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Abstract 

 

 Effective model evaluation is not a single, simple procedure, but comprises 

several interrelated steps that cannot be separated from each other or from the 

purpose and process of model construction. We draw attention to several 

statistical and graphical procedures that may assist in model calibration and 

evaluation, with special emphasis on those useful in forest growth modelling. 

We propose a five-step framework to examine logic and bio-logic, statistical 

properties, characteristics of errors, residuals, and sensitivity analyses. 

Empirical evaluations may be made both with data used in fitting the model, 

and with additional data not previously used. We emphasize that the validity of 

conclusions drawn from all these assessments depends on the validity of 

assumptions underlying both the model and the evaluation. These principles 

should be kept in mind throughout model construction and evaluation. 

 

Introduction 

 

 Model evaluation is an important part of model building, and some examination of the 

model should be made at every stage of model design, fitting and implementation. It should 

not merely be an afterthought or an acceptance trial. A thorough evaluation of a model 

involves several steps, including two which are often called verification and validation. In 

forest growth modelling, these usually denote qualitative and quantitative tests of the model, 

respectively. However, there are some objections to these terms (see e.g. Oreskes et al., 

1994): 

1. They are value-loaded, and it is preferable to use neutral language to assess model 

performance. 

2. The same terms are used in other branches of mathematics and logic to denote other 

meanings: a model is valid if the logic is correct, and verified if it is “true”. 
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3. Verity implies truth, but it is impossible to prove a model “true” (except in the special 

case of a closed system). The only truth that can be established in a growth model is (e.g. 

in the context of Goulding, 1979) that the model is a faithful representation of what the 

modeller intended. Similarly, the only sense of validity that can be demonstrated for an 

empirical model is the “reasonableness” of the statistical assumptions. 

 

 Thus it is appropriate to avoid these terms, and to use alternatives. We use the term model 

evaluation to encompass both these aspects. Thorough model evaluation comprises several 

steps, each of which may involve qualitative and quantitative aspects. Some steps involve 

examination of the structure and properties of a model, with or without supplementary data, 

to confirm that it has no internal inconsistencies and is biologically realistic. Others require 

comparisons with empirical data to quantify the performance of the model, and have become 

known in some forestry literature as benchmarking (cf. surveyor's reference mark). Ideally, 

benchmark tests should involve data which are in some sense unlike the data used to fit the 

model, but useful insights can also be obtained with the calibration data. 

 

 These tests cannot prove a model to be "correct", but may be used in attempts to falsify 

inferences made from the model. The quality of a model can only be evaluated in relative 

terms, and its predictive ability always remains open to question. However, the failure of 

several attempts to falsify a model should increase its credibility and build user confidence. 

This is the role of model evaluation. Thus model evaluation should be an on-going procedure 

which commences during model design and continues throughout model construction and for 

as long as the model remains in use. 

 

 Soares et al. (1995) and Vanclay (1994) recently reviewed ways to evaluate forest growth 

models. Here, we give a brief overview of the framework they suggest, and offer some new 

insights. We stress that model evaluation should not be a mere mechanical procedure to 

examine a model’s technical credentials, but should also involve philosophical considerations 

by modellers and model users. 

 

Procedures for Evaluating Growth Models 

 

 Model evaluation should try to reveal any errors and deficiencies in the model, in part, by 

establishing (Vanclay, 1994): 

• whether the equations used adequately represent the processes involved, 

• if the equations have been combined correctly in the model, 

• whether the numerical constants obtained in fitting the model are the "best" estimates,  

• whether the model provides realistic predictions throughout the likely range of 

application, 

• if the model satisfies specified accuracy requirements, and 

• how sensitive model predictions are to errors in estimated coefficients and input 

variables. 

 

 An evaluation requires more than a decision regarding the acceptability of a model for 

a defined use. It should provide as much information as possible about the model's 

behaviour and predictive ability, to allow users to decide if it is adequate for their intended 
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uses. It should also reveal where future data collection and model revision efforts may be 

most useful. 

