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Abstract. The study provides the physicochemical characteristic of bosentan (BOS) in
comparison to tadalafil (TA) and sildenafil citrate (SIL). Despite some reports dealing with
thermal characteristic of SIL and TA, physicochemical properties of BOS have not been
investigated so far. Recent clinical reports have indicated that the combination of bosentan
and PDE-5 inhibitor can improve the effectiveness of pharmacotherapy of pulmonary arterial
hypertension (PAH). However, in order to design personalized medicines for therapy of
chronic rare diseases, detailed information on the thermal behaviour and solubility of each
drug is indispensable. Thus, XRD, DSC and TGA-QMS analyses were applied to compare
the properties of the drugs, their thermal stability as well as to identify the products of
thermal degradation. The dehydration of BOS started at 70°C and was followed by the
chemical degradation with the onset at 290°C. The highest thermal stability was stated for
TA, which decomposed at ca. 320°C, whereas the lowest onset of the thermal decomposition
process was stated for SIL, i.e. 190°C. The products of the drug decomposition were
identified. FT-FIR was applied to study intra- and intermolecular interactions between the
drug molecules. FI-MIR and Raman spectroscopy were used to examine the chemical
structure of the drugs. Chemoinformatic tools were used to predict the polar surface area,
pKa, or logP of the drugs. Their results were in line with solubility and dissolution studies.

KEY WORDS: bosentan; chemoinformatics; combination drugs; dissolution; sildenafil; tadalafil; thermal

properties.

INTRODUCTION

Throughout the last decade, scientists’ attention has
focused on the development of new drug therapies for
patients suffering from rare diseases. According to the
European definition of a rare disease, it is a disorder or a
disease that affects fewer than 1 person out of 2000 people. In
the USA, a disease is rare if it affects fewer than 200,000
Americans at any given time. There are between 6000 and
8000 diseases classified as rare. They concern more than 30
million people in the E.U., among whom 50% are children.
The origin of rare diseases is genetic in 80% of the cases. It is
estimated that other factors, such as viral and bacterial
infections, allergies, or environmental toxins, are responsible
for 20% of them.

Nowadays, only about 1% of drugs used in pharmaco-
therapy is destined for the treatment of rare diseases. Despite
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the fact that advances in modern diagnostic methods facilitate
early detection of a rare disease, the development of new
drug therapies is slow. The recent forecast analysis, published
by EvaluatePharma.com, shows that the number of orphan
drugs designed for the therapy of rare diseases should
increase by up to 11% in 2020.

PAH is an example of a rare disorder characterized by
progressive obliteration of small pulmonary arteries (1).
Hypertension of the pulmonary artery can cause right
ventricular failure. If PAH is left untreated, it can lead to
death. The origin of PAH may be idiopathic, heritable, or due
to lung and left heart diseases. Since the symptoms of PAH
occur usually in an advanced form of the disease, the mean
survival time after the diagnosis was less than 36 months for
many years. The exact cause of PAH is still unknown, but the
progress in the understanding of its pathophysiology enabled
the development of new therapies based on the treatment of
endothelial dysfunction. Although PAH is treatable, the cure
for this chronic disease, affecting both children and adults
between 20 and 50 years of age, is still not known (2,3).

PAH can be treated by intravenous, subcutaneous,
inhaled or oral route, according to medical standards (3).
Phosphodiesterase-5 inhibitors (PDE-5i), such as sildenafil
citrate (SIL) and tadalafil (TA) as well as endothelin-1
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receptor antagonists, i.e. bosentan (BOS), are approved for
the oral pharmacotherapy of PAH because of their good
tolerance (4-6). Apart from urological applications, PDE-5i
produce pulmonary vasodilation, inhibiting the breakdown of
cyclic guanosine monophosphate (cGMP) in the walls of
pulmonary arterioles. Film-coated Revatio® tablets, contain-
ing 20 mg of sildenafil citrate, are approved for the treatment
of PAH in both children and adults (5). However, there is still
lack of dose-adjusted formulations, containing sildenafil
citrate for small children. Therefore, in some countries,
commercial forms of these drugs, such as Viagra®, are used
as a source of the active pharmaceutical ingredient (API) for
compounding, which may increase the risk of mistakes. Due
to the relatively high cost of the drug, there is a problem of
counterfeits, increasing the risk of severe side effects.

Recently, film-coated Adcirca® tablets, containing 20 mg
of TA, have been approved for a once-daily treatment of
PAH in adults. The differences between TA and SIL with
regard to pharmacological effects have been widely described
(2,5). After oral administration, absorption of TA is the
slowest process of all PDE-5i (f,,x =2 h), but the pharmaco-
logical effect is much longer as compared to SIL, i.e. 36 h and
2 h respectively. Nevertheless, slow absorption of TA can be
due to its low solubility in water, which may also cause
variability in the human drug response. There are also
reports, suggesting suitability of TA for the treatment of
PAH in children. However, poor solubility in water limits the
development of new dosage forms. Thus, microporous silicate
carriers, preparing inclusion complexes with modified -
cyclodextrines or solid dispersions with poloxamer, PEGs
and PVP, have been proposed to enhance dissolution of TA
(7-10).

