
Department of Computer Science
Series of Publications A

Report A-2012-6

Methods for Network Abstraction

Fang Zhou

To be presented, with the permission of the Faculty of Science of
the University of Helsinki, for public criticism in Auditorium
XII, University Main Building, on August 16th, 2012, at 12
o’clock noon.

University of Helsinki
Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14925052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supervisor
Hannu Toivonen, University of Helsinki, Finland

Pre-examiners
Nada Lavrač, Jožef Stefan Institute, Slovenia
Jiuyong Li, University of South Australia, Australia

Opponent
Christian Borgelt, European Centre for Soft Computing, Spain

Custos
Hannu Toivonen, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: postmaster@cs.helsinki.fi
URL: http://www.cs.Helsinki.fi/
Telephone: +358 9 1911, telefax: +358 9 191 51120

Copyright c© 2012 Fang Zhou
ISSN 1238-8645
ISBN 978-952-10-8157-6 (paperback)
ISBN 978-952-10-8158-3 (PDF)
Computing Reviews (1998) Classification: G.2.2, G.2.3, H.2.8
Helsinki 2012
Unigrafia

Methods for Network Abstraction

Fang Zhou

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
fang.zhou@cs.helsinki.fi
http://www.cs.helsinki.fi/u/fzhou/

PhD Thesis, Series of Publications A, Report A-2012-6
Helsinki, August 2012, 48 + 71 pages
ISSN 1238-8645
ISBN 978-952-10-8157-6 (paperback)
ISBN 978-952-10-8158-3 (PDF)

Abstract

We propose network abstraction as a research area. It is motivated by the
growth of networks in many areas of life. Consider, for instance, networks
of thousands of genes, millions of people, or billions of web pages. They are
too large to be directly analyzed by users. The aim of network abstraction
is to summarize a large network as a smaller one. An abstracted network
can then help users to see the overall topology of a large network, or to
understand the connections of distant nodes.

The general network abstraction task is: given a large network, transform
it into a smaller one, which contains in some well-specified sense the most
relevant information. In this thesis, we analyze this research area and
propose methods to solve some instances of the problem. The methods
also provide different trade-offs between the graph quality and simplicity,
as well as between result quality and efficiency.

More specifically, we propose two approaches to abstracting a network.
The first one is to simplify a weighted network by removing edges under
the constraint that distances between all pairs of nodes are preserved. We
first empirically show that a number of edges can be removed from real
biological networks without losing any graph connectivity. We next relax
the constraint of fully preserving original graph connectivity, extend loss-
less network simplification to lossy network simplification, and demonstrate
that many more edges can be removed with little loss of quality.

iii

iv

The second approach we give for network abstraction is to compress a
weighted network by grouping nodes and edges. We propose novel methods
and experimentally show that real graphs can be compressed efficiently
with relatively little error. We next consider graphs with weights also on
the nodes, and utilize them as node importances to extend the definition
of weighted graph compression. We present new compression operations
and demonstrate that the compressed graph can preserve more information
related to more important nodes.

Furthermore, we propose the idea of using node weights and compression to
summarize the metabolisms in a set of organisms, and apply the methodol-
ogy to better understand the metabolic biodiversity between Archaea and
Eubacteria, the two most fundamental branches of life.

Computing Reviews (1998) Categories and Subject
Descriptors:
G.2.2 Graph Theory
G.2.3 Applications
H.2.8 Data mining

General Terms:
Algorithms, Experimentation

Additional Key Words and Phrases:
Weighted Network, Abstraction, Graph Mining, Bioinformatics

Acknowledgements

I am most grateful to my supervisor, Prof. Hannu Toivonen, for teaching
me every aspect of research and guiding me through the doctoral studies.
His insightful questions led me to explore the paths of science. He always
helped and supported me in every important step.

Thanks to Prof. Ross D. King for his advice and encouragement. I am
grateful to him for the discussions that helped me to sort out the biological
work. He has done an excellent job in mentally supporting me.

I appreciate my mentor Dr. Huizhen Yu and Dr. Sèbastien Mahler for
their guidance during the first two years of my Ph.D studies. Thanks to
Prof. Ming Li and Asst. Prof. Jonathan H. Badger for their help in the
biological work.

I would like to thank my pre-examiners Prof. Jiuyong Li and Prof.
Nada Lavrač for their useful comments that improved the quality of the
thesis, and Marina Kurtén, MA, for her help in improving the language of
the thesis.

Thanks to the previous and current members in the Discovery group for
their help during this work. Particularly thanks to Laura Langohr, Aleksi
Hartikainen, Dr. Petteri Hintsanen, Lauri Eronen, Esther Galbrun, Atte
Hinkka and Kimmo Kulovesi.

I would like to thank Hongyu Su, Liang Wang, Jie Xiong, Chengyu Liu,
Yi Ding, Lu Cheng and my other friends, I have enjoyed our discussions on
random topics.

This work has been carried out at the Department of Computer Science
at the University of Helsinki. I am thankful to the administration staff and
IT support staff at our department for creating an efficient and pleasant
working environment.

I appreciate the financial support from Helsinki Graduate School in
Computer Science and Engineering (Hecse), Chinese scholarship, and the
Bison project (European Commission under the Seventh Framework Pro-
gramme FP7-ICT-2007-C FET-OPEN).

Lastly, but most importantly, I would like to thank Shaohua Fan and

v

vi

my parents, Huiying Zhou and Weihua Zhou. Thanks for the endless love
and for always supporting me to do what I love. To them, I dedicate this
thesis.

Fang Zhou @ Helsinki

June, 2012

Contents

List of Publications and The author’s Contributions 1

1 Introduction 3

1.1 Topic of the thesis . 3

1.2 Research questions . 5

1.3 Overview of articles . 5

1.4 Structure of the introductory part 7

2 Network Properties and Evaluation Criteria 9

2.1 Graph concepts . 9

2.2 Graph properties . 10

2.2.1 Network topology 10

2.2.2 Network centrality 13

2.2.3 Network connectivity 14

2.3 Two types of structural change with respect to different
viewpoints . 15

2.3.1 Unimportant information 15

2.3.2 Irrelevant information 15

2.4 Evaluation criteria . 16

2.4.1 Topological change 17

2.4.2 Connectivity change 17

2.4.3 Adjacency matrix change 18

3 Network Abstraction Approaches 21

3.1 Operation types . 21

3.2 Two viewpoints . 22

3.3 Existing approaches . 23

3.4 Novelty of our approaches 24

vii

viii Contents

4 Application to Metabolic Networks 27
4.1 Metabolic networks of Archaea and Eubacteria 27
4.2 Weighted metabolic networks and compression 29

5 Summary of Contributions 31
5.1 Defining the field of network abstraction 31
5.2 Network simplification . 31
5.3 Network compression . 34
5.4 Compression of metabolic networks 37
5.5 Answers to the research questions 37
5.6 Open questions . 38

6 Conclusions 41

References 43

List of Publications and
The author’s Contributions

This thesis consists of this introductory part and the following five original
publications, reprinted at the end of the thesis.

Article I Review of Network Abstraction Techniques, Fang Zhou,
Sébastien Mahler, and Hannu Toivonen. In Workshop on Explorative
Analytics of Information Networks, Bled, Slovenia, 2009. (Extended
version)

The author participated in discussing and defining the area of network
abstraction. She reviewed articles and took part in writing the paper.

Article II A Framework for Path-Oriented Network Simplifica-
tion, Hannu Toivonen, Sébastien Mahler and Fang Zhou. In Ad-
vances in Intelligent Data Analysis IX, 9th International Symposium,
IDA 2010, pages 220-231. Springer, 2010.

The author implemented and analyzed the algorithms, performed the
experiments, and analyzed the experimental results.

Article III Network Simplification with Minimal Loss of Connec-
tivity, Fang Zhou, Sébastien Mahler, and Hannu Toivonen. In Pro-
ceedings of the 2010 IEEE International Conference on Data Mining,
ICDM’10, pages 659-668. Washington, DC, USA, 2010. IEEE Com-
puter Society.

The author took part in conceiving the research idea. She had main
responsibility for designing and implementing the algorithms, ana-
lyzing the computational complexity, performing experiments, and

1

2 Contents

analyzing the experimental results. She also wrote a majority of the
paper.

Article IV Compression of Weighted Graphs, Hannu Toivonen, Fang
Zhou, Aleksi Hartikainen, and Atte Hinkka. In Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD’11, pages 965-973, New York, NY, USA,
2011, ACM.

The author had main responsibility for developing the research idea.
She designed the algorithms, performed the experiments, analyzed
the results, and took part in writing the paper.

Article V Abstracting Weighted Graphs: Generalization based
on Node Importance, Fang Zhou, Hannu Toivonen, Aleksi Har-
tikainen, Jonathan H. Badger, and Ross D. King. (submitted)

The author participated in developing the research idea. She de-
signed the algorithms and implemented parts of them, performed the
experiments, analyzed the results, and co-wrote the paper.

Chapter 1

Introduction

The topic of this thesis is network abstraction, and the goal is to propose
computational tools to transform a large network into a smaller one which
is more useful for visualization, analysis and understanding. This thesis
consists of the present introductory part in six chapters and five original
articles reprinted at the end of the thesis.

In this chapter, I introduce the topic, describe the motivations of the
work, present research questions, and give an overview of the original arti-
cles.