 

 Evaluation should not be a mere afterthought to model construction, but should be 

considered at every stage of model design and construction, when component functions are 

formulated and fitted to data, and when these components are assembled to provide the 

completed model. Here we deal primarily with regression techniques, but recognise that 

other approaches may also be used in modelling. Model evaluation includes both 

theoretical and empirical issues, and is dealt with in standard texts on applied regression 

analysis (e.g. Gilchrist, 1984; Ratkowsky, 1990). Key aspects may be grouped under 

several interrelated headings (with some selected examples): 

 

1) Examine the model and its components in terms of logic structure and from theoretical 

and biological views (e.g. Hamilton, 1990; Oderwald and Hans, 1993; Sievänen and Burk, 

1993; Zhang et al., 1993) to see if they are:  

 • parsimonious 

 • biologically realistic 

 • consistent with existing theories of forest growth, and 

 • predict sensible responses to management actions. 

 

2) Ascertain the statistical properties of the model in relation to data (e.g. Bates and 

Watts, 1988; Ratkowsky, 1983; Seber and Wild, 1989), including: 

 • nature of the error term (i.e. additive or multiplicative, independence, etc.), 

 • estimation properties of parameters in model functions. 

 

3) Characterize errors (e.g. Power, 1993; Reynolds, 1984; Reynolds and Chung, 1986) in 

terms of 

 • accuracy, 

 • nature of residuals (distribution, dependencies on initial stand conditions and length 

of projection), 

 • confidence intervals and critical errors, and 

 • contributions by each model component to total error. 

 

4) Test, using statistical approaches (e.g. D'Agostino and Stephens, 1986; Gregoire and 

Reynolds, 1988; Mayer and Butler, 1993; Power, 1993; Reynolds et al., 1988) for: 

 • bias and precision of the model and its components, 

 • goodness-of-fit of predicted size distributions, 

 • patterns in, and distribution of residuals, and 

 • correlations over time and between components. 

 

5) Conduct sensitivity analyses to determine (e.g. Botkin, 1993; Gertner, 1987; Jørgensen, 

1986; Mowrer, 1991; Van Henten and Van Straten, 1994): 

• how model components influence predictions, 

• inputs to the model influence predictions, and how 

• errors propagate through the model. 
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 These analyses need not be sequential, but all relevant aspects should be examined in 

each model component and in the assembled model. Each of these steps could involve both 

graphical analyses as well as statistical indices. 

 

Logical and Biological Consistency 

 Each model component and the model as a whole should be logically consistent and 

biologically realistic. Many model properties can be examined for consistency, e.g. (after 

Oderwald and Hans, 1993): 

1. Do variables included in, and omitted from the model agree with expectations? 

2. Do the sign and magnitude of coefficients agree with expectations? 

3. Are extrapolations outside the range of the development data reasonable? 

4. Are transformations of model predictions reasonable (e.g. Do model forecasts of future 

diameters also provide reasonable estimates of diameter increments, future volumes, 

mean increment curves, etc.)? 

5. Are any contradictions present within the model? 

6. Do derivatives, limits, maxima, minima, inflections, etc. agree with expectations? 

 

 Although these questions seem appropriate, in some respects they avoid the real issue, 

namely, what constitutes a “reasonable expectation”. Clearly, these questions introduce a 

subjective element, and reflect our previous observation that model quality can only be 

evaluated in relative terms. Fortunately, these decisions are not without precedent, and most 

models can be contrasted with empirical studies. 

 

 Matrix plots of simulated stand development trajectories showing a range of property-

time and property-property relationships (Leary, 1988, 1996) may offer useful insights into 

model behaviour, and may provide an efficient way to reveal discrepancies in model 

predictions. Care is required in resolving an apparent discrepancy between model predictions 

and expectation: it may be the expectations, and not the model, that is wrong! 

 

 Parameter estimates and model forecasts should agree with both empirical data and 

current understanding of growth processes. Experienced foresters and other experts may 

indicate areas where model predictions are deficient. Several researchers have advocated 

formalizing this procedure as a Turing test in which experts are asked to discriminate 

between simulated and real world data, but this does not provide a good basis for 

comparison. If the real and simulated data are sufficiently alike to offer a realistic test, they 

should be amenable to statistical testing which avoids potential difficulties with personal 

bias. Conversely, if the data are unsuited to statistical testing, it is likely that they will contain 

certain identifiable features which may make the distinction easy. 

 

 Simulations at extremes of stand condition may be particularly revealing. Such 

simulations may encompass not only the upper and lower limits of site quality and stand 

density represented in the data, but also alternative stand structures (e.g. even- versus 

uneven-aged, pure vs mixed, thinned vs unthinned, pruned vs unpruned, etc.). 