In contrast to PDEi, BOS is an orphan drug developed
for PAH treatment (6). BOS blocs the binding of endothelin
to the receptors, which leads to a decrease in blood pressure.
Nowadays, film-coated Tracleer® tablets, containing 62.5 or
125 mg of BOS, are available. The need for the drug dose
reduction in pediatrics resulted in the development of a new
dosage form, namely dispersible tablets, containing 32 mg of
BOS. Multiple studies deal with pharmacokinetics and
pharmacodynamics of BOS, but its physicochemical proper-
ties have not been analysed in any scientific report so far. It is
worth noting that in recent years, there have been several
large-scale clinical studies undertaken to evaluate the efficacy
of BOS in combination with other PAH-specific drugs, e.g.
TA (6). Furthermore, it has been reported that BOS
combined with SIL has been found effective in the therapy
of Raynaud’s phenomenon (11).

The positive results of clinical studies can lead to the
development of new combination drugs. Recent advances in
3D printing technology open new vistas to improve patient
compliance by manufacturing of polypills. According to
this new ‘polypill’ concept, not only multiple drugs can be
enclosed in one tablet, but also their release kinetics can
be independent (12). Such a technology seems promising
for the development of personalized medicines in the near
future (13).

In order to develop individually tailor-made formulations
and to optimize their manufacturing process, a detailed
characteristic of each drug is needed. However, there is no
scientific report, providing the comparison of physical and
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chemical properties between BOS, SIL and TA, which is
necessary for pre-formulation studies of combination drugs to
our best knowledge. Therefore, the aim of the present work is
to examine thermal properties, crystallinity, morphology and
solubility of BOS and selected PDE-5i, such as SIL and TA,
which can be helpful in the design of patient-friendly dosage
forms, e.g. dispersible forms, buccal films, nanocarriers, or
polypills.

To achieve this goal, the following methods are applied
in this study: thermal analysis by differential scanning
calorimetry (DSC) and thermogravimetric analysis, coupled
with quadruple mass spectrometry (TGA-QMS), X-ray
powder diffraction (XRD), Raman spectroscopy and FT-IR
spectroscopy in mid- and far-infrared range. The shape of the
particles is analysed by means of scanning electron micros-
copy (SEM). The particle size distribution is studied, using
the laser diffraction method. Finally, the equilibrium solubil-
ity and dissolution of drugs in solvents of three different pH,
i.e. 1.2; 4.5 and 7.2, are also compared.

MATERIALS AND METHODS

Sildenafil citrate (SIL), tadalafil (TA) and bosentan
monohydrate (BOS) in non-micronized form were obtained
from Polpharma S.A., Poland. Hydrochloric acid 37% was
obtained from Merck Millipore, Poland. Sodium chloride,
potassium dihydrogen phosphate and sodium hydroxide were
purchased from Avantor Performance Materials, Poland S.A.
All the reagents used were of the analytical grade.

Morphological Analysis

The morphology of BOS, SIL and TA was analysed,
using the scanning electron microscope Hitachi S-4700
(Japan). Powder was adhered to the sample holder by a
double-sided copper tape. The surface of powder was
coated with carbon using 208 HR carbon sputter coater
(Cressington, USA). The images were taken at x50, and x400
magnifications.

X-ray Powder Diffraction

The crystallinity of BOS, TA and SIL was analysed by
using Philips X'Pert APD diffractometer. The samples were
exposed to X-ray radiation (Cu-Ka) with the wavelength of
2 A and a 0.02-mm Ni filter. The X-ray tube was set up at a
voltage of 45 kV and a current of 40 mA. The rate of the
scanning was 0.02°/min at a range of 2-60 20.

Thermogravimetric Analysis

Mettler Toledo TGA/SDTA 851° apparatus calibrated
with indium, zinc and aluminum was used. Its accuracy was
equal to 107 g. The samples were placed in an aluminum
crucible. Two kinds of measurements were made: the first one
in a flow (80 cm® min™") of Ar 5.0 and the second in Air 5.0,
at the temperature range from 25°C up to 700°C, at the
constant heating rate of 10 K min ™.

Additionally, the evolved gaseous products from the
decomposition of the compound were identified, using
ThermoStar GSD300T Balzers quadruple mass spectrometer
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(QMS). The mass spectrometer was operated in the electron
impact mode (EI), using channeltron as a detector. Screening
analyses were performed in the selected-ion monitoring
(SIM) mode. The following ion characteristics of each
molecule, such as 18, 30, 44 and 46 for H,O, NO, N,O and
NO,, respectively, were monitored.

Differential Scanning Calorimetry Analysis

DSC measurements were carried out using differential
scanning calorimetry analysis (DSC) 821° Mettler Toledo
apparatus, equipped with intracooler option (Haake). The
sample of the studied material was hermetically sealed in an
aluminum crucible and measured in the temperature range
from 0 to 400°C, at a heating rate of 5 K min '. The empty
pan was used as a reference sample.

Spectroscopic Analysis

Infrared spectra were measured on Bruker VERTEX
70 v vacuum spectrometer. They were collected in the mid-
and far-infrared region (FT-MIR, FT-FIR), after 256 scans at
2 cm ! resolution. Samples were prepared, using the standard
KBr (Merck) and polyethylene (Merck) pellet methods for
FT-MIR and FT-FIR spectra, respectively.

