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Single-electron measurements with a micromechanical resonator
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A mechanical electroscope based on a change in the resonant frequency of a cantilever one micron in size in
the presence of charge has recently been fabricated. We derive the decoherence rate of a charge superposition
during measurement with such a device using a master equation theory adapted from quantum optics. We also
investigate the information produced by such a measurement, using a quantum trajectory approach. Such
instruments could be used in mesoscopic electronic systems, and future solid-state quantum computers, so it is
useful to know how they behave when used to measure quantum superpositions of charge.
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I. INTRODUCTION

As devices for processing and storing information beco
smaller, the demands on the readout technology become
greater. This is especially true for proposed solid-state qu
tum computers that store information in various quant
degrees of freedom~qubits!: in quantum dots@1#, nuclear
spin @2,3#, superconducting islands@4#, and persistent cur
rents@5#, to cite just a small sample.

Kane has proposed storing a qubit in the spin of a sin
phosphorous nucleus implanted in silicon. In his origin
readout scheme, this was coupled by the hyperfine inte
tion to the spin of the donor electron bound weakly to t
nucleus. A surface gate would then draw the electron towa
an adjacent ancilla donor, to which it might tunnel, produ
ing a doubly chargedD2 state. Under appropriate bias co
ditions, this transfer can only occur if the nuclear spin of t
qubit is oriented opposite the ancilla.

A spin measurement is thus reduced to detecting the tr
fer of a single-electron charge to the ancilla. This can
done by a sensitive electroscope such as a single-elec
transistor@6#. However, the techniques used for fabricati
microelectronics have recently been adapted to build
chanical structures at micron and even nanometer scales@7#,
and mechanical electroscopes sensitive to small numbe
electrons have been constructed@8#. We will consider how
effectively such devices might perform the measurements
quired for quantum information processing.

Classical treatments of measurement sensitivity ass
that the observable being measured has a definite va
which influences the measuring instrument in a definite w
The only question is how much data we must gather to r
ably distinguish this effect from other influences on the a
paratus, which produce noise. Once we know the size of
effect we wish to distinguish, and the level of noise in t
system, some elementary statistics tell us the integration
required for a reliable measurement.

This assumption does not hold when we measure an
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servable of a quantum system. If the system is in a supe
sition state, the observable will not have a definite value u
some sort of measurement is carried out. Any interest
quantum information device will produce such superpo
tions. The process by which the superposition is reduced
that the observable has a certain value imposes a minim
level of noise in the measurement, which might be increa
by the same sources of technical noise that affect meas
ments of classical systems.

In the proposed readout scheme for the Kane compute
donor electron is induced to tunnel between two phosph
ous nuclei, depending on the state of the nuclear spins
general, the nuclei are in a superposition of a state that wo
permit tunneling, and one that would prevent it. After th
tunneling has occured, the electron is left in a superpos
of two position states, each localized on one nucleus. It t
interacts with the electroscope, and in general, with ot
degrees of freedom in the crystal lattice, with the result t
we see it become localized on one nucleus or the other
that the electroscope gives a definite signal that the charg
present or absent.

Note that we are not discussing an ensemble of quan
systems subject to a single measurement, but rather a s
quantum system subject to a dynamical measurement
cess. In such a situation we need to be able to describe
instantaneous conditional state of the measured system a
measurement results accumulate. This is quite different fr
the usual situation that prevails in condensed-matter syste
where typically, a measurement is made on a large numbe
~almost! identical constituents undergoing quantum dyna
ics, and the measurement results are already an average
an ensemble. Fortunately, mathematical techniques~known
as quantum trajectory methods! are available to describe th
conditional dynamics of a single quantum system subjec
measurement with added noise, and these methods have
applied with considerable success to experiments in quan
optics and ion traps@9#. Recently, such methods have be
applied to mesoscopic electronic systems@10–12#.

