
Desy Preprint - UTM Preprint, December 2007

Cosmological horizons and reconstruction of quantum

field theories.

Claudio Dappiaggi1,3,a, Valter Moretti2,3,b, Nicola Pinamonti1,3,c

1 II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany.
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Abstract. As a starting point for this manuscript, we remark how the cosmological horizon of a certain class

of Friedmann-Robertson-Walker backgrounds shares some non trivial geometric properties with null infinity in

an asymptotically flat spacetime. Such a feature is generalized to a larger class of expanding spacetimes M

admitting a geodesically complete cosmological horizon =− common to all co-moving observers. This property is

later exploited in order to recast, in a cosmological background, some recent results for a linear scalar quantum

field theory in spacetimes asymptotically flat at null infinity. Under suitable hypotheses on M the algebra of

observables for a Klein-Gordon field in M is mapped into a subalgebra of the algebra of observables W(=−)

constructed on the cosmological horizon. There is exactly one pure quasifree state λ on W(=−) which fulfills a

suitable energy-positivity condition with respect to a generator related with the cosmological time translations.

Furthermore λ induces a preferred physically meaningful quantum state λM for the quantum theory in M . If

M admits a timelike Killing generator preserving =−, then the associated self-adjoint generator in the GNS

representation of λM has positive spectrum (i.e. energy). λM turns out to be invariant under every symmetry of

M which preserve the cosmological horizon. In the case of an expanding de Sitter spacetime, λM coincides with

the Euclidean (Bunch-Davies) vacuum state, hence being Hadamard in this case.
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1 Introduction

In the framework of quantum field theory over curved backgrounds we witnessed, in the past few year,
an increased display of new and important formal results. In many cases we can track their origin in the
existence of a non trivial interplay between some field theories living on a Lorentzian background - say
M - and a suitable counterpart constructed over a co-dimension one submanifold of M , often chosen as
the conformal boundary of the spacetime. Usually thought of as a realization of the so-called holographic
principle, this research line provided its most remarkable results in the framework of (asymptotically)
AdS backgrounds. As a matter of fact, concepts such as Maldacena’s conjecture [AGM00] - in a string
framework - or Rehren’s duality (see [DR02] and references therein) - in the algebraic quantum field theory
setting - nowadays, are appearing almost ubiquitously in the theoretical high-energy physics literature.

More recently a similar philosophy has been also adopted to deal with a rather different scenario,
namely asymptotically flat spacetimes, where it is future null infinity – =+ ∼ R× S2, i.e. the conformal
boundary – which plays the role of the above-mentioned co-dimension one submanifold. Summarising our
present day understanding briefly, null infinity, besides being endowed with universal geometric properties
regardless of the bulk spacetime, is mainly characterised by the existence of a special and highly non
trivial infinite dimensional symmetry group, the so-called Bondi-Metzner-Sachs group (BMS). In a series
of papers started from [DMP06] and including [Mo06, Mo07], it was focused in particular on the fact that
each solution of the massless wave equation conformally coupled to gravity (with compactly supported
initial data) can be projected into a smooth function over =+, preserving the relevant symplectic forms.
(In [Da07] the result was extended to massive fields in Minkowski spacetime.) Employing the symplectic
approach, it was the building block to formulate a classical field theory intrinsically living on null infinity.

It is important to pinpoint that the found bulk-to-boundary correspondence does not hold at a classical
level only. In particular, it was shown that, to a certain extent, we can recast the above interplay also in
the quantum field theory setting. As a matter of fact, under the further hypothesis of global hyperbolicity
of the bulk spacetime (see [DMP06] for more details), the set of solutions for the bulk wave equation
conformally coupled to gravity is a strongly non degenerate symplectic space with, hence, an associated
Weyl C∗-algebra. Barring some technical assumptions on the geometric structure of the boundary at
future timelike infinity (see [Mo06] for details), the latter algebra can be isometrically embedded as a
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C∗-subalgebra of the boundary counterpart. Notice that this last algebra, defined on =+, is universal, in
the sense that it does not depend on the particular asymptotically flat spacetime under consideration. It
was proved in [DMP06] that there exists a BMS-invariant, quasifree, pure algebraic state of the algebra
over =+, say ω. That state is universal as the algebra of the observables on =+ and the geometric
structure of =+ equipped with the BMS group are. At the level of first quantization, the notion of
particle associated with ω coincides with a BMS invariant scalar particle constructed by means of a re-
adjustment to the (nonlocally compact) BMS case of Wigner-Mackey’s procedure for the Poincaré group.
ω enjoys some further, a priori unexpected, non trivial properties. In [Mo06], it was proved that ω is
the unique state displaying a certain positive-energy requirements, with respect to the GNS generators
associated to timelike asymptotic symmetries of the spacetime. As a further interesting development
obtained when an asymptotically flat spacetime M is fixed, it was established in [Mo07] that ω can be
pulled back from =+ to a state ω′ defined on the algebra of observables in the bulk M . Remarkably, ω′

turns out to be Hadamard and, as well, invariant under the action of any isometry of the bulk metric. In
particular, the self-adjoint generator of timelike Killing isometries (if any) has positive spectrum without
zero-modes. This is an important stability requirement. Finally, as shown in [DMP06], in Minkowski
spacetime ω′ coincides to the standard Minkowski vacuum state. Hence ω′ appears to provide a natural
candidate for a preferred state for the bulk field theory regardless of the existence of specific isometries
of the metric. The construction of ω′ [DMP06] and the proof of the Hadamard property [Mo07], also
if they were obtained independently, share some overlapp with an analogous, but physically different,
construction due to Hollands [Ho00], concerning the definition of local vacuum states near every point in
every spacetime.

Although, on the bright side, one could safely claim that all these mentioned results are compelling,
on the dark side, one must be honest to admit that, to the date, they fail to be applicable to any physical
model which one could realistically conceive to experimentally probe in the foreseen future. As a matter
of fact, to a certain extent, such comment alas holds true from a more general perspective: when one
thinks of a quantum field theory over curved background, it is often meant, as an implied rationale, that
one is referring to or dealing with a theoretical model which is hardly testable by means of present time
experiments. Such attitude is daily changing since new experiments in cosmology opened the road to
probe effects and phenomena which are foreseen by different models describing the early stages of the
universe. The most notable, in between the many nowadays available examples, is inflation where, in
most models, the pivotal role is played by a single scalar field living on an (almost) de Sitter background.
Although many of these models are mainly (though not only) studied at a classical level, it is to a certain
extent mandatory to look for a deep-rooted analysis of the full-fledged underlying quantum field theory
in order to achieve a more firm understanding of the model under analysis.

To this avail, the first, but to a certain extent, not appealing chance is to perform a case-by-case
analysis of the quantum structure of all the possible models nowadays available. In our opinion a more
attractive possibility is to look for some mean allowing us to draw some general conclusions or to point
out some universal feature (as the existence of a null infinity equipped with the BMS symmetry group),
independently from the chosen model or from the chosen background. Taking into account this philosophy,
a natural “first step” to undertake would be to try to implement the previously discussed bulk-to-boundary
correspondence which appear to encode, almost per construction, all the criteria of universality we are
seeking for. This idea cannot be directly put into practice employing the model of an asymptotically flat
spacetime, since most of the present day cosmological scenario do not envisage an asymptotically flat
(or an asymptotically anti-de Sitter background) as the underlying spacetime of the present or past days
Universe. Nonetheless, a way to make profitable use of some of our achievements in asymptotically flat
spacetimes does exist as is established in this paper. As a starting point one could start noticing that
roughly all the Early-Universe models assume, at least implicitly, the Cosmological Principle which leads
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the underlying background to be endowed with the widely-used Friedmann-Robertson-Walker (FRW)
metrics. A direct inspection of the geometric properties of these spacetimes points out that, in most of
the relevant physical cases (such as de Sitter to quote just one example), it exists a natural submanifold
which, at first glance, appears to be a good candidate to replace null infinity in the role of preferred
co-dimension 1 hypersurface: the cosmological (particle or event) horizon as defined by Rindler [Ri06].
More precisely, in this paper we shall consider the cosmological particle horizon =−, in common with
all the co-moving observers, in order to deal with expanding universes. The first and, at the same time,
one of the main aims of this manuscript is indeed to prove that, at a geometrical level, the cosmological
horizon =− has more deep-rooted connections than expected with the structure of future null infinity
under some technical restriction on the analytic form of the expanding factor in the FRW metric with flat
spatial section. Hence it will turn out that the horizon has a universal structure provided that bulk lies in
a suitable class of FRW backgrounds and, hence, it represents the natural setting where to stage a bulk-
to-boundary correspondence. As in the more common scenario of asymptotically flat spacetime, in this
analysis, a pivotal role is played by the conformal factor, that is the expanding factor in the FRW metric.
In Penrose language, the conformal factor is the mean which allows us to recast a physical spacetime as
an open subset of an unphysical manifold. Nonetheless, from a certain perspective, this scenario appears
to be richer than that of asymptotically flat spacetimes, since we must also include a new ingredient
in the full analysis of the horizon. An expanding universe admits a preferred future-oriented timelike
vector field X defining the worldlines of co-moving observers, whose common expanding rest-frames are
the 3-surfaces orthogonal to X. In FRW metrics X is a conformal Killing field which becomes tangent
to the cosmological horizon and, in the class of FRW metrics we consider, it individuates complete null
geodesics on =−.

This extent will be generalized to expanding spacetimes M equipped with as geodesically complete
cosmological horizon =− and a conformal Killing field X, generally different from FRW spacetimes. The
leading role of X in such a construction is strengthened by its intertwining relation with the conformal
factor which is a primary condition to take into account if one wants to study what is the structure of the
symmetry group of the horizon. We also address such an issue in the manuscript and, rather surprisingly,
we discover that the situation is rather different from that of an asymptotically flat spacetime. As a matter
of fact, the BMS is replaced by a new infinite dimensional group SG=− which has the structure of an
iterated semidirect product i.e. it is SO(3) n

(
C∞(S2) n C∞(S2)

)
where SO(3) is the special orthogonal

group with a three dimensional algebra, whereas C∞(S2) stands for the set of smooth functions over
S2 thought as an Abelian group under addition. The geometric meaning of SG=− is related with the
following result. The subgroup of isometries of the spacetime which preserve the cosmological horizon
structure is injectively mapped to a subgroup of SG=− . So that SG=− encodes some of the possible
symmetries of the spacetime. However it must be remarked that SG=− is universal in the sense that it
does not depend on the particular spacetime M in the class under consideration.

Therefore the cosmological horizon appears to really be endowed with all the properties to be a natural
candidate where to encode bulk data. Hence our aim is to show that, although different in several aspects
from null infinity, it is still possible to trade in this cosmological scenario and, hence, to exploit many of
the known results in the reconstruction of a bulk classical and quantum field.

Within this respect, we adopt a more generic starting point than that in [DMP06], since we consider
the set of solutions (with compactly supported initial data) of the Klein-Gordon equation of motion with
both an arbitrary mass and coupling to curvature. As a result we find that, under suitable hypotheses
on M – valid, in particular, for certain FRW spacetimes which are de Sitter asymptotically – the algebra
of observables W(M) of Klein-Gordon field in M is one-to-one (isometrically) mapped to a subalgebra
of the algebra of observables W(=−) naturally constructed on the cosmological horizon. In this sense
information of quantum theory in the bulk M is encoded by the quantum theory defined on the bound-
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ary =−. Similarly to what found in the asymptotically flat space, it turns out that there is exactly one
pure quasifree state λ on W(=−) which fulfils a certain energy-positivity condition with respect to some
generators of SG=− . The relevant generators are here those which can be interpreted as limit values on
=− of timelike Killing vectors of M , whenever one fixes a spacetime M admitting =− as the cosmological
horizon. However, exactly as the geometric structure of =−, λ is universal in the sense that it does not
depend on the particular spacetime M in the class under consideration. The GNS-Fock representation
of λ individuates a unitary irreducible representation of SG=− . Fixing an expanding spacetime M with
complete cosmological horizon, λ induces a preferred quantum state λM for the quantum theory in M .
λM enjoys remarkable properties. It turns out to be invariant under all those isometries of M (if any)
that preserve the cosmological horizon structure. If M admits a timelike Killing generator preserving =−,
the associated self-adjoint generator in the GNS representation of λM has positive spectrum (i.e. energy).
Finally, if M is the very expanding de Sitter spacetime, λM coincides to the Euclidean (Bunch-Davies)
vacuum state, so that it is Hadamard in that case at least. Actually, Hadamard property seems to be
valid in general, but that issue will be investigated elsewhere.

1.1. Notation, mathematical conventions. Throughout R+ := [0,+∞), N := {0, 1, 2, . . .}. For
smooth manifolds M,N , C∞(M ;N) (omitting N whenever N = R) is the space of smooth functions
f : M → N . C∞

0 (M ;N) ⊂ C∞(M ;N) is the subspace of compactly-supported functions. If χ : M → N
is a diffeomorphism, χ∗ is the natural extension to tensor bundles (counter-, co-variant and mixed) from
M to N (Appendix C in [Wa84]). A spacetime (M, g) is a Hausdorff, second-countable, smooth, four-
dimensional connected manifoldM , whose smooth metric has signature−+++. We shall also assume that
a spacetime is oriented and time oriented. We adopt definitions of causal structures of Chap. 8 in [Wa84].
If S ⊂ M ∩ M̂ , (M, g) and (M̂, ĝ) being spacetimes, J±(S;M) (I±(S;M)) and J±(S; M̂) (I±(S; M̂))
indicate the causal (chronological) sets associated to S and respectively referred to the spacetime M or M̂ .

1.2. Outline of the paper. In section 2 we introduce and we discuss the geometric set-up of the back-
grounds that we are going to take into account throughout this paper. In particular we recall the notion
of asymptotically flat spacetime and we find under which analytic conditions on the expanding factor, a
Friedmann-Robertson-Walker (FRW) spacetime can be smoothly extended to a larger spacetime which
is a past conformal completion of an asymptotically flat spacetime. In section 3 we provide a general
definition for an expanding universe with a geodesically complete cosmological particle horizon and we
analyse the implications of such a definition at a geometrical level. Furthermore we introduce and we
discuss the structure of the horizon symmetry group showing its interplay with the possible isometries of
the bulk metric. In section 4 we switch to a field theoretical perspective studying in 4.1 the structure of
bulk scalar QFT and of the associated Weyl algebra, whereas, in 4.2, we deal with the horizon counter-
part. In subsection 4.3, instead we analyse the structure of the algebraic states associated to the horizon
algebra emphasising in particular the existence of a preferred state invariant under the full symmetry
group, which enjoys some uniqueness/energy-positivity properties. Subsections 4.4 and 4.5 are devoted
to the development of the interplay between the bulk and the boundary theory; a particular emphasis
is given to the selection of a natural preferred bulk states and on the analysis of its properties. Since
all these conclusions are based upon some a priori assumptions on the behaviour of the solutions in the
bulk of the Klein-Gordon equation with a generic coupling to curvature, we shall devote section 4.6 to
test these requirements. Eventually, in section 5, we draw some conclusions and we provide some hints
on future research perspectives.
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2 Cosmological horizons and asymptotically flatness

2.1. Friedmann-Robertson-Walker spacetime and cosmological horizons. A homogeneous and isotropic
universe can be locally described by a smooth spacetime, in the following indicated by (M, gFRW ),
where M is a smooth Lorentzian manifold equipped with the following Friedmann-Robertson-Walker
(FRW) metric

gFRW = −dt⊗ dt+ a(t)2
[

1
1− κr2

dr ⊗ dr + r2dS2(θ, ϕ)
]

(1)

Above, dS2(θ, ϕ) = dθ ⊗ dθ + sin2 θ dφ ⊗ dφ is the standard metric on the unit 2-sphere and, up to
normalisation, κ can take the values −1, 0, 1 corresponding respectively to an hyperbolic, flat and closed
spacetimes. The coordinate t ranges in some open interval I. Here a(t) is a smooth function of t with
constant sign (since g is nondegenerate). Henceforth we shall assume that a(t) > 0 when t ∈ I. We also
suppose that the field ∂t individuates the time orientation of the spacetime.
Physically speaking and in the universe observed nowadays, the sections of M at fixed t are the isotropous
and homogeneous 3-spaces containing the matter of the universe, the world lines describing the histories
of those particles of matter being integral curves of ∂t. In this picture, the cosmic time t is the proper-
time measured at rest with each of these cluster, whereas the scale a(t) measures the size of the observed
cosmic expansion in function of t.
The metric (1) may enjoy two physically important features. Consider a co-moving observer pictured by
a integral line γ = γ(t), t ∈ I, of the field ∂t and focus on J−(γ). If J−(γ) does not cover the whole
spacetime M , the observer γ cannot receive physical information from some events of M during his/her
story: Causal future-directed signals starting from M \ J−(γ) cannot achieve any point on γ. In other
words, and adopting the terminology of [Ri06], a cosmological event horizon takes place for γ. It
is the null 3-hypersurface ∂J−(γ). Conversely, whenever J+(γ) does not cover the whole spacetime M ,
physical information sent by the observer γ during his/her story is prevented from getting to some events
of M : Causal future-directed signals starting from γ do not reach any point in M \ J+(γ). In this case,
exploiting again the terminology of [Ri06], a cosmological particle horizon exists for γ. It is the null
3-hypersurface ∂J+(γ).
As is well-known, a sufficient condition for the appearance of cosmological horizons can be obtained from
the following analysis. One re-arranges the metric (1) into the form

gFRW = a2(τ)
[
−dτ ⊗ dτ +

1
1− κr2

dr ⊗ dr + r2dS2(θ, ϕ)
]
, (2)

where

τ(t) = d+
∫
a−1(t)dt (3)

is the conformal cosmological time, d ∈ R being any fixed constant. By construction τ = τ(t) is a
diffeomorphism from I to some open, possibly infinite, interval (α, β) 3 τ . Notice that ∂τ is a conformal
Killing vector field whose integral lines coincide (up to the parametrisation) with the integral lines of ∂t.
Thus the time τ has a natural geometric meaning related with the FRW metric. Since the causal sets J±

are fixed under smooth positive rescaling of the metric, one may study the causal sets J±(γ) referring to
the ultrastatic metric

g := −dτ ⊗ dτ +
1

1− κr2
dr ⊗ dr + r2dS2(θ, ϕ) , (4)
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rather than the original one. Causal structures of this ultrastatic metric are much easier to study than
those of gFRW , due to the isometry group associated with the coordinate τ . Referring to the metric g,
the manifold M turns out to be a product (α, β)×Σ from the metrical point of view, too; where Σ is the
spatial section equipped with the constant-curvature metric

1
1− κr2

dr ⊗ dr + r2dS2(θ, ϕ) .

