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Abstract 
       

 We investigate analytically the First and the Second Law (of Thermodynamics) 

characteristics of fully developed forced convection inside a porous-saturated duct of rectangular 

cross-section. The Darcy-Brinkman flow model is employed. Three different types of thermal 

boundary conditions are examined. Expressions are presented for the Nusselt number, the Bejan 

number, and the dimensionless entropy generation rate in terms of the system parameters. The 

conclusion of this analytical study will make it possible to compare and evaluate alternative 

rectangular duct design options in terms of heat transfer, pressure drop, and entropy generation. 
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Nomenclature 

a channel width to height ratio   

A parameter defined by Eq. (2-b) 

A1,A2 constants  

Be Bejan number 

Br Darcy-Brinkman number
2

 
U H

q K

µ
′′

  

Br* modified Brinkman number 
2

2

*qkT

U

w

µ
 

cP specific heat at constant pressure, [J/kg⋅K] 

Da Darcy number K/H2 

DH hydraulic diameter 4Ha/(a+1) [m]           

Dn coefficient defined by Eq. (2-c) 

FFI fluid friction irreversibility per unit volume [W/m3K] 

Fn coefficients defined by Eq.(25) 

G negative of the applied pressure gradient [Pa/m] 

H half channel width [m] 

HTI heat transfer irreversibility per unit volume [W/m3K] 

k porous medium thermal conductivity [W/m2⋅K] 

K  permeability [m2] 

Kn  coefficients defined by Eq. (19) 

m  parameter 2/122 )( ns λ+  

M  viscosity ratio 
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Ns  dimensionless entropy generation Eq. (9) 

Ns*  cross-sectional average of Ns 

Nu Nusselt number defined by Eqns (5-a,b) 

Nui Nusselt number for the boundary condition case i (i =1, 2, 3) 

Ph  heated perimeter of the duct [m] 

Pe the Péclet number kUDcPe Hp /ρ=  

'q   wall heat transfer rate per unit length of the duct [W/m] 

q" heat transfer rate per unit heat transfer area of the duct Eq. (5-b) [W/m2] 

q* dimensionless heat flux, Eq.(10) 

S porous media shape parameter 2/1)( −= MDas   

genSɺ  Entropy generation rate per unit volume [W/m3K] 

T*  local absolute temperature [K] 

Tm  bulk temperature [K] 

Tw wall temperature [K] 

u* x-velocity [m/s] 

û  dimensionless velocity Eq.(2-a) 

U  average velocity [m/s]  

*x  longitudinal coordinate [m] 

x dimensionless coordinate, (x*/H)/Pe  

*y ,z* coordinates [m] 

y,z  (y*,z*)/H   
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Greek symbols 

θ   dimensionless temperature 

bθ   dimensionless bulk temperature 

nλ    eigenvalues 

µ   fluid viscosity [N⋅s/m2] 

µ~    effective viscosity [N⋅s/m2] 

ρ fluid density [kg/m3] 

φ  dimensionless viscous dissipation function 
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1. INTRODUCTION 

 

There has been renewed interest recently in the problem of forced convection in porous media. 

An increasingly important application is in cooling electronics, with coolants such as poly-alpha-

olefin flowing through a porous metal matrix. Narasimhan and Lage [1] offers an analysis of 

forced convection through an aluminum based porous matrix heated from top and bottom to 

model the heat generated by the electronic circuits in radar equipment. Commensurate with the 

generic importance of the area, a substantial amount of literature on this topic is already available 

as reported in Nield and Bejan [2] and Cheng [3]. Circular tubes or semi-infinite parallel plates 

channel are the most widely used geometries in fluid flow and heat transfer devices for both clear 

fluid or porous media such as water distribution systems, heat exchangers, and similar 

applications. Fluid flow and heat transfer characteristics of such problems have been analyzed in 

detail for various boundary conditions. For circular tubes or parallel plates, the simplicity of the 

geometry allows analytical solutions of closed form. Thus the question naturally arises as to 

whether analytical solutions for more complicated cross-sections are possible.  

