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ABBREVIATIONS

ALT Argon laser trabeculoplasty

BP Blood pressure

ExOHT Exfoliation syndrome with ocular hypertension

ExG Exfoliation glaucoma

ExS Exfoliation syndrome

HUEH Helsinki University Eye Hospital

HRT Heidelberg Retina Tomograph (Heidelberg Engineering GmbH, Heidelberg,

Germany)

HRF Heidelberg Retina Flowmeter (Heidelberg Engineering GmbH)

IOP Intraocular pressure

LV Loss variance

MD Mean defect

MS Mean sensitivity

NTG Normal tension glaucoma

OAG Open-angle glaucoma

OHT Ocular hypertension

ONH Optic nerve head

PRC Partial regression coefficient

POAG Primary open-angle glaucoma

r Pearson correlation or Spearman’s rank correlation coefficient

ROC Receiver operating characteristic analysis

RNFL Retinal nerve fibre layer

SLDF Scanning laser Doppler flowmetry

SLO Scanning laser ophthalmoscopy

TIA Transient ischaemic attack

VF Visual field
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1. ABSTRACT

The present investigation on a hospital basis was begun to study the effect of IOP reduction

on the risk for progression and factors affecting target pressure (I). Risk factors for

progression of glaucoma were studied on 139 eyes of 139 patients with exfoliation

syndrome (ExS) and ocular hypertension (ExOHT) or glaucoma (ExG). After a mean

(±SD) follow-up time of 5.2 ± 3.6 years (range 1.0-19.8 years), progression was detected in

63 eyes (45.3%), with 76 eyes (54.7%) showing no progression. In order to control the

length of follow-up and the different number of available intraocular pressure (IOP)

readings between two follow-up visits, a weighted mean IOP was calculated to describe the

IOP level between two successive visits. Multivariate survival analysis detected increased

age (relative risk 1.042; P-value 0.043), increased mean weighted IOP (1.076; <0.001), and

increased stage of glaucoma (1.436; <0.001) as risk factors for progression. History of

trabeculectomy was associated with decreased relative risk for progression (0.360; 0.002),

even though adjusted for mean weighted IOP in the multivariate analysis. Lower target

pressures for older patients and patients with advanced glaucoma is thus supported.

The reversibility of ONH topography in ExG was studied (II, III) as well as the use of

scanning laser ophthalmoscopy (SLO) to detect progressive changes in the ONH (III). SLO

with the Heidelberg Retina Tomograph (HRT, Heidelberg Engineering GmbH, Heidelberg,

Germany) allows objective measurement of the optic nerve head (ONH) topography. This

method provides the examiner with a number of parameters describing the amount of nerve

fibres in the ONH. These parameters were tested in 80 patients with ExS and glaucoma (69

eyes) or ocular hypertension (11 eyes). Most HRT parameters were associated with the disc

area; the larger the disc, the more likely were these parameters to show values in the

direction of ‘more glaucomatous’. When the effect of disc area was taken into account, all

HRT parameters showed a statistically significant association with the amount of visual

field (VF) damage. This result supports the importance of adjusting for disc area when

HRT values are compared between different groups of patients.

The most advantageous application of SLO would be its use in follow-up of patients to aid

in detecting change or progression in ONH topography. In a prospective follow-up of 56

patients, change in VF index mean defect (MD) was shown to be associated with



subsequent change in one of the HRT parameters, the cup shape measure. This suggest that

cup shape measure may be a sensitive indicator for progression.

The reversal of ONH topography was studied in two sets of patients. HRT imaging was

performed before and after intervention in 10 eyes of 9 patients who underwent

trabeculectomy, and in 80 eyes (see above) treated with topical medication (13 eyes), argon

laser trabeculoplasty (42 eyes), or trabeculectomy (25 eyes). Decrease in IOP was

associated with reversal changes in most HRT parameters. Reversal changes could still be

detected one year after trabeculectomy, provided that the post-operative IOP was kept low

enough. It remains to be shown whether reversal of the ONH topography is related to

slower rate of progression of glaucoma, as has been suggested.

The concept of a vascular component in pathogenesis of ExG was evaluated by

measurements of ocular blood flow in eyes with ExOHT, ExG and ExS (IV, V). Ocular

blood flow was measured with two non-invasive techniques. Scanning laser Doppler

flowmetry (the Heidelberg Retina Flowmeter, HRF, Heidelberg Engineering GmbH) was

used to study ONH and peripapillary retinal blood flow in 50 patients with unilateral

ExOHT or ExG, and blue-field entoptoscopy to study macular capillary circulation in 10

patients with unilateral ExG and 11 patients with unilateral ExS. In the ONH, flow in the

rim area of the glaucomatous eyes was higher than in fellow eyes (P = 0.001), while the

difference in the lamina was of borderline significance (P = 0.065). However, results

indicated that more advanced glaucomatous damage, indicated by greater MD or smaller

rim volume, is associated with reduced flow both in the laminar area and in the rim area.

Also, treatment with topical timolol seemed to be associated with reduced flow in the

lamina and rim area. In the macula, leucocyte velocity (±SD) was significantly lower in

glaucomatous eyes (0.70 ± 0.25 mm/s) than in non-glaucomatous fellow eyes (0.89 ± 0.34

mm/s) (P = 0.02). In the glaucomatous eyes, correlation of borderline significance was

detected between leucocyte velocity and MD (r = -0.58, P = 0.08), and between leucocyte

velocity and loss variance (-0.62, 0.06). The results indicate that alterations in ocular blood

flow occur in ExG.



2. INTRODUCTION

Glaucoma is defined as a chronic progressive optic neuropathy independent of intraocular

pressure (IOP) level and without connection to any neurologic or other systemic disease.

Optic neuropathy is the common denominator in all types of glaucoma in which a

characteristic acquired loss of optic nerve fibres leads to loss of sight and ultimately

blindness. The current concept of glaucoma seems to be that there is a subgroup of patients

with glaucoma in which the disease is mainly dependent on IOP, and another subgroup in

which it is not (Schulzer et al. 1990). Exfoliation glaucoma (ExG) is considered a high-

pressure type of secondary glaucoma, in which high IOP leads to poor outcome if not

reduced. Therapy aims at lowering IOP to a level at which no further progression occurs

(= target pressure). In glaucoma, no other means or indicator exists than detection of

progression to determine whether IOP has been sufficiently reduced. Reversal of optic disc

cupping after reduction of IOP has been suggested to be such an indicator (Katz et al. 1989,

Tsai et al. 1991). In a recent series including eyes with ExG, the postoperative IOP level

after trabeculectomy was not associated with rate of visual field (VF) progression (Popovic

& Sjöstrand 1999), which suggests an influence on progression by factors other than IOP.

Many investigations have put forward evidence of vascular pathogenesis in ExG (Vannas

1969, Laatikainen 1971, Raitta & Vannas 1971, Vannas 1972, Pohjanpelto 1985, Sonnsjö

et al. 1988, Jonas et al. 1990, Cursiefen et al. 1997).

The clinical examination of the optic nerve head (ONH) includes a subjective component,

and detection of progressive ONH damage can be difficult. The importance of detecting

progression from the ONH is emphasized in early glaucoma, during which no VF defects

are yet detectable (Funk et al. 1988). Objective methods for ONH measurements have been

introduced to aid evaluation of ONH, but their clinical use in detecting progression is still

under investigation.

The present investigation on a hospital basis was begun to study the effect of IOP reduction

on risk for progression and factors affecting target pressure (I). The reversibility of ONH

topography in ExG was studied (II, III) as well as the use of scanning laser ophthalmoscopy

(SLO) to detect progressive changes in the ONH (III). The concept of a vascular

component in pathogenesis of ExG was evaluated by measurements of ocular blood flow in

eyes with ExG and exfoliation syndrome (ExS) (IV, V).



3. REVIEW OF THE LITERATURE

3.1 THEORIES OF GLAUCOMA

It seems that different mechanisms of damage occur in glaucoma. Schulzer et al. (1990)

identified two subgroups of glaucoma patients: one group in which the degree of VF

damage was correlated with IOP level, and one group in which it was not. In glaucoma,

ganglion-cell death can be mediated via apoptosis (Quigley et al. 1995). Mechanisms of

and stimuli leading to ganglion-cell death have recently been reviewed by Nickells (1996).

Stimuli that may lead to apoptotic cell death include neurotrophin deprivation and

glutamate toxicity (Nickells 1996). Neurotrophin withdrawal can be caused by blockage of

retrograde axonal transport during periods of increased IOP or by defective neurotrophin

transport by energy depletion due to ischaemia. Glutamate toxicity is believed to be caused

by ischaemia of the optic nerve and retinal ganglion-cells (Nickells 1996).

3.1.1 The mechanical theory

According to the mechanical theory of glaucoma, the main cause of glaucomatous ONH

damage is elevated IOP or increased susceptibility to IOP. Evidence exist that IOP

contributes to the pathogenesis of glaucoma. Elevated IOP and glaucomatous damage are

closely related (Armaly 1969, Armaly et al. 1980, Davanger et al. 1991b, Sommer et al.

1991b, Leske et al. 1995, Mitchell et al. 1996a), and glaucomatous damage can be

experimentally induced by increasing IOP (Quigley & Addicks 1980).

ExG is traditionally considered a secondary high-pressure glaucoma. The exact mechanism

of elevated IOP in ExS and ExG is controversial (Hansen & Sellevold 1970, Aasved 1971,

Layden & Shaffer 1974, Klemetti 1988, Puska & Raitta 1992, Gharagozloo et al. 1992), but

one widely accepted point of view is that the outflow capacity of aqueous humour is

reduced by mechanical obstruction of outflow by deposits of exfoliation material and

pigment in the trabecular meshwork (Madden & Crowley 1982, Wishart et al. 1985,

Rouhiainen & Teräsvirta 1991, Puska 1995, Schlötzer-Schrehardt & Naumann 1995,

Gottanka et al. 1997), by dysfunction of the trabecular cells, and by disorganization of

juxtacanalicular tissue and Schlemm’s canal (Schlötzer-Schrehardt & Naumann 1995).



Studies on aqueous humour dynamics have revealed higher resistance to outflow in eyes

with ExS than in their unaffected fellow eyes or control eyes (Pohjanpelto 1973, Layden &

Shaffer 1974, Johnson & Brubaker 1982, Gharagozloo et al. 1992). The exfoliation

material may be of both trabecular and exotrabecular origin (transported by the aqueous

humour to the trabecular area) (Ringvold & Vegge 1971, Morrison & Green 1988,

Schlötzer-Schrehardt & Naumann 1995, Gottanka et al. 1997), whereas pigment deposits

are probably liberated from the iris epithelium by mechanical scraping of the pupillary

border against the irregular lens surface (Krause et al. 1973, Layden & Shaffer 1974).

Exfoliation syndrome has also been associated with breakdown of the blood-aqueous

barrier in the iris and ciliary body and subsquent leakage of proteins into the aqueous

humour (Vannas 1972, Küchle et al. 1995, Küchle et al. 1996, Vesaluoma et al. 1998),

which may further increase outflow resistance.

A widely accepted view is that, in glaucoma, the site of initial damage to the ganglion-cell

axons is at the level of the lamina cribrosa (Gaasterland et al. 1978, Quigley et al. 1981).

The lamina cribrosa consists of approximately 10 lamellar sheets of connective tissue

which have pores that form channels for the ganglion-cell axons to pass through the sclera

(Quigley & Addicks 1981, Radius & Gonzales 1981). Increase in IOP may cause backward

bowing of the lamina cribrosa (Levy et al. 1981, Levy & Crapps 1984) with sliding of the

connective tissue layers in relation to each other, which leads to narrowing of laminar pores

(Quigley et al. 1981). This causes impingement of nerve fibres that run through the pores,

impeding orthograde and retrograde axoplasmatic transport in the neurons (Minckler et al.

1977, Gaasterland et al. 1978, Quigley & Addicks 1980) and leading subsequently to their

death. The pores at the superior and inferior poles of the lamina cribrosa are larger and the

lamellar sheets thinner than in the medial and lateral poles, offering less structural support

to the nerve fibres (Radius & Gonzales 1981, Quigley & Addicks 1981). The nerve fibres

that run through the pores at the superior and inferior poles may therefore be more

susceptible to mechanical damage (Quigley & Addicks 1980). These nerve fibres supply

the arcuate Bjerrum areas of the VF (Minckler 1980) which are known to be the

preferential site of VF damage in glaucoma. In studies on a biomechanical model of the

ONH, Bellezza et al. (2000) concluded that IOP-related stress within the load-bearing

connective tissues of the ONH is substantial even at low levels of IOP, and furthermore,

they found that peripapillary scleral stress was consistently highest near the superior and

inferior poles of the scleral canal.

However, it has been argued that the exfoliative process may be a risk factor for ONH

damage itself, independent of a raised IOP level. Davanger et al. (1991a) reported a higher

probability of glaucomatous damage at a certain IOP level in exfoliative eyes than in non-



exfoliative eyes, indicating increased vulnerability to increased IOP in exfoliative eyes.

Similarly, according to Ekström (1993), the presence of ExS increased the standardised

relative risk for glaucoma in eyes with ocular hypertension (OHT). In histological studies,

more severe elastosis of the lamina cribrosa has been found in ExG than in primary open-

angle glaucoma (POAG), and this has been suggested to be a contributing factor for

increased susceptibility to glaucomatous damage in eyes with ExG (Netland et al. 1995,

Pena et al. 1998).

Not all exfoliative eyes develop glaucoma (Hansen & Sellevold 1969, Henry et al. 1987,

Klemetti 1988). Henry et al. (1987) retrospectively followed non-glaucomatous eyes with

ExS (469 eyes of 347 patients). They reported the cumulative probability (±SD) of 5.3 ±

0.1% for elevated IOP (above 21 mmHg) at 5 years, and 15.4 ± 1.9% at 10 years. In her

study on 206 eyes with ExS, Klemetti (1988) reported that 71 eyes (34.5%) developed

OHT (IOP above 21 mmHg) or ExG during the 1 to 23 years of follow-up time. Why most

exfoliative eyes remain non-glaucomatous remains unknown. In their recent review, Vesti

& Kivelä (2000) postulated that one reason could be degeneration of the ciliary epithelium

in exfoliation syndrome and subsequent impaired aqueous secretion. Ultrastructural

changes in the ciliary epithelium in eyes with ExG (Lütjen-Drecoll et al. 1988) may indicate

malfunction of or damage to the ciliary epithelium. Johnson & Brubaker (1982) reported a

lower rate of aqueous humour flow in the anterior chamber in exfoliative eyes than in non-

exfoliative fellow eyes. However, in another fluorophotometric study, no difference was

found in aqueous humour flow rate between ExS and unaffected fellow eyes or control

eyes (Gharagozloo et al. 1992).

3.1.2 The vascular theory

Blood flow in a tissue is determined by perfusion pressure, i.e., arterial pressure minus

venous pressure, and resistance to flow between arteries and veins. Like other parts of the

central nervous system, the optic nerve and ONH exhibit autoregulation of blood flow

(Pillunat et al. 1997, Riva et al. 1997, Movaffaghy et al. 1998, Orgül et al. 1999). By

autoregulation, the resistance to flow is changed to keep blood flow constant despite

changes in the perfusion pressure, for example in cases of change in arterial pressure or

when venous pressure is altered by change in IOP. Ischaemia due to increased IOP may

result if autoregulation is impaired, for example because of innate deficiency or vasospasm.

There is evidence that in glaucoma autoregulation may be impaired (Grunwald et al. 1984,

Pillunat et al. 1985, Robert et al. 1989, Graham et al. 1995, Tielsch et al. 1995, Graham &

Drance 1999, Ghergel et al. 2000).



The role of systemic blood pressure is somewhat contradictive, as both hypertension

(Leighton & Phillips 1972, Wilson et al. 1987, Rouhiainen & Teräsvirta 1990b, Dielemans

et al. 1995) and hypotension (Richler et al. 1982, Peräsalo et al. 1992, Kaiser et al. 1993,

Graham et al. 1995, Graham & Drance 1999) have been shown to be associated with open-

angle glaucoma (OAG). In the Baltimore Eye Study (Tielsch et al. 1995), a trend toward a

protective effect was found for systemic hypertension in patients younger than 60 years of

age and an increased risk in patients older than 70. This was hypothesised to be caused by

increased blood flow early in the course of arterial hypertension (i.e., in younger patients),

but in more advanced disease (i.e., in older patients) the cause could have been reduced

blood flow due to damage to small vessels and increased resistance to flow. This could

explain the increased risk for POAG in the older patients with systemic hypertension

(Tielsch et al. 1995).

Ischaemia due to occlusion of small capillaries may also result from platelet or clotting

abnormalities. In the series by Schulzer et al. (1990), it was reported that in the presence of

clotting abnormalities, there were no relationship between the severity of glaucomatous

damage and IOP. Drance (1972) has reported disturbances in the coagulation-fibrinolytic

system in 61% of the glaucoma patients with IOP less than 22 mmHg, and O’Brien et al.

(1997) found elevated levels of prothrombin 1 + 2 fragments and D-dimer in untreated

POAG compared to normal tension glaucoma (NTG) and controls. This suggests that some

of the untreated POAG patients are in a hypercoagulable state which may contribute not

only to the pathogenesis of glaucoma, but also to the increased prevalence of venous

thrombosis in the glaucoma population (David et al. 1988, Mitchell et al. 1996b). ExS also

has been reported to be a risk factor for retinal vein thrombosis (Cursiefen et al. 1997), and

an association between vein occlusions and ExG has been suspected (Pohjanpelto 1985).

Disc haemorrhages have been shown to precede glaucomatous VF defects (Airaksinen et

al. 1981, Krakau 1983, Sonnsjö et al. 1988, Diehl et al. 1990, Bengtsson 1990) and to be

associated with progression of glaucomatous nerve fibre loss (Diehl et al. 1990, Ekström

1993, Siegner & Netland 1996). Disc haemorrhage seems to be as frequent in ExG as in

other types of glaucoma (Sonnsjö et al. 1988, Jonas et al. 1990). The aetiology of disc

haemorrhages is unknown. An ischaemic mechanism (Begg et al. 1971) as well as

mechanical trauma at the level of the lamina cribrosa (Quigley et al. 1981) have been

suggested. Sonnsjö & Krakau (1993) prospectively followed patients with glaucoma, disc

haemorrhages, or venous occlusion. During follow-up, patients with glaucoma developed

venous occlusions and disc haemorrhages, patients with venous occlusions developed

glaucoma and disc haemorrhages, and so on. They argued that disc haemorrhage, and

venous occlusion are two manifestations of the same disease appearing in different size



vessels and that the increase in IOP could be a late consequence of a vascular insult, i.e.,

thromboses of small venous capillaries in the retina and ONH leading to increased

intravenous pressure and subsequent increase in IOP.

