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A recent comprehensive review of empirical studies that
measured the strength of selection concluded that there
was little evidence for strong nonlinear selection in natural
populations (Kingsolver et al. 2001). The median quadratic
selection gradient identified by Kingsolver et al. (2001)
was only 0.1, and gradients consistent with stabilizing or
disruptive selection were found at a similar frequency and
to be of similar magnitude. Stabilizing selection in par-
ticular is an important premise in many areas of evolu-
tionary biology (Travis 1989), so this finding challenges
our current understanding of how selection may operate
in the wild (Conner 2001; Kingsolver et al. 2001). There
is already some evidence that the strength and frequency
of nonlinear selection identified in the review of Kingsolver
et al. (2001) has influenced how evolutionary biologists
view the potential role of stabilizing selection (Barton and
Keightley 2002; Zhang et al. 2002).

Kingsolver et al. (2001) suggest a number of reasons
why empirical studies may not find or may underestimate
nonlinear selection, including an empirical bias toward
selecting experimental systems that are likely to show di-
rectional selection. In addition, nonlinear selection gra-
dients are often able to be estimated from data sets but
are not published (Kingsolver et al. 2001), probably as a
consequence of the paucity of significant individual gra-
dients and the difficulty of interpreting the overall pattern
of nonlinear selection from the large number of estimated
gradients. Here, we demonstrate that the strength of non-
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linear selection has been consistently underestimated in
many studies as a consequence of the incomplete appli-
cation of response surface methodology.

Response Surface Methodology

Nonlinear selection is routinely measured using second-
order polynomial regression (Lande and Arnold 1983; Bro-
die et al. 1995). The representation of second-order poly-
nomial regression most familiar to many biologists is

n n n

w p a � b z � 1/2 g z z , (1)� ��i i ij i j
ip1 ip1 jp1

where w is the fitness measure and zi are the individual
traits measured. Linear selection on individual traits is
measured by using the partial linear regression coefficients,
bi. Quadratic regression coefficients (gii) are used in em-
pirical studies of selection to indicate convex selection
(negative gii) or concave selection (positive gii) on indi-
vidual traits, although they alone are not sufficient to es-
tablish that stationary points exist within the sampled
space (Mitchell-Olds and Shaw 1987). If stationary points
do exist within the sampled space, true stabilizing or dis-
ruptive selection are indicated by negative or positive gii’s,
respectively. Unfortunately, the full extent of nonlinear
selection on a multivariate set of traits cannot be identified
from the quadratic coefficients in isolation. The full
second-order polynomial model also includes cross-
product terms (gij) that represent correlational selection
on pairs of traits. Correlational selection gradients indicate
nonlinear selection along axes that are not parallel to the
axes represented by the individual traits. Of the 574 es-
timates of nonlinear selection identified by Kingsolver et
al. (2001), only 109 were correlational selection gradients.

For convenience, model (1) may be represented in ma-
trix form

T Tw p a � z b � z gz, (2)

where z is a vector of the traits on which selection is being
measured, b is the vector of directional selection gradients,
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and g is the matrix of quadratic and cross-product terms:

… g 1/2g 1/2g11 12 1j
…1/2g g 1/2g12 22 2jg p . (3)_ _ 5 _ 
…1/2g 1/2g g 1j 2j ii

If correlational selection is present between pairs of traits,
to interpret the form and strength of nonlinear selection
acting on that set of traits (in contrast to individual traits),
the major axes of the quadratic response surface need to
be identified. Canonical analysis (Box and Wilson 1951;
Box and Draper 1987) finds the major axes of the response
surface by determining the normalized eigenvectors (mi),
and their associated eigenvalues (li), of g. In other words,
g is rotated to eliminate the cross-product terms. The
diagonalization of g results in a matrix L:

TL p M gM, (4)

where M is a matrix that contains the normalized eigen-
vectors of g as columns. The L matrix has the eigenvalues
of g along the diagonal and zeros off the diagonal since
all cross-product terms have been eliminated:

l 0 0 01 
0 l 0 02L p . (5)
0 0 5 0 
0 0 0 l i

The original second-order response surface in equation
(2) can now be rewritten in canonical form:

T Tw p a � y v � y Ly, (6)

where individual traits (zi) have been replaced by the new
major (or canonical) axes of the response surface (yi), and
v is a vector that describes the slope of the surface along
each new axis, just as b does for each original zi. The
eigenvalues of g (the canonical coefficients) in L now
replace the quadratic coefficients in g as measures of the
strength of convex or concave selection. It can be seen
that each individual li is a natural measure of the strength
of nonlinear selection along each eigenvector, as when the
yi’s are placed back into a full second-order polynomial
model, the values of the li’s are returned as the quadratic
coefficients (Bisgaard and Ankenman 1996). This useful
property of the canonical coefficients does not appear to
have been appreciated in selection analyses.

Phillips and Arnold (1989) gave a detailed introduction
to the use of canonical analysis for investigating nonlinear
selection, and we direct readers to that article for a com-

prehensive development of the technique for use in se-
lection analyses. Unfortunately, although this article has
frequently been cited, the appropriate canonical rotation
of g has been conducted infrequently in selection analyses
to date (Simms 1990; Brodie 1992; Simms and Rausher
1993; Björklund and Senar 2001). Our purpose here is not
only to reiterate the value of conducting a canonical anal-
ysis of the response surface but also to demonstrate how
nonlinear selection will be underestimated in studies that
do not conduct a canonical analysis that allows the strength
and form of nonlinear selection to be determined from
the canonical coefficients.

An Example: Sexual Selection on Male
Color Traits in Guppies

Male guppies attract females by displaying colorful pat-
terns that are made up of several different components:
orange, black, and iridescent spots, and facultatively ex-
pressed areas of fuzzy black coloration (Houde 1997). The
area of each of these four color attributes may be measured
as a different trait, but it is unlikely that females make
their choice by evaluating these four different aspects of
coloration independently (Endler and Houde 1995; Brooks
1996; Brooks and Endler 2001). Rather, all aspects of male
coloration are likely to contribute to the overall impression
(e.g., the contrast) a male’s color pattern makes, com-
prising his attractiveness (Endler and Houde 1995). Male
attractiveness may thus be thought of as a composite trait
of the individual color pattern measures.

Brooks and Endler (2001) demonstrated that there was
significant linear sexual selection operating on male color
patterns but did not consider nonlinear selection. Briefly,
the attractiveness of 251 males to females was assessed in
trials that consisted of allowing a single female to choose
to spend time in the proximity of six males presented
simultaneously to her. Male ornamentation was measured
as the area covered by each of the four color types. Here,
we reanalyze the four color variables measured on male
guppies from that study to illustrate how the canonical
rotation of g can reveal concave or convex selection on a
suite of traits that is not apparent from the quadratic co-
efficients. We estimated standardized nonlinear selection
gradients using second-order polynomial regression to
generate the g matrix (Lande and Arnold 1983).

From the g matrix (table 1), it could be concluded that
there was little nonlinear selection on male coloration as
all quadratic selection gradients were small and nonsig-
nificant. Most selection analyses in the literature have
stopped at this point without considering the correlational
gradients (Kingsolver et al. 2001). All but one of the cor-
relational selection gradients are nonsignificant as well, but
note that the three correlational gradients between orange
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Table 1: Matrix of standardized quadratic and correla-
tional selection gradients (g) for four male guppy color
traits

Black Fuzzy Iridescence Orange

Black .016
Fuzzy �.016 .00003
Iridescence �.028 .066 �.011
Orange .103 �.131* �.099 .030

* .P p .039

Table 2: M matrix of eigenvectors from the canonical anal-
ysis of g for four male guppy color traits

mi li Black Fuzzy Iridescence Orange

m1 .132* .390 �.467 �.389 .692
m2 .006 .846 .467 .256 �.018
m3 �.038 .011 �.487 .861 .149
m4 �.064 �.363 .572 .206 .706

Note: The eigenvalue (li) of each eigenvector (mi) is given in the

second column.