 The method of weighted residuals was exploited by Haji-Sheikh and Vafai [4] in their study 

of thermally developing convection in ducts of various shapes. In a subsequent study, Haji-

Sheikh [5] has applied a Fourier series method to investigate fully developed forced convection 

in a duct of rectangular cross section. Haji-Sheikh et al. [6-10] have investigated heat transfer 

through porous ducts of arbitrary cross-sections. Their focus was to find heat transfer 

characteristics of the thermal entrance region.  

 Applying a Fourier series method, Hooman and Merrikh [11] have analytically investigated 

heat and fluid flow in a rectangular duct occupied by a hyperporous medium. In ducts of 
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arbitrary cross section, Hooman [12-14] has reported closed form solutions for the fully 

developed temperature distribution and the Nusselt number as well as the local entropy 

generation rate by applying the Darcy momentum equation. 

 The groundbreaking work by Bejan [15] introduced the concept of entropy generation 

analysis due to fluid flow and heat transfer as a powerful tool to evaluate the effectiveness of 

different configurations. Since entropy generation destroys the work availability of a system, it 

makes good engineering sense to focus on irreversibility of heat transfer and fluid flow processes 

to understand the associated entropy generation mechanisms. The literature on the topic is rich 

for clear fluids through unobstructed ducts (a recent survey of literature on the topic can be found 

in [16-17]). However, modeling entropy generation in porous media is comparatively more 

problematic since modeling viscous dissipation, and consequently the fluid friction irreversibility, 

in a non-Darcy porous medium is a controversial issue. For the Darcy flow model the viscous 

dissipation is modeled by a velocity square term only (see for example Baytas [18-19] or 

Hooman [12-14]) but when the boundary and inertia effects are to be considered there are three 

alternatives for viscous dissipation term. Nield [20] argued that the viscous dissipation function 

should remain equal to the power of the drag force when the Brinkman equation is considered. 

On the other hand, Al-Hadrami et al. [21] have proposed a clear flow compatible model. Nield et 

al. [22] have combined the three alternatives to a single equation treating both the isothermal and 

isoflux boundary conditions. A similar attempt was made by Hooman et al. [23-24] for a 

developing flow. Nield [25] has commented on the alternative models applied so far. He 

emphasized that one should not use just the term involving velocity derivatives. In the light of 

Nield [25], Hooman and Ejlali [26] and Hooman et al. [27] have questioned some of the articles 
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that neglected the Darcy dissipation term. One observes that further work on modeling entropy 

generation in a porous medium is called for.  

 Considering the two problems concurrently, the energy-entropy analysis for ducts of arbitrary 

cross section was carried out by applying the Darcy flow model in [12-14]. However, when non-

Darcy effects are considered, the velocity distribution has no longer a uniform (slug) shape and 

the situation gets more complicated. Applying the velocity distribution reported in [11], this 

paper offers an analytical solution of heat transfer and entropy generation in a duct of rectangular 

cross section saturated by a porous medium.  In the terminology of Shah and London [28], three 

cases of H1 boundary condition are applied, to be referred to as cases 1, 2, and 3 as described in 

figure 1 and table 1). For H1 boundary condition one assumes a constant (independent of x*) 

longitudinal heat flux where in each cross section the wall temperature is constant independent of 

y* and z*. This boundary condition may represent, for example, electric resistance heating of 

highly conductive walls. In case 1 the four walls are uniformly heated and for this case we take 

the results of [11] for both velocity and temperature profile to investigate the Second Law 

aspects of the problem. In case 2, one of the walls is assumed to be adiabatic. In case 3, the two 

sidewalls are assumed to be adiabatic. 

To the authors’ knowledge, no analytical solution is available for cases 2 and 3 of this problem.  