1.1 Topic of the thesis

The goal of this research work is to propose methods to abstract a simpler
and useful network from a large one, with respect to a possible application.
The author of this thesis and other contributors review and analyze the
filed, and propose two approaches to abstract a network. We next give an
overview of the research area, and return to the contributions of the thesis
later.

Networks are a common and powerful formalism for linked data: nodes
represent objects and links (or edges) represent connections between ob-
jects. Prominent examples include World Wide Web, social networks (such
as Facebook), biological networks (e.g. metabolic network), and commu-
nication networks. Networks play a crucial role in describing how objects
interact with each other. The terms network and weighted graph are inter-
changeable in this thesis.

Numerous data mining techniques have been proposed to explore net-
work properties and discover new knowledge. For example, frequent sub-
graph mining techniques find frequent patterns (or subgraphs) in a large

3

4 1 Introduction

graph (or a database of graphs); clustering techniques try to find com-
munities in a large graph. Our work differs from such mainstream graph
mining and analysis: we investigate methods to make networks simpler.
Our methods may, however, have applications as a pre-processing step for
some graph mining methods.

Networks are often large. Consider networks of thousands of genes,
millions of people, billions of web pages. They are too large to be directly
visualized by users. The big size increases the complexity of understanding.
For instance, it is hard for a user to see the overall topology of the network.
Furthermore, it increases the complexity of exploring the hidden knowledge.
One solution is to transform a large network into a simpler and smaller one,
which maintains the most relevant information related to one application,
although some irrelevant information may be lost. We call this approach
network abstraction.

As an example, consider a social network, such as Facebook. Nodes rep-
resent individuals and edges represent friendships. Suppose a user wants to
know how two persons, A and B, know each other. A smaller graph, which
is maximally relevant to the user-specified query nodes A and B, contains
enough information to make the relations between A and B understand-
able. Other nodes, which are irrelevant to query nodes, do not necessarily
have to be shown to the user, and their existence increases the complexity
of understanding.

In more general, network abstraction is a process or result of general-
ization by reducing or factoring out details. Typically this is done in order
to retain only information which is relevant to a particular purpose, so that
one can focus on a few most important relations at one time. Several oper-
ations can be used to obtain an abstracted graph. The simplest operation
is removing redundant or unimportant nodes and edges. A minimum span-
ning tree is an extreme example of this: a graph is abstracted into a tree.
Another operation is dividing a graph into several components. Yet another
operation is replacing some parts of a graph by general ones. We provide
a taxonomy and review of network abstraction methods and operations in
Article I.

Network abstraction techniques may bring several benefits. First, it
simplifies the structure of a large network, so that a user can more eas-
ily study the topology of a large network and understand the connections
between distant nodes. Second, it allows a user to concentrate on a small
part of the graph. Third, it may help a user to discover hidden knowledge
by eliminating the irrelevant information. Fourth, as a pre-processing for
other data mining algorithms, it may reduce the computational complexity

1.2 Research questions 5

by extracting the most important information related to the application.
In this work, network abstraction techniques are investigated for weighted

and undirected graphs. The tasks include exploring how to measure the
quality of an abstracted network, how to balance loss of information over
the gained simplicity, how the users can control these operations, and how
to make methods feasible and efficient for large networks.

1.2 Research questions

In this thesis, we seek to answer the following questions. The first question
helps to set the exact goal for a specific network abstraction problem.

I How can we measure the quality of an abstracted network?

Given that we are able to tell if an abstraction is good or not, we face
the second research question:

II What kind of operations and methods can we use to abstract a graph?

The second question will lead us to explore feasible abstraction tech-
niques, balancing between quality and efficiency. When we obtain an ab-
stracted graph, we will face the third question:

III How useful is an abstracted graph?

This thesis will aim to shed light on these questions. Most of the answers
will be measures and methods for specific network abstraction problems.
The usefulness will be mainly evaluated in the context of a novel biological
application.

1.3 Overview of articles

The scientific contributions of this thesis are in the original Articles I-V.
Article I reviews the state-of-the-art of network abstraction techniques.
Articles II-V address two technical subtopics: network simplification and
network compression. Below I briefly describe the motivation of each work
and summarize their main results. Discussions of the results are deferred
to Chapter 5.

Article I Review of Network Abstraction Techniques

This paper surveys techniques that can abstract a large network into a
smaller one (Research question II). We classify these techniques based

6 1 Introduction

on two orthogonal characteristics. One consists of three elementary
operations: prune unimportant (or irrelevant) nodes and edges, par-
tition a graph to several components, replace parts of graphs by more
general ones. The other characteristic classifies techniques based on
whether user focus is allowed or not: objective vs. subjective. Fur-
thermore, we propose areas for further research based on the gaps
observed in the review.

Article II A Framework for Path-Oriented Network Simplifica-
tion

We propose a generic framework and methods for network simplifica-
tion by removing redundant edges. It is based on the observation that
a network can have a simpler structure but still maintain the orig-
inal quality of the best paths between all pairs of nodes (Research
question I). We propose four algorithms to remove redundant edges
(Research question II). The framework is applicable to different kinds
of graphs, and the quality of a path can be measured in different ways.
The methods are evaluated empirically using real data.

Article III Network Simplification with Minimal Loss of Connec-
tivity

We significantly extend and generalize our work in Article II. We
propose methods to simplify weighted graphs by pruning more edges
while minimizing the loss of connectivity. The intention is that a
user can flexibly choose a suitable trade-off between simplicity and
connectivity of the resulting graph (Research question I). Four algo-
rithms are offered (Research question II), and experiments show that
significant pruning can be achieved with little loss of connectivity.

Article IV Compression of Weighted Graphs

We propose models and methods for compression of weighted graphs.
The idea is that nodes with similar neighbors can be grouped together,
and space can be saved by presenting their shared connections only
once. The task is to compress a weighted graph this way into a
smaller graph that contains approximately the same information as
the original graph (Research question I).

We formulate a simple and a generalized weighted graph compression
problem. The simple task aims to maintain individual edge weights,
while the generalized task tries to preserve longer-range connectivi-
ties between nodes. We give algorithms for the tasks (Research ques-
tion II), and evaluate them on real data.

1.4 Structure of the introductory part 7

Article V Abstracting Weighted Graphs: Generalization based
on Node Importances

Methodologically, this paper extends the definition of weighted graph
compression of Article IV to also consider node importances. The goal
is to compress a large graph into a smaller one with less error related
to more important nodes (Research question I). We also propose new
compression operations and improve algorithms that allow removal
of low-weight edges and disconnected nodes (Research question II).

Furthermore, we propose the idea of assigning weights to nodes to
summarize the metabolism information in a set of organisms. We ap-
ply the graph generalization method to the problem of understanding
the metabolic biodiversity in bacteria (Research question III).

1.4 Structure of the introductory part

This introductory part of this thesis is not a summary of our research work,
because the scientific materials are already described in Articles I-V. The
introductory part gives the background and context of the research work,
and it concludes by summing up our scientific contributions.

The following three chapters, Chapter 2, 3 and 4, give an overview of
the area, and provide general answers to the three research questions. The-
matically these three chapters involve three subtopics: network properties,
potential abstraction approaches, and a biological application, correspond-
ing to the three research questions.

Chapter 2 gives an overview of the first research question. It introduces
the basic graph concepts, describes main properties of a graph, and then
discusses two types of structural change with respect to different viewpoints.
It also explores ways to measure how well information is preserved during
abstraction.

The role of Chapter 3 is to give a general answer to the second research
question, what kinds of operations and methods can we use to abstract
a graph, by proposing potential operations and reviewing promising ap-
proaches.

Chapter 4 briefly introduces the biological problem, as a concrete ap-
plication of graph abstraction as an analysis method.

Chapter 5 is a discussion of our contributions, and also explicitly an-
swers the three research questions based on the contributions of this thesis.

Finally, Chapter 6 gives an overall conclusion.

8 1 Introduction

Chapter 2

Network Properties and
Evaluation Criteria

In this chapter, I first briefly introduce the concepts concerning a graph,
and then discuss several important graph properties. Next, I discuss two
kinds of structural change with respect to different viewpoints. Finally, I
approach the first research question, how can we measure the quality of an
abstracted network, by presenting multiple evaluation criteria that can be
used to measure the quality of an abstracted graph.

2.1 Graph concepts

In this thesis, network abstraction techniques are investigated for undi-
rected and weighted graphs. A weighted graph is a triple G = (V,E,w),
where V is a set of nodes (or vertices), E ⊂ V × V is a set of edges (or
links), and w : E → R+ assigns a non-negative weight w(e) to each edge
e ∈ E. Each edge links two nodes. In an undirected graph, an edge e con-
necting nodes u, v is an unordered node pair {u, v}. The vertices incident
to an edge are called its endpoints (or endvertices). An edge where the two
endpoints are the same node is called self-edge. Edges that are incident to
the same two vertices are called parallel edges.

A path P is a set of consistent edges P = {{u1, u2}, {u2, u3}, . . . , {uk−1,
uk}} ⊂ E. P is a path between u1 and uk, that is, u1 and uk are the
endvertices of P . A path P can be regarded as the concatenation of several
sub-paths, i.e., P = P1 ∪ . . . ∪ Pn, where Pi is a path. Two nodes are
connected if there exists a path between them. A graph is connected if any
two nodes of the graph are connected.