 

 Optimization studies may provide a discriminating test of a model, since optimizers seem 

remarkably efficient at exploiting seemingly minor quirks in models to arrive at unrealistic 

solutions (see e.g. Monserud, 1989). Thus optimization studies coupled with expert insights 

may provide a good basis for model evaluation. However, a model should not be rejected 
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simply because it behaves in a counter-intuitive fashion; it may be our preconceptions that 

are wrong. Thus discrepancies should cause a critical reappraisal of the model, the data, and 

of preconceptions. 

 

Statistical Properties 

 With linear regression models, Y = Xb + e, it is usually assumed that the random errors 

e are additive, independent and identically normally distributed with zero mean and 

constant, but unknown variance (ei ~ N(0, σ
2
)). Departures from these assumptions may 

result in parameter estimates with undesirable statistical properties. Several 

transformations and weighting techniques may be used where data do not satisfy these 

assumptions, but some problems may remain (e.g. multiplicative errors in models with 

additive terms that preclude logarithmic transformations). 

 

 In forestry applications, several measurements are often taken from each sampling unit 

(e.g. measurements on a single tree, trees on a plot, or re-measures of a plot). These 

repeated measurements are not statistically independent, and ordinary least squares 

techniques may underestimate the variance of parameters, leading to the acceptance of 

more complex models than would otherwise be indicated. West (1995) gave an overview 

of some ways to deal with this problem. Another way is to treat these situations as 

longitudinal data (e.g. Gregoire et al., 1995). 

 

 Parameter estimates of non-linear growth models may not possess the same desirable 

statistical properties as their linear counterparts (i.e. unbiased, normally-distributed, 

minimum variance estimators). However, non-linear models which are "close-to-linear" 

approach these properties asymptotically, and many models may be reparameterized so 

that they behave in a close-to-linear fashion (Ratkowsky, 1983, 1990). 

 

 In the standard regression model, the explanatory variables are assumed to be free of 

error. This assumption is rarely tenable in forest growth models, where there is joint 

variation in the variates, and this means that derived relationships could be grossly in error. 

It is possible to correct for this (e.g. Seber and Wild, 1989; Weisberg, 1985), but the 

procedures may be tedious. Failure to account for the nature of the response variable will 

lead to inflated estimates of variance, but the effect can be minimized by ensuring a large 

range of each explanatory variable relative to its error. 

 

 Most forest growth models are constructed from several equations independently fitted 

to data. Simultaneous estimation of all model components minimizes overall model errors 

and provides a variance-covariance matrix for the model as a whole (e.g. Gallant, 1987; 

Seber and Wild, 1989), but few forest growth models have been constructed in this way 

(e.g. Furnival and Wilson, 1971; García, 1984; Leary, 1970). 

 

 The standard regression assumptions are ideals that real situations (models and data in 

conjunction) may approach without ever exactly attaining. Fortunately, least-squares 

techniques tend to be relatively robust in practice (at least for parameter estimation, if not 

for assessing precision). Irrespective of this, evaluation of a model, before and after fitting 

to data, should include the appraisal of the statistical properties of the model and the data. 
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Characterizing Model Error 

 One of the most efficient ways to examine model performance is to plot residuals or 

standardized residuals for all possible combinations of tree and stand variables to detect 

possible autocorrelation and other dependencies. Such plots may be interpreted visually, 

but formal tests are also available (e.g. Draper and Smith, 1981; Weisberg, 1985). 

 

 Two simple criteria, in conjunction, provide a summary of the overall model 

performance: average model bias (Σ( ∃y i-yi)/N) and mean absolute difference (Σ| ∃y i-yi|/N) 

(e.g., Burk, 1985). Average model bias measures the expected error when several 

observations are to be combined by totalling or averaging, and mean absolute difference 

measures the average error associated with a single prediction. Error dependencies on 

projection length or initial forest condition can be shown graphically. Regression analysis 

and principal component analysis may help to detect possible dependencies. These 

techniques apply equally when checking the model against data used for model calibration, 

and when testing the model with additional data. 

 

 The error structure and the contribution of each model component to total error may be 

more revealing than a mere evaluation of total model performance. Thus a map of variance 

components of the model may help to identify weaknesses and define priorities for future 

research (e.g. Hann, 1980; Gertner et al., 1995).  