Raman spectra were collected in the region 1300-
100 cm ! through the confocal Raman microscope, coupled
with the single grating LabRAM HRS800 spectrometer,
equipped with the notch filter and the CCD camera
detector. Measurements were performed in backscattering
geometry with the 532-nm green line, diode laser (laser power
at the sample ~8 mW), as excitation, a laser spot size of
~1 pm in diameter and a resolution of <1 cm ' (grating
1800 g/mm).

Particle Size Measurement

The particle size distribution was measured by the laser
diffraction method, using the laser diffraction sensor Helos
BR (Sympatec GmbH, Germany) and the dry dispersion unit
Rodos M (Sympatec GmbH, Germany) with dosing feeder
Vibri (Sympatec GmbH, Germany) for dry powder.

Solubility and Dissolution Studies

The equilibrium solubility of BOS, TA and SIL in
solvents of different pH, i.e. SGF without pepsin of pH=
1.2, phosphate buffer of pH=4.5 and 7.2 was determined,
using the shake-flask method. A surplus of the drug was
added to 20 mL of each solvent. The samples were placed in a
water bath (Memmert WNB-14, Germany) and shaken at 37
+0.5°C for 48 h. After centrifugation, the samples were
filtered through 0.45 pum syringe filter (Millex Millipore,
USA) and diluted with the appropriate solvent. The amount
of the drug in the samples was determined spectrophotomet-
rically at Ata =284 nm, Ay =290 nm, Agos=267 nm
(Shimadzu UV-1800, Japan). All the measurements were
performed in triplicate.

Mean values and standard deviations (SD) were esti-
mated to quantitatively characterize the distribution of the
measured parameters. The one-way ANOVA test was applied
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to evaluate the differences between the values of solubility
related to pH. If the analysis of the variance showed a
significant difference between the groups, the Tuckey post
hoc test was performed to identify disparate groups. For all
the statistical tests used, the significance was assumed if p
value was below 0.05.

The dissolution of TA, SIL and BOS was examined in
the automated pharmacopoeial paddle dissolution apparatus,
Hanson Research Dissolution Station SR8 Plus with the
autosampling device Dissoette IT (USA). The dissolution test
was performed in 900 mL of SGF without pepsin, phosphate
buffer of pH=4.5 or 7.2 at 37 + 0.5°C. A sample correspond-
ing to 10 mg of TA, 20 mg of SIL, or 62.5 mg of BOS was
used for the study, which corresponded to sink conditions in
the case of SIL (C/C¢<0.1) and non-sink conditions for TA
and BOS (C/C;>0.1). The paddle rotation speed was set at
50 rpm. The samples of 5 mL (n=3) were withdrawn for
120 min through the polyethylene filter (@ =10 pm) in
predetermined time intervals. The amount of the drug
dissolved was determined spectrophotometrically as de-
scribed earlier. The amount of the drug released (%) over
time as well as standard deviation (SD) and relative standard
deviation (RSD) were calculated.

The linearity of the dissolution test was evaluated by
the linear regression analysis and calculated by the least
square regression method. Aliquots of stock solutions,
containing 6 pg/mL of SIL, 12.5 pg/mL of TA and 150 pg/
mL of BOS respectively were diluted with SGF without
pepsin of pH=1.2, phosphate buffer of pH=4.5 or 7.2 to
give the concentrations of 6-48 pg/mL for SIL, 1.6-
12.2 pg/mL for TA and 3-33 pg/mL for BOS in the range
of pH from 1.2 to 7.2. Each solution was prepared in
triplicate.

Computation of Molecular Descriptors

Molecular descriptors for BOS, SIL base and TA were
calculated via chemicalize.org portal, which is a public web
resource, developed by ChemAxon (14). The drug solubility
in water was obtained from ALOGPS 2.1 web resource of
Virtual Computational Chemistry Laboratory (15). In brief,
2D structures of BOS, SIL base and TA were downloaded as
separate sdf files from PubChem Database (16). Raw
structures were uploaded either into ALOGPS 2.1 Java-
based program or Properties Viewer of chemicalize.org. The
latter uses the ChemAxon’s Marvin package engine; there-
fore, it is able to optimize geometry and calculate 3D
molecular descriptors.

RESULTS AND DISCUSSION

Molecular Structure of Drugs

Chemical structures of BOS, TA and SIL are shown in
Fig. 1. BOS is a pyrimidine derivative, containing benzene
and sulfonamide group in the structure (Fig. 1). The molecule
is achiral. The molecular weight is about 551.6 g/mol. The
chemical structure of PDE-5i, such as SIL and TA, is similar
to cyclic guanosine monophosphate (cGMP). Thus, they can
act as competitive inhibitors (Fig. 1). TA is a lactam
composed of a tryptamine ring. It has molecular weight that
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Fig. 1. Chemical structure of bosentan monohydrate (a), tadalafil (b), sildenafil
citrate (¢) and cyclic guanosine monophosphate (d)

is almost twice as small as SIL, ie. 389.4 g/mol. Sildenafil The comparison of molecular descriptors calculated for
citrate is a derivative of benzenesulphonamides of the BOS, TA and SIL base is shown in Table I. Molecular
molecular weight of ca. 666.7 g/mol, which contains a descriptors calculated for APIs have a wide range of
pyrimidine ring (Fig. 1). applications. The most investigated one is medicinal

