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We present the temperature dependence of the uniform susceptibility of spin-half quantum antiferromagnets
on spatially anisotropic triangular lattices, using high-temperature series expansions. We consider a model with
two exchange constantsJ1 andJ2 on a lattice that interpolates between the limits of a square latticesJ1=0d, a
triangular latticesJ2=J1d, and decoupled linear chainssJ2=0d. In all cases, the susceptibility, which has a
Curie-Weiss behavior at high temperatures, rolls over and begins to decrease below a peak temperatureTp.
Scaling the exchange constants to get the same peak temperature shows that the susceptibilities for the square
lattice and linear chain limits have similar magnitudes near the peak. Maximum deviation arises near the
triangular-lattice limit, where frustration leads to much smaller susceptibility and with a flatter temperature
dependence. We compare our results to the inorganic materials Cs2CuCl4 and Cs2CuBr4 and to a number of
organic molecular crystals. We find that the formersCs2CuCl4 and Cs2CuBr4d are weakly frustrated and their
exchange parameters determined through the temperature dependence of the susceptibility are in agreement
with neutron-scattering measurements. In contrast, the organic materials considered are strongly frustrated with
exchange parameters near the isotropic triangular-lattice limit.
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I. INTRODUCTION

Understanding the interplay of quantum and thermal fluc-
tuations and geometrical frustration in low-dimensional
quantum antiferromagnets is a considerable theoretical
challenge.1–6 Research in frustrated quantum antiferromag-
nets was greatly stimulated by Anderson’s “resonating va-
lence bond”sRVBd paper7 in which he suggested that the
parent insulators of the cuprate superconductors might have
spin liquid ground states and excitations with fractional
quantum numbers, motivated by his earlier suggestion of
such a ground state for the Heisenberg antiferromagnet on
the triangular lattice.8 The Ising model on a triangular lattice
illustrates the rich physics that can arise due to frustration: it
is known to have a macroscopic number of degenerate
ground states.9 The antiferromagnetic Heisenberg model
with spatially anisotropic exchange interactions on the trian-
gular lattice is of interest both theoretically and experimen-
tally. It describes the spin excitations in Cs2CuCl4 sRef. 10d
and Cs2CuBr4 sRef. 11d and the Mott insulating phase of
several classes of superconducting organic molecular
crystals.12 Other materials for which this model is relevant
include NaTiO2,

13 CuCl2 graphite intercalation compounds,14

and the anhydrous alum, KTisSO4d2.
15 Theoretically, this

Heisenberg model is a candidate for a system with spin liq-
uid ground states and possibly excitations with fractional
quantum numbers.8,16,17For the triangular-lattice model with
spatially isotropic interactions, the preponderence of numeri-
cal evidence18–21 suggests that the ground state has long-
range magnetic order. However, making the interactions spa-
tially anisotropic can lead to a very rich ground-state phase
diagram.22

The spatially anisotropic model, defined by a nearest-
neighbor exchange constantJ1 along one axis andJ2 along
all other axesssee Fig. 1d, interpolates between the limits of
square-latticesJ1=0d, triangular-latticesJ2=J1d, and decou-
pled linear chainsJ2=0d limits.23,24 It has been studied by
spin-wave theory,25 series expansions,22 large-N
techniques,26 slave fermions,27 Schwinger bosons with
Gaussian fluctuations,28 and variational quantum Monte
Carlo techniques.29 Quantum fluctuations are largest forJ1
.0.8J2 and forJ1.4J2,

22,25 and so for these parameter re-
gions one is most likely to observe quantum disordered
phases.

From an experimental point of view, it is highly desirable
to have a definitive way to determine the values of the ex-
change parameters for individual material systems. Recently,
it has been shown how for materials with relatively small

FIG. 1. The spatially anisotropic exchange constants for the
Heisenberg model on the triangular lattice. The model can also be
viewed as a square lattice with an extra exchange along one
diagonal.

PHYSICAL REVIEW B 71, 134422s2005d

1098-0121/2005/71s13d/134422s12d/$23.00 ©2005 The American Physical Society134422-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14985807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


values for the Heisenberg exchange constantsJ this can be
done in high magnetic fields, using inelastic neutron scatter-
ing to measure the spin-wave dispersion in the field induced
ferromagnetic phase.30 The temperature dependence of the
magnetic susceptibility is one of the most common experi-
mental measurements and it would be very useful if that can
be used to determine the extent of frustration and the various
exchange constants directly. It is particularly important to
have a scheme for materials, where the very high-
temperature behavior of the systemsT@Jd is not accesible to
experiments. Previously, Castilla, Chakravarty, and Emery
pointed out how the temperature dependence of the magnetic
susceptibility of the antiferromagnetic spin chain compound
CuGeO3 implied significant magnetic frustration.31 In that
case, it constrains the ratio of the nearest- and next-nearest-
neighbor exchanges along the chain.32 Similarly, it is reason-
able to expect that the temperature dependence of the mag-
netic susceptibility should depend on frustration in two-
dimensional models also and hence constrain the ratioJ1/J2.

