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ABSTRACT

About ten years ago, grapefruit juice was observed to increase the plasma concentrations and

effects of felodipine. Since then, grapefruit juice has been found to interact with more than 20

different drugs. However, many factors affecting the susceptibility of drugs to interaction with

grapefruit juice are still unknown. In this series of investigations, the potential of grapefruit

juice to interact with the CYP3A4 substrates buspirone, cisapride, simvastatin, atorvastatin, and

pravastatin was studied in healthy human volunteers in randomized cross-over studies. In

addition, the effect of grapefruit juice dose in pharmacokinetic interaction and the duration of

grapefruit juice effect were studied, with triazolam and simvastatin, respectively, as the model

drugs. In each study, 10 to 12 volunteers participated. Subjects ingested grapefruit juice 200 ml

or water (control) t.i.d. for 2 days and then received a single dose of study drug with grapefruit

juice or water. The effect of dose of grapefruit juice was studied by giving the volunteers the

study drug with 200 ml water, normal or double-strength grapefruit juice,  or on the third day of

double-strength grapefruit juice, 200 ml t.i.d. Duration of effect of grapefruit juice was studied

by administering the study drug after multiple-dose grapefruit juice (200 ml t.i.d. for 3 days) or

1, 3, or 7 days after the last dose of multiple-dose grapefruit juice. Following administration of

the study drug, timed blood samples were taken for up to 12 to 72 hours for determination of

plasma or serum drug concentrations by means of gas and liquid chromatographic, mass

spectrometric, or radioenzyme inhibition assay.

Grapefruit juice substantially increased plasma concentrations of buspirone. The AUC of

buspirone was increased by grapefruit juice about 9-fold (p < 0.01). The increased buspirone

plasma concentrations were associated with increased subjective drug effect. The

pharmacokinetics of cisapride were considerably affected by grapefruit juice. The AUC of

cisapride was increased by about 140% by grapefruit juice (p < 0.01), but it did not enhance the

effect of a single dose of cisapride on the QTc interval. Grapefruit juice increased the AUC of

simvastatin and simvastatin acid about 16-fold (p < 0.05) and 7-fold (p < 0.01), respectively.

The AUC of atorvastatin acid was increased by about 150% (p < 0.01). The AUC of 2-

hydroxyatorvastatin acid, the main active metabolite of atorvastatin, was decreased by

grapefruit juice (p < 0.01). Grapefruit juice did not affect the pharmacokinetics of pravastatin.

All of these interactions were subject to large interindividual variation. A single dose of either

normal- or double-strength grapefruit juice and the multiple dose of double-strength grapefruit
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juice increased triazolam AUC by about 50% (p < 0.01) and 140% (p < 0.001), respectively.

Multiple-dose ingestion of grapefruit juice affected triazolam pharmacokinetics significantly

more than did a single dose of normal- or double-strength grapefruit juice (p < 0.001). The

elimination t½ of triazolam was significantly prolonged by multiple dose (p < 0.001), but not by

a single dose of grapefruit juice. Triazolam effects were increased by multiple-dose grapefruit

juice. The effect of grapefruit juice on the AUC of simvastatin was approximately one-tenth of

its maximum 24 hours after termination of repeated intake of grapefruit juice. The effect of

grapefruit juice on the pharmacokinetics of simvastatin disappeared within 3 to 7 days.

It is probable that in these studies the pharmacokinetic interactions between grapefruit juice and

CYP3A4 substrates mostly occurred during their first pass, because both the Cmax and AUC

values substantially increased. However, it appears that the systemic elimination as well may be

inhibited by multiple-dose grapefruit juice, as evidenced by significantly increased elimination

t½ of some of the drugs. Susceptibility of CYP3A4 substrates to interaction with grapefruit

juice reflects the extent of their first-pass metabolism. This long-lasting effect of grapefruit

juice is in line with the proposal that the mechanism of action of grapefruit juice is irreversible

inactivation of CYP3A4. However, other mechanisms such as modulation of function of P-

glycoprotein may have contributed. Large interindividual variation in pharmacokinetics of the

CYP3A4 substrates observed in these studies makes prediction of the magnitude of interaction

for an individual difficult. Concomitant ingestion of grapefruit juice with CYP3A4 substrates

with extensive first-pass metabolism and a narrow therapeutic range can increase the risk for

adverse effects of these drugs.
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INTRODUCTION

Drugs and other exogenous lipophilic compounds usually have to be metabolized before they

can be excreted from the body. This metabolism occurs by phase I and phase II reactions. In

phase I, the majority of drugs undergo biotransformation reactions that are generally mediated

by CYP enzymes, oxidative reactions being the most common. In phase II reactions, drug

molecules or their metabolites are usually conjugated. There is considerable interindividual

variation in activity of drug-metabolizing enzymes caused by both genetic and exogenous

factors. Concomitant administration of two or more drugs may alter their pharmacokinetics,

especially if they are metabolized by the same isoenzyme. There are many well-characterized

pharmacokinetic drug-drug interactions which can have highly significant clinical

consequences due to increased therapeutic effects or toxicity (Olkkola et al. 1993; Neuvonen

and Jalava 1996). Smoking and dietary factors can also alter significantly drug metabolism

(Conney et al. 1977; Grygiel and Birkett 1981; Singh 1999).

A serendipitous finding about 10 years ago in a clinical drug study, when grapefruit juice was

used to mask the taste of ethanol, led to the discovery of a grapefruit juice-felodipine

interaction. Felodipine is a dihydropyridine calcium-channel antagonist used for the treatment

of hypertension. Simultaneous administration of felodipine with a single glass of grapefruit

juice increased significantly the plasma concentration of felodipine and also increased its

hypotensive effect (Bailey et al. 1991). Since then, grapefruit juice has been shown to increase

plasma concentrations of several drugs, e.g., cyclosporin, midazolam, and terfenadine (Yee et

al. 1995; Kupferschmidt et al. 1995; Benton et al. 1996). In some instances, coadministration of

drugs with grapefruit juice has increased significantly the intensity and duration of effects of

these drugs. Most of the drugs reported to be susceptible to interaction with grapefruit juice

have variable oral bioavailability due to moderate or extensive first-pass metabolism. Almost

exclusively, these drugs are also substrates for CYP3A4, the most important drug-metabolizing

member of the CYP enzyme family that participates in the metabolism of about 50% of drugs

(Wrighton et al. 1992). However, relatively few published studies adress the question of the

dose-relationship of the grapefruit juice effect and duration of the effect of grapefruit juice. In

this series of investigations, the purpose was to study to what degree grapefruit juice can

interfere with the pharmacokinetics of drugs metabolized to varying degrees by CYP3A4, and

also to discover factors governing these interactions.
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REVIEW OF THE LITERATURE

1. Drug metabolism and interactions

1.1. Cytochrome P450 (CYP) enzymes and drug interactions

Drug molecules are often lipophilic, which allows their absorption from the gastrointestinal

tract and also their entry to the site of action, e.g., in the brain. Excretion of drugs and other,

perhaps toxic, lipophilic foreign compounds (xenobiotics) from the body in the bile and urine is

facilitated by metabolic reactions that transform them into being more hydrophilic, i.e., soluble

in water (Morselli 1995). These reactions comprise oxidation, hydroxylation, dealkylation, and

reduction. They are called phase I reactions. In phase II reactions, drug molecules or their

metabolites are conjugated with endogenous molecules such as glucuronate, sulfate, acetate, or

an amino acid. Usually drugs undergo reactions of both phases before their elimination. Drug

metabolism occurs mainly in the liver, although organs such as the gastrointestinal tract,

kidneys, and lungs also contribute to biotransformation reactions (Krishna and Klotz 1994).

Orally administered drugs must traverse the intestinal wall, the hepatic portal system, and the

liver before they reach the systemic circulation. If a drug is subject to extensive

biotransformation in the liver, only a fraction of its dose will reach the systemic circulation and,

ultimately, its site of action. This phenomenon is referred to as first-pass metabolism. By the

term extraction ratio is meant the fraction of drug removed from the blood during a single

transit through the liver. Correspondingly, drugs that undergo extensive first-pass metabolism

have high extraction ratios (i.e. > 0.7). First-pass metabolism can reduce in a significant way

the bioavailability of some drugs, despite complete absorption. As well as in the liver, orally

administered drugs can be subject to metabolism in the intestinal wall before they reach the

systemic circulation. It has been shown that for some drugs (mostly CYP3A4 substrates)

presystemic metabolism in the intestine can be a significant determinant of their bioavailability

(Paine et al. 1996; Thummel et al. 1996).

Drugs and other xenobiotics are mainly transformed in phase I reactions by human cytochrome

P-450 enzymes (CYP enzymes). CYP enzymes constitute an enzyme superfamily of hem-

containing mono-oxygenases, which have an absorption maximum at wavelength 450 nm in
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the presence of carbon monoxide; hence the name P-450. Besides drug metabolism, CYP

enzymes are important in the synthesis and metabolism of different endogenous compounds

like steroid hormones, fatty acids, arachidonic acid, and bile acids. The classification of CYP

enzymes is based on homology of their deduced amino acid sequences (Nelson et al. 1996).

Within a single CYP family, enzymes show amino acid sequence homology greater than 40%

and are denoted in the nomenclature by a common Arabic number (e. g., CYP3). Within one

subfamily, enzymes share a homology greater than 55% and are denoted by a common letter (e.

g., CYP3A). Single isoforms are labeled with a second Arabic number (e. g., CYP3A4).

In humans, 14 CYP gene families are known to date, of which the first three families are

important in the metabolism of drugs and xenobiotics. The other CYP gene families are

responsible for the biotransformation of endogenous compounds like steroids.

Human CYP1A1 demonstrates almost 70% sequence similarity to CYP1A2. In humans,

CYP1A1 has been found almost exclusively in extrahepatic tissues such as lung, small

intestine, and placenta (Pasanen et al. 1988; Shimada et al. 1992; McLemore et al. 1994).

Without induction, it is often not expressed. It is induced by cigarette smoke and polycyclic

aromatic hydrocarbons (PAHs) (Wrighton and Stevens 1992). A prototype substrate for

CYP1A1 is benzo(a) pyrene (Shimada et al. 1989). Unlike CYP1A1, in humans CYP1A2

appears to be present only in the liver, where it represents 10 to 15% of the total amount of

CYP (Shimada et al. 1994). It catalyzes 3-demethylation of caffeine and is also responsible for

L-demethylation of theophylline and O-de-ethylation of phenacetin (Butler et al. 1989; Sesardic

et al. 1990; Brosen et al. 1993). Most substrates of CYP1A1 appear also to be substrates of

CYP1A2 (Tassaneeyakul et al. 1993), which is induced by cigarette smoke, physical exercise,

charcoal broiled meat, or cruciferous vegetables (Wrighton and Stevens 1992). Human

CYP1A2 is inhibited by α-naphtoflavone, 7-ethoxycoumarin, furafylline, and fluvoxamine

(Tassaneeyakul et al. 1993; Jeppesen et al. 1996).

In humans at least four members of the CYP2C subfamily are expressed, and they participate in

drug metabolism, namely, CYP2C8, CYP2C9, CYP2C18, and CYP2C19. After the CYP3A

subfamily, the CYP2C enzymes form the second largest CYP subfamily in human liver,

comprising 20% of its total amount of CYP protein (Shimada et al. 1994). CYP2C enzymes are

also expressed to a minor extent in the small intestine (Zhang et al. 1999). CYP2C8 catalyzes
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the biotransformation of retinal, retinoic acid, and taxol (Leo et al. 1989; Rahman et al. 1994).