Table I. Comparison of Molecular Properties for Bosentan (BOS), Tadalafil (TA) and Sildenafil (SIL) Base Structures

Parameter BOS TA SIL base
Mass [Da] 551.61 389.40 474.58
Minimal projection area [A2] 85.93 67.01 80.19
Maximal projection area [A?] 125.68 96.26 118.21
Molecular volume [A%] 480.97 328.28 420.99
Polar Surface Area, PSA [A?] 145.65 74.87 109.13
Solvent accessible surface area, SASA [A?] 791.84 513.72 708.41
logP 4.94 1.64 1.35
108D max 5.09 (pH 2-4) 1.54 (pH 0-12) 1.56 (pH 7-11)
pKa 5.79 15.17 5.99
Solubility in water® [mg/mL] 0.009 0.250 0.433

“ Obtained from ALOGPS
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chemistry (17), although recently their potential in
representing the molecule characteristics has been applied in
the field of toxicology (18) and in pharmaceutical technology
during preformulation studies (19) in order to predict
solubility (20), melting point (21) and in vitro/vivo correlation
(22) among many others.

Molecular properties calculated for BOS, SIL base
and TA did not reveal a uniform behaviour; however,
general conclusions can be drawn (Table I). SIL base and
BOS have the 20-40% higher molecular mass, projection
area (planar) and molecular volume (cubic) than TA.
Consequently, the polar surface area (PSA) and solvent
accessible surface area (SASA) of both SIL base and
BOS are higher as compared to TA. The comparison of
logP shows differences which reflect drug solubility in
water. The higher the value of logP, the lower the
solubility in water is. TA and SIL base with their logP
values of 1.64 and 1.35 have solubility in water of 0.250
and 0.433 mg/mL, whereas solubility of BOS is only
0.009 mg/mL (logP, 4.94). Values of logDp.x, which
correspond to logP values, show only slight differences
between TA and SIL base, such as 1.54 and 1.56,
respectively, in a wide range of pH. Acid dissociation
constants indicate that TA with pKa of 15.17 is neutral in
physiological fluids. In contrast, SIL base with pKa of 5.99
forms a cation at neutral pH when one of the nitrogen
atoms from piperazine ring is protonated. At pH of 5.79,
neutral and negatively charged sulfonamide groups of
BOS are present in the solution.

FT-IR and Raman Spectroscopy

The application of FT-IR spectroscopy makes it
possible to detect counterfeit active compounds or final
drug products. With regard to the relatively expensive
APIs, such as BOS, TA and SIL, there is a risk that
counterfeit drug products can be available on the market.
Raman spectroscopy is often used as a tool in process
analytical technology (PAT). The main benefit of this
technique is the opportunity to monitor the technological
process in real time as there is no need for sample
preparation prior to spectral analysis. FT-IR and Raman
spectroscopy give complementary information on the
sample characteristics.

FT-MIR spectra are presented in Fig. 2a. There are
eight major absorption peaks in the spectrum of TA, such
as 3326 cm ! (N-H stretching vibration of secondary
amine group), 3060 cm ' (C-H stretching vibrations of
aromatic ring), 2904 cm ! (C-H symmetric stretching
vibration of aliphatic —CHj; group), 1677 cm ™' (C=0 of
amide group), 1646 cm™' (C=C stretching vibrations of
aromatic ring), 1436 cm ! (C-N stretching vibrations),
1041 cm™ (C-O-C symmetric stretching vibrations) and
745 cm™! (vibrations from aromatic benzene ring). The
differences in FT-IR spectra of sildenafil citrate and
sildenafil base have already been described in detail by
Melnikow et al. (23). Since both SIL and BOS have —SO,
group in their structures, there are characteristic peaks at
1171 and 1173 cm™! respectively, corresponding to
symmetric stretching vibrations, whereas asymmetric
stretching vibrations are visible at 1360 cm™' for SIL and
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1342 cm™! for BOS (Fig. 2a). The 3600 cm ' band can be
attributed to less strongly hydrogen-bonded interlayer
water molecules in BOS. There is also a wide peak
between 3400 and 3200 cm', which corresponds to
stretching vibrations of O-H group in the spectrum of
BOS. This peak is not visible in Raman spectrum. There
is also a peak at 1053 cm ! in the FT-MIR spectrum of
BOS, indicating that it is a primary alcohol group. Peaks
at 1252 and 1019 cm™ ! come from aromatic ether, as well
as aromatic-aliphatic ether groups of BOS (Fig. 2a).
Pyrimidine rings of BOS show characteristic peaks at
1600, 1565, 1504 and 1441 cm ™' in FT-MIR spectra. The
first two peaks are also of high intensity in Raman
spectrum while the intensity of the others decreases.
Furthermore, there is a high intensity peak at 1440 cm'
in Raman spectrum of BOS, which represents symmetric
stretching vibrations of —CHj; group. The intensity of this
peak in FT-MIR spectrum is low.