II. THE MECHANICAL ELECTROSCOPE

The operation of a micromechanical electroscope
shown schematically in Fig. 1. The active part is an el
trode, mounted on a cantilever no longer than 1mm, which is
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R. E. S. POLKINGHORNE AND G. J. MILBURN PHYSICAL REVIEW A64 042318
set in motion near the charge to be measured. The elect
is held at constant potential, so that its motion with respec
the unknown charge induces a flow of charge between it
its voltage source. The induced charge gives the electros
electric potential energy as well as elastic, and change
resonant frequency. If we envision the electroscope be
used to readout a qubit in a quantum computer, there wil
two charge states we wish to distinguish. We will denote
difference between the resonant frequencies of the cantil
in these two states bydv; it is determined by geometry an
the mutual capacitance between the electrode and the
sured charge distribution.

We will assume the mechanical motion of the cantileve
elastic and treat it as a simple harmonic oscillator. Then
motion, including the capacitive coupling to the targ
charge, is described by a harmonic-oscillator Hamiltonia

H5\~v01dvn1!c†c, ~2.1!

wherev0 is the resonant frequency of the cantilever in t
absence of surface charge, andc the annihilation operator fo
its oscillation. The observablen1 will be defined shortly.

FIG. 1. Operation of the mechanical electroscope. A cha
trapped near the surface of some material is coupled to a canti
suspended above the surface, as explained in the text. The ca
ver is driven at a rateE and damped by a combination of mechan
cal friction and reaction from the electronic readout loop at a ratg.
If an excess charge is present on the surface, the frequency o
pendulum is increased bydv. For simplicity, the figure shows a
simple pendulum, but in practice, the cantilever would be a
sional pendulum, oscillating due to strain in the material.
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During the readout of a Kane computer, a single-don
electron may occupy a bound state around either of two
jacent nuclei. We will denote these distinct spatial states
uc& and uf&. Only one state~supposeuc&! couples to the
electroscope—this is how we can distinguish them.

During the readout, the surface gates will be configured
produce tunneling between the two nuclei, depending on
state of the nuclear-spin qubits. This entangles the cha
states with the qubit statesu↑& and u↓&. We will denote the
combined states byu0&5u↑& ^ uf&, and u1&5u↓& ^ uc&, ac-
cording to the number of electrons interacting with the el
troscope, which we will represent by the operatorn1
5u1&^1u. In general, the measured qubit will be in a sup
position state, so the total state will take the form

uC&5au0&1bu1&. ~2.2!

Table I gives numerical parameters for a cantilever el
troscope fabricated in 1998. The frequency and opera
temperature of this electroscope meant that themal n
completely dominated any quantum effects. Besides low
ing the temperature, this could be changed by using a ca
lever with a higher resonant frequency, and such devi
have been fabricated. However, the sensitivity of the elec
scope depends on the frequency changing significantly w
change is present, and this might not be the case in hig
frequency cantilevers.

We note that the interaction Hamiltonian commutes w
the number operatorn̂1 . Furthermore, in the absence of tu
nelling, the free Hamiltonian for the charge state itself
proportional to the square of the charge~capacitive electro-
static energy! and itself commutes with the charge numb
operator. In the presence of the measurement, the num
operator is thus a constant of motion. Such a measureme
known as a quantum nondemolition~QND! measurement
@13#. Number eigenstates are not changed by the couplin
the apparatus, and moments of the number operator are
stant in time. On the other hand, any state that is initially
coherent superposition in the number basis will be reduce
a mixture diagonal in this basis, a process known as de
herence. In an ideal quantum nondemolition measurem
the probability distribution for observed results at the co
clusion of the measurement should accurately reflect the
trinsic probability distributions of the quantum nondemo
tion variable in the quantum state at the start of t
measurement.

This model, where the electroscope performs a QN
measurement of the coupled charge, is idealized. If such
electroscope was used to measure any interesting device
motion of the cantilever would disrupt the distribution of th
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TABLE I. Data for an electroscope fabricated by Cleland and Roukes@8#.

Operating temperatureT 4.2 K kBT53.631024 eV
Resonant frequencyv0/2p 2.6 MHz \v051.131028 eV
Torsional spring constantk 1.1310210 Nm
Amplitude umax 30 mrad
Frequency shift per electrondn 0.1 Hz
Quality factorv0 /g 6.53103
8-2
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SINGLE-ELECTRON MEASUREMENTS WITH A . . . PHYSICAL REVIEW A64 042318
charge being measured. The nature and extent of this dis
tion would depend on the electrical properties of the sys
being measured; for the Kane computer, determining thes
an unsolved problem in atomic physics. In general, back
tion ~and interference from sources unrelated to the meas
ment! imposes a time limit on the measurement, after wh
the charge state will have been disrupted and the results
be meaningless. The results of this paper determine whe
the electroscope can measure the charge with the nece
precision within that time.