CYP2C9 metabolizes phenytoin, tolbutamide, warfarin, and NSAIDs (Knodell et al. 1987;

Veronese et al. 1991; Rettie et al. 1992; Leemann et al. 1993). Both CYP2C8 and CYP2C9 are

induced by rifampicin and phenytoin. CYP2C9 is inhibited by sulphaphenazole, fluconazole,

amiodarone, and metronidazole (Back 1988). CYP2C18 catalyzes biotransformation of such

drugs as diazepam. There is large interindividual variability in drug-metabolizing capacity

mediated by CYP2C19 that is caused by genetic polymorphisms. About 3% of Caucasians and

20% of Asians are poor metabolizers of CYP2C19 substrates (Wedlund et al. 1984; Nakamura

et al. 1985). CYP2C19 metabolizes a wide variety of drugs, such as mephenytoin,

amitriptyline, imipramine, and diazepam (Breyer-Pfaff et al. 1992; Skjelbo et al. 1993;

Bertilsson et al. 1989). Fluvoxamine and fluoxetine are inhibitors of CYP2C19 (Jeppesen et al.

1996).

Expression of CYP2D6 has been shown to be determined by genetic polymorphisms

(Bertilsson 1995). About 7% of Caucasians and 1% of Asian populations are poor metabolizers

of CYP2D6 substrates. Although CYP2D6 constitutes only about 2% of the hepatic CYP

protein, it participates in the biotransformation of a range of widely used drugs such as tricyclic

antidepressants, neuroleptics, and β-blockers (Cholerton et al. 1992). CYP2D6 is not inducible,

but can be inhibited by such drugs as quinidine, paroxetine and fluoxetine (Inaba et al. 1986;

Jeppesen et al. 1996).

The subfamily CYP3A consists of at least three functional  human genes: CYP3A4, CYP3A5,

and CYP3A7. It comprises about 30% of the total hepatic protein and is also the most prevalent

CYP enzyme in the small intestine (Shimada et al. 1994; Paine et al. 1997). In humans,

CYP3A4 is both qualitatively and quantitatively the most important CYP isoform in drug

metabolism. Besides the liver, it is abundantly expressed in the duodenum, jejunum, and ileum

where it represents a respective 63%, 49%, and 88% of  total CYP protein (Paine et al. 1997). It

has been shown that the cDNAs of intestinally and hepatically expressed forms of human

CYP3A4 are identical (Lown et al. 1998); however, they are possibly not co-regulated (Lown et

al. 1994). An at least 10-fold interindividual variation has been found in the amount of

CYP3A4 both in the liver and in the small intestine (Lown et al. 1994). The molecular basis for

this wide interindividual variation in expression and function has thus far remained

unexplained. In some but not all studies, females have shown greater CYP3A4 activity than
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males (Watkins et al. 1989; Kashuba et al. 1998). Some studies suggest that the phases of the

menstrual cycle have no effect on the pharmacokinetics of CYP3A4 substrates (Kashuba et al.

1998; Kamimori et al. 2000).

CYP3A5 shows a sequence homology of 84% with CYP3A4, but unlike the latter it is

polymorphically expressed. In the majority of humans, CYP3A5 is expressed in the liver and

small intestine at low levels, but it is the major CYP3A in the colon (Kolars et al. 1994).

CYP3A5 has relatively widely overlapping substrate specificity with CYP3A4 (Wrighton et al.

1990).

CYP3A7 is the major CYP3A isoform in the fetal liver, but CYP3A7 mRNA has been found

also in adult livers (Hakkola et al. 1998).

In humans, CYP3A4 catalyzes the biotransformation of a very large number of drugs that are

mostly lipohilic but otherwise often very dissimilar structurally. The list of CYP3A4 substrates

includes, from different therapeutic areas: midazolam (Gorski et al. 1994), triazolam (Kronbach

et al. 1989), cyclosporin (Kronbach et al. 1988), diltiazem (Pichard et al. 1990),

dihydropyridine calcium-channel antagonists (Guengerich et al. 1991), lovastatin (Wang et al.

1991), simvastatin (Prueksaritanont et al. 1997), cisapride (Bohets et al. 2000), erythromycin

(Hunt et al. 1992), saquinavir (Fitzsimmons and Collins 1997), and itraconazole (Ducharme et

al. 1995a). CYP3A4 is inhibited for instance by such drugs as itraconazole (Back and Tjia

1991; Olkkola et al. 1994; Neuvonen and Jalava 1996), erythromycin (Olkkola et al. 1993),

diltiazem (Backman et al. 1994), verapamil, and ritonavir (Eagling et al. 1997). Prototype

inducers of CYP3A4 include rifampicin, phenytoin, and carbamazepine (Backman et al. 1996;

Bertilsson et al. 1997; Capewell et al. 1988).

1.2. Mechanisms of CYP inhibition

Drugs and chemicals may cause reversible or irreversible inhibition of CYP enzymes and thus

prevent biotransformation of substrates. In reversible inhibition, a preferentially lipophilic

compound  binds tightly within the active site of the enzyme. This prevents binding of other

substrate molecules to active hydrophobic regions on the CYP apoprotein or oxygen activation
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by CYP heme, both actions resulting in transient although sometimes potent inhibition of

enzyme activity (Murray 1999). Competitive inhibitors are often but not necessarily substrates

for the enzyme they inhibit. Typical competitive inhibitors of CYP enzymes include the

imidazole antifungals ketoconazole and itraconazole and the protease inhibitor, ritonavir (Back

and Tjia 1991; Eagling et al. 1997)

Irreversible inhibition of CYP enzymes, also called mechanism-based inhibition, can be

divided into two categories: autocatalytic inactivation and metabolite intermediate (MI)-

complexation. Autocatalytic inactivation or suicide inhibition takes place when a reactive drug

metabolite, formed in previous catalytic steps by a CYP enzyme, binds to this enzyme and

alters its structure, resulting in irreversible loss of function. This can lead to rapid destruction

of enzyme protein. Gestodene (Guengerich 1990a), ethinyl estradiol (Guengerich 1988),

spironolactone (Decker et al. 1989), furanocoumarin methoxsalen (Tinel et al. 1987), and

furafylline (Kunze and Trager 1993) are examples of suicide inhibitors. Alkylamines are

probably the most significant class of compounds able to cause irreversible inhibition of CYPs

through complexation of a metabolite intermediate with an enzyme. Putative oxidized

metabolite intermediates include nitroso analogues of substrate molecules. These analogues

bind tightly to the CYP heme, preventing oxygen binding and activation. Elicited inhibition can

be protracted although CYP protein is not degraded. The macrolide antibiotics erythromycin

and troleandomycin are known inhibitors of CYPs that form MI-complexes (Periti et al. 1992).

1.3. P-glycoprotein

P-glycoproteins (P-gp) are plasma membrane glycoproteins that belong to the superfamily of

ATP-binding cassette (ABC) transporters (Preiss 1998). They mediate the transport of

xenobiotics and endogenous substrates from the inner to the outer surface of cell membranes.

P-glycoproteins can be expressed in the luminal surfaces of the small and large intestine, biliary

tract, hepatocytes, endothelial cells that contribute to the blood brain barrier, and the proximal

tubule of the kidneys (Lum and Gosland 1995). A possible physiological role for P-gp is to

secrete endogenous and xenobiotic compounds and thus contribute to protective barrier

mechanisms. P-gp has also been found to be a cause for MDR (multiple drug resistance) as it is

overexpressed in cancer cells that are resistant to chemotherapeutic agents. In these cells, P-gp
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functions as an efflux pump that decreases intracellular drug concentrations and cytotoxicity

(Lum and Gosland 1995). P-gp and CYP3A4 have widely overlapping substrate specificity

(Wacher et al. 1995). Many of the inhibitors and inducers of CYP3A4 are also capable of

altering the activity of P-gp (Relling 1996; Schuetz et al. 1996).

2. Grapefruit juice

2.1. Effects of grapefruit juice on drug metabolism and its mechanism of action

Approximately 10 years ago, Bailey et al. reported on the first grapefruit juice-drug interaction

observed between grapefruit juice and felodipine, a dihydropyridine Ca-channel blocker (Bailey

et al. 1991). This was recognized as a chance finding during an ethanol-felodipine interaction

study. In a study with six borderline hypertensive patients, 250 ml double-strength grapefruit

juice, but not orange juice, increased three-fold the mean plasma felodipine area under the

curve (AUC) compared with the AUC achieved with water (Bailey et al. 1991). Grapefruit

juice elevated the peak plasma concentration (Cmax) of felodipine, whereas the elimination t½

remained unchanged. The AUC of dehydrofelodipine, the primary metabolite of felodipine,

was also elevated by grapefruit juice. However, the dehydrofelodipine/felodipine AUC ratio

was lower with grapefruit juice than with water.

Felodipine is usually completely absorbed from the gastrointestinal tract (Edgar et al. 1985).

However, due to its presystemic metabolism, its absolute bioavailability is about 15%, with

considerable interindividual variation. Oxidation of felodipine into dehydrofelodipine and that

of dehydrofelodipine into a secondary metabolite are both catalyzed by the CYP3A4 that is

abundantly expressed both in the apical enterocytes of the small bowel and in the hepatocytes

of the liver. Thus, the results from Bailey et al. indicate that grapefruit juice inhibits both the

primary metabolic pathway of felodipine and the subsequent metabolic pathway of

dehydrofelodipine. In addition to the plasma concentrations of felodipine, also the

pharmacodynamic effects of felodipine: blood pressure reduction, heart rate increase, and

frequency of vasodilatation-related adverse effects, were greater during the grapefruit juice

phase (Bailey et al. 1991). Because grapefruit juice did not alter intravenous felodipine

pharmacokinetics, it was hypothesized that the interaction with grapefruit juice results from
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inhibition of presystemic drug metabolism (Lundahl et al. 1997). Thus, it seemed that the main

mechanism of action of grapefruit juice is inhibition of the CYP3A4-mediated first-pass

metabolism in the intestinal wall.

Recently, results of an investigation by Lown et al. (1997) gave further support to this

hypothesis. In this in vivo study, consumption of grapefruit juice t.i.d. for 5 days resulted in a

mean 62% reduction in small intestinal enterocyte CYP3A4 protein content and a 3-fold and 5-

fold increase in felodipine AUC and Cmax, respectively. In contrast, no changes occurred in

small-intestine levels of CYP3A4 mRNA, or liver CYP3A4 activity as measured by the

erythromycin breath test (ERMBT), in small-intestine levels of P-gp, or in colon levels of

CYP3A5. Further, intestinal CYP2D6 and CYP1A1 protein content remained unaltered. It was

concluded from the decreased CYP3A4 expression in the gut wall that the grapefruit-juice

effect is not only based on competitive inhibition. Because small intestine CYP3A4 mRNA

was not altered, grapefruit juice probably reduced CYP3A4 protein content by a post-

transcriptional mechanism, possibly by accelerated CYP3A4 degradation through mechanism-

based (suicide) enzyme inhibition. Thus, the restoration of CYP3A4 activity would require de

novo enzyme synthesis (Lown et al. 1997). This is in line with results of a study by Lundahl et

al. (1995) which showed the effect of a single dose of grapefruit juice on felodipine

pharmacokinetics to be still present, even when the juice was ingested 24 hours before the drug.

Although grapefruit juice did not affect concentrations of P-gp in the small intestine it may

modify in some other way the function of this transporter. Grapefruit juice components have

been shown to inhibit the P-gp function in Caco-2 cells in vitro, and it has also been suggested

that inhibition of P-gp may be responsible for the effect of grapefruit juice on cyclosporine

pharmacokinetics in vivo (Takanaga et al. 1998; Edwards et al. 1999).