 

Statistical Tests 

 Many statistical tests of model performance have been suggested, but no single 

criterion can incorporate all aspects of model evaluation, and it is desirable to use several 

simple tests to examine different facets of model behaviour. 

 

 One simple but efficient technique is based on linear regression of observed versus 

predicted data. Some useful insights into the quality of predictions may be given by R² and 

the slope and intercept of the fitted line, and a good test for bias is the simultaneous F-test 

for slope = 1 and intercept = 0 (e.g. Dent and Blackie, 1979; Mayer and Butler, 1993; 

Mayer et al., 1994). 

 

 Another useful technique is to compare predictions directly with observed data using a 

statistic analogous to R², and sometimes called modelling efficiency: 
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This statistic provides a simple index of performance on a relative scale, where 1 indicates 

a "perfect" fit, 0 reveals that the model is no better than a simple average, and negative 

values indicate a poor model indeed. 

 

 In addition to overall appraisals, it is desirable to partition data (e.g., by age, site index 

or stand density), and examine model performance in each of several strata (e.g. Mayer and 

Butler, 1993). The most revealing insights may be obtained by devising strata based on a 

knowledge of the biological system, as well as model and data characteristics. However, 

the absence of inadequacies in any particular stratification does not imply that weaknesses 

will not be found in an alternative stratification. Nor does consistency with empirical data 



Evaluating Growth Models Vanclay & Skovsgaard: 7 
 

confirm the quality of a model, since several alternative model formulations may have 

equal merit (e.g. Kincaid, 1996). 

 

Sensitivity Analyses 

 A sensitivity analysis should reveal how model predictions depend upon inputs, 

parameters, relationships and submodels. Commonly, sensitivity analyses focus on 

parameters  which, when perturbed, cause the greatest fluctuations in model predictions. 

These studies may reveal model components with low and high sensitivity, both of which are 

of interest. Insensitive components may contribute little toward model predictions and could 

be targets for omission from the model during model revisions. Conversely, it is useful to 

know about model components with high sensitivity, because these may have the greatest 

impact on model predictions. All model parameters and inputs should be estimated 

accurately, but particular care is required with the most sensitive variables. 

 

 In theory, the sensitivity of model parameters can be examined analytically (e.g. by 

taking derivatives), but in practice this may be complicated by the interaction of various 

model components and feedback loops. Thus sensitivity analyses are often carried out as 

simulation studies in which the parameters or components are changed to observe 

corresponding effect on predicted outputs. In practice, meaningful sensitivity studies are 

difficult, as the estimate of sensitivity depends both on the values of the inputs and the model 

parameters, so that many simulations may be necessary to complete the picture. This may be 

a tedious undertaking, especially where there are many parameters. Results of sensitivity 

tests may reveal parameters critical to model predictions, and parameters which may be 

redundant. Knowledge of sensitive parameters may guide applications (especially 

extrapolations) and the planning of model enhancements. 

 

 The implications of functional relationships and submodels should also be examined. The 

decision to use a particular relationship (e.g., in process models, the decision to use the 

Michaelis-Menten rather than the exponential equation) may have an influence on model 

outcomes, and the implications of such decisions for model predictions should be examined. 

 

 Similarly, it is important that users have a knowledge of the model’s sensitivity to inputs. 

Studies of error propagation (Gertner, 1987; Mowrer, 1991) may reveal model limitations, 

and are particularly useful in offering insights into the interaction of errors in the input data 

and in the simulation, but can only be used when the model under consideration is 

completely defined by a set of empirical equations. One application of stochastic simulation 

studies is to investigate the "quality" of predictions. Variance approximation provides an 

efficient alternative to such studies, and enables the variance of predictions to be estimated 

deterministically. It also enables the variance of the input data to be incorporated into the 

analysis. Mowrer and Frayer (1986) and Gertner (1987) used a simple first-order Taylor 

series to estimate the errors propagated through growth and yield projections. 

 

Empirical Data for Model Evaluation 

 

 Several aspects of model evaluation relate to comparisons with empirical data, and these 

comparisons may be more rigorous when made with data not used in fitting the model 

(benchmark tests). Thus it has become customary in the evaluation of forest growth models 

to reserve some data to provide an “independent” benchmark test of the model (e.g. Snee, 
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1977; West, 1981; Shifley, 1987). This raises several questions about the merits of setting 

data aside for such tests, about the nature and amount of data used for such comparisons, and 

about  the nature of the population of interest. In effect, this involves a compromise between 

the best possible parameter estimates (using all the data for calibration) and the best possible 

estimates of precision (reserving some data for testing). Two options seem to offer the best of 

both worlds: 

1) fit the model using some data, test it against the remainder, and then recalibrate using the 

full data set; 

2) use re-sampling techniques such as cross-validation. 