A subgraph G′ = (V ′, E′, w) of the graph G = (V,E,w) is a graph where

9

10 2 Network Properties and Evaluation Criteria

V ′ is a subset of V and E′ is a subset of E. E′ only contains edges whose
endvertices are in V ′.

A graph S = (VS , ES ,WS) is a compressed representation (or com-
pressed graph) [Article IV] of the graph G = (V,E,w) if VS is a partition of
(sub)set V . The nodes vs ∈ VS are called supernodes, and edges eS ∈ ES
are called superedges. T (vS) ⊂ V represents the set of original nodes within
the supernode vS . A superedge eS = {uS , vS} represents all possible edges
between an original node in us and an original node in vS . Compression
may lose information (and typically does for weighted graphs). The decom-
pressed graph [Article IV] dec(S) of S is a graph dec(S) = (V ′, E′, w′) such
that V ′ = ∪vS∈VST (vS) and E′ = {{u′, v′} | {uS , vS} ∈ ES , u′ ∈ T (uS), v′ ∈
T (vS)} and w({u′, v′}) = w({uS , vS}). The decompressed graph contains
exactly the same information as the compressed graph.

2.2 Graph properties

In this section, I introduce several important characteristics of network
topology, network centrality, and network connectivity.

2.2.1 Network topology

Degree

In an undirected network, the degree of a node v is the number of edges
connected to the node, and p(k) is a fraction of nodes having degree k in
the network. p(k) thus is the probability that a randomly chosen node has
degree k. A histogram plot of p(k) for a given network shows the degree
distribution of the network.

In a random graph, the degree distribution is homogeneous, binomial
distribution. However, the degree distributions of many real-world networks
are inhomogeneous, with a heavy right tail.

For weighted graphs, the concept of degree can also be extended to take
edge weights into account, by defining the volume of a node as the sum of
the absolute values of weights on adjacent edges [27].

The degree variability shows the variation in the degree distribution.
Let d = d1, d2, . . . , dn be the sequence of degrees , and 〈d〉 be the average
degree. The degree variation CV (d) [18] is defined as

CV (d) = {
∑n

i=1(di − 〈d〉)2
n− 1

}/〈d〉.

2.2 Graph properties 11

The degree correlation [18] measures the correlation of a node’s degree
and the degree of its neighbors, that is,

∑
{u,v}∈G d(u)d(v), where d(u) is

the degree of node u.

Path length

In a graph, the distance between any two nodes u, v is the length of the
shortest path between them. If the graph is unweighted, then the shortest
path is the minimum number of edges that need to be traversed from u to
v. If the graph is weighted, then the shortest path refers to the length of
the path that has the best quality between u and v.

The diameter of a network is defined as the longest distance of any pair
of nodes. The average path length of a network is defined as the average
path length between all pairs of nodes.

Clustering coefficient

In many real-world networks, if node u connects to node v and node v
connects to node z, there is a high probability that nodes u and z are con-
nected. This is known as the “small-world” phenomenon. The clustering
coefficient of node v measures the probability that v’s neighbors are con-
nected. Let k be v’s degree, and Ev represent the actual number of edges
between the neighbors of v. The clustering coefficient [54] of node v is the
proportion of the actual edge number between v’s neighbors with respect
to the maximal possible edge numbers between the neighbors,

Cv =
2 ∗ Ev

k ∗ (k − 1)
.

The clustering coefficient of a network can then be defined as the average
clustering coefficient over all nodes, that is,

C =
1

|V |
∑

v∈V
Cv.

An alternative definition [39] of the global clustering coefficient is the
fraction of triples of nodes that have the third edge to form a triangle, that
is,

C =
3 ∗ number of triangles in the network

number of connected triples
.

12 2 Network Properties and Evaluation Criteria

Community structure

One topological property of networks, the community structure, shows that
groups of nodes have denser connections within them, and have lower con-
nections between them.

Radicchi et al. [42] gave two definitions of community: one in a strong
sense, another in a weak sense. Let kv be the degree of node v. Consider a
subgraph G′ ⊂ G, to which v belongs. Let kinv denote the number of edges
connecting v to other nodes inside G′, and koutv denote the number of edges
connecting v to other nodes that do not belong to G′. So kv = kinv + koutv .

The subgraph G′ is a community in a strong sense if

kinv > koutv ,∀v ∈ G′.

It requires that each node has more connections within the community than
with the rest of the graph.

The subgraph G′ is a community in a weak sense if

∑

v∈G′
kinv >

∑

v∈G′
koutv .

It only requires that the sum of connections within the community is larger
than the sum of connections with the rest of the graph. If a subgraph is
a community in the strong sense, then it is a community also in the weak
sense.

Frequent subgraph

In a network, some subgraphs (or patterns) occur frequently. A subgraph
is frequent if its number of occurrences is greater than or equal to a user-
specified threshold. A frequent subgraph is maximal if none of its super-
graphs are frequent. A frequent subgraph is closed if none of its super-
graphs have the same frequency. Finding frequent subgraphs faces the
problem of subgraph isomorphism, which is to find a mapping from a sub-
graph g1 to another subgraph g2.

Another problem is how to define the support (i.e., the number of oc-
currences) of a subgraph. If a set of graphs (or a graph database) is given,
the support of a subgraph is simply the number of graphs in the given
database that contains the subgraph. If a large graph is given, it is difficult
to find an appropriate definition. In [61], there are two methods to count
the occurrences. The first method defines that two occurrences are differ-
ent if they have at least one different edge. So overlaps of occurrences of
the same subgraph are allowed. But it does not have the downward closure

2.2 Graph properties 13

property, which requires that the support of a graph is not smaller than
the support of its super-graph. The property is important because it can
reduce the search space. The second method defines that two occurrences
are different if they do not share any edge, but are allowed to share nodes.
This definition has the downward closure property.

2.2.2 Network centrality

Node centrality

The importance of a node often depends on its location in a graph. A
simple measure of the importance of a node v is its degree centrality, which
counts the number of edges connected to v. By this definition, nodes with
more edges are more central.

The second well-known measure is betweenness centrality [8, 4, 10]. It
measures how influential a node is in connecting pairs of nodes. A node’s
betweenness is the number of times the node appears on the paths between
all other nodes. It can be computed for shortest paths or for all paths [11].

Closeness centrality [12] is defined as the sum of distances from a given
node to all others in the network. The distance can be defined as mean
geodesic distance, or as the reciprocal of the sum of geodesic distances.
Other proposed measures are eccentricity centrality [16] and eigenvector
centrality [3].

The above node indices evaluate the importance of a node relative to
all other nodes in the graph. Other measures evaluate the importance of a
node relative to a given set of nodes (see, e.g., [55], [Article V]).

Edge centrality

In a weighted graph, each edge has a weight to show its strongness. Fur-
thermore, their positions within a graph also show how important they
are.

The most applied index is edge betweenness [38], which measures how
often the edge is present in the paths between node pairs. It can be cal-
culated by using shortest-path betweenness, random-walk betweenness and
current-flow betweenness.

Another index is Birnbaum importance [2]. It is directly defined on
(Bernoulli) random graphs where edge weights are probabilities of the ex-
istence of the edge. The Birnbaum importance of an edge depends directly
on the overall effect of the existence of the edge. An edge whose removal
has a large effect on the probability of other nodes to be connected, has a
high importance.

14 2 Network Properties and Evaluation Criteria

2.2.3 Network connectivity

In this subsection, we introduce a generalization of distance (to path qual-
ity), and average distance (to connectivity of a graph).

In a weighted graph, two nodes u and v may be connected by a direct
edge, or one or several paths, or none in a disconnected graph. How strong
their connection is is decided by the qualities of paths between them. A path
quality function q(P) → R+ measures the quality of a path P . The form
of path quality function depends on the type of graph. For example, in a
random graph, the quality of a path P is the probability that all of its edges
co-exist: q(P) = π{u,v}∈Pw({u, v}). In a flow graph, the quality of a path is
the capacity of the worst edge along the path: q(P) = min{u,v}∈P w({u, v}).

A simple way to quantify the connectivity between two nodes is to
measure the quality of the best path between them [Articles II, III]. The
connectivity between two nodes is defined as

C(u, v;E) =

{
maxP⊂E q(P) P is a path between u and v,
−∞ otherwise.

For instance, in a flow graph, the connectivity between two nodes is the
maximal flow that can pass from u to v (or from v to u). In a random
graph, the connectivity between two nodes is the largest probability that a
path exists between them.

A more general measurement takes path length into account. It mea-
sures the quality of the best path within a certain path length λ between
two nodes [Article IV]. The λ − connection between a pair of nodes is
defined as

Cλ(u, v;E) =

{
maxP⊂E,|P |≤λ q(P) P is a path between u and v,

0 otherwise.

Another more complicated measurement takes all paths’ qualities into
account. For example, in a probabilistic graph, it measures the probability
that a path exists between two nodes:

C(u, v;E) = 1−Π(1− q(p)).

A natural measure for the connectivity of a graph [Article III] is then
the average connectivity over all pairs of nodes, that is,

C(V,E) =
2

|V |(|V | − 1)

∑

u,v∈V,u6=v
C(u, v;E),

where |V | is the number of nodes in the graph.