2.2. Active ingredients in grapefruit juice

Grapefruit juice (Citrus paradisi) contains an abundance of structurally differing flavonoids,

several of which are found also in other plants and fruits. The most prevalent flavonoid in

grapefruit juice is naringin, which is responsible for the bitter taste, and the concentrations of

which are reported to range from 100 to 800 mg/l, but usually reach 200 mg/l to 500 mg/l in
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commercial grapefruit-juice preparations (Ameer et al. 1996; Hagen et al. 1965; Kupferschmidt

et al. 1995). Other flavonoids present mainly as glycosides in grapefruit juice include narirutin,

hesperidin, quercetin, kaempferol, and apigenin (Guengerich et al. 1990b).

Naringin and its aglycone naringenin are known competitive inhibitors of CYP3A4-mediated

drug metabolism in human liver microsomes (Guengerich et al. 1990b; Miniscalco et al. 1992).

This fact, together with the high content of naringin in grapefruit juice, led to the proposal that

this flavonoid is the active component. Moreover, naringin is absent from orange juice, which

leaves unaffected the pharmacokinetics of felodipine or cyclosporin (Bailey et al. 1991; Yee et

al. 1995). It is suggested that the aglycone form of naringin, naringenin, is produced from

naringin by enzymatic cleavage of the sugar moiety, possibly in the small intestine, and

subsequently is glucuronized (Fuhr and Kummert 1995). In vitro, naringenin is more potent as

an inhibitor of drug metabolism than is naringin. In in vivo studies, naringenin was not found in

plasma, and the amount excreted renally was small relative to the administered naringin dose,

whereas the amount of naringenin glucuronide was higher in plasma and urine. It was

suggested that the inhibitory effect of this grapefruit juice flavonoid localizes in the small

intestine. However, naringin administered as an aqueous solution or in an encapsulated

preparation in the amount found in grapefruit juice did not affect the pharmacokinetics of

dihydropyridines in vivo (Bailey et al. 1993a; Bailey et al. 1993b). Quercetin is another

flavonoid compound in grapefruit juice that acts as a potent CYP3A4 inhibitor in vitro.

However, it is not specific for grapefruit juice. Furthermore, in vivo it did not affect the

pharmacokinetics of nifedipine (Rashid et al. 1993).

Recently, it has been suggested that furanocoumarins (psoralens) are the active ingredients in

grapefruit juice. Edwards et al. (1996) demonstrated that 6’,7’-dihydroxybergamottin, the major

furanocoumarin in grapefruit juice (extractable in methylene chloride) can inhibit CYP3A4-

mediated 6β-hydroxytestosterone formation in rat microsomes. A subsequent study showed

that 6’,7’-dihydroxybergamottin causes a dose-dependent fall in human CYP3A4 catalytic

activity and immunoreactive CYP3A4 concentration (Schmiedlin-Ren et al. 1997). These

results are in line with those of the study of Lown et al. (1997), in which grapefruit juice caused

down-regulation of the small intestinal CYP3A4, probably due to suicide inhibition.

Furthermore, Schmiedlin-Ren et al. (1997) found that, although the concentration of 6’,7’-

dihydroxybergamottin in grapefruit juice varies significantly among different grapefruit juice
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preparations, it exceeds the IC50 for midazolam 1’-OH formation. Bailey et al. (1998)

performed a study in which grapefruit juice was separated into supernatant and particulate

fractions, which were then assayed for naringin and 6’,7’-dihydroxybergamottin. The amounts

of naringin and 6’,7’-dihydroxybergamottin were higher in the supernatant than in the

particulate fraction. However, after oral coadministration of felodipine with these fractions, the

particulate fraction had a significantly greater AUC for felodipine than did the supernatant

fraction. The authors concluded that neither naringin nor 6’,7’-dihydroxybergamottin is the

major active ingredient in grapefruit juice, although each may contribute to the interaction.

He et al. (1998) showed that bergamottin, a major furanocoumarin in grapefruit juice, may act

as a mechanism-based inhibitor of CYP3A4. The inhibition of CYP3A4 required metabolism

of bergamottin and appeared to involve modification of apoprotein rather than either

modification of the heme or heme fragmentation. Recently, it has been demonstrated that

grapefruit juice contains furanocoumarin dimers that are potent inhibitors of CYP3A4 (Fukuda

et al. 1997; Guo et al. 2000). Both competitive and mechanism-based inhibition seem to be

involved. Although the concentrations of these dimers plus an epoxide of bergamottin in

grapefruit juice are lower than those of the monomers (bergamottin or 6’,7’-

dihydroxybergamottin), their contributions to the interaction appear comparable, due to the

higher inhibitory potencies of the dimers relative to those of the monomers against microsomal

CYP3A activity (Guo et al. 2000). Furthermore, these furanocoumarins reside in the precipitate

of grapefruit juice, a fact in line with results observed in vivo (Bailey et al. 1998). The

grapefruit-juice effect seems to be dependent on the presence of all the furanocoumarin

components and is weaker if some of them are absent from the juice (Guo et al. 2000).

 2.3. Interactions between grapefruit juice and drugs

Almost exclusively, all drugs shown to have a pharmacokinetic interaction with grapefruit juice

are CYP3A4 substrates. In the first reported grapefruit juice-drug interaction, the drug under

study was felodipine. Since then, more grapefruit juice interaction studies have been conducted

with felodipine than with any other drug (Fuhr 1998; Bailey et al. 1998). In studies in which

felodipine has been coadministered with a single dose of grapefruit juice, the mean increase in



19

the AUC of felodipine has ranged from 43 to 234% (Fuhr 1998; Edgar et al. 1992; Lundahl et

al. 1995). The mean increase in felodipine Cmax has ranged from 70 to 225%.

In all these studies, grapefruit juice has not affected the tmax in a consistent manner. The

elimination t½ of felodipine has usually not been changed by grapefruit juice. In those studies

where measured, grapefruit juice has increased concentrations of the main metabolite of

felodipine, dehydrofelodipine, although to a lesser degree than concentrations of the parent

compound (Edgar et al. 1992; Bailey et al. 1993a; Bailey et al. 1995).

In a study by Lown et al. (1997), repeated consumption of grapefruit juice increased the AUC

and Cmax of felodipine by 211% and 335%, respectively. Increased felodipine concentrations

due to ingestion of grapefruit juice have been associated with increased effects of felodipine.

Thus, a pronounced blood pressure-lowering or heart rate-increasing effect of felodipine, or

both have been observed when hemodynamic monitoring has been performed (Bailey et al.

1991; Edgar et al. 1992). Coadministration of felodipine with grapefruit juice has also resulted

in increased incidence of adverse effects such as headache and flushing (Edgar et al. 1992;

Bailey et al. 1991).

In addition to felodipine, some other dihydropyridine calcium-channel antagonists have been

found to interact significantly with grapefruit juice. The Cmax and AUC of nisoldipine were

increased by 306% and 98%, respectively, by double-strength grapefruit juice 250 ml (Bailey et

al. 1993b). High plasma concentrations of nisoldipine with grapefruit juice did not result in

significant effects on blood pressure and produced only a slightly higher heart rate than did its

administration with water at 4 hours. The AUC of nifedipine after coadministration with

grapefruit juice was 134% of that with water (Bailey et al. 1991). Pharmacodynamic effects of

nifedipine were not changed significantly by grapefruit juice. A single dose of grapefruit juice

increased the AUC of nitrendipine by 106% (Soons et al. 1991) but did not alter its

hemodynamic effects. The Cmax and AUC of nimodipine were increased by 24% and 51% by a

single dose of grapefruit juice (Fuhr et al. 1998). Grapefruit juice 250 ml induced minor

changes in the pharmacokinetics of amlodipine but did not significantly affect its hemodynamic

effects (Josefsson et al. 1996). A single dose of grapefruit juice was not found to change

significantly the pharmacokinetics of verapamil (Zaidenstein et al. 1998). In a study by Sigusch
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et al. (1994), repeated doses of grapefruit juice (200 ml at 0, 2, 4, 8, and 12 h) did not

significantly change the AUC of diltiazem.

Cyclosporine is an immunosuppressive agent with a narrow therapeutic range and variable oral

bioavailability. It is a substrate for CYP3A4 (Kronbach et al. 1988). The majority of interaction

studies between cyclosporine and grapefruit juice have been performed with patients who take

cyclosporine on a regular basis. In young, healthy adults, a single dose of grapefruit juice

increased cyclosporine AUC and Cmax by 43% and 18%, respectively, after oral administration

(Yee et al. 1995). In a study by Ducharme et al. (1995b), a single dose of grapefruit juice given

twice increased cyclosporine AUC significantly after oral administration but not after

intravenous administration. Grapefruit juice given at 3-hour intervals for a period of 30 hours

increased the Cmax of cyclosporine by 22% in kidney transplant patients (Hollander et al. 1995).

In a study by Proppe et al. (1995), a mean increase of 77% and of 62% in the trough

concentrations of cyclosporine and its metabolites was observed after administration of

grapefruit juice 175 ml at an interval of 12 hours. Grapefruit juice increased significantly the

AUC of both cyclosporine and its metabolites in patients with autoimmune diseases (Ioannides-

Demos et al. 1997).

The non-sedating antihistamine terfenadine is a prodrug that has extensive CYP3A4-mediated

first-pass metabolism. The parent terfenadine can prolong the QT interval, which may result in

a life-threatening ventricular arrhythmia, torsades de pointes. In a study by Benton et al. (1996),

12 healthy volunteers received terfenadine 60 mg twice daily for 7 days. They were then

randomized to ingest grapefruit juice 250 ml with terfenadine twice daily or 2 hours after drug

for an additional 7 days. The AUC of the terfenadine acid metabolite increased 55% in the

simultaneous and 22% in the delayed group. The mean QT interval increased significantly in

the simultaneous group only. In another study, poor metabolizers of terfenadine received first

terfenadine 60 mg twice daily for 7 days and then terfenadine twice daily with grapefruit juice

(Honig et al. 1996). Coadministration of terfenadine with grapefruit juice resulted in

accumulation of parent terfenadine, and QT interval was significantly prolongated after

coingestion as compared with the baseline without terfenadine. In a randomized study in

healthy volunteers, a single dose of grapefruit juice raised the AUC and Cmax of terfenadine

carboxylate (Rau et al. 1997); the mean QT interval was not changed.
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Cisapride is a widely used gastrointestinal prokinetic agent that can cause prolongation of QT

interval. Coadministration of a single dose of cisapride with grapefruit juice increased cisapride

AUC by about 50% (Gross et al. 1999).

Midazolam and triazolam are short-acting benzodiazepine derivatives that have oral

bioavailability of 40 to 50%. Grapefruit juice 200 ml ingested 60 minutes and 15 minutes

before orally administered midazolam increased the AUC of midazolam by about 50% and

enhanced the pharmacodynamic effects of midazolam (Kupferschmidt et al. 1995). A single

dose of grapefruit juice increased triazolam AUC by approximately 50% and slightly increased

the effects of triazolam (Hukkinen et al. 1995). Vanakoski et al. (1996) concluded that

grapefruit juice may not have an important interaction with midazolam or triazolam.

Coadministration of estradiol derivatives with grapefruit juice has increased significantly

concentrations of the parent drug (Weber et al. 1996) or those of estrogen metabolites

(Schubert et al. 1995). Grapefruit juice has not affected the AUC of prednisone or prednisolone

(Hollander et al. 1995). However, methylprednisolone AUC was increased by 75% by

grapefruit juice (Varis et al. 2000).