 

Partitioning Data 

 The most rigorous test of a model requires independent data, ideally from controlled and 

replicated trials measured over a long period. Unfortunately, such data may not be available, 

and the only “independent” data readily available may relate to other regions or species. 

These, however, may not reflect the population of interest, and it is not always clear how to 

interpret the results of tests with such data. Thus growth modellers often have to decide 

whether it is worthwhile splitting data into two subsets, one for development, and the other 

for the testing the model. This is not a trivial decision, especially when data are scarce. 

Setting some data aside may provide for a better test of the model, but may result in inferior 

parameter estimates. 

 

 The role of an independent or benchmark test cannot be divorced from the nature of the 

model. If the model fitting exercise is intended to reveal possible causal parameters (e.g. in 

medical epidemiology), then the costs of benchmarking may be greater than the benefits 

(Hirsch, 1991). Partitioning data to allow benchmarking may help to reduce type I errors (i.e. 

falsely rejecting the null hypothesis, and thus e.g. incorrectly concluding that a variable 

contributes little and should be omitted from the model), but fewer data for calibration mean 

a reduction in the precision of parameter estimates, and an increase in type II errors (i.e. 

falsely accepting the null hypothesis, and thus e.g. including irrelevant variables in the 

model). However, if empirical data are used to calibrate a model deliberately formulated to 

represent biological processes, then the goal is a different one: namely to accurately estimate 

parameters rather than to identify possible explanatory variables. In this latter case, 

benchmark data may serve a more useful role in illustrating the robustness of the model. 

Clearly, an assessment of the utility of independent benchmark data cannot be divorced from 

the purpose of the model. 

 

 If a decision is made to partition a data set, the modeller must avoid the temptation to 

weaken the tests, for example, by reducing the number of data available for testing, despite a 

desire to find the model acceptable. The outcome of benchmark tests can be influenced by 

the selection of data: "like" data will provide a more optimistic result than comparisons with 

"unlike" data from another population. Thus the most convincing demonstration of model 

quality can be made only if the test data are in some sense unlike the development data. A 

single sample split into two parts is no substitute for test data from controlled, replicated 

trials. Vanclay (1994, p.88) discussed the dangers of constructing a growth model from 

passive monitoring data in which stand density and site productivity were confounded. 

Splitting such data into calibration and benchmark sets may not reveal the fallacy of a 

positive correlation between stand density and tree growth; this can only be refuted 
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(empirically) using data from thinning and spacing trials (depending somewhat on how the 

data are divided). 

 

 Unfortunately, the ideal, a series of properly replicated trials, is rarely available. 

However, data which are independent spatially (e.g. different location or site), silviculturally 

(e.g. different management regime), temporally (e.g. more recent), or logistically (e.g. 

collected by a different agency) may provide a convincing test if they can be reserved 

without compromising the range of site and stand conditions represented in the model. Plots 

established for long periods with regular remeasurement, particularly those remaining 

undisturbed (i.e. no thinning), may prove useful as a discriminating test. Objective 

procedures (e.g. Snee, 1977) may be used to select benchmark data to minimize the dangers 

of bias. Following testing, the benchmark and calibration data may be pooled and the model 

recalibrated to obtain the best parameter estimates. 

 

 One possible frustration with benchmarking may arise when the initial calibration of the 

model seems inadequate in benchmark trials, since there is no way to test if recalibration 

using the pooled data will result in a significant improvement. The change in parameter 

estimates may serve as a guide (and may even serve as a good benchmark criterion, e.g., see 

Sievänen and Burk, 1993), but do not reveal if the recalibration is “adequate”. However, if 

the model is the best that can be obtained with existing resources, it must be considered 

acceptable, even if inadequate in some sense, since there is no alternative other than to invest 

more resources and wait for new data and techniques. Perhaps the real test of a model (in a 

practical sense, if not in an epistemological sense) is if forest managers have sufficient 

confidence in it to use it as the basis for management decisions. 