As a byproduct, this entails that the spacetime (M, gFRW ) is globally hyperbolic, because such properties
holds for every ultrastatic spacetime and, furthermore, the causal structure of a spacetime is invariant
under smooth positive conformal rescaling of the metric.)
A straightforward analysis based on the shape of the metric g establishes that J−(γ) does not cover he
whole spacetime M whenever β < +∞. In that case a cosmological event horizon takes place for γ.
Similarly J+(γ) does not cover the whole spacetime M whenever α > −∞. In that case a cosmological
particle horizon takes place for γ. In both cases the horizons ∂J−(γ) and ∂J+(γ) are null 3-hypersurfaces
diffeomorphic to R × S2, made of null geodesics of gFRW . One may think of these surfaces as the limit
light-cones emanating from γ(t), respectively towards the past or towards the future, as t tends to sup I
or inf I respectively. The tips of the cones generally get lost in the limit procedure: In realistic models α
and β correspond, when they are finite, to a big bang or a big crunch respectively. As a general comment,
we stress that the cosmological horizons introduced above generally depend on the fixed observer γ.

Remark 2.1. The requirement on the finiteness of the bounds α and β for the range of the conformal
cosmological time τ are sufficient conditions for the existence of the cosmological horizons, but they are
by no means necessary. Indeed it may happen that – and this is the case of de Sitter spacetime – there is,
indeed a cosmological horizon arbitrarily close to M , but outside M . This happens when the spacetime
M and its metric can be extended beyond its original region M to a larger spacetime (M̂, ĝ) so that
it happens ∂M = ∂J±(M ; M̂). The cosmological horizon =± coincides to the boundary ∂M and, by
construction, it does not depend on the considered observer γ (an integral curve of the field ∂t) evolving
in M . Referring in particular to a conformally static region M (equipped with the metric (1) for κ = 0)
embedded in the complete de Sitter spacetime M̂ , ∂M turns out to be a null surface with the topology
of R× S2. In the following we shall focus on this type of cosmological horizons.

2.2. Asymptotically-flat spacetime structure. The cosmological horizons depicted in remark 2.1 give rise
to an interesting interplay of Friedmann-Robertson-Walker spacetimes and asymptotically flat spacetimes
at null infinity. In particular one may try to extend some important recent results [DMP06, Mo06, Mo06,
Da07] concerning Quantum Field Theory, to QFT in Friedmann-Robertson-Walker spacetimes. This is,
in fact, the main goal of this paper. We remind here some general definitions concerning asymptotically
flat spacetime theory – and the notion of null boundaries at infinity =± in particular – which will be useful
in the rest of the paper. The following, apparently complicated, definition captures the mathematical
structure of those spacetimes which look like Minkowski spacetime as soon as one approaches the infinity
along light rays. The null infinity =− is viewed as the boundary of M when it is embedded into a larger
spacetime (M̂, ĝ) by means of a conformal isometry.

Definition 2.1. A smooth four-dimensional spacetime (M, g) is called asymptotically flat vacuum
spacetime at future null infinity if it exists a second four dimensional spacetime1 (M̂, ĝ), a suitable

1This definition may be relaxed since the region cM \ (M ∪ =+) plays no role in the original definitions by Geroch,

Ashteker [Ge77, AX78] and others (but it did in [DMP06, Mo06, Mo07]). Preserving the rest of the definition with fM

in place of cM , the existence of the spacetime (cM, bg) may be weakened to the existence of a manifold with boundary fM ,
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embedding λ : M → λ(M) ⊂ M̂ (we shall omit to write explicitly it in the following for the sake of the
simplicity), and a smooth function Ω : M → (0,+∞) such that ĝ = Ω2g and the following facts hold

1. Existence and causal/topological properties of null infinity. M (through λ) is the interior
of a submanifold with boundary of M̂ , the boundary =+ := ∂M being diffeomorphic to R× S2 and
=+ ∩ J−(M ; M̂) = ∅.

2. Asymptotic flatness. (M, g) is strongly causal and satisfies vacuum Einstein equations in a
neighbourhood of =+.

3. Ω-=+ interplay. Ω extends to a smooth function on M̂ such that Ω�=+= 0 but dΩ 6= 0 everywhere
on =+.

4. Geodesic completeness of =+. Redefining Ω′ := ωΩ and ĝ′ := ω2ĝ correspondingly, where ω > 0
is defined in a neighbourhood of =+ and satisfies ∇̂a(ω4ĝab∇̂bΩ) = 0 on =+, the integral lines of
∇̂′bΩ′ in =+ are complete.

The manifold =+ is called the future null infinity of M and (M̂, ĝ) is a future conformal comple-
tion of (M, g). There is a completely analogous definition of asymptotically flat vacuum spacetime
at past infinity replacing J−(M ; M̂) with J+(M ; M̂) as well as =− with =+.

Remark 2.2. (1) It is not self-evident from the given definition that =+ is a null surface and the
complete curves tangent to ∇̂′bΩ′ are null-like geodesics as well. It is proved explicitly in the Appendix.
(2) This observation will turn out to be relevant in the following. The metric on =+ is unphysical, since
=+ is out of the universe, and, thus, it can be rearranged by varying the factor ω. It is always possible
to fix some of the remaining degrees of freedom of ω [Wa84], obtaining ωB so that the metric ω2

B ĝ takes
the Bondi form on =+:

ω2
B ĝ �=+= −d`⊗ dΩB − dΩB ⊗ d`+ dS2(θ, ϕ) . (5)

where ΩB := ωBΩ is used as a coordinate about =+ and ` ∈ R is the affine parameter2 of the complete
null geodesics of ω2

B ĝ forming =+. Above we have used coordinates `,ΩB , θ, φ defined in a neighbourhood
of =+ essentially as a consequence of dωΩ = ωdΩ 6= 0 on =+ (see [Wa84] for more details). It is apparent
from (5) that the metric induced on =+ from ĝ �=+ is degenerate.
(3) A further important remark, arising as a consequence of the requirement 1 in Definition 2.1, is

=+ = ∂J−(M ; M̂) = ∂M and =− = ∂J+(M ; M̂) = ∂M . (6)

Here is the proof. First, notice that M = I−(M ; M̂). For if there were some p ∈ I−(M ; M̂) \M , there
would also be a continuous timelike past-directed curve from some q ∈ M to p and it would cut ∂M at
some r, producing the absurdum r ∈ ∂M ∩ J−(M ; M̂) = =+ ∩ J−(M ; M̂) = ∅ due to property 1 in def.
2.1. Thus =+ := ∂M = ∂I−(M ; M̂) = ∂J−(M ; M̂). The last identity is a general property of causal sets
∂I−(S) = ∂J−(S) (see [Wa84]).

whose interior and boundary are respectively M and =+ and which is equipped with a Lorentzian smooth metric eg with
eg�M= Ω2g.

2Comparing this with [DMP06, Mo06, Mo07] the reader should pay attention on the fact that the coordinate ` was
indicated by u in those papers.
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2.3. FRW metrics with κ = 0 and associated asymptotically flat structure. Sticking with (4) where
κ = 0, we go to prove that (M, gFRW ) can be extended to a larger spacetime (M̂, ĝ) whenever the
function a is suitable. Rescaling the metric gFRW with the conformal factor Ω := a which extends
smoothly over M̂ , we shall also find that, the spacetime (M, g), with g := Ω−2gFRW , is asymptotically
flat at null infinity, admitting (M̂, ĝ) as a conformal completion. This is an important result because,
whenever the definition of spacetime asymptotically flat at null infinity applies, it also holds (6)

=+ = ∂J−(M ; M̂) = ∂M and =− = ∂J+(M ; M̂) = ∂M .

As a consequence of the discussion in remark 2.1, =+ and =− can be interpreted as a cosmic event horizon
and cosmic particle horizon respectively, in common for all observers co-moving with the metric gFRW
in M . We have, in fact, the following result.

Theorem 2.1. Consider the globally hyperbolic FRW spacetime (M, gFRW ) for κ = 0, with

M ' (α, β)× R3 , gFRW = a2(τ)
[
−dτ ⊗ dτ + dr ⊗ dr + r2dS2(θ, ϕ)

]
,

τ ∈ (α, β) and r, θ, φ standard spherical coordinates on R3, and there is a constant γ ∈ R with

a(τ) =
γ

τ
+O

(
1
τ2

)
,

da(τ)
dτ

= − γ

τ2
+O

(
1
τ3

)
(7)

for either (α, β) := (−∞, 0) and γ < 0, or (α, β) := (0,+∞) and γ > 0. The above asymptotic values are
meant to be taken as τ → −∞ or τ → +∞ respectively. The following holds.

(a) The spacetime (M, gFRW ) smoothly extends to a larger spacetime (M̂, ĝ), which is a past conformal
completion of the asymptotically flat spacetime at past, or future, null infinity, respectively, (M,a−2gFRW )
with Ω = a.

(b) Referring to Def. 2.1, the manifold M ∪ =± has the following further features.
(i) the vector field ∂τ is a conformal Killing vector for ĝ in M with conformal Killing equation

L∂τ
ĝ = −2∂τ (ln a) ĝ .

where the right-hand side which vanishes approaching =±.
(ii) ∂τ tends to become tangent to =± approaching it and coincides to −γ∇̂ba thereon.
(iii) The metric on =± takes the Bondi form up to the constant factor γ2 6= 0:

ĝ �=+= γ2(−d`⊗ da− da⊗ d`+ dS2(θ, ϕ)) , (8)

` ∈ R being the parameter of the integral lines of n.

Proof. The first issue we face is the extension of the spacetime (M, gFRW ) to a larger spacetime (M̂, ĝ).
To this end, referring to the metric (4) and the definition (3), let us introduce the new coordinates
u = τ + r and v = τ − r ranging in subsets of R individuated by τ ∈ (α, β) and r ∈ (0,+∞). In this way
we have

gFRW = a2(τ(u, v))
[
−1

2
du⊗ dv − 1

2
dv ⊗ du+

(u− v)2

4
dS2(θ, ϕ)

]
.

Now let us define U = tan−1 u and V = tan−1 v. Then, per direct substitution, up to a rearrangement of
the coefficients into the more convenient form, the above metric can be written as:

gFRW =
a2(τ(U, V ))
cos2 U cos2 V

[
−1

2
dU ⊗ dV − 1

2
dV ⊗ dU +

sin2(U − V )
4

dS2(θ, ϕ)
]
. (9)
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Figure 1: The interior of the triangle represents the original FRW background seen as an open subset
of Einstein’s static universe. Each point in the (U, V )-plane represents a 2-sphere and, furthermore, the
segments b and c are respectively =+ and =−.

Barring the multiplicative coefficient, the coordinate transformations we have performed is the same as
one exploits in the standard compactification procedure to switch from Minkowski background to Einstein
static universe. The metric, obtained by cancelling the overall factor a2(τ(U, V ))/(cos2 U cos2 V ), is well-
behaved and smooth for U, V ∈ R removing the axis U = V . However the apparent singularity for U = V
is due to the coordinates only; it is nothing but the apparent singularity for r = 0 in the original metric
(4). Consider R2 equipped with null coordinates U, V with respect to the standard Minkowskian metric
on R2 and assume that every point is a 2-sphere with radius | sin(U, V )|/2 (hence the spheres for U = V
are degenerate). Then, let us focus on the segments in R2

a, V = U with U ∈ (−π/2, π/2),
b, U = π/2 with V ∈ (−π/2, π/2),
c, V = −π/2 with U ∈ (−π/2, π/2).

The original spacetime M is realized as a suitable subset of the union of the segment a (i.e. r = 0) and
the interior of the triangle abc (i.e. r > 0) as in the figure 1. In this picture it is natural to assume
that the null endless segments b and c (which actually represent null 3-hypersurfaces diffeomorphic to
R× S2) individuate =+ and =− respectively. Notice that, however, it can happen only if β = +∞ and,
respectively, α = −∞, referring to the domain (α, β) of τ . Otherwise the points of M cannot get closer
and closer to all the points of those segments. Therefore we are committed to assume α = −∞ and/or
β = +∞ and we stick with this assumption in the following discussion.
Summarising, we wish to extend gFRW smoothly to a region larger than the open triangle abc joined with
a, and including one of the endless segments b and c at least. (The construction implies automatically
that, for M ∪ =+ and M ∪ =−, the requirement (1) in the definition of asymptotically flat spacetime
holds true barring, at most, the causal statement.)
To examine this issue into details we have to specify the form of the function a and study the smoothness
of a2(τ(U, V ))/(cos2 U cos2 V ) on the segments b and c. For the moment, we stick with a power law

a(τ) = γ τ−k , τ ∈ (α, β) , (10)

for some integer k and γ ∈ R \ {0}. These are going to be determined by imposing the smoothness
requirement of the metric (9) on M and =± as well as further requirements arising from the definition
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2.1 in the way we proceed to illustrate. The assumption (10) entails

a2(τ(U, V ))
cos2 U cos2 V

= 22kγ2 sin−2k(U + V )
cos−2k+2 U cos−2k+2 V

This function is smooth in neighbourhoods of the open segments b and c only if k ≥ 1. In particular
only for k = 1 this function does not vanish on b and c, making nondegenerate ĝ thereon. In these cases,
however, a bad singularity appears as soon as U = −V (that is τ = 0). Therefore we are led to assume
that either:

(α, β) = (0,+∞) – and in this case M (r ≥ 0, τ ∈ (0,+∞)) coincides to the upper half of the triangle
abc, and it may be extended to a larger spacetime (M̂, ĝ) by adding a neighbourhood of the endless
segment b viewed as =+ – or

(α, β) = (−∞, 0) – and in this case M (r ≥ 0, τ ∈ (−∞, 0)) coincides to the lower half of the triangle
abc, and it may be extended to a larger spacetime (M̂, ĝ) by adding a neighbourhood the endless segment
c viewed as =−.
In both cases the line U = V does not belong to M and to its extension, and the metric ĝ is that in the
right-hand side of (9), evaluated in the extended spacetime M̂ :

ĝ =
a2(τ(U, V ))
cos2 U cos2 V

[
−1

2
dU ⊗ dV − 1

2
dV ⊗ dU +

sin2(U − V )
4

dS2(θ, ϕ)
]
. (11)

The diffeomorphism λ is just the inclusion map. We can pass on to check, in both cases, the requirements
of the definition 2.1. We have to set up the metric g so that the factor Ω coincides to a(τ(U, V )). The
obtained metric g is nothing but the Minkowski one; therefore it is strongly causal and fulfils Einstein
vacuum equations (everywhere) as requested in the condition 2 of definition 2.1.
We have seen that condition 1 is trivially fulfilled concerning the first two requirements. The last one,
=+ ∩ J−(M ; M̂) = ∅, is true because it is valid when replacing (M̂, ĝ) with Einstein static universe
(ME , gE) (since it is a conformal completion of Minkowski spacetime [Wa84]) and ĝ = cgE where c is
the nonvanishing factor a(U, V )2/(cos2 U cos2 V ), so that J±(M ;ME) = J±(M ; M̂). Let us pass on to
condition 3. First of all we notice that, for k ≥ 1, Ω is smooth in M̂ and vanishes exactly on =±.
Moreover, by direct inspection, we see that

dΩ = −kγ 2k
(

sin−k−1(U + V ) dU
cos−k+1 U cos−k−1 V

+
sin−k−1(U + V ) dV
cos−k+1 V cos−k−1 U

)
. (12)

To prevent dΩ from vanishing on =±, it must hold k = 1 once again. In this way one finds that

dΩ �=+ = −2γdU , (13)
dΩ �=− = −2γdV . (14)

We conclude that, assuming (10), all the requirements select k = 1. Let us pass on to the requirement 4.
By direct inspection one finds that, restricting to =+ and =−, the Bondi form for the metric ĝ arises

ĝ �=±= γ2
(
−d`⊗ dΩ− dΩ⊗ d`+ dS2(θ, ϕ)

)
.

where, for arbitrarily fixed constants k+, k−:

`(U) = −γ−1 tanU + k− = −γ−1u+ k− on =− , (15)
`(V ) = −γ−1 tanV + k+ = −γ−1v + k+ on =+ . (16)
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In particular, by direct inspection, one may check the validity of the requirement in the definition 2.1 for
ωB = γ−2 constantly. This also proves the statement (iii) in (b).
The statement (ii) in (b) arises immediately from

∂τ =
∂

∂u
+

∂

∂v
= cos2 U

∂

∂U
+ cos2 V

∂

∂V
=

∂

∂ tanU
+

∂

∂ tanV
,

and employing (15) and (16) in the respective cases. The statement (i) in (b) follows immediately from
the form of the metric gFRW .

From now on, we consider the case γ < 0 only, the other case being analogous. The conditions on a
are equivalent to say that, for some γ < 0 and for some f ∈ C∞(−∞, 0):

a(τ) =
γ

τ
+
f(τ)
τ2

> 0 , τ ∈ (−∞, 0) . (17)

where f ′(τ) = O(1/τ) as τ → −∞ and f is bounded in a neighbourhood of −∞. With trivial re-
adaptations, all the procedure used above works again and gives rise to (13), (14), (15) and (16) and (8)
for ωB = 1, by taking a more general form for a than (10). That is, everything holds true if assuming
that (17) is valid, where γ < 0 for (α, β) := (−∞, 0) or γ > 0 if (α, β) := (0,+∞) is any constant, and
the function f ∈ C∞(α, β) is bounded in a neighbourhood of ±∞ with f ′(τ) = O(1/τ) as τ → ±∞. This
is because the contribution of f cancels on every occurrence as far as the geometry of =± is concerned.
2

Remark 2.3. The statements (a),(b) hold true also if we change gFRW smoothly inside a region
M0 ' (α, β)× Σ0 for a compact Σ0 ⊂ R3. (In this case ∂τ is a conformal Killing vector of the metric at
least in M \M0.) Indeed, in the said hypotheses, there is an open neighbourhood of =± where one uses
the same construction as above.

2.4. Some examples. As an example, starting with the metric (1) where

a(t) = a0e
αt with a0, α > 0 constant, (18)

one recognises the metric of a conformally static subregion of de Sitter spacetime where the cosmological
constant is Λ = 3α2. This can be considered a realistic model of the observed universe assuming,
as done nowadays, that the dark energy dominates among the various sources to gravitation in the
framework of Einsteinian theory of gravity. In this case one can fix the integration constant in (3) so
that τ = −e−αt/(a0α) and thus τ ∈ (−∞, 0). In this case a(τ) = −c/τ , where c = 1/α, and thus we can
use the obtained result requiring that (M, gFRW ) admits a cosmological particle horizon in common with
all the observers whose world lines are the integral curves of ∂t, and that horizon coincides with =−. A
more complicated model is that where, for c, d > 0 constants,

a(τ) = − c
τ

+
d

τ2
, τ ∈ (−∞, 0) .