FT-FIR has been found suitable for the analysis of
molecular rotations, as well as intermolecular interactions,
which can have an impact on the physiological function of
bioactive compounds, e.g. amino acids, peptides or pro-
teins (24-26). FT-IR spectra of BOS, TA and SIL
determined in a far-infrared range are shown in Fig. 2b.
The intensity of peaks in FT-FIR spectra of SIL and TA
is higher than BOS. Weyna et al. (27) showed that TA
molecules form supramolecular chains due to the hydro-
gen bonds between the indole group of one TA molecule
and the carbonyl group from the lactam chain of a
neighbouring molecule. Similarly to TA, intra- and inter-
molecular interactions have also been reported for SIL
(28). They are due to electrostatic interactions C-H:--O,
as well as hydrogen bonds N-H:---O.

Monohydrate of BOS forms O-H--O, O-H-'N, N-
H---O hydrogen bonds with a water molecule and O-
H-N intermolecular interactions between the hydroxyl
group and pirymidine rings, which results in two-
dimensional supramolecular structure (29). The presence
of hydrogen bonds can be related to the intensive peaks
below 200 cm ' in FT-FIR spectra. In this region,
backbone deformations, vibrations of the end COO™ or
NH;* were found in amino acids. The increasing
absorbance with the increasing frequency is visible in the
FT-FIR spectrum of BOS (Fig. 2b). It can be related to
the size of particles and their tendency to form agglom-
erates (Fig. 3), which can be high enough for Mie
scattering (30,31). The increasing absorbance with the
increasing terahertz frequency was described for lactose of
various particle sizes as well as for amorphous indomethacin.
Mie scattering was induced, especially if the particle size was
close to the radiation wavelength. In consequence, the
absorbance of the sample increased with wavenumber. In
the present study, FT-FIR analysis was carried out in the
wavelength range from 450 cm ! (22.2 pm) to 30 cm™*
(333.3 um). SEM pictures shown in Fig. 3 indicate that
primary particles of BOS have a tendency to form aggregates
and agglomerates. The particle size distribution of BOS
presented in Fig. 4 confirms that the particle size of either
primary particles or agglomerates is exactly in the range of
FT-FIR spectra, which is in line with the conclusions drawn
for lactose and indomethacin by Strachan et al. (31).
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Morphology of Drug Particles

Bosentan (BOS), tadalafil (TA) and sildenafil citrate
(SIL) are white crystalline powder. Figure 3 shows that the
particles of BOS are irregular, whereas those of TA are rod-
shaped and sharp-ended. Similarly to TA, the particles of SIL
are also rod-shaped. The presence of big agglomerates
formed by rod-shaped and plate-shaped particles is visible in
SEM pictures of BOS (Fig. 3).

The curves of particle size distribution determined by
the laser diffraction method show that the particles of
BOS are greater than SIL or TA (Fig. 4). The mean
particle size of BOS is almost 15 times as high as SIL, and
more than eightfold higher than TA (Table II). However,
it cannot be neglected that among particle size distribu-
tion curves shown in Fig. 4, only the distribution curve of
TA was narrow. In contrast to TA, both SIL and BOS had
wide particle size distribution, which may be related to
strong powder agglomeration visible in SEM pictures
(Fig. 3). Figure 3e, f also shows that the size of
agglomerates ranges from 100 to 400 pum. They are
composed of the primary particles, whose size varies from

20 to 100 um. Taking into account that the assessment of
the particle size by laser diffraction method relays on the
assumption that particles could be represented by an
equivalent circle or sphere, the mean particle size of
BOS may be overstated.

The diffractograms of BOS, TA and SIL are presented in
Fig. 5. They confirm crystalline structure of all the APIs
examined. The intensity of peaks in case of TA is the highest
of all the examined drugs, which may indicate a highly
organized crystalline structure. The intensity of peaks in the
diffractograms of SIL and BOS is lower.

There are at least eight crystalline forms of TA
(32,33). The position of 2-theta diffraction peaks depends
on the kind of the solvent used during the synthesis
(Table III). Figure 5 indicates that TA analysed in the
present study conforms to form I. The influence of the
crystallization process on the properties of SIL crystals
was studied in details by Sawatdee et al. (36). A survey of
the literature data on BOS reveals that about eight
crystalline forms of BOS have been described so far
(Table IIT) (34, 35). The form studied in the present
research is similar to form A2.
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Thermal Properties

A detailed characteristic of thermal properties of the
active pharmaceutical ingredient is needed, especially if hot-
melt extrusion (HME) is involved in the manufacturing
process of the final dosage form. HME was used to prepare
a wide range of drug delivery systems of controlled release
properties, pellets, implants, or transdermal patches (37).
Recently, special attention has been paid to drug-loaded hot-
melt extrudates, which could be used as filaments for the
preparation of 3D printed multidrug formulations (12,38).

Table II. Parameters Determined on the Basis of Cumulative Curves
of Particles Size Distribution for Bosentan (BOS), Tadalafil (TA) and
Sildenafil Citrate (SIL)

Drug name Dio [um] Dso [um] Doo [um] Dyo [um]
BOS 12.44 101.77 271.28 359.84
TA 3.65 11.40 17.38 20.56
SIL 1.54 6.92 23.94 72.40
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Fig. 5. Diffractograms of bosentan (BOS), sildenafil citrate (SIL) and
tadalafil (TA)

Such extrudates were used by Khaled er al. (12) to obtain the
combination drug ‘polypill’, containing five active pharma-
ceutical ingredients, namely ramipril, pravastatin, atenolol,
aspirin and hydrochlorothiazide, which was developed
with the aim to make the therapy of hypertension more
effective. The aforementioned drugs were distributed in
two compartments of the tablet of either immediate or
sustained release. Similarly to hypertension, clinical re-
ports, not only on PAH but also on Raynaud’s disease,
suggest that the combination of PDE-5 inhibitors and
BOS can improve the effectiveness of therapy; therefore,
the thermal properties of SIL, TA and BOS are investi-
gated in details in the present study (6,11).