* .P p .002

and the other traits are quite large. The value of the ca-
nonical rotation of g is displayed in table 2, where this
complex set of correlational selection gradients (even with
only four traits) has been reduced to a single canonical
axis, m1, which displays a highly significant level of concave
selection as l1 is positive. The composite trait represented
by m1 contrasts orange and black coloration with fuzzy
black and iridescent coloration, which is consistent with
the signs of the correlational selection gradients in g. The
results from the canonical analysis suggest that concave
selection may play an important role in the evolution of
male coloration by sexual selection, which is in direct con-
trast to the quadratic coefficients in g that indicated no
significant concave selection. Blows et al. (2003) present
detailed analyses and visualizations of nonlinear selection
on these traits and discuss how concave selection may help
maintain polymorphism in male guppy ornaments.

The average size of the quadratic selection gradients in
table 1 is only 0.014, and yet the strength of concave se-
lection indicated along the m1 axis is almost an order of
magnitude larger ( ). Therefore, although therel p 0.1321

is little curvature along the axes parallel to the original
traits, nonlinear selection is much stronger along the major
axis of the response surface. It is important to remember,
however, that the canonical rotation (table 2) has not un-
covered any more selection than was already present in
the g matrix (table 1); rather, it is only the allocation of
selection present in g to the various coefficients that has
been changed. This example serves to emphasize that the
distinction between correlational and quadratic selection
gradients is arbitrary; correlational selection can be trans-
formed into concave or convex selection by the canonical
rotation of g. The arbitrary nature of nonlinear selection
gradients mirrors the arbitrary nature of individual traits
themselves when considered from a quantitative genetic
perspective. Genetic correlations between traits indicate
that individual trait phenotypes will not evolve indepen-
dently but will be influenced by the patterns of genetic
covariation between them (Lande 1979).

Large differences between the strength of nonlinear se-
lection along major axes of the response surface and axes
parallel to original traits will not always occur. For ex-

ample, the analysis of nonlinear selection of plant resis-
tance to herbivores by Simms (1990) displayed roughly
similar magnitudes of selection along the canonical and
original trait axes (app. A, table A1) as a consequence of
all but one of the gij coefficients in g being very small. In
the extreme case, where all correlational selectional gra-
dients are zero, the g matrix is equal to L, and so the
canonical rotation would have no effect. Therefore, the
canonical rotation may not provide substantial new in-
sights into every situation, particularly when correlational
selection is weak, in which case the coefficients in g may
be simpler to interpret biologically than the eigenvectors
in M. Such a situation might commonly occur when traits
that have very different functions are included in a single
analysis.

Underestimation of Nonlinear Selection

To determine the extent to which nonlinear selection may
have been underestimated in the studies surveyed by King-
solver et al. (2001) as a consequence of ignoring nonlinear
selection represented by the correlational selection gra-
dients, we reconstituted g from all studies in their database
that had estimated quadratic and correlational selection
gradients on three or more traits. The eigenvalues of each
of 19 estimates of g from seven studies (table A1) were
then calculated using the EIGVAL function implemented
in SAS IML2001. Although this approach allowed us to
determine whether the li’s were consistently larger than
individual gii’s, significance testing of the li’s from zero
was not possible without access to individual trait values.
How the li’s may be tested for significance when individual
trait values are available, as will be the case in any empirical
study, is discussed in detail in the next section.