2.3 Two types of structural change with respect to different viewpoints 15

2.3 Two types of structural change with respect
to different viewpoints

In order to abstract a graph, some information is inevitably removed or
transformed. However, with regard to an application requirement, the re-
moval or change of some information may only result in little loss. In this
section, we discuss two kinds of structural change based on whether the
user’s preferences are involved or not. One is unimportant information,
decided by the graph itself. The other is irrelevant information, depending
on a user’s preference.

2.3.1 Unimportant information

Depending on the application and its needs, some parts of a network can be
less important than others. Below we list some examples of unimportant
information.

• If an application focuses on the connectivities of the graph (or the
connectivities of nodes), then an edge whose removal does not change
the connectivity between the edge’s endvertices is unimportant; and
an edge, whose removal slightly changes the connectivity of the graph,
has only some importance.

• Another example is if an application is interested in the communities
of the graph, then a node that is marginally connected to commu-
nities is less important; and so is potentially an edge that links two
communities.

• The third example is if an application is interested in the main topol-
ogy of a graph. Then a node with low centrality is less important;
and so is an edge.

2.3.2 Irrelevant information

Irrelevant information is chosen by the user. It can be categorized into two
groups: information that the user is not interested in; and information that
the user is already familiar with.

We first list some examples of the information that a user may not be
interested in.

• A user may be interested in the connectivities between all nodes.
Then how the node degrees distribute is irrelevant information.

16 2 Network Properties and Evaluation Criteria

• A user may be interested in the best paths of a graph. Then the paths
that do not contribute to the best paths are irrelevant information.

• A user may be interested in how two (or more) nodes connect with
each other. These specified nodes and their connections are the in-
formation that the user is interested in. The nodes and edges that
are not central to the connections of the specified nodes are irrelevant
information.

• A user may be interested in how communities connect to each other.
It follows that the nodes that are located within the communities are
not the user’s focus.

• A user may be interested in the structure of a certain community. It
follows that the nodes that are outside the community are irrelevant.

• A user may want to analyze some types of nodes. Nodes of other
types are irrelevant information.

In general, discovering new knowledge is the goal of scientific research.
The information that a user already has is not “new”, and thus can be
regarded as irrelevant.

We next list two examples of information that a user may already know.

• A user may want to extract some useful patterns in a graph, so that
patterns he (or she) already knows are irrelevant information. For
example, in a biological network, nodes labeled “gene” always connect
with nodes labeled “protein” with an edge of type “codes for”.

• A user may want to explore communities within a graph, so that
the communities he (or she) already knows are irrelevant informa-
tion. For example, in a social network, the user may be familiar with
the community of a research group, or the community of a research
institute, or the community of a research area.

2.4 Evaluation criteria

Each application has its own requirement. For example, one application
may focus on the topological structure of a graph, another application may
focus on the connectivity of a set of nodes, another application may be
interested in the hidden communities, and so on. The evaluation criteria in
these applications are different, and are derived from application require-
ments. In this section, we discuss the main abstraction evaluation criteria.

2.4 Evaluation criteria 17

2.4.1 Topological change

Some applications want the abstracted graph to have similar (or scaled-
down) properties of topology as compared to the original graph [30].

Degree

Suppose G is the original graph, and H is an abstracted graph. Let PG be
the distribution of number of nodes with respect to degree in the original
graph, and PH be the distribution in the abstract graph. If the abstraction
is good, then its degree distribution is proportional to the degree distribu-
tion of the original graph [30], that is, PH ∝ PG.

The second criterion is to measure how much each node degree is altered
on average. Let dG = dG1 , d

G
2 , . . . , d

G
n be the sequence of degrees in the

original graph G, and dH be the degree sequence in an abstracted graph
H. The change of node degree [18] is measured by using Mallows distance
which is the Lp distance between two sequences, that is,

Mallowsp(dG, dH) = { 1

n

n∑

i=1

|dGi − dHi |p}1/p.

Others [18] also measure the change of maximum degree, the change of
degree variation, and the change of degree correlation.

Path

One criterion is to measure the change of the average path length. Let
〈PG〉 be the average path length of the original graph G, and 〈PH〉 be the
average path length of the abstracted graph H. The change of average path
length is 〈PG〉 − 〈PH〉. If the value is positive, it means the average path
length is shortened.

Clustering coefficient

One measure is to evaluate the change of clustering coefficient. Let CG be
the clustering coefficient of the original graph G, and CH be the clustering
coefficient of the abstracted graph H. The change of clustering coefficient
is CG − CH .

2.4.2 Connectivity change

Some applications need the information of the connectivities between nodes
or the connectivity of a graph. In such applications, abstraction techniques
need to maximally maintain the connectivity information.

18 2 Network Properties and Evaluation Criteria

One evaluation criterion is to measure how much connectivity of the
graph is maintained in an abstracted graph. Suppose G is the original
graph, and H is the abstraction result. The connectivity of the origi-
nal graph is C(VG, EG), and the connectivity of the resulting graph is
C(VH , EH). The ratio of connectivity maintained [Article III] in the ab-
straction is defined as

r(H,G) =
C(VH , EH)

C(VG, EG)
, where VH ⊆ VG, EH ⊆ EG.

The range of r is from 0 to 1. When r = 1, it means that the connectivity
of the original graph is maintained. When r < 1, it implies that some
connectivities in the result are lost. The criterion is used in Article III in
a context where edges are removed and connectivity can only decrease in
abstraction.

Another evaluation criterion is to measure how much connectivities be-
tween nodes are changed in an abstracted graph. Let CG(u, v) be the
connectivity between u and v in G, and CH(u, v) be their connectivity in
H. The connectivity change is the square root of the sum of change of
connectivities over all pairs of nodes, that is,

l(G,H) =

√∑

u∈VG

∑

v∈VG
(CG(u, v)− CH(u, v))2.

The range of l(G,H) is [0,+∞). When l = 0, it means all pairs of nodes
have maintained their original connectivities. When l > 0, it implies some
connectivities are changed.

In some applications, a user can specify an area he wants to study.
Nodes within the area have higher importance than the ones outside of
that area. The connectivity change between a pair of nodes is weighted by
the node importances. Thus, the total connectivity change is

l(G,H) =

√∑

u∈VG

∑

v∈VG
I(u, v)(CG(u, v)− CH(u, v))2.

2.4.3 Adjacency matrix change

Some applications need to use the adjacency matrix of a graph, that is, the
adjacent edges of nodes and edge weights. During abstraction, techniques
require maintaining as much original information as possible.

The evaluation criterion measures how much the adjacency matrix is
changed from the original graph to an abstracted graph. Suppose G is

2.4 Evaluation criteria 19

the original graph, and H is the abstracted graph. The adjacency matrix
change [Article IV] between G and H is the square root of the sum of
changes over all edges, that is,

sc(G,H) =

√∑

u∈VG

∑

v∈VG
(wG(u, v)− wH(u, v))2.

If nodes have importances, or a user assigns weights to nodes, then the
adjacency matrix change [Article V] between G and H is weighted by node
importances I, that is,

sc(G,H) =

√∑

u∈VG

∑

v∈VG
I(u, v)(wG(u, v)− wH(u, v))2.

20 2 Network Properties and Evaluation Criteria

Chapter 3

Network Abstraction Approaches

In this chapter, I approach the second research question: what kind of oper-
ations and methods can we use to abstract a graph, by discussing three types
of abstraction operations: prune, partition and replace; and two different
viewpoints: objective and subjective. It is a brief summary of Article I. In
addition, I discuss the novelty of our proposed approaches with respect to
the related work.

3.1 Operation types

We classify the operations that can produce abstractions of networks into
three categories: prune, partition, and generalize by replacing.

1. Prune nodes and edges. This approach simplifies the structure of a
network by removing peripheral or irrelevant nodes or edges, with the
aim of keeping only the most interesting or relevant nodes and edges.
Figure 3.1 removes edges with weights below 0.7, and it follows that
the separated nodes are removed as well.

A

B

C

D

E

F

G

H

I

J

K

0.2

0.3
0.9

0.1

0.9

0.9

0.7

0.8

0.9

0.9

0.3

0.9

0.8

0.9
0.1

0.3 0.6

(a) Original graph

C

D

E

F

G

H

J

I

0.9
0.9

0.9

0.7

0.8

0.9

0.9

0.9

0.9

0.8

(b) Result graph

Figure 3.1: Prune operation: some nodes and edges are removed from the
original graph.

21

22 3 Network Abstraction Approaches

2. Partition a network into smaller ones. An example is shown in Figure
3.2. The long connections between nodes are cut, and compact sub-
graphs are subsequently obtained. The resulting graph is abstracted,
as mutual dependencies are reduced. Each small subnetwork now is
easier to explore.

A

B C

D E

F G

H

I J

K

L

M

(a) Original graph

A

B C

D E

F G

H

I J

K

L

M

(b) Result graph

Figure 3.2: Partition operation: the original graph is divided into separate
parts.

3. Replace parts of a network by more general structures. Generalization
may, for instance, replace a path with a single edge, or parallel paths
with a single one, or a subgraph by a node, in order to simplify the
network. For example, in Figure 3.3, nodes A,B,C,D have strong
connections, and nodes E,F,G have close relationships, so both are
replaced by general nodes.

A

B C

D E

F G

H

I J

K

L

M

(a) Original graph

A,B,C,D

E,F,G

H

I J

K

L

M

(b) Result graph

Figure 3.3: Replace operation: parts of the graph are replaced by more
general nodes.

