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Heat transfer and entropy generation optimization of forced convection

in a porous-saturated duct of rectangular cross-section
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Abstract

We investigate analytically the First and the SecoLaw (of Thermodynamics)
characteristics of fully developed forced convettimside a porous-saturated duct of rectangular
cross-section. The Darcy-Brinkman flow model is éypd. Three different types of thermal
boundary conditions are examined. Expressions r@septed for the Nusselt number, the Bejan
number, and the dimensionless entropy generati@nimaterms of the system parameters. The
conclusion of this analytical study will make itgsible to compare and evaluate alternative

rectangular duct design options in terms of heatsfer, pressure drop, and entropy generation.
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Nomenclature

a channel width to height ratio
A parameter defined by Eq. (2-b)
A1,A2 constants

Be Bejan number

2
Br Darcy-Brinkman numbeM

"

2
Br*  modified Brinkman numbeii(’lL_IU—2
wa*

Cp specific heat at constant pressudéd K]

Da  Darcy number K/#

Dy hydraulic diameter 4Ha/(a+1) [m]

Dn coefficient defined by Eq. (2-c)

FFI  fluid friction irreversibility per unit volume [W°K]
Fn coefficients defined by Eq.(25)

G negative of the applied pressure gradient [Pa/m]
H half channel width [m]

HTI  heat transfer irreversibility per unit volume [W
k porous medium thermal conductivityfm?K]

K permeability [M]

Kn coefficients defined by Eq. (19)

2 2\1/2
m parametel(s” + A;)

M viscosity ratio
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Ns

Ns*

Nu

Nu;

Pn

Pe

gen

T*

Tm

Tw

u*

[

X*

X

dimensionless entropy generation Eq. (9)
cross-sectional average of Ns

Nusselt number defined by Egns (5-a,b)

Nusselt number for the boundary condition case=i(i2, 3)

heated perimeter of the duct [m]

the Péclet numbePe = poc UD,, /k

wall heat transfer rate per unit length of thetduW/m]

heat transfer rate per unit heat transfer areheofluct Eq. (5-b) [W/fj

dimensionless heat flux, Eq.(10)

porous media shape parameser (MDa) /2

Entropy generation rate per unit volume [Wih

local absolute temperature [K]
bulk temperature [K]

wall temperature [K]

x-velocity [m/s]

dimensionless velocity Eq.(2-a)
average velocity [m/s]

longitudinal coordinate [m]

dimensionless coordinate, (x*/H)/Pe

y*,z* coordinates [m]

v,z

(y*,z*)H
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Greek symbols

7] dimensionless temperature

6, dimensionless bulk temperature
eigenvalues

U fluid viscosity N&n’]

P effective viscosityNl&n]

0 fluid density kg/m?’]

¢ dimensionless viscous dissipation function
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1. INTRODUCTION

There has been renewed interest recently in thielgmro of forced convection in porous media.
An increasingly important application is in cooliefgctronics, with coolants such as poly-alpha-
olefin flowing through a porous metal matrix. Nanalsan and Lage [1] offers an analysis of
forced convection through an aluminum based poroaix heated from top and bottom to
model the heat generated by the electronic cirdénitadar equipment. Commensurate with the
generic importance of the area, a substantial atmafuiterature on this topic is already available
as reported in Nield and Bejan [2] and Cheng [3fc@ar tubes or semi-infinite parallel plates
channel are the most widely used geometries id flow and heat transfer devices for both clear
fluid or porous media such as water distributiorstegns, heat exchangers, and similar
applications. Fluid flow and heat transfer chamastes of such problems have been analyzed in
detail for various boundary conditions. For circuiabes or parallel plates, the simplicity of the
geometry allows analytical solutions of closed forflnus the question naturally arises as to
whether analytical solutions for more complicateakss-sections are possible.

The method of weighted residuals was exploitedHby-Sheikh and Vafai [4] in their study
of thermally developing convection in ducts of wais shapes. In a subsequent study, Haji-
Sheikh [5] has applied a Fourier series methodhvestigate fully developed forced convection
in a duct of rectangular cross section. Haji-Shesklal. [6-10] have investigated heat transfer
through porous ducts of arbitrary cross-sectionkeilT focus was to find heat transfer
characteristics of the thermal entrance region.