The pharmacokinetics of lovastatin, an HMG-CoA reductase inhibitor, were considerably

changed after coadministration with grapefruit juice. The mean Cmax and AUC of lovastatin

were increased approximately 12-fold and 15-fold by grapefruit juice given t.i.d. for 3 days

(Kantola et al. 1998a). Saquinavir is a potent HIV protease inhibitor whose effectiveness is

limited by its low and variable oral bioavailability. Its AUC was increased by 50% by

grapefruit juice 200 ml given twice before administration of this drug (Kupferschmidt et al.

1998).

Grapefruit juice 300 ml increased the AUC(0-8) of carbamazepine by about 41% in epileptic

patients (Garg et al. 1998). Grapefruit juice has been found to reduce oral clearance of the

CYP1A2 substrate caffeine (Fuhr et al. 1993). However, pharmacokinetics of another CYP1A2

substrate, theophylline, remained unaffected (Fuhr et al. 1995).

 In the grapefruit juice-drug studies performed, type (fresh squeezed vs. reconstituted frozen

concentrate), concentration (normal vs. double strength), volume and scheme of administration
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(single dose vs. repeated doses) of grapefruit juice have varied. Also, with respect to

administration of study drug, the protocols have not been uniform. Most studies utilize a single

drug dose. However, in some studies drugs have been given to reach a steady state. This lack of

standardization of experimental conditions makes comparison of study results difficult.

3. CYP3A4 substrates studied

3.1. Buspirone

Buspirone is an anxiolytic agent structurally different from the benzodiazepines; it is an

azaspirodecanedione derivative. Buspirone has been shown to be equipotent as an anxiolytic

with benzodiazepines, but it does not produce sedation, motor impairment, or muscle

relaxation (Goldberg and Finnerty 1979; Cohn and Wilcox 1986; Seppälä et al. 1982;

Greenblatt et al. 1994). Buspirone lacks the potential for abuse or dependence in humans (Cole

et al. 1982; Balster 1990; Sellers et al. 1992). Its most common adverse-effects are dizziness,

drowsiness, gastrointestinal complaints, and headache (Newton et al. 1986).

It has been suggested that buspirone acts as a full or partial agonist for 5-HT1A receptors (Eison

and Temple 1986; Taylor 1988). Like serotonin, buspirone inhibits spontaneous firing of

serotonergic neurons in dorsal raphe nucleus and hippocampal slice preparations. In animal

studies, the anticonflict activity of buspirone has been shown to be abolished when the

serotonergic system is damaged. Unlike benzodiazepines, buspirone does not act by increasing

binding of GABA on the GABA receptors, and it has only a modest effect on the dopaminergic

system (Cimino et al. 1993; Taylor 1988). Buspirone can also increase the spontaneous firing

of noradrenergic neurons in the locus coerulaeus (Eison and Temple 1986).

Buspirone is rapidly and completely absorbed after oral administration (Mayol et al. 1985).

Time to reach the Cmax of buspirone is less than an hour (Gammans et al. 1986). Its systemic

bioavailability is low: less than 5% of an oral dose reaches the systemic circulation; this fact,

together with its good absorption, implies that it is subject to extensive first-pass metabolism

(Mayol et al. 1985). Buspirone is a lipophilic drug with an apparent volume of distribution of

5.3 l/kg. It is highly, over 95%, bound to plasma proteins, both albumin and α1-acid
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glycoprotein (Gammans et al. 1986). Its mean elimination t½ is about 2.5 hours (Mayol et al.

1985). No statistically significant differences in the pharmacokinetics of buspirone have been

found between any age- or sex groups (Gammans et al. 1986). Plasma concentrations of

buspirone are higher in patients with renal impairment than in healthy volunteers (Barbhaiya et

al. 1994), and patients with hepatic impairment have significantly increased AUC values and

significantly prolonged elimination half-lives compared to those of normal subjects (Barbhaiya

et al. 1994).

The major routes of biotransformation of buspirone include hydroxylation on the spiro and

pyrimidine rings and N-dealkylation of the butyl-substituted side chain (Jajoo et al. 1989; Jajoo

et al. 1990). Data concerning specific CYP enzymes involved in its biotransformation are

scarce, but the in vivo interaction profile of buspirone indicates that CYP3A4 is the major CYP

involved in its metabolism (Kivistö et al. 1997; Lamberg et al. 1998a). Plasma concentrations

of two primary metabolites of buspirone, 5-OH-buspirone and 1-PP (1-pyrimidinylpiperazine),

can exceed those of the parent drug (Gammans et al. 1986). Of the two metabolites, 5-OH-

buspirone seems pharmacologically inactive, but 1-PP is about 20% as active as its parent drug.

Relatively few pharmacokinetic studies involve the interactions of buspirone with other drugs.

In a study by Seppälä et al. (1982), alcohol does not interact significantly with buspirone. Food

has been shown to increase the AUC of buspirone by 80%, and it appears that this is due to

reduced first-pass metabolism, as the sum of buspirone and total (free and conjugated) 5-

hydroxybuspirone remained unchanged (Gammans et al. 1986). Gammans et al. (1987) studied

the effect of cimetidine on the pharmacokinetics of buspirone, finding no significant interaction

between these two drugs. Alprazolam and buspirone have no significant effects on each other’s

pharmacokinetics (Buch et al. 1993). Buspirone does not markedly affect the pharmacokinetics

of haloperidol (Huang et al. 1996). A 4-day pretreatment with itraconazole 200 mg/day or

erythromycin 1.5 g/day increased the AUC values of buspirone about 19-fold and 6-fold

(Kivistö et al. 1997). Lamberg and coworkers (1998a) found that a 3-day pretreatment with

verapamil 80 mg/day or diltiazem 60 mg/day increased the AUC of buspirone 3.4-fold and 5.5-

fold. Pretreatment with fluvoxamine moderately increased plasma buspirone concentrations

(Lamberg et al. 1998b), whereas the antihistamine terfenadine had no significant effect on its

pharmacokinetics (Lamberg et al. 1999). Rifampicin, a potent CYP-inducer, has reduced

buspirone AUC by about 90% (Lamberg et al. 1998c).
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3.2. Cisapride

Cisapride is a widely used gastrointestinal prokinetic agent indicated for the treatment of reflux

esophagitis, the symptomatic management of dyspepsia, and the relief of gastric symptoms

associated with diabetes mellitus, systemic sclerosis, and autonomic neuropathy (McCallum

1991). It is structurally a substituted piperidinyl benzamide that is chemically related to

metoclopramide (McCallum 1991). It has been suggested that cisapride interacts with 5-

hydroxytryptamine receptors. It differs from other prokinetic agents in that it has no

antidopaminergic properties. It has been suggested that it exerts its effect by increasing the

physiologic release of acetylcholine from postganglionic nerve-endings of the myenteric

plexus, which leads to improved propulsive motor activity of the esophagus, stomach, small

bowel, and large bowel (McCallum 1991).

Cisapride is well absorbed, and its peak plasma concentration is reached within 2 hours of oral

dosing (Van Peer et al. 1986). However, its absolute bioavailability is estimated at 40 to 50%,

indicating first-pass metabolism (Van Peer et al. 1986). Cisapride is 98% bound to plasma

proteins, and its volume of distribution is about 2 l/kg. Its elimination t½ has been reported to

be 7 to 10 h after oral dosing in healthy volunteers (McCallum 1991). Cisapride is extensively

metabolized, principally by N-dealkylation and aromatic hydroxylation (Van Peer et al. 1986):

oxidative N-dealkylation yields norcisapride, and aromatic hydroxylation yields 3-fluoro-4-

hydroxycisapride and 4-fluoro-2-hydroxycisapride (McCallum et al. 1988). In vitro,

biotransformation of cisapride is catalyzed mainly by CYP3A4 (Desta et al. 1999; Gotschall et

al. 1999; Bohets et al. 2000). Excretion of metabolites in urine and feces each represents 50%

of the dose (Van Peer et al. 1986).

Cisapride is generally well tolerated, gastrointestinal complaints being the most common

adverse effects (McCallum 1991). However, rare cases have been reported of serious

ventricular arrhythmias or long QT syndrome (Lewin et al. 1996; Sekkarie et al. 1997;

Wysowski and Bacsanyi 1996). A prolonged QT interval may result in torsades de pointes, a

ventricular tachycardia that can lead to ventricular fibrillation and be a cause of syncope and

sudden cardiac death. It has been demonstrated that cisapride can dose-dependently block

potassium channels and thus cause prolongation of the QT interval (Drolet et al. 1998). In most

of the cases of arrhythmia during treatment with cisapride, concomitant electrolyte
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disturbances, cardiac abnormalities or comedications that increase cisapride concentrations

appear to have contributed (Wysowski and Bacsanyi 1996).

In 20 healthy preoperative patients, oral cisapride 20 mg increased the Cmax of controlled-

release morphine 20 mg by 56% (Rowbotham et al. 1991). Intravenous cisapride increased

significantly the AUC(0-1) for diazepam without any significant effect on AUC(0-48)

(Bateman 1986). In a study by Finet et al. (1991), cisapride increased the mean AUC(0-6) of

oral cyclosporine by 38%. Kirch et al. (1989) has reported that cisapride reduces the AUC(0-

24) of cimetidine and cimetidine increases the AUC(0-24) of cisapride. Ketoconazole,

itraconazole, and erythromycin, which are known CYP3A4 inhibitors, have been reported to

raise cisapride concentrations (Bedford and Rowbotham 1996). The manufacturer has warned

against concomitant use of cisapride with potent CYP3A4 inhibitors. A combination of

cisapride and clarithromycin has been reported to cause a 3-fold increase in cisapride

concentration and an average increase of 25 ms in QTc interval above the pretreatment value in

healthy volunteers (Van Haarst et al. 1998). In a study by Gross et al. (1999), 250 ml of normal-

strength grapefruit juice increased cisapride AUC(0-25) 1.5-fold. Recently, cisapride was

withdrawn from the market in the USA and in some other countries due to its arrhythmogenic

potential.

3.3. Simvastatin

Simvastatin is a cholesterol-lowering agent which inhibits HMG-CoA reductase, an enzyme

catalyzing a rate-limiting step in the biosynthesis of cholesterol in humans. It is a lipophilic

drug, about 1000-fold more lipophilic than pravastatin (Hamelin and Turgeon 1998).

Simvastatin is administered as an inactive lactone prodrug which is hydrolyzed by

carboxyesterases and nonenzymatically to the active agent simvastatin acid, a competitive

inhibitor of HMG-CoA reductase (Tang and Kalow 1995). It is extensively (61 to 85% in rats

and dogs) absorbed from the gastrointestinal tract when administered orally (Vickers et al.

1990a). A low-fat meal does not impair its absorption. In a study by Pentikäinen et al. (1992)

the peak inhibition of HMG-CoA reductase activity in healthy male volunteers occurred 2.5 h

after a single oral dose. Its bioavailability is low, due to extensive first-pass metabolism. About

7% of an oral simvastatin dose in dogs reached the systemic circulation unchanged (Vickers et
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al. 1990a). Its active metabolites are less lipophilic than the parent compound and tend to

remain in the liver, the organ responsible for synthesis of most endogenous cholesterol

(Vickers et al. 1990a). Both simvastatin and simvastatin acid are highly bound to plasma

proteins, at about 98 and 94% (Vickers et al. 1990a).

