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[1] Double-diffusive convection caused by variations in solute concentration and
temperature within a fluid body has previously been studied in connection with oceanic
mixing processes, astrophysics, metallurgy, geology, and vadose zone hydrology but
has not previously been studied in connection with thermohaline transport in a
groundwater well. This paper considers whether double-diffusive convection induced by
salinity and/or temperature variations is a plausible mechanism for heat and solute
transport in a groundwater well. This is examined theoretically using Rayleigh number
stability ‘‘onset’’ criteria for fluid in a cylinder that considers the cylindrical well geometry
and geothermal/solute boundary conditions. Theoretical results suggest that both
monotonic and oscillatory double-diffusive convection are plausible transport phenomena
in groundwater wells. These analyses have important implications for hydrogeology
because they provide another theoretically plausible mechanism by which heat and
solute may mix in a well. This previously unaccounted for thermohaline mixing
phenomenon may therefore be critical in the interpretation of well hydrogeologic and
hydrochemical data.

Citation: Love, A. J., C. T. Simmons, and D. A. Nield (2007), Double-diffusive convection in groundwater wells, Water Resour. Res.,

43, W08428, doi:10.1029/2007WR006001.

1. Introduction

[2] Groundwater wells are the most basic instrument for
measuring hydrogeologic and hydrochemical parameters in
a groundwater system. It is well known, however, that
measurements made in these wells may not always be
representative of the adjacent aquifer especially where
intrawell mixing induced by vertical hydraulic gradients
occur [see, e.g., Elci et al., 2001]. The driving forces for
intrawell mixing are typically assumed to be advective,
dispersive and diffusive transport phenomena. However,
to the best of our knowledge, the potential effects of
thermohaline double-diffusive convection (DDC) have not
been studied in connection with a groundwater well in
previous literature.
[3] Some simple observations suggest that the thermoha-

line mechanism clearly warrants attention as a potential
thermohaline transport mechanism in a well. First, all
groundwater wells exist in the presence of a geothermal
gradient in which groundwater temperature increases with
depth. In terms of the groundwater density, this is unstable
since the temperature transitions from colder fluid at shal-
low depths (greater density) to warmer fluid at depth (lesser

density). It is clear that the potential exists for gravitational
unstable density gradients to drive convective heat transport
in a groundwater system and this phenomenon has been
studied in aquifers and porous media in previous literature
[Rubin, 1981; Wood and Hewitt, 1992; Pestov, 2000]. Given
that it is widely accepted that geothermal gradients may
drive fluid circulations in geologic settings, a logical ques-
tion then follows. To what extent can the geothermal
gradient drive convective flow in a groundwater well?
One may expect that since the groundwater well represents
a zone of very low resistance to fluid flow it may be
possible that even moderate density contrasts may lead to
fluid circulations. One of the earliest studies in relation to
convective motion in geysers was a theoretical analysis by
Hales [1937]. One may begin to draw an analogy between
the theoretical treatment by Hales [1937] and the problem
we consider here. Hales’ analysis predicted that the onset of
instability in a tube filled with water would occur when the
temperature gradient exceeded a critical value related to the
tube radius and the viscosity of the fluid. His theory
predicted that thermal convection was more likely in larger
diameter tubes. His theoretical development was tested by
field observations in oil wells in the 1960s [Diment and
Robertson, 1963; Diment, 1967; Gretner, 1967]. Observa-
tion of temperature profiles in large diameter wells were
shown to be unstable as theoretically predicted. It appears
that the potential for thermal mixing to occur in a ground-
water well has received little attention in groundwater
literature since these pioneering studies but may be more
important than we currently recognize.
[4] These previous studies only considered single com-

ponent convection driven by heat. However, the interaction
of salt and heat (with the diffusivity of heat being approx-
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imately two orders of magnitude greater than salt) means
that one must also consider the potential for double-
diffusive convection in a well, a previously unaccounted
for phenomenon. Interestingly, DDC has been studied
previously in oceanography [Stern, 1960; Stern and Turner,
1969; Turner, 1979, 1985], astrophysics [Spiegel, 1972]
metallurgy [Azouni, 1981], geophysics [McKenzie and
Richter, 1981] and the formation of magma chambers
[Turner, 1985; Brandt and Fernando, 1995]. Critically,
DDC has also been studied theoretically and experimentally
in porous media [Nield, 1968; Rubin and Roth, 1979;
Griffiths, 1981; Imhoff and Green, 1988; Murray and Chen,
1989; Ronen et al., 1988; Ronen et al., 1995; Cooper et al.,
1997, 2001; Nield and Bejan, 2006]. A very important point
follows. In terms of ‘‘flow freedom’’ as determined by
resistance to flow, oceanic systems are expected to be the
least resistive; porous media flow most resistive; and flow
in a groundwater well might intuitively represent an inter-
mediate point between these two systems.

[5] The aim of this paper is to theoretically examine
whether thermohaline double-diffusive transport induced
by salinity and/or temperature variations is a plausible
mechanism for heat and solute transport in a groundwater
well. We adapt previous theoretical fluid mechanics
studies based on convection in a cylinder [Gershuni and
Zhukhovitskii, 1970, 1976] to develop the steady state onset
conditions (required temperature, salinity, and well geome-
try) for DDC in a groundwater well. The Rayleigh number
stability criteria that consider the cylindrical well geometry
and appropriate geothermal and solute boundary conditions
are formulated. We apply the theoretical treatment to
groundwater wells using realistic data to determine whether,
from a theoretical viewpoint at least, thermohaline double-
diffusive convection is a plausible phenomenon; that is, do
typical hydrogeologic data theoretically satisfy the various
onset criteria. Here we determine whether onset of convec-
tion will or will not occur. We do not consider the temporal
behavior of these phenomena once they are established in
this first analysis.