 

2. ANALYSIS 

2.1 Hydrodynamic aspects of the problem 
 
 The Darcy-Brinkman extended momentum equation for the case of unidirectional (fully 

developed) flow in the x*-direction in a rectangular duct occupied by a porous medium with 

velocity u*(y*,z*) can be written based on [2]: 
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In the above equation, µ is the fluid viscosity, µ~  is an effective viscosity, K is the permeability, 

and G is the negative of the applied pressure gradient. The analytical solution to this equation 

subject to impermeable wall boundary condition is [11]: 
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where (x,y,z)=(x*/Pe,y*,z*)/H are the dimensionless coordinates, µµ /~=M  is the viscosity ratio, 

Da=K/H2 is the Darcy number, πλ )12( −= nn /2 are the eigenvalues, 2/1)( −= MDas  is the 

porous media shape parameter, kUDcPe Hp /ρ=  is the Peclet number, and 2/122 )( nsm λ+= . 

Here û  is the dimensionless velocity defined as 

U

u
u

*
ˆ =            (3) 

where U is the average velocity defined as U = >< *u  (the angle brackets denote an average 

taken over the duct cross-section). 

 

2.2 Energy-entropy analysis  

2.2.1 First Law aspects of the problem 

 Steady-state condition, local thermal equilibrium, homogeneity, and no thermal dispersion 

are assumed (one may consult [2] to find the condition based on which one can neglect the 
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aforementioned effects in the thermal energy equation). In this case the thermal energy equation 

becomes 

)
*
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*

*
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*
*
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z

T

y

T

c

k

x

T
u

P ∂
∂+

∂
∂=

∂
∂

ρ
.        (4) 

Here T* is the temperature, ρ the density of the fluid, cP the specific heat at constant pressure of 

the fluid, and k is the effective thermal conductivity of the medium. The Nusselt number is 

defined as  

)*(
N

mw

H

TTk

Dq
u

−
′′

= .                     (5-a) 

where q ′′  is the heat transfer rate per unit heat transfer area of the duct (similar to what defined 

by Shah and London [28]), i.e.  

hP

q
q

'=′′ .           (5-b) 

Here, 'q  is the wall heat transfer rate per unit length of the duct and Ph is the heated perimeter of 

the duct.  

Moreover, the bulk temperature is defined as *ˆTuTm =  and the hydraulic diameter, DH, is 

given by DH=4Ha/(a+1).  

            

2.2.2 Second law aspects of the problem 

 Entropy generation through heat and fluid flow in a porous medium is associated with 

thermodynamic irreversibility. Different sources are responsible for generation of entropy, 

including heat transfer across a finite temperature gradient, mixing, and viscous dissipation. 

Bejan and coworkers [15, 29, 30] focused on the different reasons behind entropy generation in 

applied thermal engineering systems. Following Bejan [15], the entropy generation rate per unit 
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volume (called entropy generation hereafter) is related to heat transfer irreversibility due to heat 

transfer in the direction of finite temperature gradients, HTI, and fluid friction irreversibility due 

to frictional heating, FFI, as 

FFIHTIS gen +=ɺ             (6-a) 

where 

.
*

*

*

*

*~*

,
*

*

*

*

*

*

*

222

2

222

T

z

u

y

u

K

u

FFI

T

z

T

y

T

x

T

kHTI























∂
∂+









∂
∂+

=










∂
∂+









∂
∂+









∂
∂

=

µµ
                 (6-b,c) 

One notes that in the above equations T* is measured in Kelvin.  

 

3. SOLUTION PROCEDURE  

3.1.1 Case 1 

 For this case we recover the analytical solution reported in [11] that proposes the following 

form for the longitudinal temperature gradient 
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The dimensionless form of entropy generation, Ns, is defined to be 



Hooman et al. (2007) International Journal of Heat and Mass Transfer, (50) 2051-2059.            page 
 

11 

11 

,
*

2









=

q

H

k

S
Ns gen

ɺ

          (9) 

where the dimensionless heat flux, q*, is  
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We fixed the q* value to a small one (q*=0.1) through this work so that one can neglect possible 

changes in the fluid and solid matrix property as a result of high temperature differences in a 

cross section. 

In particular from equations (6-10) one finds Ns and Be as 
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where the modified Brinkman number, Br*, is defined as  
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Moreover, the dimensionless viscous dissipation function,φ , is defined as 
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It is worth noting that φ  remains unchanged while FFI changes from one case to another. All of 

the terms in equations (11-12) are known and one may find both Be and Ns by equations (11-a,b). 