To detect the change in resonant frequency, we mus
the cantilever in motion with some driving mechanism.
the device described in Table I, this was supplied by driv
an alternating current through a wire on the cantilever in
presence of a magnetic field. The current induced by the fi
in another wire was used to monitor the response of
cantilever to the driving.

However, the details of the driving are not important.
long as the cantilever is coupled weakly to the driving s
tem and is not damped so strongly that its state chan
significantly over the period of its vibration~in other words,
it has high finesse!, the effect can be described by a Ham
tonian. In the interaction picture, this takes the form\E( ĉ
1 ĉ†), where E is the strength of the driving in units o
frequency. If the finess of the cantilever is low, noise fro
the driving system affects its motion significantly, and t
dynamics due to the driving cannot be approximated b
Hamiltonian.

The frequency shift could be detected in a number
ways. We could sweep the driving frequency and monitor
amplitude of the oscillations. Or else we could drive t
oscillator at a constant frequencyv, and then detect the
change in phase of the oscillation due to the shift in re
nance frequency when a small charge is coupled; this is
method analyzed in this paper. We will assume that if
charge state isu0&, the cantilever will be driven on resonanc
if it is u1&, the changedv in its resonant frequency will caus
its phase to differ from that of the driving force. The rate
change of the phase of the output current with frequency
the driving is greatest when the cantilever is driven near
resonant frequency.

We will measure time by the inverse damping rateg21.
Then, defining a dimensionless driving strengthE5E/g and
a detuningD5dv/g, the Hamiltonian for the coherent driv
ing, in the interaction picture, is

ĤD5\E~ ĉ1 ĉ†!1\Dn1ĉ†ĉ. ~2.3!

In reality of course the mechanical oscillations of the ca
tilever will be subject to frictional damping, and accompan
ing mechanical noise. The rate of energy dissipation is sp
fied by the quality factorQ which is the ratio of the
resonance frequency to the width of the resonance. For lin
response, this givesQ5v0 /gM , wheregM is the decay rate
of energy due to mechanical dissipation. Cleland and Rou
@14# have measured quality factors up to 23104. With such
quality factors and resonance frequencies approaching g
hertz, these devices are approaching low quality optical re
nators. So we will treat the effect of mechanical damp
04231
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with the master equation methods of quantum optics. Th
methods assume that the coupling of the resonator to
dissipative degrees of freedom is sufficiently weak@15,16#.
Specifically, we assume thatgM!v0 ,kT/\.

Under these assumptions, the coupling between the o
lator and the thermal mechanical reservoir is@17#

HM5AgM@ca†~ t !1c†a~ t !#, ~2.4!

wherea(t), a†(t) are bosonic reservoir operators. The sta
of the reservoir will be taken to be that of a Planck therm
equilibrium density operator with temperatureTM .

We now consider in more detail the mechanism by wh
the small changes in resonance frequency induced by
proximity of a target charge are transduced. This may
done@8# by fabricating a wire loop on the mechanical osc
lator and placing the whole apparatus in a strong magn
field. As the mechanical oscillator moves, an induced volta
is set up in the loop and we may measure the induced
rent. When the current for the driving circuit is such as
drive the mechanical oscillator at its resonance frequen
the induction current is out of phase with the driving curre
However, when a small target charge shifts the resona
frequency of the oscillator, the induced current shifts
phase with respect to the driving current. We can detect
phase shift by an electrical comparison of the driving curr
and induction current. This is essentially homodyne detec
in which the driving current plays the role of a local oscill
tor. Unfortunately, this electrical transduction of the m
chanical motion introduces another source of noise for
measurement.