The Mott insulating phase of the organic molecular crys-
tals is of particular interest because under pressure the mate-
rials considered become superconducting. A possible RVB
theory of superconductivity in such materials, emphasizing
the role of frustration, has recently been proposed.33 These
materials have exchange constants in the range of several
hundred K, and their behavior has led to several puzzles.
Tamura and Kato34 measured the temperature dependence of
the magnetic susceptibility for five organic molecular crys-
tals in the familyb8-fPdsdmitd2gX swhere dmit is the elec-
tron acceptor molecule thiol-2-thione-4, 5-dithiolate, C3S5d
and the cationX=Me4As, Me4P, Me4Sb, Et2Me2P, and
Et2Me2Sb, where Me=CH3 and Et=C2H5, denote methyl
and ethyl groups, respectivelyd. They compared their results
with the predictions for the square and triangular lattices and
found that for all the materials the results could be fitted by
the high-temperature series expansion for the triangular lat-
tice. However, some and not all of them undergo a transition
to a magnetically ordered state at low temperatures.

Recently, Shimizuet al.35 showed using1H nuclear mag-
netic resonance thatk-sBEDT-TTFd2Cu2sCNd3 did not un-
dergo magnetic ordering and that the temperature depen-
dence of the uniform magnetic susceptibility could still be fit
by that for the triangular lattice. However, it should be
stressed that for these molecular crystals the underlying tri-
angular lattice of molecular dimerssto which each spin is
associatedd is not isotropic,12 and so it is important to know
the extent of the spatial anisotropy because this has a signifi-
cant effect on the possible ground state. The isotropic trian-
gular lattice is believed to be ordered, but forJ1/J2
=0.7–0.9 the anisotropic lattice could be quantum
disordered.22 Hence determination of the actual ratio is im-
portant for understanding these materials.

Here, we use high-temperature series expansions to calcu-
late the temperature-dependent uniform susceptibility of the
spatially anisotropic triangular-lattice models. Such calcula-
tions have been done previously for the pure square- and
triangular-lattice cases36,37 but not for the spatially aniso-
tropic triangular-lattice model. This method is particularly
useful here, as it allows one to cover the full range ofJ1/J2
ratios at once. Our main finding is that the susceptibility, for

these antiferromagnets, shows a broad maximum at a tem-
peratureswhich we call the peak temperatureTpd of order the
Curie-Weiss temperature. If the exchange constants are
scaled to give the same peak location, the magnitude of the
peak susceptibility varies with frustration. The unfrustrated
models, represented by the square-lattice and the linear-chain
limits have similar peak susceptibilities. The triangular-
lattice deviates the most from them, having a much smaller
peak value, and a much flatter temperature dependence. The
parameter regimes, where the ground states could be spin
disordered, do not stand out in these calculations22 and are
similar to the triangular-lattice limit. The reason for this is
probably that at the temperature scales considered the sus-
ceptibility is largely determined by short-range frustration,
rather than long-length scale physics such as the existence of
spin liquid states at zero temperature.

Comparison with the measured susceptibility of Cs2CuCl4
and Cs2CuBr4 leads to exchange parameters in agreement
with previous neutron measurements. For the organic mate-
rials, it shows that they are all close to the isotropic
triangular-lattice limit. But, some of them could be weakly
anisotropic, leading to a quantum-disordered ground state.
Since the organic materials are close to a Mott metal-
insulator transition, we consider the possible role of
multiple-spin exchange. Such interactions can be necessary
for a quantitative description of such materials.38

II. FRUSTRATED MODEL

The spatially anisotropic triangular lattice is shown in Fig.
1. The antiferromagnetic Heisenberg model is described by
the Hamiltonian

H = J1o
a

Si ·Sj + J2o
b

Si ·Sj , s1d

where the first sum runs over all nearest-neighbor pairs along
the x axis and the second sum runs over all other nearest-
neighbor pairs. The vectorsS represent spin-1/2 operators. It
is evident that, forJ1=0, the model is equivalent to the
square-lattice Heisenberg model, forJ2=J1 it is equivalent to
the isotropic triangular lattice model, and in the limitJ2
→0, it is equivalent to a model of decoupled linear chains.

We now discuss how we might quantify how the amount
of frustration in the model varies withJ2/J1. Possible mea-
sures of frustration which have been discussed before in-
clude:

sid The number of degenerate ground states.
sii d How the competing interactions prevent the pairwise

collinear alignment of spins that would give neighboring
spins the lowest interaction energy.