3.2 Two viewpoints

Based on whether the user’s preferences are involved or not, we classify
techniques into two groups: objective and subjective. An objective tech-
nique abstracts a graph with regard to the information only available from
the graph, such as graph topology, node importance, or edge weights. It

3.3 Existing approaches 23

disregards user-specific emphasis on any part of the network. In contrast,
a subjective technique allows the user to indicate which parts of the net-
work should retain more details, and abstracts a graph based on the user’s
preference.

An example is shown in Figure 3.4. Thicker lines mean stronger con-
nections. In the result of objective pruning (Figure 3.4 (b)), all nodes
are preserved and the strong connections between nodes are preserved as
well. Only weak connections whose removal does not separate the result
are removed. In subjective pruning, in turn (Figure 3.4 (c)), the strong
connections between two interesting nodes C and J are maintained, but
other peripheral nodes and edges are removed.

A

B

C

D

E

F

G

H

I

J

K

(a) Original graph

A

B

C

D

E

F

G

H

I

J

K

(b) Objective result

C

D

E

F

G

H

J

(c) Subjective result

Figure 3.4: Pruning results from different viewpoints. (a) Original graph.
(b) A result of objective pruning. (c) A result of subjective pruning, when
the user wants to focus on connections between C and J .

3.3 Existing approaches

Existing approaches can now be classified based on two characteristics: the
type of operation and the point of view. Table 3.1 gives a summary of the
related work reviewed in Article I.

24 3 Network Abstraction Approaches

Points of view
Objective Subjective

O
p

er
at

io
n

s

P
ru

n
in

g

Relative neighborhood graph Relevant subgraph extraction
[52, 25] [15, 9, 51, 21, 22]

T-spanner [40] Detecting interesting
Network simplification nodes or paths [55, 31]
[Articles II, III] Personalized PageRank
PathFinder network [44] [26, 17]
Graph sampling [43, 30, 23, 32]
Node centrality [13, 47]

P
ar

ti
ti

on
in

g

Graph partitioning Constrained clustering [53]
- Spectral bisection method Supervised clustering [7]
[41, 19]

- Geometric methods [33, 1]
- Multilevel graph partitioning
[28, 20]

- Kernighan-Lin algorithm [29]
Hierarchical clustering [45]
Edge betweenness [38]
Attributed graph clustering
[59, 60]

R
ep

la
ci

n
g Graph compression Graph summarization

[35, 36], [Article IV] [48, 58], [Article V]
Frequent subgraphs [24, 5] Replacing user input subgraph

- Exact search [46, 57]
- Similar search [49, 50]

Table 3.1: Existing approaches

3.4 Novelty of our approaches

The pruning approach as presented in our work [Articles II, III] removes
redundant and unimportant edges. The proposed methods have wide gener-
ality: they are applicable to different kinds of graphs, such as flow networks
and random graphs. The relative neighborhood graph [52, 25] is a special
case of the framework proposed in Article II, as it only connects relatively
close pairs of nodes. Methods for finding PathFinder networks [44] are also
similar to Article II, as they prune an edge if there is a shorter path be-
tween the endpoints of the edge. They use Minkowski distance as a metric
to compute the distance of paths. Article III differs from all these works in
a significant manner: it allows the loss of the quality of the best paths.

3.4 Novelty of our approaches 25

The proposed replacement-based approach in Article IV and Article V
groups nodes that have similar neighborhoods into supernodes, and general-
izes their edges to superedges. The work most closely related is by Navlakha
et al. [36], who proposed to construct graph summaries of unweighted
graphs by grouping nodes and edges to supernodes and superedges, and
by Tian et al. [48], who proposed to summarize labeled graphs by grouping
nodes according to node labels and edge attributes. We generalize these ap-
proaches in three important and related directions: to weighted graphs, to
long-range, indirect (weighted) connections between nodes, and to taking
node importances into account.

26 3 Network Abstraction Approaches

Chapter 4

Application to Metabolic
Networks

Abstracted networks have various applications: interactive visualization,
community discovery, biological module revealing [37], graph pattern min-
ing [6], and so on. In this chapter, I focus on one bioinformatics application.
The details of the work are described in Article V. The purpose here is to
use this application as an example to evaluate how useful an abstracted
graph is.

The target of this application is to better understand the metabolic bio-
diversity in bacteria. In this work, we apply a weighted graph compression
method to metabolic networks.

4.1 Metabolic networks of Archaea and Eubacte-
ria

Living organisms are self-sustaining autocatalytic chemical reactions. A
subset of these reactions are termed metabolic, these reactions convert input
chemicals into biochemicals. The input chemicals may be simple, such as
the minerals, water, oxygen, and carbon dioxide that plants require, or the
complex organic molecules required by animals. The output chemicals are
similar in all forms of life: DNA, RNA, proteins, etc.

In a metabolic reaction, an enzyme (a protein that is encoded by a
gene) catalyzes the chemical reaction of a set of biochemicals into another
set of biochemicals. The number of known enzymes is now in the order
of a few thousand. These can be combined to form a super-metabolic
network containing all known reactions. Any particular genome will only
have genes that encode a subset of these enzymes. Biochemists have for ease

27

28 4 Application to Metabolic Networks

of understanding traditionally dissected metabolism into separate pathways:
glycolysis, the TCA cycle, etc. In the order of one hundred pathways have
been recognized.

The most versatile metabolisms are found in bacteria, where there ex-
ists a vast diversity of different biochemical reactions. Over the last fifteen
years there has been a revolution in the ease and efficiency of gene sequenc-
ing. The complete genomes of over a thousand bacterial species are now
known. This has resulted in an explosion in the amount that is known about
bacterial metabolism. The biological challenge is now how to interpret this
large amount of complex data to generate biological knowledge.

According to the three-domain system [56], the most fundamental split
in the evolution of life was between the lineage leading to the Eubacteria
and the Archaea. It is unclear when this happened, but it was probably
2-3 billion years ago. The bacteria, that is, the Eubacteria and Archaea,
dominate the nutrient cycles on the planet. The third major group are the
Eukaryotes (we are Eukaryotes), these evolved from a symbiosis between
Archaea and Eubacteria, these dominate macroscopic life.

We are interested in the biodiversity within metabolism in Archaea and
the Eubacteria, the two main branches (kingdoms) of life.

One of the most fundamental questions in evolutionary biology is to
what extent the paths that evolution has taken are stochastic, and to what
extent they are determined by constraints imposed by the environment and
biochemistry. Eminent evolutionary biologists have taken different views
of this question of stochasticity. Stephen Jay Gould in many essays, and
most notably in his book Wonderful Life [14] argued for contingency in
evolution. For him evolutionary biology, in seeking to explain the past,
was a historical science; if the process would somehow be run again then
one would expect a radically different result. In contrast, Simon Conway
Morris [34] has argued that the constraints on living organisms are such that
it is likely that evolution would take broadly the same path and intelligent
organisms such as humans are likely to evolve.

The central problem with scientifically investigating this question is
that it is not possible to repeat the experiment - evolution. However, it is
possible to gain some understanding of the stochasticity of the problem by
looking at cases where evolution started from similar starting points.

Our idea is to use the newly available data on the biodiversity of
metabolic pathways to understand how pathways have evolved since the
divergence of the Archaea and the Eubacteria.

4.2 Weighted metabolic networks and compression 29

4.2 Weighted metabolic networks and compres-
sion

In studying metabolism the most natural abstraction is to use graphs. A
number of different mappings and types of graph have been used. The one
we consider most natural is for enzymes to be nodes, and metabolites to
be edges. The super-metabolic network can thus be represented as a graph
with a node for every possible enzyme, and the metabolic complement of a
genome is a specific instantiation of this graph. A set of N genomes would
then be represented as a set of such instantiations of the super-metabolic
network. Unfortunately, in our view, this representation is too complex to
be easily analyzed. We therefore propose the use of weighted graphs as a
simpler alternative.

In these taxonomy graphs the weights are based on in how many genomes
a particular enzyme exists. Enzymes with high weights are ubiquitous and
those with low weights rarely occur. Such a weighted graph summarizes
the information in the set of these instantiations of the meta-metabolic net-
work. We are unaware of the use of weighted graphs in these ways before.

Genome n

Genome 2

Genome 1
Weighted
Metabolic
Network

Compressed
Graph

Figure 4.1: The bioinformatic flowchart.

Combining weighted graphs and compression is useful to refine the large
amount of bacterial metabolic data to answer biological questions. The
bioinformatic flowchart is shown in Figure 4.1. Specifically we propose to
compress weighted metabolic networks for analysis of the two large weighted
graphs: one for Archaea and one for Eubacteria. This will enable us to
understand the metabolic biodiversity between two kingdoms.

30 4 Application to Metabolic Networks

Chapter 5

Summary of Contributions

This chapter first discusses our contributions in Articles I-V, and then lists
future work at the end of this chapter.

5.1 Defining the field of network abstraction

In this thesis, we propose network abstraction as a research area. It includes
various types of existing approaches in data mining and also raises new
research problems.

According to the characteristics of different approaches to network ab-
straction, we propose three classes of abstraction operations: prune, par-
tition and replace. In Article I, we review the potential approaches and
classify them based on a clear structure: one axis is the type of operation,
and another axis is the point of view.

Thematically, our method development includes two sub-topics: net-
work simplification and network compression. Network simplification aims
to simplify a network by removing redundant and unimportant edges, and
network compression compresses a network by grouping nodes and edges.
This type of compression can also be considered as a type of generalization.
We will next look at these contributions in more detail.