Peripapillary atrophy has been extensively studied in glaucoma. Histologically, it represents

misalignment of the edges of the neural retina, retinal pigment epithelium, and the choroid

(Fantes & Anderson 1989). Peripapillary atrophy has been proposed as a sign of impaired

choroidal perfusion (Raitta & Sarmela 1970, Primrose 1971, Laatikainen 1971, Stewart et

al. 1995, Jonas & Hayreh 1999). Although the vasculatures of the peripapillary choroid and

anterior optic nerve are highly separated, they share a common arterial supply at the level of

the short posterior ciliary arteries, and the peripapillary choroid may also give off small

branches into the prelaminar and laminar regions of the ONH (Cioffi & Van Buskirk

1996). Several studies have shown peripapillary atrophy, specifically the zone beta atrophy,

to be associated with degree of glaucomatous ONH and VF damage (Raitta & Sarmela

1970, Wilensky & Kolker 1976, Hayakawa et al. 1998) as well as with progression of

glaucoma (Araie et al. 1994, Stewart et al. 1995, Park et al. 1996, Uchida et al. 1998,

Daugeliene et al. 1999, Jonas & Hayreh 1999). Hayakawa et al. (1998) also found an

association with frequency of disc haemorrhages. No difference in the size of the

peripapillary atrophy between ExG and POAG seems to exist (Jonas et al. 1990, Tezel &

Tezel 1993, Jonas & Papastathopoulos 1997). Puska & Raitta (1993) studied patients with

unilateral ExG. Although the areas of the peripapillary atrophy did not differ between

glaucomatous and their non-glaucomatous fellow eyes, a correlation between area of

peripapillary atrophy and extent of ONH damage appeared among glaucomatous eyes.

ExS seems to widely affect the ocular vasculature. Fluorescein angiographic studies of the

limbus (Laatikainen 1971, Raitta & Vannas 1971) and iris (Vannas 1969, Vannas 1972,

Parodi et al. 2000) have shown that ExS is associated with marked vascular changes.

Histological studies of the iris vessels in eyes with ExS have shown abnormal accumulation

of exfoliation material in the adventitia, degeneration of the cells of the vessel wall (smooth

muscle cells, pericytes, and endothelial cells), changes to the endothelial basement

membrane, and complete destruction or obliteration of the lumen (Ringvold 1970, Ringvold

& Davanger 1981, Konstas et al. 1993b, Asano et al. 1995, Kivelä et al. 1997). The iris

vasculopathy has been associated with anterior segment ischaemia (Vannas 1969, Vannas

1972, Helbig et al. 1994). Local hypoxia may contribute to degenerative tissue changes

(Asano et al. 1995) and neovascularisation (Ringvold & Davanger 1981) of the iris.

Exfoliation material has also been found electron microscopically in the posterior ciliary

arteries (Schlötzer-Schrehardt et al. 1991) (a finding not, however, confirmed

histochemically), which are the main supply to the ONH (Cioffi & Van Buskirk 1996).



Vasculopathy of these vessels may result in vascular insufficiency of the ONH blood

supply. In a prospective follow-up study on normotensive eyes with ExS (Puska et al.

1999), vascular change due to the exfoliative process was proposed as an explanation for

optic disc changes that developed during follow-up.

The presence of exfoliation material in visceral organs in patients with ocular ExS (Streeten

et al. 1992, Schlötzer-Schrehardt et al. 1992) may raise a question whether these systemic

effects associate ExS with systemic diseases, especially with systemic vascular disorders.

In a population-based screening study in Norway (Ringvold et al. 1991), the prevalence of

ExG increased with age, but declined in patients aged 80 years or older. This was

considered to be a sign of increased mortality associated with ExG. However, a later study

found no association between ExS and mortality rate (Ringvold et al. 1997). In a

population-based study in Australia (Mitchell et al. 1997), ExS was statistically

significantly associated with history of coronary disease or hypertension or a combined

history of coronary disease, acute myocardial infarction, or stroke. Repo et al. (1993) found

twice the prevalence of ExS among patients with transient ischaemic attack (TIA) as for the

general population of Finland; they concluded, however, that this finding supported

hypoperfusion as a contributory factor in the development of ExS. Shrum et al. (2000)

found no association between ExS and cardiovascular or cerebrovascular mortality. Nor has

any increased prevalence of ExS been found among patients operated on for abdominal

aortic aneurysm compared to that for the general population (Hietanen et al. 2000). As a

sign of altered cutaneous microcirculation, patients with ExG have been shown to have

lower cutaneous capillary flow than healthy volunteers or patients with POAG (Holló et al.

1998).

3.2 EXFOLIATION GLAUCOMA

3.2.1 Prevalence of ExS and ExG

ExG is defined as an open-angle glaucoma in eyes with ExS. A recent paper reviews the

prevalence of ExS in the world (Ringvold 1999). The prevalence of ExS seems to be

especially high in Finland and in Scandinavian countries (Forsius 1988). In population-

based studies in Finland, the following prevalences have been reported: 8.4% in patients

> 60 years old (Tampere) (Aine 1988), 8.5% in patients 65 years of age (Kuopio)

(Rouhiainen & Teräsvirta 1992), 21% in patients ≥ 65 (Kuusamo) (Krause et al. 1988),



13.2% in patients 75 (Kuopio) (Rouhiainen & Teräsvirta 1992), and 22.1% in patients ≥ 70

(Oulu) (Hirvelä et al. 1995). The prevalence of ExS seems clearly to increase with age

(Tarkkanen 1962).

Unilateral and bilateral ExS may represent different stages of the disease. Clinically

unilateral cases of ExS have been reported to convert into the bilateral form in 7 to 41% of

cases within 5 years (Hansen & Sellevold 1969, Henry et al. 1987, Klemetti 1988), and the

proportion of bilateral cases has been reported to increase with age (Tarkkanen 1962,

Rouhiainen & Teräsvirta 1992). Furthermore, in cases with unilateral ExS, exfoliation

material has been identified electron microscopically and immunohistochemically in the

clinically uninvolved eyes (Speakman & Ghosh 1976, Prince et al. 1987, Schlötzer-

Schrehardt et al. 1991, Kivelä et al. 1997).

In a population-based study in Finland (Oulu) among inhabitants ≥ 70 years old (Hirvelä et

al. 1994), the prevalence of ExG was 5.0% (25/500) and that for POAG was 5.4%. In a

study based on hospital records (Kotka) (Valle 1988), the prevalence of ExG was 0.26%

among all ophthalmological patients aged 55 to 64 years, 1.39% among patients aged 65 to

74 years, and 2.41% in patients aged 75 to 84 years. The corresponding prevalences for

POAG were 0.50%, 1.52%, and 2.06%, respectively. In Finland, the high prevalence of

ExG (and high proportion of ExG of all OAG) is probably associated with the high

prevalence of ExS (Ringvold 1999).

3.2.2 Clinical findings in the anterior chamber

The most typical sign of ExS is deposition of grayish-white material on the anterior lens

surface. Deposits can also be found on the pupillary border, iris surface, corneal

endothelium, lens zonules, and ciliary processess (Tarkkanen 1962, Morrison & Green

1988). Frequent findings are pigment dispersion and transillumination defects of the iris,

most prominent at the pupillary margin (Krause et al. 1973, Prince et al. 1987), as well as

heavy pigmentation of the anterior chamber angle (Wishart et al. 1985, Rouhiainen &

Teräsvirta 1990a, Puska 1995). In addition, high frequency of narrowness of the anterior

chamber angle has been reported, with 18% of cases having occludable angles in an

English material (Wishart et al. 1985).



3.2.3 IOP level

ExS is associated with increased IOP and constitutes a risk factor for glaucoma. The IOP in

the exfoliative eyes of unilateral cases has been shown to be higher than in their non-

exfoliative fellow eyes (Hansen & Sellevold 1970, Puska & Raitta 1992). Also in ExG,

IOP is typically higher than in POAG (Konstas et al. 1997a,b) and also shows greater

diurnal variation (Konstas et al. 1997b).

3.2.4 ONH morphometry

It has been claimed that the optic disc is smaller in ExG than in POAG and NTG. Jonas &

Papastathopoulos (1997) studied optic disc photographs of 99 patients with ExG, 658

patients with POAG, 42 patients with ExS, and 364 healthy controls. The disc area (± SD)

was statistically significantly smaller in ExG (2.52 ± 0.49 mm 2) than in POAG (2.71 ± 0.63

mm2). Likewise, the disc area in eyes with ExS (2.48 ± 0.52 mm2) was less than in healthy

control eyes (2.67 ± 0.67 mm2). In another study, no differences in mean disc area were

found between ExG, POAG, and NTG, but small discs were more frequent in ExG and

large discs in NTG (Tuulonen & Airaksinen 1992). In a study of patients with unilateral

ExS, no difference in optic disc size was found between exfoliative and non-exfoliative

fellow eyes (Puska & Raitta 1992).

3.2.4.1 Covariation of ONH parameters with disc size

The ONH rim is formed by ganglion-cell axons as they pass through the scleral canal, with

most nerve fibres entering at the superior and inferior poles of the ONH. Therefore, the

retinal nerve fibre layer is thickest at the inferior and superior poles and thinner at the nasal

and temporal poles (Quigley & Addicks 1982); in the normal ONH, the rim is broadest

inferiorly, followed by the superior, nasal, and temporal regions, subsequently (‘the ISN’T

rule’) (Jonas et al. 1988b,c). As axons are lost in glaucoma, the amount of neural tissue in

the ONH rim decreases. Several parameters have been derived to describe the amount of

neural tissue in the ONH including rim area, cup area, cup/disc ratio, cup/disc area ratio,

cup volume, rim volume and with introduction of SLO also height variation contour,

mean and maximum cup depth, cup shape measure, mean retinal nerve fibre layer (RNFL)

thickness, and RNFL cross-section area. Numerous studies have shown significant

differences between normal and glaucomatous eyes in these ONH parameters (Airaksinen

et al. 1985, Caprioli & Miller 1988, Mikelberg et al. 1995, Uchida et al. 1996, Hatch et al.

1997, Bathija et al. 1998). However, there is marked interindividual variation in the ONH

size of the healthy population. (Jonas et al. 1988a,b, Jonas & Papastathopoulos 1997).



A larger disc would allow ganglion-cell axons to be spread within a larger area. Therefore,

there is also a physiological correlation between ONH area and ONH parameters

(Bengtsson 1976, Caprioli & Miller 1987, Britton et al. 1987, Jonas et al. 1988b,c, Garway-

Heath et al. 1998, Mardin & Horn 1998, Wollstein et al. 1998). Because of high

interindividual normal variation in ONH topography, marked overlap occurs between

normal and glaucomatous eyes in the ONH parameters, and no cut-off values have been

established for normal ONH parameters. Correction for optic disc size may improve the

diagnostic power of the ONH parameters (Jonas et al. 2000).

3.2.4.2 Glaucomatous RNFL damage

The RNFL can be visualised from stereophotographs or from red-free photographs and

with biomicroscopy using red-free light and high magnification. Changes in the RNFL have

been detected before changes in the ONH (Airaksinen & Alanko 1983) or VF (Sommer et

al. 1977, Quigley et al. 1994). However, when the RNFL has been semiquantatively

measured, a correlation has been found between RNFL damage and ONH rim area

(Airaksinen & Drance 1985).

In the series by Tuulonen & Airaksinen (1991), the initial glaucomatous RNFL damage was

reported to be diffuse atrophy in 52% (12/23 eyes), a wedge-shaped local defect in 30%

(7/23 eyes), and a combination of these in 17% (4/23 eyes). The proportion of exfoliative

eyes was found to be small in the group with localised damage, but this finding did not

reach statistical significance. Localised optic disc and RNFL changes were located in the

upper and lower temporal regions. No localised changes were found in the nasal or

papillomacular regions. A method recently developed uses scanning laser polarimetry for

quantitative measurement of the RNFL (Weinreb et al. 1990), and differences in RNFL

thickness between glaucomatous and healthy eyes have been detected (Weinreb et al. 1998,

Lee & Mok 1999, Sinai et al. 2000).

3.2.4.3 Glaucomatous ONH damage

Glaucomatous damage in the ONH appear before damage in the VF (Jonas & Gründler

1997). Great variability in the appearance of early glaucomatous ONH damage seems to

exist. A local rim notch is a classical finding in glaucoma and clinically may be detected

more easily than general cup enlargement. However, general enlargement of the cup has

been reported as the most common form of initial damage (Pederson & Anderson 1980,

Tuulonen & Airaksinen 1991). The latter group followed 61 eyes with OHT (also including

exfoliative eyes), of whom 23 developed glaucoma during the study. Corresponding optic



disc changes included diffuse cup enlargement (10 eyes, 43%), local notching (6 eyes,

26%), diffuse cup enlargement with local notching (4 eyes, 17%), and the neuroretinal

rim’s turning pale with no change in configuration of the cup (3 eyes, 13%). The proportion

of exfoliative eyes in the group with localised damage was small, but the finding did not

reach statistical signficance. Linnér et al. (1989) studied disc pallor in eyes with OHT and

found it to be more pronounced among exfoliative than non-exfoliative eyes.

In a cross-sectional study, Jonas et al. (1993) studied optic disc photographs of 801

glaucomatous and 496 healthy eyes. In all stages of glaucoma, rim loss could be found in

all sectors, but with a preferential rim loss in the temporal inferior sector, followed

subsequently by the temporal superior, temporal horizontal, nasal inferior, and nasal

superior sectors. The results for ExG were not separately reported. Recent work in

differentiating between glaucomatous and non-glaucomatous eyes has emphasized rim

damage at the disc poles (Gundersen et al. 1996, Iester et al. 1997e, Iester et al. 1998,

Gundersen et al. 1999). The studies by Gundersen et al. (1996, 1999) included eyes with

ExG, POAG, and NTG; ONH damage was most pronounced at the poles.

The temporal inferior and temporal superior sectors also seem to be the most common

sectors in which notching occurs (Jonas et al. 1988c, Tuulonen & Airaksinen 1991). A

connection between localised notching and optic disc haemorrhage has been suggested,

optic disc haemorrhage has been reported to be more frequent in eyes with localised

notching than in eyes with generalised enlargement of the cup (Tuulonen & Airaksinen

1991, Nicolela & Drance 1996). In addition, disc haemorrhage may predict the location of

future rim and RNFL damage (Airaksinen et al. 1981, Tuulonen et al. 1987).

It has been proposed that type of cupping is dependent on IOP: local notching may occur at

lower IOP levels and diffuse cupping at higher IOP levels (Shiose et al. 1987, Nicolela &

Drance 1996, Eid et al. 1997a). Local damage has, however, been found in eyes with

elevated IOP, as well (Pederson & Anderson 1980, Tuulonen & Airaksinen 1991, Iester et

al. 1998). Some controversy exists on the type of damage that occurs in ExG. Tezel &

Tezel (1993) found only diffuse loss of the rim in ExG without the sectoral preference they

found in the eyes with POAG. However, Jonas et al. (1990) found no difference between

ExG and POAG in the proportions of localised and diffuse defects of the RNFL, nor in the

location of the thinnest part of the neuroretinal rim.



3.2.4.4 Reversibility of ONH topography

ONH topography can change in relation to changes in IOP. In experimental studies on

enucleated primate and human eyes, Levy et al. (1981) and Levy & Crapps (1984)

examined radiographically the position of a platinum wire placed in the lamina cribrosa and

demonstrated the retrodisplacement of the lamina cribrosa after increasing IOP. Coleman et

al. (1991) demonstrated the retrodisplacement of the ONH surface after experimental

increase in IOP. Reversal of the disc cupping or ONH topography refers to a change in the

less ‘glaucomatous’ direction (decrease in cup volume or cup area, increase in rim volume,

rim area, or in other parameters describing the amount of neural tissue in the ONH). In

experimental and clinical studies with humans and primates, reversal of cupping and ONH

topography has been documented in glaucomatous eyes after reduction in IOP by use of

stereophotography, computerized image analysis, or SLO (Pederson & Herschler 1982,

Katz et al. 1989, Shin et al. 1989, Tsai et al. 1991, Shirakashi et al. 1992, Sogano et al.

1993, Chavis et al. 1994, Irak et al. 1996, Park & Hong 1998, Topouzis et al. 1999, Lesk et

al. 1999). The physiological basis for reversal of ONH topography is unknown, but reduced

backward bowing of the lamina seems most likely (Pederson & Herschler 1982, Lusky et

al. 1993b, Sogano et al. 1993). The amount of reversal has been shown to correlate with

degree of IOP reduction (Shin et al. 1989, Sogano et al. 1993, Lesk et al. 1999, Irak et al.

1996).

Reversibility has been claimed to be dependent on degree of glaucomatous damage. In

studies on experimental primate glaucoma (Coleman et al. 1991, Shirakashi et al. 1992),

degree of reversal of optic disc cupping has been decreased in those eyes with advanced

glaucomatous damage. In humans, as well, (Pederson & Herschler 1982, Quigley 1982),

reversal of disc cupping has been apparent in eyes with damage at an early stage, but not in

eyes with advanced glaucoma. In human eyes post-mortem, less retrodisplacement of the

ONH occurs in relation to the surrounding sclera, as the VF worsens (Zeimer & Ogura

1989). Age may also affect reversibility. In adults, reversal in older patients has been

reported to be greater than in younger ones (Lesk et al. 1999). However, reversal of

cupping is also a frequent finding after successful IOP reduction in childhood glaucoma

(Quigley 1982).

3.2.5 VF damage

The VF defect in glaucoma can be diffuse and localised (Mikelberg & Drance 1996).

Diffuse damage can be seen as isopter contraction in kinetic perimetry or generalised

depression of retinal sensitivity in automated static perimetry (Hart & Becker 1982, Cyrlin

1996). Typical focal defects include nasal step, isolated arcuate scotoma separated from the



blind spot, arcuate blind spot enlargement, and paracentral scotoma (Hart & Becker 1982,

Cyrlin 1996). In very advanced glaucoma, usually the only remaining areas in the VF are

central and temporal islands (Cyrlin 1996). No difference seems to exist in the pattern of

VF defects between ExG and POAG (Lewis & Phelps 1984). Lewis & Phelps (1984)

studied VF defects in 224 eyes of 148 patients with POAG and 74 eyes of 63 patients with

secondary glaucoma (30% had ExG); similar VF defect patterns were noted for POAG and

the secondary glaucomas.

A topographical relationship exists between VF and optic disc damage (Weber et al. 1990,

Eid et al. 1997b, Yamagishi et al. 1997). In eyes with local ONH damage, localised VF

defects can usually be detected (Nicolela & Drance 1996); however, those eyes with

localised glaucomatous VF loss may have observable optic disc damage of either local or

diffuse nature (Emdadi et al. 1998).

3.2.5.1 Reversal of VF damage

Evidence exist of improvement in glaucomatous VF damage after IOP reduction (Katz et

al. 1989, Tsai et al. 1991, Rolando et al. 1993). Some degree of association has also been

detected between improvement in VF and reversal of optic disc topography (Katz et al.

1989, Tsai et al. 1991). Tsai et al. (1991) studied 28 eyes of 28 patients in whom had been

detected reversal of disc cupping. Improvement in the mean VF global indices occurred in

eyes with IOP reduction of more than 40% in contrast to no improvement in eyes with less

than 35% IOP reduction.

A learning effect also appears in VF testing; patients inexperienced with perimetry testing

may show some improvement between the first few examinations (Heijl & Bengtsson

1996).