2. Double-Diffusive Convection

[6] DDC can occur where the density of the fluid is
affected by at least two components with different diffusiv-
ities. Combined heat and salt transport (thermohaline con-
vection) is one specific subset of the more general DDC
problems. In thermohaline phenomena, the thermal diffu-
sivity is approximately two orders of magnitude higher than
the solute diffusivity. Under certain conditions, this may
result in gravitational instabilities due to the phase lag
between the faster diffusing heat and the slower diffusing
solute. For exhaustive treatments on DDC phenomena, the
reader is referred to Turner [1979], Nield and Bejan [2006],
and Diersch and Kolditz [2002]. A conceptual diagram of
the different convection regimes are shown in Figure 1 in
Raf � RafD space, where Raf is the thermal Rayleigh
number of the fluid, and RafD is the solute Rayleigh number
of the fluid. These are defined in the formal mathematical
treatment that follows (equations (81) and (82)). Briefly,
there are broadly two regimes that are of interest. They are
referred to as: (1) monotonic convection (sometimes
referred to as the fingering regime) and (2) oscillatory
convection.

2.1. Monotonic Convection

[7] Monotonic convection can occur when the sum of the
solute and thermal Rayleigh number exceeds a critical
Rayleigh number. This can potentially occur in thermoha-
line regimes where temperature and salinity are destabiliz-
ing with respect to the net density gradient or when the
faster diffusing component is stabilizing. For the configu-
ration of hot and salty water stratified above cold and fresh
water, the density contribution from the temperature com-
ponent is stable and from the solute component is unstable.
A small perturbation of fluid moving vertically down will
result in long narrow lobes of descending saltier water that
cools alternating with thin lobes of fresher warmer water
that rise. Monotonic instabilities are sometimes referred to
as fingering instabilities that provides a physical description
of the convective motion.

Figure 1. Schematic diagram in Raf � RafD number space
showing the stability regimes for DDC in a vertical cylinder
with fluid. The different quadrants represent different
thermohaline regimes in a groundwater well: q1, CSA
(cold and salty above); q2, HSA (hot and salty above); q3,
CSB (cold and salty below); and q4, HSB (hot and salty
below). For line 1, Raf + RafD = Raf 0 represents the
boundary between stable and monotonic convection. For
line 2, (Ps

2Raf + Pr
2RafD)/(PrPs + Pr + Ps) = Raf 0 represents

the boundary between the stable and oscillatory modes. The
example presented is for a well with r = 0.01 m, Hf = 30 m,
and geothermal gradient 0.02�C/m (DT = 0.6�C). Point a is
the geothermal gradient only (DC = 0). Note: The upward
arrow indicates that any increase in DC will result in further
unstable monotonic conditions. At point b, the boundary
between monotonic and oscillatory convection will occur by
increasing the salinity difference to DC = 1.7686 mg/L in a
stable configuration. At point c, the boundary between
oscillatory and diffusive flow will occur by increasing the
salinity difference to DC = 14,188.2 mg/L in a stable
configuration. Note: The downward arrow indicates that any
increase in DC (beyond point c) will result in stable
conditions.
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2.2. Oscillatory Convection

[8] Oscillatory motions can only occur for the configu-
ration of cold fresh water overlying hot and salty water,
where the density contribution from the temperature com-
ponent is destabilizing and from the solute component is
stabilizing. If one considers a parcel of hot salty water that is
displaced upward, the parcel will diffuse heat more rapidly
than it diffuses salt, which will result in instability across the
interface. As the perturbed parcel of water continues to rise
(losing heat more rapidly than it loses salt) it eventually
becomes heavier than the surrounding fluid at which point it
begins to descend. The parcel of water will descend beyond
its original position, warming as it sinks. The parcel
eventually becomes less dense than the surrounding fluid
at which point it begins to rise. An oscillatory motion will
result. This results in a ‘‘staircase’’ like profile with sharp
interfaces of density separated by well mixed layers that
have been studied extensively in previous literature [Tait
and Howe, 1971; Turner, 1979; Schmitt, 1995]. (Oceanic
salt fingers may also result in a staircase profile, but in this
case another mechanism is involved.)

3. Theory of a Thermohaline Well in a
Geothermal Field

[9] We first present some basic theory for thermal con-
vection published by Gershuni and Zhukhovitskii [1970,
1976]. Since the original publications are in Russian, and
the translated book is not readily available, we present more
detail than we would have done normally in order to
provide a complete theoretical analysis.
[10] For the benefit of readers who are unfamiliar with

linear instability theory, we outline the basicmethodology that
is involved. The Oberbeck-Boussinesq approximation is
invoked. A basic solution is obtained. This solution is
perturbed by a small amount, and the system is linearized.
When account of the basic solution is made, a set of homo-
geneous linear equations results. This permits the application
of the method of separation of variables. (In this context, this
means the introduction of normal modes.) In particular, the
time dependence in such a mode appears as a factor involving
an exponential term. The sign of the real part of the coefficient
in the exponent determines whether the perturbation grows
(instability) or decays (stability) with time. A good book on
this subject is the one by Chandrasekhar [1961].