5.2 Network simplification

A network structure can be simplified by removing edges. In a weighted
network, nodes can be connected by several paths with different qualities.
For example, in Figure 5.1, nodes A and B are connected by one edge and
two other paths. We suppose the graph in Figure 5.1 is a probabilistic
graph. The direct edge {A,B} has such a weak quality, 0.1, that it can be

31

32 5 Summary of Contributions

A B

C D

E

0.1

0.9

0.6
0.8

0.9

0.4

Figure 5.1: {A,B} is redundant in the probabilistic graph.

removed without affecting the qualities of best paths between any pair of
nodes.

In Article II, we propose methods to simplify a network by removing
redundant edges. We define the redundant edge based on the definition of
network connectivity in Subsection 2.2.3. An edge is redundant if and only
if its removal does not affect the best path quality for any pair of nodes.
The quality of path ACDB in Figure 5.1 is 0.9*0.8*0.9 = 0.648, and the
quality of path AEB is 0.6*0.4=0.24. The edge {A,B} is thus redundant.

We propose two ways to identify redundant edges. One is global search.
It evaluates the redundancy of an edge by finding and evaluating the best
path between its endpoints. The other is triangle search. It evaluates the
non-redundancy by checking the qualities of paths consisting of two edges.
Then we propose two ways to search redundancy: iterative and static.
Combining the ways of searching and the ways of identifying, we present
four algorithmic variants.

The framework presented in Article II is applicable to a large variation
of network types and path qualities, with the general assumption that path
quality functions obey monotone property, that is, replacing a segment of a
path by a better one never decreases the quality of the whole path. Exper-
iments were carried out on flow graphs and probabilistic graphs. Results
show that a certain number of edges can be removed without affecting the
best path connectivity between any pair of nodes.

The number of edges that can be removed by the methods in Article
II is limited, due to the requirement that the original connectivity of the
graph should be maintained. In Article III, we propose to relax this con-
straint and allow removing more edges. The intention is that the user can
flexibly choose a suitable trade-off between the simplicity and connectivity
of the resulting graph. For example, in Figure 5.1, the original connectivity
between E and B is 0.4, so {E,B} is the best path between them. After
removing edge {A,B}, the connectivity between E and B does not change.
If we remove an extra edge {E,B}, then there is only one path EACDB

5.2 Network simplification 33

between E and B. The quality of path EACDB is 0.6*0.9*0.8*0.9=0.389.
The connectivity between E and B only decreases from 0.4 to 0.389 and
other pairs of nodes still have original connectivities, but the network is
much simpler. The problem then is to simplify a network structure by
removing edges while minimizing the loss of connectivity.

The evaluation criterion that measures the ratio of connectivity main-
tained in an abstracted graph is described in Subsection 2.4.2. The way
of computing the ratio of connectivity kept is multiplicative. That is, the
ratio of connectivity kept after removing an edge set ER can be represented
as the product of ratios of connectivity kept for each edge in any permu-
tation. Based on this property, we derive a lower bound on the ratio of
connectivity kept, which is the ratio of connectivity kept for the endpoints
of the removed edge.

Utilizing the two ways of computing the best (or approximately best)
path for the endpoints of the edge in Article II, global search and triangle
search, we derive two increasingly fast and approximate ways of bounding
the ratio of connectivity kept. The first lower bound is to compute the
exact ratio kept for the endpoints of the removed edge based on finding
the best alternative path between them. The second further lower bound
is based on the quality of the alternative best path of length two.

We then present four algorithms to complete the simplification task
with different trade-offs between connectivity kept and time complexity.
The first one is a naive approach, which simply prunes a fraction of weak-
est edges by sorting edges according to edge weights. The second one is the
computationally demanding brute-force approach, which iteratively com-
putes the exact ratio kept for each edge and prunes the one whose removal
best keeps the connectivity. The third approach, path simplification, uses
the global best search to compute the lower bound of ratio of connectivity
kept and prunes the edge with the largest lower bound. The fourth one,
the combinational approach, uses the triangle search to compute the lower
bound, and then if needed, uses the global best search to compute the lower
bound to remove additional edges.

We carried out experiments on real graphs to compare the performances
of the four algorithms. Experiments showed that the naive approach in
most cases is the fastest one, but it induces a large loss of connectivity.
The brute force is very slow in selecting the best removed edge set. The
path simplification and combinational approach were able to select a good
edge set with a short time. Furthermore, compared with the methods in
Article II, experiments showed that significantly more edges can be removed
with little loss of connectivity.

34 5 Summary of Contributions

5.3 Network compression

One option to simplify the large structure of a network into a smaller one
is to group nodes and edges into supernodes and superedges. In what we
call network compression, we group nodes that connect with a set of similar
neighbors. An example is in Figure 5.2. Node A has neighbors C and D.
Node B has neighbors C, D and E. Nodes A and B can be grouped into a
supernode AB with connections to all previous neighbors. The connections
are weighted to the mean value of original edge weights.

A

B

C

D

E

A,B

C

D

E

G S

0.7

0.9
0.9

0.8

0.5

0.8

0.85

0.25

Figure 5.2: Grouping nodes A and B into supernode A,B. G is the original
graph, and S is one version of the compressed graph.

In Article IV, we address the problem of compressing weighted graphs.
The goal is to compress a weighted graph into a smaller one that contains
approximately the same information as the original graph. The compression
problem now consists of how to evaluate the quality of a compressed graph,
how to choose supernodes, and how to assign weights to superedges.

The evaluation criterion in Article IV is to measure the dissimilarity
between the original and the compressed graphs. We present two measure-
ments. One measures the adjacency matrix change between the original
and compressed graph, as described in Subsection 2.4.3. Based on this, we
formulate the simple weighted graph compression problem, which aims to
minimize the compression error with respect to the edge weights.

The other measure is the connectivity change between nodes, as de-
scribed in Subsection 2.4.2. The connectivity between nodes can be mea-
sured in a more general form by taking path length λ into account, as
described in Subsection 2.2.3. We then propose the generalized weighted
graph compression problem, where the goal is to produce a compressed
graph that maintains connectivities across the graph. The simple weighted

5.3 Network compression 35

graph compression problem is an instance of the generalized problem with
paths of length one.

A compressed graph is obtained through a series of merge operations,
merging two supernodes at a time to a new supernode. The weights of su-
peredges are assigned to minimize the dissimilarity. In the simple weighted
graph compression problem, when merging two supernodes, the structural
changes include the change of edge weights between all nodes that are in-
side the supernodes and their neighbors. The optimal superedge weight
is the mean of the original edge weights (including zero-weight edges for
those pairs of nodes that are not connected by an edge). In the general-
ized problem, it is much more complex to compute the optimal superedge
weight. Edge weights contribute to best paths, and it is difficult to op-
timize the distance by setting each superedge weight independently. We
then propose an efficient and approximate solution, that is, the mean of
the λ−connectivities.

The goal in Article IV is to compress a graph into a specified size while
minimizing merger errors. The distance measurements satisfy the triangle
inequality: the total merger error is upper bounded by the sum of individual
merger errors. In the simple compression problem, the individual merger
error is simply the change of edge weights between the new supernode
and its neighbors. However, in the generalized problem, the individual
merger error is complex to compute. We derive an upper bound for the
connectivity change for any pair of nodes, and then we get an upper bound
for the individual merger error.

We propose four algorithms to compress a weighted graph. They all
work in an incremental fashion, merging a (super)node pair at a time. The
brute-force greedy algorithm computes the effects of all possible mergers,
and executes the best one. The thresholded algorithm merges two nodes
whose merger error is within the current threshold. The randomized semi-
greedy algorithm each time first randomly chooses a node, and then chooses
another optimal node whose merger produces the smallest error. The ran-
dom pairwise compression method simply merges two nodes at random.
Experimental results show that graphs can be efficiently compressed a lot
with little loss of information.

Article IV treats nodes equally. However, nodes can have different im-
portances to the user. For example, if the user wants to understand the
connections between the key nodes that s/he is interested in, then the nodes
that are central to the key nodes will have higher weights than others. In
Article V, we propose compression of graphs that have weights on both
nodes and edges. An example is in Figure 5.3. Node importances are given

36 5 Summary of Contributions

B (0.7)

A (0.9)
C (0.9)

D (0.1)

A (0.9)
B (0.7)

C
(0.9)

G S

0.9

0.8

0.1

0.86

Figure 5.3: Grouping nodes A and B into supernode AB with respect to
node importances. G is the original graph, and S is one version of the
compressed graph.

in parenthesis. The goal is to compress a graph into a smaller one with less
error related to more important nodes. The intention is that the abstracted
graph will allow the user to focus on the information most relevant to a
specific application and to ignore other details.

We introduce a definition of node importance in a weighted graph when
a set of key nodes is given by the user, and also show how to balance the
overall importances over key nodes. The compressed graph will be useful for
personalized visualization, as it gives more details between the key nodes
while less relevant information will be abstracted more.

In Article V, we present two new elementary compression operations:
node-pair merger with possible omission of (super)edges, and individual
edge deletion. The merger operation differs from the merger operation
in Article IV where no (super)edge is removed. Operations are chosen
according to normalized error, that is, error per size reduction. We consider
two ways to compute normalized error. The first one is standard normalized
error, which is the exact distance between the original and the current graph
divided by the total size reduction. The second one is local normalized error,
following the idea in Article IV: it is the distance between the previous and
the new state divided by the additional size reduction.