The induction current is coupled into an external amplifi
circuit that can be treated as a bosonic reservoir, with so
nonzero noise temperature@18# TE . The readout circuit vari-
able coupled to the cantilever is the current operatori (t) in
the readout circuit. We will assume that the coupling is line
in the current and coordinate degree of freedom of the c
tilever. Under standard assumptions, the interaction betw
the mechanical oscillator and the readout circuit is descri
by the interaction picture Hamiltonian,

HR5 iAgE@c†G~ t !2cG†~ t !#, ~2.5!

whereG(t)5b(t)eiv0t with the actual current in the circui
given byi (t)5A\v0/2Lz0(b(t)1b†(t)), L being the induc-
tance per unit length of the transmission line, andz0 the
quantization length. We will assume that the readout circ
reservoir is bosonic and also in thermal equilibrium at so
temperatureTE .

Using the interaction Hamiltonians for the reservoir co
pling @Eqs. ~2.4! and ~2.5!#, we may obtain the Heisenber
equations of motion for the oscillator and reservoir variabl
Using standard techniques@17#, the reservoir variables ma
be eliminated to give a quantum Langevin stochastic diff
ential equation describing the dynamics of the oscillator a
plitude
8-3
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da

dt
52 idva2 iE2

gM

2
a2

gE

2
a1AgMain~ t !1AgEbin~ t !,

~2.6!

where ain(t),bin(t) are the quantum noise sources for t
mechanical and electrical reservoirs, respectively. Th
noise terms are defined by correlation functions, which
Fourier transforms of

^ain~ t !&5^bin~ t !&50, ~2.7!

^ain
† ~v!ain~v!8&5n̄~v,TM !d~v2v8!, ~2.8!

^ain~v!ain
† ~v!8&5~ n̄~v,TM !11!d~v2v8!, ~2.9!

^bin
† ~v!bin~v!8&5n̄~v,TE!d~v2v8!, ~2.10!

^bin~v!bin
† ~v!8&5@ n̄~v,TE!11#d~v2v8!, ~2.11!

FIG. 2. The off-diagonal elementZ of the density operator is a
thermal state displaced by amplitudesa andb, which depend on the
temperature@see Equation~3.13!#. When the cantilever is couple
to a hot bath, these coherent amplitudes decrease, andZ approaches
a purely thermal state. The values these amplitudes take in the
land and Roukes electroscope at temperatures from absolute ze
to 10 K are plotted in the complex plane, in units of the groun
state fluctuations. The amplitudes of the diagonal elementsA andB
do not vary with temperature, but remain at the 0 K values.
li-

e
a
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where

n̄~v,T!5
1

2
@coth~\v/2kBT!21#. ~2.12!

Note the equation explicitly includes a friction term~propor-
tional to gE! that arises form the electrical coupling to th
readout circuit. The steady-state average amplitudean
5^a(t)& t→` , is given by

an5
22iE

~gM1gE!12idvn1
. ~2.13!

The actual measured quantity is the current in the read
circuit, that is to say the readout variable is an electrical b
variable,bout at the output from the system interaction. Th
output amplitudes for both the mechanical and electri
baths are related to the input variables for these two ba
and the amplitude of the mechanical oscillator by@13#

aout~ t !5AgMa~ t !2ain~ t !, ~2.14!

bout~ t !52 iAgEa~ t !2bin~ t !. ~2.15!

The average value of the electrical readout amplitude in
steady state is then found using equations Eqs.~2.6! and
~2.15!.

^bout&5AgEan , ~2.16!

wherean is given in Eq.~2.13!. We see that the steady-sta
amplitude of the cantilever, and hence, the output electr
signal undergoes a change in phase and amplitude, see
2. If we monitor the component in the imaginary directio
~that is, in quadrature with the driving signalE! we will have
maximum sensitivity to this change in phase. Furthermore
is desirable to haveE as large as possible so that sm
changes in phase translate into large changes in the qua
ture.

We can now proceed to calculating the noise power sp
trum for the measured current. The calculation is analog
to that for a double-sided cavity given in reference@13#. We
now do not work in the rotating frame but return to th
laboratory frame. The Fourier component of the output o
erator for the current is given by

le-
up

-

bout~v!5
@~gE2gM !/22 i ~v02v!2 idvn1#bin~v!2 iAgEE~v!1AgEgMain~v!

@~gE1gM !/21 i ~v02v!1 idvn1#
, ~2.17!
y

l
the
whereE(v) is the Fourier component of the driving amp
tude. If the driving is noiseless and monochromatic,E(v)
5Ed(v2vd). However, in reality there would be som
noise in the driving amplitude derived from the electric
 l

noise in the driving circuit. We will treat this as entirel
classical.