3.1. General Vertical Cylindrical Channel Infinite
Height, Thermal Problem

[11] Suppose that the well can be modeled as a vertical
cylindrical channel, with solid walls in which heat conduc-
tion is modeled by Laplace’s equation. If the fluid and the
walls are heated from below and the temperature gradient A
is constant and vertical then the basic velocity and temper-
ature distributions are given as functions of the upward
vertical coordinate by

v ¼ 0; T0 ¼ �Azþ constant: ð1Þ

[12] In the absence of normal heat flux at the walls, it
follows from the continuity of temperature that the temper-
ature in the walls is also a linear function of z, and moreover
the equilibrium temperature gradients in the walls and the
fluid coincide.

[13] Small disturbances from the basic solution satisfy the
set of equations

�lv ¼ �rpþr2vþ RTk ð2Þ

�lPrv ¼ r2T þ v � k ð3Þ

div v ¼ 0 ð4Þ

�lPr�kTw ¼ r2Tw; ð5Þ

where the velocity v, fluid temperature T and the wall
temperature Tw are assumed to vary with time as exp(�lt).
Here k = k/kw is the fluid-to-wall thermal diffusivity ratio
and Pr = n/k is the fluid Prandtl number, and R is a Rayleigh
number defined by

R ¼ gbAL4

nk
: ð6Þ

[14] Here n is the fluid kinematic viscosity, b is the
volumetric coefficient of expansion, g is the gravitational
acceleration. The equations have been scaled in terms of the
characteristic length L, time L2/n, velocity k/L and pressure
r0nk/L

2, where r0 is the reference density.
[15] In the thermal problem with heating from below, l is

real. Gershuni and Zhukhovitskii refer to this as the ‘‘mono-
tonicity principle for disturbances’’. In the Western literature
the term used is ‘‘the principle of exchange of stabilities.’’
At the onset of convection (that is, for a ‘‘neutral mode’’),
l = 0, and the equations simplify to

r2vþ RTk ¼ rp ð7Þ

r2T ¼ �vz ð8Þ

div v ¼ 0 ð9Þ

r2Tw ¼ 0: ð10Þ

[16] Let us now consider motions parallel to the channel
axis, assuming that the temperature disturbance is indepen-
dent of the z coordinate:

vx ¼ vy ¼ 0; vz ¼ v x; yð Þ
T ¼ T x; yð Þ; Tw ¼ Tw x; yð Þ: ð11Þ

[17] Taking the x and y components of the equation of
motion, we find that p = p(z), and the z component then
gives

r2
Hvþ RT ¼ dp

dz
¼ C; ð12Þ
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where rH
2 = @2/@x2 + @2/@y2 is the two-dimensional

Laplacian and C is a separation constant that defines the
longitudinal pressure gradient. Hence we obtain the system
of critical motions

r2
Hvþ RT ¼ C ð13Þ

r2
HT þ v ¼ 0 ð14Þ

r2
HTw ¼ 0: ð15Þ

[18] The velocity vanishes at the boundary G of the
horizontal cross section of the channel, and there the
temperature and normal heat flux satisfy the continuity
conditions

v ¼ 0; T ¼ Tw; k
@T

@n
¼ @Tw

@n
; ð16Þ

where k = k/kw, the thermal conductivity ratio.
[19] In the walls at large distances from the channel, the

temperature disturbances are damped out, so

Tw1 ¼ 0: ð17Þ

[20] We assume that the channel is closed, so that the
volume flux through any cross section is zero:

Z
S

v dS ¼ 0: ð18Þ

[21] Since the vertical pressure gradient is constant, we
can eliminate the constant C in equation (13) by a suitable
change of reference temperature, introducing a new tem-
perature. Then, at the walls the new temperature is T � C/R.
Hence without loss of generality we can assume that the
right-hand side of equation (13) is zero, with equation (17)
replaced by Tw1 = constant. This constant is found by
solving the boundary value problem. Thanks to symmetry
properties of the flow, the condition (18) is automatically
fulfilled for a wide range of critical motions, in such a way
that the longitudinal pressure gradient is zero.

3.2. Circular Cylinder, Infinite Height, Thermal
Problem

[22] For a cylinder of circular cross section, we can
choose cylindrical coordinates with the z axis drawn upward
along the channel axis. This problem allows solutions of the
form

v r;fð Þ ¼ u rð Þ cos nf ð19Þ

T r;fð Þ ¼ q rð Þ cos nf ð20Þ

Tw r;fð Þ ¼ qw rð Þ cos nf; ð21Þ

where n = 0, 1, 2, . . ..

[23] Substituting (19)–(21) into (13)–(15), and with an
appropriate choice of reference temperature so that the
constant C is eliminated from equation (13), we obtain
equations for the radial functions u, q and qw:

Duþ Rq ¼ 0 ð22Þ

Dqþ u ¼ 0 ð23Þ

Dqw ¼ 0; ð24Þ

where D denotes the operator d2/dr2 + (1/r)d/dr � n2/r2 and
now R is defined in terms of the radius r0 of the cylinder:

R ¼ gbAr40
nk

: ð25Þ

[24] At the interface between the channel and the rigid
walls the velocity vanishes and the temperature and the heat
flux are continuous:

at r ¼ 1 : u ¼ 0; q ¼ qw; �k@q=@r ¼ @qw=@r: ð26Þ

[25] In addition, we need a condition stating that u and q
are finite at the axis, and the temperature disturbances in the
walls far from the channel are also finite:

at r ¼ 0 : u and q are finite ð27Þ

at r ! 1 : qw ! constant: ð28Þ

[26] If we eliminate q from equations (22) and (23) we get

D2 � R
� �

u ¼ 0: ð29Þ

[27] The general solution of equation (29) that remains
finite as r ! 0 is

u ¼ C1Jn grð Þ þ C2In grð Þ; ð30Þ

where Jn and In are Bessel functions of the first kind, C1 and
C2 are arbitrary constants, and

g ¼ R1=4: ð31Þ

[28] Then equation (22) implies that

q ¼ 1

g2
C1Jn grð Þ � C2In grð Þ½ �: ð32Þ
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[29] In view of the condition (27), equation (24) yields

qw ¼ C3

rn
: ð33Þ

[30] The boundary conditions (26) lead to a homoge-
neous system for the three integration constants:

C1Jn gð Þ þ C2In gð Þ ¼ 0 ð34Þ

C1Jn gð Þ � C2In gð Þ � g2C3 ¼ 0 ð35Þ

C1J
0
n gð Þ � C2I

0
n gð Þ þ ng

�k
C3 ¼ 0: ð36Þ

[31] There will be a nontrivial solution only if the
determinant of this system vanishes. This condition leads
to the eigenvalue equation

J 0n gð Þ
Jn gð Þ þ

I 0n gð Þ
In gð Þ ¼ � 2n

g�k
: ð37Þ

[32] For a given value of n, this equation has roots (in
increasing magnitude) gn

(1), gn
(2), gn

(3), . . ..
[33] From these the critical Rayleigh number R = g4 is

determined.
[34] The corresponding eigenvector is constituted by

u ¼ Jn grð Þ
Jn gð Þ � In grð Þ

In gð Þ ð38Þ

q ¼ 1

g2
Jn grð Þ
Jn gð Þ þ In grð Þ

In gð Þ

� �
ð39Þ

qw ¼ 2

g2rn
: ð40Þ

[35] Equations (38)–(40) define the velocity and temper-
ature only to within a constant factor. The flux closure
condition (18) is trivially fulfilled if n 6¼ 0, while if n = 0 it
follows from equation (37).
[36] In fact, if n = 0 one deduces from equation (37)) that

the criterion for instability is independent of �k. This is
consistent with the fact that then q0(1) = 0 so that the radial
heat flux at the boundary is zero.
[37] Returning to the case of n 6¼ 0, one has the following

limiting cases.

[38] Case A: conductivity of the walls much higher than
the conductivity of the fluid: �k = k/kw ! 0.
[39] The characteristic equation is

Jn gð Þ ¼ 0; n ¼ 1; 2; 3; . . . : ð41Þ

[40] Case B: conductivity of the walls much lower than
the conductivity of the fluid: �k = k/kw ! 1
[41] The characteristic equation is

J 0n gð Þ
Jn gð Þ þ

I 0n gð Þ
In gð Þ ¼ 0: ð42Þ

[42] Numerical values of the roots are presented in Table 1.
It is apparent that the smallest value for R is obtained with
n = 1 in each case. For highly conducting boundaries this
value is 215.6, while for poorly conducting boundaries it
is 67.95.

3.3. Vertical Circular Cylinder of Finite Height,
Thermal Problem

[43] Let the cylinder have height h and define the parameter

h ¼ H=2r0: ð43Þ

[44] Then h ! 1 gives the problem just treated while
h ! 0 gives the Rayleigh-Bénard problem.
[45] Now three-dimensional modes are important. Thus

the velocity approximation must allow for all of the com-
ponents of the velocity vector v to be nonzero. Considering
motions periodic in f and satisfying the no-slip condition at
the rigid boundaries z = ±h, we write approximate expres-
sions for the velocity components thus:

vz ¼
1

4
h2 � z2
� �

u rð Þ cos nf ð44Þ

vr ¼ z h2 � z2
� �

v rð Þ cos nf ð45Þ

vf ¼ z h2 � z2
� �

w rð Þ sin nf ð46Þ

for n = 0, 1, 2, . . ..
[46] The radial functions u, v, w must vanish at the rigid

lateral surface of the cylinder (r = 1). The continuity
equation yields

1

r

d

dr
rvð Þ þ n

r
w� u ¼ 0: ð47Þ

[47] A solution of this equation is given by the following
functions:

u ¼ Jn krð Þ
Jn kð Þ � rn ð48Þ

v ¼ � 1

kJn kð Þ J 0n krð Þ � Jn kð Þrnþ1
� �

ð49Þ

w ¼ n

k2Jn kð Þ
1

r
Jn krð Þ � Jn kð Þrnþ1

� �
; ð50Þ

Table 1. Critical Values for gn
(1) and Rn

(1)

n

�k = 0 �k = 1

gn
(1) Rn

(1) gn
(1) Rn

(1)

0 4.611 452.0 4.611 452.0
1 3.382 215.6 2.871 67.95
2 5.136 695.6 4.259 329.1
3 6.380 1657 5.541 942.5
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where the parameter k satisfies the equation

kJ 00n kð Þ ¼ nþ 1ð ÞJ 0n kð Þ: ð51Þ

[48] An increase in k implies an increase in the number of
nodes of the radial velocity.
[49] To determine the temperature, we must solve the

thermal energy equation

r2T ¼ �vz: ð52Þ

[50] Setting T = f (r, z) cos f, we obtain an equation for f:

@2f

@r2
þ 1

r

@f

@r
� n2

r2
f þ @2f

@z2
¼ � 1

4

Jn krð
Jn rð Þ � rn

� �
h2 � z2
� �2

: ð53Þ

[51] We shall assume that the end surfaces are perfect
conductors, so that the temperature disturbances vanish
there. We also assume that @2f/@z2 vanishes at the ends,
so we have

at z ¼ �h : f ¼ 0;
@2f

@z2
¼ 0: ð54Þ

[52] Hence we may choose the following approximation:

f r; zð Þ ¼ h2 � z2
� �

5h2 � z2
� �

q rð Þ: ð55Þ

[53] The function q(r) is determined by inserting (55) into
(53), multiplying by the part of f (r, z) that depends on z, and
integrating with respect to z from �h to h. We then obtain

q00 þ 1

r
q0 � n2

r2
þ a2

� 	
q ¼ � 11

248

Jn krð Þ
Jn kð Þ � rn

� �
; ð56Þ

where a2 =
153
62h2

.