Here it is not possible to give the explicit expression for a = a(t), but a straightforward analysis proves
that t ∈ (−∞,+∞) and, in this case, one has a strong inflactive behaviour in the remote past a(t) ∼ cet/c

as t→ −∞, whereas a(t) ∼ t2/d as t→ +∞.
Another more complicated example is a spacetime (M, g) with a metric of the form

g(τ, p) = −γ(p)2dt⊗ dt+ a(t)2h(p) , for (t, p) ∈ R× Σ 'M . (19)
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(the identification R×Σ 'M being due to ∂t) where a(t) is as in the previous examples, Σ is diffeomorphic
to R3 and both h = dr ⊗ dr + r2dS2 and γ = 1, outside a compact set in S.
As in the previous examples, this spacetime (M, g) is globally hyperbolic provided the Euclidean metric
h on Σ is complete. This is because g is conformally equivalent to the static metric

g0(τ, p) = −γ(p)2dτ ⊗ dτ + h(p) , for (τ, p) ∈ R× Σ ≡M , (20)

and it is known that any spacetime (M, g) with a static metric (20) is globally hyperbolic if there are
c1, c2 ∈ R with c1 ≥ γ(p) ≥ c2 > 0 for every p ∈ Σ and (Σ, h) is complete [Ka78].

3 General expanding universes with cosmological horizon and
the horizon group.

3.1. Expanding universes with cosmological horizon =−. The previous discussion has remarked the
existence of a nice relationship between asymptotically flat spacetimes at null infinity and expanding
FRW spacetimes with a suitable rate of expansion a. In particular, a can be interpreted as the rescaling
factor Ω used in asymptotically flat spacetime theory. The new ingredient is, however, the conformal
Killing field ∂τ which, in turn, enjoys a certain interplay with Ω. In asymptotically flat spacetimes at
null infinity, an important role [DMP06, Mo06, Mo07] in developing quantum field theory, is played by a
certain symmetry group of diffeomorphisms defined on =+, the so called BMS group (e.g., see [Wa84]).
This group of diffeomorphisms of =+ embodies the isometries of the bulk spacetime [Ge77, AX78] (also
the asymptotic ones [Wa84]), through a suitable geometric correspondence of generators. This fact has
a great relevance for applications to quantum field theories [DMP06, Mo06, Mo07]. In the following we
shall deal with a generalisation of the thesis of theorem 2.1, extracting the relevant geometric structure
only, in order to achieve the counterpart of the BMS group for the found class of spacetimes.
All the previous examples fulfil the definition below. In particular, the requirements Ω�=−= 0, Ω−1X(Ω) →
0 approaching =− from M , can be viewed as a weaker form of the requirements (7), in Theorem 2.1, if
assuming Ω := a and X := ∂τ .

Definition 3.1. A globally hyperbolic spacetime (M, g) equipped with a positive smooth function Ω :
M → R+ and a future-oriented timelike vector X defined on M , will be called an expanding universe
with geodesically complete cosmological particle horizon when the following facts hold:

1. Existence and causal properties of horizon. (M, g) can be viewed (by means of an isomet-
ric embedding) as the interior of a sub manifold-with-boundary of a larger spacetime (M̂, ĝ), the
boundary =− := ∂M verifying =− ∩ J+(M ; M̂) = ∅.

2. Ω-=+ interplay. Ω extends to a smooth function on M̂ such that (i) Ω�=+= 0 and (ii) dΩ 6= 0
everywhere on =+.

3. X-Ω-ĝ-=− interplay. X is a conformal Killing vector for ĝ in a neighbourhood of =− in M3, with

LX(ĝ) = −2X(lnΩ) ĝ , (21)

where (i) X(lnΩ) → 0 approaching =− and (ii) X does not tend everywhere to the zero vector
approaching =− .

3i.e., (21) is valid in M ∩ U where =− ⊂ U ⊂ cM for some open set U .
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4. Bondi-form of the metric on =− and geodesic completeness. (i) =− is diffeomorphic to
R× S2, (ii) the metric ĝ restricted on there takes the Bondi form up to a possible constant factor
γ2 > 0:

ĝ�=−= γ2
(
−d`⊗ dΩ− dΩ⊗ d`+ dS2(θ, φ)

)
, (22)

dS2 being the standard metric on the unit 2-sphere, so that =− is a null 3-submanifold, and (iii)
the curves R 3 ` 7→ (`, θ, φ) are complete null ĝ-geodesics.

The manifold =− is called the cosmological (particle) horizon of M . The integral parameter of X is
called the conformal cosmological time. There is a completely analogous definition of contracting
universe referring to the existence of =+ in the future instead of =−.

Remark 3.1. (1) In view of condition 3, the vector X is a Killing vector of the metric g0 := Ω−2g in
a neighbourhood of =− in M . In this neighbourhood (which may coincide with the whole M), one can
be think of Ω2 as an expansion scale evolving with rateX(Ω2) referred to the conformal cosmological time.
(2) As proved previously, =−∩J+(M ; M̂) = ∅ entails alsoM = I+(M ; M̂) and =− = ∂M = ∂I+(M ; M̂) =
∂J+(M ; M̂), so that =− has the proper interpretation as a particle cosmological horizon in common for
all the observers in (M, g) evolving along the integral lines of X.
(3) Assuming Definition 3.1 the null geodesics in the item 4 are the (complete) integral curves, ` is an
affine parameter and ∇̂aΩ = −γ−2 (∂`)

a on =−. The fact that the curves R 3 ` 7→ (`, θ, φ) are ĝ-geodesics
is equivalent to say that ∂Ωĝ`` = 0 everywhere on =− in the considered coordinates. Finally notice that
Γ̂Ω
ab = 0, for a, b 6= Ω, on =− therefore =− is totally geodesic.

(4) In the following, expanding universe with cosmological horizon will mean expanding universe
with geodesically complete cosmological particle horizon.

Similarly to the particular case examined previously, also in the general case pictured by Definition 3.1,
the conformal Killing vector field X becomes tangent to =− and it coincides with ∂` up to a nonnegative
factor, which now may depend on angular variables, as we go to establish. The proof of the following
proposition is in the Appendix.

Proposition 3.1. If (M, g,Ω, X, γ) is an expanding universe with cosmological horizon, the following
holds.

(a) X extends smoothly to a (unique) smooth vector field X̃ on =−, which may vanish on a closed
subset of =− with empty interior at most. The obtained extension of X to M ∪ =− fulfils the ĝ-Killing
equation on =−.

(b) X̃ has the form f∂`, where, referring to the representation =+ ≡ R× S2, f depends only on the
variables S2 and, furthermore, it is smooth and nonnegative.

3.2. The horizon isometry group G=− . In the forthcoming discussion we shall make use several times
of the following technical fact. In the representation =− ≡ R× S2 3 (`, s), the null ĝ-geodesic segments
imbedded in =− are all of the curves

J 3 ` 7→ (α`+ β, s) , for constants α 6= 0, β ∈ R, s ∈ S2, and some interval J ⊂ R. (23)

We leave the simple proof to the reader.
In this section, assuming that (M, g) satisfies definition 3.1, we select a subgroup SG=− of isometries
of =− with physical relevance in the following. We shall see in Proposition 3.3 that, as matter of fact,
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SG=− contains the isometries generated by Killing vectors obtained as limit towards =− of (all possible)
Killing vectors of (M, g), when these vectors tend to become tangent to =−.
We have a preliminary proposition about this sort of Killing vectors.

Proposition 3.2. If (M, g,Ω, X, γ) is an expanding universe with cosmological horizon and Y is a
Killing vector field of (M, g), Y can be extended to a smooth vector field Ŷ defined on M̂ and the following
holds.

(a) LbY g = 0 on M ∪ =−;
(b) Ỹ := Ŷ �=− is uniquely determined by Y ,
(c) Ỹ is tangent to =− if and only if g(Y,X) vanishes approaching =− from M .

Restricting to the linear space of the Killing fields Y on (M, g) such that g(Y,X) → 0 approaching =−,
the following further facts hold.

(d) If Ỹ vanishes in some A ⊂ =− and A 6= ∅ is open (with respect to the topology of =−), then
Y = 0 everywhere in M and, thus, Ŷ = 0 everywhere in M ∪ =+.

(e) The linear map Y 7→ Ỹ is injective.

The proof of the proposition above is given in the Appendix.
The statements (a) and (c) of Proposition 3.2 establish that the Killing vectors Y in M with (Y,X) → 0
approaching =− extend to Killing vectors of (=−, h), h being the degenerate metric on =− induced by
ĝ. It is worth remarking that these Killing vectors of (M, g) are represented on =− faithfully due to (e):
The boundary =− embodies the full information about these symmetries of the bulk M .
Since the vector fields Ŷ tangent to =− admit =− as invariant manifold, the following definition is
appropriate in view of (c) in Proposition 3.2.

Definition 3.2. If (M, g,Ω, X, γ) is an expanding universe with cosmological horizon, a Killing vector
field of (M, g), Y , is said to to preserve =− if g(Y,X) → 0 approaching =−. Similarly, the Killing
isometries of the (local) one-parameter group generated by Y are said to preserve =−.

In the rest of this part we shall consider the one-parameter group of isometries of (=−, h) generated
by such Killing vectors Ŷ �=− . These isometries amount to a very little part of the huge group of
isometries of (=−, h). For instance, referring to the representation (`, s) ∈ R×S2 ≡ =−, for every smooth
diffeomorphism f : R → R, the transformation

`→ f(`), s→ s (24)

is an isometry of (=−, h). However only diffeomorphisms of the form f(`) = a` + b with a 6= 0 can
be isometries generated by the restriction Ŷ �=− to =− of extensions of Killing fields Y of (M, g) as in
the proposition 3.2. This is because those isometries are restrictions of isometries of the manifolds-with-
boundary (M ∪ {=−}, ĝ�M∪{=−}), and thus they preserve the null ĝ-geodesics in =−. These geodesics
have the form (23). The requirement that, for every constants a, b ∈ R, a 6= 0, there must be constants
a′, b′ ∈ R, a′ 6= 0 such that f(a` + b) = a′` + b′ for all ` varying in a fixed (nonempty) interval J , is
fulfilled only if f is an affine transformation as said above.

Relaxing the constraints on angular variables in (24), i.e. allowing as well transformations of angular
coordinates too, let us such a restricted class of isometries of =−. Afterwards we shall come back to the
Killing vectors tangent to =− introduced in Proposition 3.2. Therefore we aim to study the class G=+ of
diffeomorphisms F : =− → =−

`→ `′ := f(`, s) , s→ s′ := g(`, s) with ` ∈ R and s ∈ S2, (25)
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such that: (i) they are isometries of the degenerate metric h induced by ĝ �=− (22) and (ii) they may be
restrictions to =− of isometries of ĝ in M ∪ =−.
Assume that F ∈ G=− . The curve γ : R 3 ` → γs(`) ≡ (`, s) (with s ∈ S2 arbitrarily fixed) is a null
geodesic forming =−, therefore R 3 `→ F (γs(`)) has to be, first of all, a null curve. In other words

ĝ�=−

(
∂f

∂`

∂

∂`
+
∂g

∂`

∂

∂θ
+
∂g

∂`

∂

∂φ
,
∂f

∂`

∂

∂`
+
∂g

∂`

∂

∂θ
+
∂g

∂`

∂

∂φ

)
= 0 .

Using (22) and arbitrariness of s ≡ (θ, φ), it implies that g does not depend on ` since the standard metric
on the unital sphere is strictly positive defined. The map g has to be an isometry of S2 equipped with its
standard metric. In other words g ∈ O(3). Moreover, R 3 `→ F (γs(`)) = (f(`, s), g(s)) has to be a null
geodesic which belongs to =−. As a consequence of (2) in remark 3.1, (f(`, s), g(s)) = (c(s)`+ b(s), g(s))
for some fixed numbers c(s), b(s) ∈ R with c(s) > 0, and for every ` ∈ R. Summarising, if a smooth =−-
diffeomorphism F as in (25) fulfils (i) and (ii), it must be g(`, s) = R(s) for all `, s and f(`, s) = c(s)`+b(s),
for all `, s, for some R ∈ O(3), c, b ∈ C∞(S2) with c(s) 6= 0. It is obvious that, conversely, every such a
diffeomorphism fulfils (i) and (ii), so that we have characterised the class of isometries verifying (i) and
(ii) completely.

Remark 3.2. (1) By direct inspection one sees that the class G=− of all diffeomorphisms F as above is
a group with respect to the composition of diffeomorphisms.
(2) A transformations F ∈ G=− , associated with R ∈ O(3), but R 6∈ SO(3), cannot belong to any one-
parameter group of isometries induced by Killing vectors in M . This is because R should be continuously
connected to the identity rotation I (that reached by the vanishing value of the one-parameter group).
This would be impossible if R 6∈ SO(3).
(3) In the following, each element of the one-parameter group of diffeomorphisms generated by a vector
field Z will be denoted by exp{tZ}, where t ∈ R is the parameter.

From now on we shall restrict ourselves to the subgroup of G=− whose elements are constructed using
elements of SO(3). We give the following definitions.

Definition 3.3. The horizon isometry group SG=− is the group (with respect to the composition
of functions) of all diffeomorphisms of R× S2,

F(a,b,R) : R× S2 3 (`, s) 7→
(
ea(s)`+ b(s), R(s)

)
∈ R× S2 with ` ∈ R and s ∈ S2, (26)

where a, b ∈ C∞(S2) are arbitrary smooth functions and R ∈ SO(3).
The Horizon Lie algebra g=− is the infinite-dimensional Lie algebra of smooth vector fields on R× S2

generated by the fields
S1 , S2 , S3 , β∂` , `α∂` , for all α, β ∈ C∞(S2).

S1, S2, S3 indicate the three smooth vector fields on the unit sphere S2 generating rotations about the
orthogonal axes, respectively, x, y and z. (Since, looking at (22), =− is naturally isometric to R × S1,
these fields can be viewed as fields on =−).

It is worth noticing that SG=− depends on the geometric structure of =− but not on the attached
spacetime (M, g), which, in principle, could not admit any Killing vector preserving =−. In this sense it
is a universal object for the whole class of expanding spacetimes with cosmological horizon. SG=− may
be seen as an abstract group defined on the set SO(3) × C∞(S2) × C∞(S2), without reference to any
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expanding spacetime with cosmological horizon (M, g). Adopting this point of view, if we indicate Fa,b,R
by the abstract triple (R, a, b), the composition between elements in SG=− reads

(R, a, b)(R′, a′, b′) =
(
RR′, a′ + a ◦R′, ea◦R

′
b′ + b ◦R′

)
for all (R, a, b), (R′, a′, b′) ∈ SO(3)× C∞(S2)× C∞(S2) . (27)

where ◦ denotes the usual composition of functions.

The relationship between SG=− and g=− is clarified in the following proposition. In a sense, (b) states
that g=− could be considered as the Lie algebra of SG=− . This fact could be investigated further if
endowing SG=− with the structure of an infinite-dimensional Lie group; however we shall not address
this issue here.

Proposition 3.3. Referring to the definition 3.3, the following facts hold:
(a) Each vector field Z ∈ g=− is complete and the generated (global) one-parameter group of diffeo-

morphisms of R× S2, {exp{tZ}}t∈R, is a subgroup of SG=− .
(b) For every F ∈ SG=− there are Z1, Z2 ∈ g=− – with, possibly, Z1 = Z2 – such that F =

exp{t1Z1} exp{t2Z2} for some real numbers t1, t2.

The proof of this proposition is in the Appendix.
Furthermore, we have the following important result which finally makes explicit the interplay of Killing
vectors Y in M preserving =−, the group SG=− and the Lie algebra g=− .

Theorem 3.1. Let (M, g,Ω, X, γ) be an expanding universe with cosmological horizon and Y a Killing
vector field of (M, g) preserving =−. The following holds.

(a) The unique smooth extension Ỹ of Y to =− (see Proposition 3.2) belongs to g=− .
(b) {exp{tỸ }}t∈R is a subgroup of SG=− .

The proof of this theorem is in the Appendix.
As an example consider the expanding universe M with cosmological horizon associated with the metric
gFRW (2) with κ = 1 and a as in (a) of Theorem 2.1. In this case X := ∂τ and there are a lot of Killing
vectors Y of (M, gFRW ) satisfying gFRW (Y,X) → 0 approaching =−. The most trivial ones are all of
the Killing vectors of the surfaces at τ =constant with respect to the induced metric. We have here a
Lie algebra generated by 6 independent Killing vectors Y generating, respectively, space translations and
space rotations. In this case gFRW (Y,X) = 0 so that the associated Killing vectors Ŷ �=− belongs to
g=− . This is not the whole story in the sharp case a(τ) = γ/τ with γ < 0 (and this corresponds to the
expanding de Sitter spacetime). Indeed, in that case, there is another Killing vector B of gFRW fulfilling
gFRW (B,X) → 0 approaching =−. It is B := τ∂τ + r∂r. B, extended to M ∪ =−, gives rise to the
structure of a bifurcate Killing horizon [KW91].
A last technical result, which will be useful in discussing the positivity of the energy of a quantum state
we shall introduce later, is the following. The proof is in the Appendix.

Proposition 3.4. Let (M, g,Ω, X, γ) be an expanding universe with cosmological horizon and Y a
smooth vector field of (M, g) which tends to the smooth field Ỹ ∈ g=− pointwisely. (In particular it
happens when Y is a Killing vector of (M, g) preserving =− or for Y = X).
If there is an open set A ⊂ M̂ with A ⊃ =− and such that Y �A∩M is timelike and future directed, then,
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everywhere on =−,

Ỹ (`, s) = f(s)∂` , for some f ∈ C∞(S2), with f(s) ≥ 0 on S2. (28)

4 Linear Quantum Fields and preferred states induced by the
cosmological horizon.

In this section (M, g,Ω, X, γ) is an expanding universe with cosmological horizon. Since (M, g) is globally
hyperbolic per definition, one can study properties of quantum fields propagating therein, following the
algebraic approach in the form presented in [KW91, Wa94] (see also the Appendix B for a very short
summary of main tools).