Equations~2.13! and ~2.16! suggest that the signal wil
appear in the quadrature of the current out of phase with
8-4
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driving force, defined by

X2,out~ t !5 i @bout
† ~ t !2bout~ t !#, ~2.18!

with Fourier componentsX2,out(v). The measured powe
spectrum is then given by the correlation function,

S2,out~v,v8!5^X2,out~v!,X2,out~v8!&. ~2.19!

Using the specified states for the electronic and mechan
noise operators, we find,

S2,out~v,v8!5@ uB~v!u2$2n̄~v,TE!11%

1uA~v!u2$2n̄~v,TM !11%#d~v2v8!,

~2.20!
ge

e
tr
re
h

a
ib
e
i

ci
ve
t t
a
e

th

04231
al

where

B~v!5
~gE2gM !/22 i ~~v2v0!1dvn1!

~gE1gM !/21 i ~~v2v0!1dvn1!
,

A~v!5
AgEgM

~gE1gM/2!1 i ~~v2v0!1dvn1!
.

To estimate the signal-to-noise ratio~SNR!, we evaluate the
spectrum at the driving frequency~that is to say, at the cen
tral Fourier component of the coherent driving!;
riving

tz
S~v0!5
$@~gE2gM !/2#21~dvn1!2%@2n̄~v,TE!11#1gEgM@2n̄~v,TM !11#

@~gM1gE!/2#21~dvn1!2 . ~2.21!

Equations~2.13!, ~2.16!, and ~2.18! show that the magnitude of the Fourier component of the mean signal at the d
frequency is given by

u^X2,out~vD!&u5
8AgEEdvn1

~gM1gE!214dv2n1
. ~2.22!

The signal is a sharp peak atv5vd5v0 , in which there is a noise powerS(v0) per root Hertz. So the SNR per root Her
is u^X2,out(vD)&u2/S(v0), or

SNR5
16gEE2dv2n1

@~gM1gE!214dv2n1#@~gE2gM !214dv2n1#@2n̄~v,TE!11#1gEgM@2n̄~v,TM !11#
. ~2.23!
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If the SNR required for the measurement is SNRr , then we
must average over noise for a timet such that SNRr
5SNR/At. If we setn151, so we are measuring the char
on one electron, the sensitivity is theneAt5eSNRr /SNR.

III. UNCONDITIONAL DESCRIPTION OF THE
MEASUREMENT

When we measure a quantum system, we bring an
tremely large set of independent observables of our ins
ment and its environment into correlation with the measu
system observable. The environment of the electroscope
two distinct components. First, there is the environment
sociated with the mechanical oscillator, which is respons
for mechanical damping and noise. Second, there is the
vironment associated with the electrical readout, which
responsible for Johnson-Nyquist noise in the electrical
cuit, and ultimately provides the measured result. Howe
we are interested in what the measurement tells us abou
system, not in the exact quantum state of the instrument
its environment. Useful instruments must operate indep
dently of the detailed state of their environments.

There are two ways to describe the partial state of
x-
u-
d
as

s-
le
n-
s
r-
r,
he
nd
n-

e

charge and oscillator. First, we can ignore the results of
measurement and average over states of the environm
completely. In this case, the evolution of the charge and
cillator is described by a master equation. Effectively we
averaging over the ensemble of partial states distinguis
by different measurement records

Second, we can ask for the conditional states of the cha
and oscillator, given a particular measurement record. E
member of the ensemble of partial states is associated w
distinct measurement record of the instrument. For it to be
effective measurement, observers must be able to disting
the states of the instrument. In other words, the charge m
end up correlated with some simple macroscopic quan
like the current in a wire or the position of a pointer on
scale. It is then possible to ask for the particular partial st
of the measured system that is correlated with a kno
pointer value. In other words, we need to be able to spe
the conditional state of the system given a readout of
instrument variable that distinguishes different charge sta
This is the conditional, or selective, description of the me
sured system. Of course, if we average over the readout v
ables, we must obtain the unconditional description of
system.
8-5
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We begin with the unconditional description of the me
surement. The dominant sources of excess noise that
the quality of the measurement are the thermal mechan
noise and thermal electrical noise on the readout circuit.
der certain Markoff and rotating-wave assumptions@17,19#,
the explicit states of the mechanical and electrical reserv
may be traced out. This leaves the following master equa
for the density operator of the composite system of cha
and cantilever,

ṙ~ t !52 i @m~en1!2ĉ†ĉ,r#2 i @E~ ĉ1 ĉ†!,r#

1 (
i 5M ,E

g i~ n̄i11!D@c#r1g i n̄iD@c†#r, ~3.1!

where the superoperatorD is defined by

D@c#r5crc†2
1

2
~c†cr1rc†c!. ~3.2!