The average values may be found as Ns*=<Ns> and Be*=<Be>. Numerical integration is applied 
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to find Ns* and Be* values since one notes that both Ns and Be are nonlinear functions of y and z 

and analytical solutions are not possible.   

 

3.1.2 Case 2 

 Here the three walls are kept at a uniform temperature (Tw) while the fourth one (the right 

wall shown in Fig.1) is adiabatic. For this case the First Law implies that 
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Applying the dimensionless temperature profile, the thermal energy equation becomes  

( )( )
0

8

121ˆ
22

2

2

2

=+++
∂
∂+

∂
∂

a

aau

zy

θθ
.        (14) 

The thermal boundary conditions are 0=
∂
∂

z

θ
 at the adiabatic wall and =θ 0 at other walls. 

The solution satisfying the partial differential equation (14) and the aforementioned boundary 

conditions may be written as 
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with 
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The compatibility condition (an identity resulting from the definitions) 
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yields an expression for the Nusselt number, namely 
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The Second law proposes the following form for Ns and Be  
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3.1.3 Case 3 

For this case it is assumed that the upper and lower walls are kept at a uniform temperature (Tw) 

while the sidewalls are adiabatic. The First Law of Thermodynamics implies  
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In dimensionless form, the thermal energy equation reads 
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The appropriate boundary conditions are =θ 0 at the upper and lower walls and 0=
∂
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θ  at the 

adiabatic walls (sidewalls). Similar to the previous section one finds the dimensionless 

temperature distribution as 
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and consequently one finds the Nusselt number as 
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Similar to the previous section, Ns and Be are found to be  
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4. RESULTS AND DISCUSSION  

Closed form solutions have been obtained for the variation of velocity, temperature, the Bejan 

number, and the dimensionless entropy generation function throughout the solution domain. In 

the interest of brevity, we will limit our results to the effect of the duct aspect ratio and shape 

parameter on Nu, Be, and Ns.  

 Figure 2 shows the Nusselt number for all the three cases studied versus the shape parameter. 

As a common trend, Nu seems to increase with the aspect ratio, a. One should, however, note 

that this trend is primarily due to the choice of the length scale in the definition of Nu. If the 

Nusselt number were based on 4H, for example, instead of the hydraulic diameter, DH, the 

dependence on the aspect ratio would almost completely disappear. This shows the importance 

of recognizing the way the dimensionless parameters are constructed when interpreting the 

physical implications of graphs such as Figure 2. The values at the low end of the s axis are 

expected to converge to the clear fluid conditions. In fact, they do so below s=1 and show very 

good agreement against values reported in literature for heat transfer in rectangular ducts with 

clear fluids, e.g. [28]. It is interesting to note that Shah and London [28] also based the Nusselt 

number on the hydraulic diameter, which emphasizes the dependence on the aspect ratio as 

mentioned above. The values at the high end of the s axis should approach the Darcy flow 
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conditions. In fact, the Nusselt number seem to attain its Darcy flow value at around s=50-70 

regardless of neither the aspect ratio nor the boundary conditions. For s values approximately 

between 1 and 70, Nu shows a power relation with s, increasing from its clear fluid value to 

almost its slug flow limit over this range. When examining the differences due to the heat 

transfer boundary conditions, one should remember that the heat flux in the Nusselt number 

definition (Eqs 5a and 5b) is based on the heated perimeter rather than the wetted perimeter. This 

follows the general practice to facilitate comparison against past results reported in the literature 