4.1. QFT in the bulk. Consider linear bosonic QFT in (M, g) based on the symplectic space (S(M), σM ),
where S(M) is the space of real smooth, compactly supported on Cauchy surfaces, solutions ϕ of a
generally massive Klein-Gordon equation in M :

Pφ = 0 , where P is the Klein-Gordon operator P = 2 + ξR+m2 . (29)

with 2 = −∇a∇a, m > 0 and ξ ∈ R constants. The nondegenerate, Cauchy-surface independent,
symplectic form σM is:

σM (ϕ1, ϕ2) :=
∫
S

(ϕ2∇Nϕ1 − ϕ1∇Nϕ2) dµ(S)
g , (30)

S being any Cauchy surface of M with normal unit future-directed vector N and 3-volume measure dµ(S)
g

induced by g.
As is well known [BR021, BR022], it possible to associate canonically any symplectic space, for instance
(S(M), σM ), with a Weyl C∗-algebra, W(M) in this case. This is the, unique up to (isometric) ∗-
isomorphisms, C∗-algebra with generators WM (ϕ) 6= 0, ϕ ∈ S(M), satisfying Weyl commutation
relations (we use here conventions adopted in [Wa94])

WM (−ϕ) = WM (ϕ)∗ , WM (ϕ)WM (ϕ′) = eiσM (ϕ,ϕ′)/2W (ϕ+ ϕ′) . (31)

W(M) represents the basic set of quantum observable associated with the bosonic field φ propagating in
the bulk spacetime (M, g). The generatorsWM (ϕ) are formally interpreted as the exponentials e−iσM (Φ,ϕ)

where σM (Φ, ϕ) = −σM (ϕ,Φ) is the field operator symplectically smeared with a solution ϕ ∈ S(M)
of field equations (concerning the sign of σ we employ conventions used in [Wa94] which differ from those
adopted in [KW91]). The interpretation has a rigorous meaning referring to a GNS representation
[Haa92, BR021] of W(M) induced by an algebraic state ω. Indeed, if the considered state ω is regular,
the unitary group R 3 t 7→ Πω(W (tψ)) is strongly continuous and −iσM (Φ, ϕ) can be defined as its
self-adjoint generator.
The more usual field operator Φ(f) smeared with functions f ∈ C∞

0 (M) is related with σM (Φ, ϕ) by
means of Φ(f) := σM (Φ, E(f)), where now E denotes the causal propagator E : C∞

0 (M) → C∞(M).
That is the difference of the advanced and retarded fundamental solutions of Klein-Gordon equation
which exist in every globally hyperbolic spacetime [Le53, Di80, BGP96]. Φ solves Klein-Gordon equation
in distributional sense: Φ(Pf) = 0 because P = P t and P ◦ E = 0 by definition.
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The main goal of this section is to prove that the geometric structures on (M, g,Ω, X, γ) pick out a
very remarkable algebraic state ω on W(M), which, among other properties turns out to be invariant
under the natural action of every Killing isometry of (M, g) which preserves =−. This happens provided
a certain algebraic interplay of QFT in M and QFT on =− exists.

4.2. Bosonic QFT on =− and G=−-invariant states. Referring to =− ≡ R × S2, consider the real
symplectic space (S(=+), σ), where

S(=+) :=
{
ψ ∈ C∞(R× S2)

∣∣ ψ , ∂`ψ ∈ L2(R× S2, d` ∧ εS2(θ, φ)
}
, (32)

εS2 being the standard volume form of the unit 2-sphere, and the nondegenerate symplectic form σ is
given by, if ψ1, ψ2 ∈ S(=+)

σ(ψ1, ψ2) :=
∫

R×S2

(
ψ2
∂ψ1

∂`
− ψ1

∂ψ2

∂`

)
d` ∧ εS2(θ, φ) . (33)

As before, there is a, unique up to (isometric) ∗-isomorphisms, C∗-algebra with generators W (ψ) 6= 0,
ψ ∈ S(=−), satisfying Weyl commutation relations

W (−ψ) = W (ψ)∗ , W (ψ)W (ψ′) = eiσ(ψ,ψ′)/2W (ψ + ψ′) , (34)

that is the Weyl C∗-algebra W(=−) associated with (S(=−), σ).

Remark 4.1. Exploiting the given definitions, it is simply proved that (S(=+), σ) is invariant under
the pull-back action of G=− . In other words the following hold (i) ψ ◦ g ∈ S(=+) if ψ ∈ S(=+) and also
(ii) σ(ψ1 ◦ g, ψ2 ◦ g) = σ(ψ1, ψ2) for all g ∈ G=− and ψ1, ψ2 ∈ S(=+). As a well known consequence
[BR022, BGP96], G=− induces a ∗-automorphism G=− -representation α : W(=−) → W(=−), uniquely
individuated (by linearity and continuity) by the requirement

αg(W (ψ)) := W (ψ ◦ g−1) , ψ ∈ S(=+) and g ∈ G=− . (35)

Since we are interested in physical properties which are G=− -invariant, we face the issue about the
existence of G=− -invariant algebraic states on W(=−). Obviously, G=− -invariance is here referred to the
representation α of G=− .

4.3. G=−-invariant algebraic states on W(=−). We adopt here the definition of quasifree state given
in [KW91], and also adopted in [DMP06, Mo06, Mo07], summarised in the Appendix B. Consider the
quasifree state λ defined on W(S(=+)) uniquely induced by linearity and continuity from; if ψ,ψ′ ∈ S(=+)
then

λ(W (ψ)) = e−µ(ψ,ψ)/2 , µ(ψ,ψ′) := Re

∫
R×S2

2kΘ(k)ψ̂(k, θ, φ)ψ̂′(k, θ, φ)dk ∧ εS2(θ, φ) , (36)

the bar denoting the complex conjugation, Θ(k) := 0 for k < 0 and Θ(k) := 1 for k ≥ 0; here we have
used the `-Fourier-Plancherel transform ψ̂ of ψ:

ψ̂(k, θ, φ) :=
∫

R

eik`√
2π
ψ(`, θ, φ)d` , (k, θ, φ) ∈ R× S2 . (37)

The constraint

|σ(ψ,ψ′)|2 ≤ 4 µ(ψ,ψ)µ(ψ′, ψ′) , for every ψ,ψ′ ∈ S , (38)
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which has to hold for every quasifree state (see Appendix B), is fulfilled by the scalar product µ, as the
reader can verify by inspection, since it results:

σ(ψ1, ψ2) = −2Im
{∫

R×S2
2kΘ(k)ψ̂1(k, θ, φ)ψ̂2(k, θ, φ)dk ∧ εS2(θ, φ)

}
, for all ψ1, ψ2 ∈ S(=−). (39)

Consider the GNS representation of λ, (H,Π,Υ). Since λ is quasifree, H is a bosonic Fock space F+(H)
with cyclic vector Υ given by the Fock vacuum and 1-particle Hilbert H space obtained as the Hilbert
completion of the complex space generated by the “positive-frequency parts” Θψ̂ =: Kµψ, of every
wavefunction ψ ∈ S(=−), with the scalar product 〈·, ·〉 individuated by µ, as stated in (ii) of Lemma B.1
in the Appendix B. In our case it reads,

〈Kµψ,Kµψ
′〉 =

∫
R×S2

2kΘ(k)ψ̂(k, θ, φ)ψ̂′(k, θ, φ)dk ∧ εS2(θ, φ) . (40)

Notice that it has to be extended by (anti-)linearity and continuity to H. The so-defined map Kµ :
S(=−) → H is R-linear and has a dense complexified range. As λ is quasifree, it is regular, so that
symplectically-smeared field operators σ(Ψ, ψ) are defined in F+(H) via Stone’s theorem: Π(W (tψ)) =
e−itσ(Ψ,ψ) with t ∈ R and ψ ∈ S(=−), and these operators have the usual form (95) in terms of creation
and annihilation operators.
A state similar to λ, and denoted by the same symbol, was defined on =+ ' R × S2 in [DMP06, Mo06,
Mo07]4, for asymptotically flat spacetimes at future null infinity, where the coordinate ` was indicated by
u and complex coordinates ζ, ζ, instead of (θ, φ), were employed on S2. In the appropriate coordinates,
that state enjoys the form (36) exactly. Therefore, making use of Theorem 2.12 in [DMP06], we have the
following straightforwardly result.

Proposition 4.1. The quasifree state λ on W(=−), defined in (36) is pure. In other words, the GNS
representation Π of λ is irreducible and, equivalently, the range of the R-linear map Kµ : S(=−) 3 ψ →
ψ+ ∈ H is dense. Finally, the one-particle space H of its GNS representation is isomorphic to the sepa-
rable Hilbert space L2(R+ × S2; 2kdk ∧ εS2).

The state λ enjoys further remarkable properties in reference to the group G=− . The first theorem
concerns invariance properties of λ.

Theorem 4.1. The state λ defined in (36), and with GNS triple (H,Π,Υ), satisfies the following.
(a) It is invariant under the ∗-automorphisms representation G=− 3 g 7→ αg, in other words: λ(αg(a)) =
λ(a) for all a ∈ W(=−) and g ∈ G=− .
(b) The unique unitary representation U : G=− 3 g 7→ Ug that implements α in H leaving Υ invariant,
that is,

Ug a U
∗
g = αg (a) and UgΥ = Υ for all a ∈ W(=−) and g ∈ G=− ,

leaves H invariant and it is determined by U�H completely. U has the tensorialised form

U = I ⊕ U�H ⊕(U�H ⊗ U�H)⊕ (U�H ⊗ U�H ⊗ U�H)⊕ · · · (41)

(c) The unitary representation U�H: H → H is irreducible.

4In [DMP06, Mo06] a different, but unitarily-equivalent, Hilbert space representation was used referring to the measure
dk instead of 2kdk. Features of Fourier-Plancherel theory on R× S2 were discussed in the Appendix C of [Mo07].
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Proof. (a) If ψ ∈ S(=−) is a wavefunction, we can write that

(Kµψ) (k, θ, φ) :=
∫

R

eik`√
2π
ψ(`, θ, φ)dk , (k, θ, φ) ∈ R+ × S2 , (42)

and the complex linear span of these vectors is dense in H. It is simple to introduce a unitary represen-
tation V of G=− on H, by defining, if g = (R, a, b) ∈ G=− and s = (θ, φ)(

V(R,a,b)ϕ
)
(k, s) := ea(R

−1(s))e−ikb(R
−1(s))ϕ

(
ea(R

−1(s))k,R−1(s)
)

for all ϕ ∈ H . (43)

This representation arises from (42) by requiring that Vg satisfies

Kµ

(
ψ ◦ g−1

)
= VgKµψ , for every ψ ∈ S(=−) and g ∈ G=− . (44)

Using (36) and (40), the first consequence of (43) and of the unitarity of V is that

λ (αg (W (ψ))) = λ
(
W
(
ψ ◦ g−1

))
= e−Re〈VgKµψ,VgKµψ〉/2

= e−Re〈Kµψ,Kµψ〉/2 = λ(W (ψ))

By linearity and continuity it implies immediately that λ is invariant under G=− as soon as it arises
λ (αg(a)) = λ(a) for every a ∈ W(=−).
(b) As it is well known [Ar99], since λ is invariant under G=− through α, there is a unique unitary
representation of G=− in the GNS representation of λ that implements α and leaves Υ fixed. Let us
determine such a representation. We remind the reader that, the symplectically smeared field operators
are defined in H = F+(H) as (see Appendix B)

σ(ψ,Ψ) := ia(Kµψ)− ia†(Kµψ) , for all ψ ∈ S (45)

a(φ) and a†(φ), φ ∈ Hµ, being the usual annihilation (antilinear in φ) and creation operators defined in
the dense linear manifold spanned by the states with finite number of particles. This identity, together
with (44), implies that

V ⊗
g σ(ψ,Ψ)(V ⊗

g )∗ = σ
(
ψ ◦ g−1,Ψ

)
. (46)

where Ug := V ⊗
g is the unique unitary operator such that UgΥ = Υ and, on each subspace of F+(H) with

n particles coincides to the corresponding tensor product of n copies of Vg. Since W (ψ) = e−iσ(ψ,Ψ), (46)
implies

UgW (ψ)U∗
g = αg (W (ψ)) .

By linearity and continuity, such an identity extends to the whole Weyl algebra. Therefore we have found
the wanted (and unique) unitary representation U of G=− that implements α and leaves Υ fixed, and it
is evident per construction that and U coincides with the tensorialisation of U�H.
(c) Consider the subgroup of G=− definite by the elements (R, 0, 0), R ∈ SO(3). We have(

U(R,0,0)�H ϕ
)
(k, s) := ϕ

(
k,R−1(s)

)
for all ϕ ∈ H . (47)

With the same procedure used in standard quantum mechanics, one sees that the invariant and irreducible
subspaces of H under the representation SO(3) 3 R 7→ U(R,0,0) �H are labelled by the naturals l =

0, 1, 2, . . . and have the form Hl :=
{∑l

m=−l fmYlm | fm ∈ L2(R+, 2kdk)
}

, where Ylm(θ, φ) are the
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standard spherical harmonics. Therefore, the invariant subspaces of all U(R,a,b), if any, must be subspaces
of some Hl. Now consider χ(k) = e−k. χYlm ∈ Hl by construction. However, using the fact that the Ylm
are polynomials of exponentials in the variables eimφ and cos θ, one sees that

(k, θ, φ) 7→ ecosφχ
(
ecosφk

)
Ylm(θ, φ) = e− exp(cosφ)k+cosφYlm(θ, φ)

cannot belong to Hl and to any other analogous subspace. Therfore every Hl is not invariant under some
of the elements U(0,a,0) and thus H does not admit proper invariant subspaces with respect to the whole
representation G=− 3 (R, a, b) 7→ U(R,a,b) and it is, by consequence, irreducible. 2

A second important result concerns the positive-energy/uniqueness properties of λ. In Minkowski QFT
positivity of energy, i.e. positivity of the spectrum of the self-adjoint generator of the unitary represen-
tation of Minkowskian time displacements, is a stability requirement. It guarantees that, under small
(external) perturbations, the system does not collapse to lower and lower energy states. In general space-
times the notion of energy is associated with a notion of Killing time. This interpretation can be extended
to this case too, namely to the theory on =− (later we shall come back to that in M). The positive-energy
requirement is fulfilled for the “asymptotic” notion of time associated with limit values Ỹ towards =−
of a timelike future-directed vector field Y in M , when Ỹ ∈ g=− . Notice that Y may not be a Killing
vector outside =−; it is enough that Y → Ỹ ∈ g=− . This includes the case Y = X in particular, due to
Proposition 3.1.
In the following, {exp{tZ}}t∈R is the one-parameter subgroup of G=− generated by any Z ∈ g=− and
{α(Z)

t }t∈R is the associated one-parameter group of ∗-automorphisms of W(=−) (35).

Proposition 4.2. Consider an expanding universe with cosmological horizon (M, g,X,Ω, γ), the state
λ on =− defined in (36) and a timelike future-directed vector field Y in M such that Y → Ỹ ∈ g=−

pointwisely approaching =− (Y = X in particular, in view of Proposition 3.1). The following holds.

(a) The unitary group {U (eY )
t }t∈R which implements α(eY ) leaving fixed the cyclic GNS vector in the GNS

representation of λ is strongly continuous with nonnegative self-adjoint generator H(eY ) = −i ddt sU
(eY )
t |t=0.

(b) The restriction of H(eY ) to the one-particle space has no zero modes if and only if Ỹ vanishes on a
zero-measure subset of =− .

Proof. From Proposition 3.4 one has that Ỹ (`, s) = f(s)∂` for some non negative smooth function
f : S2 → R. Therefore exp{tŶ } amounts to the displacement (`, s) → (` + f(s)t, s). As a consequence

of (43), the one parameter group α(eY ) is unitarily represented by {U (eY )
t }t∈R. U (eY )

t is the tensorialisation
(as in (41)) of the (representation of the) unitary group in the one-particle space Vt : H → H, with

(Vtφ)(k, s) = eitkf(s)ψ(k, s) =
(
eith

( eY )
ψ
)

(k, s) , for all φ ∈ H.

From standard theorems of operator theory one obtains that R 3 t 7→ Vt is strongly continuous with self-
adjoint generator h(eY ), in the one-particle space H = L2(R+ × S2; 2kdk ∧ εS2), given by (h(eY )φ)(k, s) =
kf(s)φ(k, s), defined in the dense domains D(h(eY )) made of the elements of the Hilbert space L2(R+ ×
S2; 2kdk ∧ εS2) such that the right-hand side belongs to L2(R+ × S2; 2kdk ∧ εS2). It is so evident that,
since f ≥ 0, for every ψ ∈ D(H)

〈φ, h(eY )φ〉 =
∫ +∞

0

2kdk
∫

S2
εS2(s)|φ(k, s)|2kf(s) ≥ 0 , (48)
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and thus σ(h(eY )) ⊂ [0,+∞). Passing to the whole Fock space by (41) the result remains unchanged for
the whole generator H(eY ) = 0 + h(eY )⊕ I ⊗ h(eY )⊕ h(eY )⊗ I ⊕ · · · using standard properties of generators.
The last statement is a trivial consequence of (48) using Ỹ = f∂`. 2

The result applies in particular for Ỹ = ∂`, since it is always possible to view ∂` as the limit value of
some timelike vector field of M . For expanding universes with cosmological horizon as in Theorem 2.1,
if X := −γ∂τ , then X → ∂` approaching =−. In this above case the energy-positivity property applies
for X and there are no zero modes.
This is not the whole story, since the positive-energy property for ∂`, determine completely λ.

Theorem 4.2. Consider the state λ on =− defined in (36) and its GNS representation. The following
holds.
(a) The state λ defined in (36) is the unique pure quasifree state on W(=−) satisfying both:

(i) it is invariant under α(∂`),
(ii) the unitary group which implements α(∂`) leaving fixed the cyclic GNS vector is strongly continuous

with nonnegative self-adjoint generator (energy positivity condition).
(b) Let ω be a pure (not necessarily quasifree) state on W(=−) which is G=−-invariant or, more weakly,
α(∂`)-invariant. ω is the unique state on W(=−) satisfying both:

(i) it is invariant under α(∂`),
(ii) it belongs to the folium of ω.