[54] We confine our attention to a cylinder with an ideally
conducting lateral surface. We must find a solution of
equation (56) that is finite at r = 0 and such that q(1) = 0.
The solution is

q ¼ 11

248a2 k2 þ a2ð Þ a2 Jn krð Þ
Jn kð Þ þ k2

In arð Þ
In að Þ � k2 þ a2

� �
rn

� �
:

ð57Þ

[55] The approximate formulas for v and T enable us to
calculate the critical Rayleigh number using the integral
relation

R ¼ �
R
v � r2v dVR
vzT dV

: ð58Þ

[56] For the mode n = 0 one finds that

R ¼ 31a2 k2 þ a2ð Þ2

121h4k2
� 4k4h4 þ 24k2h2 þ 189

4k4 þ a2k2 þ a4 � 8k2

a
I1 að Þ
I0 að Þ

: ð59Þ

[57] It should be noted that here, in contrast to the case of
a layer of infinite extent, there is no horizontal wave number
that can be varied to minimize the value of R.
[58] For the mode n = 1 one finds that

R ¼ 124a4 k2 þ a2ð Þ2

121h4k2

� 2h4 k8 þ k6 � 20k4ð Þ þ 3h2 4k6 � k4 � 112k2 þ 64ð Þ þ 21 4k4 þ k2 � 104ð Þ
72k6 þ 9a2k6 þ 2a4 k4 � 2k2 � 44ð Þ þ a6 2k4 � k2 � 64ð Þ � 36k6a I0 að Þ

I1 að Þ

: ð60Þ

[59] Equation (51) may be solved numerically. One finds
that the smallest root for the case n = 0 is k = 5.1366, while
for the case n = 1 it is k = 2.8064.
[60] Similar results for the mode n = 2 are presented by

Gershuni and Zhukhovitskii [1976], while the expressions
(59) and (60) and the similar result for n = 2 are plotted in
their Figure 46. The plots show that as h ! 1 (and in
practice for h > 5) the critical Rayleigh number becomes
independent of h and approaches the limiting value for the
case of an infinite cylinder. As h decreases, the critical
Rayleigh number for each mode increases monotonically.
This represents the stabilizing effects of the ends. For h� 1
one has the approximation

R � R1 1þ c

h2

� �
; ð61Þ

where R1 is the number for an infinite cylinder and the
coefficient c is positive. For example c = 0.96 for the case
n = 1.
[61] The plots show that at h* = 0.74 the R(h) curves for

n = 0 and n = 1 intersect. When h > h* instability appears in
the form of the antisymmetric mode (n = 1), but for h < h* it
is the axisymmetric mode (n = 0) that is the more danger-
ous. It is probable that for h < 0.2 further exchanges of the
instability mode occur.
[62] Gershuni and Zhukhovitskii [1976] present a similar

figure for the case of a thermally insulated lateral surface.

3.4. Vertical Circular Cylinder, Infinite Height,
Double-Diffusive Problem

[63] We now adapt the above theory to the case of
double-diffusive convection. It is assumed that the equation
of state takes the form

r ¼ r0 1� bT* � bCC
*

� �
; ð62Þ

where T* and C* represent the dimensional temperature and
concentration. We consider the case where the temperature
and concentration gradients are vertical:

r*T*0 ¼ �Ak;r * C*0 ¼ �Bk: ð63Þ
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[64] The dimensionless equations (2) and (3) are now
replaced by the three equations

�lv ¼ �rpþr2vþ RT þ SCð Þk ð64Þ

�lPrv ¼ r2T þ v � k ð65Þ

�lPsv ¼ r2C þ v � k; ð66Þ

where the solutal Rayleigh number S (compare equation (25))
and the Schmidt number Ps are defined by

S ¼ gbCBr
4
0

nD
ð67Þ

Ps ¼
n
D
; ð68Þ

where D is the diffusivity of the solute. Appending to
equations (19), (20) the equation

C r;fð Þ ¼ g rð Þ cos nf; ð69Þ

and setting l equal to the pure imaginary number iw (rather
than zero) for the case of neutral stability, we have in place of
equations (22) and (23) the three equations

Dþ iwð Þuþ Rqþ Sg ¼ 0 ð70Þ

Dþ iwPrð Þqþ u ¼ 0 ð71Þ

Dþ iwPsð Þg þ u ¼ 0: ð72Þ

[65] Then, eliminating q and g from these three equations
one has

½ Dþ iwð Þ Dþ iwPrð Þ Dþ iwPsð Þ
� R Dþ iwPsð Þ � S Dþ iwPrð Þ�u ¼ 0: ð73Þ

[66] Taking the real and imaginary parts of this equation
one has

D2 � w2 Pr þ Ps þ PrPsð Þ � Rþ Sð Þ
� �

Du ¼ 0 ð74Þ

iw 1þ Pr þ Psð ÞD2 � w2PrPs � PsR� PrS
 �

u ¼ 0: ð75Þ

[67] Equations (74) and (75)must be satisfied simultaneously.
[68] Either w = 0, and so equation (75) is satisfied

identically and on integration equation (74) gives

D2 � Rþ Sð Þ
� �

u ¼ 0; ð76Þ

or w 6¼ 0 and then

1þ Pr þ Psð ÞD2 � w2PrPs � PsR� PrS
� �

u ¼ 0; ð77Þ

and then, eliminating w from equations (77) and (74) one
obtains, after some algebra,