Applying a Fourier series method, Hooman and MharfiLl1] have analytically investigated

heat and fluid flow in a rectangular duct occupieg a hyperporous medium. In ducts of
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arbitrary cross section, Hooman [12-14] has reportéosed form solutions for the fully
developed temperature distribution and the Nusealhber as well as the local entropy
generation rate by applying the Darcy momentum &gjua

The groundbreaking work by Bejan [15] introducdg: tconcept of entropy generation
analysis due to fluid flow and heat transfer asowgrful tool to evaluate the effectiveness of
different configurations. Since entropy generatit@stroys the work availability of a system, it
makes good engineering sense to focus on irrevignsiif heat transfer and fluid flow processes
to understand the associated entropy generatiomanexns. The literature on the topic is rich
for clear fluids through unobstructed ducts (a nesgirvey of literature on the topic can be found
in [16-17]). However, modeling entropy generation gorous media is comparatively more
problematic since modeling viscous dissipation, emasequently the fluid friction irreversibility,
in a non-Darcy porous medium is a controversialesg-or the Darcy flow model the viscous
dissipation is modeled by a velocity square terny dsee for example Baytas [18-19] or
Hooman [12-14]) but when the boundary and inertiacts are to be considered there are three
alternatives for viscous dissipation term. Niel@][2rgued that the viscous dissipation function
should remain equal to the power of the drag favben the Brinkman equation is considered.
On the other hand, Al-Hadrami et al. [21] have sgd a clear flow compatible model. Nield et
al. [22] have combined the three alternatives $ingle equation treating both the isothermal and
isoflux boundary conditions. A similar attempt wasde by Hooman et al. [23-24] for a
developing flow. Nield [25] has commented on théermlative models applied so far. He
emphasized that one should not use just the tevolvimg velocity derivatives. In the light of

Nield [25], Hooman and Ejlali [26] and Hooman et [&l7] have questioned some of the articles
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that neglected the Darcy dissipation term. One mvesethat further work on modeling entropy
generation in a porous medium is called for.

Considering the two problems concurrently, thergpentropy analysis for ducts of arbitrary
cross section was carried out by applying the Doy model in [12-14]. However, when non-
Darcy effects are considered, the velocity distitiuhas no longer a uniform (slug) shape and
the situation gets more complicated. Applying thetouity distribution reported in [11], this
paper offers an analytical solution of heat tranafed entropy generation in a duct of rectangular
cross section saturated by a porous medium. Itetineinology of Shah and London [28], three
cases oH1 boundary condition are applied, to be referredstecases 1, 2, and 3 as described in
figure 1 and table 1). Fdd1 boundary condition one assumes a constant (indeperof x*)
longitudinal heat flux where in each cross secti@wall temperature is constant independent of
y* and z*. This boundary condition may represenot, é&xample, electric resistance heating of
highly conductive walls. In case 1 the four walte aniformly heated and for this case we take
the results of [11] for both velocity and temperatyprofile to investigate the Second Law
aspects of the problem. In case 2, one of the walissumed to be adiabatic. In case 3, the two
sidewalls are assumed to be adiabatic.

To the authors’ knowledge, no analytical solutismvailable for cases 2 and 3 of this problem.

2. ANALYSIS
2.1 Hydrodynamic aspects of the problem

The Darcy-Brinkman extended momentum equationtifier case of unidirectional (fully
developed) flow in thec*-direction in a rectangular duct occupied by a psronedium with

velocity u* (y*,z*) can be written based on [2]:
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_ . 0°%u* N d%u*
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In the above equationy is the fluid viscosity,u is an effective viscositK is the permeability,

and G is the negative of the applied pressure gradiEiné analytical solution to this equation

subject to impermeable wall boundary conditionlit]{

R coshmz
u==—>» D, ([1- cos/
AnZ:;‘ n coshma) n¥
A:E 1 _ (1_tanhma), (2-a,b.c)
T (2n-1)m ma
_ (=p™
" @n-Dm*

where &,y,2)=(x*/Pe,y*,z*)/H are the dimensionless coordinatdb,= i/ 4 is the viscosity ratio,

Da=K/H? is the Darcy numberd = (@2n-1)/2 are the eigenvalugs=(MDa) " is the

porous media shape parametBe= poc UD,, /k is the Peclet number, amd=(s* + A2)"?.