Thermal decomposition of sildenafil citrate was al-
ready described by Melnikov et al. (23). They observed
that the compound decomposes at 189.5°C, with almost
simultaneous melting of the decomposition product. From
the comparison of the thermogravimetric and differential
thermal analysis curves, it was concluded that, initially, the
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compound is broken up and later its anionic part is
decomposed. Our results stay in agreement with the
observation made by Melnikow et al. (23). The first part
of thermal decomposition (Fig. 6a), with the onset at
190°C, originates from the elimination of the citrate ion
from the complex. The mass loss (28%) matches the
calculated value. The decomposition products (line 18
from water and 44 from carbon dioxide) (Fig. 6b) and the
sharp endothermic peak with enthalpy 312J/g (Fig. 6c)
seem to confirm this statement. The sample heated up to
a higher temperature underwent further decomposition
with water, carbon dioxides and nitrate oxides evolving
(Fig. 6b).

Thermal properties of TA and BOS drugs were not
reported in the literature previously; therefore, more atten-
tion is paid to them in the current work.

In Fig. 7, the TG/DTG, QMS and DSC results obtained
for TA were plotted. To have deeper insight into the products
released during decomposition, the thermogravimetric mea-
surements were carried out in air and in argon atmosphere.

It can be seen from Fig. 7a that the gas atmosphere
strongly affects the decomposition process. In both studied
cases, the first part of decomposition starts at about 320°C.
The evolving products seem to be the same (Fig. 7b, c);
however, the mass loss is 50% in Ar and 38% in air
atmosphere. The sample heated in the air undergoes further
decomposition with maximum speed at 570°C and finally
burns at over 700°C with water, carbon dioxide and nitrate
oxides release (Fig. 7b). The drug thermally treated in argon
exhibits slight gradual decomposition; however, even at the
temperature of 800°C, more than 40% of the initial mass is
present in the sample (Fig. 7c). The DSC curve (Fig. 7d)
manifests the endothermic phase transition with the onset at
299°C, indicating melting of the drug, as well as the
exothermic peak related to the decomposition of the drug,
which starts at 350°C. The enthalpy of melting is 105 J/g,
whereas the enthalpy of exothermic degradation is 160 J/g.

BOS is used in the therapy in the form of monohydrate.
The presence of water in the drug is confirmed by the TG

Table III. Crystalline Forms of TA and BOS

Crystalline 2-Theta angle positions of diffraction peaks References
forms
TA I 7.3°10.6° 12.6° 14.6° 18.5° 21.8° 24.3° (32, 33)
II  7.6°14.0° 15.2° 18.0° 22.8°
I 8.3°13.5°17.7° 18.4°
IV 7.6°10.6° 15.2° 18.4° 22.7°
VvV 83°15.1°18.8°19.2° 20.3°
VI 7.1°9.3° 11.4° 13.5° 17.8° 19.2° 21.2°
VII  7.0°13.1° 17.6° 19.0° 20.9° 24.6°
VII 7.2°7.6°8.2°13.3° 17.6° 18.2° 22.6°
BOS I 6.34° 10.77° 12.69° 15.85° 19.05° 19.84° 21.29° (34)
Al 9.62° 16.34° 18.18° 22.08°
A2 8.26°9.15° 15.21° 15.42° 16.63° 18.55° 30.39°
A4 4.04° 5.62° 7.84° 17.06°
4.02° 6.12° 8.38° 9.39° 10.04° 15.26° 17.72° 17.98° 18.81° 19.28° 20.31° 21.05° 27.57° 31.91° (35)

3.64° 4.23° 4.95° 7.04° 7.68° 8.23° 9.05° 9.66° 10.48° 13.95° 15.20° 16.17° 17.37° 18.06° 20.03° 22.13° 26.62°
9.47° 13.41° 14.52° 15.46° 15.73° 16.35° 16.88° 17.99° 18.87° 19.25° 20.53° 21.82° 23.02° 23.83° 24.61° 24.86°

5
6 3.87°7.51° 8.84° 11.14° 18.74° 23.30°
7
8

25.13° 26.03°
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Fig. 6. Thermogravimetric curves of SIL (a) mass spectrometry lines:
18-water, 30-nitric oxide, 44-carbon dioxide, 46-nitrogen dioxide (b)
and differential scanning calorimetry plot (¢) registered in Air
atmosphere at 5 K min '

curve, affirmed by DTG, as well as by spectrometric results,
plotted in Fig. 8.

