.) over all input
states as a function af.

superposition is required. The teleportation fidelity is ex-
pected to decrease from unity because the fidelity of the odd
coherent-state superpotion with the squeezed single photon is
less than unity. We will also consider the effects of losses in
the photon counting detectors and will show that this loss
dominates any decrease in fidelity as opposed to the decrease
from using the squeezed single photon.

Probabilit

1. Squeezed single photon

Figure 5 shows the results of a numerical calculation of
the fidelity and probability of teleportation when a split ~ FIG. 5. (Color onling A plot of the teleportation fidelitya) and
squeezed single photon is used as the entanglement resouf#ebability (b) as a function of the input state. The angles of the
over a range of possible input states. The input states afBput state are defined in E(2). The angles) and ¢ are actually

defined by the two angleg and ¢ as periodic in 27 but only half of this region is shown as the remainder
4 is just the mirror image of the plot when continued. The size of the
| i) = cOSH|a) = €9 sin - a). (22)  coherent-state qubits is=1 which means the entanglement is cre-

- . . . . ated by a cat state of size=12.
The fidelity of teleportation for a given input state is the Y '

overlap of the input state and the output state squared. The . . -
plot on the right on this figure shows the probability of ob- two photon count is included accidentally. Hence this high

taining the photon number detection result that results in th\‘?mb‘"‘b.i"'.[y corregpo_nds toa dro_p in the fidelit_y of the output.
state which requires no corrections. The other three Bell:rhe minimum f_|del|ty_ over all input states is plotted as a
state measurements could possibly be accepte&fautdz ~ function of efficiency in Fig. 7.

corrections must be applied.
IV. SUPERPOSITION GATE

2. Introduction of loss A uniquely quantum mechanical effect in quantum com-

This protocol relies on perfect photon number detection tgputation is being able to move from the qubit basis states into
perform the teleportation. Here we analyze the effects o superposition of these basis states. An example of a gate
teleportation fidelity when the detectors are inefficient whilewhich performs an operation of this kind is the Hadamard
continuing to use the split squeezed single photon as thgate. The Hadamard gate in the coherent state encoding is
source of entanglement. The results shown in Fig. 5 show th@ritten as
fidelity of teleportation as a function of the input state as per
Eq. (22) on the left and the probability of performing the la) — \/1(|a>+ - a)),
teleportation without needing a correction on the right. Fig- 2
ure 6 shows results in the same format as Fig. 5 but for the
case when detection is 90% efficient. Note here that the 1
minimum fidelity over all input states has decreased and the - — \/;(|a> -[-a)).
probability of a detection result varies much more for the
different input states. The increase in probability of succesJhis transformation is nonunitary as it takes nonorthogonal
for certain states in the 90% efficient scenario is an indicastates to orthogonal states. To implement this gate we use the
tion of high probability two photon terms in the detection methods described if4]. This requires moving outside of
corrupting the measurement. The output state of the telethe qubit spacéi.e., the space spanned by superpositions of
porter will be of opposite parity to the desired state when da) and|-a)) and then projecting back to achieve required
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applying a control sigricsign gate leads to the state

wa,a,a) = |a,— a,— @) + V(|- a,a,@) + |- a,— a,— @)).
(23

III[[, II"’

Wy

P 1 \\\\\'II\

Projecting the first and second modes onto the odd parity cat
state results in the state

Fidelity

N
LA ula) +l-a) + -l +-a). (24
! Applying a bit flip gate oiX gate leads to
@ . 00 , w(la) +|=a) + v(|a) - |- @), (25

which is the Hadamard transformation. Referepleshows
a way in which to build acsIGN gate using this encoding;
however, it is assumed that the coherent states are well sepa-
rated. TheCsIGN gate is a symmetric beam splitter with a
reflectivity chosen so that the coherent states displace each
other in such a way that projecting back onto the cat-state
basis results in a sign change for the appropriate state. This
does not apply directly to the regime of small cat state to
which the squeezed single photons are good approximations.
However, this scheme can be used as a guide on how to
construct a gate that may apply for small cat state given
certain restrictions.

