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Quantum Process Tomography of a Controlled-NOT Gate
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We demonstrate complete characterization of a two-qubit entangling process—a linear optics
controlled-NOT gate operating with coincident detection—by quantum process tomography. We use a
maximum-likelihood estimation to convert the experimental data into a physical process matrix. The
process matrix allows an accurate prediction of the operation of the gate for arbitrary input states and a
calculation of gate performance measures such as the average gate fidelity, average purity, and
entangling capability of our gate, which are 0.90, 0.83, and 0.73, respectively.
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Quantum information science offers the potential
for major advances such as quantum computing [1] and
quantum communication [2], as well as many other quan-
tum technologies [3]. Two-qubit entangling gates, such
as the controlled-NOT (CNOT), are fundamental elements
in the archetypal quantum computer [1]. A promising
proposal for achieving scalable quantum computing is
that of Knill, Laflamme, and Milburn (KLM), in which
linear optics and a measurement-induced Kerr-like non-
linearity can be used to construct CNOT gates [4]. Gates
such as these can also be used to prepare the required
entangled resource for optical cluster state quantum com-
putation [5]. The nonlinearity upon which the KLM and
related [6,7] CNOT schemes are built can be used for other
important quantum information tasks, such as quantum
nondemolition measurements [8,9] and preparation of
novel quantum states (for example, [10]). An essential
step in realizing such advances is the complete charac-
terization of quantum processes.

A complete characterization in a particular input-
output state space requires determination of the mapping
from one to the other. In discrete-variable quantum in-
formation, this map can be represented as a state transfer
function, expressed in terms of a process matrix �.
Experimentally, � is obtained by performing quantum
process tomography (QPT) [11,12]. QPT has been per-
formed in a limited number of systems. A one-qubit
teleportation circuit [13] and a controlled-NOT process
acting on a highly mixed two-qubit state [14] have been
investigated in liquid-state NMR. In optical systems,
where pure qubit states are readily prepared, one-qubit
processes have been investigated by both ancilla-assisted
[15,16] and standard [17] QPT. Two-qubit optical QPT
has been performed on a beam splitter acting as a Bell-
state filter [18].

We fully characterize a two-qubit entangling gate —
a CNOT gate acting on pure input states—by QPT,
maximum-likelihood reconstruction, and analysis of
the resulting process matrix. The maximum-likelihood
technique overcomes the problem that the naı̈ve matrix
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inversion procedure in QPT, when performed on real (i.e.,
inherently noisy) experimental data, typically leads to an
unphysical process matrix. In a previous maximum-
likelihood QPT experiment [18], a reduced set of fitting
constraints was used. Here we present a fully constrained
fitting technique that can be applied to any physical
process. After obtaining our physical process matrix,
we can accurately determine the action of the gate on
any arbitrary input state, including the amount of mix-
ture added and the change in entanglement. We also
evaluate useful measures of gate performance.

The CNOT gate we characterize, in which two qubits are
encoded in the polarization of two single photons, is a
nondeterministic gate operating with coincident detec-
tion (the gate operation presented here is improved from
[19]). The gate is known to have failed whenever one
photon is not detected at each of the two gate outputs,
and we postselect against these failure modes. This gate,
described in detail in Ref. [19], produces output states
that have high fidelity with the ideal CNOT outputs, in-
cluding highly entangled states.

The idea of QPT [1,11,12] is to determine a completely
positive map E, which represents the process acting on an
arbitrary input state �:

E ��� �
Xd2�1

m;n�0

�mnÂm�Â
y
n ; (1)

where the Âm are a basis for operators acting on �. The
matrix � completely and uniquely describes the process E
and can be reconstructed from experimental tomographic
measurements. One performs a set of measurements
(quantum state tomography [20]) on the output of an
n-qubit quantum gate, for each of a set of inputs. The
input states and measurement projectors must each form a
basis for the set of n-qubit density matrices, requiring
d2 � 22n elements in each set [1,21]. For a two-qubit gate
(d2 � 16), this requires 256 different settings of input
states and measurement projectors. An alternative is
ancilla-assisted process tomography [15,16,22], where
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d2 separable inputs can be replaced by a suitable single
input state from a d2-dimensional Hilbert space.

Standard QPT reconstruction techniques typically lead
to an unphysical process matrix. This is a significant
problem, as the predictive power of the process matrix
is questionable if it predicts unphysical gate output states.
For physicality, it is necessary that the map be completely
positive and not increase the trace. The tomographic data
can be used to obtain a physical process matrix by finding
a positive, Hermitian matrix ~� that is the closest fit
in a least-squares sense and subject to a further set of
constraints [1] required to make sure that ~� represents a
trace-preserving process [23]:

P
mn ~�mnÂ

y
n Âm � I.