This can be written in a more standard form

ṙ52 i @m~en1!2ĉ†ĉ,r#2 i @E~ ĉ1 ĉ†!,r#

1g~ n̄11!D@c#r1gn̄D@c†#r, ~3.3!

where g[gM1gE , and n̄[@gMn̄(v,TM)
1gEn̄(v,TE)#/g.

We will begin solving this master equation by separat
the dynamics of the cantilever and the charge. As before
assume there is only one charge in the system, and con
the charge statesu0& and u1&. We can decomposer into a 2
32 matrix of cantilever operators

r5Âu0&^0u1B̂u1&^1u1Ẑu0&^1u1Ẑ†u1&^0u. ~3.4!

Sincer is Hermititan, we need only three cantilever ope
tors, Â, B̂, and Ẑ. We can now decompose Eq.~3.3! into
three independent equations involving only cantilever ope
tors:

dÂ

dt
52 i @E~ ĉ1 ĉ†!,Â#1~ n̄11!D@c#Â1n̄D@c†#A,

~3.5!

dB̂

dt
52 i @E~ ĉ1 ĉ†!1D ĉ†ĉ,B̂#1~ n̄11!D@c#B̂1n̄D@c†#B̂,

~3.6!

dẐ

dt
52 i @E~ ĉ1 ĉ†!,Ẑ#1 iDẐĉ†ĉ

1~ n̄11!D@c#Ẑ1n̄D@c†#Ẑ. ~3.7!

As before, we are now measuring time relative to the dam
ing time 1/g.

If we measured the state of the charge by means o
than the cantilever, the state of the cantilever immedia
after the measurement would beB̂ if the charge were presen
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or Â if it were absent. Hence,Â and B̂ must be density
operators, and Eqs.~3.5! and ~3.6! have the form of maste
equations for a damped harmonic oscillator. Such equati
and their solutions, are familiar to quantum opticians. T
stable solution is a displaced thermal state, which can
written

r5~12e2l~ t !!D@a~ t !#e2l~ t !ĉ†ĉD†@a~ t !#, ~3.8!

whereD(a) is a displacement operator exp(aĉ†2a* ĉ), and
in the steady-statel5\v0 /kbT. In the limit of low tempera-
ture kT!\v0 , this becomes a coherent stateua&^au. In the
steady state, the cantilever has as many thermal phonons
resevoir mode with the same frequency, i.e.,e2l5n̄/(n̄
11). Its coherent amplitudea0 reaches a balance with th
driving and damping after a time around 2/g:

a~ t !5a0e2kt/22
2iE

k
~12e2kt/2!, ~3.9!

k5H 1 n50

112iD n51
. ~3.10!

During measurement, the cantilever statesÂ and B̂ are dis-
placed thermal states with distinct coherent amplitudes.

As the measurement proceeds, we expect the charge
to evolve from a coherent superposition ofu0& and u1& to an
incoherent mixture; in terms of our decomposition, we e
pect the off-diagonal termZ to decay with time. An operato
of the form

Z5z~ t !D~a!exp~2l ĉ†ĉ!D†~b!, ~3.11!

where z(t) is a ~possibly complex! amplitude, solves Eq
~3.7! if a, b, l, andz obey the following differential equa
tions:

dl

dt
5~ n̄11!l 22~2n̄111 iD!l 1n̄, ~3.12!

da

dt
5F2 iD1~ n̄11!l 2n̄2

1

2Ga2 iE~12 l !, ~3.13!

db

dt
5F ~ n̄11!l 2n̄2

1

2Gb1 iE~12 l !, ~3.14!

dk

dt
52 iE~a2b!1~ n̄11!~ l 1ab21!11. ~3.15!