In each of the 19 cases, the absolute size of the largest
eigenvalue of g (median ) was larger than theFlF p 0.55
largest quadratic coefficient for an individual trait (median

). As in the case of Simms (1990), the differenceFgF p 0.37
was small in a number of cases (table A1), but overall the
largest ’s were significantly larger than the largest ’sFlF FgF
(Wilcoxon test: , , ). This re-Z p �3.823 n p 19 P ! .001
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sult indicates two aspects about nonlinear selection in na-
ture. First, correlational selection has a significant presence
in those data sets that are currently available. The major
axes of the response surfaces generally are not parallel to
the axes defined by individual traits, as the rotations have
on average found new axes that have significantly more
curvature associated with them, which would not have
been the case if all correlational gradients were effectively
zero. Second, the strength of nonlinear selection has been
underestimated. If one takes the largest quadratic selection
gradient in these studies as the base for comparison, non-
linear selection has been underestimated by roughly a fac-
tor of 1.5. It is interesting to note that the median level
of for individual traits reported by Kingsolver et al.FgF
(2001) of 0.1 (which is the same for the subset of studies
in table A1) is on average about five times less than the
eigenvalue of the major axis of the response surface that
displays the most curvature. Therefore, although nonlinear
selection may well be generally weak on the individual
traits included in any particular selection analysis as re-
ported in many empirical studies, it may be much stronger
on at least one of the composite traits that may be the
actual target of nonlinear selection in many situations.

Using a Canonical Analysis in Future Empirical Studies

Although Phillips and Arnold (1989) introduced canonical
analysis in the context of selection analyses in their seminal
article more than a decade ago, it has had little impact on
the way empirical studies of multivariate selection have
been conducted in this regard. Below we outline how one
can implement a canonical analysis, and we recommend
a number of avenues for presentation of the results.

There are two readily available ways to conduct the ca-
nonical analysis after a second-order polynomial regression
has been used to estimate the quadratic and cross-product
coefficients comprising g. As we have done with the pre-
viously published studies surveyed by Kingsolver et al.
(2001), direct eigenanalysis of g will return the eigenvalues
(canonical coefficients) and eigenvectors (comprising M) of
this symmetrical matrix. If this method is to be used, note
that the gij coefficients from the quadratic regression need
to be halved as in equation (3). Alternatively, the SAS
RSREG procedure is perhaps the most efficient way to ob-
tain a canonical analysis as it conducts the second-order
model and the canonical analysis in the same routine (app.
B). Here, it is important to be aware that PROC RSREG
(SAS version 6 or higher) will, by default, recode the original
variables before analysis to result in variables that range
between �1 and 1. Under this transformation, the li’s will
not equal the quadratic coefficients when the yi’s are placed
back into a full second-order polynomial model and are
therefore of little use in estimating the strength of nonlinear

selection. The NOCODE option in the model statement
needs to be used for the original traits to be analyzed. We
have drawn attention to these potential mistakes because
either may result in the overestimation of the strength of
nonlinear selection.

The presentation of the results of an analysis of non-
linear selection should always include g and M, in addition
to the li’s. Presentation of g will allow the reader to check
that the canonical analysis was conducted correctly by di-
rect eigenanalysis, while M is required for the interpre-
tation of the major axes of the response surface with regard
to the original traits. Such an approach requires a consid-
erable shift in emphasis from previous empirical studies
that rarely considered or reported correlational selection
gradients (Kingsolver et al. 2001).

Significance of the li’s may be used to test for the pres-
ence of concave or convex selection along the major axes
of the fitness surface. Simms (1990; Simms and Rausher
1993) suggested an intuitive way of testing the eigenvalues
for significance that has been subsequently confirmed to
be equivalent to more computationally demanding meth-
ods for the estimation of eigenvalue errors (Bisgaard and
Ankenman 1996). The new traits in the canonical space (yi)
are simply placed back into a full second-order polynomial
model. The quadratic coefficients in this model will equal
the eigenvalues of g as noted above, and the standard errors
of the gii’s will then approximate the standard errors of the
li’s. Therefore, significance of each li may be assessed by
the significance of the quadratic term associated with it in
this new second-order model as we have done above for
the guppy example. As Phillips and Arnold (1989) warn,
no improvement in accuracy is gained by conducting this
orthogonal rotation. If the nonlinear selection gradients in
g have been estimated with considerable error as a conse-
quence of poor measurements, small sample size, or some
other source of experimental error, the canonical coefficients
are expected to display the same level of error as the original
selection gradients.