3.3 PROGRESSION OF ExG

ExG is known to show more aggressive clinical course than POAG (Konstas et al. 1997c,

Olivius & Thorburn 1978). According to Thorburn (1988), 2.5% of all the individuals in

one defined population developed VF defects due to ExG within their lifetime. If

glaucomatous cupping without VF defects was present at diagnosis, 50% developed VF

defects within their lifetime, and of those with a moderate VF defect at diagnosis, 59% had,



within their lifetimes, progression into another stage. In other studies, the outcome of ExG

and of POAG has been compared; in general, a worse prognosis can be expected in ExG

than in POAG (Olivius & Thorburn 1978, Pohjanpelto 1985).

Differing patterns have been reported in progression of glaucomatous ONH and VF defect:

a linear pattern with a constant rate of progression, an episodic pattern with bursts of faster

progression periods, and a curvlinear pattern with either faster progression early in follow-

up and a slower progression rate later, or slower progression early and an increase in

progression rate later (Mikelberg et al. 1986, Airaksinen et al. 1992). Airaksinen et al.

(1992) studied ONH rim area and found a linear type of progression in approximately half

the patients, an episodic in one-fifth, and a curvlinear type in one-third. No differences in

patterns of progression occurred between ExG, POAG, and NTG. Mikelberg et al. (1986)

studied VFs of patients with chronic OAG and IOP above 21 mmHg. Of the eyes that

progressed (34 eyes), 65% showed linear, 26% curvlinear, and 9% episodic progression.

The results for ExG were not separately reported.

3.3.1 Definition and detection

Progression of glaucoma can be defined as an increase either in the glaucomatous ONH

damage or in VF defect. Because of overlapping of the receptive fields of the ganglion

cells, 20 to 40% of nerve fibres can be lost before defects appear in the VF (Quigley et al.

1989). Thus, progressive RNFL (Airaksinen & Heijl 1983, Sommer et al. 1991a, Tuulonen

et al. 1993, Quigley et al. 1994) and ONH damage (Pederson & Anderson 1980, Odberg &

Riise 1985, Pohjanpelto 1985, Zeyen & Caprioli 1993, Jonas & Gründler 1997) can usually

be detected prior to VF loss. However, new perimetry techniques for assessing early

glaucomatous damage, such as blue-on-yellow perimetry and high-pass resolution

perimetry, may be superior to conventional perimetry (Martinez et al. 1995, Teesalu et al.

1997, Teesalu et al. 1998, Chauhan et al. 1999). On the other hand, in more advanced

glaucoma with definite VF defects, detection of progression is more likely from the VF

than from the ONH (Funk et al. 1988); a small further loss in ganglion-cell number affects

visual function but is not easily detected in ONH morphology.

Determination of ONH progression is often based on subjective evaluation of the ONH:

general enlargement of the cup, enlargement of a notch, or appearance of a new notch. No

quantitative cut-off values have been established to tell how much change is indicative of

progression. Kamal et al. (2000) compared change over time in parameters of the

Heidelberg Retina Tomograph (HRT, Heidelberg Engineering GmbH, Heidelberg,

Germany) for healthy eyes and eyes with OHT. A subset of eyes with OHT showed change



in the HRT parameters above the expected level for normal variability in a ‘more

glaucomatous’ direction. A forthcoming report on whether these OHT patients will have a

higher incidence of glaucoma than those without similar changes in the ONH, is awaited.

The detection of VF progression is a complex problem, and many statistical methods have

been developed for this purpose. Because the VFs of healthy individuals and glaucoma

patients are subject to both intra-test fluctuation (short-term fluctuation) and inter-test

fluctuation (long-term fluctuation) (Heijl et al. 1987), detection of progression requires

multiple VF examinations to differentiate between progression and fluctuation (Heijl et al.

1989). The VF defect can progress as an increase in size and depth of a scotoma, as

appearance of a new scotoma, or as generalised loss of retinal sensitivity (Mikelberg &

Drance 1996). Several definitions of progression have been in use. In some studies using

kinetic perimetry, patients have been divided into different stages according to the degree

and appearance of ONH and VF damage, and subsequently, progression has been defined

as entering another stage (Thorburn 1988, Törnqvist & Drolsum 1991). In automated

perimetry, definition of progression can be based on number and depth of adjacent test-

points with reduced sensitivity relative to normative data. Several different criteria for

progression have been introduced, such as the one in the Glaucoma Laser Trial study (The

Glaucoma Laser Trial research group 1991), and the more complex scoring systems used

by the Advanced Glaucoma Intervention Study (The Advanced Glaucoma Intervention

Study investigators 1994) and the Collaborative Initial Glaucoma Treatment Trial (Musch

et al. 1999).

3.3.2 Risk factors for progression

3.3.2.1 IOP level

Numerous reports show that a wide consensus exists as to the association of elevated IOP

and increased risk for progression of glaucoma. Studies of patients with OHT have shown

that the higher the IOP, the higher the incidence of conversion into glaucoma (Kass et al.

1980, Pohjanpelto 1986, Quigley et al. 1994). The rate of progression of glaucoma

increases with IOP (Kolker 1977, Shirakashi et al. 1993, Jay & Murdoch 1993, Chihara et

al. 1997, Suzuki et al. 1999); moreover, rate of progression decreases in correlation with

amount of IOP reduction (Vogel et al. 1990, Migdal et al. 1994).



Studies of exfoliative eyes have shown this to be true also in ExS and ExG. Among

exfoliative eyes with OHT, lower IOP has been associated with decreased risk for

glaucomatous damage (Pohjanpelto & Palva 1974, Pohjanpelto 1986). In newly diagnosed

ExG, a significant relationship has been reported between presenting (untreated) IOP level

and VF damage (Teus et al. 1998). However, in a retrospective study by Pohjanpelto

(1985), no significant differences existed in the mean IOP of eyes with ExG and stable VFs

compared to those with VF progression. It has been claimed that in cases with a similar IOP

level, the optic disc in ExG may be more vulnerable to glaucomatous damage than in

POAG (Pohjanpelto & Palva 1974, Davanger et al. 1991a, Teus et al. 1998).

Despite intensive treatment and good control of IOP, some eyes with ExG continue to

progress. Popovic & Sjöstrand (1999) studied the outcome of high-resolution perimetry in

eyes with ExG and POAG after trabeculectomy. They reported similar mean IOP (about 16

mmHg) both in eyes with progressive and non-progressive VFs, and an IOP level unrelated

to rate of VF progression. This may support the theory that other factors than IOP are

involved in the pathogenesis of both POAG and ExG.

3.3.2.2 IOP variation

Not only mean IOP level, but also variation in IOP should be considered in glaucoma. IOP

shows diurnal variation both in healthy and glaucomatous eyes (Drance 1960, de Venecia

& Davis 2000), but the variation in glaucomatous eyes has been shown to be greater than in

healthy eyes (Drance 1960, David et al. 1992). When different types of glaucoma are

compared, the diurnal variation in eyes with ExG has been reported to be greater than in

POAG (Jonas & Papastathopoulos 1997, Konstas et al. 1997b). Variation in diurnal IOP

has been identified as a risk factor for progression. Diurnal IOP variation has been reported

to be greater in eyes with OHT that later developed glaucoma than in those that remained

OHT (Odberg & Riise 1987). Among patients with ExG (Bergeå et al. 1999) and POAG

(Stewart et al. 1993, Bergeå et al. 1999, Asrani et al. 2000), smaller IOP variation has been

associated with better VF prognosis. In a prospective study on eyes with POAG, peak IOP

but not mean IOP differentiated between those who had progressive VF defects in high

resolution perimetry and those who remained stable (Martínez-Belló et al. 2000).

3.3.2.3 Age

All large population-based cross-sectional surveys report an increasing prevalence of OAG

(POAG, NTG and ExG) with increasing age (Hollows & Graham 1966, Leibowitz et al.

1980, Bengtsson 1981, Mason et al. 1989, Ringvold et al. 1991, Klein et al. 1992, Coffey et



al. 1993, Leske et al. 1994, Dielemans et al. 1994, Mitchell et al. 1996a, Kozobolis et al.

2000). Age has also been a risk factor for conversion of OHT to POAG (Quigley et al.

1994, Georgopoulos et al. 1997, Martínez-Belló et al. 2000). In a large 13-year prospective

follow-up study of 5000 subjects by Armaly et al. (1980), age was one of the risk factors

for glaucomatous VF defect. On the other hand, other follow-up studies have found no

effect of age (Wilson et al. 1982, Chihara et al. 1997). In his recent review of the role of

age and cardiovascular disease in glaucoma, Hayreh (1999) concludes that the influence of

age may be an indirect one, representing the higher prevalence and duration of

cardiovascular disease in the elderly population, rather than age, per se. In healthy eyes, the

nerve-fibre count of the optic nerve is known to decrease with age (Balazsi et al. 1984,

Jonas et al. 1992), which may make the nerve susceptible to any damage caused by

glaucoma.

3.3.2.4 Previous damage

In clinical practice it is generally agreed that eyes with far-advanced glaucoma, being more

susceptible to further VF damage than are eyes with early damage, require lower IOPs in

order to remain non-progressive (Olivius & Thorburn 1978, Wilson et al. 1982, Anderson

1989, Shirakashi et al. 1993, Stewart et al. 1993, Martínez-Belló et al. 2000). This finding

may be connected with disruption of the structure of the lamina cribrosa and a decrease in

collagen density, resulting in less structural support (Quigley et al. 1991).

3.3.2.5 Disc area

It has been hypothesised that large discs have the biomechanical disadvantage of offering

less structural support at the level of the lamina cribrosa than do small discs (Chi et al.

1989), and thus eyes with larger discs may be more vulnerable to IOP (Tuulonen &

Airaksinen 1992, Burk et al. 1992, Tomita et al. 1994).

Heijl & Mölder (1993) showed that disc area affects the probability of detecting glaucoma.

Larger discs were more likely to be classified as glaucomatous (whether glaucomatous or

not), and smaller discs were more likely to be classified as normal. Consequently, patients

with larger discs are more likely to attract clinical attention. Thus, any clinic-based study

offers the danger of selection bias, and any effect of disc area on risk for glaucoma or its

progression may easily be overestimated. Quigley et al. (1999) reported on data from the

population-based Baltimore Eye Survey. After adjustment for age, race, and gender in a

regression model, eyes with OAG tended to have slightly larger discs than the controls, but

only at borderline statistical significance (P = 0.06). Data from the population-based Blue



Mountains Eye Study (Healey & Mitchell 1999) showed statistically significantly greater

optic disc diameters in glaucomatous eyes (1.556 mm) than in non-glaucomatous eyes

(1.506 mm), eyes with OHT (1.494 mm), or eyes with ExS (1.501 mm).

3.4 TREATMENT OF ExG

3.4.1 To influence IOP

Irrespective of the pathogenesis of glaucoma, IOP remains the only risk factor to be

affected. Despite extensive studies on glaucoma, no safe IOP level has been identified for

any type of glaucoma (Jampel 1997). More likely, the target pressures have to be set

individually and in relation to IOP as well as to other risk factors. It has been hypothesised

that the effect of IOP reduction may be mediated through reduction in backward bowing of

the lamina and reduced mechanical stress to the ganglion-cell axons, which may improve

axoplasmic flow and reduce possible hypoxia (Shin et al. 1989). IOP reduction also

increases ocular perfusion pressure (Hayreh 1994), a reduction which may improve ocular

blood flow in cases of impaired autoregulation of blood flow, as has been suggested to

occur in glaucoma (Pillunat et al. 1985, Robert et al. 1989, Tielsch et al. 1995).

Some differences in success rates for various treatment modalities seem to exist between

ExG and POAG. Medical treatment fails more often in ExG than in POAG (Olivius &

Thorburn 1978, Blika & Saunte 1982, Pohjanpelto 1985), and more often a combination of

drugs is required (Airaksinen 1979, Konstas et al. 1998). As hypothesised by Konstas &

Diafas (1999), miotics may play a special role in the treatment of ExG, reducing

mechanical scraping of the iris against the lens surface, which results in less deliberation of

pigment and exfoliation material.

Argon laser trabeculoplasty (ALT) (Wise & Witter 1979) seems to result in a better initial

response in ExG than in POAG (Pohjanpelto 1983, Bergeå 1986, Bergeå & Svedbergh

1992, Threlkeld et al. 1996). Late response results are somewhat more controversial.

Bergeå (1986) reported a higher proportion of eyes with ExG than with POAG which

showed successful ALT after 2 years, and greater mean IOP reduction has been reported in

ExG than in POAG 1 to 5 years after ALT (Tuulonen & Airaksinen 1983, Rouhiainen et al.

1995), but the resulting mean IOP level may be similar (Bergeå et al. 1994). Threlkend et

al. (1996) reported the long-term IOP-reducing effect of ALT to be similar in ExG and



POAG. A more favourable outcome in terms of ONH and VF progression in ExG than in

POAG after primary ALT has been reported (Bergeå et al. 1995a,b).

Trabeculectomy is more effective than ALT or medical treatment for reduction in IOP

(Migdal et al. 1987, Migdal et al. 1994) and may also result in less IOP variation (Migdal et

al. 1994). ExG responds well to trabeculectomy (Jerndal & Kriisa 1974, Raitta & Vesti

1991), and the response is equal to (Popovic & Sjöstrand 1999) or better than (Törnqvist &

Drolsum 1991, Konstas et al. 1993a, Tanihara et al. 1993) in POAG. Popovic & Sjöstrand

(1999) prospectively followed eyes with ExG and POAG after trabeculectomy. Medical

treatment had to be reinstated at a similar rate in both types of glaucoma; however, the IOP

level in eyes without post-operative glaucoma medication was lower in those eyes with

ExG. No difference between the groups appeared in the post-operative rate of VF

deterioration. On the other hand, Tanihara et al. (1993) reported a better overall success

probability (lower post-operative than pre-operative IOP, no VF or disc deterioration, and

no need for further IOP-lowering surgery) in eyes with ExG (73.5 ± 6.3%) after 5 years

when compared to eyes with POAG (58.0 ± 3.1%). Similarly, Törnqvist & Drolsum (1991)

reported that eyes with ExG experienced less progression (optic disc or VF) after

trabeculectomy than did eyes with POAG, and Konstas et al. (1993a) reported lower post-

operative IOP in eyes with ExG than in eyes with POAG.

It has been suggested that early or even primary trabeculectomy would result in better

prognosis than trabeculectomy after a period of unsuccessful medical treatment (Jay &

Murray 1988). In that prospective, randomised study on glaucomatous eyes with IOP ≥ 26

mmHg (including eyes with ExG), they compared treatment with primary trabeculectomy to

trabeculectomy after unsuccessful medical treatment. Trabeculectomy was equally effective

in both groups of patients in respect to IOP reduction, but less progression of VF occurred

in the primary trabeculectomy group, a difference they theorised may have been caused by

progression in the medically treated group during the period before trabeculectomy.

Trans-scleral cyclodestructive techniques have usually been limited to eyes with refractory

glaucoma with unsuccessful filtration surgery or with an estimated poor response to

filtration surgery (Wesley & Kielar 1980, Hampton et al. 1990, Vesti et al. 1992, Immonen

et al. 1994, Spencer & Vernon 1999). Aqueous drainage implants, such as the Molteno

implant, are also available for these patients (Mills et al. 1996, Välimäki et al. 1998).

Trabecular aspiration has been introduced as a new form of treatment in ExG (Jacobi &

Krieglstein 1995). Trabecular debris and pigment are cleared from the trabecular meshwork

with an aspiration probe. An IOP reduction of approximately 30% has been achieved in



some patients (Jacobi et al. 1998), and a successful IOP reduction 2 years after therapy with

combined phacoemulsification and IOL implantation and trabecular aspiration in 64% of

the eyes has been reported (Jacobi et al. 1999).

3.4.2 Ocular blood flow and neuroprotection

As there seems to be an association between glaucoma and impaired ocular blood flow, the

issue of treatment of glaucoma by improvement of ocular blood flow seems logical. Many

studies concern the use of various calcium-channel blockers, especially in NTG. Several

investigators have reported calcium-channel blockers to be associated with a reduced

progression rate of VF in NTG (Kitazawa et al. 1989, Netland et al. 1993, Sawada et al.

1996, Daugeliene et al. 1999) and even with improvement in VF and colour vision after

their administration (Piltz et al. 1998). Some controversy, however, exists (Liu et al. 1996).

Evidence exists that treatment with oral calcium-channel blockers reduces the vascular

resistance of the retrobulbar arteries (Yamamoto et al. 1998). Results have not been

consistent (Wilson et al. 1997). Harris et al. (1997) and Cellini et al. (1997) were able to

link improved perfusion after oral administration of calcium-channel blockers with

improved visual function; improved perfusion in the retrobulbar arteries was associated

with improved contrast sensitivity (Harris et al. 1997) and improved VF indices (Cellini et

al. 1997). It remains unknown whether any possible effect of calcium-channel blockers on

progression is mediated through vasodilation and improved perfusion, or whether they act

directly on the calcium metabolism involved in cell death (Osborne et al. 1999).

It has also been suggested that the carbonic anhydrase inhibitor dorzolamide may improve

ocular haemodynamics (Martinez et al. 1999). Harris et al. (1999) detected improved

contrast sensitivity, reduced IOP, and shortened retinal arteriovenous time after treatment

with dorzolamide in patients with NTG. However, there was no correlation on an individual

basis between improved contrast sensitivity and reduced IOP or shortened retinal

arteriovenous time.

Not without some controversy (Drance 1997), betaxolol has been suggested to have a better

effect on halting VF progression than does timolol (Messmer et al. 1991, Kaiser et al. 1992,

Flammer et al. 1993, Tasindi & Talu 1997), although timolol reduces IOP more effectively

(Kaiser et al. 1992, Flammer et al. 1993). The more favourable outcome with betaxolol may

be due to a vasorelaxant (Harris et al. 1995, Hesse 1995) or a neuroprotective (Osborne et

al. 1997) effect. Possible neuroprotective strategies in glaucoma have recently been

reviewed by Osborne et al. (1999).



4. AIMS OF THE STUDY

To evaluate, among referred patients in a hospital setting, the risk factors for conversion of

ocular hypertension with exfoliation syndrome to exfoliation glaucoma and progression of

exfoliation glaucoma (I)

To create a formula suitable for clinical use to describe IOP level over time (I)

To evaluate, after IOP-lowering therapy, the reversibility of glaucomatous optic nerve head

changes by scanning laser ophthalmoscopy (II,III)

To find the most suitable Heidelberg Retina Tomograph parameter to detect progression

(III)

To evaluate optic nerve head blood flow and correlate it with degree of glaucomatous optic

nerve head and visual field damage (IV)

To test macular and peripapillary retinal circulation in exfoliation syndrome, exfoliation

syndrome with ocular hypertension, and exfoliation glaucoma (IV,V)



5. PATIENTS AND METHODS

5.1 DEFINITIONS

Glaucomatous optic disc damage = General enlargement of the cup/disc ratio and/or a local

notching of the rim.