In order to quantifysii d, Lacorre39 considered classical
spins and introduced a “constraint” functionFc=−E0/Eb
which is the ratio of the ground-state energyE0 of the system
to the “base energy”Eb which is the sum of all bond energies
if they are independently fully satisfied, i.e.,

Eb = − o
i j

uJij usSi ·Sjdmax. s2d

Lacorre suggested thatFc has values ranging from21 sno
frustrationd to 11 scomplete frustrationd. However, for spin
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models that have a traceless Hamiltonian the ground-state
energy cannot become positive. So,Fc must lie between21
sunfrustratedd and 0 sfully frustratedd—the largest possible
value ofFc is zero. Considering a single isosceles triangular
plaquette taken from the lattice in Fig. 1, Lacorre found that
for classicalslarge-Sd spins as a function ofJ2/J1, Fc had its
maximum values−1/2d for the isotropic trianglesJ1=J2d.
The same result holds for the infinite lattice.

Kahn40 recently stressed that for Heisenberg spins the de-
generacy of the ground state depends on the value of the spin
quantum numberS as well as the geometry of the plaquette.
For example, on an isotropic triangle, the ground state is
fourfold degenerate forS=1/2 butnondegenerate forS=1.41

On a single isosceles triangle, forS=1/2, theground state
has total spinST=1/2 and istwofold degenerate forJ1ÞJ2

and fourfold degenerate at the isotropic pointJ1=J2. We find
that bothFc is maximals−1/3d and the ground state has the
highest degeneracy forJ1=J2. On the other hand, for spin
S=1 the ground state is a nondegenerate singletsST=0d for a
wide region near the isotropic limits0.5,J1/J2,2d, is
threefold degeneratesST=1d outside this rangesJ1/J2,0.5
or J1/J2.2d and has accidental fourfold degeneracy at the
special pointsJ1/J2=0.5,2. The functionFc has no singular
maximum, but a plateau at20.5 for the whole range 0.5
,J1/J2,2, so the spin-1 case is much less frustrated than
the extreme spin-1/2 case.

The above properties of the degeneracy and constraint
function are not unique to quantum spins but also hold for
the Ising model on the same lattice. For a single isosceles
triangle and forS=1/2 theground-state energy changes at
J1=J2 from −J1/4 for J1.J2, to s−2J2+J1d /4 for J1,J2.
The base energy isEb=−sJ1+2J2d /4 and henceFc has its
maximum values−1/3d whenJ1=J2. The degeneracy of the
ground state is 2sonly up-down symmetryd for J1,J2, 6
sonly all up and all down are not ground statesd for J1=J2,
and 4seither one of theJ2 bonds can be dissatisfiedd for J1
.J2. So indeed by both measures forJ1=J2 the model on a
triangle is most frustrated. Extending this analysis for a
single triangle to a large lattice ofN sites the difference is
even more dramatic as the degeneracy is9 expscNd for J1

=J2, and is easily seen to be only 2 forJ1,J2 and
expsc8N1/2d for J1.J2, wherec, c8 are numbers of order 1.
So the model has the largest ground-state degeneracy at the
isotropic point.

Although this paper is concerned with the quantum spin
model, the reason we mention the above properties of clas-
sical models is because an important question is whether our
results concerning the connection between the amount of
frustration and the temperature dependence of the suscepti-
bility are also exhibited by the corresponding classical
Heisenberg and Ising models. This may be the case if the
temperature dependence of the susceptibility down to the
peak is largely determined by the frustration and correlations
associated with a single placquette.

With regard to measures of frustration we also note from
an experimental point of view two measures that have been
proposed previously.6 sid The ratio of the Curie-Weiss tem-
perature to the magnetic ordering temperature. This increases

with increasing frustration.sii d The amount of entropy at
temperature scales much less than the exchange energy.

III. HIGH-TEMPERATURE SERIES EXPANSIONS

The high-temperature series expansion method has been
extensively applied to and tested for quantum lattice
models.42 We have obtained high-temperature expansions for
arbitrary ratio ofJ1/J2 to orderb10. We express the uniform
susceptibility, per mole, as

x =
NAg2mB

2

kT
x, s3d

whereNA is Avogadro’s number,g the g factor, mB a Bohr
magneton,k the Boltzmann constant, andT the absolute tem-
perature. The dimensionless quantityx can be expressed in a
high-temperature expansion inJ2/T andy=J1/J2, as

x = o
n=0

sJ2/Tdno
m=0

n

cm,ny
m/s4n+1n!d. s4d

The integer coefficientscm,n complete to ordern=10 are pre-
sented in Table I.