D2 � P2
s Rþ P2

r S

PrPs þ Pr þ Ps

� �
u ¼ 0: ð78Þ

[69] We now consider the case where the q satisfies the
perfectly conducting boundary conditions, namely the iso-
thermal condition q = 0 on all of the boundaries, and g
satisfies the isosolutal condition g = 0 on the boundaries.
Then any linear combination of q and g (including the
combination Rq + Sg) also vanishes on the boundaries.
Further, one notes that equation (76) is obtained from
equation (29) if R is replaced by R + S. One concludes that
one has the same boundary value problem as before but
with R replaced by R + S. Hence if R = Rc is the criterion for
the onset of convection in the thermal problem then

Rþ S ¼ Rc ð79Þ

is the criterion for the case of double diffusion for the case
of nonoscillatory (monotonic) convection.
[70] Similarly a comparison of equations (78) and (29)

leads to the conclusion that in the case of oscillatory double-
diffusive convection the criterion for the onset of convection is

P2
s Rþ P2

r S

PrPs þ Pr þ Ps

¼ Rc; ð80Þ

subject to the constraint that the vanishing of the expression
within the square brackets in equation (77) yields a real
value of w.
[71] It appears that the same argument is valid for the case

of a cylinder of finite height.
[72] If one now defines Rayleigh numbers in terms of the

height of water in the cylinder above the base of the well
(Hf) and the temperature and concentration differences from
top to bottom,

Raf ¼
gbH3

f DT

nk
ð81Þ

RafD ¼
gbCH

3
f DC

nD
; ð82Þ

then one concludes that the criterion for the onset of
nonoscillatory convection is

Raf þ RafD ¼ 215:6

r4a
1þ 3:84r2a
� �

; ð83Þ

the approximation being a good one for ra < 0.2, where ra
is the radius-to-height aspect ratio. Similarly the criterion
for the onset of oscillatory convection is

P2
sRaf þ P2

rRafD

PrPs þ Pr þ Ps

¼ 215:6

r4a
1þ 3:84r2a
� �

: ð84Þ
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3.5. Applicability of the Theory to a Geothermal Well

[73] One thing can be said at the outset. The criteria
expressed in equations (83) and (84) give upper bounds on
the true critical Rayleigh number. The reason for this is that
among the class of physically plausible thermal boundary
conditions the perfect conducting condition is the most
restrictive. Similarly, among the class of physically plausi-
ble hydrodynamic boundary conditions the no slip condition
is the most restrictive. The more restrictive the boundary
conditions in a boundary value problem such as we have
been treating, the higher the eigenvalue. Hence a move to
less restrictive boundary conditions lowers the eigenvalue,
i.e., reduces the value of the critical Rayleigh number.
[74] More precisely, a more adequate model of a geother-

mal well would be a circular cylinder occupied by fluid
surrounded by a sheath of porous medium of finite conduc-
tivity, say a concentric cylinder of outer radius rm. We could
model this as a conjugate conduction-convection problem.
The expected net effect of this is that the Dirichlet boundary
condition (boundary condition of the first kind) q = 0 on the
boundary G would be replaced by a Robin (third kind)
condition of the form @q/@n + lTq = 0 on G, where lT is a
Biot number dependent on the conductivity ratio km/k and
the radius ratio rm/r0, where km is the effective conductivity
of the porous medium. The case lT =1 is that we have just
examined. The case lT = 0 corresponds to an insulating
wall. In the case of an infinitely tall cylinder, this change
produces a reduction of the critical Rayleigh number for the
thermal problem in the ratio 67.95/215.6, other things being
equal. In a geothermal situation lT is likely to be large
compared with unity, and hence the finite (rather than
infinite) conductivity of the wall is not expected to substan-
tially reduce the value of the critical Rayleigh number.

[75] Likewise, the replacement of a rigid wall by a Darcy
porous medium is expected to change the hydrodynamic
tangential boundary condition from first kind to third kind,
of the form

@u=@nþ lHu ¼ 0; ð85Þ

containing a parameter lH defined by

lH ¼ aBJ r0

K1=2
; ð86Þ

where aBJ is the Beavers-Joseph coefficient and K is the
permeability of the porous medium. In the geothermal
situation lH is expected to be large compared with unity,
and thus the reduction in the value of the critical Rayleigh
number, as a consequence of the replacement of a solid wall
by a porous medium, is expected to be small.

4. Application to Groundwater Wells

[76] In this section, we apply the theoretical treatment
developed above to groundwater wells using realistic data to
determine whether, from a theoretical viewpoint at least,
thermohaline double-diffusive convection is a plausible
phenomenon. The critical elements of the analysis presented
in section 3 can now be drawn out in order to apply it to
groundwater wells. For the final cases considered in this
section, the conceptual model of our groundwater well and
associated boundary conditions are illustrated in Figure 2.
The well is modeled as a vertical circular cylinder whose
top and bottom are rigid and at constant temperature (zero
perturbation temperature, the ‘‘conducting’’ condition) and
constant concentration and whose lateral wall is imperme-
able and rigid and at constant temperature and constant
concentration. Constant gradients are applied in both T(z)
and C(z) boundary conditions on the lateral wall. The aspect
ratio of the well is defined as the ratio of the radius of the
well to the height of the fluid filled column above the well
base. It is critical to note that it is the height of the water
column in the well that governs the fluid circulation and not
the total height of the well (i.e., the ‘‘dry’’ space above the
water table does not contribute and should not be included
in Rayleigh number analyses).
[77] From equation (83) it can be seen that the critical

Rayleigh number for a well (Raf 0) is a function of the well
aspect ratio and is given by

Raf 0 ¼
215:6

r 4a
1þ 3:84r2a
� �

: ð87Þ

[78] A conceptual diagram showing the critical Rayleigh
numbers for a vertical well, versus the well aspect ratio
(ra = r/Hf) is shown in Figure 3. The restricted boundary
conditions imposed by the well results in the critical
Rayleigh numbers being much larger than would be the
case for an infinite horizontal layer. At a glance, one can see
that the critical Rayleigh numbers appear enormous. As the
well aspect ratio increases, the critical Rayleigh number
reduces; that is, the propensity for DDC is greatest in wells
with a higher aspect ratio, namely, larger radii and shorter
height.