Glaucomatous VF = VF measured with the Octopus perimeter (Interzeag, Schlieren,

Switzerland) using program G1 with 1) ≥ 3 adjacent test points of ≥ 5 dB loss, 2)

≥ 2 adjacent points of ≥ 10 dB loss, or 3) difference of ≥ 10 dB across nasal the

horizontal meridian at ≥ 2 adjacent points (Caprioli 1991). By Goldmann’s kinetic

perimetry, arcuate scotomas within 30°, paracentral scotomas, nasal steps, sector-

shaped defects in the periphery, and isopter contractions were considered

glaucomatous.

5.2 STUDY DESIGN

Study I was retrospective, in which data on IOP levels and VFs was collected from patient

charts, as well as from a control visit to which the patients were invited (Table 1). Study II

was a prospective follow-up study, in which HRT imaging was performed once before and

twice after trabeculectomy. In the cross-sectional part of Study III, HRT parameters were

compared to VF indices, and in the prospective follow-up part of Study III, ONH

topography was studied at 6-month intervals for up to 2 years after treatment with

medication, ALT, or trabeculectomy. Studies IV and V were cross-sectional, in which

ocular blood flow was studied in patients with unilateral ExG and ExS.



Table 1. Characteristics of patients and eyes included in the studies

Study I II III IV V

Study type Retrospective

follow-up

Prospective

follow-up

Cross-sectional and

prospective follow-up

Cross-sectional Cross-sectional

Number of

eyes/patients

139 / 139 10 / 9 80 / 80 100 / 50 42 / 21

Mean age (±SD)

(range)

69.9 ± 7.7

(50-88)

65.6 ± 8.1

(55-75)

68 ± 7

(50-83)

67.8 ± 7.4

(51-85)

62.9 ± 7.9

(50-74)

Diagnosis

 Study eyes ExOHT (n = 34)

ExG (n = 105)

ExG (n = 6)

POAG (n = 3)

NTG (n = 1)

ExOHT (n = 11)

ExG (n = 69)

ExOHT (n = 10)

ExG (n = 40)

ExS (n = 11)

ExG (n = 10)

Fellow eyes ExS (n = 36)

Non-ExS (n = 14)

Non-ExS (n = 21)

Main outcome

measures

Mean weighted IOP

Progression of

glaucoma

Diurnal IOP

ONH topography

(scanning laser

ophthalmoscopy)

Diurnal IOP

ONH topography

(scanning laser

ophthalmoscopy)

ONH and

peripapillary blood

flow (scanning laser

Doppler flowmetry)

Macular capillary

circulation (blue-

field entoptoscopy)

ExS = exfoliation syndrome, ExG = exfoliation glaucoma, ExOHT = Exfoliation syndrome with ocular hypertension, IOP = intraocular pressure,

N = number of eyes, NTG = normal tension glaucoma, ONH = optic nerve head, POAG = primary open-angle glaucoma



5.3 PATIENTS

The study was performed in the Helsinki University Eye Hospital (HUEH). The procedures

followed the tenets of the Declaration of Helsinki and were approved by the Department of

Ophthalmology’s Ethics Committee. Informed consent was obtained from all patients. The

study included a total of 249 patients: 235 with ExOHT or ExG, 11 with unilateral ExS,

two with POAG, and one with NTG (Table 1). Four of the patients with ExG in Study I

also participated in Study II, 36 of the patients in Study III also participated in Study IV.

All the 10 patients with ExG in Study V also participated in Study III, and 7 also in Study

IV. In Study IV, 50 fellow eyes (36 with and 14 without ExS), and in Study V, 21 fellow

eyes (all non-exfoliative) were also studied.

5.4 METHODS FOR EXAMINING THE EYE

5.4.1 Clinical examination

Clinical examination included measurement of visual acuity, IOP measurement,

biomicroscopic examination, and gonioscopy if not previously performed. For pupillary

dilatation, 0.5% tropicamide and 2.5% metaoxedrine were instilled. The optic discs were

examined with the Volk 90 D lens and/or evaluated from stereophotographs.

5.4.2 IOP

All IOP values were obtained with a Goldmann applanation tonometer. To obtain diurnal

IOP curves, IOP was measured at 7.30, 11.30, and 14.30. If the patient was using topical

glaucoma medication, the first drop of the day was applied after the IOP measurement at

7.30.



5.4.3 Visual field examinations

VFs were taken with the Octopus perimeter program G1, and only fields with less than

25% false-negative and false-positive answers were accepted in the analyses. If the patient

was unable to perform reliable automated perimetry, Goldmann kinetic perimetry was

performed.

5.4.4 Grading of glaucoma

Glaucoma was graded according to a system modified from that used by Thorburn (1988);

he included only eyes with IOP exceeding 30 mmHg (with normal VF and without glauco-

matous cupping) in Stage 1:

Stage 1: OHT = elevated IOP exceeding 24 mmHg on at least two occasions, or one

single measurement of 30 mmHg or more with a normal VF and without

glaucomatous cupping of the optic disc.

Stage 2: Glaucomatous disc cupping with normal VF.

Stage 3: Glaucomatous disc cupping and one scotoma within 30°, and/or a nasal step or

a sector-shaped defect in the periphery.

Stage 4: As in Stage 3, but with the addition of a new scotoma within 30° in the

opposite half of the VF, or the creation of a breakthrough to the periphery.

Stage 5: As in Stage 4, with the addition of a breakthrough to the periphery both

upwards and downwards from the paracentral scotoma.

Stage 6: A small remnant of the central VF and a temporal remnant.

Stage 7: A temporal remnant; loss of central VF (visual acuity 0.1 or less)

The grading of all eyes with glaucoma or OHT is shown in Table 2. In Study II, the stage of

glaucoma was also graded as moderate (arcuate scotoma) or severe (ring-shaped scotoma or

only a temporal field).

5.4.5 Measurement of ONH topography

SLO imaging was performed with the HRT. Software version 1.11 was used in Study II

and version 2.01 in Studies III and IV. Three topographic images were obtained with the

10° x 10° field and approved by the internal quality program of the software (version 2.01).

Keratometry values were used for correction of magnification errors, and measurements

were repeated after surgery in all eyes operated upon (II, III). A mean three-dimensional

image was created from three single images. Stereophotographs of the ONH were used to



Table 2. Grading of eyes with glaucoma or ocular hypertension. Fellow eyes of the 50 patients in
Study IV and the 10 eyes in Study V were all normotensive and non-glaucomatous. Of patients in
Study V, only grading of the glaucomatous eyes is shown.

I II III IV V

Stage N % N % N % N % N %

1 34 24 11 14 10 20

2 37 27 23 29 11 22 2 20

3 37 27 2 20 26 32 14 28 4 40

4 20 14 5 50 13 16 10 20 4 40

5 6 4 4 5 5 10

6 5 4 3 30 2 2

7 1 1

N = number  of eyes

aid in drawing the contour line at the inner border of the scleral ring. The contour line of

the baseline image was exported to follow-up images (II, III). Pupils were dilated with

tropicamide and phenylephrine eye-drops before SLO imaging. A reference plane parallel

to the retinal surface was located 50 µm posteriorly to the mean contour line height in the

temporal segment between –10° and –4°.

5.4.6 Measurement of ONH and peripapillary retinal blood flow

ONH and peripapillary retinal blood flow was measured with a confocal scanning laser

Doppler flowmeter (SLDF); the Heidelberg Retina Flowmeter (HRF, Heidelberg

Engineering GmbH). All images were obtained with pupils dilated. Several images focused

on the peripapillary nerve fibre layer and centered in the upper, mid, and lower parts of the

ONH were obtained from each eye. Images were also obtained centered on the cup and

focused on the lamina cribrosa. Blood flow was quantified by placing a square of 10 x 10

pixels on the area of interest. These analyses avoided any visible vessels, horizontal strikes

caused by eye movements, or areas of peripapillary atrophy. The flow values were

measured at three locations on the neuroretinal rim and at five locations on the peripapillary

retina 0.6 to 0.8 mm from the scleral ring. One value was obtained from the bottom of the

optic cup.



5.4.7 Measurement of macular blood flow

Macular leucocyte velocity and density (number of leucocytes within the field of observation)

were subjectively measured by a blue-field simulation technique (BSF-2000, Oculix, Inc.,

Berwyn, PA, USA) (Riva & Petrig 1980, Sinclair et al. 1989). Both eyes were examined, the

left eye first. Subjects were seated in a darkened room in front of a blue-field entoptoscope

and a TV monitor. After hearing the technique explained, the subjects were asked to adjust

two dials until the velocity and density of the computer-simulated particles displayed on the

monitor matched those of their own entoptically observed leucocytes. Three matching trials

were performed for each eye, with velocity and density readjusted each time. Average

leucocyte velocity and density were calculated. To ensure that subjects were able to pass the

test reliably, the study included only those with a coefficient of variation (100 x standard

deviation / mean) between three measurements of less than 30% in both eyes.

5.5 RISK FACTORS FOR PROGRESSION (I)

5.5.1 Patients

Patients selected for the study were all 186 patients with ExOHT or ExG who had been

admitted into the glaucoma ward in 1993. The charts of these patients were reviewed. Study

entry was determined as the first visit to HUEH when a VF examination was performed

(also including visits before 1993). All patients (except those with stage of glaucoma > 6)

with at least one previous, at least one year old, VF available were invited to one additional

follow-up visit which included a clinical examination (by the author), a diurnal IOP curve,

and perimetry. After this, patients were included in the study if inclusion criteria were met:

1) at least two reliable VF examinations taken at the hospital glaucoma laboratory, 2) ≥ 1

year follow-up between two successive VFs, and 3) at the time of the first VF examination,

stage of glaucoma ≤ 6. Only one eye of each patient was included. In patients with bilateral

ExG or ExOHT, the eye diagnosed first was chosen. If ExG or ExOHT was diagnosed at

the same time in both eyes, the right eye was chosen. Of the 139 patients who met the

inclusion criteria, 101 were women and 38 men (mean age ± SD of 69.9 ± 7.7 years, range

50-88 years) (Table 1). The grading of the eyes at study entry is shown in Table 2.

Of the 47 patients excluded from the study; 14 had unreliable VFs, 27 had < 1 year follow-

up, and 6 had stage of glaucoma > 6 at the time of the first VF examination. Of those 27



with < 1 year follow-up, 7 did not accept the invitation for the additional follow-up, 13 had

died, and 7 had no previous VF available.

Patients included in the study were referred to HUEH (at study entry) because of

uncontrolled IOP (54 eyes, 39%), suspicion of progression (11 eyes, 8%), evaluation of the

glaucoma (32 eyes, 23%), cataract (12 eyes, 9%), a subjective (pain, blurred vision, or

other) symptom (9 eyes, 6%), recurrent dacryocystitis (1 eye), and some problem with the

fellow eye (15 eyes, 11%). Five patients (4%) were not referred, but study entry coincided

with a planned examination. Evaluation of glaucoma included cases for which the referral

ophthalmologist had no access to VF.

Follow-up ended 1) when progression was detected, or 2) at the time of the final VF in the

HUEH, if progression was not detected. The mean (±SD) follow-up time was 5.2 ± 3.6

years (range 1.0-19.8 years). On average, there were 2.0 ± 1.4 (range 1-7) follow-up visits

after the first reliable VF at the HUEH. Of the total of 139 patients, 58 had only one

follow-up VF included in the analysis: 34 patients with progression and 24 without

progression. Of these 34 with progression, 24 had more follow-up visits than this one, but

were not included because progression had already occurred. Of the 24 patients without

progression who had only one follow-up visit, the author examined 15. The mean time

interval between any two of the follow-up visits was 3.0 ± 2.2 years (range 0.5-14 years).

Progression was detected in 63 eyes (45.3%). This end-point was achieved at the additional

follow-up visit in 9 eyes (6%), but in 54 eyes (39%) progression had already been detected

already from the patient charts, based on earlier visits. Of these 54 eyes (or patients), 26

(19%) still attended the additional follow-up (although follow-up had already ended

because progression had occurred), whereas 27 (19%) did not: 8 patients (6%) did not

accept the invitation, 13 (9%) had died, and 1 (1%) could not be reached.

In 76 eyes (54.7%) no progression was detected during follow-up. Of these 76 eyes (or

patients), 21 patients (15%) did not appear for the additional control visit: 11 (8%) did not

accept the invitation, 7 (5%) had died, and 3 (2%) could not be reached. These eyes showed

no progression at the last visit in the HUEH, and it remains unknown whether progression

would have been detected in some of these 21 patients if they had attended the additional

visit.



5.5.2 Methods

At study entry and follow-up ambulatory visits, grading of glaucoma was performed. All

IOP values obtained from referral notes and measured at the hospital glaucoma laboratory

at any time were recorded. IOPs < 3 months after trabeculectomy or cataract operation, and

IOPs < 1 month after ALT or cyclodestruction were excluded. Data on intraocular

interventions, ocular diseases, and glaucoma medications were recorded as well as the

highest IOP value during the whole follow-up time. Treatments of the eyes before and by

the end of the study are shown in Table 3.

Table 3. Treatment of eyes before and by study-end (I)

Before entrance
Number of eyes %

By the study-end

Number of eyes %

No treatment 49 35.3 3 2.2

Medical treatment only 63 45.3 26 18.7

Medical + other* 22 15.8 91 65.5

Other only* 5 3.6 19 13.7

139 100 139 100

ALT 23 16.5 87 62.6

Surgical intervention

Trabeculectomy 3 2.2 45 32.4

Cyclodestruction 0 0 25 18.0

Laser iridectomy 0 0 13 9.4

Cataract operation 4 2.9 48 34.5

None 114 82.0 29 20.9

* = ALT or surgical intervention

ALT = argon laser trabeculoplasty

Progression was defined as entering into a more severe stage including conversion from

ExOHT to ExG.



In order to control for the length of follow-up and the different numbers of available IOP

readings between two follow-up visits, a weighted mean IOP was calculated to describe the

IOP level between two successive visits. For the calculations, the following formula was

created:

Weighted mean IOP =  ∑∑
==

n

i
i

n

i
ii ttx
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in which xi  is the mean IOP during the time period ti. In the formula, the means of all IOPs

measured between two successive follow-up visits were multiplied by time in years

between these two visits. These calculated values from all intervals were then added

together, and the sum was divided by the entire length of the follow-up time. Maximum

IOP was defined as the highest IOP recorded before the end of the study. Mean IOP was

calculated as the mean of the IOPs between follow-ups. IOP range was defined as the

difference between the highest and lowest IOP recorded before the end of the study.

To analyze time-to-event data, survival analysis was performed with the Cox proportional

hazards model. Progression was selected as the event or hazard, and the simultaneous effect

of the following factors on the hazard of progression were studied: age, gender, weighted

mean IOP, maximum IOP, mean IOP, IOP range, stage of glaucoma at the beginning of the

study, refraction (the spherical equivalent), glaucoma medication, and type of surgical

intervention.

5.6 EFFECT OF IOP REDUCTION ON ONH TOPOGRAPHY (II)

5.6.1 Patients

Ten eyes of nine consecutive patients scheduled for filtration surgery (trabeculectomy)

were enrolled in this study (mean age ± SD of 65.6 ± 8.1 years, range 55-75 years) (Table

1); four of the patients with ExG had also been included in Study I. All eyes underwent

trabeculectomies between June and November 1993. The indication for surgery was

progression or suspected progression of VF defects or uncontrollable IOP despite

maximum tolerable medication. A standard surgical procedure was performed on all eyes

(Raitta & Vesti 1991, Vesti 1993). The inclusion criterion was that measurable images with

HRT could be obtained. The stage of glaucoma was graded as moderate in two eyes and as

severe in eight. Grading of the eyes according to Thorburn’s classification (1988) is shown

in Table 2.



5.6.2 Methods

Diurnal IOP curves and SLO-imaging with the HRT were performed once before and twice

after surgery. The first follow-up visit was at 2 to 7 months (mean ± SD, 3.7 ± 1.7 months)

after surgery (follow-up A), and the second follow-up visit at 7 to 16 months (12.1 ± 3.2

months) after surgery (follow-up B). Cup volume (mm3) cup/disc area ratio, mean cup

depth (mm), and mean height of contour (mm) were obtained from the HRT analysis. The

percentage changes in IOP and in HRT parameters between the pre-operative and post-

operative situation were calculated: (post-values – pre-values) / pre-values x 100%.

5.7 ONH TOPOGRAPHY IN ExOHT AND ExG AND USE OF HRT

IN FOLLOW-UP (III)

5.7.1 Patients

All consecutive patients referred to HUEH between May 1995 and May 1997 because of

ExOHT or uncontrolled ExG were included. Further treatment of each patient was decided

by a senior ophthalmologist who examined the patients and chose one of the following

interventions: medical treatment (13 eyes), ALT (42 eyes), or trabeculectomy (25 eyes).

Patients with previous ALT were accepted into the study only if the senior ophthalmologist

chose trabeculectomy as the further treatment. Otherwise, patients who had undergone

ALT, trabeculectomy, or cyclodestruction were excluded. Only eyes with refraction errors

from -5.0 to +5.0 diopters were accepted. Eyes with a dense cataract making SLO-imaging

impossible were excluded.

A total of 80 patients, 31 men and 49 women (P < 0.05, Chi-Square test), met the criteria

(mean age ± SD of 68.7 ± 7 years, range 50-83 years) (Table 1).

5.7.2 Methods

Patients were followed prospectively and examined every 6 months, with analyses made at

6 months and 2 years. Examinations included clinical examination, diurnal measurement of

IOP, perimetry, and SLO-imaging of the ONH with the HRT. IOP was also measured

immediately after imaging. VFs were measured with the Octopus perimeter program G1. If



the patient was unable to perform reliable automated perimetry, Goldmann kinetic

perimetry was performed. The grading of the eyes at study entry is shown in Table 2. The

analyses were divided into three parts: 1) Study of the linear associations between HRT

parameters and disc area, and between HRT parameters and VF index mean defect (MD),

2) Study of the reversal of ONH topography associated with reduction of IOP from pre-

intervention level to the level at 6 months after intervention, and 3) Study of the association

between change in MD from 6 months to 2 years with subsequent change in HRT

parameters. Changes were calculated as ‘valuet2 – valuet1’, where t1 is the earlier time-point

and t2 the later time-point.

5.8 ONH AND PERIPAPILLARY RETINAL BLOOD FLOW IN
UNILATERAL ExG AND ExOHT (IV)

5.8.1 Patients

Fifty consecutive patients with uncontrolled unilateral ExG or ExOHT referred to the

HUEH between May 1996 and December 1997 were included (mean age ± SD of 67.8 ±

7.4 years, range 51-85 years) (Table 1); 36 of these patients had also participated in Study

III. All patients had ExOHT or ExG in only one eye, and these eyes comprised the study

group. The control group comprised the fellow eyes, which all had IOP less than 22 mmHg.

Of the control eyes, 14 were clinically non-exfoliative and 36 exfoliative. The type of

glaucoma medications used were topical ß-blocking agent in 29 eyes (25 with timolol, and

4 with betaxolol), pilocarpine in 17 eyes, dorzolamide in 10 eyes, oral acetazolamide in 4

eyes, and dipivefrine in 1 eye. Twenty-four eyes had more than one type of medication, 9

eyes only one type, and in 17 eyes IOP was controlled without medication (2 eyes because

of ALT and 15 eyes because of trabeculectomy). Systemic diseases and medications are

specified in Table 4.