IV. CURIE-WEISS BEHAVIOR AND BEYOND: SERIES
EXTRAPOLATIONS

As is well known, the high-temperature behavior of the
susceptibility, per mole, is given by a Curie-Weiss law

x =
C

T + Tcw
. s5d

For our model, the Curie constant

C = NAg2mB
2/4k = Ag2, s6d

with A=0.0938 in cgs units. The Curie-Weiss temperature is

Tcw = J2 + J1/2. s7d

From an experimental point of view, an important question
is: How low in temperature is the Curie-Weiss law valid? To
investigate this, we plot in Fig. 2sad, the normalized inverse
susceptibility as a function ofT/Tcw for several parameters,
together with the Curie-Weiss law. It is clear that belowT
,10Tcw, the Curie-Weiss fit is no longer accurate. Devia-
tions from the Curie-Weiss behavior are the smallest near the
triangular-lattice limit, and largest for linear chains. If one
were to fit the inverse susceptibility below some temperature
to a Curie-Weiss behavior, one would get a systematically
larger Curie-Weiss temperature. To quantify this, we define
an effective temperature-dependent Curie-Weiss constantTcw

eff

as

Tcw
eff = − T −

x

dx/dT
. s8d

If one was to fitx−1 to a linear curve in the vicinity of some
temperaturesTd and use the intercept to estimate the Curie-
Weiss constant, one would getTcw

eff. Figure 2sbd shows how
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Tcw
eff varies with temperature for several parameter ratios. It

shows that attempts to fit to a Curie-Weiss behavior below
four times the Curie-Weiss temperature can result in an over-
estimate in the Curie-Weiss constant by less than 20% for the
isotropic triangular lattice, whereas for the square lattice an
error of 40% is possible. Similar observations were made
previously for the classical Heisenberg antiferromagnet on a
kagomélattice.43

To obtain the susceptibility forTøTcw, we need to de-
velop a series extrapolation scheme. We have usedd-log
Padé and the integral differential approximants to extrapolate
the series.44–46 For the linear chain model we use the very
long series given by Takahashi47 and for the square- and
triangular-lattice cases we have also used the longer
series.36,37 In the former case, the calculated susceptibility
agrees well with the exact results obtained from thermody-
namic Bethe-ansatz calculations.48 For the square- and
triangular-lattice cases it also agrees well with previous nu-
merical calculations.36,49 In all cases, several integral/
d-log-Pade approximants are calculated, and in the plots be-
low two outer approximants are shown, i.e., a large number
of approximants lie between those shown. Based on our gen-
eral experience with series extrapolations,50 we feel confi-
dent that as long as the upper and lower curves are not too
far from each other, they bracket the true value of the ther-
modynamic susceptibility. In general, we find that the ex-
trapolations work well down to the peak temperature and
begin to deviate from each other below the peak. It is not
possible to address the zero- and very low-temperature be-
havior of the susceptibility from these calculations.

In Fig. 3, we show the uniform susceptibility, for different
y=J1/J2, as a function of temperature. For allJ1/J2 ratios,
there are two plots showing the upper and lower limits of
extrapolated values as discussed in the previous paragraph.

The susceptibility is scaled to have a peak value of unity, and
the temperature axis is scaled by the peak susceptibility to a
dimensionless relative temperature. One finds that the sus-
ceptibility peaks at a comparable relative temperature for the
unfrustrated square-lattice and linear chains. The primary
difference between these two models lies in the behavior of
the susceptibility below the peak. It decreases much more
slowly for the linear chains than it does for the square lattice.
We believe that this is related to the fact that longer-range
antiferromagnetic correlations grow much faster for the
square lattice than they do for linear chains. Thus the shift of
the spectral weight away from zero wave vector occurs more
gradually for linear chains. For the triangular lattice, the peak
is shifted to much lower relative temperatures. Note that the
triangular lattice has a peak at a temperature even lower than
for J1/J2=0.8, whereT=0 calculations show an absence of
long-range order.22

From Fig. 3 it is clear that frustration leads to a reduction
in the magnitude of the productxpTp as well as a reduction
in the peak temperatureTp with respect to the Curie-Weiss
temperatureTcw. These parameters are plotted in appropriate
dimensionless units in Fig. 4 as a function of the frustration
ratio J1/ sJ1+J2d, and both have a minimum around the
triangular-lattice limitJ1=J2. To connect with experiments
we also show the ratio of the peak temperatureTp and the
Zeeman energy required to fully polarize the spinsgmBBsat,
related to the couplings strength by30

gmBBsat= 52J1 + 2J2 +
J2

2

2J1
for J2 ø 2J1

4J2 for J2 ù 2J1.

s9d

Figure 4 also shows the ratioxs4Tpd /xp, which is a measure
of the flatness of the curves on the high-temperature side of

TABLE I. Series coefficients for the high-temperature expansions of the uniform susceptibilityx in Eq.
s4d. Nonzero coefficientscm,n up to ordern=10 are listed.