Following Article IV, we have two main algorithms, the brute-force and
randomized ones. Combining with the two normalized errors, we have four
algorithmic variants in total. We carried out experiments on real-world
graphs to evaluate the performances of the new operations and the four
algorithms. Experiments show that node importance can guide the process
to a better compression in both normalized error cases, and that node pair
merger performs better than the merger operation in Article IV.

5.4 Compression of metabolic networks 37

●

●

●

●

●

0.
44

0.
48

0.
52

0.
56

Abstraction ratio

A
ve

 e
c

im
p

0.01 0.03 0.05 0.07 0.09

●

●

●

●

●

●

Shared part
Compressed graph

(a) Archaea

●
●

●

●

●

0.
44

0.
48

0.
52

0.
56

Abstraction ratio

A
ve

 e
c

im
p

0.01 0.03 0.05 0.07 0.09

●
●

●

●

●

●

Shared part
Compressed graph

(b) Eubacteria

Figure 5.4: Average importance of enzymes in the compressed graphs, and
average importance of enzymes in the shared part of the compressed graphs.

5.4 Compression of metabolic networks

In Article V, we also apply weighted graphs and compression to metabolic
networks, in order to better understand the biodiversity and evolution of
bacterial metabolic pathways. The background of this application was in-
troduced in Chapter 4.

We apply one of our compression methods to compress metabolic net-
works utilizing enzyme weights as node importances. After compressing the
graphs for Archaea and Eubacteria, we compute the average enzyme im-
portance in the compressed graphs, and in their shared part. The results
are shown in Figure 5.4.

We notice that the average enzyme weight in the shared part is much
higher than the average weight in either kingdom-specific compressed graph.
This implies that the shared part is essential to both kingdoms, and proba-
bly illustrates the conservation of evolution. Hence, the shared part of what
remains after compression is core metabolism, and more likely to have been
present in the ancestral organism.

5.5 Answers to the research questions

I How can we measure the quality of an abstracted network?

In Section 2.4, we already discussed the properties that can be preserved
in an abstracted graph. In our work, we propose methods to preserve two
specific graph properties. The first one is the qualities of the best paths,

38 5 Summary of Contributions

proposed and used in Articles II and III. The second one is the adjacency
matrix, used in Articles IV and V.

II What kind of operations and methods can we use to abstract a graph?

In Article I, we categorize network abstraction approaches by three el-
ementary operations: prune, partition and replace, and by two viewpoints:
objective and subjective. We also review existing techniques using this tax-
onomy.

In network simplification, we apply the prune operation and propose ob-
jective pruning methods. We delete unimportant edges (Subsection 2.3.1)
in Articles II and III.

In network compression, we apply the replace (and prune) operation.
In Article IV, we propose an objective replacement method to group nodes
and edges into supernodes and superedges. In Article V, we propose a
subjective replacement method, in which we also allow removal of nodes in
compression.

III How useful is an abstracted graph?

In Article V, we apply the graph compression method to weighted
metabolic networks. The average enzyme weight in the shared part of
compressed graphs is higher than the average weight in either kingdom-
specific compressed graph. The shared part of compressed graphs thus are
likely to be informative about the metabolism of the common ancestor of all
life. Furthermore, the compressed graphs provide a hierarchical structure
for users to understand the metabolisms from different abstraction levels.

5.6 Open questions

We now discuss future work based on the results of this thesis.
First, as discussed above, our works investigate undirected graphs. One

open question is whether these methods are still applicable to directed
graphs. For example, the quality of the best path from a node u to another
node v is the same as from v to u in an undirected graph, but not necessarily
in a directed graph. It is also possible that there is no path from v to u.

In network simplification, we can easily modify the calculation of con-
nectivity between nodes to take path direction into account. We can also
use methods in Articles II and III to remove edges to simplify directed
graphs.

In network compression, the modification is a bit more complicated.
A superedge represents all edges between nodes in its endpoints. The

5.6 Open questions 39

directions need to be added into superedges. It brings up several ques-
tions: how to decide the direction of a superedge, how to assign an op-
timal weight to a superedge, and how to calculate the compression er-
ror. In the simple weighted graph compression problem, one solution is
that the direction of a superedge is the majority direction of edges repre-
sented by it. Edges with opposite directions should incur a larger error,
e.g. wo(u, v) − sgn((u, v)) · ws(u, v). Another solutions is to consider dif-
ferent directions separately. This would introduce less error. However, the
modification in the generalized weighted graph compression is even harder,
since it needs to take path direction into account.

Second, the results from our network simplification methods are con-
nected graphs. An edge whose removal cuts the graph will not be consid-
ered, because we aim to preserve the connectivities of all node pairs. This
raises the question if removing some weak edges can lead to a good abstrac-
tion even if it may cut the graph. Suppose a node connects with the rest of
the graph only through a single edge. Removal of such an edge separates
the node from the rest of the graph. However, this may be insignificant
overall, and in a sense, such removal could be meaningful.

Third, to evaluate results from a subjective viewpoint is difficult. For
example, one advantage of an abstract graph is that the structure is simpler
and smaller, which makes visualization convenient. We have not carried out
any user studies to investigate the usefulness of network abstraction for an
end user.

Last, in our work, the main goal is to give an overview of a large graph
which maintains some essential qualities of the original graph. A related
problem is (social) network anonymization, where the goal is to preserve
some important properties (the “utility” of the network) but hide iden-
tities of nodes or some other sensitive information [18]. The methods in
privacy preserving graph mining try to transform the graph to avoid re-
identification of individuals (nodes), but still maintain the utility of the
transformed graph. Take graph compression as an example of the similar-
ities of the applications. By requiring that each supernode consists of at
least k nodes, one achieves k-anonymity: any individual (node) is identical
with as least k − 1 other individuals. It would be interesting to study the
connections between these two research areas further.

40 5 Summary of Contributions

Chapter 6

Conclusions

Networks exist in various domains, such as biology, chemistry, and sociol-
ogy. Large graphs are difficult to visualize and understand. In different
areas of computer science, several approaches have been proposed to help
understand graphs, like partitioning, sampling, and extracting subgraphs.

In this thesis, we defined the field of network abstraction, including all
approaches that aim to produce a simpler and useful network from a large
one to help a user understand networks more easily.

We first studied simplifying a graph structure by removing edges. We
provided definitions of redundant edges and unimportant edges, and pro-
posed methods that are applicable to different kinds of graphs. The ex-
periments show that graphs can have a fewer number of edges while the
connectivity of the original graph is well maintained.

We then investigated presenting a graph at a higher abstraction level
by grouping nodes and edges. Graphs can be compressed based on the
graph structure alone, or with respect to node importances which reflect
the emphasis of the application. We also have shown the utility of the
compressed graph through a biological application.

The contributions of this thesis include discussion of the network ab-
straction field and proposing approaches for two specific cases. The area of
network abstraction is large, and the solutions presented in this thesis are
only one part of it. By identifying this as a research area and proposing
some novel methods, we believe that the work provides new insight into
understanding and visualizing graphs.

41

42 6 Conclusions

References

[1] M. J. Berger and S. H. Bokhari. A Partitioning Strategy for Nonuni-
form Problems on Multiprocessors. IEEE Transactions on Computers,
36(5):570–580, 1987.

[2] Z. W. Birnbaum. On the importance of different components in a
multicomponent system. In Multivariate Analysis - II, pages 581–592,
New York, 1969. Academic Press.

[3] P. Bonacich. Factoring and weighting approaches to status scores and
clique identification. Journal of Mathematical Sociology, 2(1):113–120,
1972.

[4] U. Brandes. A Faster Algorithm for Betweenness Centrality. Journal
of Mathematical Sociology, 25(2):163–177, 2001.

[5] B. Bringmann and S. Nijssen. What is Frequent in a Single Graph?
In Proceedings of the 12th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining, PAKDD’08, pages 858–863,
Berlin, Heidelberg, 2008. Springer-Verlag.

[6] C. Chen, C.X. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and
J. Han. Mining Graph Patterns Efficiently via Randomized Sum-
maries. Proceedings of the VLDB Endowment, 2(1):742–753, 2009.

[7] C. F. Eick, N. Zeidat, and Z. Zhao. Supervised Clustering – Algorithms
and Benefits. In Proceedings of the 16th IEEE International Confer-
ence on Tools with Artificial Intelligence, pages 774–776, Washington,
DC, USA, 2004. IEEE Computer Society.

[8] M. Everett and S. P. Borgatti. Ego network betweenness. Social Net-
works, 27(1):31–38, January 2005.

[9] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast Discovery of
Connection Subgraphs. In Proceedings of the tenth ACM SIGKDD

43

44 References

International Conference on Knowledge Discovery and Data Mining,
pages 118–127, New York, NY, USA, 2004. ACM.

[10] L. C. Freeman. A Set of Measures of Centrality Based on Betweenness.
Sociometry, 40:35–41, 1977.

[11] N. E. Friedkin. Theoretical Foundations for Centrality Measures.
American Journal of Sociology, 96(6):1478–1504, 1991.

[12] S. Gert. The centrality index of a graph. Psychometrika, 31(4):581–
603, December 1966.