The TG curve of BOS shows a small mass loss just
above 70°C, independently of the atmosphere of the
measurement (Fig. 8a), originating from the separation
of water from the complex. The second step, with the
onset at 290°C, comes from thermal decomposition of the
drug. Gas products evolving during this process were
registered by QMS as the line 18, 44, 30—in air and 16 in
Ar atmosphere (Fig. 8b, c). Line 18 illustrates water,
30—nitrogen oxide (NO) and 16—oxygen. The compari-
son of the results obtained in air and in Ar suggest that
line 44 might come not only from carbon dioxide, but also
from tert-butyl group presented in the BOS molecule
(mass 45), since the resolution of the mass spectrometer is
1m/z. Above 400°C, the drug undergoes burning in the
air atmosphere with carbon dioxide, nitrate oxides and
water being released (Fig. 8b). DSC curve (Fig. 8d) shows
an endothermic peak associated with water evaporation at
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about 100°C, a small endothermic peak at about 195°C,
corresponding to a melting and exothermic peak related
to the decomposition of the drug, with maximum at about
300°C.

The findings presented above lead to the conclusion
that TA is the most stable while being heated among all
the studied drugs. On the other hand, the temperature at
which the process of decomposition starts is the lowest for
SIL.

Throughout the development of a combination drug,
it is necessary to check if there are any interactions
between the active pharmaceutical ingredients, especially
if thermal co-processing is planned to be involved in a
new technology. Therefore, three binary mixtures com-
posed of the examined drugs in 1+1 wt. ratio, as well as
one ternary mixture in 1+1+1 wt. ratio were prepared.
Thermal properties of these formulations were analysed
by DSC measurements in order to detect possible
interactions between the examined drugs while being
heated (Fig. 9).

Figure 9a shows heat flow curves of binary mixture
composed of SIL and TA in comparison to pure com-
pounds. DSC curve shows peaks characteristic of pure SIL
and TD, such as endotherms of melting and exotherms of
decomposition. The endotherm, corresponding to the
melting point of SIL, is exactly in the same position as
that of the pure drug, whereas the melting endotherm of
TD is shifted to lower temperatures. The exothermal
decomposition process of the binary formulation starts at
lower temperature as compared to pure TD.

Figure 9b shows thermal properties of binary mixture,
containing BOS and TA in equal amounts. There is only one
endotherm characteristic of the melting process of BOS
below 200°C, which is followed by the broad exotherm with
the onset at about 280°C, suggesting the chemical degrada-
tion of the mixture.

The heat flow curve of binary mixture prepared of
BOS and SIL in 1+1 wt. ratio is shown in Fig. 9c. The
first endotherm is related to the melting point of BOS at
about 100°C. The second corresponds to the melting
process of SIL but is broadened with the onset slightly
shifted to lower temperatures in comparison to the pure
drug. In contrast to pure compounds, there are no
exotherms at about 300°C, which have been replaced by
the broad endotherm between 260 and 330°C.

Thermal properties of the ternary mixture are illus-
trated in Fig. 9d. There are two endotherms of up to
200°C, which are characteristic of pure BOS and SIL. The
position of the melting endotherm of SIL is also slightly
shifted to lower temperatures, as it was described for the
binary mixture BOS + SIL shown in Fig. 9c. Then, there is
the third endotherm with the onset at about 250°C, which
may correspond either to shifted melting endotherm of
pure TD or to the interaction between BOS and SIL, as it
was stated previously for their binary mixture.

On the whole, these results provide the evidence that
there are no interactions between sildenafil citrate,
tadalafil and monohydrate of bosentan either in binary
or in ternary mixtures upon being heated together up to
200°C. Seldom are temperatures higher than 200°C used
in the pharmaceutical technology due to the jeopardy of
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the chemical degradation of thermally sensitive com-
pounds. Thus, the conclusion that there is no risk of
interactions between the examined drugs can be drawn.

Solubility and Dissolution Assessment

BOS and TA are classified as BCS class II drugs because
they are insoluble in water and highly permeable compounds.
In contrast to TA and BOS, SIL is a highly soluble and highly
permeable drug from BCS class 1. The results of equilibrium
solubility determined for BOS, TA and SIL in solvents of
three different pH, such as 1.2; 4.5 and 7.2, respectively, are
presented in Fig. 10. The equilibrium solubility of BOS is
significantly higher in pH=7.2 than in pH of 1.2 or 4.5
(» <0.05). The solubility of TA is slightly higher in pH=1.2,
i.e. 4.06 £0.04 pg/mL than in pH of 4.5 or 7.2 when it is about
3.76 pg/mL (Fig. 10b).

These findings are in accordance with the calculated
molecular descriptors. The plateau of logD,,.x observed in
the wide range of pH values (up to 12) indicates that only
in highly alkaline solutions, the solubility of TA increases.
Moreover, the value of solvent accessible surface area
shows that the molecules of TA have less of the space
accessible for the solvent than BOS and SIL. In conse-
quence, an increase in the solubility of TA may be
difficult to achieve.

The saturation solubility of SIL depended significantly
on pH of the solvent (p <0.05). The highest solubility of

1

33.96 +4.16 mg/mL was in SGF. The higher the pH of the
solvent, the lower the solubility was (Fig. 10c). The equilib-
rium solubility of SIL in phosphate buffer of pH=4.5 was
7.52 £ 0.64 mg/mL, whereas in pH=7.2 it deceased to 4.56 +
0.06 mg/mL. In the case of SIL base, the calculated chemical
descriptors, such as pK,, logP and logD.x, reflected the
general tendency of the molecule to increase its solubility in
acidic solutions. Thus, the preferable pH is below 4, where
protonated amine group of piperazine ring is the major
species.