Figure 2. Conceptual model of the groundwater well and
associated boundary conditions. The well is modeled as a
vertical circular cylinder whose top and bottom are rigid and
at constant temperature (zero perturbation temperature, the
‘‘conducting’’ condition) and constant concentration and
whose lateral wall is impermeable and rigid and at constant
temperature and constant concentration. Constant gradients
are applied in both T(z) and C(z) boundary conditions on the
lateral wall.
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[79] In particular, monotonic convection will occur when
the inequality given by equation (88) is satisfied, namely,

Raf þ RafD � Raf 0; ð88Þ

while oscillatory convection will occur when both inequal-
ities given by equations (89) and (90) are simultaneously
satisfied,

P2
s Raf þ P2

r RafD

PrPs þ Pr þ Ps

� Raf 0 ð89Þ

Raf þ RafD � Raf 0: ð90Þ

[80] It is important to note that the critical Rayleigh
number criterion is a function of the well aspect ratio only
(i.e., radius and height of well). However, the thermal and
solute Rayleigh numbers that are summed to provide the
overall well Rayleigh number are a function of the height of
the water column only. In this way, for each configuration of
well aspect ratio and temperature/salinity gradients, a sep-
arate computation of both critical Rayleigh numbers and
thermal/solute Rayleigh numbers are required (i.e., the
thermal and solute Rayleigh number of the well change
each time the height of the water column is changed, even if
the overall aspect ratio of the well remains constant).
[81] We now consider various scenarios that may be most

relevant to groundwater wells. These applications of the
theory are not intended to be exhaustive. Rather, they are
provided to demonstrate the plausibility of DDC phenom-
ena in groundwater wells. In the following we consider the
most common thermal regime that would occur in a
groundwater well. This being where cold water transitions
into warmer water at depth, we assume a geothermal
gradient of 0.02�C/m (typical of groundwater wells [see
Domenico and Schwartz, 1998]). In our demonstrations we
also assume that a typical monitoring well has the dimen-
sions of r = 0.01 m and Hf = 30 m. Keeping all variables

constant we then vary DC (resulting in all cases being
parallel to RafD) and assess the impact of concentration
gradients on the predicted convective modes. We utilize
various parameters in our analyses that are shown in Table 2.
Results for different thermohaline regimes (temperature and
salinity gradients), well geometries and critical Rayleigh
numbers, as well as actual thermal and solute Rayleigh
numbers are presented in Table 3 and also plotted schemat-
ically in Raf � RafD parameter space (Figure 1). Examples
are presented for three important cases: (1) the geothermal
gradient only, (2) the boundary between monotonic and
oscillatory convection, and (3) the boundary between oscil-
latory convection and diffusive flow.
[82] Here we attempt to answer some very fundamental

questions. These include: Can the geothermal gradient alone
drive thermal convection in a well in the absence of any
solute gradient? In the presence of the geothermal gradient,
what are the salinity distributions (both configuration and
magnitude) required for two types of DDC (monotonic and
oscillatory)?
[83] In the following analysis, we ignore the seasonal

variations in the geothermal gradient that usually exist at the
surface. Our analysis applies at depths below which the
geothermal gradient may be assumed time invariant. We
assume a constant geothermal gradient of 0.02�C/m and set
DC = 0 in the following demonstration (Case a in Table 3).

Figure 3. Critical Rayleigh number (Raf 0) versus the well aspect ratio (r/Hf) for fluid in a vertical
cylinder. Well aspect ratios above the line are unstable, and those below the line are stable. Increasing the
well aspect ratio results in a reduction in the value of Raf0 required for the onset of convection.

Table 2. Parameters Used in All Demonstration Calculations

Parameter Value

Thermal expansion coefficient b, K�1 2 � 10�4

Solute expansion coefficient bc, m
3 kg�1 0.755

Thermal diffusivity k, m2 s�1 1.4 � 10�7

Solute diffusivity D, m2 s�1 1.57 � 10�9

Fluid kinematic viscosity n, m2 s�1 10�6

Acceleration due to gravity g, m s�2 9.81
Prandtl number Pr 7.14
Schmitt number Ps 637
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It can be seen that monotonic convection is predicted to
occur as the thermal Rayleigh number is much larger than
the critical Rayleigh number for this well geometry. Using
the above analyses it can be easily be demonstrated that the
addition of any salinity gradient in a destabilizing manner
will plot in a straight line above the Raf axis in q1 and
monotonic convection will continue to occur. These obser-
vations suggest thermal convection may be much more
important in groundwater wells than is currently believed.
Other analyses (not shown) suggest a wide range of well
geometries are geothermally unstable.
[84] Again using our demonstration well of Hf = 30 m, r =