Proof. The proofs of (a) and (b) are quite complicated, however they are identical to the proofs of the
corresponding statements in Theorem 3.1 in [Mo06] in the case where F is a Bondi frame. This is due to
the fact that the self-adjoint generator of the unitary group t 7→ Ut implementing {α(∂`)

t }t∈R and leaving
Υ invariant is the tensorialisation of the positive self-adjoint generator H acting in the one-particle space
L2(R+ × S2; 2kdk ∧ εS2), is (Hψ̂)(k, θ, φ) = kψ̂(k, θ, φ). Note that H is defined in the dense domains
of the elements of the Hilbert space L2(R+ × S2; 2kdk ∧ εS2) such that the right-hand side is still in
L2(R+ × S2; 2kdk ∧ εS2). It is so evident that σ(H) = σc(H) = [0,+∞).
The action of the one-parameter subgroup R 3 t 7→ g(∂`)(t) of G=− on fields defined on =− coincides
exactly with the one-parameter subgroup of the BMS group on fields defined on =+. Furthermore
also the unitary representations of G=− and of the BMS group are identical when restricted to those
subgroups. (Notice that in [Mo06] the coordinate ` was indicated by u and complex coordinates ζ =
eiφ cot θ/2, ζ = e−iφ cot θ/2 were used on S2; finally, a different, but unitarily-equivalent, one-particle
Hilbert space representation was used, exploiting the measure dk instead of 2kdk.) 2

4.4. Interplay of QFT in M and QFT on =−. We have just seen that, in expanding universes
(M, g,Ω, X, γ) with cosmological horizons =−, the C∗-algebra of Weyl observable on =− admits a pre-
ferred state λ that is invariant under the action of G=− and enjoys some uniqueness properties. Since
G=− includes physically relevant symmetries of the bulk M , we wonder whether or not it is possible to
induce a state λM on the bulk starting from λ. If it were be possible, we would expect that λM would
enjoy some invariance properties with respect to the (possible) isometries individuated by Killing vectors
which preserve =−. To consider this issue, here we concentrate on algebraic properties beforehand, es-
tablishing the existence of a nice interplay between W(=−) and W(M) under suitable hypotheses on the
considered symplectic forms. That interplay will be used to define λM in the next subsection.
The symplectic form σM on S(M) defined in (30) can be equivalently rewritten as the integral of a 3-form,

σM (ϕ1, ϕ2) :=
∫
S

χ(ϕ1, ϕ2) (49)
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where, the Cauchy surface S is future oriented and, in any local coordinate patch:

χ(ϕ1, ϕ2) := −1
6

(ϕ2∇µϕ1 − ϕ1∇µϕ2)
√
−ĝ εµαβγ dxα ∧ dxβ ∧ dxγ , (50)

Above εµαβγ is the totally antisymmetric Levi Civita symbol. As it is known σM (ϕ1, ϕ2) does not depend
on the considered Cauchy surface. As soon as S is moved back in the past, it seems it tends to coincide
with =−. Actually this is not necessarily the case, since =− and Cauchy surfaces in M may have different
topologies. In particular, information could get lost through the time-like past infinity i−, the tip of the
cone representing =−. That point does not belong to M̂ in our hypotheses. However one may expect
that, in certain cases at least, assuming that each ϕi extends to Γϕi ∈ S(=−) smoothly, it holds

σM (ϕ1, ϕ2) =
∫
=−

χ(Γϕ1,Γϕ2) . (51)

Now, by direct inspection one verifies that, for ψ1, ψ2 ∈ S(=−),∫
=−

χ(ψ1, ψ2) = γ2

∫
R×S2

(
ψ2
∂ψ1

∂`
− ψ1

∂ψ2

∂`

)
d` ∧ εS2(θ, φ) , (52)

where γ is the last constant in (M, g,Ω, X, γ). Following this way one is led to expect that

σM (ϕ1, ϕ2) = σ(γΓϕ1, γΓϕ2) . (53)

Notice that this result is by no means trivial and it may not hold, since it strictly depends on the behaviour
of the solutions of Klein-Gordon equations across =−. In particular, as we have said above, information
could get lost through the time-like past infinity i−, the tip of the cone representing =−. That point
does not belong to M̂ in our hypotheses. In [Mo06] it has been established that, for asymptotically flat
spacetimes at future null infinity, whenever it is possible complete =+ with the tip i+ (and under suitable
further hypotheses), an identity analogous to (53) is valid. In that case, however, the fact that the field
was massless and conformally coupled played a crucial role. The extent is very different now, where
the mass is present and the coupling with R may not be conformal. Moreover, in our case the physical
spacetime is (M, g), whereas in the approach of [DMP06, Mo06, Mo07, Da07], it would be (M, g/Ω2).
Here we investigate on the consequences of such a validity of (53). In that case, the existence of Γ :
S(M) → S(=−) fulfilling (53) implies the existence of a isometric ∗-homomorphism from ı : W(M) →
W(=−). In this way the field observables of the bulk are mapped into observables of the theory on =−.
Moreover, the state λ on =− induces a preferred state λM on W(M) via pull-back. This state enjoys
interesting invariance properties with respect to the symmetries of (M, g) which preserve =−, as well as
a positivity property with respect to timelike Killing vectors of M which preserve =−.

Theorem 4.3. Consider an expanding universe with cosmological horizon (M, g,X,Ω, γ) and suppose
that every ϕ ∈ S(M) extends smoothly to some Γφ ∈ S(=−) in order that (53) holds true:

σM (ϕ1, ϕ2) = σ(γΓϕ1, γΓϕ2) , for every ϕ1, ϕ2 ∈ S(M).

In these hypotheses, there is an (isometric) ∗-homomorphism ı : W(M) → W(=−) that identifies the
Weyl C∗-algebra of the bulk M with a sub C∗-algebra of the boundary =−; it is completely determined by
the requirement:

ı (WM (ϕ)) := W (γΓϕ) , for all ϕ ∈ W(M). (54)
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Proof. Notice that the linear map γΓ : S(M) → S(=−) has to be injective due to nondegenerateness of the
symplectic form σ and (53). Consider the sub Weyl-C∗-algebra AM of W(=−) generated by the elements
W (γΓϕ) with ϕ ∈ S(M). Since Weyl C∗-algebras are determined up to (isometric) ∗-algebra isomor-
phisms, AM is nothing but the Weyl C∗-algebra associated with the symplectic space (γΓ(S(M)), σ) and
the map γΓ : S(M) → Γ(S(M)) is an isomorphism of symplectic spaces. Under these hypotheses [BR022],
there is a unique (isometric) ∗-isomorphism ı : W(M) → AM ⊂ W(=−) completely individuated by (54).
2

4.5. The preferred invariant state λM . To carry on our analysis, we show that, in the hypotheses of
Theorem 4.3, a preferred state λM on W(M) is induced by λ. That state enjoys very remarkable physical
properties.
From now on, if Y is a complete Killing vector of (M, g), the associated one-parameter group of g-
isometries, {exp{tY }}t∈R, has a natural action on W(M) obtained in this way. Since each exp{tY } :
M →M is an isometry, its pull-back action on fields preserves the symplectic form σM . As a consequence
[BR022, BGP96] there is a unique isometric ∗-isomorphism β

(Y )
t : W(M) → W(M) induced by the

requirement that the identity holds

β
(Y )
t (WM (ϕ)) := WM (ϕ ◦ exp{−tY }) , for every ϕ ∈ S(M).

In the following we shall call β(Y ) := {β(Y )
t }t∈R the natural ∗-isomorphism action of {exp{tY }}t∈R

on W(M). Similarly, every Z ∈ g=− has a natural action α(Z) on W(=−) in terms of isometric
∗-isomorphism, obtained by requiring,

α
(Z)
t (W (ψ)) := W (ψ ◦ exp{−tZ}) , for every ψ ∈ S(=−),

since the pull-back action of the one-parameter group {exp{tZ}}t∈R, generated by Z on fields of S(=−)
preserves the symplectic form σ.
An important point is the following. Consider an expanding universe with cosmological horizon (M, g,X,Ω, γ)
and suppose that every ϕ ∈ S(M) extends smoothly to some Γφ ∈ S(=−) in order that (53) holds true.
In this case there is a uniquely defined smooth function φ̂ defined on M ∪ =−, that reduces to φ in M
and to Γφ on =−. If Y is a complete Killing vector of (M, g) preserving =−, the one parameter group
generated by its unique extension Ŷ to M ∪ =− (Proposition 3.2 and Theorem 3.1) acts on φ̂ globally.
Taking the relevant restrictions of scalar fields and Killing vector fields we obtains:

(Γφ) ◦ exp{tỸ } = Γ (φ ◦ exp{tY }) , (55)

where, as usual, Ỹ := Ŷ �=− . This identity holds true for every complete Killing vector Y of (M, g) that
preserves =−, for every φ ∈ S(M) and for every t ∈ R. As a straightforward consequence it holds

ı
(
β

(Y )
t (a)

)
= α

(eY )
t (ı(a)) , for all a ∈ W(M) and t ∈ R . (56)

Such an identity has an important consequence stated in the following theorem.

Theorem 4.4. Consider an expanding universe with cosmological horizon (M, g,X,Ω, γ) fulfilling the
hypotheses of Theorem 4.3. Let λM : W(M) → C be the state induced by λ defined in (36) through the
isometric ∗-homomorphism ı (54):

λM (a) := λ(ı(a)) , for all a ∈ W(M). (57)
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λM enjoys the following properties:
(a) Let Y be some complete Killing vector field of (M, g) which preserves =− (if any), and let β(Y )

the natural action on W(M), then λM is invariant under β(Y ) and the unitary one-parameter group
{U (Y )

t }t∈R, which implements β(Y ) in the GNS representation of λM leaving fixed the cyclic vector, is
strongly continuous.
(b) If Y above is everywhere timelike and future-directed in M , then

(i) the one-parameter group {U (Y )
t }t∈R has positive self-adjoint generator,

(ii) that generator has no zero-modes in the one-particle subspace, if Ỹ vanishes on a zero-measure
subset of =−.

Proof. As before, from now on, (F+(H),Π,Υ) is the GNS triple of λ. First of all we notice that λM is in
fact a well-defined state on W(M) since ı is a ∗-homomorphism. λM is quasifree associated with a real
scalar product µM : S(M)× S(M) → R defined as µM (ϕ,ϕ′) := µ(γΓϕ, γΓϕ′). From this fact, it follows
that the GNS triple of λM can be constructed as (F+(HM ),Π�AM

,Υ), where AM ⊂ W(=−) is the sub
C∗-algebra isomorphic to W(M) in view of Theorem 4.3, HM is the Hilbert subspace of H given by the
closure of the space of complex linear combinations of Kµ(Γ(ϕ)), for every ϕ ∈ S(M) and, thus, F+(HM )
is a Fock subspace of F+(H). In particular, the canonic R-linear map KµM

: S(M) → HM is nothing but
KµM

= Kµ ◦ γΓ.
(a) By construction, using the definition of λM , taking advantage of (56), and of the invariance of λ as
in (a) of Theorem 4.1, if a ∈ W(M), one has

λM

(
β

(Y )
t (a)

)
= λ

(
ı
(
β

(Y )
t (a)

))
= λ

(
α

(eY )
t ı(a)

)
= λ (ı(a)) = λM (a) .

This proves the first part of (a). To conclude the proof of (a), let V (eY )
t : H → H the one-parameter group

of unitaries that implements α(eY )
t in the one-particle space H for λ. From KµM

= Kµ ◦γΓ, (56) and (44)
one has:

V
(eY )
t KµM

ϕ = V
(eY )
t KµγΓ(ϕ) = Kµ

(
(γΓϕ) ◦ exp{−tỸ }

)
= Kµ (γΓ (ϕ ◦ exp{−tY }))

= KµM
(ϕ ◦ exp{−tY }) .

We have found that, for every ϕ ∈ S(M), V (eY )
t KµM

ϕ = KµM
(ϕ ◦ exp{−tY }) , and this immediately

implies either that V (eY )
t leaves the one particle space of λM , HM , invariant either that V (eY )

t �HM
imple-

ments β(Y )
t in HM . As a consequence of the structure of the GNS triple of λM , if U (eY )

t implements β(eY )
t

unitarily in H = F+(H) leaving Υ invariant, it leaves also invariant the structure of the GNS-Fock space

of λM and, therein, U (eY )
t �F+(HM ) implements α(Y )

t unitarily in HM = F+(HM ) leaving the cyclic vector
invariant. In other words

U
(Y )
t = U

(eY )
t �F+(HM ) .

Notice that R 37→ U
(eY )
t �F+(HM ) is strongly continuous since R 37→ U

(eY )
t is such. Moreover the self-

adjoint generator of U (eY )
t �F+(HM ) is obtained by restricting that of U (eY )

t �F+(HM ) to F+(HM ). If the
former generator is positive, the latter has to be so. In the considered case, the former is positive since Y
is timelike and future directed and thus we can apply (a) of Proposition 4.2. The same argument shows

that the self-adjoint generator of V (eY )
t �HM

has no-zero modes if V (eY )
t �HM

has no-zero modes. This last
fact happens if Ỹ vanishes on a zero-measure subset of =− due to (b) of Proposition 4.2. 2
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Remark 4.2. As noticed before Proposition 4.2, positivity of energy is a stability requirement; it
guarantees that, under small (external) perturbations, the system does not collapse to lower and lower
energy states. The notion of energy is related , in curved spacetime, to the presence of a timelike Killing
vector. The statement (b) of the theorem assures in particular that, in the presence of such a Killing
vector, if it preserves =−, the condition of energy positivity holds true. In the absence of any timelike
Killing vector Proposition 4.2 assures anyway the validity of a positivity-energy condition, in particular
with respect to the conformal Killing vector X. It is worth noticing that X becomes a true ĝ-Killing
vector exactly on =− by definition.

4.6. Testing the construction for the de Sitter case and for other FRW metrics. We proceed to show
that the hypotheses of Theorem 4.3 are valid when (M, g,X,Ω, γ) is in the class of the FRW metrics
considered in Theorem 2.1, so that the preferred state λM exists for those spacetimes. That class includes
the expanding region of de Sitter spacetime (see [1, 2] for a related analysisin the framework of Wightman’s
axioms). We shall verify, in this last case, that the preferred state λM is nothing but the well-known
de Sitter Euclidean vacuum or Buch-Davies state, ωE [SS76, BD78, Al85]. Let us start with de Sitter
space and review, very quickly, how ωE is defined on W(M) when (M, g) is the expanding region of
de Sitter spacetime (actually there are infinite many such regions, each obtained form any other by the
action an element of the subgroup of isometries of de Sitter metric preserving temporal-orientation ).
The expanding region in de Sitter spacetime is the manifold

M ' (−∞, 0)× R3 , g = a2(τ)
[
−dτ ⊗ dτ + dr ⊗ dr + r2dS2(θ, ϕ)

]
,

where τ ∈ (−∞, 0) and where r, θ, φ are standard spherical coordinates on R3, a(τ) = γ/τ for some
constant γ < 0, so that and R = 12/γ2. A class of, generally complex, solutions Φk, k ∈ R3 of the
Klein-Gordon equation −∇a∇aϕ+m2ϕ+ ξRϕ = 0 used to define ωE is obtained introducing

Φk(τ,x) :=
eik·x

(2π)3/2
χk(τ)
a(τ)

, (58)

where, x ∈ R3 and the functions χk are solutions of

d2

dτ2
χk(τ) + k2χk(τ) + a(τ)2

[
m2 + (ξ − 1/6)R(τ)

]
χk(τ) = 0. (59)

We focus on the class of solutions (58) found in [SS76] :

χk(τ) :=
1
2
√
−πτ eiπν/2H(2)

ν (−kτ) , where ν :=

√
9
4
− 12(m2R−1 + ξ) (60)

where k := |k|, H(2)
ν is the second-type Hankel function. The sign in front of the square root in the

definition of ν (which may be imaginary) does not affect the right-hand side of (60) and it could be
fixed arbitrarily (either for ν real or imaginary). With those choices one finds the time-independent
normalisation (time-independence follows from (59) immediately)

dχk(τ)
dτ

χk(τ)− χk(τ)
dχk(τ)
dτ

= i , for all τ ∈ (−∞, 0). (61)

Remark 4.3. Actually, in [SS76, BD78], the contracting region in de Sitter spacetime was considered.
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There, a(τ) = γ/τ , for γ > 0 and τ ∈ (0,+∞). The appropriate modes are in that case 5:

χk(τ) :=
1
2
√
πτ eiπν/2H(2)

ν (kτ) , where ν :=

√
9
4
− 12(m2R−1 + ξ) (62)

the adaptation to our situation is straightforward, since (59) is invariant under τ → −τ and under com-
plex conjugation. The complex conjugation in the modes (60) is necessary to obtain the asymptotic
behaviour ∼ (2k)−1/2e−ikτ for k → +∞, τ → −∞ and the correct normalisation (61).

Let us now show how ωE is defined with the standard procedure of extraction of the positive frequency
part of real wavefunctions, after having decomposed them with respect to the family of modes (58). To
this end, take any (real by definition) ϕ ∈ S(M) and fix a Cauchy surface Στ in (M, g), individuated by
the points in M with the fixed value of τ . As a last step define

ϕ̃(k) := −i
∫

R3

[
∂Φk(τ,x)

∂τ
ϕ(τ,x)− Φk(τ,x)

∂ϕ(τ,x)
∂τ

]
a(τ)2dx . (63)

The right-hand side of (63) does not depend on the choice of τ , as it follows per direct inspection exploiting
both (59) and the Klein-Gordon equation. Let us remember either that ϕ ∈ S(M), either that its Cauchy
data are real, smooth and compactly supported. Furthermore, taking into account that the the Hankel
functions H(2)

ν (z) decays as z−1/2 as |z| → ∞, it turns out that ϕ̃ ∈ C∞(R3 \ {0}) and it vanishes for
|k| → ∞ faster than every power |k|−n, n = 1, 2, . . .. From the known behaviour of the functions H(2)

ν (z)
in a neighbourhood of z = 0 [GR95], one sees that the leading divergence as k → 0 due to the functions
χk is of order |k|−|Reν|. This singularity does not affect the integrability of |ϕ̃|2 with respect to dk when
|Reν| < 3/2. We remark that integrability of |ϕ̃|2 entails integrability of |ϕ̃| in this case, since ϕ̃(k)
vanish very fast for large k. Eventually notice that, from the definition of ν, |Reν| < 3/2 is equivalent to
require m2 + ξR > 0. Once one constructs ϕ̃ out of (63), the associated ϕ can be obtained back as the
pre-announced decomposition in terms of the modes Φk:

ϕ(τ,x) =
∫

R3

[
Φk(τ,x)ϕ̃(k) + Φk(τ,x)ϕ̃(k)

]
dk . (64)

This is a trivial consequence of (58), (61), (63), and of the standard properties of F Fourier transform for
smooth compactly supported functions on R3.
As we have said above, in the hypotheses m2 + ξR > 0, one has ϕ̃ ∈ L2(R3; dk) ∩ L1(R3; dk) for every
ϕ ∈ S(M). In this case, per direct computation one verifies that, if ϕ1, ϕ2 ∈ S(M),

−2Im
{∫

R3
ϕ̃1(k)ϕ̃2(k)dk

}
=
∫

R3
(ϕ2∂τϕ1 − ϕ1∂τϕ2) a2(τ)dx =: σM (ϕ1, ϕ2) . (65)

The (restriction to M of the) Euclidean vacuum in de Sitter space is nothing but the quasifree state
ωE on W(M) completely identified by

ωE(WM (ϕ)) = e−
1
2

R
R3 eϕ(k)eϕ(k) dk , for every ϕ ∈ S(M). (66)

5The form of the modes as presented in [BD78, BD82] is different due to the absence of the overall exponential exp−iπν/2,
which would affect the final results and the normalisation (61) for ν imaginary. Nevertheless, the final form of the two-points
function presented in [BD78, BD82] is not affected by this new factor. Therefore, in all cases it coincides with that found
in [SS76] previously.
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Notice that the constraint (93) is automatically fulfilled in view of (65).