sm,nd cm,n sm,nd cm,n sm,nd cm,n sm,nd cm,n

s0,0d 1 s3,5d 27680 s7,7d 20480 s7,9d 2129328128

s0,1d 24 s4,5d 1920 s0,8d 4205056 s8,9d 2159694848

s1,1d 22 s5,5d 2672 s1,8d 258877952 s9,9d 19133440

s0,2d 16 s0,6d 23488 s2,8d 110985216 s0,10d 22574439424

s1,2d 32 s1,6d 293376 s3,8d 2501760 s1,10d 52032471040

s0,3d 264 s2,6d 111552 s4,8d 101972480 s2,10d 2735774720

s1,3d 2264 s3,6d 411392 s5,8d 284013056 s3,10d 229924454400

s2,3d 296 s4,6d 2115968 s6,8d 29817856 s4,10d 15318384640

s3,3d 16 s5,6d 70656 s7,8d 215618048 s5,10d 38033190912

s0,4d 416 s6,6d 212768 s8,8d 2923776 s6,10d 240192143360

s1,4d 1216 s0,7d 207616 s0,9d 2198295552 s7,10d 48646737920

s2,4d 2400 s1,7d 21766016 s1,9d 2571327488 s8,10d 213533921280

s3,4d 2512 s2,7d 27739648 s2,9d 3934844928 s9,10d 4594278400

s4,4d 80 s3,7d 21804992 s3,9d 24115195904 s10,10d 2869608960

s0,5d 24544 s4,7d 23373440 s4,9d 3772164096

s1,5d 210880 s5,7d 689920 s5,9d 21888413696

s2,5d 220480 s6,7d 120064 s6,9d 1134317568
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the peak. A larger value of this ratio implies a slower decay
of the susceptibility with temperature. These quantities
clearly show that the triangular lattice is the most frustrated,
with the lowest peak temperature relative to the scale of the
exchange interactions,Tp/Tcw or kTp/gmBBsat, the smallest
dimensionless ratioTpxp and the flattest peak denoted by the
largestxs4Tpd /xp. The plots look very symmetrical around
the triangular-lattice limit, and there is nothing anomalous
about the case ofJ1/J2=0.8, where zero-temperature studies
give a disordered and gapped dimerized ground state.22 We
note that all of the extracted parameters in Fig. 4 are from the
susceptibility curve at temperatures above the peak and in

order to see evidence for the presence of a gap forJ1/J2
,0.8 as opposed to no gap in the isotropic triangular-lattice
case one would be required to analyze the susceptibility
curve at temperatures much below the estimated gapD
,0.25J2,0.5Tp in the dimerized state,22 and such low tem-
peratures are not accessible by the present series calcula-
tions.

V. COMPARISON WITH EXPERIMENTAL SYSTEMS

In this section, we compare our theoretical results with
experimental data on Cs2CuCl4, Cs2CuBr4, and various or-

FIG. 2. sColor onlined sad In-
verse magnetic susceptibility as a
function of temperature in relative
units of the Curie-Weiss constant
Tcw. The susceptibility departs
from the high-temperature Curie-
Weiss limit fEq. s4dg already at
temperatures a few timesTcw due
to short-range correlations. The
smallest departure occurs for the
triangular lattice. sbd Effective
Curie-Weiss constantTcw

eff vs tem-
perature found by a local fit of the
susceptibility to the Curie-Weiss
form, Eq.s7d. The plot shows that
fitting data below 4Tcw can result
in large overestimates of the
Curie-Weiss constant.
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ganic materials. In Fig. 5, we show the susceptibility as a
function of temperature for differentJ1/J2 ratio, where the
temperature is scaled by the peak temperaturesTpd and the
susceptibility itself is scaled by the peak temperature to give
a dimensionless reduced susceptibility. This plot is very in-
structive as it allows one to clearly read out theJ1/J2 ratios.
Also shown are the susceptibilities for the materials
Cs2CuCl4 and Cs2CuBr4, with theirg values taken from elec-
tron spin resonance experiments.52,53In this plot with no free
parameters, it is apparent that theJ1/J2 ratio is near 3.0 for
Cs2CuCl4 and near 2.0 for Cs2CuBr4. Some of these results
can also be seen from Fig. 4, where key dimensionless ratios
of the temperature-dependent susceptibility are shown.

A more detailed comparison of the susceptibility for the
materials, Cs2CuCl4 and Cs2CuBr4, allowingg to vary freely
is shown in Fig. 6. Onceg is allowed to vary, the material
Cs2CuCl4 can be fit above the peak not too badly even with
the pure square-lattice modelsnot shownd. However, a much
improved fit happens withJ1/J2=3 andJ2=1.49 K in excel-
lent agreement with the exchange values extracted directly
from neutron-scattering measurements.30 Also shown are fits
to linear chain and triangular-lattice limits, which bracket
J1/J2=3. One can see significant deviation in both limits.
The large deviation from the isotropic triangular-lattice case
shows that frustration is relatively weak in this material.