Here U is the dimensionless velocity defined as

~ _u*

0=— 3
U (3)

whereU is the average velocity defined bs= <u* > (the angle brackets denote an average

taken over the duct cross-section).

2.2 Energy-entropy analysis
2.2.1 First Law aspects of the problem
Steady-state condition, local thermal equilibriumomogeneity, and no thermal dispersion

are assumed (one may consult [2] to find the candibased on which one can neglect the
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aforementioned effects in the thermal energy equoatin this case the thermal energy equation

becomes

LOT* _ k 0°T* 9°T*
u +

= ) 4
ox* ,0<:F,(6y*2 62*2) (4)

HereT* is the temperaturggthe density of the fluidge the specific heat at constant pressure of

the fluid, and k is the effective thermal conduityivof the medium. The Nusselt number is

defined as
Nu = & ) (5_a)
k(T,*-T.)

whereq" is the heat transfer rate per unit heat transfes af the duct (similar to what defined

by Shah and London [28]), i.e.

=9 (5-b)

S0

Here, q 'is the wall heat transfer rate per unit lengthhef duct andP, is the heated perimeter of
the duct.

Moreover, the bulk temperature is definedTg;(GT *> and the hydraulic diameteBy, is

given byDy=4Ha/(a+1).

2.2.2 Second law aspects of the problem

Entropy generation through heat and fluid flowanporous medium is associated with
thermodynamic irreversibility. Different sourcesearesponsible for generation of entropy,
including heat transfer across a finite temperagnadient, mixing, and viscous dissipation.
Bejan and coworkers [15, 29, 30] focused on thieht reasons behind entropy generation in

applied thermal engineering systems. Following B¢jb], the entropy generation rate per unit
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volume (called entropy generation hereafter) iatesl to heat transfer irreversibility due to heat
transfer in the direction of finite temperaturedjests, HTI, and fluid friction irreversibility due

to frictional heating, FFI, as

Sy = HTI + FFI (6-a)

where

(aT*jz aT*\’ [aT*jz
+ +
ox* oy* 0z*

HTI =k . ,
T*
w2 a . 2 a % 2 (6'b1c)
L N u +[ u j
K ay* 0z*
FFI = .
T*

One notes that in the above equatidhss measured in Kelvin.

3. SOLUTION PROCEDURE
311Casel

For this case we recover the analytical soluteported in [11] that proposes the following
form for the longitudinal temperature gradient

oT * g ,a+l
= , 7
ox* ,ocPHU( a ) @

. . , T, T*
The dimensionless temperature profes k qV,V,D , may be rearranged as
H

2 (o]
9:(a+1j iz D2n cost yf 52 —m cosh/1nz+/1i coshmz | ®)
2as ) AT A cosh a coshma

The dimensionless form of entropy generatids,is defined to be

10
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_Sw(HY
o2l ¥

¢ = . 10
T =" (10)

We fixed the g* value to a small one (g*=0.1) thgbuthis work so that one can neglect possible

changes in the fluid and solid matrix property a®sult of high temperature differences in a

Cross section.

In particular from equations (6-10) one fifdsandBe as

a+1)’ (96) (06)
(a) (ayJ *(az] v
Br * 52 ,
a0 G-ar)
(a+1j2 (ae)z (aejz (11-a,b)
T 4 22 4 ==
a ay 0z

(a+1j2 +(69j2 +(‘39j2 +Br* 52(1—6b|*)§0.

a ay z

Ns =

Be=

where the modified Brinkman numb@&r?*, is defined as

ILIUZ
KT,

(11-¢)

Moreover, the dimensionless viscous dissipatiortion,¢, is defined as

p=0%+ s{@—jj + [g—jj ] (12)

It is worth noting thatz remains unchanged while FFI changes from one tcagrother. All of

the terms in equations (11-12) are known and ongfmd bothBe andNs by equations (11-a,b).

The average values may be foundNas&=<Ns> andBe*=<Be>. Numerical integration is applied

11
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to find Ns* andBe* values since one notes that bbiandBe are nonlinear functions gfandz

and analytical solutions are not possible.