Simvastatin has several metabolites identified in human microsomal studies, of which 6’-

hydroxysimvastatin, 3’’-hydroxysimvastatin, 6’-hydroxymethylsimvastatin, and 6’-

hydroxycarbonylsimvastatin, when converted to their acid forms, are 50, 20, 90, and 40% as

active as simvastatin acid, respectively (Vickers et al. 1990b). The inactive lactone form of

simvastatin and its metabolites remain in a reversible equilibrium in plasma with their

corresponding active β-hydroxyacid forms (Vickers et al. 1990a; Vickers et al. 1990b). In

humans, biotransformation of simvastatin occurs mainly by the CYP3A4 expressed in the liver

and small intestine (Prueksaritanont et al. 1997), but unlike simvastatin, simvastatin acid is not

metabolized by mouse or rat liver microsomes. The elimination t½ of simvastatin is about 2

hours (Lennernäs and Fager 1997). Unchanged simvastatin and its metabolites are eliminated

via biliary excretion into the feces. In humans, 13% of a simvastatin dose has been collected in

urine (Mauro 1993).

Simvastatin is usually well tolerated, gastrointestinal adverse effects being the most common

reason for discontinuation of therapy. Mild transient elevations in serum transaminases are seen

in about 3.5% and sustained elevations in about 1% of patients receiving simvastatin. Clinically

symptomatic hepatitis or hepatic dysfunction is rare (Plosker and McTavish 1995). A

potentially severe but rare adverse effect of simvastatin is myopathy, which can proceed to

rhabdomyolysis. Increased risk for myopathy has been associated with concomitant

administration of simvastatin and cyclosporine (Meier et al. 1995). In addition to the

combination of simvastatin and cyclosporine, case reports exist of rhabdomyolysis being

associated with concomitant use of simvastatin and itraconazole (Segaert et al. 1996) or

mibefradil (Schmassmann-Suhijar et al. 1998). All the drugs used concomitantly with

simvastatin in these cases are inhibitors of CYP3A4 (Pelkonen et al. 1998; Welker et al.1998;

Wang et al. 1999). In kidney-transplant patients administered simvastatin, HMG-CoA

reductase inhibitory activity was elevated when they also received cyclosporin (Arnadottir et al.

1993). A 4-day pretreatment with itraconazole 200 mg/day increased the Cmax and AUC of total

simvastatin acid 17-fold and 19-fold, respectively (Neuvonen et al. 1998). In two different



27

studies, pretreatment with erythromycin 2.0 g per day for one week and 1.5 g per day for 2 days

increased the AUC of simvastatin 6.5-fold and 6.2-fold (Donahue et al. 1998; Kantola et al.

1998b). The calcium-channel antagonists verapamil and diltiazem are known inhibitors of

CYP3A4 (Renton 1985). A 2-day administration of verapamil increased the AUC of

simvastatin 4.6-fold (Kantola et al. 1998b). After a two-week treatment with diltizem 120 mg

twice a day, the AUC of simvastatin was increased 5-fold (Mousa et al. 2000).

3.4. Atorvastatin

Atorvastatin is a lipophilic inhibitor of HMG-CoA reductase administered as the calcium salt

of the active hydroxy acid form. The Cmax value of atorvastatin is reached within 2 to 4 hours

after oral administration (Lea and McTavish 1997). More than 40% of an oral dose of

atorvastatin is absorbed from the gastrointestinal tract. Its systemic bioavailability is

approximately 12% because of extensive metabolism during the first pass. Food decreases the

rate of atorvastatin absorption significantly but influences little the extent of absorption

(Radulovic et al. 1995). A greater than proportional increase in Cmax and AUC has been

observed across the 5- to 80-mg dose-range (Whitfield et al. 1993). Atorvastatin is 98% bound

to proteins in plasma (Lea and McTavish 1997). Its two active metabolites, 2-

hydroxyatorvastatin and 4-hydroxyatorvastatin, are formed in reactions catalyzed by CYP3A4.

These two metabolites are just as potent HMG-CoA reductase inhibitors as atorvastatin. About

70% of the AUC of inhibitory activity is accounted for by active metabolites. It has been

assumed that the long-lasting HMG-CoA reductase inhibitory activity of atorvastatin may

reflect the longer residence of atorvastatin or its active metabolites in the liver (Naoumova et

al. 1997). Atorvastatin acid has shown an elimination t½ of 11 to 24 hours, and an HMG-CoA

reductase inhibitory activity that ranges from 20 to 30 hours (Cilla et al. 1996; Lea and

McTavish 1997). Less than 2% of atorvastatin acid and its metabolites are excreted renally (Lea

and McTavish 1997). It has been suggested that atorvastatin may undergo enterohepatic

recycling (Gibson et al. 1996a). Age-related differences in atorvastatin pharmacokinetics have

been observed, possibly due to changes in hepatic clearance. Mean AUC and elimination t½

values have been about 26% greater and 36% longer in the elderly than in young adults (Gibson

et al. 1996a). Furthermore, modest gender-related differences in atorvastatin pharmacokinetics

have been reported, its mean AUC and elimination t½ being approximately 11% lower and 20%
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shorter in women than in men (Gibson et al. 1996a). Patients with hepatic impairment have

significantly higher concentrations of atorvastatin than do healthy volunteers, whereas renal

dysfunction does not alter the pharmacokinetics of atorvastatin (Gibson et al. 1996b; Stern et

al. 1997).

Atorvastatin is usually well tolerated but can cause gastrointestinal discomfort. There is at least

one reported case of rhabdomyolysis in association with concomitant use of atorvastatin and

gemfibrozil (Duell et al. 1998).

Atorvastatin 40 mg twice daily was found not to affect the oxidative metabolism of antipyrine

(Yang et al. 1996). Coadministration with atorvastatin 80 mg/day resulted in a 8% decrease and

35% increase in the Cmax and AUC of terfenadine, respectively, compared with values after

ingestion of terfenadine alone (Stern et al. 1998a). A 10-day administration of atorvastatin 80

mg/day increased the Cmax and AUC of digoxin 20% and 15% (Boyd et al. 2000). During

coadministration of atorvastatin 10 mg once daily with cimetidine 300 mg four times daily for

2 weeks, the AUC of atorvastatin (measured by REA) remained unchanged (Stern et al. 1998b).

The Cmax and AUC of atorvastatin, measured as HMG-CoA reductase inhibitors, were

increased 38% and 33%, respectively, by erythromycin 500 mg 4 times daily for 7 days (Siedlik

et al. 1999). A 4-day pretreatment with itraconazole 200 mg/day increased the AUC of

atorvastatin acid and of atorvastatin lactone about 3- and 4-fold, respectively. Furthermore, the

mean AUC of 2-hydroxyatorvastatin and of 2-hydroxyatorvastatin lactone was decreased by

43% and 62% by itraconazole (Kantola et al. 1998c).

3.5. Pravastatin

Pravastatin is a hydrophilic HMG-CoA reductase inhibitor administered in its active open acid

form. Following oral ingestion, it is absorbed rapidly, and Cmax is reached at approximately one

hour (Pan 1991). After oral administration, about 34% of the dose is absorbed. The absolute

bioavailability of pravastatin averages 18%, indicating that about 50% of the ingested dose

undergoes presystemic metabolism (Singhvi et al. 1990). The Cmax and AUC values of

pravastatin are dose-proportional (Pan et al. 1990a). In hypercholesterolemic patients, its

bioavailability is reduced by about 30% when it is taken with food (Pan et al. 1993).
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Approximately 50% of the circulating pravastatin is bound to plasma proteins. Its volume of

distribution in steady-state conditions and during the elimination phase averages 0.46 and 0.88

l/kg (Singhvi et al. 1990). Total and renal clearance values average 13.5 and 6.5 ml/min/kg,

respectively. Its elimination t½ is about 2 hours (Pan 1991). After i.v. administration of

radiolabeled pravastatin, 60% was recovered in urine and 34% in feces, indicating substantial

biliary excretion (Singhvi et al. 1990). Following oral ingestion, recovery of radioactivity was

20% in urine and 71% in feces (Singhvi et al. 1990).

Pravastatin is extensively metabolized during the first pass and has a hepatic extraction ratio of

0.66 (Pan et al. 1991). It has two major metabolites, the 3α-hydroxy isomeric metabolite and

3α,5β,6β-trihydroxy isomeric metabolite (Everett et al. 1991). The former of these possesses

1/40 of the pharmacologic activity of the parent drug, whereas the latter is considered inactive.

At least 15 other metabolites have been identified in urine, feces, and plasma (Everett et al.

1991). Pravastatin accounts for about 75% of the serum AUC for HMG-CoA reductase

inhibitory activity (Pan et al. 1990b). In vitro, its biotransformation is partly inhibited by

CYP3A4 inhibitors; some other CYP enzymes appear also to play a role in its metabolism

(Jacobsen et al. 1999).

As with other HMG-CoA reductase inhibitors, gastrointestinal complaints are the most

common adverse effects related to therapy with pravastatin. In a 2.5-year follow-up study in

heart-transplant patients, pravastatin was discontinued in a few cases due to myopathy after its

coadministration with cyclosporine (Park et al. 1998).

In renal-transplant patients receiving cyclosporine, considerably elevated values have been

found for Cmax and AUC (Regazzi et al. 1994; Olbricht et al. 1997). In a study by Pan et al.

(1991), propranolol reduced the mean AUC value of total inhibitors by 23% and that of

pravastatin by 16%. Digoxin did not significantly alter steady-state pharmacokinetics of

pravastatin (Triscari et al. 1993). A 7-day treatment with erythromycin 500 mg 4 times daily

increased the Cmax and AUC of pravastatin 2.2-fold and 1.7-fold (Donahue et al. 1998). A 4-

day administration of itraconazole 200 mg once daily resulted in a slight but statistically

nonsignificant increase in the AUC of pravastatin and a 1.7-fold increased AUC value for total

inhibitors (Neuvonen et al. 1998). A 2-week pretreatment with diltiazem 120 mg twice daily

did not affect the Cmax or AUC of pravastatin (Azie et al. 1998).
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3.6. Triazolam

Triazolam, structurally a triazolobenzodiazepine and closely related to alprazolam and

midazolam, is a short-acting benzodiazepine hypnotic. It binds to benzodiazepine receptors and

enhances GABAergic synaptic inhibition in the central nervous system. After oral

administration, about 85% of a triazolam dose is absorbed. Its tmax is from 1 to 2 hours. It has

an oral bioavailability of 50 to 60%, indicating that it is subject to first-pass metabolism. It is

about 90% bound to plasma proteins. Triazolam has an apparent volume of distribution of 1.1

l/kg. Its elimination t½ ranges from 2 to 4 hours (Eberts et al. 1981).

Triazolam is extensively metabolized and has two major metabolites, α-hydroxy- and 4-

hydroxytriazolam (Eberts et al. 1981). Of these, α-hydroxytriazolam, but not 4-

hydroxytriazolam, shows pharmacological activity (Ziegler et al. 1983). Triazolam is primarily

biotransformed by CYP3A4 (Kronbach et al. 1989; von Moltke et al. 1996), and its metabolites

are subsequently glucuronized, with about 90% of the dose excreted renally. Apparent oral

clearance of triazolam has been shown to be significantly reduced in elderly as compared with

young subjects (Greenblatt et al. 1983). The pharmacokinetics of triazolam have not been

found to differ between patients with hepatic cirrhosis and healthy volunteers (Robin et al.

1993). Its elimination was unaffected by renal disease (Kroboth et al. 1985).

Like other benzodiazepines, triazolam exhibits hypnotic, muscle relaxant, and anticonvulsant

effects in animals; in humans it shortens the time to onset of sleep, increases total sleep

duration, and decreases the frequency of nocturnal awakening. Large doses of triazolam can

cause ventilatory suppression. It impairs cognitive and psychomotor functions like driving

skills (Pakes et al. 1981). Its main adverse effects include amnesic episodes, rebound anxiety,

and aggression (Dollery 1999).