Starting from Eq.(15) and applying a symmetric beam
splitter to the first two modes leaves the state as

o
N
a
a

Probability

o o
N o 1Y) o
@ M RN
a X &

0.23
4

FIG. 6. (Color onling This figure shows plots of the same style
as Fig. 5 but the detectors in this simulation are 90% efficient. w(|a€? ag? a) - |ae? - ae? - @) + (|- e, ae? @)

= e — et —
phase factors. The projection onto this subspace is achieved |- a€’,-a€’,~a)). (26)

by teleporting the displaced state. Now one should perform a projection onto the odd cat state
in modes 1 and 2. As shown i#] provided the displace-
ments are not too large, one can perform photon counting
with only small errors. As a special case of this if only the

The procedure to create the Hadamard gate using thgne-photon term is accepted, then the state transforms to
coherent-state encoding proceeds as follows. Writing out a

A. Gate specification

general state with this entanglement as per(Ef) and then el 02162 a) + 67129 o))
; , ‘ , , ‘ , , , ‘ - e““'zazv(e_izﬂ a) + €29 a)). (27
os} 1 Plugging in 6=x/8, then up to a global phase factor and

ignoring the normalization the transformation can be written

0.8 4

pla) +1vl=a) = (u+iv)a) = (in+v)-a). (28

This transformation is equivalent to a Hadamard transforma-

tion provided one can perforrd operations. That is, if the
transformation

o
9
T
L

o
*
T
L

Minimum Fidelity

ulay +v|= ) — ula) —iv|- a) (29

o
w
T
L

is applied before and after the transformation in E2B),
then a Hadamard transformation is obtained. The transforma-
tion in Eqg. (28) is not the Hadamard operation but is still
very useful as it takes qubit basis states into superpositions
95 0s o5 o6 07 o 08 o8 08 0% 1 of both qubit basis states. We will call the transformation in
Efficiency Eq. (28) therotated Hadamardransformation which we will

o
N
T
L

o
T
L

FIG. 7. This figure shows a plot of the minimum fidelity over all denote asH. Note that this transformation is exact for any
possible input states within the space of qubits to the teleporter as$ize of coherent states as long as the photon number mea-
function of detector efficiency. surement obtains two single-photon counts.
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s A s

Fidelity

FIG. 8. A schematic drawing of a simple, nontrivial experiment
involving a qubit. The input state can be any qubit but will be set to
the state|1) throughout. The boxes represent the Hadamard gates
and the triangle represents a phase shift between the qubits. The
output is detected in the computational basis.

(a)
B. Probability of success

The probability of obtaining a photon count wf photons
in one anch in the other(i.e., projecting onto the state, m))
is 018

[ rozmbeet (et
(1+2 Rdp* ve2e)(1 - el ntm /)

Probability
o o

(30)

The important term here is the one on the right involving
and m. The probability falls as the factorial of the photon
number but also as?® to the power of the sum of the two (b)
photon numbers. So fox<<1 there is a major advantage
when losses are considered as the probability of higher-
photon-number terms already reduces quickly as well as hav-

ing the advantage of the detector efficiency to reject erroptyle as Fig. 5 but are for the gate with the coherent amplitude of
counts. the qubits aix=1. Note that for such small coherent-state qubits the

squeezed single photon is very close to a cat state. This means that
the fidelity should be close to 1.

FIG. 10. (Color online The plots in this figure are in the same

V. COMBINING GATES
A. Candidate computation the probability should drop to zero for some phase. The vis-

' ibility for this fringe is defined here as

One of the simplest nontrivial computation that can be

performed with a qubit is two Hadamard gates with a phase V= Pmax~ Pmin (31)
shift between them. This arrangement is shown in Fige® Prmax* Pmin_
also, Fig. 9. Detection in the computational basis at the end_. .
of this experiment will reveal different probabilities when the Since entanglement generated by _a_sq_ueezed photon state is
phase shift between the two Hadamard gates is changed. ThAt exactly a cat state, then the visibility is expected to be
variation of probability with respect to the phase shift is as ightly less than unity.
uniquely quantum mechanical property, hence verifying the

existence of a quantum bit. This kind of experiment is o .
equiva]ent to an interferometer where the path |ength be- The exact Hadamard transformation is not available when

tween the two arms can be varied. Hence a plot of the probconsidering the small cat state generated by the squeezed

ability of (_Jlet_ecting one o_f the basis states with respect to_th%ingle-photon state. However, th_{agate as described previ-

phase shift is called a fringe. With perfect qubits the period,gly is avaliable. In this numerical calculation, the first

of the fringe should ber and the visibility should be unity as  y54amard gate has the effect of preparing the $@ite|1).
Using the squeezed single-photon states, the ktate—a)

Cat State can be generated, so this state will be used instead. This
removes the necessity for the first Hadamard gate. The phase

Producer D(a) ﬁ S shift can be implemented by displacing the cat state in the

imaginary direction and then projecting back into the com-

B. Implementing the computation using CSQC

putational basis. It is hoped that the detection in It-_hgate

. _ . . will perform this projection when the appropriate measure-
FIG. 9. An experiment in the same spirit as the one in Fig. 8. a

The cat-state producer is the squeezed single-photon state, the ph&sent results is achieved. After this displacementthgate
shift is now a displacement, and the Hadamard is the rotated Hads applied. With an ideal odd cat state and an ideal phase shift
amard gate. the input state to the rotated Hadamard is
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= R FJG. 12. (Color onling This figure shows the probability that
— - Efficiency = 0.8, Visibility = 0.947

o7 1 the H gate gives a successful post-selection as a function of the
displaced input.