5.8.2 Methods

Examinations included blood flow measurements of the ONH and peripapillary retina with

the HRF, SLO imaging of the ONH with the HRT, perimetry (Octopus perimetry program

G1 in 46 patients, Goldmann kinetic perimetry in 4), measurement of IOP, clinical exami-



Table 4. Systemic diseases and medications of patients in Study IV

Systemic diseases Number of

Patients

%

None 33 66

Systemic disease 17 34

Non-insulin-dependent diabetes mellitus 2  4

Systemic hypertension 12 24

Other cardiovascular disease 6 12

Systemic medications

None 35 70

Systemic medication 15 30

β-blocking agents 8 16

Calcium-channel antagonists 5 10

Angiotensin-converting enzyme-blockers 3  6

Diuretics 4  8

Acetylsalicylic acid 5 10

nation, and measurement of blood pressure (BP). The perfusion pressure of each eye was

calculated by the formula (diastolic BP + 1/3(systolic BP - diastolic BP)) - IOP (Hayreh

1994). Grading of the eyes is shown in Table 2. Mean (± SD) IOP measured immediately

after HRF measurements was significantly higher in the study eyes than in the control eyes

(19.2 ± 6.8 mmHg vs. 16.7 ± 4.1 mmHg respectively, P = 0.022), with no significant

difference detected in perfusion pressure (82.7 ± 13.9 mmHg vs. 84.9 ± 12.2 mmHg, P =

0.085). VF indices and all HRT parameters except maximum cup depth were significantly

worse in study eyes than in control eyes (Table 5). The mean (± SD) disc area in study eyes

was greater than in control eyes (1.92 ± 0.41 mm2 vs. 1.83 ± 0.37 mm2 respectively, P =

0.030).

Flow values were measured at three locations on the neuroretinal rim and at five locations

on the peripapillary retina 0.6 to 0.8 mm from the scleral ring. One value was obtained from

the bottom of the optic cup. The flow values were independent of location of measurement

in the rim area and in the peripapillary retina (F = 0.02 and P = 0.980 for rim, F = 1.14 and

P = 0.340 for peripapillary locations; repeated measures ANOVA). Therefore, the mean of

the values in three locations of the rim area and the mean of the values in five locations of

the peripapillary area were calculated for use in further analyses.



Table 5. Mean of VF indices and HRT parameters of study eyes and control eyes (IV)

Parameter Study eyes Control eyes P-value

Mean ± SD Mean ± SD

VF index (n = 46)

MS (dB) 17.4 ± 7.1 25.3 ± 2.3 <0.001*

MD (dB) 9.1 ± 7.2 1.3 ± 2.1 <0.001*

LV (dB) 32.2 ± 31.7 6.0 ± 4.7 <0.001*

HRT parameters

Disc area (mm2) 1.92 ± 0.41 1.83 ± 0.37   0.030*

Cup area (mm2) 0.84 ± 0.52 0.51 ± 0.31 <0.001*

Cup/disc area ratio 0.43 ± 0.21 0.27 ± 0.13 <0.001*

Rim area (mm2) 1.01 ± 0.41 1.32 ± 0.29 <0.001*

Height variation contour (mm) 0.31 ± 0.10 0.37 ± 0.09   0.001*

Cup volume (mm3) 0.21 ± 0.25 0.10 ± 0.09   0.001*

Rim volume (mm3) 0.23 ± 0.16 0.33 ± 0.12 <0.001*

Mean cup depth (mm) 0.29 ± 0.13 0.20 ± 0.08   0.008*

Maximum cup depth (mm) 0.56 ± 0.21 0.53 ± 0.16   0.151

Cup shape measure -0.10 ± 0.08 -0.18 ± 0.12 <0.001*

Mean RNFL thickness (mm) 0.17 ± 0.07 0.22 ± 0.06 <0.001*

RNFL cross-section area (mm2) 0.84 ± 0.34 1.07 ± 0.32 <0.001*

* = statistically significant
HRT = Heidelberg retina tomograph, LV = loss variance, MD = mean defect,
MS = mean sensitivity, VF = visual field, RNFL = retinal nerve fibre layer

The analyses were divided into two parts: 1) Study of factors associated with difference in

flow between study eyes and control eyes, and 2) Study of what factors associated with the

flow in study eyes only. In both situations, analyses were repeated for lamina area, rim area,

and peripapillary area separately. Differences were calculated as value of study eye minus

value of control eye.

Regarding differences in flow between study eyes and control eyes, associations with the

following factors were tested: difference in IOP, difference in VF index MD, differences in

the HRT parameters rim volume and RNFL cross-section area, stage of glaucoma in the

study eye, and whether the study eye was treated with timolol, betaxolol, pilocarpine and/or

dorzolamide, and whether ExS of the fellow eye had been diagnosed.



Regarding the flow in study eyes only, associations with the following factors were tested:

IOP, VF index MD, HRT parameters rim volume and RNFL cross-section area, stage of

glaucoma, whether the study eye was treated with timolol, betaxolol, pilocarpine and/or

dorzolamide, perfusion pressure of the eye, age of patient, whether the patient had systemic

hypertension or any cardiovascular disease, and whether the patient had been treated with a

systemic ß-blocker.

5.9 MACULAR BLOOD FLOW IN UNILATERAL ExG AND
ExOHT (V)

5.9.1 Patients

The study included 21 patients (mean age ± SD of 62.9 ± 7.9 years, range 50–74 years).

Three patients were excluded because of coefficient of variation above 30% of the blood flow

measurements. Patients were divided into two groups: one group with unilateral ExG (n = 10,

mean age ± SD of 61.1 ± 8.4 years, range 50–74 years) and the other group with unilateral

ExS (n = 11, mean age ± SD of 64.5 ± 7.5 years, range 49–74 years) (Table 1). All of the 10

patients with ExG participated in Study III and 7 also in Study IV. In the group with

unilateral ExG, all fellow eyes were healthy, clinically non-exfoliative, and normotensive. Of

the glaucomatous eyes, two had early glaucoma (with only optic disc changes), one had nasal

step in the VF, four had nasal step combined with Bjerrum scotoma, and in three eyes the

Bjerrum scotoma extended to the edge of the paracentral 10° field. Grading of the eyes

according to Thorburn’s classification (1988) is shown in Table 2. All glaucomatous eyes

had been receiving topical medication and four subjects received systemic carbonic anhydrase

inhibitor, as well. Topical medication included timolol in all 10 eyes, pilocarpine in seven

eyes, and dipivefrine in four eyes. One patient with ischaemic heart disease was receiving a

systemic calcium-channel blocker. In all glaucomatous eyes, IOP (measured immediately after

blue-field simulation) was less than 28 mmHg (mean ± SD, 23.5 ± 3.8 mmHg) and in all non-

glaucomatous eyes, IOP was less than 22 mmHg (17.3 ± 2.2 mmHg), which difference was

statistically significant (P = 0.01).

The group with unilateral ExS showed no signs of glaucoma in either eye. All patients had

ExS in one eye, and the other eye was clinically non-exfoliative. None had ever received IOP-

reducing medication. Four patients had systemic hypertension, and one also diabetes mellitus

type II. Systemic medication included calcium-channel blockers (1 patient), β-blocking agents



(2 patients), and angiotensin-converting enzyme-blockers (2 patients). The mean (± SD) of

the highest IOP of the diurnal IOP curve obtained the same day was 15.7 ± 2.2 mmHg for the

exfoliative eyes and 14.7 ± 1.9 mmHg for the non-exfoliative eyes; they did not differ

significantly (P = 0.33).

5.9.2 Methods

Examinations included clinical examination, measurement of IOP, perimetry (Octopus

perimetry program G1), and measurement of macular leucocyte velocity and density with

blue-field entoptic simulation.

Macular capillary leucocyte velocities and densities were analyzed for asymmetry within the

ExG and ExS groups. Differences were calculated as value of affected eye minus value of

clinically non-exfoliative eye, where the affected eye is the one with ExS or ExG. Leucocyte

velocity was correlated with MD, loss variance (LV), and IOP.

5.10 STATISTICAL METHODS

Statistical analyses were performed with the SPSS software package (version SPSS 8.0 for

Windows, SPSS Inc., Chicago, IL, USA) in Studies I, III, and IV, and the SAS software

package (SAS Institute Inc., Cary, NC, USA) in Studies II and V.

Variables were tested for normality with the one-sample Kolmogorov-Smirnov test (I-V).

For parametric comparisons of the means, the independent samples t-test was used for non-

paired comparisons (I) and a paired t-test for pairwise comparisons (III, IV, V). For non-

parametric variables, the Mann-Whitney U-test was used for unpaired comparisons (II) and

the Wilcoxon signed-rank sum test (II, V) for paired comparisons. Repeated measures

ANOVA was used to study whether location of measurement had any effect on flow values

(IV).

To test proportions, the Pearson chi-square test (I, III) was used and, if the expected

frequency was less than 5, Fisher’s exact test (I).



Pearson correlation (II, IV, V) and Spearman’s rank correlation (II, V) coefficients were

used for correlation analyses. Multiple linear regression analyses were performed with the

enter and stepwise procedures to study linear associations between variables in multivariate

situations (III, IV). Mallow’s Cp with a stepwise procedure was performed to select

variables for multiple linear regression analyses (IV); variables in the model with the

smallest Mallow’s Cp criterion were selected. The residuals were tested and found to be

normally distributed, homeoscedastic, and non-biased.

To analyze time-to-event data (I), survival analysis with the Cox proportional hazards

model was performed. In the Cox proportional hazards model, a forward stepwise

procedure was used. A probability of the score statistic of 0.05 or less was required for

entry into the model, and removal was based on a probability greater than 0.10 for the

likelihood-ratio statistic.

A P-value < 0.05 was considered statistically significant.



6 RESULTS

6.1 RISK FACTORS FOR PROGRESSION (I)

Progression of glaucoma (entering into a more severe stage) was detected in 63 eyes

(45.3%), whereas 76 eyes (54.7%) showed no progression. Factors affecting progression

were studied with the Cox proportional hazards method, which resulted in the model shown

in Table 6. A significant association with progression was found for age, weighted

Table 6. Results of Cox proportional hazards model (I). Factors associated with progression of
exfoliation glaucoma shown.

Covariate Regression

coefficient

Relative risk 95% Confidence

Interval

P-value

Age

by 1 year increase 0.041 1.042 1.001-1.084     0.043*

Weighted mean IOP

by 1 mmHg increase 0.073 1.076 1.037-1.116 < 0.001*

Stage of glaucoma

by 1 stage increase 0.362 1.436 1.173-1.756 < 0.001*

History of

trabeculectomy -1.022 0.360 0.187-0.694    0.002*

* = statistically significant
IOP = intraocular pressure

mean IOP, and stage of glaucoma. History of trabeculectomy was related to decreased risk.

No significant association with progression was found for gender, maximum IOP,

refraction, glaucoma medication, history of ALT, or history of cyclodestruction. A one-year

increase in age increased relative risk for progression by 4.2%. Similarly, a one-mmHg

increase in weighted mean IOP increased relative risk by 7.6%, and a one-step increase in



staging of glaucoma increased relative risk by 43.6%. If trabeculectomy was not performed,

the estimated risk for progression was 2.78 times as great (1 / 0.36 = 2.78). The effect of

trabeculectomy on progression is also shown graphically in Figure 1, in which the

estimated survival curves for eyes operated on and not operated on are plotted separately.

Eyes that had been operated on remained non-progressive longer than those not operated

on. The weighted mean IOP did not differ significantly between eyes with and without a

history of trabeculectomy (mean ± SD, 19.71 ± 6.3 mmHg and 21.0 ± 5.7 mmHg

respectively, P = 0.226).

Figure 1. Cumulative survival for eyes with and without a history of trabeculectomy

There were 21 eyes without progression that did not attend the additional follow-up visit.

Comparison of these patients with the others revealed that these patients were older and

more often treated with dipivefrine (Table 7). There were no statistically significant

differences in the other covariates that were used in the analyses. The length of follow-up

of these 21 patients did not differ significantly from that of all other patients (mean ± SD,

4.4 ± 3.7 and 5.4 ± 4.4 years respectively, P = 0.238), nor from follow-up lenght of the

other 55 censored (non-progressing) patients (4.4 ± 3.7 and 5.5 ± 3.1 years, P = 0.151).

Analysis with the Cox proportional hazards method was repeated for 118 eyes with these

21 eyes excluded, but the results remained unaffected.
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Table 7. Covariates used in the Cox proportional hazard model compared between 21 eyes
without progression that did not attend the additional follow-up and all the other 118 eyes (I)

Covariates N = 118 N = 21 P

Age (mean ± SD, years) 69.1 ± 7.5 74.6 ± 7.6 0.003*

Gender (men/women) 35 / 83 5 / 16 0.585

Maximum IOP (mean ± SD, mmHg) 29.1 ± 11.7 27.0 ± 7.6 0.429

Mean weighted IOP (mean ± SD,

mmHg)

20.7 ± 6.8 19.8 ± 4.1 0.511

Stage of glaucoma#

1 28  (24%) 6  (28%) 0.487

2 31  (26%) 6  (29%)

3 30  (25%) 7  (33%)

4 19  (16%) 1  (5%)

5 5    (4%) 1  (5%)

6 5    (4%) 0

Refraction (D) -0.27 ± 3.0 0.35 ± 1.5 0.369

Medication for glaucoma

β-blocking agent 95  (80%) 15  (71%) 0.345

Pilocarpine 79  (67%) 12  (57%) 0.383

Oral acetazolamide 42  (36%) 3  (14%) 0.055

Dipivefrine 16  (14%) 7  (33%) 0.049*

Dorzolamide† 8   (7%) 0 0.260

Surgical intervention

ALT 72  (61%) 15  (71%) 0.364

Cyclodestruction 21  (18%) 4  (19%) 1.000

Trabeculectomy 40  (34%) 5  (24%) 0.363

* = statistically significant
# = Stages 4, 5, and 6 were combined as one group in analysis
† = Fisher’s exact test
ALT = argon laser trabeculoplasty, IOP = intraocular pressure, N = number of eyes

For descriptive statistics, a risk score for each of the 139 patients was calculated from the

Cox proportional hazards model. The formula for the risk score can be written as follows:

Risk score = (0.041) (age) + (0.073) (weighted mean IOP) + (0.362) (stage of glaucoma) +

(-1.022) (history of trabeculectomy), i.e., the value of each covariate is multiplied by the

regression coefficient (Table 6) of the same covariate. The value for history of



Table 8. Based on the Cox proportional hazards model, a risk score was calculated for every patient (I). Based on risk score, patients were divided in three
groups equal in size, to show characteristics of covariates in the low-, medium-, and high-risk groups.

Covariate Descriptive

statistic

All eyes

Mean (± SD) risk

score = 4.976 ± 0.793

N = 139

Low risk

Risk score < 4.633

N = 46

Medium risk

Risk score ≥≥≥≥ 4.633

and ≤≤≤≤ 5.315

N = 47

High risk

Risk score > 5.315

N = 46

Age (years) Mean (±SD) 69.9 ± 7.7 65.1 ± 6.4 71.1 ± 7.2 73.6 ± 7.1

Range 50.8-88.7 51.7-81.6 50.8-82.5 58.3-88.7

Weighted mean IOP Mean (±SD) 20.6 ± 5.8 18.5 ± 4.0 19.7 ± 5.2 23.6 ± 6.8

(mmHg) Range 8.2-42.0 8.2-25.0 11.0-42.0 14.5-40.8

Stage of glaucoma Mean (±SD) 2.6 ± 1.3 2.3 ± 1.3 2.2 ± 1.1 3.2 ± 1.4

Range 1-6 1-6 1-5 1-6

History of trabeculectomy Frequency 45 eyes 33 eyes 8 eyes 4 eyes

Percent 32.4% 71.7% 17.0% 8.7%

IOP = intraocular pressure, N = number of eye



trabeculectomy is 1 if operated on and 0 if not. Based on risk scores, the patients were

divided into three groups of equal size: 1) a low-risk group with risk scores less than 4.633,

2) a medium-risk group with scores between or equal to 4.633 and 5.315, and 3) a high-risk

group with scores above 5.315 (Table 8). Progression was observed in 14 (30%), 22 (47%),

and 27 eyes (59%) in the low-, medium-, and high-risk groups, respectively. Mean age,

weighted mean IOP, and stage of glaucoma increased towards the high-risk group.

Frequency of trabeculectomy was lowest in the high-risk group: of the 46 eyes classified as

low-risk, 33 (71.7%) had undergone trabeculectomy compared to only 8 (17%) and 4 eyes

(8.7%) in the medium- and high-risk groups, respectively. In the low-risk group, no eye had

a weighted mean IOP above 25 mmHg (range 8.2-25.0 mmHg).

6.2 EFFECT OF IOP REDUCTION ON ONH TOPOGRAPHY (II)

At follow-up A (3.7 months after trabeculectomy), the mean (± SD) drop in mean diurnal

IOP was 13.4 ± 6.9 mmHg or 52.2 ± 12.5% (Table 9). Mean values for cup volume and

mean cup depth were significantly smaller than pre-operative values. The cup/disc area

ratio and mean height contour showed no significant changes. At follow-up A, all eyes

showed a drop in diurnal IOP of more than 35% (36.4–60.6%). Three eyes showed a

decrease in cup volume of less than 10%: one eye with 6% decrease in cup volume had

experienced an IOP > 25 mmHg during the first post-operative week, one eye with a 10%

decrease had NTG, and one eye with a 46% increase in cup volume had bleb failure and

underwent bleb revision 1.5 months after surgery. All other eyes underwent a decrease in

cup volume of 24% to 53%.

At follow-up B (12.1 months after trabeculectomy), measurable images of two eyes could

not be obtained because of cataract, and these eyes were not included in the analyses of this

follow-up. The mean (± SD) drop in IOP when compared to preoperative values was 11.8 ±

8.2 mmHg or 41.4 ± 23.8% (Table 9). A statistically significant decrease was found for cup

volume, cup/disc area ratio, and mean height of contour. No significant change was found

for mean cup depth. A more than 30% decrease in cup volume (34–57%) was detected for

six of eight eyes; all these eyes showed a drop in IOP of more than 30% (33–67%). The

other two eyes showed slight increases in cup volume (12% and 5%, respectively) and had

the smallest percentage decrease in IOP (14% and 0%) and the smallest IOP reduction (3



Table 9. Mean IOP, mean HRT parameters, and percent change in parameters from before
trabeculectomy (Pre) to the first (Post A) and second (Post B) follow-ups (II)

Pre

Mean (± SD)

Post A

Mean (± SD)

% Change

Mean (± SD)

P value

IOP (mmHg) 24.4 ± 6.9 11.0 ± 2.8 -52.8 ±12.5 < 0.05*

Cup volume (mm3) 0.65 ± 0.44 0.50 ± 0.35 -31.8 ± 16.2 < 0.05*

Cup/disc area ratio 0.66 ± 0.15 0.62 ± 0.19 -5.9 ± 22.2 NS

Mean cup depth (mm) 0.48 ± 0.30 0.34 ± 0.19 -13.8 ± 12.1 < 0.05*

Mean height of contour (mm) 0.14 ± 0.44 0.12 ± 0.03 -11.0 ± 23.7 NS

Pre

Mean (± SD)

Post B

Mean (± SD)

% Change

Mean (± SD)

P value

IOP (mmHg) 25.5 ± 7.3 13.8 ± 3.1 -41.4 ± 23.8 < 0.05*

Cup volume (mm3) 0.76 ± 0.42 0.52 ± 0.38 -32.0 ± 25.9 < 0.05*

Cup/disc area ratio 0.71 ± 0.12 0.64 ± 0.16 -12.3 ± 16.7 < 0.05*

Mean cup depth (mm) 0.55 ± 0.30 0.42 ± 0.14 15.6 ± 18.6 NS

Mean height of contour (mm) 0.15 ± 0.04 0.09 ± 0.05 36.9 ± 28.9 < 0.05*

* = statistically significant
IOP = intraocular pressure, NS = not significant

 and 0 mmHg); they were one eye with IOP > 25 mmHg during the first post-operative

week and one eye with NTG.