Triazolam has been shown to be very susceptible to interactions with CYP3A4 inhibitors.

Erythromycin pretreatment 333 mg t.i.d. for three days doubled triazolam AUC (Phillips et al.

1986). The azole antifungals itraconazole and ketoconazole increased the AUC of triazolam

27-fold and 22-fold and prolonged triazolam t½ 7-fold and 6-fold, respectively (Varhe et al.

1994), markedly increasing the intensity and duration of triazolam effects. Its AUC was

increased by fluconazole but not by terbinafine (Varhe et al. 1996a). The calcium-channel
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antagonist diltiazem also increased triazolam concentrations (Varhe et al. 1996b; Kosuge et al.

1997). A single dose of grapefruit juice increased its AUC by about 50% and slightly increased

its effects (Hukkinen et al. 1995).
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AIMS OF THE STUDY

The overall aim of this study was to discover the potential of grapefruit juice to affect the

pharmacokinetics of drugs metabolized to varying degree during their first-pass and elimination

phases by CYP3A4 and to characterize factors that determine grapefruit juice-drug interaction.

More specific aims of this study were:

To study the possible effects of multiple-dose grapefruit juice on the pharmacokinetics of

buspirone, cisapride, simvastatin, atorvastatin, pravastatin, and triazolam (Studies I-V).

To investigate the effect of differing doses of grapefruit juice on the extent of interaction, with

triazolam serving as a model of a CYP3A4 substrate (Study V).

To study the duration of effect of grapefruit juice on the pharmacokinetics of CYP3A4

substrate, with simvastatin serving as a model drug (Study VI).
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MATERIALS AND METHODS

1. Subjects

After receiving adequate written and oral information on the study protocols, all volunteers

gave their written consent before entering the study. All studies were conducted according to

the Declaration of Helsinki. The study protocols were approved by the Ethics Committee of the

Department of Clinical Pharmacology, University of Helsinki. The Finnish National Agency

for Medicines was informed about the studies.

Each study included 10 to 12 healthy volunteers (age range, 19 to 34 years; weight range, 50 to

101 kg); in total, 62 subjects (35 males, 27 females) participated. Ten subjects participated in

more than one study: seven subjects two times, two subjects three times, and one subject four

times. None was a regular smoker. The volunteers used no continuous medication except for 12

female subjects taking oral contraceptive steroids. All were considered to be healthy according

to medical history, clinical examination, and routine laboratory tests (e.g., blood hemoglobin,

serum alanine aminotransferase, creatinine, and creatine kinase). In addition, in Study II, a 12-

lead electrocardiogram was taken before and during the study. None of the female subjects was

pregnant or nursing, and they were instructed to avoid becoming pregnant during the study.

Excessive alcohol consumption was an exclusion criterion. Subjects who had taken any kind of

medication relevant to the study during the 4 weeks prior to the study, who had donated blood,

or who had participated in other studies involving drugs during the 4 weeks prior to the study

were excluded.
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2. Study designs

All the study drugs were in current clinical use in Finland, and only oral formulations were

used. Studies I, II, III, and IV were randomized, cross-over studies with two phases (one of

which served as a control). Study IV comprised two different studies (a and b). The phases

were separated by a 2-week washout period (3 weeks in Study IV). Study V was a randomized,

cross-over study with four phases (one control phase) and washout periods of 2 weeks. Study

VI was a nonrandomized cross-over study with five phases. Following ingestion of the drug,

timed blood samples were taken for up 12 to 72 hours for the determination of the plasma or

serum drug concentrations. Study designs are summarized below and in Table 1.

In each study, the volunteers ate a standard meal 3 to 4 hours following the administration of

the drug and then a standard light meal 7 to 8 hours afterwards. Use of alcohol or, coffee and

cola drinks or smoking during the study days was not allowed. Consumption of grapefruit

products was forbidden during the pretreatment periods and study days except for intake

according to the protocol. The same grapefruit juice brand was used in every study, Minute

Maid frozen concentrated grapefruit juice (12 ounces [355 ml]), from Coca Cola Foods,

Houston, Texas, USA. Before administration, the grapefruit juice was made at double strength

with tap water in Studies I to VI (50/50, vol/vol). In addition, also normal-strength grapefruit

juice was used in Study V (25/75, vol/vol).
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Table 1. Structure of the studies. GFJ = grapefruit juice

Study
No.

Pretreatment Washout
period
weeks

Study drug Administration of
study drug
day             hours

I GFJ (double strength) 200 ml t.i.d
for 2 days (at 7.00-8.00, 12.00-
13.00, and 20.00-21.00) plus on
day 3 (at 9.00, 9.30, and 10.30)

Water

2 Buspirone 10 mg  3                9.00-9.30

II As in Study I 2 Cisapride 10 mg 3                 9.00-9.30

III As in Study I 2 Simvastatin 60 mg 3                 9.00-9.30

IVa
IVb

As in Study I
As in Study I

3
3

Atorvastatin 40 mg
Pravastatin 40 mg

3                 9.00-9.30
3                 9.00-9.30

V Water
GFJ 200 ml (normal strength)
GFJ 200 ml (double strength)
GFJ as in Study I

2 Triazolam 0.25 mg 1                 9.00-9.30
1                 9.00-9.30
1                 9.00-9.30
3                 9.00-9.30

VI Water
GFJ as in Study I
GFJ as in Study I
GFJ as in Study I
GFJ as in Study I

See text Simvastatin 40 mg 1                 9.00-9.30
3                 9.00-9.30
6                 9.00-9.30
4                 9.00-9.30
10               9.00-9.30
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Study I

Ten volunteers (4 males, 6 females, 2 OC-users) participated in a randomized cross-over study

with  two phases separated by a 2-week washout period. Pretreatments were double-strength

grapefruit juice or water 200 ml t.i.d. for 2 days. On the third day, a single 10-mg dose of

buspirone (Buspar, Bristol-Myers Squibb, Espoo, Finland) was ingested at 9 a.m. with 200 ml

double-strength grapefruit juice or water. In addition, 200 ml grapefruit juice or water was

ingested ½ and 1½ hours after the drug. Blood samples were obtained for 12 hours after

administration for determination of plasma concentrations of buspirone. Psychomotor tests

were performed for 8 hours to measure the effects of buspirone.

Study II

Ten healthy volunteers (all males) participated in this randomized cross-over study with a 2-

week washout period. Pretreatments were identical to those in Study I. On the third day, the

subjects were given 10 mg cisapride (one 10-mg Prepulsid tablet, Janssen-Cilag, Beerse,

Belgium) at 9 a.m. with double-strength grapefruit juice or water 200 ml. In addition, 200 ml

grapefruit juice or water was ingested ½ and 1½ hours after the drug. Blood samples were

drawn for up to 36 hours after the drug for determination of plasma concentrations of cisapride.

In addition, 12-lead ECGs were taken before and 2, 5, 8, and 12 hours after the drug.

Study III

Ten volunteers (5 males, 5 females, 3 OC-users) participated in a randomized cross-over study

with two phases, separated by a 2-week washout period. Pretreatments were identical to those

in Study I. On the third day, the volunteers received simvastatin 60 mg (3 Zocor 20 mg tablets,

Merck Sharp & Dohme BV, Haarlem, The Netherlands) at 9 a.m. with double-strength

grapefruit juice or water 200 ml. In addition, 200 ml grapefruit juice or water was ingested ½

and 1½ hours after the drug. Blood samples were drawn as in Study I - except that blood was

not sampled at 1½ hours - for determination of serum concentrations of simvastatin,

simvastatin acid, and HMG-CoA reductase inhibitors.
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Study IV

This study included two separate investigations, IVa and IVb. Study design and pretreatments

were in both investigations as in previous studies. A 3-week washout period was used. In Study

IVa, 12 healthy volunteers (6 males and 6 females, 4 OC-users) received on the third day 40 mg

atorvastatin (two 20-mg Lipitor tablets, Warner Lambert Nordic AB, Solna, Sweden) at 9 a.m.

with double-strength grapefruit juice or water 200 ml. In addition, 200 ml grapefruit juice or

water was ingested ½ and 1½ hours after the drug. After the third day, the subjects continued to

drink double-strength grapefruit juice or water 200 ml t.i.d. for 2 more  days. Blood samples

were obtained for 72 hours after the drug administration for determination of serum

concentrations of atorvastatin acid, its metabolites, and HMG-CoA reductase inhibitors. In

Study IVb, the volunteers (3 males and 8 females, 1 OC-user) received 40 mg pravastatin (two

20-mg Pravachol tablets, Bristol-Myers Squibb, Bromma, Sweden) at 9 a.m. with double-

strength grapefruit juice or water 200 ml. In addition, 200 ml grapefruit juice or water was

ingested ½ and 1½ hours after the drug. Blood samples were obtained for 24 hours after the

drug for determination of serum concentrations of pravastatin, pravastatin lactone, and HMG-

CoA reductase inhibitors.

Study V

Twelve subjects (6 males, 6 females, 3 OC-users) participated in this randomized cross-over

study that consisted of four phases with 2-week washout periods. Volunteers received 0.25 mg

triazolam (Halcion, Upjohn, Kalamazoo, MI, USA) with 200 ml water, 200 ml normal-strength

or double-strength grapefruit juice, or on the third day of repeated (t.i.d.) administration of

double-strength grapefruit juice (as in previous studies). Blood samples were collected for 23

hours after the drug for determination of plasma concentrations of triazolam, and the effects of

triazolam were measured by four psychomotor tests for up to 10 hours.

Study VI

This cross-over study consisted of three parts and 5 study days, during each study day 10

healthy volunteers (9 males and 1 female) received 40 mg simvastatin (two Zocor 20 mg

tablets, Merck Sharp & Dohme BV, Haarlem, The Netherlands). The three parts of the study
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were separated by an interval of 2 weeks to allow simvastatin-free days between the study days.

In the first part of the study, each volunteer was administered 40 mg simvastatin at 9 a.m. with

200 ml water. In the second study part, volunteers received juice as pre-treatment exactly as in

Study I. On day 3, each subject was given 40 mg simvastatin at 9 a.m. with 200 ml grapefruit

juice. In addition, the subjects ingested juice ½ and 1½ hours after simvastatin intake. Three

days after the last dose of grapefruit juice, 40 mg simvastatin was given with water at 9 a.m. In

the third study part, the subjects ingested grapefruit juice t.i.d. for 3 days as in the second part

of the study. Twenty-four hours after the last dose of grapefruit juice, each subject received 40

mg simvastatin with water at 9 a.m. Seven days after the last dose of grapefruit juice, each

subject was given 40 mg simvastatin water at 9 a.m. Blood samples were collected for 12 hours

after the drug for determination of serum concentrations of simvastatin and simvastatin acid.