0.01 m and constant geothermal gradient of 0.02�C/m we
can now change DC in a restoring mode (HSB, q4 of
Figure 1). We ask the following question: what change in
DC is now required to reach the boundary between mono-
tonic-oscillatory convection and oscillatory convection?
Case b shows that the boundary between the two convective
modes occurs for DC = 1.7686 mg/L. Monotonic convec-
tion is thus predicted to occur in this quadrant for 0 < DC �
1.786 mg/L (for our typical well configuration). The lower
bound between the oscillatory-diffusive (stable) flow
regimes can be obtained by imposing a concentration
difference of DC = 14,188.2 mg/L (in the stable salinity
configuration). This results in a very large parameter space
available for oscillatory convection in the range 1.7686 �
DC � 14,188.2 mg/L. The oscillatory convective regime
may be common to many groundwater systems where
salinity increases with depth because of the acquisitions of
dissolved solutes from water rock interactions and where
temperature ubiquitously increases with depth because of
the geothermal gradient. Finally, for DC � 14,188.2 mg/L
stable flow is predicted.
[85] It should be noted that the term oscillatory convec-

tion refers to the small amplitude convection at the onset of
convection, and it does not imply that oscillatory flow is
predicted to occur in a well. Rather, finite amplitude
convection leading to the establishment of a stepwise
distribution of temperature and salinity is predicted for this
regime.

5. Summary and Conclusions

[86] The possibility that double-diffusive convection
driven by thermohaline conditions may occur in a ground-
water well has not been studied in previous literature. In this
paper we formulated the appropriate stability criteria for
DDC and then presented simple demonstration examples
using realistic well geometries and temperature and salinity
gradients that one could observe in a groundwater well.

Critically, our theoretical results suggest that DDC is indeed
a plausible mechanism for intrawell mixing. For the realistic
well configuration used in this study, it has been shown that:
[87] 1. For a typical well geometry, the geothermal

gradient alone is shown to be unstable. This can be further
destabilized (monotonic convection) by the addition of salt
in the destabilizing configuration, i.e., salty over fresh. This
suggests that the geothermal gradient may be a significant
driver of intrawell mixing – an observation that we believe
has not been recognized fully in previous literature.
[88] 2. In the presence of a geothermal gradient, mono-

tonic convection is predicted to occur for stable salinity
contrasts in the range 0 < DC � 1.7686 mg/L (for our
demonstration well configuration), i.e., fresh over salty.
[89] 3. In the presence of a geothermal gradient, the lower

bound between the oscillatory-diffusive flow regimes can be
reached by the addition of DC = 14,188.2 mg/L in the
stable configuration, i.e., fresh over salty. This results in a
very large parameter space available for oscillatory convec-
tion in the range 1.7686 � DC � 14,188.2 mg/L.
[90] 4. In the presence of a geothermal gradient, for

DC � 14,188.2 mg/L in the stable configuration; that is,
fresh over salty, stable diffusive flow is predicted.
[91] What is critical to observe in the above conclusions

is that in the presence of the geothermal gradient, only
extremely small to negligible salinity differences are
required for transitions to occur between stable, oscillatory
and monotonic modes of convection. From a theoretical
viewpoint, all are practically possible. Clearly, different
critical ranges of temperature and salinity gradients should
be computed for varying well geometries. The above con-
clusions simply demonstrate that very realistic temperature
and salinity gradients lead to the theoretical possibility that
DDC may occur in wells typically encountered in hydro-
geologic settings. One does not need to ‘‘beg the data’’.
[92] Some immediate extensions to this current study

include: (1) field-based experimentation to support these
theoretical analyses, (2) an assessment of the influence of
mixed convective phenomena on DDC processes in the
presence of advective flows and aquifer heterogeneity, and
(3) transient extensions of these steady state concepts in
order to explore the spatiotemporal patterns of behavior as
well as the persistence of these phenomena once they are
established.
[93] This study suggests that DDC processes and their

effect on well measurements may be important in under-
standing and interpreting borehole data in hydrogeologic
analyses. We have demonstrated theoretically that the onset
of DDC may occur but it is not yet clear to what extent

Table 3. Stability Analyses for the Onset of Monotonic and Oscillatory Convection in a Groundwater Wella

Case DC, mg/L Raf RafD Ra1 Ra2 Raf 0 Mode

a 0 2.27 � 1014 – 2.27 � 1014 – 1.75 � 1012 M
b 1.7686 2.27 � 1014 �2.25 � 1014 2.75 � 1012 – 1.75 � 1012 M/O
c 14,188.2 2.27 � 1014 �1.81 � 1018 – 1.75 � 1012 1.75 � 1012 O/S

aWe keep the following constant in our demonstration case: Hf = 30 m, r = 0.1 m, and DT = 0.6�C. In the table, DC is the change in concentration, Raf
is the fluid thermal Rayleigh number, RafD is the fluid solute Rayleigh number, Ra1 is the combined thermohaline Rayleigh number for a well (Raf + RafD)
for monotonic convection, Ra2 is the combined thermohaline Rayleigh number for the lower bound of oscillatory convection in a well (defined as (Ps

2Raf +
Pr
2RafD)/(PrPs + Pr + Ps) = Raf 0), and Raf 0 is the critical Rayleigh number for a well. Convection modes are denoted by M, monotonic convection

(unstable); O, oscillatory convection (unstable); and S, stable.
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DDC processes persist and therefore exist (i.e., growth and/or
decay processes with time are largely unknown). The
findings of this present study are therefore preliminary. In
the least, they suggest from a theoretical view point that this
DDC phenomenon clearly warrants greater exploration in
groundwater hydrology (and in particular connection with
groundwater wells) than has been undertaken to date.
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