 

Resampling Procedures 

 An efficient alternative to independent data is to mimic these tests with resampling 

techniques such as cross-validation, boot-strapping and jack-knifing (e.g. Efron and Gong, 

1983; Weisberg, 1985). Cross-validation is the logical generalization of partitioning the data 

for model calibration and benchmarking (e.g., Burk, 1990). Rather than omitting some data, 

each datum is deleted in turn and the model is fitted to the remaining n-1 data. Benchmark 

tests are averaged from the individual deleted data. If the test statistic is squared error and the 

model is linear, the cross-validation estimate of true error is n times the PRESS statistic 

computed by many regression packages. A variation on these single-observation resampling 

procedures is to omit groups of data, for example, according to geographic location, 

management strategy, or other criteria (e.g., Tarp-Johansen et al., 1996). 

 

 One shortcoming of any resampling procedure lies in its dependence on the data. The 

sample should adequately represent the variability and other characteristics of the population 

of interest, or the resampling procedure will not provide an adequate test of the model. 

Unfortunately, these are the very circumstances under which the model itself should come 

under heaviest criticism (Burk, 1990). 

 

 Despite the efficiency of re-sampling procedures, it seems impossible to avoid the use of 

some benchmark data, since resampling to test a complete model involving many 

relationships and assumptions seems impractical. 
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Other Considerations 

 

 A technical appraisal of a model does not constitute a complete evaluation. There are 

several other important qualitative aspects which should also be considered. Many of these 

have already been considered, at least in part, but it remains important to re-examine several 

aspects: 

1. Does the model satisfy the needs of clients? 

2. Are underlying concepts sound, and visible to users (in the model or documentation)? 

3. Have concepts been implemented faithfully, unconstrained by resources or technology 

(e.g. Has the IF ... THEN ... ELSE ... ENDIF structure of the computer language led to the use of 

on–off behaviour rather than a gradual phasing in and out, even though the latter may be 

more appropriate)? 

4. Is the model parsimonious, satisfying the general principle of science that entities 

should not be multiplied beyond necessity? (The principle is known as Ockham's razor; 

see Keuzenkamp and McAleer, 1995, for a recent review). 

 

 Some of these aspects have been explored more thoroughly in the social sciences where it 

is more difficult to obtain quantitative benchmark data than in the natural sciences. Thus it is 

interesting to explore some experiences of that discipline. In a review of several models for 

social policy analysis, Meadows and Robinson (1985, p.370) observed that “tests tend to be 

weak, marginal, unsymmetrical and very biased. In part this is due to oversized models 

whose complete testing would be impossibly expensive and tedious. It is also due to a 

general lack of imagination, motivation, training, client pressure and agreed-upon methods 

for testing.” Although this criticism was levelled specifically at the social sciences, it also 

applies to some extent, in forest growth modelling. 

 

 Meadows and Robinson (1985, p.392-402) collated specific advice to overcome these 

limitations, including (and followed by our responses): 

1. Modellers should think more and wield tools less (Majone, 1977) – the “new toy” 

syndrome is a hazard that is also prevalent in forest growth modelling; 

2. Models should be given to an independent evaluation agency for testing (Quade and 

Boucher, 1968 p.352) – several independent evaluations have been published in refereed 

journals (e.g. Reynolds, 1984; Oderwald and Hans, 1993; Soares et al., 1995); 

3. Modellers should test each part of their model, not just the summary output (Biggs and 

Cawthorns, 1962) – this may be tedious and time-consuming, but is important to gain a 

good insight into the model (e.g. Hann, 1980; Soares et al., 1995); 

4. Modellers should test their results against the real world, rather than against a set of 

artificial rules or formulas (Brewer, 1973) – this seems to be one thing that is done well 

on the rare occasions that forest growth models are thoroughly benchmarked (e.g. Hann, 

1980; Reynolds, 1984; Soares et al., 1995; West, 1981). 

 

 It is disconcerting to reflect that this advice remains as necessary, and as rarely applied 

today, as when it was first offered. Meadows and Robinson (1985, p.407) concluded with a 

warning that “modelling efforts often succumb to a slow ... drift ... away from what is 

important to what is ... tractable, away from unconventional viewpoints and toward 

established wisdom. At each little decision point ... the guiding question should be ‘would it 

help solve the problem?’. ...[T]he criterion for decision should always be what will most help 
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real-world decisions, not what the modeller will find easy or fun, or what the client will find 

... uncontroversial.” A decade later, this warning remains timely and pertinent. 