Remark 4.4. (1) The maximally extended de Sitter spacetime can be realized by glueing together two
isometric spacetimes – one expanding and the other contracting, when moving towards the future – on
the common cosmological horizon. The obtained spacetime is maximally symmetric and admits SO(1, 5)
as group of isometries. The state ωE extends to a globally defined state on the whole complete de Sitter
spacetime [Al85].
(2) The extended state ωE (which coincides with that constructed in terms of the modes (62) in the
contracting region) is invariant under the whole group of isometries, O(1, 5), of the maximally extended
de Sitter spacetime, so that it is also fixed under symmetries which do not preserve the horizon.
(3) Among the class of SO(1, 5)-invariant α-vacua individuated by Allen [Al85], ωE is the only globally
Hadamard state (the two-point function of the remaining ones has singularities also for non null related
arguments).

Theorem 4.5. Consider the expanding universe (M, g,X,Ω, γ) given by the expanding portion of de
Sitter space, so that

M ' (−∞, 0)× R3 , g = a2(τ)
[
−dτ ⊗ dτ + dr ⊗ dr + r2dS2(θ, ϕ)

]
,

where τ ∈ (−∞, 0) and where r, θ, φ are the standard spherical coordinates on R3, whereas X = ∂τ and
Ω(τ) = a(τ) = γ/τ , for some constant γ < 0 so that R = 12/γ2. Consider a quantum scalar Klein-
Gordon field propagating in (M, g) with Klein-Gordon operator −∇a∇a +m2 + ξR where m2 + ξR > 0
so that ωE can be defined. The following holds.
(a) If m2 + ξR > 5

48R (though this requirement may be dropped as discussed in Remark 4.5), every
ϕ ∈ S(M) extends smoothly to some Γφ ∈ S(=−) and (53) holds true.
(b) With the same hypotheses, the preferred state λM on S(M) coincides with the restriction to M of the
Euclidean vacuum ωE.

Proof. (a) Consider a wavefunction ϕ ∈ S(M). As it is well-known it satisfies ϕ = Ef where E :
C∞

0 (M) → S(M) is the causal propagator and f is some real smooth and compactly supported function
in M . Since the maximally extended de Sitter spacetime M ′ is globally hyperbolic and M ⊂M ′, – so that
C∞

0 (M) ⊂ C∞
0 (M ′) – one can focus on the wavefunction ϕ′ := E′f , where E′ is the causal propagator in

M ′. By construction ϕ′�M= ϕ, so that ϕ′ is a smooth extension of ϕ. Since =− ⊂ M ′, all that implies
that ϕ extends to =− smoothly (and uniquely) and this extension is lim→=− ϕ = ϕ′�=− . In this way, an
R-linear map Γ : S(M) 3 ϕ→ ϕ′�=−∈ C∞

0 (=−) is defined. To conclude (a), it is enough to prove either
that RanΓ ⊂ S(=−) either that Γ preserves the symplectic forms. Let us prove them. Since, for large z
(with |argz| ≤ π − ε)

H(2)
ν (z) =

√
2
πz
e−i(z−

πν
2 −π

4 )

[
1 +O

(
1
z

)]
,

making use of (58) and (60), the identity (64) can be recast as

ϕ(τ,x) =
e−i

π
4

γ4π3/2

∫
S2
εS2(θ, φ)

∫ +∞

0

dkkei(kr cosλx(θ,φ)−kτ)
[
τ +O

(
1
k

)]√
kϕ̃(k, θ, φ) + c.c. , (67)

where λx(θ, φ) ∈ [0, π] is the angle between x and k and +c.c. stands for the adding to the result of the
integration of its the complex conjugation. The iterated integrations make sense and can be interchanged
(via Fubini-Tonelli theorem) since the functions (k, θ, φ) 7→ k

√
kϕ̃(k, θ, φ) and (k, θ, φ) 7→

√
kϕ̃(k, θ, φ) are

integrable in the measure dk, as it arises from the analysis performed above. They are smooth everywhere
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but k = 0, they vanish very fast at large |k| and the divergence for k = 0 of ϕ̃ is that of 1/|k|−Re|ν|, with
our weaker requirement on ν, Re|ν| < 3/2 (i.e. m2+ξR > 0) for ν as in (60). Now we remind that (see the
proof of Theorem 2.1) τ = (u+v)/2 and r = (u−v)/2, and we have to take the limit v → −∞ to achieve
=−. The contribution due to the factor of O

(
1
k

)
vanishes due to the Riemann-Lebesgue lemma (followed

by Lebesgue dominate convergence theorem to handle the external integration) and, interchanging again
the integrations, it results in:

(Γϕ) (u, θx, φx) = lim
s→+∞

e−i
π
4

γ4π3/2

∫ +∞

0

dk

∫
S2
εS2(θ, φ)

ks

2
ei

ks
2 [cosλx(θ,φ)+1]e−iuk

√
kϕ̃(k, θ, φ) + c.c.

That limit can be computed using integration by parts exactly as in the appendix A2 of [DMP06]. Roughly
speaking, the limit vanishes because of Riemann-Lebesgue lemma, except for cosλx(θ, φ)+1 = 0, so that
the only contribution arises when the values θ, φ of k coincides with the values of the corresponding
angles of −x. In practice, one rotates the axes so that the axis z coincides with x and, thinking of ϕ̃ as
a function of k, c, φ where c := cos θ ∈ [−1, 1], one re-arranges the expression above as

(Γϕ) (u, θx, φx) = lim
s→+∞

−ie−iπ
4

γ4π3/2

∫ +∞

0

dk

∫ 2π

0

dφ

∫ 1

−1

dc
∂

∂c

(
ei

ks
2 [c+1]

)
e−iuk

√
kϕ̃(k, c, φ) + c.c.

where θx = 0 in our case. The right-hand side can be expanded using integration by parts and only the
contribution for c = −1 (that is θ = −π, i.e. k/|k| = −x/|x|) survives, the others vanish as s → +∞,
due to Riemann-Lesbegue’s lemma (interchanging various integrations using Fubini-Tonelli theorem and
finally taking advantage of dominate convergence theorem). The integration over φ produces a trivial
factor 2π since the dependence from φ of the involved functions obviously disappears as θ = 0, π. The
final result reads, using the initial generic choice for the axes x, y, z:

(Γϕ) (u, θx, φx) =
i2πe−i

π
4

γ4π3/2

∫ +∞

0

dk e−iuk
√
kϕ̃(k, η(θx, φx)) + c.c. ,

η : S2 → S2 denoting the parity inversion S2 3 n 7→ −n ∈ S2. Dropping the index x, and viewing θ, φ as
the standard coordinates on =−, the obtained result can be re-written as

(γΓϕ) (`, θ, φ) = i
e−i

π
4

(−γ)

∫ +∞

0

dk
e−i`k√

2π

√
k

2(−γ)
ϕ̃

(
k

(−γ)
, η(θ, φ)

)
+ c.c. . (68)

where we have passed to the standard Bondi coordinates on =−, i.e. `, θ, φ with u = −γ`. In our
hypotheses on ϕ and ν – it is precisely on this point that the stronger requirement on ν, |Reν| < 1,
namely m2 + ξR > 5

48R, is used to deal with the possible divergence at k = 0 – the functions (k, θ, φ) 7→√
k
2 ϕ̃(k, η(θ, φ)) and (k, θ, φ) 7→ k

√
k
2 ϕ̃(k, η(θ, φ)) belong also to L2(R+ × S2; dk ∧ εS2(θ, φ)) (and so

are the functions with k rescaled as (−γ)2k). This implies that both the functions Γϕ, ∂`Γϕ belong to
L2(R × S2; d` ∧ εS2). In this way we have found that RanΓ ⊂ S(=−). Actually we have obtained much
more: by means of use of (37) and (39), (68) implies that

σ(γΓϕ, γΓϕ′) = −2Im

{
(−γ)−2

∫
R+×S2
dk ∧ εS22k

k

2(−γ)
ϕ̃

(
k

(−γ)
, η(θ, φ)

)
ϕ̃′
(

k

(−γ)
, η(θ, φ)

)}

= −2Im
{∫

R+×S2
k2dk ∧ εS2 ϕ̃(k, θ, φ)ϕ̃′(k, θ, φ)

}
= −2Im

{∫
R3
dkϕ̃(k)ϕ̃′(k)

}
= σM (ϕ,ϕ′) ,
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where in the last step we exploited (65). We have obtained that γΓ preserves the symplectic form as
requested.

(b) Exactly as in the last step of the proof of (a), since the functions (k, θ, φ) 7→
√

k
2 ϕ̃(k, η(θ, φ)) and

(k, θ, φ) 7→ k
√

k
2 ϕ̃(k, η(θ, φ)) are also in L2(R+ × S2; dk ∧ εS2(θ, φ)), (40) and (68) imply:

µ(KλγΓϕ,KλγΓϕ) = (−γ)−2

∫
R+×S2
dk ∧ εS22k

k

2(−γ)
ϕ̃

(
k

(−γ)
, η(θ, φ)

)
ϕ̃

(
k

(−γ)
, η(θ, φ)

)

=
∫

R+×S2
k2dk ∧ εS2 ϕ̃(k, θ, φ)ϕ̃(k, θ, φ) =

∫
R3
dkϕ̃(k)ϕ̃(k)

Therefore, for every ϕ ∈ S(M), in view of (66),

λM (WM (ϕ)) := λ(W (γΓϕ)) = e−µ(KλγΓϕ,KλγΓϕ)/2 = e−
1
2

R
R3 eϕ(k)eϕ(k) dk = ωE(WM (ϕ)) ,

and this concludes the proof. 2

Remark 4.5. The requirement m2 + ξR > 5
48R, i.e. |Reν| < 1 is used above to assure that the smooth

function Γϕ, obtained by taking the limit towards =− of ϕ ∈ S(M), belongs to S(=−). Actually the
requirement can be dropped (preserving, however, the weaker one m2 + ξR > 0) by a slight change in the
definition (30) of S(=−). As an alternate, but technically more involved and “non local”, way to build
up all our construction, we could first define

S(=−) :=
{
ψ ∈ C∞(R× S2)

∣∣∣∣ ∫
R×S2

|ψ̂(k, θ, φ)|2|k| dk ∧ εS2(θ, φ) < +∞
}

where ψ̂ indicates the Fourier-Plancherel transform of the Schwartz distribution ψ (as discussed in the
Appendix C of [Mo07]). Then the symplectic form on =− could be defined as the right-hand side of
(39). In this way, the identity (33) would hold true in a weaker limit sense, employing a suitable regu-
larisation of ψ1 and/or ψ2 by means of sequences of smooth compactly supported functions. Then the
construction either of the G=− -invariant state λ on W(=−) either of its GNS triple together with the
uniqueness/positive energy theorems would closely resemble to our previous analysis. With the modified
definition of S(=−) above introduced, the smooth real function Γϕ, whose Fourier transform on =− is

(k, θ, φ) 7→
√

k
2 ϕ̃(k, η(θ, φ)), as seen in the proof above, would belong to S(=−) up to the only hypothesis

|Reν| < 3/2 (i.e. m2 + ξR > 0), since the divergence in k = 0 of ϕ̃ is of order k−|Reν|.

To conclude we have the last promised theorem: The hypotheses of Theorem 4.3 are fulfilled, and thus
λM is defined, for FRW metrics as in Theorem 2.1, provided the mass m of the Klein-Gordon field and/or
the constant ξ are large enough.

Theorem 4.6. Consider a quantum scalar Klein-Gordon field ϕ, satisfying the equation of motion
−∇a∇aϕ+m2ϕ+ξRϕ = 0 and propagating in an expanding universe (M, g,X,Ω, γ) as in the hypotheses
of Theorem 2.1 and with ä(τ) = 2γ/τ3 +O(1/τ4) . (So that, in particular R = 12/γ2 +O(1/τ)

M ' (−∞, 0)× R3 , g = a2(τ)
[
−dτ ⊗ dτ + dr ⊗ dr + r2dS2(θ, ϕ)

]
,

τ ∈ (−∞, 0) and r, θ, φ standard spherical coordinates on R3, X = ∂τ and Ω = a(τ) = γ/τ +O(1/τ2) (as
τ → −∞), for some constant γ < 0.)
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If m2γ2 + 12ξ > 2, every ϕ ∈ S(M) extends smoothly to some Γφ ∈ S(=−) and (53) holds true.

Proof. Here, we exploit the same notation, i.e. x,k, as in the proof of Theorem 4.5. In particular

ν :=
√

9
4 − 12(m2R−1 + ξ), so that ν ≥ 0 when 9

4 − 12(m2R−1 + ξ) ≥ 0 in the following. However the
sign of ν could be fixed arbitrarily (and this applies for imaginary ν, in particular), since the functions
we shall employ are invariant under ν → −ν.
As a first step, we notice that if ϕ ∈ S(M), it extends to =− smoothly so that Γϕ := lim→=− ϕ ∈ C∞(=−)
does exist. This is because, as found in the proof of Theorem 2.1, the spacetime (M, g) extends to a
larger spacetime equipped with a metric ĝ obtained by multiplying the metric of the closed static Einstein
universe with a strictly positive smooth factor. Since closed static Einstein universe is globally hyperbolic
and global hyperbolicity does not depend on nonsingular conformal rescaling of the metric, (M, g) itself
is included in a globally hyperbolic spacetime. With the same argument used for de Sitter spacetime in
the proof of Theorem 4.5, one has that every ϕ ∈ S(M) extends to =− smoothly. We have now to show
that RanΓ ⊂ S(=−) and that Γ preserves the symplectic forms.
First of all, analogously to what done in the de Sitter case, we determine a class of modes Ψk(τ,x)
that will be useful in decomposing the solutions of Klein-Gordon equation in order to take the limit of
wavefunctions towards =−.

Ψk(τ,x) :=
eik·x

(2π)3/2
ρk(τ)
a(τ)

, (69)

where, taking the exponential factor into account, the Klein-Gordon equation reduces to the following
equation for the functions (−∞, 0) 3 τ 7→ ψk(τ),

d2

dτ2
ρk(τ) + (V0(k, τ) + V (τ))ρk(τ) = 0,

with V0(k, τ) := k2 +
(γ
τ

)2
[
m2 +

(
ξ − 2

γ2

)]
, V (τ) = O(1/τ3) . (70)

Comparing with Klein-Gordon equation, one sees that V0(k, τ) + V (τ) = k2 + a(τ)2[m2 + (ξ − 1/6)R(τ)]
where V0 is nothing but the the contribution of pure de Sitter metric and V is a perturbation. If we
dropped the perturbation V (τ), the functions ρk would reduce to the functions χk and the modes Ψk

would reduce to the modes Φk used to construct ωE beforehand; moreover (70) would reduce to (59).
Notice that the curvature of the spacetime does not coincide with 12/γ2 as in de Sitter spacetime,
but it reads R(τ) = 12/γ2 + O(1/τ) and a(τ) = γ/τ + O(1/τ2). It follows that the added potential
V (τ) = O(1/τ3) above. A formal solution of (70) is obtained in terms of the series:

ρk(τ) = χk(τ)

+ (−1)n
+∞∑
n=1

∫ τ

−∞
dt1

∫ t1

−∞
dt2 · · ·

∫ tn−1

−∞
dtnSk(τ, t1)Sk(t1, t2) · · ·Sk(tn−1, tn)V (t1)V (t2) · · ·V (tn)χk(tn),

(71)

where we have used the antisymmetric solution of (59):

Sk(t, t′) := −i
(
χk(t)χk(t′)− χk(t′)χk(t)

)
, t, t′ ∈ (−∞, 0) , (72)

satisfying, in view of antisymmetry and (61),

Sk(t, t) = 0 and
∂

∂t
Sk(t, t′)

∣∣∣∣
t′=t

= 1 . (73)
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By direct inspection and making use of (73), one sees that the right-hand side of (71) defines a solution
of (70) if one is allowed to interchange the τ -derivative operator – up to the second order – with the sign
of sum. This is always possible when the series itself and the series of the derivatives of first and second
order converge τ -uniformly in a neighbourhood of every fixed τ ∈ (−∞, 0). Actually the locally τ -uniform
convergence of the series of derivatives of second order directly follows from the uniform convergence of
those of zero and first order, when one either takes (59) into account either refers to the solutions χk and
the solutions Sk. Using the expression (60) of the modes χk, expanding H(2)

ν in terms of Bessel functions
J±ν [GR95] and, finally, exploiting standard integral representations valid for Reν > −1/2 (formula 5 in
8.411 in [GR95]) of Jν , one achieves the following bounds for Reν < 1/2 (that is m2γ2 + 12ξ > 2), for
τ < −1, and for some constant Cν ≥ 0

|χk(τ)| ≤ Cν(−τ)Reν+1/2 (
kReν + k−Reν

)∣∣∣dχk(τ)
dτ

∣∣∣ ≤ Cν(−τ)Reν+1/2 (
kReν + k−Reν

)
(1 + k),

(74)

where k = |k|. Furthermore, for the same reasons it is possible to obtain the following (non optimal)
k-uniform bound for Reν < 1/2, for t2 ≤ t1 < −1, and for some other constant C ′

ν ≥ 0

|Sk(t1, t2)| ≤ C ′
ν(t1t2)

Reν+1/2
. (75)

Now fix any T < −1 and consider τ ∈ (−∞, T ], so that |V (τ)| ≤ KT /(−τ)3, for some constant KT ≥ 0.
From (74), one sees with a few of trivial computations, that the series in the right-hand side of (71) and
that of the τ -derivatives are τ -uniformly dominated, respectively, by(

kReν + k−Reν
)
Sν,T ,

(
kReν + k−Reν

)
(1 + k) Sν,T , (76)

where Sν,T is the following convergent series of positive constants

Sν,T := Cν

+∞∑
n=1

(
2C ′

νKT

1− 2Reν

)n 1
n!