0.6

] ) - €~ a), (32)

o
0
T

1 ignoring normalization. After applying thel gate the state
transforms to

Probability

2
w
T
Z

(1-ie")]a) - (i-€9)|- ). (33

When this state is measured in the coherent-state basis it

A should give a sinusoidal probability response as the displace-

ment is changed. Ideally the probability of the two coherent

i P = : == 3 states should be equal whér 0.

(b) Displacement The measurement in the computational basis can be per-
, , , formed by combining the signal which is a superposition of

T Elfcloncy - 00, vistity - 0995 |y and|-a) with another signal prepared in the staié on
07l — Effidency = 08, Vishity = os89 ) a 50:50 beam splitter. The effect on either coherent state is

0.2r

0.8 T T T T

< )] a) — |0)[V2a),

o
o

1 - @)l@) — |- V2a)[0).

1 The two coherent states can now be distinguished by a mea-
surement on the two modes. If there are no photons in one
mode and one or more in the other mode, then the detection
has succeeded and by the mode in which nonzero photon
number occurred the sign of the coherent amplitude can be
s determined. The measurement fails if zero photons are de-

tected in both modes. This occurs with a probabilityadf“2
and will approach zero quickly as grows. Also the detec-
tion need not require efficient detection. If a photon is lost,
the probability of the detection drops but no errors will oc-
cur.
The performance of this gate using the squeezed single-
FIG. 11. (Color onlinE) Plots of the probablllty of detecting the photon states as cat states can be ana'yzed ina way similar to
coherent stater at the output of the device shown in Fig. 9. The the teleportation gate. Figure 10 shows the fidelity of the gate
nonsinusoidal nature of this function is due to the reliance otthe compared to the expected output shown in @8). The plot
gate to project the displaced cat state back on to the computationain the right of this figure is the probability of the gate func-
basis states. The plots are for a varietyaofx=1 in (a), «=0.5in  tioning over the range of input states. This plot agrees well
(b), and@=0.3 in (). with the prediction of theln,m)=(1,1) count used in Eq.

Probability

2
w

0.2

0.1

(c)
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(30). Note that the probability of a successful detection de- VI. CONCLUSION
pends on the input state of the qubit. One could consider that
some sort of measurement has been made on the qubit asWe have shown in this paper that demonstrations of the
different probabilities apply for different input statésee basic functionality of quantum computation gates based on
[13]). However, this does not destroy the calculation as theoherent-state quantum bits is within reach of current tech-
basis qubits have a nonzero overlap. nology. Superpositions of coherent states with relatively
We also perform the numerical calculation for arrange-small amplitudes can be well approximated by the squeezed
ment depicted in Fig. 9 which should generate a sinusoidadingle-photon state, and there has been recent experimental
variation in the probability.distributilon of one of the_ ba_sis progress in producing such statEd). Furthermore, gates
states at the output. The fringes which result from this simuyhich use superpositions of coherent states as a resource can
lation are shown in Fig. 11. This plot shows the probability ytjjize the squeezed single photon as this resource and still
of obtaining one particular coherent state using the detectq{,nction with high fidelities. The small coherent amplitudes
involving the mixing of the output state with aAcoherent Staterequire some modification of gate operation, but basic func-

described above. Note that the probability of ﬁgate func- tionality can still be achieved. For the case of teleportation,
tioning is not included in this probability. It is shown in Fig. an improvement in efficiency over photonic systems can be

12. The first thing to note is that the fringes are not sinu-"écognized even at the small amplitudes considered here
- with success probabilities of 67% with over 99% fidelity

soidal in nature. This is due to the reliance of theate 0 predicted. This is to be compared with the 50% success prob-

project the displaced cat state back into the computationglp;jity achieved with basic photonic systems.
basis. However, the visibilities for each fringe can still be

calculated and are shown in the legend of each graph. The

multiple plots on each graph shows how the fnnges change ACKNOWLEDGMENTS

as the detector efficiency of the detectors in ﬁegate
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