3.1.2Case?2
Here the three walls are kept at a uniform tentpesa(T,,) while the fourth one (the right

wall shown in Fig.1) is adiabatic. For this case Birst Law implies that

oT*_ q (2a+1]' (13)
ox* pc,HU  2a

Applying the dimensionless temperature profile, ttitermal energy equation becomes

0’0, 0%0 , Gla+1)2a+1)

0. 14
dy> 0z° 8a’ (14)

The thermal boundary conditions a%g =0 at the adiabatic wall ané =0 at other walls.
2

The solution satisfying the partial differentialuagion (14) and the aforementioned boundary

conditions may be written as

6=> f (2)cosd,y. (15)

n=1

After some algebraic manipulation one finds that

coshmz
SZ +/12
_(a+1)(2a+1) m& ()™ : ( " coshmaj
T Zz S| Acost,z+ Asinh,z+ g cosly (16-a)
S°a = N nm

with

12
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P tanhZAna(tagz/‘“a _ tanhmaj 4

A n 2m
A2 cosh a
cosh/]na(tanh/‘“a— tanhma]
A = A, m
cosh24,a

The compatibility condition (an identity resultifigm the definitions)

yields an expression for the Nusselt number, namely

_ (cams) & K,
e (2a+1)(a+l)/n2:;‘ @n-1)*m*’

where

—ﬁtanhz A ﬁ_sz (1_ tanhrnaj+ m* (tanhA a tanhma
"2 2 ma 25 A m

(An tanhz)lna(tanh/lna _ tanhmaj _ 2]
A, m

The Second law proposes the following formMsrandBe

(2a+1]2 00\’ (aejz
| +| —
2a ay 0z

n

Ns =

13

page3

(16-b,c)

(17)

(18)

(19)

(20-a,b)
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3.1.3Case3
For this case it is assumed that the upper andrlmabs are kept at a uniform temperatuf)(

while the sidewalls are adiabatic. The First Lawrbérmodynamics implies

om*__a 1)
ox*  pc,HU
In dimensionless form, the thermal energy equatawls
2 2 2
0’6 , 9 «9+u(a+1):O' 22)

dy> 0z° 4a
The appropriate boundary conditions &e0 at the upper and lower walls at%ﬁ =0 at the
Z

adiabatic walls (sidewalls). Similar to the prewsosection one finds the dimensionless

temperature distribution as

_a+l& D, (1_ A.mtanhma cosh/}nz+ﬁ coshmz

CdaA S 2 2

cosA, Y, 23
s sinhAd,a s coshmaJ Y 23)

and consequently one finds the Nusselt number as

_Amsfa s F

_ , 24
(a+1) 4% @n-)*'m* &

where
2 4 2

F = /]—”—sz 1_tanhrna _lztanhma 1_/1_n tanhma +£tanh2ma. (25)
2 ma s m mtanhAa) 2

Similar to the previous sectioNs andBe are found to be

14
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4. RESULTSAND DISCUSSION

Closed form solutions have been obtained for th@atran of velocity, temperature, the Bejan
number, and the dimensionless entropy generatinatiftn throughout the solution domain. In
the interest of brevity, we will limit our results the effect of the duct aspect ratio and shape
parameter on NuBe, andNs.

Figure 2 shows the Nusselt number for all thedaluases studied versus the shape parameter.
As a common trendlu seems to increase with the aspect ratidQne should, however, note
that this trend is primarily due to the choice loé tlength scale in the definition dlu. If the
Nusselt number were based oH,4for example, instead of the hydraulic diameten, Ehe
dependence on the aspect ratio would almost coetpldisappear. This shows the importance
of recognizing the way the dimensionless paramedees constructed when interpreting the
physical implications of graphs such as Figure 2e Values at the low end of tlseaxis are
expected to converge to the clear fluid conditidndact, they do so belowg=1 and show very
good agreement against values reported in litexdiur heat transfer in rectangular ducts with
clear fluids, e.g. [28]. It is interesting to ndtext Shah and London [28] also based the Nusselt
number on the hydraulic diameter, which emphasthesdependence on the aspect ratio as

mentioned above. The values at the high end ofsth&is should approach the Darcy flow