1
((−T )1−2Reν)n−1/2

. (77)

Summarising, we can conclude that (71) defines a solution of (70) and that, the same equation entails
the solution to be smooth. As a straightforward consequence we also have the following τ -uniform bound
valid on (−∞, T ]

|ρk(τ)− χk(τ)| ≤
(
kReν + k−Reν

)
Sν,T ,∣∣∣∣dρk(τ)

dτ
− dχk(τ)

dτ

∣∣∣∣ ≤
(
kReν + k−Reν

)
(1 + k)Sν,T .

This implies that, at fixed τ , the measurable (since limit of measurable functions) functions R3 3
k 7→ ρk(τ) and R3 3 k 7→ dρk(τ)

dτ do not grow, for large |k|, fast than |k|Reν and |k|1+Reν respec-
tively. Moreover, their divergence at k = 0 cannot be worse than that of R3 3 k 7→ |k|−Reνχk(τ) and
R3 3 k 7→ |k|−Reν dχk(τ)

dτ , that is k−|2Reν|.
Finally, notice that each term in the series in the right-hand side of (71) and in the analogy for dρk/dτ
vanishes as τ → −∞ by construction. In view of the fact that, τ -uniformly, the series in (76) domi-
nates either the series in the right-hand side of (71) either the series of τ -derivatives, we are allowed to
interchange the symbol of limit with that of sum, obtaining

lim
τ→−∞

(ρk(τ)− χk(τ)) = 0 and lim
τ→−∞

(
dρk(τ)
dτ

− dχk(τ)
dτ

)
= 0 . (78)
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This result has a first important consequence. Using equation (70), one sees that the function τ 7→
dρk(τ)
dτ ρk(τ)− ρk(τ)dρk(τ)

dτ is actually a constant. The value of this constant can be computed by taking
the limit as τ → −∞, making use of (61), (78) and taking into account the fact that, for k fixed, dρk(τ)

dτ
and ρk(τ) are bounded on (−∞, T ] (notice that these functions have no limit for τ → −∞), as one can
show employing the asymptotic behaviour of H(2)

ν (z) for large values of the argument z. In this way one
finds

dρk(τ)
dτ

ρk(τ)− ρk(τ)
dρk(τ)
dτ

= i . (79)

Now, to analyse the behaviour of Γϕ, we can follow the same way as that followed in de Sitter space.
Take any (real by definition) ϕ ∈ S(M) and fix a Cauchy surface Στ in (M, g) individuated by the points
in M with the fixed value of τ ; eventually define

ϕ̃(k) := −i
∫

R3

[
∂Ψk(τ,x)

∂τ
ϕ(τ,x)−Ψk(τ,x)

∂ϕ(τ,x)
∂τ

]
a(τ)2dx . (80)

The right-hand side of (80) does not depend on the choice of τ , as it follows from direct inspection,
exploiting (70). Remembering that ϕ ∈ S(M), so that its Cauchy data are real, smooth and compactly
supported, we have that their Fourier transform are of Schwartz class. Afterwards, exploiting the fact
that both the measurable functions R3 3 k 7→ ρk(τ) and R3 3 k 7→ dρk(τ)

dτ grows at most as a polynomial
with degree two for large |k|, and that their divergence at k = 0 is at most of order k−|2Reν| with ν < 1/2,
we find that ϕ̃ ∈ C∞(R3 \{0}) and it vanishes for |k| → ∞ faster than every power |k|−n, n = 1, 2, . . .. In
particular ϕ̃ ∈ L2(R3; dk) ∩ L1(R3; dk). Once one knows ϕ̃ by (80), the associated ϕ can be constructed
out of a decomposition in terms of modes Ψk:

ϕ(τ,x) =
∫

R3

[
Ψk(τ,x)ϕ̃(k) + Ψk(τ,x)ϕ̃(k)

]
dk . (81)

This is a trivial consequence of (80), (69), (79), and of the standard properties for the Fourier transform
of smooth compactly supported functions on R3. Eventually, per direct computation, one verifies that,
if ϕ1, ϕ2 ∈ S(M),

−2Im
{∫

R3
ϕ̃1(k)ϕ̃2(k)dk

}
=
∫

R3
(ϕ2∂τϕ1 − ϕ1∂τϕ2) a2(τ)dx =: σM (ϕ1, ϕ2) . (82)

We are now in position to draw some conclusions. Indeed, if ϕ ∈ S(M), p ∈ =− and (τq,xq) are the
coordinates of q ∈M , we can write down

(Γϕ) (p) = lim
q→p

∫
R3
dk

eik·xq

(2π)3/2
(ρk(τq)− χk(τq)) ϕ̃(k) + lim

q→p

∫
R3
dk

eik·xq

(2π)3/2
χk(τ)ϕ̃(k) + c.c. (83)

As q → p ∈ =−, τq → −∞ so that (ρk(τq)− χk(τq)) → 0 due to (78). Moreover, since (76) is valid, we
have the τ -uniform bound∣∣∣∣ eik·x

(2π)3/2
(ρk(τ)− χk(τ)) ϕ̃(k)

∣∣∣∣ ≤ Sν,T
(2π)3/2

(
|k|Reν + |k|−Reν

)
|ϕ̃(k)| ,

where the right hand side is integrable because Reν < 1/2, ϕ̃ ∈ L1(R3; dk) ∩ L2(R3; dk) and it vanishes
faster than any power for |k| → +∞. Lesbegue’s dominate convergence theorem implies that the former

34



limit in (83) vanishes. The remaining limit has been computed in the proof of (a) in Theorem 4.5. The
final result reads as follows: if (`, θ, φ) are Bondi coordinates of p ∈ =− and η : S2 → S2 is the inversion
n 7→ −n on the sphere,

(γΓϕ) (`, θ, φ) = i
e−i

π
4

(−γ)

∫ +∞

0

dk
e−i`k√

2π

√
k

2(−γ)
ϕ̃

(
k

(−γ)
, η(θ, φ)

)
+ c.c. . (84)

From this point on the proof carries on up to the conclusions exactly as in the proof of (a) in Theorem
4.5, since (65) holds also in our generalised case, as (82) shows. 2

Theorem 4.6 is also valid relaxing the hypothesis to the case ξ = 1/6 and m = 0. In that case the proof
is similar to that of the case studied in [DMP06, Mo06].

5 Conclusions and open issues.

In this manuscript, the initial purposewas to show that, at a geometrical level, it exists a strong interplay
between a certain class of Friedmann-Robertson-Walker spacetimes and asymptotically flat spacetimes.
More precisely, imposing some suitable constraints on the expansion factor a(t), we were able to prove in
theorem 2.1 that the FRW background can be extended to a larger spacetime which is a past conformal
completion of an asymptotically flat spacetime M̂ with metric ĝ. Therefore, as a non trivial byproduct
of this statement, it turns out that the cosmological horizon shares many similar geometric properties of
past (or future) null infinity.

Such an interplay is later generalized in definition 3.1 where we introduce a novel notion of an ex-
panding universe with geodesically complete cosmological particle horizon. It is worth to stress again
that, while in Penrose compactification, only the conformal factor - Ω - plays a key role, on the opposite
in the set of backgrounds we are taking into account, it enters the fray a further new ingredient. This is a
future oriented timelike vector X which is a conformal Killing vector for the metric ĝ; its interplays with
Ω are of great relevance in our construction since, as a byproduct, they allows us to determine explicilty
the structure of the isometry group of the horizon.

Concerning this specific topic, we find the first significant difference from the standard asymptotically
flat scenario where the symmetry group is the so-called Bondi-Metzner-Sachs group, whereas, here we
have the iterated semidirect product SO(3) n

(
C∞(S2) n C∞(S2)

)
. Such a result suggests us that, while

the overall scenario we are dealing with does not completely overlap with the asymptotically flat scenario,
nonetheless, it is still conceivable to readapt in this framework some of the properties of a scalar quantum
field theory as discussed in [DMP06, Mo06, Mo07].

Such a task was undertaken in section 4, where we considered a generic massive scalar Klein-Gordon
equation with an arbitrary coupling to curvature (hence a more generic scenario than the one envisaged
in [DMP06]). Under the assumption that each solution of such an equation for compactely supported
intial data projects on the horizon to a rapidly decreasing smooth function - say ψ - and that such a
projection preserves a suitable symplectic form, then we were able to draw some interesting conclusions:

• the projection map between classical fields extends also at a level of Weyl algebras, namely we can
embed the bulk Weyl C∗-algebra as a ∗-subalgebra of the horizon counterpart,

• we can select for the theory on the horizon a preferred state λ which is quasi-free and pure. Fur-
thermore λ is the unique state which, besides the previous properties, is also invariant under the
action of the horizon isometry group. Moreover, for any future oriented timelike vector field Y in
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the bulk such that it projects on the horizon to Ỹ , i. e. a generator of the isometry algebra, then
the unitary group of operators implementing the action of Ỹ on the GNS representation of λ is
strongly continuous with a non negative self-adjoint generator,

• the embedding between Weyl algebras can be exploited in order to pull-back λ to a state λM in
the bulk which is still quasi-free and invariant under the action of any isometry for the bulk metric
which preserves the cosmological horizon. Furthermore, whenever the Killing vector is everywhere
future oriented and timelike, than the one-parameter group of operators implementing such an
action is positive and self-adjoint.

As previously mentioned these results hold true under certain hypotheses which we tested in section
4.6 where we studied the behaviour of solutions for the Klein-Gordon equation of motion with an arbitrary
coupling to curvature either in the de-Sitter either in the FRW background. Our analysis shows – see
theorem 4.6 – that the hypotheses made at the beginning of section 4, hold true at least whenever certain
conditions between the relevant parameters in the equation of motion are satisfied.

On the overall we feel safe to claim that the analysis we performed proves that the investigation of
a quantum field theory in a suitable cosmological background by means of an horizon counterpart is
a viable option. Hence, as a future perspective, we feel worth to carry on the investigation started in
this manuscript and, in particular we envisage to address some key questions. Besides enquiring if it is
possible to extend the domain of applicability of theorem 4.6, we wish to further discuss the properties
for the bulk state. In particular our long-term aim is to prove either that λM is pure either that it
is Hadamard (so that it can be used in renoirmalization procedures) and, furthermore we should also
investigate possible relations with the adiabatic states often exploited in the study of field theories on
FRW backgrounds [JS02, LR90, Ol07, Pa69].

From a more broader perspective, it is fair to admit that the results in [DMP06] on the boundary
theory where, to a certain, extent, more complete since we were able to interpret the projection on null
infinity of each solution of the wave equation conformally coupled to curvature as a BMS invariant field.
We would like to recover a similar statement in the scenario we are dealing with. Alas such a task cannot
leave aside from a full-fledged study of all possible unitary and irreducibles representations of the horizon
isometry group. Since the latter is, by direct inspection, an infinite dimensional group, this is manifestly
a daunting task which will require a paper on its own.

Eventually, at last but not at least, it would be interesting to extend our results to interacting
fields. From a physical perspective this would be the most appealing scenario since, as mentioned in the
introduction, nowadays cosmological models are often based upon a single scalar field whose dynamic is
governed by a non trivial potential. Although here we do not address such an issue, we feel like that this
manuscript could be a nice first step towards this direction and we hope to discuss many if not all these
mentioned points in a forthcoming manuscript.
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A Proof of some technical results.

Technical comments on Definition 2.1. From the requirement 2, Rab = 0 holds in a neighbourhood
of =+. So it is guaranteed that:

ΩRab → 0 smoothly approaching =+. (85)

Eq. (85), smoothness of both R̂ab and Ω on =+, and Ω�=+= 0, using the formula [Wa84]

Rab = R̂ab + 2Ω−1∇̂a∇̂bΩ + ĝabĝ
cd
(
Ω−1∇̂c∇̂dΩ− 3Ω−2∇̂cΩ∇̂dΩ

)
(86)

imply that ĝcd∇̂cΩ∇̂dΩ = 0 on =+ that is ĝ(dΩ, dΩ) = 0 thereon. As a consequence - (a) - =+ is a null
surface and - (b) - the contravariant representation of dΩ, na := ∇̂aΩ is null and tangent to =+. Using
notations as in the definition, ωΩ =: Ω′, ω2ĝ =: ĝ′. Equation (85) and (86) implies that, if ω is chosen
in order to fulfil ∇̂a(ω4na) = 0 (and this is always possible because it can be interpreted as ordinary
differential equation on every integral line of n [Wa84]), one finds

∇̂′
a∇̂′

bΩ
′�=+= 0 , (87)

where the covariant derivatives are referred to the metric ĝ′. (En passant, it implies that Γ̂′Ωab = 0 on
=+, so that =− is totally geodesic with respect to the connection induced on =+ by the ĝ′.) Finally (87)
implies immediately that - (c) -the integral lines of the vector ∇̂′bΩ′ are geodesics of the metric ĝ′, they
are null-like because ∇̂′bΩ′ = ω−1nb on =+.
By direct inspection, one verifies that (87) implies (and hence is equivalent to) ∇̂a(ω4na) = 0 taking (85)
and (86) into account. (85) and (86) imply also that ∇̂′b∇̂′

bΩ
′�=+= 2Ω−1∇̂′

bΩ
′∇̂′bΩ�=+ , which, inserted

in (86) and after multiplication by Ω, proves that (87) is also equivalent to ∇̂′b∇̂′
bΩ

′�=+= 0.

Proof of Proposition 3.1. (a) If there were a smooth extension of X to M it would be unique by
continuity, moreover, by continuity again, it would define a Killing vector for ĝ when restricting to the
surface =−, because the right-hand side of (21) vanishes there. We, in fact, will prove the existence of
a smooth extension to the whole M̂ . Coordinates (`,Ω, θ, φ) are defined in a neighbourhood U ⊂ M̂ of
=− = ∂M . Using the whole class of smooth curves γ : t → (`0, t, θ0, φ0) where (`0, θ0, φ0) ∈ R × S2 are
fixed arbitrarily, and the transport equations [Ge77, Hal04]

γ̇a∇̂aX̂b = γ̇a
(
F̂ab +

1
2
ĝabϕ̂

)
, γ̇a∇̂aϕ̂ = γ̇aK̂a

γ̇a∇̂aF̂bc = γ̇a
(
R̂bcadX̂

d + K̂[b ĝc]a

)
, γ̇a∇̂aK̂b = γ̇a

(
X̂d∇̂dL̂ab + ϕ̂L̂ab + 2R̂d(a F̂ b)

d
)

(88)

(where L̂ab := R̂ab− 1
6 ĝabR̂) we can “transport” X, Fab = ∇̂aXb−∇̂bXa, ϕĝ := 1

2LX(ĝ), and Ka := ∇̂aϕ

beyond =− in U . The transported fields X̂, F̂ , ϕ̂, and K̂a are nothing but the solutions of the first order
differential equations (88), with initial conditions given by the known fields X, F , ϕ, K evaluated on a
fixed smooth surface Ω = Ω(`, θ, φ) completely included in M ∩U . In M , X̂ coincides with X itself (and
F̂ coincides with F itself and so on), since every conformal Killing vector field fulfils transport equations
(88) [Ge77, Hal04] and uniqueness theorem holds for solutions of ordinary differential equations. Outside
M one gets a smooth field X̂ anyway, due to the jointly dependence of solution of differential equations
from the initial data (assigned on a smooth surface as well ). Obviously the constructed field X̂ does
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not need to fulfil conformal Killing equations outside M . In this way we have constructed a smooth
extension X̂ of X on the open set M ∪ U inclosing =+, the further extension to M̂ is now trivial, using
standard smoothing technology. By continuity, L bX = Ω−1X(Ω)ĝ must hold on =−. This means that
the right-hand side smoothly extends there (to zero by hypotheses). In particular, since Ω = 0 on =−,
X̂(Ω) = 0 on =−. That is 〈X̂�=− , dΩ〉 = 0, and thus X̂�=− is tangent to =− as wanted.
The set on =− of the points where X̂ vanishes is closed since X̂ is continuous. To conclude, we wish to
prove that X̂�=− cannot vanish on every (nonempty) open set A ⊂ =− (otherwise it vanishes everywhere
on =−, but this case is not allowed by definition of X). Assume that there is such A where X̂ �A= 0,
take p ∈ A and fix any other point q ∈ =−, such that there is a ĝ-geodesics, γ ⊂ =−, joining p and q.
We assume here that γ is either a space-like geodesics on S2 or a null-like geodesic at constant angular
variables. We want to prove that X̂(q) = 0 when X̂�A= 0.
If X̂�A= 0, all the derivatives ∇̂aX̂

b vanish, in A, when a 6= Ω, that is referring to directions tangent to
=−. However, on =− it holds L bX ĝ = 0, by hypotheses. Writing down these equations explicitly, one finds
that X̂ = 0 on A implies ∇̂ΩX̂

b = 0 if b 6= Ω. However ∇̂ΩX
Ω�=−= 0 holds since both XΩ = X(Ω) and

X(Ω)/Ω = XΩ/Ω vanishes on =−. We have found that, in A, F̂ab = 0. Notice that ϕ = 0 in A, since it
is proportional to the limit of Ω−1X(Ω) approaching =− which vanishes by hypotheses. This also entails
that K̂a = 0 when a 6= Ω, in A, that is K̂a 6= 0 for a = ` at most, in A. Let k denote the value K̂(p)
for the considered field X̂ with X̂�A= 0. Let us finally focus on the differential equations (88 ) referred
to the mentioned geodesic [0, 1] 3 t 7→ γ(t). We argue that a solution, and thus the unique solution, for
initial data at p, X̂(0) = 0, F̂ab(0) = 0, ϕ̂(0) = 0, K̂(0) := k is X̂(t) = 0, F̂ab(t) = 0, ϕ̂(t) = 0, K̂(t), for
all t ∈ [0, 1], where the last function is the unique satisfying γ̇a∇̂aK̂b = 0 with K̂(0) := k. To prove it
notice that, inserting these functions in (88), the equations reduce to

γ̇aK̂a = 0 , γ̇aK̂b − γ̇bK̂a = 0 , γ̇a∇̂aK̂b = 0, (89)

The first two equations are certainly fulfilled at t = 0 by hypotheses, the third one determines K uniquely
with the initial condition K̂(0) := k. However also the first two equations are fulfilled on this solution in
view of the fact that they are fulfilled at t = 0 and that γ̇a∇̂aγ̇

b = 0 since we are dealing with a geodesic.
We have found that, in particular, X vanishes at q as wanted, since X(1) = 0. With the same procedure,
moving p and q about the original positions, we find that X vanishes in a open set Aq which enlarges A
and it includes q. Iterating the procedure, we can enlarge Aq in order to include any third point q′ ∈ =−,
joined to q by means of a second geodesics, so that X vanishes at q′ too. In view of the form (22) of
the metric on =−, for every couple of points p, q′ ∈ =−, there is always a sequence of three consecutive
geodesics, of the two above-mentioned types, joining p and q′. Therefore X vanishes everywhere on =−.
(b) In a neighbourhood of =−, referring to coordinates Ω, `, θ, φ one has

X̂ = fΩ∂Ω + f `∂` + fθ∂θ + fφ∂φ .