Visualization of the fitness surface has always been of
major importance in interpreting the form of selection,
and it remains important even after the canonical analysis
(Phillips and Arnold 1989; Blows et al. 2003). One of the
purposes of the canonical analysis is to reduce the number
of axes of the response surface that need to be considered
when three or more traits are involved. When only two
traits are measured in addition to fitness, the best quadratic
approximation of the surface can reveal the major axes of
selection, so the need for canonical analysis is less urgent.
However, when more than two traits are involved, selection
on the first two major axes of the response surface can be
visualized in the same fashion (e.g., Simms and Rausher
1993). A less constrained surface, and perhaps a more
complete indication of how selection may be operating,
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may be gained by plotting the major axes using a thin-
plate spline (Blows et al. 2003).

Conclusion

The canonical analysis of g is a complication to the analysis
of nonlinear selection that will be necessary in many in-
stances. Selection will rarely act on single traits in isolation
(Lande and Arnold 1983; Phillips and Arnold 1989; Schlu-
ter and Nychka 1994). Consequently, correlational selec-
tion is likely to be common (Schluter and Nychka 1994),
particularly among sets of functionally related traits. It
follows that estimates of stabilizing or disruptive selection
based on quadratic coefficients from a second-order poly-
nomial model will routinely underestimate the strength of

selection, and by a substantial amount in some cases. This
is because the target of selection will generally not be the
traits that empiricists see and measure but will be a com-
bination of traits that may be elucidated by applying the
multivariate tools of response surface methodology.
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APPENDIX A

Table A1: Comparative data set

n Largest gii l Type of surface Type of selection Reference

5 .044 .062 Saddle O Mitchell-Olds and Bergelsson 1990
4 �.457 �1.262 Saddle F Moore 1990
4 �.550 �.714 Saddle M Moore 1990
4 �.707 �1.093 Saddle F Moore 1990
4 �.498 �.729 Saddle M Moore 1990
4 .102 .155 Saddle M Moore 1990
4 �.538 �.650 Saddle F Moore 1990
4 �.122 �.273 Saddle S Brodie 1992
3 �.874 �.875 Saddle F Nunez-Farfan and Dirzo 1994
3 .370 .552 Saddle F O’Connell and Johnston 1998
3 1.180 1.709 Bowl F O’Connell and Johnston 1998
3 .770 1.124 Saddle F O’Connell and Johnston 1998
3 .260 .283 Saddle F O’Connell and Johnston 1998
3 .200 .305 Saddle F O’Connell and Johnston 1998
3 .23 .26 Saddle F O’Connell and Johnston 1998
5 .994 .999 Saddle F Simms 1990
3 �.019 �.021 Peak S Kelly 1992
4 .016 .027 Saddle S Kelly 1992
5 .112 .214 Saddle F Kelly 1992

Note: Analysis of nonlinear selection in 19 data sets identified by Kingsolver et al. (2001) involving three or more traits. We have presented

the largest gii and li from each g. The type of surface is based on the signs of all eigenvalues, following the descriptions used by Phillips and

Arnold (1989); if eigenvalues were all negative, the surface has a peak; if all were positive, the surface is a bowl; and if some were negative and

positive, the surface is a saddle. The type of selection follows the categories used by Kingsolver et al. (2001): , success,S p survival M p mating

/fertility, . of traits measured in each study.F p fecundity O p other n p number

APPENDIX B

SAS Code for a Canonical Analysis

Proc RSREG datapSAS-data-set;
MODEL responsepindependents / NOCODE;
Run;
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