15
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conditions. In fact, the Nusselt number seem tairatits Darcy flow value at around s=50-70
regardless of neither the aspect ratio nor the dawynconditions. For s values approximately
between 1 and 70, Nu shows a power relation witin@easing from its clear fluid value to
almost its slug flow limit over this range. Whenaexning the differences due to the heat
transfer boundary conditions, one should remembat the heat flux in the Nusselt number
definition (Eqs 5a and 5b) is based on the heateidheter rather than the wetted perimeter. This
follows the general practice to facilitate companisagainst past results reported in the literature
[28]. It appears that the case 1 boundary condailomost always results in the lowest Nusselt
number at the clear fluid end (as s approache$ &8l) three boundary condition cases. The only
exception is for the square duct (a=1), where Malues are consistently below the other two
cases over entiredomain, but even there the clear fluid values fses 1 and 2 are very close
to each other. In general, for smalNaluesNus is higher tharNu; while for highers values it is

the other way around. For clear fluid or hyperparfiaw through square ducts, case 3 results in
a higher Nu value with the same pressure drop. iereases for a square duct, e.g. keeping a
fixed duct size when the permeability is lowereasec 1 provides the highest Nusselt number. In
addition to having a higher Nusselt number overhtbat transfer area, it should be remembered
that the actual heat transfer area is also highethe case 1 boundary condition. Therefore, flow
through a square duct with low permeability achsetiee best heat removal rates under case 1
boundary conditions. This fact may be of vital impace when it comes to applications such as
low permeability foam for cooling electronic equipnt similar to the Al-foam examined by
Lage et al. [31]. However, with rectangular crosst®ns, the situation starts changing in such a
way that Nu; goes to minimum regardless of tsevalue. Considering rectangular porous

passages with smadl values,Nu; is always higher than the other two. On the otieand for

16
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highers values approaching slug flow conditions, Nu2 edseldu3 (and Nul non-square ducts).
This does not change the fact that if one needactoeve maximum cooling rate, all four
surfaces must be used. However, our results shatvthiere is some compensation offered by
higher Nusselt numbers over smaller heat transéasaf one has to limit the heat exchange area
for other reasons.

Another point worth mentioning is that for verydaraspect ratios all of the three cases resemble
parallel plate channel case where heplots become almost indistinguishable. This iseexed
since for very large values @ heat transfer rate from the two short sidewalségligible
compared to the total heat transfer rate.

To explain the Nu behavior, we classify the resuitserms of high (s>>10) and low porous
media shape parameters (s<<10). For small s vatase, 3 achieves the highest Nusselt number
values. This case has two adiabatic walls nearlwthie temperature shows no change in the
direction normal to the walls. This means that hrs tregion the heat transfer is almost one
dimensional (along the side walls) and the tempeegais not equal to J This means that the
minimum temperature, which is expected to happethénduct center for being in its farthest
distance from the walls, is higher than the minimeattue for the other two cases when the heat
input to the duct as our thermodynamic system (Wwhidl change the enthalpy of the system) is
constant for the three cases. Considering thetlfi@attin the duct center the velocity experiences
its maximum, one expects that the bulk-wall tempeea difference (which is inversely
proportional to Nu) be minimum compared to the ottwinterparts leading to an increase in Nu.
However, whers increases to higher values, say s>10, the situati@anges in such a way that
the velocity changes are restricted to thin neall vemions [11] and out of this region the

velocity distribution is uniform. For large values there are two opposing effects: near the

17
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adiabatic walls the heat transfer is one dimensiand this enhances the minimum temperature
at the duct center compared to a case with no aticawall, i.e. case 1. On the other hand, high
near wall temperatures when one has heated wallassociated with small velocity values due
to wall effects. Case 2 acts somewhere betweenwheothers in such a way that near the
adiabatic wall isotherms of case 2 are similarhat tof case 3 but near the heated wall they
resemble case 1. It seems that for this reasonZdsads to higher Nu values for rectangular
cross sections when the porous media shape paraéiege. When it comes to a square cross
section, case 1 delivers the highest Nusselt nuraberthis is justified when one observes that
the diagonal lines are adiabatic lines along wimigtheat is transferred and isotherms are normal
to these lines, similar to a pure conduction pnobl&his will lead to a circle-like temperature
distribution which is more uniform compared to titber cases since, to a good extent, the duct
cross section can be considered as a sum of 8asimingles each of which formed by two
adiabatic lines and half of a wall. In a nutshik center-wall temperature difference is smaller
than the other cases with a net effect of decrgasiall-bulk temperature difference and
increasing Nu. However, with rectangular crossisastthe diagonal symmetry will no more
exist for case 1.