 

 Some readers may find our stance too idealistic, but while we accept that modelling may 

be constrained by knowledge, data and resources, we echo the sentiments of Ziman (1978): 

“[one] learns how easy it is to persuade oneself of the validity of a model which later turns 

out to be false, and comes to realize that even in very strongly mathematical and well-defined 

scientific issues, it may take a long time, much criticism and the death of many promising 

conjectures before a reliable theory is [established]”. 

 

Practical Relevance 

 

 It is appropriate to conclude by exploring the practical relevance of  model evaluation 

with some case studies. We tried to find documented instances of well-tested models that 

nonetheless went wrong and of untested models that revealed useful insights, but found this 

difficult, probably because modellers rarely admit model weaknesses or failures, and usually 

publish material relating to model development rather than model applications. However, 

some insights can be offered. 

 

 The JABOWA model (Botkin et al., 1972; Botkin 1993) has been remarkably successful in 

many respects. It laid the foundations for the "gap-phase" modelling approach; has been used 

extensively in academia, research and teaching; has been re-calibrated for many different 

forests ranging from the tropics to the boreal zone; provided the basis for several models  

derived more-or-less directly from JABOWA (e.g., CLIMACS, FIRESUM, FORET, FORENA, 

LINKAGES, SILVA, ZELIG; e.g., Liu and Ashton, 1995); and has been cited in the formal 

literature more than 160 times (Botkin, 1993). Despite this prominence, the model and its 

derivatives have apparently not been used in operational forest management or planning. In 

his attempt to adapt the JABOWA model for British woodlands, Spilsbury (1991) noted that 

JABOWA had several serious deficiencies involving growth patterns, calibration procedures, 

and performance in empirical tests, especially relating to the diameter frequency distribution. 

 

 Another relatively prominent model, the STEMS model (Leary, 1979; Belcher et al., 1982) 

has both been formally evaluated (e.g. Holdaway and Brand, 1983, 1986; Brand and 

Holdaway, 1989) and used operationally by forest managers. However, the operational use of 

this model may be as much a result of  packaging, marketing and institutional affiliation, as 

of performance testing, since several deficiencies are apparent in the model. By studying 

predicted trajectories in a Bakuzis matrix, Leary (1996) found several shortcomings STEMS 

projections of  the growth of red pine in pure even-aged stands. Specifically, there was little 

dependence of any stand property on site, and mortality rates, height growth and stand basal 

area development appeared questionable. And following an empirical benchmark study, 

Brand and Holdaway (1989) recommended "cautious use of STEMS85 and TWIGS for: 

1. stands with high basal area 

2. lowland hardwood and northern hardwood stands in western lower Michigan, and 

3. stands with many trees slightly smaller than sawtimber size..." 

 

 Management acceptance of a model and its predictions may rest on many factors other 

than formal evaluations of model performance. The management response to a series of yield 

forecasts for north Queensland rainforests (Vanclay, 1995) depended not on formal test 
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results (there were no such tests), but on subjective evaluations, personalities, the difficulty 

of implementation, and on politics and economics. This may reflect on the immaturity of 

modelling, and the poor linkage between modelling and management. Most managers have 

little experience of modelling, don't know what kind of model evaluation to expect, and have 

no real basis for appraising models (e.g., see Brand and Holdaway, 1983). Thus, modellers 

need to be more proactive in discussing their work with forest managers and other model 

users. This lucid communication may be especially important if the model is being used to 

make inferences about the sustainability of forest practices (e.g., Moir and Mowrer, 1995). 

 

Synthesis of Evaluation Procedures 

 

 These few simple suggestions are not intended as a comprehensive review of model 

evaluation procedures, but merely highlight some important and sometimes overlooked 

aspects. We stress that evaluation is not one simple procedure, but consists of a number of 

interrelated steps that cannot be separated from each other or from model construction. Our 

five-point checklist urges modellers to examine: 

1. logic and bio-logic, 

2. statistical properties, 

3. characteristics of errors, 

4. residuals, and 

5. sensitivity analyses. 

Several statistical tests, as well as graphical procedures, may be useful, both with data used 

for model calibration and with data used for “independent” evaluation of the model. 

However, the validity of conclusions depends on the validity of assumptions and the 

application in question. These principles should be kept in mind throughout model 

construction and evaluation. 
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