For Cs2CuBr4, the best fit forJ1/J2=2 arises withJ2
=6.99 K. However, wheng is allowed to vary, a range of
J1/J2 values from 1.8 to 2.8 give comparable fits, several of
which are shown in figure. In general, the high-temperature
data are better fit by a largerJ1/J2 value, whereas the data at
and around the peak are better fit by a smallerJ1/J2 value.
No choice of parameters can fit the very low-temperature
datasbelow half the peak temperatured. These values are also
consistent with previous estimates. Using the value of the
incommensurate ordering wave vectorQ=0.575s1db* ob-
served by neutron scattering,11 classical spin-wave theory

FIG. 3. sColor onlined Suscep-
tibility vs temperature for differ-
ent values ofJ1/J2. The peak sus-
ceptibility xp and the Curie-Weiss
constantC=Ag2 are used to define
a dimensionless relative tempera-
ture scale. As discussed in the
text, the two curves shown for
eachJ1/J2 value are due to differ-
ent extrapolation schemes. For the
most frustrated triangular lattice
the peak in the susceptibility oc-
curs at the lowest relative
temperature.

FIG. 4. sColor onlined Variation of the key parameters of the
susceptibility curvexsTd as a function of the frustration ratio
J1/ sJ1+J2d: location of peak temperatureTp relative to the overall
energy scale of the couplings, given by the Curie-Weiss constant
Tcw or the saturation fieldBsat required to overcome all antiferro-
magnetic interactionsssee text for more detailsd, dimensionless
product of peak susceptibility and peak temperatureTpxp/Ag2 swith
A=0.0938 in cgs unitsd, and flatness of the susceptibility curve
xs4Tpd /xsTpd. The isotropic triangular latticesJ1=J2d is the most
frustrated with the lowest relative peak temperatureTp/Tcw, lowest
peak susceptibility, and flattest curve at temperatures above the
peak. The circles are values extracted from the experimental data
for Cs2CuCl4 from Ref. 51 and the squares are for Cs2CuBr4 sRef.
11d. This suggests that the ratioJ1/J2 is close to 3.0 and 2.0, re-
spectively, for these two materials. The former is consistent with
independent estimates from neutron scatteringsRef. 30d.
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gives J1/J2=2.14 whereas including quantum renormaliza-
tion corrections as predicted by large-N SpsNd theory26 gives
J1/J2,1.8, and series expansions22 gives J1/J2,1.4. This
calls into question the rather large renormalization of the
ordering wave vector found in the series expansion study.

Now we turn to the organic materials. In Fig. 7, we
show a corresponding comparison for the material
k-sBEDT-TTFd2Cu2sCNd3. Only the theoretical data for the
isotropic triangular lattice are shown. One can see an impor-
tant difficulty in using theTp-scaled plots near the triangular-
lattice limit to determineJ1/J2. For the organic material,
k-sBEDT-TTFd2Cu2sCNd3, the measured susceptibility is
very flat and it is difficult to determine the peak temperature
Tp. From the data, the peak temperature appears to be be-
tween 65 and 95 K. Using the values forTp of 65 and 95 K,
one can either get the data to fall above or below the
triangular-lattice values. A suitably chosen peak temperature
allows one to get very close agreement with the triangular-
lattice limit. This peak temperature can also be used to de-
termine the exchange constant. However, for the triangular
lattice, there is theoretical uncertainty in the peak location.
Hence it is more accurate to directly fit the experimental data
to theory to obtain the exchange constants. Fork-sBEDT
-TTFd2Cu2sCNd3, fixing g=2.006 andJ1=J2, the best fit
leads toJ1=256 K, a value close to that obtained by Shimizu
et al.35

The ability to fit flat susceptibilities to the isotropic
triangular-lattice model is further illustrated in Fig. 8, where
the susceptibility data are shown from five different molecu-
lar crystals in the familyb8-fPdsdmitd2gX swhere dmit is the
electron acceptor molecule thiol-2-thione-4, 5-dithiolate,
C3S5d and the cationX=Me4As, Me4P, Me4Sb, Et2Me2P,
and Et2Me2Sb, where Me=CH3 and Et=C2H5, denote me-
thyl and ethyl groups, respectivelyd. We have taken theg
value to be 2.04. By adjusting the peak temperature, they can

all be brought to rough agreement with the triangular-lattice
model. Assuming isotropic interactions, andg=2.04, we es-
timate the exchange constants to be 283, 289, 270, 279, and
247 K, respectively. It is clear that none of these organic
materials are far from the isotropic triangular-lattice limit.
But, we emphasize that by this method it is difficult to dis-
criminate betweenJ1/J2 ratios in the range 0.85,J1/J2
,1.15. Note that the latter regions also include quantum
disordered phases.