6.3 ONH TOPOGRAPHY IN ExOHT AND ExG AND USE OF HRT
IN FOLLOW-UP (III)

Before intervention, mean (± SD) diurnal IOP was 24.4 ± 6.1 mmHg, mean IOP (± SD)

measured after HRT imaging 28.2 ± 9.0 mmHg, and mean (± SD) VF index MD 8.6 ± 6.6

(Table 10). At this baseline examination, the associations between HRT parameters, VF

index MD, and disc area were studied.



Table 10. Mean of IOP and VF indices before intervention and at follow-up visits at 6 months
and 2 years

Pre-intervention

Mean (±SD)

6 months

Mean (±SD)

P-value 2 years

Mean (±SD)

P-value

Mean diurnal IOP

(mmHg)
24.4 ± 6.1 16.2 ± 3.9 <0.001* 17.7 ± 3.2 <0.001*

IOP after HRT

(mmHg)
28.2 ± 9.0 17.7 ± 6.1 <0.001* 19.2 ± 5.0 <0.001*

MS (dB)# 17.9 ± 6.5 18.6 ± 5.9 0.022* 19.3 ± 5.8 0.011*

MD (dB)# 8.6 ± 6.6 7.7 ± 5.9 0.020* 7.1 ± 5.8 0.003*

LV (dB)# 26.4 ± 24.0 29.6 ± 28.4 0.750 27.2 ± 27.2 0.954

* = statistically significant
# = tested with Wilcoxon signed-rank sum test, the others with paired t-test
HRT = Heidelberg retina tomograph, IOP = intraocular pressure, LV = loss variance, MD = mean
defect, MS = mean sensitivity

6.3.1 Correlation of HRT parameters with VF index MD

At the baseline examination, when the effect of disc area was taken into account in the

multiple regression analyses, a statistically significant linear association existed between

MD and all HRT parameters (Table 11).

6.3.2 Covariation of HRT with disc area

At the baseline examination, the optic disc area showed a significant association with cup

area, cup/disc area ratio, rim area, cup volume, and mean RNFL thickness; the larger the

disc, the more likely that the HRT parameters would show values in the direction of ‘more

glaucomatous’ (Table 11). Associations with borderline significance occurred between disc

area and height variation contour and cup shape measure. Rim volume, mean cup depth,

maximum cup depth, and RNFL cross-section area appeared to be unaffected by area of the

ONH.



Table 11. Results of multiple linear regression analysis showing associations between HRT
parameters and MD (dB) and disc area (mm2)

Dependent variable R-square Explanatory

variable

PRC P-value

Cup area (mm2) 0.65 MD  0.030 < 0.001*

Disc area  0.787 < 0.001*

Cup/disc area ratio 0.32 MD  0.013 < 0.001*

Disc area  0.119    0.006*

Rim area (mm2) 0.26 MD -0.030 < 0.001*

Disc area  0.213    0.018*

Height variation contour (mm) 0.24 MD -0.006    0.001*

Disc area -0.041    0.065

Cup volume (mm3) 0.53 MD  0.024 < 0.001*

Disc area  0.294 < 0.001*

Rim volume (mm3) 0.21 MD -0.010 < 0.001*

Disc area  0.006  0.861

Mean cup depth (mm) 0.28 MD  0.010 < 0.001*

Disc area  0.045  0.130

Maximum cup depth (mm) 0.17 MD  0.011    0.001*

Disc area  0.047  0.317

Cup shape measure 0.26 MD  0.006 < 0.001*

Disc area  0.042    0.052

Mean RNFL thickness (mm) 0.26 MD -0.004 < 0.001*

Disc area -0.029    0.042*

RNFL cross section area (mm2) 0.20 MD -0.021 < 0.001*

Disc area  0.040  0.561

* = statistically significant
HRT = Heidelberg retina tomograph, MD = mean defect, PRC = partial regression coefficient,
RNFL = retinal nerve fibre layer

6.3.3 Reversal of ONH topography

After intervention, the mean IOP of the diurnal curve and IOP measured after HRT

decreased significantly from pre-intervention levels (Table 10). Of the VF indices, MD and

MS improved significantly compared to pre-intervention values. The reversal of HRT

parameters associated with reduction of IOP from pre-intervention to the level at 6 months

after intervention was studied.



Decrease in IOP (measured after HRT) was associated with a significant decrease in cup

area, cup/disc area ratio, cup volume, mean cup depth, and maximum cup depth, and a

significant increase in rim area and rim volume, when effects of age, stage of glaucoma,

and disc area were taken into account (Table 12). No association appeared between change

in IOP and height variation contour, cup shape measure, mean RNFL thickness, or RNFL

cross-section area. Stage of glaucoma showed a significant association only with changes in

cup volume and mean cup depth; these variables decreased more in eyes with advanced

glaucoma than in eyes with early glaucoma. Age showed a significant association with

changes in cup volume, mean cup depth, and maximum cup depth; in older patients, values

for these variables decreased more than in younger patients.

6.3.4 Association between change in MD and changes in HRT

parameters at sequential examinations

To study whether change in MD was associated with change in HRT parameters, the period

from 6 months to 2 years was analyzed. Reliable VFs taken with Octopus G1 both at 6

months and at 2 years were available for only 56 eyes. IOP (±SD), measured after imaging,

increased from 16.8 ± 3.8 mmHg at 6 months to 18.0 ± 4.5 mmHg at 2 years (P = 0.052). A

total of 31 eyes showed improvement in MD (range 0.10-5.20 dB) and 25 eyes impairment

in MD (range 0.1-4.10 dB). The mean change in MD was non-significant (mean ± SD, 6.9

± 4.9 dB at 6 months, 6.7 ± 5.2 dB at 2 years, P = 0.487).

Possible factors affecting HRT parameters (mean diurnal IOP at 2 years, change in IOP

measured after imaging from 6 months to 2 years, age of patient at first visit, and disc area)

were put into the multiple linear regression model as a block with the enter procedure. Then

a second block which included all HRT parameters (changes from 6 months to 2 years) was

added to the model with the stepwise procedure. The only HRT parameter picked up with

the stepwise procedure was change in cup shape measure, and it was taken into the model.

The analysis with cup shape measure and the other factors (mean IOP, change in IOP, age,

and disc area) was performed with the enter procedure, and resulted in a partial regression

coefficient (PRC) of 17.21 (P = 0.013) for cup shape measure. After exclusion of three

eyes considered outliers, the enter procedure was repeated, the result of which is shown in

Table 13. Increase in MD was associated with increase in cup shape measure (PRC = 6.3, P

= 0.046). The partial regression plot for change in cup shape measure and change in MD is

shown in Figure 2.



Table 12. Results of multiple linear regression analysis, showing associations between changes
in HRT from pre-intervention to 6 months with change in IOP (from pre-intervention to 6 months,
mmHg), disc area (mm2), age of patient (year), and stage of glaucoma

Dependent variable
(change in)

R-
square

Explanatory
variable

PRC
x 10-3

P-value

Cup area (mm2) 0.29 IOP change 5.25 < 0.001*
Disc area -5.77  0.814
Age 2.22  0.164
Stage of glaucoma -4.52  0.678

Cup/disc area ratio 0.26 IOP change 2.16 < 0.001*
Disc area 1.39  0.902
Age 1.06  0.150
Stage of glaucoma -2.82  0.573

Rim area (mm2) 0.26 IOP change -4.50 < 0.001*
Disc area 2.96  0.900
Age -2.54  0.098
Stage of glaucoma 1.83  0.861

Height variation contour (mm) 0.22 IOP change -1.02  0.085
Disc area 29.58    0.022*
Age -1.54  0.063
Stage of glaucoma 7.51  0.184

Cup volume (mm3) 0.39 IOP change 3.04    0.003*
Disc area -42.87    0.046*
Age 4.39    0.002*
Stage of glaucoma -22.62    0.018*

Rim volume (mm3) 0.16 IOP change -1.38    0.006*
Disc area 11.78  0.272
Age -0.42  0.547
Stage of glaucoma 3.36  0.479

Mean cup depth (mm) 0.35 IOP change 1.24    0.007*
Disc area 1.30  0.893
Age 1.61    0.001*
Stage of glaucoma -13.94    0.002*

Maximum cup depth (mm) 0.24 IOP change 2.33    0.008*
Disc area -9.01  0.629
Age 2.44    0.045*
Stage of glaucoma -15.11  0.071

Cup shape measure 0.06 IOP change 0.32  0.513
Disc area 10.54  0.319
Age 0.25  0.713
Stage of glaucoma -7.41  0.117

Mean RNFL thickness (mm) 0.08 IOP change -0.51  0.154
Disc area 13.31  0.084
Age -0.44  0.376
Stage of glaucoma -1.42  0.675

RNFL cross-section area (mm2) 0.08 IOP change -2.66  0.141
Disc area 65.51  0.094
Age -2.551  0.319
Stage of glaucoma -7.70  0.655

* = statistically significant
HRT = Heidelberg retina tomograph, IOP = intraocular pressure, PRC = partial regression
coefficient, RNFL = retinal nerve fibre layer



Table 13. Results of multiple linear regression analysis for changes from 6 months to 2 years,
with associations between change in MD and explanatory variables

Dependent variable R-square Explanatory variable PRC P-value

Change in MD (dB) 0.25 Mean IOP at 2 years (mmHg) -2.49 x 10-2 0.581

Change in IOP (mmHg) 0.127 0.056

Age (year) 6.69 x 10-2 0.033*

Disc area (mm2) 1.185 0.010*

Change in

cup shape measure

6.305 0.046*

* = statistically significant
MD = mean defect, PRC = partial regression coefficient, IOP = intraocular pressure

The analysis was repeated with the enter procedure by taking each of the HRT parameters

separately, each together with all the other variables (mean IOP, change in IOP, age, and

disc area) as explanatory variables. MD served as the dependent variable. Still, only cup

shape measure reached statistical significance at the 0.05 level.

Figure 2. Partial regression plot of change in cup shape measure and change in MD (dB) (III)
MD = mean defect
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6.4 ONH AND PERIPAPILLARY RETINAL BLOOD FLOW IN
UNILATERAL ExG AND ExOHT (IV)

The results of all analyses of HRF measurements of laminar, rim, and peripapillary retinal

blood flow are summarized in Table 14.

6.4.1 Blood flow in study eyes versus control eyes

Flow in the rim area of the study eyes was 172.1 arbitrary units higher than in control eyes

(P = 0.001). Similarly, flow in the laminar area of the study eyes was 39.5 arbitrary units

higher than in control eyes, but was only of borderline significance (P = 0.065). No

significant difference existed in peripapillary retinal blood flow (P = 0.531).

6.4.2 Blood flow related to degree of glaucomatous damage

More advanced glaucomatous damage was associated with reduced flow both in the

laminar area and in the rim area. In the analysis of difference in flow between study eyes

and control eyes, reduced rim area flow was associated with greater difference in MD (PRC

= -8.8; P = 0.013). In analysis of study eyes only, smaller rim volume was associated with

lower flow values in the lamina (PRC = 169.1; P = 0.024) and rim area (PRC = 284.6; P =

0.020).

6.4.3 Blood flow in eyes treated with timolol

Treatment with timolol was associated with reduced flow in the lamina and rim area. In the

analysis of difference in flow between study eyes and control eyes, treatment with timolol

was associated with increased difference in flow in the lamina (PRC = -76.4; P = 0.022)

and rim area (PRC = -146.2; P = 0.004). Also in the analysis of study eyes only, treatment

with timolol was associated with reduced flow in the lamina (PRC = -63.0; P = 0.001). The

association in the rim area (PRC = -63.6) was of borderline significance (P = 0.077).



Table 14. Results of multiple linear regression analyses for flow in the laminar, rim, and peripapillary area. In analyses of differences between study eyes
and control eyes, differences in flows were used as dependent variables. In analyses for flow in study eyes only, flows of the study eyes in corresponding areas
were used as dependent variables

Difference between study eyes and control eyes Study eyes

R-square Explanatory variable PRC P-value R-square Explanatory variable PRC P-value

Laminar flow 0.14 Timolol -76.4 0.022* 0.32 Rim volume (mm3) 169.1 0.024*

Pilocarpine 55.6 0.108 Timolol -63.0 0.001*

Intercept 39.5 0.065 Age of the subject (year) 5.1 0.002*

Rim area flow 0.25 Difference in MD (dB) -8.8 0.013* 0.15 Rim volume (mm3) 284.6 0.020*

Timolol -146.2 0.004* Timolol -63.6 0.077

Betaxolol -197.7 0.026*

Intercept 172.1 0.001*

Peripapillary 0.04 ExS of fellow eye 30.5 0.173 0.13 Perfusion pressure (mmHg) 1.8 0.021*

area Intercept -38.4 0.531

* = statistically significant
MD = mean defect, PRC = partial regression coefficient, ExS = exfoliation syndrome



6.4.4 Other findings

Four eyes treated with betaxolol seemed to have reduced flow in the rim area; the

difference in rim area flow between study eyes and control eyes increased in these eyes

(PRC = -197.7, P = 0.026). In study eyes, higher age was associated with increased flow in

the lamina (PRC = 5.1, P = 0.002). Increased perfusion pressure was associated with

increased flow only in the peripapillary retina (PRC =1.8, P = 0.021).

6.5 MACULAR BLOOD FLOW IN UNILATERAL ExG AND
ExOHT (V)

6.5.1 Macular blood flow in unilateral ExG

Mean leucocyte velocity as measured with the blue-field simulation technique differed

significantly between eyes (P = 0.02). Mean (± SD) leucocyte velocity was 0.70 ± 0.25

mm/s for the glaucomatous eyes and 0.89 ± 0.34 mm/s for their non-glaucomatous fellow

eyes (Table 15). Leucocyte velocity was lower in the glaucomatous eye in six patients,

equal in two, and higher in the glaucomatous eye in two patients. Leucocyte densities did

not differ significantly between eyes (P = 0.89).

Difference between eyes in leucocyte velocity did not correlate significantly with

difference in MD (r = -0.25, P = 0.49), with difference in LV (r = -0.33, P = 0.36), or with

difference in IOP (r = -0.46, P = 0.18). However, in the glaucomatous eyes, correlation of

borderline significance was detected between leucocyte velocity and MD (r = -0.58, P =

0.08; result not presented in V) (Figure 3), and between leucocyte velocity and LV (r =

-0.62, P = 0.06) (Figure 4). Leucocyte velocity did not correlate in the glaucomatous eyes

with IOP (r = -0.12, P = 0.75).

6.5.2 Macular blood flow in unilateral ExS

Neither leucocyte velocity nor leucocyte density differed significantly between eyes (P =

0.69 and P = 0.74, respectively).



Table 15. Mean leucocyte velocity (mm/s) and density (particles/field) of macular capillaries
measured with blue-field entoptic simulation in 10 patients with unilateral exfoliation glaucoma
and 11 patients with unilateral exfoliation syndrome.

Glaucomatous eye Non-glaucomatous eye Difference between eyes

Patient Velocity Density Velocity Density IOP Velocity%

1a 1.08 211 1.45 182 10 -25.5

2a 0.66 126 1.05 167 3 -37.1

3a 0.45 113 0.91 103 11 -50.5

4a 0.36 101 0.63 162 12 -42.9

5a 1.06 67 1.47 83 4 -27.9

6a 0.43 112 0.65 77 8 -33.8

7a 0.66 68 0.64 100 3 3.1

8a 0.86 91 0.73 78 7 17.8

9a 0.62 123 0.54 111 2 14.8

10a 0.77 92 0.80 56 2 -3.8

Mean

(±SD)

0.70 ± 0.25* 110 ± 41 0.89 ± 0.34* 112 ± 44 6.2 ± 3.9

Exfoliative eye Non-exfoliative eye Difference between eyes

Patient Velocity Density Velocity Density IOP Velocity%

1b 0.62 185 0.77 196 -1 -19.5

2b 0.65 # 0.71 # 0 -8.5

3b 0.93 # 0.50 # 2 86.0

4b 0.63 222 0.71 146 -2 -11.3

5b 0.58 234 0.60 251 0 -3.3

6b 1.06 65 1.25 53 0 -15.2

7b 0.65 179 0.67 191 4 -3.0

8b 0.72 77 0.55 88 2 30.9

9b 0.66 154 0.47 170 2 40.2

10b 0.84 33 0.70 93 -1 20.0

11b 0.63 65 0.78 63 0 -19.2

Mean

(±SD)

0.72 ± 0.15 135 ± 76 0.70 ± 0.21 139 ± 68 0.5 ± 1.8

* = Statistically significant, P = 0.02 (paired t-test)
# = Excluded from analysis of leucocyte densities because of coefficient of variation > 30%

IOP = intraocular pressure



Figure 3. Scatterplot showing correlation between MD (dB) and leucocyte velocity (mm/s)
measured by blue-field entoptoscopy in the macular area of glaucomatous eyes (V)
MD = mean defect

Figure 4. Scatterplot showing correlation between LV (dB) and leucocyte velocity (mm/s)
measured by blue-field entoptoscopy in the macular area of glaucomatous eyes (V)
LV = loss variance

The difference between eyes in leucocyte velocity did not correlate significantly either with

difference in MD (r = -0.15, P = 0.66), LV (r = 0.22, P = 0.52), or IOP (r = 0.46, P = 0.15).

Similarly, neither in exfoliative eyes nor in non-exfoliative eyes did leucocyte velocity

correlate with MD (r = -0.07, P = 0.83 and r = -0.43, P = 0.18), LV (r = -0.27, P = 0.41 and

r = -0.31, P = 0.35), or IOP (r = 0.18, P = 0.60 and r = -0.06, P = 0.85).
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7. DISCUSSION

7.1 PATIENTS AND METHODS

The study included a total of 249 patients, 238 of whom had glaucoma or OHT in at least

one eye. Most patients referred to the HUEH for consultation represent more complicated

cases than do the glaucoma cases in the total population, on average. This is a handicap in

this and all clinic-based studies, because results may not be generalisable to the whole

population. In Study I, of all 139 eyes, 65 (47%) were referred because of uncontrolled IOP

level or suspicion of glaucoma; however, some were also referred because of cataract,

problems with the contralateral eye, or symptoms not necessarily associated with glaucoma.