Figures 3-a and 3-b shoMs* versusa for s=1 ands=10, respectively. A quick check of the
both figures shows that the dimensionless averageomy generation rate appears to be
decreasing with an increase in the duct asped ragardless of the value. As it was already
noted for the Nusselt number above, the choiceheflength scale must be recognized in
interpreting these results. To facilitate comparssavith past literature, the non-dimensional
entropy generation is based on the hydraulic diames shown in Egs. 9 and 10. The

dimensionless entropy generation is higher for slggare cross section compared to the

18
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rectangular counterparts and this is similar to twiaorted by previous researchers [17], [32].
Moreover, comparing thils* levels in the two figures one realizes that imsiags increases
Ns*. Another feature of considerable interest is tmagardless o anda value, case 1 is the
most irreversible design while case 3 produceddast entropy. In the view of the above, one
concludes that the least effective design is thaiase 1 with a=1 and s=10. For this reason we
gave this case a special attention within theatstr study.

Figures 4-a,b show the line diagram®efandNs for a better understanding of the problem.
Figure 4-a illustrate®e versusy at four z locations. One observes thBé is more or less
constant excluding a thin near wall region wherezf®.9, Be reaches its maximum value while
at smallerz the Bejan number increases and then decreassssmenimum value at the wall. It is
also clear that in this casBe is less than 0.5 and hence FFI>HTI. This was egesince in
this casesis large enough for FFI to become comparable tifh

Comparing figure 4-b with the previous one, onsesbes thalNs plots are in opposite
direction to those oBe in such a way that the maximums/minimumsa\sfare associated with
the minimums/maximums dBe. With z=0.9 the value oNs increases from wall to the duct
center while at othez locationsNs decreases from the wall to a near-wall minimursreases
and then remains constant up to the duct centeror@ling to this figure, the walls are the most
active entropy generation sites where both of émeperature and velocity gradients experience
their maximum values and consequently both HTI &#kd increase with the net effect of
increasingNs. One notes thalls value at the duct center is not a minimum onesTact is
unique for a porous passage and in the clear das#® one expeclds to be minimum since both
velocity and temperature gradients vanish due tonsgtry. A quick check of thals function

shows that moving from the walls to the channelt@erthe Darcy dissipation term (which is
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absent in the clear fluid case) will grow since bloeindary effects will not be felt and FFI, which
is proportional tau?, will never vanish. One can consult Nield [33] forecent note of viscous

dissipation in a porous medium.

5. CONCLUSION

Analytical solutions are reported for the tempematdistribution and the Nusselt number that
cover three different boundary conditions. It isirfid that, fors<10, the best use of the heat
transfer area in view of the best heat transfer (aith the same pressure drop) is achieved by
case 3. However, for s>10 the optimum design isdéent ora value in such a way that for a
duct of square cross-section, case 1 acts betarttte others while for other valuesapfcase 2
provides the best heat transfer rate. Having kndiwenvelocity and temperature profile, the
Second Law analysis of the problem is presentew. fibtund that case 3 is the best design for
having the minimal lost work, with the saraeands values, while case 1 is associated with the

highest entropy production value among the others.
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Table 1 Case definition in terms of the boundanyditions

Case Entity name Boundary condition
1| AB, BC, CD, DA Heated
CD Insulated
2 AB,BC, DA Heated
BC, AD Heated
3 AB, CD Insulated

Figure Captions

Figure 1 Definition sketch

pags

Figure 2 The Nusselt number versus the porous nsbdipe parameter for the three cases with

some aspect ratios

Fig 3 Average dimensionless entropy generatiotherthree cases versus the aspect ratio, (A)

s=1 and (B) s=10

Fig 4 (A) Local Bejan number and (B) local dimemdéss entropy generation for case 1 with

s=10 for a duct of square cross section
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Figure 2 The Nusselt number versus the porous nsbdipe parameter for the three cases with

some aspect ratios.
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