To avoid the problem of determining the peak tempera-
ture, we go back to Fig. 3, and scale the data by the peak
susceptibility. These can be inferred accurately from the data,
even when the peak temperature cannot. In Fig. 9, we show
such a comparison of experimental data with theory. The
data fork-sBEDT-TTFd2Cu2sCNd3 lie extremely close to the
isotropic triangular-lattice case. The other materials deviate
from the J1=J2 limit, but still lie in the range 0.85,J1/J2
,1.15. If we assume that the systems are described by the
isotropic triangular lattice, the exchange constant can be read
of from the peak susceptibility by using the relationJ
=0.0035g2/xp. This leads to exchange constants of 250 K for
k-sBEDT-TTFd2Cu2sCNd3 and 280, 289, 260, 273, and 236
K for the other materials. These values are close to those
obtained from the best fits.

It should be noted here that in the experimental data, a
Curie term from magnetic impurities and a diamagnetic term
has been subtracted and these can also influence the determi-
nation of exchange parameters. However, it is unlikely that
any of these materials are very far from the isotropic
triangular-lattice limit.

From the fits the Heisenberg couplings are comparable for
all materials and around 250 K. We now consider how these
compare with quantum chemistry calculations. The exchange
constants can be related to parameters in an underlying Hub-
bard model12,34,54whereJ=2t2/U and t is the intersitesi.e.,
interdimerd hopping andU is the cost of double occupancy

FIG. 5. sColor onlined Suscep-
tibility vs temperature in units of
the peak temperatureTp. The iso-
tropic triangular lattice sgreen
lined has the lowest and flattest
susceptibility. Solid squares show
data points for the anisotropic tri-
angular lattice material Cs2CuCl4
sa axis, Ref. 51d, solid circles
show data for Cs2CuBr4 from Ref.
11.
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for two electrons or holes on a dimer. If the Coulomb repul-
sionU0 on a single molecule within the dimer is much larger
than the intermolecular hoppingt0 within a dimer thenU
.2t0. For b8-fPdsdmitd2gX electronic structure calculations
based on the local-density approximationsLDA d sRefs. 34,
54, and 55d give t,30 meV andt0,500 meV, and soJ
,50 K. For k-sBEDT-TTFd2Cu2sCNd3 Hückel electronic
structure calculations givet,50 meV andt0,200 meV.56,57

The resultingU.400 meV is comparable to that deduced
from measurements of the frequency-dependent optical con-
ductivity of similar k materials.12,58 This value of U is
smaller than values deduced from quantum chemistry calcu-

lations on isolated dimers, which do not take into account
screening.59 Using the above values oft and U gives J
,100 K.

Note that the quality of fit is best for the material
k-sBEDT-TTFd2Cu2sCNd3, where it really fits well with the
isotropic triangular-lattice model. However, it is also a sys-
tem that does not order down to very low temperatures.35

This remains a puzzle. The quality of fits was not as good for
the other organic compounds. It is quite possible that the
organics have other interactions not captured by the Heisen-
berg model. In a Mott insulator when a perturbation expan-
sion in t /U is used to derive an effective Hamiltonian for the

FIG. 6. sColor onlined Fits of
the susceptibility in Cs2CuCl4 sad
and Cs2CuBr4 sbd, see text.
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spin degrees of freedom one finds that to fourth order int /U
there are cyclic exchange terms in the Hamiltonian.61 If
U / t,10 then these terms may be important. Recent neutron-
scattering studies showed the effect of such interactions on
the dispersion of spin excitations in La2CuO4.

38

The metallic phase of the organics are in the regime
U / t,5–10 sRef. 12d and so one might expect multiple-
exchange terms to be relevant in the insulating phase. For the
triangular-lattice triple exchange is also possible. However,
for spin-1/2 this just corresponds to a renormalization of the
nearest-neighbor two-particle exchange.62 The frustrating ef-
fects of multiple-spin exchange on the isotropic triangular

lattice lead to rich physics and have an experimental realiza-
tion in monolayers of solid3He on graphite.63 Let J denote
the nearest-neighbor exchange andJ4 the multiple spin ex-
change, involving the four spins comprising a pair of trian-
gular plaquettes. This model has been studied extensively
and exact diagonalization calculations suggest that the 120°
Néel state, which is the ground state forJ4=0, is destroyed
when J4.0.1J.64 It is appealing to think that this could be
the explanation for whyk-sBEDT-TTFd2Cu2sCNd3 does not
magnetically order, whereas it should if it is really described
by the isotropic triangular-lattice nearest-neighbor model.
This material is close to a Mott-Hubbard metal-insulator

FIG. 7. sColor onlined Com-
parison of the temperature depen-
dence of the magnetic susceptibil-
ity of k-sBEDT-TTFd2Cu2sCNd3

with series expansions calcula-
tions for isotropic triangular lat-
tice. The experimental data are
from Ref. 35. A value of g
=2.006 was used based on elec-
tronic spin resonance measure-
mentssRef. 56d. We see that this
material is well described by a
Heisenberg model on the isotropic
triangular lattice, with peak tem-
peratureTp=85 K. Note also that
the agreement is quite sensitive to
changes in the value ofTp, a
quantity that is difficult to pin-
point in a flat curve.