3. Blood sampling

On the day of administration of the study drug, a forearm vein was cannulated with a plastic

cannula and kept patent with an obturator. Timed blood samples were drawn before

administration of buspirone and ½, 1, 1½, 2, 3, 4, 5, 6, 8, 10, and 12 hours afterwards in Study

I. In Study II, blood samples were obtained before administration of cisapride and ½, 1, 1½, 2,

3, 4, 5, 6, 9, 12, 24, and 32 hours afterwards. In Study III, the blood samples were collected

before administration of simvastatin and at ½, 1, 2, 3, 4, 5, 6, 8, 10, and 12 hours. In Studies

IVa and IVb, the time-points for blood sampling were before and ½, 1, 2, 3, 4, 6, 8, 10, 12, 24,

36, 48, and 72 hours after administration of atorvastatin, and before and ½, 1, 2, 3, 4, 6, 8, 10,

12, and 24 hours after administration of pravastatin. In Study V, blood samples were obtained

before administration of triazolam and at ½, 1, 1½, 2, 3, 4, 5, 6, 8, 10, and 23 hours. In Study

VI, the blood samples were drawn before and 1, 2, 3, 4, 6, 8, 10, and 12 hours after

administration of simvastatin. The blood samples were drawn into tubes containing

ethylenediaminetetra-acetic acid (EDTA) in Studies I, II, and V and into siliconized Venoject

tubes in Studies III, IV, and VI. Plasma or serum was separated within 30 minutes after blood

sampling and stored at -70°C.
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4. Determination of drug concentrations

Buspirone (Study I). Plasma buspirone concentrations were measured by means of a gas

chromatographic method that involved solid-phase extraction and nitrogen-phosphorus

detection (Gaillard et al. 1993; Kivistö et al. 1999). Zolpidem served as an internal standard.

The limit of quantification was 0.20 ng/ml. The between-day coefficient of variation (CV) was

< 11%.

Cisapride (Study II). Plasma concentrations of cisapride were determined by use of reversed-

phase high-performance liquid chromatography (HPLC) that involved solid phase extraction

(Woestenborghs et al. 1988) and fluorescence detection (Preechagoon and Charles 1995).

Metoclopramide served as an internal standard. The quantification limit for cisapride was 2.0

ng/ml. The between-day CV was < 13%.

Simvastatin, simvastatin acid, and active and total HMG-CoA reductase inhibitors (Study

III). Serum concentrations of simvastatin and simvastatin acid were measured by turbo

ionspray liquid chromatography-tandem mass spectrometry (LC-MS-MS) in the positive ion

mode as described in the original paper (Study III). The limit of quantification was 0.5 ng/ml

for simvastatin and simvastatin acid and the interassay CV < 8%.

In Studies III and IV, the serum concentrations of statins and their metabolites were determined

by means of a nonspecific radioenzyme inhibition assay (REA) in addition to a specific method

(LC-MS-MS). In REA, serum samples were assayed for inherent (active) HMG-CoA reductase

inhibitory activity resulting from the β-hydroxyacid form of the parent drug and active

metabolites, and after base hydrolysis which converts inactive lactones to active species (total

inhibitory activity). This method is considered to be nonspecific because it quantitates the

inhibitory activity against HMG-CoA reductase activity rather than actual concentrations of a

drug or its metabolite(s).

Serum concentrations of active and total HMG-CoA reductase inhibitors were measured in

Study III as described by Manning et al. (1989). Base hydrolysis was achieved by incubation of

0.1 ml serum with 0.01 N potassium hydroxide. Concentrations were reported as nanogram

equivalents (ng-eq) of simvastatin acid per milliliter. The limits of quantification for active and



40

total HMG-CoA reductase inhibitors were 1.0 ng-eq/ml and 2.0 ng-eq/ml. For active HMG-

CoA reductase inhibitors, the interassay CV was < 12 %. For total HMG-CoA reductase

inhibitors, the interassay CV was 5% or less.

Atorvastatin acid, its metabolites, pravastatin, pravastatin lactone, and active and total

HMG-CoA reductase inhibitors (Study IV). Atorvastatin and its metabolites were quantified

by LC-MS-MS, as described in the original paper (Study IVa). The limit of quantification was

0.5 ng/ml for all analytes. The interassay CV was < 10% for all analytes at relevant

concentrations.

In Study IVb, serum concentrations of pravastatin and pravastatin lactone were determined by

liquid chromatography with electronspray tandem mass spectrometry in the positive ion mode

(LC-MS-MS). The limit of quantification was 0.5 ng/ml for pravastatin and its lactone. The CV

was ≤ 8% for both analytes at relevant concentrations.

Serum concentrations of active (no hydrolysis) and total (after hydrolysis of lactones) HMG-

CoA reductase inhibitors were determined with the use of REA (Manning et al. 1989).

Concentrations were reported as nanogram-equivalents (ng-eq) of atorvastatin acid per

milliliter (Study IVa) and as nanogram-equivalents (ng-eq) of pravastatin sodium per milliliter

(Study IVb). The quantification limit for active and total HMG-CoA reductase inhibitors was

0.5 and 1.0 ng-eq/ml, in Study IVa. In Study IVb, the quantification limit for active and total

HMG-CoA reductase inhibitors was 2.0 and 5.0 ng-eq/ml. The CV was < 10% for all analytes

at relevant concentrations.

Triazolam (Study V). Plasma triazolam concentrations were determined by use of capillary

gas chromatography (Gaillard et al. 1993). This method involved solid phase extraction and

electron-capture detection. The limit of quantification was 0.1 ng/ml. The between-day CV was

< 16%.

Simvastatin and simvastatin acid (Study VI). Serum concentrations of simvastatin and

simvastatin acid were assayed by use of turbo ionspray LC-MS-MS in the positive ion mode as

described in the original paper (Study III). The quantification limit was 0.1 ng/ml for both
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simvastatin and simvastatin acid. The between-day CV for simvastatin acid was < 12%. The

between-day CV for simvastatin was   < 15%.

5. Pharmacokinetic calculations

The pharmacokinetics of the study drugs were characterized by the following variables: the

peak concentration in plasma or serum (Cmax), time of peak concentration (tmax), the elimination

half-life (t½), and areas under the plasma or serum concentration-time curve [AUC(0-t) and

AUC(0-∞)]. The Cmax and tmax values were obtained directly from the original data. The

terminal log-linear phase of the plasma or serum drug concentration-time curve was identified

visually for each subject. The elimination coefficient (kel) was determined from the log-linear

phase of the drug concentration-time curve by linear regression analysis. The t½ was calculated

by the equation: t½ = ln2/kel. The AUC(0-t) values were calculated by use of the trapezoidal

rule. The AUC(0-∞) was obtained by adding to the AUC(0-t) the residual area AUC(t-∞)

calculated as the last measurable concentration divided by the kel. Pharmacokinetic calculations

were performed with the pharmacokinetic program MK-Model, version 5.0 (Biosoft,

Cambridge, UK) in all studies, except for Study III, in which the Top Fit version 2.0 program

(Dr. Karl Thomae GmbH, Schering AG, Gödecke AG, Germany) was used.

6. Pharmacodynamic testing

The effects of buspirone and triazolam were tested in Studies I and V, respectively. Six

different tests were used in Study I: subjective drug effect, subjective drowsiness, DSST,

CFFT, and postural sway with eyes open and eyes closed. In Study V, the same tests were used

as in Study I except for postural sway. Pharmacodynamic measurements were performed after

each blood sampling for up to 8 hours in Study I and up to 10 hours in Study V. The volunteers

were trained to perform the psychomotor tests properly before the commencement of each trial.

Subjective drug effect. Subjective drug effect was evaluated on a 100 mm-long horizontal

visual analogue scale (VAS) with adjectives with opposite meanings at both ends. The subject
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puts a mark somewhere on this scale as a self-rating of his or her feelings at the moment. In this

test, the scale ranges from No drug effect to Maximal drug effect, expressed in Finnish.

Subjective drowsiness. The performance of this test is identical to that of the subjective drug

effect, except that Alert and Drowsy are at the ends of the scale for self-evaluation of subjective

drowsiness.

DSST. The Digit Symbol Substitution Test has been demonstrated to be sensitive for

measuring both cognitive and motor effects of psychoactive drugs (Stone 1984). In this test, the

volunteer substitutes digits (1-9) for simple coded symbols. The number of correctly substituted

digits in 3 minutes was the test result in Study I. In Study V, the recording time was 2 minutes.

To prevent subjects’ learning the code, the symbols corresponding to the digits were different

at the each time of recording.

CFFT. The results of this test are affected by the sensitivity of the visual cortex, the state of

arousal of the CNS, and the integrative activity of the CNS (Smith and Misiak 1976). In this

test, discrimination of the fusion of a flickering red light is measured. For the first

measurement, the frequency of flickering constantly increases, and the subject indicates the

point at which the flickering lights give the sensation of a steady light. This threshold frequency

expressed in Hertz is the result of the measurement. After this, another measurement is

performed during which lights flicker at a decreasing frequency, and the subject indicates the

point at which flickering is distinguishable. The mean of these two measurements is the result

of the test. The distance from the eyes of the volunteer to the flickering lights is standardized to

1 m. To control variations in pupillary diameter, special spectacles are worn, and illumination

is kept constant during each study day. It has been shown that hypnotics like benzodiazepines

reduce the test score and stimulants such as amphetamine increase it (Smith and Misiak 1976;

Longbottom and Pleuvry 1984).

Postural sway. In this test, postural sway of the subject standing on a metal plate is recorded

by means of a computer-controlled swaymeter (Erikois-Elektroniikka Ltd., Orimattila,

Finland). The recorded parameter is the speed of the subject’s mass center (mm/min). The

measurement time is 30 seconds with the subject’s eyes open and thereafter 30 seconds with

the eyes closed. Body sway is an indicator of corrective mechanisms to maintain an upright
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posture (Robin et al. 1991). The precision at which the automatic equilibration system of a

subject maintains the center of gravity close to the mid-position depends on the subject’s state

of arousal (Patat and Foulhoux 1985). Benzodiazepines have been shown to increase body

sway (Backman et al. 1996), whereas buspirone has had negligible effects (Lamberg et al.

1998a).

The incremental (body sway, VAS) or decremental (DSST, CFFT) area under the effect-

against-time curve (i.e., areas above or below baseline) was calculated by the linear trapezoidal

rule from 0 to 4 hours and from 0 to 8 hours in Study I and from 0 to 6 hours in Study V.

ECG recording

In Study II, 12-lead ECG recordings were taken before the administration of cisapride and 2, 5,

8, and 12 hours later. Heart rate and ECG intervals (PQ, QRS, and QT) were measured with

automated software (Cardiovit AT-6, Schiller, Switzerland). The QT interval was corrected for

heart rate by dividing the measured QT interval by the square root of the RR interval (QTc

interval).

7. Statistical analysis

Data are expressed as mean values ± SEM (Studies I and III), mean values ± SD (Studies II, IV-

VI), or median with range in the case of tmax. Results are presented in the figures as mean

values ± SEM. Pharmacokinetic variables were log-transformed before analysis when

appropriate. In Studies I to IV, continuous pharmacokinetic variables (Cmax, t½, AUC),

pharmacodynamic variables (AUC values in Study I), and QTc data (Study II) between the

phases were compared with use of the Student t-test (two-tailed). The tmax values were

compared with the Wilcoxon signed rank test. In Studies V and VI, the pharmacokinetic

variables and the AUC values for pharmacodynamic tests (Study V) between the phases were

compared with use of analysis of variance (ANOVA); a posteriori testing was done by the

Tukey test. The tmax values were compared with Friedman’s two-way ANOVA, followed by the

Wilcoxon test. Pearson’s linear correlation coefficient was used to test linear correlations in

Study II. In all studies, p < 0.05 was considered to be statistically significant. The statistical
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analyses were performed with the statistical program Systat, version 5.0 (Systat, Evanston, IN,

USA) in Studies I to IV, and version 6.0.1 (SPSS, Chicago, IL, USA) in Studies V and VI.



45

RESULTS

1. Effects of grapefruit juice on the pharmacokinetics of buspirone (Study I)

Grapefruit juice had a considerable effect on plasma concentrations of buspirone (Table 2, Figs.