The dissolution profiles of TA and SIL are shown in
Fig. 11. Similarly to the results of equilibrium solubility, the
dissolution of SIL depended also on pH of the solvent, used
for the dissolution study (Fig. 11a). Since sildenafil citrate is a
salt formed of the sildenafil weak base and citric acid group,
its dissolution in SGF of pH=1.2 is immediate. The entire
drug is dissolved after 5 min. The increase in pH caused a
decrease in solubility of SIL; therefore, after 120 min, about
90% of SIL dissolved in phosphate buffer of pH=7.2
(Fig. 11a).

In contrast to SIL, the dissolution of TA was less
dependent on pH (Fig. 11b). Since TA is poorly soluble in
water, the amount of TA dissolved after 120 min in SGF
and phosphate buffer of pH=4.5 was only about 15%. The
amount of TA dissolved in the phosphate buffer of pH=
7.2 was slightly higher, i.e. ca. 25%. However, the particles
of TA are very hydrophobic and they remained on the
surface of the solvent during all the dissolution study. Thus,
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the application of a modified SGF by the addition of a
surfactant, such as 0.1% SLS, was investigated. The
particles of TA were wetted. There was no floatation of
the drug particles during the analysis. The amount of TA
dissolved in the modified SGF increased from 15 to 45%
after 120 min (Fig. 11b).

Q (%)
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Dissolution studies of BOS showed that regardless of
the solvent used, the amount of the drug dissolved after
120 min was below 5% (data not shown). In conse-
quence, the application of a wetting agent seems
indispensable, and it will be investigated in further
studies.

0
0 10 20 30 40 50 60 70 80 90 100 110 120
t (min)

Fig. 11. Dissolution profiles of: SIL (a) and TA (b) in SGF of pH=1.2 (black solid line and
symbols); phosphate buffer of pH =4.5 (blue solid line and symbols) and phosphate buffer of pH =
7.2 (red solid line and symbol); dissolution profile of TA in modified SGF with 0.1% SLS (black

dotted line and open symbols)
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The dissolution test makes it possible to compare new
formulation candidates. In the present study, the reliability of
the data was determined by the evaluation of precision,
measured as intra-assay repeatability by means of RSD,
which did not exceeded 5%, demonstrating suitable precision
of all the dissolution tests.

The standard curves constructed for SIL, TA and BOS
by plotting average absorbance vs. the drug concentration
show good linearity in all the studied solvents in the following
ranges: 6.0-48.0 pg/mL (¥ =0.9939-0.9994), 1.6-12.2 pg/mL
(¥ =0.983-0.991), 3.0-33.0 pug/mL (*=0.9982-0.9996) for
SIL, TA and BOS respectively. The RSD for each point was
less than 2%. These results indicate that the method was
linear for all the examined drugs, within the specification
limits.

CONCLUSIONS

The present study shows detailed characteristics of
the thermal stability of BOS, TA and SIL, which can be
helpful in the development of new combination medi-
cines for the treatment of PAH. It was shown that TA
has the highest melting point, ca. 300°C, and the highest
stability upon being heated among all the studied drugs.
In contrast, the temperature at which the process of
decomposition starts is the lowest for SIL (the onset at
190°C). Similarly to TA, the melting point of BOS is also
high (Tm=195°C). Since BOS is a monohydrate, atten-
tion should be paid to the dehydration process which
starts at 70°C. The products of thermal decomposition of
all the examined drugs in Air and Ar have been
identified.

Chemoinformatic tools, such as the ChemAxon’s
Marvin package engine, have been applied to determine
pKa, logP and the polar surface area, on the basis of the
drug chemical structure. The results of morphological
analysis by SEM and laser diffraction method revealed
that the examined drugs differ in the mean particle size
and in particle shape. The particle size increased in the
following order: SIL <TA <BOS. Furthermore, it was
shown that BOS has a high tendency to form agglomer-
ates, which may be the reason for high values of the
mean particle size. The presence of agglomerated BOS
particles could also be responsible for Mie scattering,
which results in the increasing absorbance with the
increasing frequency in the FT-FIR spectrum of BOS.
Molecular rotations, as well as intermolecular interactions
due to the formation of hydrogen bonds, have been
confirmed by high intensity peaks visible in the FT-FIR
spectra of SIL and TA.

The solubility and dissolution studies of SIL and BOS
depend on pH, whereas the solubility and dissolution of
TA were similar regardless of pH of the solvent. Since
SIL is a salt formed of a weak organic base (sildenafil)
and citrate anion, the solubility of SIL, especially in acidic
pH, is the highest of all the examined APIs. The solubility
of BOS in alkaline pH was more than 40 times higher
than TA, whereas in acid pH, the solubility of BOS was
twice as small as the solubility of TA. The results of
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dissolution studies showed that, after 15 min, more than
80% of SIL was dissolved in all the tested solvents.
However, the dissolution of SIL in pH of 7.2 was slower
than in pH of 1.2 or 4.5, indicating that pH of the solvent
had only little influence on the dissolution of TA.
Nonetheless, the application of a surfactant to the
dissolution medium seems indispensable for an accurate
analysis of the dissolution of TA and BOS.
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