In the studies on ocular blood flow (IV, V), patients had unilateral ExG, unilateral ExOHT,

or unilateral ExS. The fellow eyes were used as controls to minimise the effect of systemic

diseases and medications, because these were expected to have similar effects on both eyes.

The population of Study IV can be criticised to be non-homogenous, because study eyes

had ExOHT (10 eyes) or ExG (40 eyes), and fellow eyes had ExS (36) or non-ExS (14

eyes). However, it is known that eyes with ExS in combination with high IOP (ExOHT) are

at increased risk for developing glaucoma (Pohjanpelto 1986). Further, eyes with OHT and

clinically non-glaucomatous ONHs have been shown, when examined with scanning laser

tomography, to have ONH changes that distinguish them from healthy eyes (Hatch et al.

1997). They may therefore represent an early stage of glaucoma one not yet clinically

detectable. Similarly, the non-exfoliative fellow eye of an exfoliative eye may also be

exfoliative, but at too early a stage to be detected clinically (Schlötzer-Schrehardt et al.

1991, Kivelä et al. 1997).

Glaucoma was graded in 7 stages according to a system which is a slight modification from

that of Thorburn (1988). He admits that the system is rough and the steps between stages

are unequal. Early stages may require more damage to the nerve fibres than do advanced

stages before progression to another stage is evident. Study I covered risk factors for



progression of ExG; progression was defined as entering another stage. Since grading of

glaucoma was rough, a change from one stage to another would indicate real progression

and not fluctuation. On the other hand, some damage to nerve fibres may have occurred

without the VF’s advancing to another stage. However, the rough staging system was

advantageous also because of the retrospective nature of the study, in which standardisation

of the VF examination was impossible. In the other studies, the grading system was used

merely to describe current glaucoma status.

Study I had 21 patients without progression that did not attend the additional follow-up.

Comparison of these 21 patients with all the others showed that these patients were older

(Table 7). Thus, their inclusion have diminished the effect of age on the progression, but

age was still a significant risk factor in the survival analysis. When analysis was performed

with only 118 eyes, these 21 eyes excluded, the result of the Cox regression model

remained the same.

Ocular blood flow was examined with SLDF and blue-field entoptoscopy. SLDF offers a

method for non-invasively measuring actual blood flow, instead of blood flow-related

parameters such as velocity (Pillunat 1999). However, the HRF may have some restrictions

because of variability of measurements. Reliability coefficients for repeated volume, flow,

and velocity measurements have been reported to be between 0.81 and 0.85 (Michelson &

Schmauss 1995, Michelson et al. 1996b). However, others have questioned the

reproducibility and variability of this method (Kagemann et al. 1998, Jonescu-Cuypers et

al. 1999). One problem also in this study is that small movements of the measurement

square may lead to considerable variation in flow values. Recently, a new method has been

developed for calculation of blood flow which includes all pixels of the perfusion image,

and this has improved the coefficient of reliability (Michelson et al. 1998b). Such software,

however, was unavailable for this study. The rather small R-squares in the multiple

regression analyses in this study may be explained by high variation in blood flow

measurements, or by the fact that other factors not examined in the present study also may

affect ocular blood flow.

It is not known exactly from what layers HRF measures blood flow. Blood flow to the most

superficial nerve fibre layer on the rim is mainly supplied by recurrent retinal arterioles

branching from the retinal arteries (Cioffi & Van Buskirk 1996). It is possible therefore

that values obtained in this study from the rim area may be affected not only by flow from

the short posterior ciliary arteries, but also by flow from the recurrent retinal arterioles.

Blood flow to the prelaminar and laminar regions of the ONH is supplied mainly by the

short posterior ciliary arteries (Cioffi & Van Buskirk 1996). Flow in the laminar area was



measured while focusing on the lamina, and the square used for measurement was placed in

the middle of the excavation. It can therefore be argued that the flow values obtained in the

laminar area should mainly reflect the flow supplied by the short posterior ciliary arteries. It

is, however, unknown whether the penetration depth of the HRF is appropriate for study of

the flow of these arteries. Petrig et al. (1999) studied ONH blood flow with a laser Doppler

flowmetry technique based on principles similar to HRF, but which penetrates to a depth of

1000 µm (Koelle et al. 1993) instead of 300 µm in HRF (Michelson et al. 1996). When

they occluded experimentally the central retinal artery or posterior ciliary arteries or both

and then measured ONH blood flow, they concluded that this technique was most sensitive

for blood flow measurements of the superficial layer of the ONH, but less sensitive for

blood flow in the deeper ONH layers; the latter they considered the area of interest in

glaucoma. Thus it may be questionable whether HRF with even less penetration depth is

actually affected by flow from the short posterior ciliary arteries. In the peripapillary retina,

the HRF measurements may reflect not only the retinal capillary bed, but also more deeper

layers, i.e., the choriocapillaris (Holló et al. 1997a).

The HRF measurements are affected by the image brightness, so that a brighter image or

image area results in lower flow values (Tsang et al. 1999, Kagemann et al. 2001). This is

probably due to the HRF noise-correction algorithm, which automatically corrects (i.e.,

reduces) the flow values more in bright images or areas (Tsang et al. 1999). Another

problem is that the acquisition of an HRF image takes two seconds, thus containing flow

values during one or two heartbeats. The difference between systolic and diastolic flow

measured with HRF may be up to 50% (Michelson et al. 1998b). Differences in image

brightness, and the pulsatility of flow may both cause bias. In the present study, however,

there should be no systematic error; the images acquired from glaucomatous eyes would

tend to be systematically darker or brighter than the images from fellow eyes, or the images

would be measured during a particular pulse phase. The peripapillary retinal and rim flow

was measured from the same images focused at the peripapillary retina. This causes the rim

to appear darker, because it is positioned posterior to the focal plane, and subsequently

leads to excessively high flow-values for the rim. To some extent, this effect was reduced

by excluding the nasal retina from the image, which seems to result in more accurate

brightness and flow values for the rim, even though the image is focused upon the

peripapillary retina (Jonescu-Cuypers et al. 2001).

Blue-field entoptoscopy measures leucocyte velocity in the macular vasculature (Riva &

Petrig 1980, Sinclair et al. 1989). The patient adjusts two dials until the velocity and

density of computer-simulated particles displayed on a monitor matches those of her own

entoptically observed leucocytes. This system requires good cooperation from the patient



and is prone to a subjective component. Therefore, only those examinations with

coefficients of variation less than 30% were accepted for analysis. Because poor visual

acuity may also affect results, asymmetry in visual acuity was limited to two Snellen lines,

and no eyes had scotomas within the central 10 degrees.

7.2 RISK FACTORS FOR PROGRESSION (I)

Irrespective of the pathogenesis of glaucoma, the main risk factor to be treated is IOP.

Elevated IOP is the most important risk factor for glaucoma, and relative risk for POAG

has been shown to be increased even at an IOP level of 16 mmHg (Sommer et al. 1991b).

In ExG and POAG, Popovic & Sjöstrand (1999) reported a mean IOP of 16 mmHg after

trabeculectomy in eyes with both progressive and non-progressive VFs, and reported that

IOP level was unrelated to rate of VF progression. This was considered an indicator that

factors other than IOP affected progression. In the present study, survival analysis with the

multivariate Cox proportional hazards model was performed to study factors affecting

progression and it showed that the older the patient, the higher the IOP; and the more

advanced the glaucomatous damage, the more probable was the progression of glaucoma to

another stage. A history of trabeculectomy was associated with decreased relative risk for

progression.

The effect of IOP on progression was clear. Four different variables reflected IOP level:

weighted mean IOP, maximum IOP, mean IOP, and IOP range. In clinical studies, a mean

IOP is often calculated to describe IOP levels during the time of follow-up. Especially in

retrospective follow-up studies, it can be difficult to standardise the length of follow-up

visits and differing numbers of available IOP readings between these visits. Therefore, the

weighted mean IOP was calculated to emphasize IOP levels that had been measured during

longer periods of time, with less weight for IOP levels during shorter periods. This process

was considered to better describe IOP level than a mere calculation of the mean of all IOP

values. According to survival analysis, a one-mmHg increase in weighted mean IOP

increased relative risk for progression by 7.6%. Maximum IOP, mean IOP, and IOP range

did not reach statistical significance in the analysis.

ExG responds well to trabeculectomy (Jerndal & Kriisa 1974, Raitta & Vesti 1991), and

trabeculectomy was found in this study to be associated with decreased risk for

progression. Based on the Cox proportional hazards model, estimated survival curves were



calculated and plotted (Figure 1). Eyes that had been operated on survived progression

longer than those not operated on. At about 13 years there occurred a drop in both survival

curves, and the difference between groups seemed to diminish; only a few patients,

however, had this long a follow-up, and so the estimation may be biased.

Undoubtedly, any beneficial effect of trabeculectomy on glaucoma is mediated through a

reduced IOP. However, because history of trabeculectomy reached statistical significance

in multivariate analysis even though adjusted for mean weighted IOP, some effect from

trabeculectomy must exist separate from weighted mean IOP. One explanation is that after

trabeculectomy, fluctuation in IOP is smaller than in eyes not operated on (Migdal &

Hitchings 1986, Bergeå et al. 1999). A (weighted) mean IOP would remain basically

unaffected in an eye with both high and low IOPs at various times. Thus, a positive effect

of trabeculectomy other than on the weighted mean IOP may be mediated through

decreased variation in IOP compared to that in eyes not surgically treated. It has been

reported that smaller IOP variation is associated with better VF prognosis among patients

with ExG (Bergeå et al. 1999) and POAG (Stewart et al. 1993, Bergeå et al. 1999, Asrani et

al. 2000). Another explanation for the beneficial effect of trabeculectomy may be an effect

mediated through patient compliance. After a successful operation, no glaucoma

medication is needed. In patients using topical medication, IOP level is affected by patient

compliance.

Stage of glaucoma and age of patient were also associated with progression. In clinical

practice it is generally agreed that eyes with far advanced glaucoma are more susceptible to

further VF damage than eyes with early glaucoma (Wilson et al. 1982, Anderson 1989,

Shirakashi et al. 1993, Stewart et al. 1993). This belief is supported by the present findings,

since eyes with advanced VF defects were associated with increased risk for progression.

However, this result may have been biased by the glaucoma grading system used, if the

steps between stages are considered ‘shorter’ in the more advanced stages. The risk for

progression increased also with increasing age, which has also been shown previously

(Kass et al. 1980, Armaly et al. 1980, Quigley et al. 1994, Georgopoulos et al. 1997). No

conclusions as to the mechanism by which stage of glaucoma or patient age affect the

progression can be drawn, but since IOP is the only treatable risk factor, this study supports

lower target pressures in advanced glaucoma and in older patients.

As shown here, total risk for progression is a combination of several risk factors. In clinical

practice, it can be difficult to estimate the risk for progression of individual patients and to

estimate target pressure. In this study, a risk score was calculated based on the four

covariates that reached statistical significance in the Cox proportional hazards model, and



patients were divided into groups with low, medium, and high risk for progression. A risk

score for any patient could be calculated with the same formula in order to determine risk

group. This may prove to be a useful tool for a clinician deciding on whether IOP needs to

be further reduced and whether or not to perform trabeculectomy. That this study was

performed on a selected sample limits the use of the regression coefficients. A similar

formula from a larger and different set of patients should be obtained in a future study.

Moreover, risk factors other than those included in this study may be included.

7.3 ONH MORPHOMETRY (II, III, IV)

Evaluation of the ONH is an essential part of glaucoma diagnosis and follow-up of the

disease. SLO imaging with the HRT allows acquisition of reproducible and reliable images

of the ONH (Mikelberg et al. 1993, Lusky et al. 1993a, Rohrschneider et al. 1994) and in

the present study offered a means for objective and quantitative evaluation of the ONH

topography. The parameters calculated by the software have been shown to be correlated

with VF indices in glaucoma patients (Brigatti & Caprioli 1995, Iester et al. 1997b,e, Eid et

al. 1997b, Tole et al. 1998). There has thus been great interest in studying the capability of

the HRT to differentiate between healthy eyes and eyes with OHT and glaucoma

(Mikelberg et al. 1995, Uchida et al. 1996, Zangwill et al. 1996, Iester et al. 1997a,c,d,

Hatch et al. 1997, Wollstein et al. 1998, Bathija et al. 1998, Mardin et al. 1999). Iester et al.

(1997d) performed receiver operating characteristic (ROC) analysis of the HRT parameters

of 97 glaucoma patients with VF defects and 129 healthy, non-glaucomatous patients. At

best, a sensitivity of 73% and specificity of 73% to differentiate the groups was found for

cup shape measure, and at worst, a sensitivity of 53% and specificity of 60% for height

variation contour. With similar statistics, Uchida et al. (1996) reported their highest

sensitivity and specificity values as being for cup shape measure (83% and 86%,

respectively), to differentiate between glaucoma (with VF damage) and controls. Somewhat

higher sensitivity and specificity have been achieved with combinations of several

parameters (Iester et al. 1997c, Mardin et al. 1999).

In the present study (III), disc area showed an association with most of the HRT

parameters. Interestingly, rim volume, mean cup depth, maximum cup depth, and RNFL

cross-section area appeared to be unaffected by disc area (III), a fact supported by the

findings of others concerning HRT in healthy eyes (Mardin & Horn 1998, Wollstein et al.



1998). The results of the present study support the importance of adjusting for disc area

when comparing HRT values between differing groups of patients. This is also shown by

Wollstein et al. (1998), studying by linear regression analysis the relationship between disc

area and HRT parameters in healthy eyes. They used the 99% prediction interval of the

linear regression to define the normal range of HRT parameters and used it to differentiate

between groups with glaucoma (early VF defect) and normals; when controlling for disc

area, a sensitivity of 84% and specificity of 96% were found for the parameter rim area.

In the present study (IV) with 50 patients with unilateral ExOHT or ExG, all HRT

parameters except maximum cup depth differed significantly between eyes (Table 5).

Furthermore, mean optic disc area was greater in eyes with ExOHT or ExG than in the

fellow eyes. The reason for this is unknown. Mardin & Horn (1998) and Wollstein et al.

(1998), in their studies with HRT, reported no statistically significant differences in disc

area between glaucomatous eyes and healthy eyes, but comparisons were not made between

eyes of the same patient, as was done in this study. Some evidence exists that glaucomatous

eyes have larger optic discs than non-glaucomatous eyes (Healey & Mitchell 1999), and

that eyes with larger discs may be more vulnerable to IOP (Tuulonen & Airaksinen 1992,

Burk et al. 1992, Tomita et al. 1994). However, the discs of both the present study and

fellow eyes (mean ± SD, 1.92 ± 0.41 mm2 and 1.83 ± 0.37 mm2 respectively) seemed to be

small or medium sized rather than large, when compared to the discs measured with HRT

in glaucomatous and healthy eyes by Mardin & Horn (1998) (2.6 ± 0.7 mm2 and 2.6 ± 0.87

mm2 respectively) and Wollstein et al. (1998) (1.89 ± 0.34 mm2 and 1.98 ± 0.35 mm2). This

is in accord with the findings of Jonas & Papastathopoulos (1997), who reported smaller

discs in eyes with ExG than in eyes with POAG, and discs smaller in eyes with ExS than in

healthy control eyes. A study of patients with unilateral ExS (Puska & Raitta 1992) found

no difference in disc area between eyes. However, their result may not be comparable to the

result of the present study, because eyes corresponding to the study eyes of this study were

excluded from their study. Bias is possible due to the higher probability that a large disc

will be classified as glaucoma (Heijl & Mölder 1993).

Because of interindividual normal variation in ONH topography and overlap of the HRT

parameters between normal and glaucomatous eyes, no cut-off values for normal ONH

parameters have been established. The most advantageous application of SLO would be its

use in follow-up of patients to aid in detecting change or progression in ONH topography.

In the present study (III), change in VF index MD was examined for any subsequent

associations with change in HRT parameters. Of all HRT parameters, only change in cup

shape measure in a positive direction, indicating ‘more glaucomatous’, was associated with

change in MD to higher values, and vice versa. Change in MD may not be the ideal



measure for progression, since MD has been shown to be sensitive to cataract formation

(Guthauser & Flammer 1988, Yao & Flammer 1993), to long-term fluctuation (Heijl et al.

1987), and to other physiological factors. No actual cut-off criteria for progression based

on a defined change MD was used. Not only was an association between HRT parameters

and MD concerning ‘progression’ studied, but also subsequent ‘improvement’ in HRT

parameters and MD. This may be an advantage when only small overall changes exist in

MD, as in the present study. These results suggest that the cup shape measure may be a

sensitive indicator for progression. Similarly, cup shape measure has been reported to be

one of the best parameters to differentiate among healthy eyes, eyes with OHT, and eyes

with glaucoma (Uchida et al. 1996, Hatch et al. 1997, Iester et al. 1997d, Bathija et al.

1998, Vihanninjoki et al. 2000), and to show correlations with early glaucomatous VF loss

(Mikelberg et al. 1995).

When HRT is used in sequential measurements to evaluate progression of glaucoma, any

effect of change in IOP should be accounted for. Because reduction in IOP can result in

reversal of the ONH topographic parameters (II,III), i.e., changes in a ‘less glaucomatous’

direction, a subsequent rise in IOP may lead to changes in the ONH topography in a ‘more

glaucomatous’ direction without a true loss of nerve fibres. In experimental studies, an IOP

increase has been reported to cause backward bowing of the lamina cribrosa (Levy et al.

1981, Levy & Crapps 1984).

Apart from the present study, few reports exist on the use of HRT in follow-up. Rabinowitz

et al. (1995) followed 44 glaucomatous eyes with cup/disc ratios of ≥ 0.85: 12 eyes

experienced an increase in IOP and/or clinical progression of VF defects. In these 12,

statistically significant changes in cup/disc area ratio, cup area, and rim area were found,

despite the fact that biomicroscopical assessment of the ONH was judged to be unchanged.

Recently, Kamal et al. (1999) reported on changes in HRT parameters in 13 OHT patients

who subsequently developed glaucoma. From the global HRT parameters, they found

significant changes in cup area, cup/disc area ratio, and rim area, but not in cup shape

measure (nor in cup volume or rim volume). However, they did not evaluate change in IOP

during the follow-up period. In another prospective study on eyes with OHT (Kamal et al.

2000), they identified eyes that clinically remained OHT but showed a change in HRT

parameters above the level expected for normal variability. It remains to be seen whether

these eyes later also convert to glaucoma.

Reversal of optic disc cupping after reduction in IOP has been documented in a number of

studies (Quigley 1982, Pederson & Herschler 1982, Shin et al. 1989, Katz et al. 1989, Tsai

et al. 1991, Shirakashi et al. 1992, Sogano et al. 1993, Chavis et al. 1994, Irak et al. 1996,



Park & Hong 1998, Topouzis et al. 1999, Lesk et al. 1999). The most likely physiological

response seems to be reduced backward bowing of the lamina cribrosa (Lusky et al. 1993b,

Sogano et al. 1993, Pederson & Herschler 1982). In the present study, decrease in IOP was

associated with reversal changes in cup area (III), cup/disc area ratio (II,III), rim area (III),

cup volume (II,III), rim volume (III), mean cup depth (II,III), and maximum cup depth

(II,III). HRT parameters such as cup volume and mean and maximum cup depth can easily

be considered to be directly related to the backward bowing of the lamina. However,

reversal in cup area, cup/disc area ratio, rim area, and rim volume after IOP reduction may

indicate that, during periods of elevated IOP, the rim is pulled backward together with the

lamina cribrosa.