[28]. It appears that the case 1 boundary condition almost always results in the lowest Nusselt 

number at the clear fluid end (as s approaches 0) of all three boundary condition cases. The only 

exception is for the square duct (a=1), where Nu2 values are consistently below the other two 

cases over entire s domain, but even there the clear fluid values for cases 1 and 2 are very close 

to each other. In general, for small s values Nu3 is higher than Nu1 while for higher s values it is 

the other way around. For clear fluid or hyperporous flow through square ducts, case 3 results in 

a higher Nu value with the same pressure drop. As s increases for a square duct, e.g. keeping a 

fixed duct size when the permeability is lowered, case 1 provides the highest Nusselt number. In 

addition to having a higher Nusselt number over the heat transfer area, it should be remembered 

that the actual heat transfer area is also higher for the case 1 boundary condition. Therefore, flow 

through a square duct with low permeability achieves the best heat removal rates under case 1 

boundary conditions. This fact may be of vital importance when it comes to applications such as 

low permeability foam for cooling electronic equipment similar to the Al-foam examined by 

Lage et al. [31]. However, with rectangular cross sections, the situation starts changing in such a 

way that Nu1 goes to minimum regardless of the s value. Considering rectangular porous 

passages with small s values, Nu3 is always higher than the other two. On the other hand for 
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higher s values approaching slug flow conditions, Nu2 exceeds Nu3 (and Nu1 non-square ducts). 

This does not change the fact that if one needs to achieve maximum cooling rate, all four 

surfaces must be used. However, our results show that there is some compensation offered by 

higher Nusselt numbers over smaller heat transfer areas if one has to limit the heat exchange area 

for other reasons. 

Another point worth mentioning is that for very large aspect ratios all of the three cases resemble 

parallel plate channel case where the Nu plots become almost indistinguishable. This is expected 

since for very large values of a, heat transfer rate from the two short sidewalls is negligible 

compared to the total heat transfer rate.  

To explain the Nu behavior, we classify the results in terms of high (s>>10) and low porous 

media shape parameters (s<<10). For small s values, case 3 achieves the highest Nusselt number 

values. This case has two adiabatic walls near which the temperature shows no change in the 

direction normal to the walls. This means that in this region the heat transfer is almost one 

dimensional (along the side walls) and the temperature is not equal to Tw. This means that the 

minimum temperature, which is expected to happen in the duct center for being in its farthest 

distance from the walls, is higher than the minimum value for the other two cases when the heat 

input to the duct as our thermodynamic system (which will change the enthalpy of the system) is 

constant for the three cases. Considering the fact that in the duct center the velocity experiences 

its maximum, one expects that the bulk-wall temperature difference (which is inversely 

proportional to Nu) be minimum compared to the other counterparts leading to an increase in Nu. 

However, when s increases to higher values, say s>10, the situation changes in such a way that 

the velocity changes are restricted to thin near wall regions [11] and out of this region the 

velocity distribution is uniform. For large s values there are two opposing effects: near the 



Hooman et al. (2007) International Journal of Heat and Mass Transfer, (50) 2051-2059.            page 
 

18 

18 

adiabatic walls the heat transfer is one dimensional and this enhances the minimum temperature 

at the duct center compared to a case with no adiabatic wall, i.e. case 1. On the other hand, high 

near wall temperatures when one has heated walls are associated with small velocity values due 

to wall effects. Case 2 acts somewhere between the two others in such a way that near the 

adiabatic wall isotherms of case 2 are similar to that of case 3 but near the heated wall they 

resemble case 1. It seems that for this reason case 2 leads to higher Nu values for rectangular 

cross sections when the porous media shape parameter is large. When it comes to a square cross 

section, case 1 delivers the highest Nusselt number and this is justified when one observes that 

the diagonal lines are adiabatic lines along which no heat is transferred and isotherms are normal 

to these lines, similar to a pure conduction problem. This will lead to a circle-like temperature 

distribution which is more uniform compared to the other cases since, to a good extent, the duct 

cross section can be considered as a sum of 8 similar triangles each of which formed by two 

adiabatic lines and half of a wall. In a nutshell, the center-wall temperature difference is smaller 

than the other cases with a net effect of decreasing wall-bulk temperature difference and 

increasing Nu. However, with rectangular cross sections the diagonal symmetry will no more 

exist for case 1. 