FIG. 8. sColor onlined Com-
parison of the temperature depen-
dence of the magnetic susceptibil-
ity of five different organic
molecular crystals from the family
b8-fPdsdmitd2gX sdifferent X are
indicated with Me=CH3, Et
=C2H5d with series expansions for
isotropic triangular lattice. Experi-
mental data are from Ref. 34. A
value of g=2.04 was used based
on electronic spin resonance mea-
surementssRef. 60d. All of these
materials are well described by a
Heisenberg model close to that for
the isotropic triangular lattice, as-
suming that ring-exchange inter-
actions do not need to be taken
into account.
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transition since the insulating state is destroyed under pres-
sure or uniaxial stress.56,65 However, it is not clear thatJ4
will be large enough in the actual material. The expressions
derived from at /U expansion give61 J4/J=10st /Ud2. This
means one must haveU,8t to obtain a spin liquid. How-
ever, exact diagonalization of the Hubbard model on the iso-
tropic triangular lattice at half filling, shows that the insulat-
ing state only occurs forU.12t.66 Hence it is not clear that
multiple-spin exchange could account for the fact that this
material appears to be close to the isotropic triangle but does
not magnetically order. However, to definitively resolve this
issue would require a detailed study of the spatially aniso-
tropic model with four-spin exchange.

VI. CONCLUSIONS

In this paper, we have developed high-temperature expan-
sions for the uniform susceptibility of the spatially aniso-
tropic triangular-lattice Heisenberg model. We find that the
temperature dependence of the susceptibility at temperatures
of order the exchange constants are sensitive to frustration,
that is, the ability of spins to align antiparallel to all their
neighbors. The square-lattice and linear chain limits have
similar reduced susceptibilities at and above the peak, while
the triangular-lattice limit appears most frustrated, with the
smallest and flattest susceptibilities. Comparison with vari-
ous experimental systems shows that a variety of organic
materials are close to the isotropic triangular-lattice limit,
whereas the inorganic materials Cs2CuCl4 and Cs2CuBr4 are
much less frustrated.

It would be nice to have a simple formalism which could
provide an analytic relation between the peak susceptibility
and exchange parameters. Qualitatively, our arguments show
that short-range frustration, or the inability to align parallel

with respect to neighbors as quantified by the parameterFc

in Sec. II, is maximum near the isotropic limit and this is
what pushes the peak in the susceptibility down to lower
temperatures. For a wide range of frustrated antiferromagnets
it has been previously pointed out that the Curie-Weiss law
holds to relatively low temperatures.6,67 Several theoretical
models, mostly for classical spins, have been developed to
explain this.68,69 Basically, frustration leads to individual
plaquettes or spin clusters behaving essentially indepen-
dently. However, our models are less frustrated than that and
hence always develop substantial correlations. This means
that any simplistic explanation is unlikely.

In organic molecular crystals a weak temperature depen-
dence of the magnetic susceptibility is often interpreted as
being evidence for metallic behavior, since for a Fermi liquid
the susceptibility is weakly temperature dependent. How-
ever, this is inconsistent with the fact that in most of these
materials above temperatures of about 50 K there is no
Drude peak in the optical conductivity and the resistivity has
a nonmonotonic temperature dependence and values of order
the Mott limit.12,70This work shows that due to the substan-
tial magnetic frustration the susceptibility can actually be
due to local magnetic moments, even though in the range up
to 300 K one does not see a clear Curie temperature depen-
dence.

In a future study we will consider the temperature depen-
dence of the specific-heat capacity for this model. A previous
study71 of the square lattice, single chain, and triangular-
lattice Heisenberg model found that the peak in the specific
heat versus temperature curve occurred aroundJ for all mod-
els but was much broader for the triangular lattice. A related
issue was that as the temperature decreases the entropy de-
creases much more slowly for the triangular lattice than the
others.

FIG. 9. sColor onlined Param-
eter free comparison of the sus-
ceptibility data on organic materi-
als with theoretical plots scaled by
the peak susceptibilityxp, which
is easy to measure accurately for a
flat curve. It is evident that the
materials deviate only slightly
from the isotropic triangular-
lattice model and haveJ1/J2 ra-
tios in the range 0.85–1.15.
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Note added in proof. Recently, we became aware of other
recent work by O. I. Motrunich72 and S. S. Lee and P. A.
Lee,73 which also considered the possible role of multiple
spin exchange ink - sBEDT-TTFd2Cu2sCNd3.
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