Practically this is achieved by writing a Hermitian
parametrization ~t (Ref. [20]) of ~�, and minimizing the
function

f�~t� �
Xd2
a;b�1

1

C

�
cab � C

Xd2�1

m;n�0

h bjÂmj�ai

	 h�ajÂnj bi~�mn�~t�
�
2


 �
� Xd2�1

m;n;k�0

~�mn�~t�Tr�ÂnÂkÂm� � �k;0

�
; (2)

where j�ai is the ath input state, j bi is the bth measure-
ment analyzer setting, cab is the measured number
of coincident counts for the ath input and bth analyzer
setting, C is the total number of coincident photon pairs
within the counting time, � is a weighting factor, and �
is the Kronecker delta. The first sum on the right repre-
sents a least-squares fit of the Hermitian matrix to the
data, and the second enforces the set of further con-
straints when the Ak are elements of the Pauli basis. The
parameter � can be adjusted to ensure that the matrix
is arbitrarily close to a completely positive map. The
technique is architecture independent —the photon
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FIG. 1 (color). Process matrix of the CNOT gate [36]. (a) Ideal p
operators (imaginary part is identically zero). (b) Maximum-li
differences in probability between experimental data and the m
measurements. The Gaussian fit � exp���2=�2� has � � 0:021. (d
expressed in the CNOT operator basis, where the 00 element repre
imaginary parts are negligible, except for one coherence of mag
element; all other elements are zero. The abscissaes are the absciss
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counts can be replaced with the relevant measurement
probabilities for any gate realization. Using our CNOT

data, we applied a global numerical minimization tech-
nique [24] to find the minimum of f�~t� (an alternative
maximum-likelihood procedure was given in [25]).

The ideal CNOT can be written as a coherent sum:
ÛCNOT � 1

2 �I � I 
 I � X
 Z � I � Z � X� of tensor
products of Pauli operators fI; X; Y; Zg acting on control
and target qubits, respectively. The Pauli basis represen-
tation of the ideal CNOT, and our experimental process, are
shown in Figs. 1(a) and 1(b). Physically, the process
matrix shows the populations of, and coherences between,
the basis operators making up the gate function (note the
sign of the coherences corresponds to the sign of the
terms in ÛCNOT), analogous to the interpretation of den-
sity matrix elements as populations of, and coherences
between, basis quantum states. In fact, process matrices
are isomorphic with density matrices in a higher dimen-
sional Hilbert space [26,27], and the trace-preservation
condition constrains physical process matrices to a sub-
space of physical state density matrices.

How well does the matrix ~� describe the raw data?
Clearly there will be some discrepancy, as the simple
matrix inversion (i.e., without maximum-likelihood
estimation) produces an unphysical process matrix. It
is possible to obtain information about the confidence
of the fit by examining the residuals [Fig. 1(c)], i.e., the
differences � between each of the 256 measurement
probabilities and the corresponding probabilities pre-
dicted from ~�. The width of this distribution, ���� �
0:021, gives an idea of the relative error in the process
tomography. We further test the maximum-likelihood
technique by comparing the output state predicted by
~� with the experimentally determined output state for
all 16 inputs. The average fidelity and standard deviation
between the predicted and measured density matrices are
0.95 and 0.03, respectively.
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FIG. 2. (a) State fidelity of our CNOT gate outputs (with ideal
CNOT output states) calculated from ~�, plotted against the
linear entropy added by the gate. A perfect experimental
CNOT process would have F � 1, S � 0 for all states.
(b) Change in tangle between input and output, and linear
entropy added, for our CNOT gate outputs, calculated from ~�.
An ideal CNOT would have points with �T distributed between
�1 and 1, and S � 0.
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Ultimately, we want to characterize the process relative
to some ideal: in this case, �CNOT, which is the process
matrix representing ÛCNOT [28]. We use the process fidel-
ity [27], FP � Tr��CNOT ~��, and find FP � 0:87. We can
obtain a graphical representation of FP by expressing the
process matrix in the ‘‘CNOT’’ basis (obtained by acting
ÛCNOT on all the Pauli basis elements). In this case, FP is
simply the height of the corner (00) element, as shown in
Fig. 1(d). Currently, we are not able to put an error bar on
FP when it is calculated from ~�. The only known tech-
nique for obtaining error estimates on the elements of the
process matrix comes from performing many
reconstructions of the process matrix with random noise
added to the raw data in each case [18]. The incorporation
of the extra constraints for trace preservation slows down
the numerical minimization to the point where it is
impractical to consider repeating the fitting procedure
for many simulated data sets.