 Figures 3-a and 3-b show Ns* versus a for s=1 and s=10, respectively. A quick check of the 

both figures shows that the dimensionless average entropy generation rate appears to be 

decreasing with an increase in the duct aspect ratio regardless of the s value. As it was already 

noted for the Nusselt number above, the choice of the length scale must be recognized in 

interpreting these results. To facilitate comparisons with past literature, the non-dimensional 

entropy generation is based on the hydraulic diameter as shown in Eqs. 9 and 10. The 

dimensionless entropy generation is higher for the square cross section compared to the 
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rectangular counterparts and this is similar to what reported by previous researchers [17], [32]. 

Moreover, comparing the Ns* levels in the two figures one realizes that increasing s increases 

Ns*. Another feature of considerable interest is that, regardless of s and a value, case 1 is the 

most irreversible design while case 3 produces the least entropy. In the view of the above, one 

concludes that the least effective design is that of case 1 with a=1 and s=10. For this reason we 

gave this case a special attention within the rest of our study. 

 Figures 4-a,b show the line diagrams of Be and Ns for a better understanding of the problem. 

Figure 4-a illustrates Be versus y at four z locations. One observes that Be is more or less 

constant excluding a thin near wall region where for z=0.9, Be reaches its maximum value while 

at smaller z the Bejan number increases and then decreases to its minimum value at the wall. It is 

also clear that in this case, Be is less than 0.5 and hence FFI>HTI. This was expected since in 

this case s is large enough for FFI to become comparable with HTI.  

 Comparing figure 4-b with the previous one, one observes that Ns plots are in opposite 

direction to those of Be in such a way that the maximums/minimums of Ns are associated with 

the minimums/maximums of Be. With z=0.9 the value of Ns increases from wall to the duct 

center while at other z locations Ns decreases from the wall to a near-wall minimum, increases 

and then remains constant up to the duct center. According to this figure, the walls are the most 

active entropy generation sites where both of the temperature and velocity gradients experience 

their maximum values and consequently both HTI and FFI increase with the net effect of 

increasing Ns. One notes that Ns value at the duct center is not a minimum one. This fact is 

unique for a porous passage and in the clear fluid case one expects Ns to be minimum since both 

velocity and temperature gradients vanish due to symmetry. A quick check of the Ns function 

shows that moving from the walls to the channel center, the Darcy dissipation term (which is 
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absent in the clear fluid case) will grow since the boundary effects will not be felt and FFI, which 

is proportional to u2, will never vanish. One can consult Nield [33] for a recent note of viscous 

dissipation in a porous medium. 

 

5. CONCLUSION 

 Analytical solutions are reported for the temperature distribution and the Nusselt number that 

cover three different boundary conditions. It is found that, for s<10, the best use of the heat 

transfer area in view of the best heat transfer rate (with the same pressure drop) is achieved by 

case 3. However, for s>10 the optimum design is dependent on a value in such a way that for a 

duct of square cross-section, case 1 acts better than the others while for other values of a, case 2 

provides the best heat transfer rate. Having known the velocity and temperature profile, the 

Second Law analysis of the problem is presented. It is found that case 3 is the best design for 

having the minimal lost work, with the same a and s values, while case 1 is associated with the 

highest entropy production value among the others.  
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Table 1 Case definition in terms of the boundary conditions 

Case Entity name Boundary condition 

1 AB, BC, CD, DA Heated 

CD Insulated  

2 AB,BC, DA Heated 

BC, AD Heated  

3 AB, CD  Insulated 

 
 
 
 
Figure Captions 
 
Figure 1 Definition sketch 

Figure 2 The Nusselt number versus the porous media shape parameter for the three cases with 

some aspect ratios 

Fig 3 Average dimensionless entropy generation for the three cases versus the aspect ratio, (A) 

s=1 and (B) s=10 

Fig 4 (A) Local Bejan number and (B) local dimensionless entropy generation for case 1 with 

s=10 for a duct of square cross section 
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Figure 2 The Nusselt number versus the porous media shape parameter for the three cases with 

some aspect ratios.  
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Fig 3 Average dimensionless entropy generation for the three cases versus the aspect ratio, (A) 

s=1 and (B) s=10 
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Fig 4 (A) Local Bejan number and (B)local dimensionless entropy generation for case 1 with 

s=10 for a duct of square cross section 