Here, l 5exp(2l), a5a2 lb, b5b* 2 la* , and k5 logz
1la*b2(1/2)(uau2 1ubu2).

In general, these equations can be solved numeric
However, there are some special cases where we can
interesting information analytically. First, we consider t
zero-temperature limit, where the off-diagonal termẐ is a
projectorzua&^bu. The amplitudesa and b are the ampli-
tudes of the diagonal terms given by Eq.~3.10!, andz is a
8-6
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complex amplitude. Oncea andb have reached their stead
state, the trace of the off-diagonal term, decays exponent
with a rateua2bu2/2.

If we assume the detuningD is small, and hence,ubu
'uau52E, The difference between the steady-state am
tudes of Eq.~3.10! is

ua2bu25
16E2D2

114D2 '4uau2D2. ~3.16!

Cleland and Roukes give enough information about their
vices for us to calculate this explicitly@8#. Using the data in
Table I, we can calculatea from the definition of the anni-
hilation operator for a torsional pendulum

a5^ĉ&5A k

2\v0
^umax&55.33106. ~3.17!

The normalized detuning can be calculated from the
quency shift per electron and the measured quality facto

D5dv/g5
2pdnQ

v0
52.431024. ~3.18!

The decoherence rate is then 3.23106g or 8.13109 s21.
As n̄ increases from zero, the amplitudesa andb for the

off-diagonal operatorẐ are reduced, as shown in Fig. 2. Th
initial decay ofz(t) is shown in Fig. 3, and the steady-dec
rate, i.e., the limit ofuz8(t)/z(t)u when t@1/g, in Fig. 4. At
low temperatures~below 130 mK!, the increased therma
noise from the bath causesẐ to decay more rapidly as th
temperature of the bath is increased. Contrary to expe
tions, the steady decoherence rate of the charge superpo
decreases as the bath temperature increases above 130

FIG. 3. The state of the cantilever takes some time to beco
entangled with the charge after they begin to interact, as the c
lever state moves towards its steady value. After this, the ch
state decoheres rapidly. Here, the coherence between the two c
states is plotted as a function of time for an array of temperatu
The cantilever is initially in a thermal state at the appropriate te
perature. Note the charge state has decohered long before the
tilever reaches its steady amplitude, which occurs after a timeg.
04231
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mK.

The extra thermal noise increases the overlap between
oscillator states corresponding to the presence and absen
charge.

IV. CONDITIONAL DESCRIPTION

We now turn to the correlations between the charge
the reservoir system. These are important because we
be able to distinguish the results corresponding to differ
charges to make a measurement of the charge at all. T
can be studied most simply using the quantum traject
theory, which associates charge states with possible obse
states of the apparatus@20#.

We will assume we monitor the current in the electric
reservoir; this is equivalent to an optical homodyne measu
ment @21#. The inferred state of the charge as such a m
surement proceeds is governed by a Wiener process, whi
generated by a stochastic incrementdW. The average ofdW
over the ensemble of possible measurement results is z
Since the deviation of the Wiener process represented bydW
increases proportional toAt, the average of (dW)2 is dt. The
simplest way to manipulate such differentials is to mod
the chain rule, to give what is known as Ito calculus.

Given a particular measurement result, labeled by
Wiener incrementdW, the evolution of the charge and can
tilever is

duc&5F 1

i\
Ĥdt2

g

2 S c†c22K x

2L c1 K x

2L 2Ddt

1Ag S c2 K x

2L DdWG uc&. ~4.1!

When we insert the charge and cantilever Hamiltonian, a
normalize time by the damping rate as before, this becom

e
ti-
ge
rge
s.
-
an-

FIG. 4. When the measurement has been running for a t
around 1/g, and the cantilever amplitudes have reached their ste
state, any remaining coherence between the two charge state
cays exponentially. Here, the rate of this decay is plotted as a fu
tion of temperature, for the device described in Table I. The ma
mum decay rate of23.23109g occurs at 130 mK. Beyond this
point, the decay rate decreases with temperature, possibly bec
the increased thermal noise makes the coherent amplitude o
cantilever harder to distinguish.
8-7
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duc&5F2 i $E~c1c†!1Dnc†%dt2
1

2 S c†c22K x

2L c

1 K x

2L 2Ddt1S c2 K x

2L DdWG uc&. ~4.2!