[13] A.C. Gilbert and K. Levchenko. Compressing network graphs. In
Proceedings of the LinkKDD workshop at the 10th ACM Conference
on KDD, 2004.

[14] S.J. Gould. Wonderful Life: The Burgess Shale and the Nature of
History. Norton, 1990.

[15] M Grötschel, C. L. Monma, and M. Stoer. Design of survivable net-
works. In Handbooks in Operations Research and Management Science,
volume 7, pages 617–672, 1995.

[16] P. Hage and F. Harary. Eccentricity and centrality in networks. Social
networks, 17(1):57–63, 1995.

[17] T. H. Haveliwala. Topic-Sensitive PageRank. In WWW ’02: Proceed-
ings of the 11th International Conference on World Wide Web, pages
517–526, New York, NY, USA, 2002. ACM.

[18] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting
Structural Re-identification in Anonymized Social Networks. Proceed-
ings of the VLDB Endowment, 1(1):102–114, August 2008.

[19] B. Hendrickson and R. Leland. An improved spectral graph partition-
ing algorithm for mapping parallel computations. SIAM Journal on
Scientific Computing, 16(2):452–469, 1995.

[20] B. Hendrickson and R. Leland. A Multi-Level Algorithm For Parti-
tioning Graphs. In Proceedings of the 1995 ACM/IEEE Conference
on Supercomputing (CDROM), New York, NY, USA, 1995. ACM.

[21] P. Hintsanen and H. Toivonen. Finding reliable subgraphs from large
probabilistic graphs. Data Mining and Knowledge Discovery, 17:3–23,
August 2008.

References 45

[22] P. Hintsanen, H. Toivonen, and P. Sevon. Fast Discovery of Reliable
Subnetworks. In Proceedings of the 2010 International Conference on
Advances in Social Networks Analysis and Mining, pages 104–111, Los
Alamitos, CA, USA, 2010. IEEE Computer Society.

[23] C. Hubler, H. P. Kriegel, K. Borgwardt, and Z. Ghahramani. Metropo-
lis Algorithms for Representative Subgraph Sampling. In Proceedings
of the eighth IEEE International Conference on Data Mining, pages
283–292, Los Alamitos, CA, USA, 2008. IEEE Computer Society.

[24] A. Inokuchi, T. Washio, and H. Motoda. An Apriori-Based Algorithm
for Mining Frequent Substructures from Graph Data. In Proceedings of
the 4th European Conference on Principles of Data Mining and Knowl-
edge Discovery, pages 13–23, London, UK, 2000. Springer-Verlag.

[25] J.W. Jaromczyk and G.T. Toussaint. Relative Neighborhood Graphs
and Their Relatives. Proceedings of the IEEE, 80(9):1502–1517, 1992.

[26] G. Jeh and J. Widom. Scaling Personalized Web Search. In WWW
’03: Proceedings of the 12th International Conference on World Wide
Web, pages 271–279, New York, NY, USA, 2003. ACM.

[27] B. H. Junker and F. Schreiber. Analysis of Biological Networks. Wiley
Series in Bioinformatics. John Wiley & Sons, 2011.

[28] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs. SIAM Journal on Scientific Com-
puting, 20:359–392, 1998.

[29] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for
Partitioning Graphs. Bell System Technical Journal, 49(1):291–307,
1970.

[30] J. Leskovec and C. Faloutsos. Sampling from Large Graphs. In Proceed-
ings of the 12th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’06, pages 631–636, New York,
NY, USA, 2006. ACM.

[31] S. Lin and H. Chalupsky. Unsupervised Link Discovery in Multi-
relational Data via Rarity Analysis. In ICDM ’03: Proceedings of
the third IEEE International Conference on Data Mining, page 171,
Washington, DC, USA, 2003. IEEE Computer Society.

46 References

[32] A.S. Maiya and T.Y. Berger-Wolf. Sampling Community Structure.
In Proceedings of the 19th International Conference on World Wide
Web, pages 701–710, New York, NY, USA, 2010. ACM.

[33] G. L. Miller, S. H. Teng, W. Thurston, and S. A. Vavasis. Geometric
Separators for Finite-Element Meshes. SIAM Journal on Scientific
Computing, 19(2):364–386, 1998.

[34] S.C. Morris. The Crucible of Creation: The Burgess Shale and the Rise
of Animals. Oxford University Press paperback. Oxford University
Press, 2000.

[35] S. Muggleton. Duce, an oracle based approach to constructive induc-
tion. In Proceedings of the 10th International Joint Conference on
Artificial Intelligence, pages 287–292, San Francisco, CA, USA, 1987.
Morgan Kaufmann Publishers Inc.

[36] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph Summarization
with Bounded Error. In Proceedings of the 2008 ACM SIGMOD In-
ternational Conference on Management of Data, pages 419–432, New
York, NY, USA, 2008. ACM.

[37] S. Navlakha, M.C. Schatz, and C. Kingsford. Revealing Biological
Modules via Graph Summarization. Journal of Computational Biology,
16(2):253–264, 2009.

[38] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Physical Review E, 69:026113, 2004.

[39] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs
with arbitrary degree distributions and their applications. Physical
Review E, 64:026118, Jul 2001.

[40] D. Peleg and A. A. Schäffer. Graph spanners. Journal of Graph Theory,
13(1):99–116, 1989.

[41] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning Sparse Matrices
with Eigenvectors of Graphs. SIAM Journal on Matrix Analysis and
Applications, 11(3):430–452, July 1990.

[42] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defin-
ing and identifying communities in networks. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 101:2658–
2663, 2004.

References 47

[43] D. Rafiei. Effectively visualizing large networks through sampling. In
16th IEEE Visualization (VIS 2005), pages 375–382, Washington, DC,
USA, 2005. IEEE Computer Society.

[44] R. W. Schvaneveldt. Pathfinder Associative Networks: Studies in
Knowledge Organization. Ablex Publishing Corp., Norwood, NJ, USA,
1990.

[45] J. Scott. Social Network Analysis: A Handbook. Sage Publications,
UK, January 2000.

[46] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and Applica-
tions of Tree and Graph Searching. In PODS ’02: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, pages 39–52, New York, NY, USA, 2002.
ACM.

[47] X. Shi, M. Bonner, L. A. Adamic, and A. C. Gilbert. The Very Small
World of the Well-connected. In Proceedings of the nineteenth ACM
Conference on Hypertext and Hypermedia, pages 61–70, New York,
NY, USA, 2008. ACM.

[48] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient Aggregation for
Graph Summarization. In Proceedings of the 2008 ACM SIGMOD In-
ternational Conference on Management of Data, pages 567–580, New
York, NY, USA, 2008. ACM.

[49] Y. Tian, R. C. Mceachin, C. Santos, D. J. States, and J. M. Patel.
SAGA: a subgraph matching tool for biological graphs. Bioinformatics,
23(2):232–239, 2007.

[50] Y. Tian and J. M. Patel. TALE: A Tool for Approximate Large Graph
Matching. In Proceedings of the 2008 IEEE 24th International Con-
ference on Data Engineering, pages 963–972, Los Alamitos, CA, USA,
2008. IEEE Computer Society.

[51] H. Tong and C. Faloutsos. Center-Piece Subgraphs: Problem Defini-
tion and Fast Solutions. In KDD ’06: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 404–413, New York, NY, USA, 2006. ACM.

[52] G. T. Toussaint. The Relative Neighbourhood Graph of a Finite Planar
Set. Pattern Recognition, 12(4):261–268, 1980.

[53] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrodl. Constrained K-
means Clustering with Background Knowledge. In Proceedings of the
eighteenth International Conference on Machine Learning, pages 577–
584, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc.

[54] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’
networks. Nature, 393(6684):440–442, 1998.

[55] S. White and P. Smyth. Algorithms for Estimating Relative Impor-
tance in Networks. In Proceedings of the ninth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD
’03, pages 266–275, New York, NY, USA, 2003. ACM.

[56] C.R. Woese, O. Kandler, and M.L. Wheelis. Towards a natural system
of organisms: proposal for the domains Archaea, Bacteria, and Eu-
carya. Proceedings of the National Academy of Sciences, 87(12):4576–
4579, 1990.

[57] X. Yan, P. S. Yu, and J. Han. Graph Indexing: A Frequent Structure-
based Approach. In Proceedings of the 2004 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 335–346, New York,
NY, USA, 2004. ACM.

[58] N. Zhang, Y. Tian, and J. M. Patel. Discovery-Driven Graph Sum-
marization. In Proceedings of the 26th International Conference on
Data Engineering, pages 880–891, Los Alamitos, CA, USA, 2010. IEEE
Computer Society.

[59] Y. Zhou, H. Cheng, and J. X. Yu. Graph Clustering Based on Struc-
tural/Attribute Similarities. Proceedings of the VLDB Endowment,
2(1):718–729, 2009.

[60] Y. Zhou, H. Cheng, and J. X. Yu. Clustering Large Attributed Graphs:
An Efficient Incremental Approach. In Proceedings of the 2010 IEEE
International Conference on Data Mining, pages 689–698, Washing-
ton, DC, USA, 2010. IEEE Computer Society.

[61] R. Zou and L. B. Holder. Frequent Subgraph Mining on a Single
Large Graph Using Sampling Techniques. In Proceedings of the eighth
Workshop on Mining and Learning with Graphs, MLG ’10, pages 171–
178, New York, NY, USA, 2010. ACM.