The fact that the fidelity of the process is given by
the height of one element of ~� in the CNOT basis suggests
that FP might be obtained with far fewer experimental
settings than for full QPT. In principle, only d2 parame-
ters are required to find FP. For our (physically achiev-
able) settings [21], the process fidelity with the ideal CNOT

can be calculated directly from a 71-element subset of the
tomographic data. Importantly, any such ‘‘direct’’ rela-
tionships [29] also allow straightforward error estimates.
Using this alternative technique, we find F0

P �
0:93� 0:01 [30]. The error bar is smaller than F0

P � FP;
however, the error in FP is not presently known.

The average gate fidelity F [31] is defined as the state
fidelity [32] between the actual and ideal gate outputs,
averaged over all input states. There is a simple relation-
ship between the process fidelity and the average fidelity
for any process [27], which we apply with our data: F0 �
�dF0

P 
 1�=�d
 1� � 0:95� 0:01. We believe that the
subunit fidelity primarily arises from imperfect mode
matching (spatial and spectral overlap of the optical
beams). Mode mismatch results in imperfect nonclassical
interference between control and target photons, and
mixture of the individual qubit states as well. Mode
mismatch is not a fundamental limitation for optical
quantum gates, and guided mode implementations prom-
ise an elegant solution. Nonclassical interferences with
>99% visibility have been observed with single photons
and guided mode beam splitters [33].

Although the fidelity may seem like a simple method
for comparing processes, it is not ideal, because it does
not satisfy many of the requirements for a good measure.
A full list of the desirable properties can be found else-
where (e.g., Ref. [27]), but to some extent they can be
summarized by the concept that an ideal measure must
remain valid when used to characterize a gate as part of a
larger quantum circuit, as well as in isolation. To this end,
a more appropriate measure, CP �

���������������
1� F0

P

p
has been
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developed. Although monotonically related to the process
fidelity, it has all the properties required. CP is a metric,
so that two processes that are identical will have CP � 0;
orthogonal processes have CP � 1. The operational inter-
pretation of CP is that the average probability of error PE
for a quantum computer circuit used to compute some
function obeys PE � C2

P [27]. For our gate,
PE � 0:07� 0:01.

We also introduce a simple relation to characterize how
much mixture our gate introduces (for details, see [27]):
Tr��2� � �dTr�~�2� 
 1�=�d
 1� � 0:83, where the quan-
tity on the left hand side is the purity of gate output states,
averaged over all pure inputs. This corresponds to an
average normalized linear entropy [34] of 0.22.

An instructive method for examining the action of the
gate, in terms of fidelity, entanglement (quantified by the
tangle T [34,35]), and entropy is to make scatterplots of
these quantities for output states of the gate (Fig. 2). We
used �200 000 pure, uniformly distributed (by the Háar
measure) input states, and the ~� matrix, to predict a
distribution of output states of our experimental gate.
From this data, we can observe the relationship between
the mixture added, and both the entanglement generated
by the gate and the gate output state fidelity. The gate has
three separate spatial mode matching conditions [19], and
the contribution of each of these to the overall mixture is
state dependent, leading to the distribution of entropies.
There is a clear correlation between the fidelity and the
amount of mixture added, and the minimum output state
fidelity is 0.83. The shape of the upper lobe (�T > 0) of
the �T vs S plot [Fig. 2(b)] is readily understood by the
state-dependent mode matching considerations. States
that have the largest change in tangle correspond to cases
080502-3
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when the gate requires all three mode matching condi-
tions to be simultaneously satisfied, and since each is not
perfectly satisfied, this introduces some mixture. There
exist partially entangled input states for which �T � 0
and all three mode matching conditions apply, and these
also have higher entropy. When only one mode matching
condition applies, the gate cannot perform an entangling
operation, but only a little mixture is added. The exten-
sion of the lower lobe (�T < 0) to �T � �1 (asymmetric
with the upper lobe) can be explained by the fact that
when the gate acts to disentangle the input, the addition of
the mixture also reduces the tangle. We find that the
maximum increase in tangle of the gate (the entangling
capability [12]) is �Tmax � 0:73.

In summary, we have demonstrated the full character-
ization of a two-qubit entangling quantum process—a
controlled-NOT gate —by applying physical quantum pro-
cess tomography.With the process matrix, we can predict,
with approximately 95% fidelity, the action of the gate on
an arbitrary two-qubit input state. We determine an aver-
age gate fidelity of 0.90 using the process matrix, and
0:95� 0:01 using a set of 71 input and measurement
settings, an average error probability bounded above by
0:07� 0:01, and a maximum increase in tangle of 0.73.
The main failure mechanism of the gate can be observed
from the process matrix in the Pauli basis, and the scat-
terplots—some of the operator population is incoherently
redistributed so that the gate performs the identity opera-
tion with higher probability than for the ideal CNOT, a
mechanism that we assign primarily to the imperfect
mode matching of the interferometers.
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