When a particular functiondW is selected from the Wiene
ensemble, this can be solved to show the evolution of a p
stateuc&. These states form an ensemble with density ope
tor r. Of course,r can be decomposed into many ensemb
so the evolution generated by Eq.~4.2! is not unique. The
details are given in Carmichael@20#.

Mixed states of the cantilever and charge must be writ
in the form of Eq.~3.4!. However, pure states can always
written as

uc&5uA& ^ u0&1uB& ^ u1&, ~4.3!

as before we will assume the state of the cantilever is
tially coherent, so that

uc&5pua0&1qub1u. ~4.4!

The differential of a scaled coherent stateq(t)ub(t)& is

d~qub&)5S dq2
1

2
qdubu2D ub&1qḃdtc†ub&. ~4.5!

Comparison with Eq.~4.2! gives Eqs.~3.9! for the evolution
of a andb as before. Some Ito calculus manipulations sh
that

duqu25upqu2~^x&a2^x&b!dW, ~4.6!

where^x&a is the expectation value of the amplitude quad
ture x in a coherent stateua&, which is just 2 Rea. The
normalization ofuc& requires thatdupu252duqu2.

We need to compare the gain in knowledge shown by
trajectory picture to the decay of coherence modeled by
master equation. The results of the measurement are
probabilitiesupu2 and uqu2; the pure state that the observ
will infer from these has a density operator

r5upu2u0&^0u1uqu2u1&^1u1upqu~ u1&^0u1u0&^1u!.
~4.7!

The off-diagonal terms in this have magnitudeupqu; we can
average overdW to see the behavior of the density opera
for the ensemble of measurement results.

Some more routine Ito calculus gives the evolution
this:

dupqu52upquF1

8
~^x&b2^x&a!2dt

1
1

2
~ upu22uqu2!~^x&b2^x&a!dWG . ~4.8!

Since the average ofdW over different measurement resul
is zero, on average
04231
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dupqu52
1

8
~^x&b2^x&a!2upqudt. ~4.9!

If the difference between the charges associated w
statesu0& and u1& is e, then in the statepua0&1qub1&, the
uncertainty in the charge is given by

@^~ne!2&2^ne&2#1/25eupqu. ~4.10!

From Eq.~4.9!, this decreases exponentially as the measu
ment progresses, at a rate

1

8
~^x&b2^x&a!25

8D2E2

~114D2!2 . ~4.11!

This differs from the square-root decay of classical unc
tainty as measurements are averaged over time, but expo
tial decay is what we would expect for decay of coheren
@13#. For the device described in@8#, this is almost equal to
the decoherence rate. In real devices, thermal noise
cause the trajectory states to be mixed, however, the ev
tion of such mixed states is much harder to calculate.

V. DISCUSSION

To estimate the time required for our measurement,
have calculated how long it takes for an initially pure sup
position of charge states to be reduced to a mixture, and
long ~in some sense! it takes us to find out which charg
eigenstate we have been left with. While these questions
interesting in their own right~they composed the deepe
mystery of physics for the best part of a century!, it could be
argued that they do not reflect the way measurements w
be used in a real computer.

The most that we could do with measurements on p
states is state preparation. In a coherent quantum comp
this would be rather pointless though, since if we know t
initial state, we could just rotate it into the eigenstate
want. We carry out measurements to find out something
don’t know: in other words, we apply them to mixed state
with a view to finding out which of the possibilities is rea

Information theory provides tools to quantify this, such
conditional entropy and mutual information. Unfortunate
calculating any of these requires knowledge of the ensem
of trajectories generated by each component of the mixt
and the overlaps between them. In general, it is hard to
the probability distribution of trajectories; we usually ju
calculate averages. It might be worth doing this numerica
however.

There is a more straightforward limitation to our analys
in present-day devices, the thermal effects that we have
glected in the trajectory treatment utterly dominate t
vacuum noise we have considered. Hence, the measure
time will be limited by the need to average classical fluctu
tions. It is possible that future devices operating at hig
frequencies will reduce the level of thermal noise so t
quantum effects will be important. This presents the rema
able prospect of a solid cantilever with position and mom
tum known to the limit allowed by the uncertainty principl
8-8
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