Approaching =− (i.e. as Ω = 0) one gets (1) fΩ = 0, since X̂ becomes tangent to =−. However one also
finds (2) ∂Ωf

Ω�=−= 0 as a consequence of (fΩ−fΩ�=−)/Ω = Ω−1X(Ω) → 0 approaching =−. Since X̂�=−
is tangent to the null surface =− and it is the limit of a timelike vector, we also know that, at the points
where it does not vanish, it must be light-like and future directed. Since X̂ �=−= f `∂` + fθ∂θ + fφ∂φ,
the requirement ĝ(X̂, X̂)�=−= 0 implies that (3) fθ = fφ = 0 everywhere on =−, in view of the Bondi
form of the metric on =−. Therefore (4) X̂�=−= f `(0, `, θ, φ)∂`. Using Bondi form of the metric again,
the requirement (L bX ĝ)�=−= 0 produces immediately the constraints ∂`f `�=−= 0 in view of (1),(2), (3),
and (4), so that X̂�=−= f(θ, φ)∂`. Since X̂�=− cannot vanish in any open set on =−, f cannot vanish
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in any open set on S2. Since f is smooth and thus continuous, the set f−1(0) must be closed. Since,
with our sign convention for the Bondi metric, both X and ∂` are future oriented, f cannot be negative. 2

Proof of Proposition 3.2. We start from the proofs of (a) and (b). If there were a smooth extension of
Y to M = M ∪=− it would be unique by continuity and it would satisfy LbY g = 0 up to =− by continuity
again. Therefore it is sufficient to establish the existence of a smooth extension to M̂ to get the most
relevant part of (a) and (b). The proof is essentially the same as done in the proof of Proposition 3.1,
concerning the existence of the extension of the field X. Now, Y is a proper conformal Killing field so
that the transport equations (89) [Ge77, Hal04] reduces to

γ̇a∇̂aŶb = γ̇aF̂ab and γ̇a∇̂aF̂bc = R̂bcadγ̇
aŶ d , (90)

The procedure is exactly as that in the proof of Proposition 3.1 and, in this way, one obtains a smooth
extention Ŷ of Y on M̂ and in particular on =−. (c) The condition that Ŷ is tangent to =− is 〈Ŷ , dΩ〉 = 0
everywhere on =−. However gsb∂bΩ = (∂`)s and X → f∂` approaching =−, for some nonnegative func-
tion f ∈ C∞(S2), as showed in Proposition 3.1. Therefore 〈Ŷ , dΩ〉f = lim→=− g(Ŷ ,X). If the limit
vanishes approaching =+, 〈Ŷ , dΩ〉 = 0 on the points (`, s) ∈ R× S2 where f(s) 6= 0. This happens on an
open nonempty set B ⊂ S2. Therefore 〈Ŷ , dΩ〉 = 0 on R × B. Let (`0, s0) 6∈ R × S2. Since S2 \ B has
no interior (see Proposition 3.1), there is a sequence R × B 3 (`0, sn) → (`0, s0) as n → ∞. Continuity
of (`, s) 7→ 〈Ŷ , dΩ〉(`, s) implies 〈Ŷ , dΩ〉 = 0 in R × (S2 \ B) and, thus, everywhere. Conversely, if Ŷ is
tangent to =−, then 〈Ŷ , dΩ〉 = 0 on =−, and hence lim→=− g(Ŷ ,X) = 〈Ŷ , dΩ〉f = 0.
To conclude, we prove the last statements: (d) and (e). Since the map Y 7→ Ŷ �=− is linear by construc-
tion, (e) is a trivial consequence of (d). Let us prove (d). If the considered space is made of the zero
vector only, the proof of (d) is trivial. Assume that it is not the case. To demonstrate (d), it is sufficient
to prove that the identity Ŷ �=−= 0 on a set A ⊂ =+ which is nonempty and open with respect to the
topology of =−, entails Y = 0 in M (and thus Ŷ = 0 in M ∪=− by continuity). Let us show it. Consider
any fixed point p ∈M and a smooth path γ from some q ∈ A to p (it exists because M is connected and
=− = ∂M). In view of the first order transport equations (90), Y (p) = Ŷ (p) = 0 when both Ŷ (q) and
F̂ab(q) vanish. Let us show that it is the case. Suppose that Ŷ �=−= 0 on A as above. Using coordinates
(`,Ω, θ, φ) about =−, one has that ∂aŶ b�A= 0 if a 6= Ω. On the other hand, the condition LbY ĝab = 0
computed on A, taking into account Ŷ �A= 0 and ∂aŶ

b �A= 0 if a 6= Ω, yields ∂ΩŶ
b �A= 0, so that

∇̂aŶ
b�A= ∂ΩŶ

b�A +Γ̂bacŶ
c�A= 0. Therefore Fab�A= 0 and it concludes the proof. 2

Proof of Proposition 3.3. (a) If (s1, s2) are (local) coordinates of a point s ∈ S2, fix α, β ∈ C∞(S2)
and real constants r1, r2, r3. We wish to study the integral lines t 7→ (`(t), s(t)) ∈ R × S2 of the field
Z(`, s) := (α(s)` + β(s))∂` +

∑3
k=1 rkS

i
k∂si on R × S2, with initial condition (`0, s0). By construction,

the components referred to the sphere do not depend on ` and thus, the corresponding equations can be
integrated separately. Since

∑3
k=1 rkS

i
k∂si is smooth and S2 is compact, the integral lines t 7→ s(t|s0)

(here and henceforth |s0 denotes the initial condition at t = 0) must be smooth and complete (i.e. defined
for t ∈ (−∞,+∞)), in view of well-known theorems of differential equations on manifolds. Then assume
that the smooth function R 3 t → s(t|s0) is known (computed as above). The remaining differential
equation reads

d`

dt
= α(s(t|s0))`+ β(s(t|s0)) .
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It can be integrated and the right-hand side is defined for the values of t where the full integral ’ converges:

`(t|s0, `0) = e
R t
0 dt1α(s(t1|s0))`0 + e

R t
0 dt1α(s(t1|s0))

∫ t

0

dt1β(s(t1|s0))e−
R t1
0 dt2α(s(t2|s0)). (91)

It is apparent that the parameter t ranges in the whole real axis due to smoothness of R 3 t→ α(s(t|s0))
and R 3 t → β(s(t|s0)), and that R 3 t 7→ `(t|s0, t0) is smooth as well. We have established that
the integral lines of Z are complete and thus, in view of known theorems, the one-parameter group
of diffeomorphisms generated by Z is global. Since s = s(t) must necessarily describe a rotation of
SO(3), about the axis (r1, r2, r3)/

√
r21 + r22 + r23 with angle t

√
r21 + r22 + r23, of the point on S2 initially

individuated by s0 and, taking (91) into account, it is evident that each diffeomorphism

R× S2 3 (`0, s0) 7→ (`(t|s0, t0), s(t|s0)) ∈ R× S2 ,

for every fixed t ∈ R, has the form (26) and, thus, it belongs to G=− .
(b) A fixed (a, b, R) ∈ G=− can be decomposed as

(R, a, b) = (I, a ◦R−1, b ◦R−1) (R, 0, 0) .

Looking at (91), (R, 0, 0) is an element of the one-parameter group generated by
∑3
k=1 nkSk, where

(n1, n2, n3) are the Cartesian components of the rotation axis of R; conversely the transformation
(I, a ◦R−1, b ◦R−1) can be written as exp{1Z} where Z = `a

(
R−1(s)

)
∂` + b

(
R−1(s)

)
∂`. 2

Proof of Theorem 3.1. Consider the local one-parameter group of diffeomorphisms generated by Ŷ in a
sufficiently small neighbourhood (in M̂) of a point q ∈ =− and for t ∈ (−ε, ε) with ε > 0 sufficiently small.
In local coordinates over =−, (`, s1, s2) ∈ (a, b)×A, such a set of transformations can be represented by

`→ `t := f(`, s1, s2, t) , (s1, s2) → (s1t , s
2
t ) := g(`, s1, s2, t) with (`, s1, s2) ∈ (a, b)×A. (92)

Using the same argument as the one used to characterise the group G=− (after Proposition 3.2), one
finds that it must be g(`, s1, s2, t) = Rt(s) for all `, s and f(`, s1, s2, t) = c(s1, s2, t)` + b(s1, s2, t), for
all `, s, for some Rt ∈ O(3) depending on t smoothly, and where c, b are jointly smooth real functions.
The requirement, that t 7→ Rt is a (local) one-parameter subgroup of SO(3), implies that dRt

dt |t=0 =∑3
k=1 rkSk(s1, s2). Similarly dft

dt |t=0 = ∂c(s1,s2,t)
∂t |t=0` + ∂b(s1,s2,t)

∂t |t=0. We have found that, in local
coordinates

Ŷ �=−=
3∑
k=1

rkSk(s1, s2) +
∂c(s1, s2, t)

∂t
|t=0`∂` +

∂b(s1, s2, t)
∂t

|t=0∂` ,

and thus, about q, Ŷ �=− takes the form of the vectors in g=− . However, since it holds true in a neigh-
bourhood of each point on =−, we have that Ŷ �=−∈ g=− .
To conclude, (b) is an immediate consequence of (a) and of the last part of (a) in Proof of Proposition
3.3. 2

Proof of Proposition 3.4. Since Ỹ ∈ g=− , in principle it has the form

Ỹ (`, s) =
3∑
i=1

ciSi(s) + (f(s) + `g(s))∂` .

Since ĝ(Y, Y ) < 0 about =− and its limit toward =−, namely Ỹ , is tangent to =− it must satisfy
ĝ(Ỹ , Ỹ ) = 0 by continuity (no timelike tangent vectors can be tangent to a null surface). Using the form
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(22) of ĝ one see that it must be:
∑3
i=1 ciSi(s) = 0 on =−. Using the explicit form of S1, S2, S3 referring

to the base ∂φ, ∂θ of TS2, one sees that this is equivalent to claim that, everywhere on the sphere,

(c1 sinφ− c2 cosφ) = 0 , c1 cot θ cosφ+ c2 cot θ sinφ+ c3 = 0

As a consequence c1 = c2 = c3 = 0. Therefore, everywhere on =−

Ỹ = (f(s) + `g(s))∂` ,

for some functions f, g ∈ C∞(S2). Ỹ is the limit of a causal future-directed vector. Therefore, it has
either to vanish or to be directed as ∂` at every point of =−. Since `g(s) may take every arbitrarily
large, positive or negative, value (notice that g is bounded, it being smooth on a compact set), it must
be g(s) = 0 and f(s) ≥ 0. 2

B Quasifree states on Weyl algebras

A C∗-algebra W(S,σ) is called Weyl algebra associated with a (real) symplectic space (S, σ) (the sym-
plectic form σ being nondegenerate) if it contains a class of non-vanishing elements W (ψ) for all ψ ∈ S,
called Weyl generators, satisfying Weyl relations6:

(W1) W (−ψ) = W (ψ)∗ , (W2) W (ψ)W (ψ′) = eiσ(ψ,ψ′)/2W (ψ + ψ′) ;

and W(S,σ) coincides with the closure of the ∗-algebra (finitely) generated by Weyl generators. W(S,σ)

is uniquely determined by (S, σ) (theorem 5.2.8 in [BR022]): two different realizations admit a unique ∗
isomorphism which transforms the former into the latter preserving Weyl generators and the norm on
W(S,σ) is unique since ∗ isomorphisms of C∗ algebras are isometric. This result implies that every GNS
representation of a Weyl algebra is always faithful and isometric. W(S,σ) can always be realized in terms of
bounded operators on `2(S), viewing S as a Abelian group and defining the generators as (W (ψ)F )(ψ′) :=
e−iσ(ψ,ψ′)/2F (ψ+ψ′) for every F ∈ `2(S). In this realization (and thus in every realization) it is manifest
that generators W (ψ) are linearly independent. As a consequence of (W1) and (W2), one gets: W (0) = I
(the unit element), W (ψ)∗ = W (ψ)−1, ||W (ψ)|| = 1 and, using non degenerateness of σ, W (ψ) = W (ψ′)
iff ψ = ψ′. Strong continuity of the unitary group implementing a ∗-automorphism representation β of
a topological group G 3 g 7→ βg for a β-invariant state ω on a Weyl algebra W(S, σ), is equivalent to
limg→I ω(W (−ψ)βgW (ψ)) = 1 for all ψ ∈ S. The proof follows immediately from ||Πω (βg′W (ψ))Υω −
Πω (βgW (ψ))Υω||2 = 2− ω

(
W (−ψ)βg′−1gW (ψ)

)
− ω

(
W (−ψ)βg−1g′W (ψ)

)
and Πω(W(S, σ))Υω = Hω.

A state ω on W(S,σ), with GNS triple (Hω,Πω,Υω), is called regular if the maps R 3 t 7→ Πω(W (tψ))
are strongly continuous. Then, in accordance with Stone theorem, one can write Πω(W (ψ)) = eiσ(ψ,Ψω),
σ(ψ,Ψω) being the (self-adjoint) field operator symplectically-smeared with ψ. In this way field
operators enters the theory in Weyl algebra scenario. Working formally, by Stone theorem (W2) implies
R-linearity and standard CCR:

(L) σ(aψ + bψ′,Ψω) = aσ(ψ,Ψω) + bσ(ψ′,Ψω) , (CCR) [σ(ψ,Ψω), σ(ψ′,Ψω)] = −iσ(ψ,ψ′)I ,

for a, b ∈ R and ψ,ψ′ ∈ S. Actually (L) and (CCR) hold rigorously in an invariant dense set of analytic
vectors by Lemma 5.2.12 in [BR022] (it holds if ω is quasifree by proposition B.1 below).
In the standard approach of QFT, based on bosonic real scalar field operators Ψ a, either vector either

6Notice that in [KW91] a different convention for the sign of σ in (W2) is employed.
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density matrix, state is quasifree if the associated n-point functions (expectation values of a product of
n fields) satisfy (i) 〈σ(ψ,Ψ)〉 = 0 for all ψ ∈ S and (ii) the n-point functions 〈σ(ψ1,Ψ) · · ·σ(ψn,Ψ)〉
are determined from the functions 〈σ(ψi,Ψ)σ(ψj ,Ψ)〉, with i, j = 1, 2, · · · , n, using standard Wick’s
expansion. A technically different but substantially equivalent definition, completely based on the Weyl
algebra was presented in [KW91]. It relies on the following three observations: (a) Working formally with
(i) and (ii), one finds that it holds 〈eiσ(ψ,Ψ)〉 = e−〈σ(ψ,Ψ)σ(ψ,Ψ)〉/2. In turn, at least formally, such identity
determines the n-point functions (reproducing Wick’s rule) by Stone theorem and (W2). (b) From (CCR)
it holds 〈σ(ψ,Ψ)σ(ψ′,Ψ)〉 = µ(ψ,ψ′)−(i/2)σ(ψ,ψ′), where µ(ψ,ψ′) is the symmetrised two-point function
(1/2)(〈σ(ψ,Ψ)σ(ψ′,Ψ)〉+〈σ(ψ′,Ψ)σ(ψ,Ψ)〉) which defines a symmetric positive-semidefined bilinear form
on S. (c) 〈A†A〉 ≥ 0 for elements A := [eiσ(ψ,Ψ) − I] + i[eiσ(ψ,Ψ) − I] entails:

|σ(ψ,ψ′)|2 ≤ 4 µ(ψ,ψ)µ(ψ′, ψ′) , for every ψ,ψ′ ∈ S , (93)

which, in turn, implies that µ is strictly positive defined because σ is non degenerate. Reversing the
procedure, the general definition of quasifree states on Weyl algebras is the following.

Definition B.1. Let WS,σ be a Weyl algebra and µ a real scalar product on S satisfying (93). A state
ωµ on WS,σ is called a quasifree state associated with µ if

ωµ(W (ψ)) := e−µ(ψ,ψ)/2 , for all ψ ∈ S. (94)

Lemma B.1. Let (S, σ) be a real symplectic space with σ non degenerate and µ a real scalar product
on S satisfying (93). There is a complex Hilbert space Hµ and a map Kµ : S → Hµ with:

(i) Kµ is R-linear with dense complexified range, i.e. Kµ(S) + iKµ(S) = Hµ,
(ii) for all ψ,ψ′ ∈ S, 〈Kµψ,Kµψ

′〉 = µ(ψ,ψ′)− (i/2)σ(ψ,ψ′).
Conversely, if the pair (H,K) satisfies (i) and σ(ψ,ψ′) = −2Im〈Kψ,Kψ′〉H, with ψ,ψ′ ∈ S, the unique
real scalar product µ on S satisfying (ii) verifies (93).

The last statement arises by Cauchy-Schwarz inequality, the remaining part being in Proposition 3.1 in
[KW91]. Notice that Kµ is always injective due either to (ii) either to non degenerateness of σ. Now
existence of quasifree states can be proved using the above lemma with the following proposition. Therein,
uniqueness and regularity of the state is contained in Lemma A.2 and Proposition 3.1 in [KW91].

Proposition B.1. For every µ as in definition B.1 the following hold.
(a) there is a unique quasifree state ωµ associated with µ and it is regular.
(b) The GNS triple (Hωµ ,Πωµ ,Υωµ) is determined as follows with respect to (Hµ,Kµ) in lemma (B.1).
(i) Hωµ

is the symmetric Fock space with one-particle space Hµ. (ii) The cyclic vector Υωµ
is the vacuum

vector of Hω. (iii) Πωµ is determined by Πωµ(W (ψ)) = eiσ(ψ,Ψ), the bar denoting the closure, where7

σ(ψ,Ψ) := ia(Kµψ)− ia†(Kµψ) , for all ψ ∈ S (95)

a(φ) and a†(φ), φ ∈ Hµ, being the usual annihilation (antilinear in φ) and creation operators defined in
the dense linear manifold spanned by the states with finite number of particles.
(c) A pair (H,K) 6= (Hµ,Kµ) satisfies (i) and (ii) in lemma B.1 for µ, determining the same quasifree

7The field operator Φ(f), with f in the complex Hilbert space h, used in [BR022] in propositions 5.2.3 and 5.2.4 is related
to σ(ψ,Ψ) by means of σ(ψ,Ψ) =

√
2Φ(iKµψ) assuming H := h.

42



state ωµ, if and only if there is a unitary operator U : Hµ → H such that UKµ = K.
(d) ωµ is pure (i.e. its GNS representation is irreducible) if and only if Kµ(S) = Hµ

8.
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