Interestingly, cup shape measure seemed to be a sensitive indicator for progression, but was

insensitive to change in IOP (III). It would be an advantage of the cup shape measure if it

proves to be sensitive to progression, i.e., true loss of nerve fibers, but insensitive to change

in IOP. Cup shape measure describes the overall shape of the ONH cupping. It represents

the skewness of the frequency distribution of cup depth values. In normal eyes with their

flat-edged cups and with small depth values most frequent, the frequency distribution is

skewed to the left, and cup shape measure gets a negative value. In glaucomatous eyes with

their steep cups, and with large depth values most frequent, the frequency distribution is

skewed to the right, and cup shape measure gets a positive value. The fact that cup shape

measure was not associated with IOP reduction indicates that the skewness of the

frequency distribution remained unchanged. However, the kurtosis of the frequency

distribution must have changed, because reversal of ONH cupping did occur, as shown by

reversal of other HRT parameters. In other words, after IOP reduction, the number of small

depth values in relation to high depth values remained unchanged, but the number of

intermediate values in relation to small and high values increased.

At least three other studies have recently documented reversal changes shown by the HRT

after reduction in IOP (Table 16) (Irak et al. 1996, Topouzis et al. 1999, Lesk et al. 1999).

The findings of the present study accord best with those of Lesk et al. (1999) who, when

correlating changes in HRT with percentage changes in IOP, found, 6 months after

glaucoma surgery, reversible changes in the same parameters that we did. Irak et al. (1996)

found that percentage changes in IOP correlated with changes in cup shape measure and

RNFL cross-section area, but not with changes in maximum cup depth. No correlation

existed between mean change in IOP and cup volume or rim volume. Topouzis et al. (1999)

compared HRT parameters before and after trabeculectomy, but were unable to correlate

these changes with IOP. Two weeks after treatment they reported reversal changes in some

HRT parameters, but after 4 months only in cup shape measure, and at 8   



Table 16. Reversal changes in HRT parameters in this study and three others

HRT

parameter:

CA C/D RA HVC CV RV MnCD MxCD CSM RNFL1 RNFL2 Comments

Lesk et

al, 1999

Yes Yes Yes No Yes Yes Yes Yes No No No correlation with percent

change in IOP, 6 months

Irak et al,

1996

Yes

(Yes)

Yes

(Yes)

Yes

(Yes)

-

-

Yes

(No)

Yes

(No)

-

-

No

No

Yes

(Yes)

-

-

Yes

(Yes)

correlation with percent

change, and (mean change)

in IOP, 4.5 months

Topouzis

et al,

1999

No

(No)

[No]

No

(No)

[No]

No

(No)

[No]

Yes

(No)

[No]

Yes

(No)

[No]

No

(No)

[No]

yes

(no)

[no]

No

(No)

[No]

Yes

(Yes)

[No]

no

(no)

[no]

No

(No)

[No]

Pairwise comparison before

and after surgery at 2weeks,

(4 months), and [8 months]

Study II -

-

No

Yes

-

-

-

-

Yes

Yes

-

-

Yes

No

-

-

-

-

-

-

-

-

Pairwise comparison before

and after surgery at 4 months

and  (1 year)

Study III Yes Yes Yes No Yes Yes Yes Yes No No No Association with change in

IOP, 6 months

Yes = significant correlation, association, or difference found
No = no significant correlation, association, or difference found
- = did not report
CA = cup area, C/D = cup/disc area ratio, RA = rim area, HVC = Height variation contour, CV = Cup volume, RV = Rim volume, MnCD = Mean cup depth,
MxCD = Maximum cup depth, CSM = Cup shape measure, RNFL1 = Mean RNFL thickness, RNFL2 = RNFL cross section area,
HRT = Heidelberg retina tomograph, IOP = intraocular pressure, RNFL = retinal nerve fibre layer



months in no parameters, although mean IOP was still significantly reduced compared to

pre-operative readings.

Stage of glaucoma was shown to be associated with reversibility of the ONH. In Study III,

stage of glaucoma was included in the analyses and was found to be associated with

reversibility of cup volume and mean cup depth; reversal in these parameters was greater

the more advanced was the glaucoma. In the study with advanced cases (II), reversal

changes could still be detected one year after trabeculectomy, provided that the post-

operative IOP was kept low enough. The results of the present study are contradictive to

those of other studies, in which it has been claimed that with increasing glaucomatous

damage, the reversibility of optic disc cupping decreases (Pederson & Herschler 1982,

Coleman et al. 1991, Shirakashi et al. 1992, Topouzis et al. 1999). Differences may be

methodological and due to the subjects chosen. Topouzis et al. (1999) suggested in their

study that lack of reversal changes in the HRT parameters 8 months after trabeculectomy

may have been due to the advanced glaucoma of their patients. Of their 25 patients, 10 had

POAG, 8 NTG, but only 3 had ExG. The mean (± SD) pre-operative IOP of their patients

was 19.3 ± 6.4 mmHg compared to 28.2 ± 9.0 mmHg in Study III.

The number of patients with cup reversal in the study by Pederson & Herschler (1982) was

small. They reviewed sequential photographs of 259 patients (and an unknown number of

patients in their clinical practices), and found cup reversal in only six eyes, of whom none

were considered as advanced glaucoma. The studies of Coleman et al. (1991) and

Shirakashi et al. (1992) were done on a limited number of monkey eyes (seven and five

eyes, respectively). Further, Coleman et al. (1991) measured acute changes within 15

minutes after IOP reduction, whereas in the present study, changes were measured 3

months to one year after IOP reduction. Zeimer & Ogura (1989) also studied acute changes

but not the reversibility of the ONH topography, rather the acute retrodisplacement of the

ONH surface after IOP increase in post-mortem human eyes. In 15 eyes with VF data

available, they found that the retrodisplacement decreased as the VF worsened, but at only

borderline significance (P < 0.2). Results of histological studies have reported in ExG and

POAG a marked and widespread elastosis (aberrant proliferation and degeneration of

elastic elements) of connective tissue in the lamina cribrosa, and shows that this elastosis is

even more pronounced in ExG than in POAG (Netland et al. 1995, Pena et al. 1998).

Elastosis would lead to increased stiffness of the lamina cribrosa.



Age was also associated with reversibility of cup volume, mean cup depth, and maximum

cup depth. Older patients had greater reversal changes than did younger ones, in accord

with the findings of Lesk et al. (1999). However, their findings concerned only a subgroup

of patients with IOP reduction of 40% or more.

It can be hypothesised (Shin et al. 1989), that reduced backward bowing of the lamina

cribrosa reduces any mechanical stress upon nerve fibres in this region, subsequently

improving axoplasmic transport in the neurons. It remains to be shown whether reversal of

the ONH topography is related to a slower rate of progression of glaucoma. There exist,

however, reports on improved VF indices of eyes in which reversal of disc cupping has

occurred after IOP reduction (Katz et al. 1989, Tsai et al. 1991).

7.4 OCULAR BLOOD FLOW IN ExG (IV, V)

The role of ocular blood flow abnormalities and other vascular risk factors for glaucoma

has attracted increasing interest in the past few years, with recent reviews of ocular blood

flow in glaucoma and various techniques to measure it (Flammer & Orgül 1998, Pillunat

1999, Harris et al. 1999, Anderson 1999). In the present study, ocular blood flow was

measured with scanning laser Doppler flowmetry (the HRF) (IV) and with blue-field

entoptoscopy (V). In ExG, changes in blood flow in the lamina and rim area were found

with the HRF (IV) and in the macular flow with blue-field entoptoscopy (V).

Flow in the rim area in glaucomatous eyes was detected to be higher than in the non-

glaucomatous fellow eyes (IV). Similarly, flow in the laminar area in glaucomatous eyes

was higher than in the fellow eyes, but only at borderline significance (IV). However, the

more advanced the glaucomatous damage, the more reduced was flow both in the laminar

area and in the rim area. This may seem contradictory, but may be explained by

autoregulation of the ONH flow, with upgrading of flow early in the course of glaucoma,

and decrease in flow later in the course, because of breakdown of autoregulation (Pillunat

et al. 1985, Robert et al. 1989, Tielsch et al. 1995). In this study (IV), a large proportion of

the patients had ExOHT (20%) or early glaucoma with glaucomatous ONH changes but a

normal VF (22%).



Previous studies with the HRF have concentrated on healthy eyes and eyes with POAG,

NTG, and OHT, with no reports on eyes with ExG. In patients with POAG, reduced flow

in the laminar (Nicolela et al. 1996b, Kerr et al. 1998, Findl et al. 2000) and rim area

(Michelson et al. 1996a, Kerr et al. 1998, Michelson et al. 1998a, Findl et al. 2000) have

been reported compared to flow in healthy eyes and in eyes with OHT. On the other hand,

some reports have shown no difference in rim area flow between healthy eyes and eyes

with POAG and NTG (Nicolela et al. 1996b, Holló et al. 1997b). Michelson et al. (1996a)

in comparing healthy eyes and eyes with POAG, found a significant correlation between

reduced flow in the rim area and cup/disc ratio; but not, as in the present study, between

reduced flow and MD. Findl et al. (2000) found a significant correlation between reduced

flow in the lamina and MD and between reduced flow in the rim and MD. Reduced ONH

blood flow in POAG has been reported also with types of laser Doppler techniques other

than the HRF (Hamard et al. 1994, Grunwald et al. 1999).

In glaucoma, damage to ganglion-cell axons has been found at the level of the lamina

cribrosa (Gaasterland et al. 1978, Quigley et al. 1981). Thus, an association between

glaucoma and deficiency in blood flow in this area can be expected, but one may question

the relevance of measuring retinal, choroidal, or retrobulbar flow. There are, however,

several studies in which parameters of blood flow have been detected to be altered in the

peripapillary retina (Nicolela et al. 1996b, Michelson et al. 1996a, Michelson et al. 1998a,

Chung et al. 1999), macula (Sponsel et al. 1990, Sponsel et al. 1997), choroid (Trew &

Smith 1991, Fontana et al. 1998), and retrobulbar arteries (Rojanapongpun et al. 1993, Butt

et al. 1995, Kaiser et al. 1997, Butt et al. 1997, Yamazaki & Drance 1997) in patients with

POAG and NTG when compared to parameters of healthy eyes and eyes with OHT.

In the present study (IV), no difference in peripapillary retinal flow appeared between eyes

with ExG and their non-glaucomatous fellow eyes, nor was there any association between

peripapillary flow and amount of glaucomatous VF or ONH damage (IV). Controversially,

some studies have reported decreased flow in the peripapillary retina in eyes with POAG,

compared to flow in healthy eyes (Nicolela et al. 1996b, Michelson et al. 1996a, Michelson

et al. 1998a). However, Kerr et al. (1998) have reported increased minimum velocity in the

temporal retina of eyes with POAG compared to velocity in eyes with OHT, and Holló et

al. (1997a,b) found ‘high’ flow values to be more frequent in glaucomatous eyes than in

healthy ones (Holló et al. 1997a). In the present study, mean macular leucocyte velocity

was statistically significantly lower in eyes with ExG than in their non-glaucomatous non-

exfoliative fellow eyes (V). In six patients, leucocyte velocity was lower in the

glaucomatous eye, and in two patients lower in the fellow eye. However, differences in

leucocyte velocity between the eyes were greater when the glaucomatous eye had the lower



flow (26-50%), compared to the two cases in which the leucocyte velocity was lower in the

healthy eye (15% and 18%). Further, only glaucomatous eyes showed a negative

correlation (with borderline significance) between leucocyte velocity and MD, and between

leucocyte velocity and LV (V). When leucocyte velocity in all four groups of eyes is

compared, it seems that only the non-glaucomatous eyes in unilateral ExG differed from the

others, having higher (mean ± SD, 0.89 ± 0.34 mm/s) leucocyte velocity than the

glaucomatous eye (0.70 ± 0.25 mm/s), and higher than the exfoliative and non-exfoliative

eyes in unilateral ExS (0.72 ± 0.15 mm/s and 0.70 ± 0.21 mm/s respectively). However,

comparison between these separate groups of patients may be inappropriate, because of

differences in systemic diseases and medications, and differences in how patients perform

the subjective measurement. This was the reason for the choice of patients with unilateral

ExG and ExS. The results of the present study are in accord with the results of Sponsel et

al. (1990, 1997) who also studied macular circulation with blue-field entoptoscopy, but in

patients with POAG. Similarly to the present study with ExG (V), they found a correlation

between macular leucocyte velocity and VF indices; reduced leucocyte velocity was

associated with increased VF damage.

Overall, in only a few works has ocular blood flow been measured in eyes with ExS or

ExG. Sibour et al. (1997) studied choroidal blood flow with a pulsatile ocular blood flow

(POBF) system in nine patients with unilateral ExS. Their mean POBF was 14% lower in

the exfoliative eyes than in the non-exfoliative fellow eyes. Repo et al. (1995) performed

color Doppler ultrasound measurements of the ophthalmic artery in 32 healthy individuals

(64 eyes) and in 46 patients (92 eyes) who had suffered TIA. They found a high frequency

of ExS among patients who had suffered TIA and had positive iris transilluminance. Those

patients also had higher resistivity indices of the ophthalmic arteries than did healthy

subjects without iris transilluminance. A vessel diameter can be considered only an indirect

measurement of blood flow; however, the diameter of the retinal arterioles at the disk

border has been reported to be smaller in POAG and ExG than in normal eyes (Jonas &

Papastathopoulos 1997).

It remains to be determined whether in glaucoma reduced ocular blood flow is a cause or a

consequence. Another issue in ExG is whether similar pathophysiology is behind the

reduced flow, as in other types of OAG, or whether reduced flow is in some way connected

with the presence of exfoliation material; in the iris, the vasculopathy associated with ExS

(Ringvold 1970, Ringvold & Davanger 1981, Konstas et al. 1993b, Asano et al. 1995,

Kivelä et al. 1997) has also been associated with anterior segment ischaemia (Vannas 1969,

Helbig et al. 1994). In 11 eyes with unilateral ExS, no difference was found in macular

leucocyte velocity between exfoliative eyes and non-exfoliative fellow eyes (V). Of the



fellow eyes in Study IV, 36 were clinically exfoliative and 14 clinically non-exfoliative.

The diagnoses of the fellow eyes (exfoliative or non-exfoliative) were included in the

multivariate analyses of difference in flow between glaucomatous and non-glaucomatous

eyes, but they seemed to have no association with lamina, rim, or peripapillary flow.

Therefore, this association between glaucomatous damage and blood flow (IV, V) can be

considered to be associated with the glaucomatous defect and not with the presence of ExS.

However, this does not exclude the possible effect of ExS per se on ocular blood flow. It is

possible that also in the early course of ExS vasculopathy has some effect on ocular blood

flow, but later, when the vasculopathy is more severe or has persisted longer, it begins to

cause damage to the nerve fibres, damage which can be detected and diagnosed as

glaucoma. Further, a difference in flow due to exfoliation material may be difficult to

detect in a study comparing exfoliative eyes and non-exfoliative fellow eyes, because the

clinically non-exfoliative eyes may also be exfoliative if examined electron microscopically

or immunohistochemically (Schlötzer-Schrehardt et al. 1991, Kivelä et al. 1997). Perhaps

comparison would be more appropriate between patients with ExS and patients without

ExS in either eye.

The effect of topical β-blocking agents on ocular blood flow is an important issue. In Study

IV, topical treatment with timolol was associated with reduced blood flow in the lamina

and rim area. This was apparent both in analyses of differences in flow between

glaucomatous eyes and the non-glaucomatous fellow eyes, and in analyses of glaucomatous

eyes only. Between peripapillary flow and treatment with timolol, no association appeared.

Macular leucocyte velocity was statistically significantly lower in glaucomatous eyes than

in their fellow eyes (V). All 10 glaucomatous eyes were treated with timolol, and therefore

any effect of timolol on the results cannot be excluded. However, treatment with timolol

does not explain the correlation (though of borderline significance) between leucocyte

velocity and VF indices. Thus, treatment with timolol seems to be associated with reduced

flow in the ONH, but not in the peripapillary retina or macula. This issue has been studied

extensively. Several studies report timolol treatment to be associated with decreased ocular

blood flow values (Richard & Weber 1987, Van Buskirk et al. 1990, Langham 1990,

Yoshida et al. 1991, Boles Carenini et al. 1994, Nicolela et al. 1996a, Schmetterer et al.

1997), but opposite findings also exist (Jay et al. 1984, Grunwald 1986, Baxter et al. 1992),

and reports of no effect at all (Green & Hatchett 1987, Harris et al. 1995, Morsman et al.

1995, Wang et al. 1997, Holló et al. 1997b, Michelson et al. 1998a).

Timolol is a non-specific β-adrenergic blocker with effects both on β1 and on β2 receptors.

In the eye, β-adrenoreceptors of mainly the β2-subtype have been demonstrated in the

anterior part of the optic nerve and ONH (Dawidek & Robinson 1993), choroid (Grajewski



et al. 1991), retinal blood vessels (Denis et al. 1990), and ciliary body (Wax & Molinoff

1987). No conclusion can be drawn as to whether reduced blood flow in the lamina and rim

area is mediated through blockade of the β2 receptors in the ONH (Dawidek & Robinson

1993), but this is at least possible. Diffusion of topically applied timolol to the posterior

pole of the eye is uncertain, but after topical administration of radio-labeled timolol to

rabbit eyes, it has been measured in the choroid, retina, and vitreous (Schmitt et al. 1980).

Topically applied timolol has also been shown to cause vasoconstriction of retinal vessels

(Martin & Rabineau 1989) and of the arteries that supply the ciliary processes (Van

Buskirk et al. 1990). The ocular β2 receptors can also be reached through the systemic

circulation. Topically applied timolol can be absorbed into the systemic circulation (Schmitt

et al. 1980, Vuori et al. 1993, Uusitalo et al. 1999). Drug concentrations of clinical

significance in the contralateral eye may be reached after topically applied timolol (Saari et

al. 1993), as shown by lowering of IOP also in the contralateral eye (Radius et al. 1978). A

crossover effect of timolol on the ocular blood flow may also occur, but this would have

diminished the difference in flow that was found between the eyes (IV). In the examination

of study eyes only, treatment with a systemic β-blocker may also have confounded the

results. Of 50 patients, 8 were receiving a systemic β-blocker for some systemic condition

(IV), but no statistically significant effect of this appeared in the multivariate analyses.

In short, exfoliation glaucoma often shows an aggressive clinical course. Good control of

intraocular pressure is required, especially in elderly patients and patients with more

advanced disease. New imaging methods, such as scanning laser ophthalmoscopy, may

offer tools for more sensitive evalution of the optic nerve head and its progression. Even

though considered a secondary glaucoma, it seems that exfoliation glaucoma is a matter not

only of increased intraocular pressure, but also of altered ocular blood flow.
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