1 and 2). The mean Cmax of buspirone was increased by grapefruit juice about 4-fold (p < 0.01),

and its mean AUC(0-∞) was affected even more, a mean 9-fold (range, 3-fold to 20-fold; p <

0.01). The tmax of buspirone occurred significantly later in the grapefruit juice than in the water

phase (3 hours versus 0.75 hour; p < 0.01). Its t½ was 1.8 hours in the water phase and 2.7

hours in the grapefruit juice phase (p < 0.01).

The results of the pharmacodynamic tests were only modestly affected by grapefruit juice

ingestion. The subjective overall drug effect was significantly (p < 0.01) increased, but no other

differences appeared between the grapefruit juice and the water phase in the psychomotor tests.

Mild side-effects were reported by 8 subjects during the grapefruit juice and 7 subjects during

the water phase. These side-effects resolved spontaneously within 1 to 3 hours in all cases.

2. Effects of grapefruit juice on the pharmacokinetics of cisapride (Study II)

Grapefruit juice considerably increased cisapride concentrations (Table 2, Figs. 1 and 2). The

mean Cmax and AUC(0-∞) of cisapride were increased by 81% and 144% (p < 0.01). The tmax of

cisapride occurred significantly later in the grapefruit juice than in the water phase (2.5 hours

versus 1.5 hours; p < 0.05). Grapefruit juice increased the elimination t½ of cisapride by about

24% (p < 0.05).

The mean QTc interval at 5 hours was slightly higher than the baseline value during both study

phases (p < 0.01), with no significant difference in QTc interval found between the phases at

any time-point.
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3. Effects of grapefruit juice on the pharmacokinetics of simvastatin (Study III)

Grapefruit juice caused great changes in the pharmacokinetics of simvastatin and its active

form, simvastatin acid (Table 2, Figs. 1 and 2). The mean Cmax and AUC(0-∞) values of

simvastatin were increased approximately 9-fold (p < 0.01) and 16-fold (p < 0.05). During this

phase, the tmax of simvastatin was nonsignificantly delayed compared with the water phase (p =

0.065). The t½ of simvastatin was not changed by grapefruit juice. The ratio of the Cmax of

simvastatin in the grapefruit juice to that of the water phase ranged from 5.1 to 31.4; the

corresponding ratio for the AUC(0-∞) ranged from 9.0 to 37.7. The Cmax and AUC(0-∞) of

simvastatin acid were increased about 7-fold (p < 0.01) by grapefruit juice, but the tmax and t½

of simvastatin acid remained unaltered.

The mean AUC(0-∞) of active and total HMG-CoA reductase inhibitors were increased 2.4-

and 3.6-fold (p < 0.01) by grapefruit juice. The individual changes ranged from 1.0- to 4.1-fold

for the AUC(0-∞) of active inhibitors and from 2.2 to 7.7-fold for the AUC(0-∞) of total

inhibitors.

4. Effects of grapefruit juice on the pharmacokinetics of atorvastatin and pravastatin

(Study IV)

Multiple-dose grapefruit juice (ingested on a total of 5 consecutive days) significantly elevated

serum concentrations of atorvastatin acid and atorvastatin lactone and reduced formation of 2-

hydroxyatorvastatin (Table 2, Figs. 1 and 2). The Cmax of atorvastatin acid remained

unchanged, whereas the AUC(0-72) was increased about 2.5-fold (p < 0.01) by grapefruit juice,

with individual increases ranging from 1.7- to 5.7-fold. The median tmax of atorvastatin acid

was prolonged from 1 hour to 3 hours (p < 0.01). The elimination t½ of atorvastatin acid

increased from 7.8 hours in the water to 13.3 hours in the grapefruit-juice phase (p < 0.01).

Grapefruit juice increased the mean Cmax and AUC(0-72) of atorvastatin lactone 2.6-fold and

3.3-fold (p < 0.01). The median tmax of atorvastatin lactone was prolonged from 3 to 4 hours (p

< 0.05), and the mean elimination t½ from 8.3 to 12.6 hours (p < 0.05) by grapefruit juice.
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After grapefruit juice ingestion, the mean Cmax and AUC(0-72) of 2-hydroxyatorvastatin acid

were 25% (p < 0.001) and 58% (p < 0.001), of corresponding values in the water phase. The

median tmax of 2-hydroxyatorvastatin acid was prolonged from 1.5 to 10 hours (p < 0.01), and

the mean elimination t½  from 9.7 to 17.7 hours (p < 0.001) by grapefruit juice. Grapefruit juice

decreased the mean Cmax and AUC(0-72) of 2-hydroxyatorvastatin lactone to 44% (p < 0.001)

and 80% (p < 0.05), of the corresponding values in the water phase. The median tmax was

increased from 3.5 to 10 hours (p < 0.01) and the mean elimination t½ from 10.3 to 15.0 hours

(p < 0.05).

During the grapefruit-juice phase, the mean AUC(0-72) of active and total HMG-CoA

reductase inhibitors were 28% (p < 0.05) and 50% (p < 0.01) greater than in the water phase.

The mean elimination t½ of total HMG-CoA reductase inhibitors averaged 13.4 hours with

water and 17.0 hours with grapefruit juice (p < 0.01).

Grapefruit juice showed no significant effects on the pharmacokinetics of pravastatin, with the

AUC(0-24), Cmax, tmax, and elimination t½ remaining unchanged (Table 2, Figs. 1 and 2). In

addition, grapefruit juice did not alter the AUC(0-24), Cmax, or tmax of pravastatin lactone; the

elimination t½ of pravastatin lactone could not be calculated because of low serum

concentrations. Grapefruit juice did not significantly affect the AUC(0-24), Cmax, or t½ of active

or total HMG-CoA reductase inhibitors. The median tmax of total HMG-CoA reductase

inhibitors remained unaltered, whereas that of active HMG-CoA reductase inhibitors was

increased from 1 to 2 hours (p < 0.05).

5. Effect of grapefruit juice dose on the interaction between grapefruit juice and

triazolam (Study V)

The AUC(0-∞) of triazolam was increased by 53% (p < 0.01), 49% (p < 0.0l), and 143% (p <

0.001) by a single dose of normal-strength, by a single dose of double-strength, and by

multiple-dose double-strength grapefruit juice, respectively (Table 2, Fig. 1). The Cmax of

triazolam was increased by 40% by a single dose of normal-strength grapefruit juice (p < 0.01)

and multiple-dose grapefruit juice (p < 0.01) and by 25% by a single dose of double-strength

grapefruit juice (p < 0.05; Table 2, Fig. 2). The increase in the AUC(0-∞) of triazolam was
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significantly (p < 0.001) greater after repeated consumption of grapefruit juice than after a

single dose of normal- or double-strength grapefruit juice. Multiple-dose administration of

grapefruit juice increased the t½ of triazolam by 54% (p < 0.001), whereas it was not

significantly changed by a single dose of either normal- or double-strength juice.

The effects of triazolam were significantly (p < 0.05) increased by multiple-dose administration

of grapefruit juice according to the DSST and based on VAS tests for overall drug effect, and

drowsiness.

Figure 1. Mean AUC values of study drugs after ingestion of grapefruit juice 200 ml t.i.d. for 3

days, expressed as percentages of corresponding values during the water phase (control). Simva

= simvastatin; Buspi = buspirone; Cisa = cisapride; Atorva = atorvastatin; Triaz = triazolam;

Prava = pravastatin.
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6. Duration of effect of grapefruit juice on the pharmacokinetics of simvastatin (Study

VI)

Concomitant administration with grapefruit juice increased the mean Cmax and AUC(0-∞) of

simvastatin 12.0-fold (p < 0.001) and 13.5-fold (p < 0.001), compared with the water phase.

When simvastatin was ingested 24 hours after the last dose of grapefruit juice, Cmax and

AUC(0-∞) were increased 2.4-fold (p < 0.01) and 2.1-fold (p < 0.001) compared with the water

phase. When simvastatin was administered 3 days after the final dose of grapefruit juice, the

Cmax and and AUC(0-∞) were increased 1.5-fold (p = 0.12) and 1.4-fold (p = 0.09),

respectively. Seven days after cessation of intake of grapefruit juice, no differences appeared in

the Cmax and AUC(0-∞) between the phases. When simvastatin was administered 24 hours or 3

days after cessation of intake of grapefruit juice, the mean oral clearance (Cloral) of simvastatin

was 50% (p < 0.001) and 63% (p = 0.09) of that during the water phase.

Concomitant administration of simvastatin with grapefruit juice increased the mean Cmax and

AUC(0-∞) of simvastatin acid 5.0- and 4.5-fold, compared with the water phase (p < 0.001).

When simvastatin was taken 24 hours after the last dose of grapefruit juice, the Cmax and

AUC(0-∞) of simvastatin acid were increased 1.7-fold (p < 0.01). After an interval of 3 or 7

days between ingestion of grapefruit juice and simvastatin, the pharmacokinetic variables of

simvastatin acid did not differ significantly from those in the water phase.
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Figure 2. Mean Cmax values of study drugs after ingestion of grapefruit juice 200 ml t.i.d. for 3

days, expressed as percentages of corresponding values during the water phase (control). Simva

= simvastatin; Buspi = buspirone; Cisa = cisapride; Atorva = atorvastatin; Triaz = triazolam;

Prava = pravastatin.
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Table 2. Summary of effects of ingestion of grapefruit juice 200 ml t.i.d. for 3 days on selected

pharmacokinetic parameters of study drugs.

    Study drug AUC Cmax tmax t½

      buspirone ↑↑↑ ↑↑↑ ↑↑ ↑

      simvastatin ↑↑↑ ↑↑↑ ↔ ↔

      cisapride ↑↑ ↑ ↑ ↑

      atorvastatin ↑↑ ↔ ↑↑ ↑

      pravastatin ↔ ↔ ↔ ↔

      triazolam ↑↑ ↑ ↔ ↑

Changes (increase or decrease) indicated as follows:

↑ /↓     15 to 100% change (p < 0.05)

↑↑ /↓↓     101 to 300% change (p < 0.05)

↑↑↑ /↓↓↓     change > 300% (p < 0.05)

↔    no significant change (p > 0.05)
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DISCUSSION

1. Methodological considerations

All of the subjects participating in the present series of investigations were young and healthy.

Cardiac, hepatic, and renal diseases may modify drug metabolism and excretion and therefore

have a substantial effect on drug pharmacokinetics. Thus, results of these studies may not be

directly extrapolated to subgroups with illnesses or who use concomitant medications. Every

study was of cross-over design. In this design, each subject serves as his or her own control so

that the large interindividual variation often associated with pharmacokinetic interaction studies

can be minimized. The randomization and balancing used in most of the studies, together with

adequately long wash-out periods, helped to avoid any possible carry-over effect. Based on the

elimination half-lives of study drugs and the estimated duration of the grapefruit-juice effect, it

was regarded that a 2- to 3-week washout period is sufficiently lengthy.

The number of subjects in these investigations was relatively small. However, based on

previous interaction studies and information on pharmacokinetic properties of the study drugs,

it was considered that, if in a sample with size of 10 to 12 volunteers a 30 to 50% difference in

AUC is not statistically significant, then the probability of clinically important interaction is

small. In each of the six studies, grapefruit juice was used (at least in one phase) according to

one and the same scheme, to allow comparison of results between studies. The same brand of

grapefruit juice was used in every study to minimize possible variability in the content of its

active ingredients. Relatively large amounts of grapefruit juice were used to uncover any

potential of the study drugs to interact with it. In some countries, quite a large portion of

households purchase grapefruit juice, and it may be consumed individually in variable amounts

on a daily basis. In these studies, the effect of grapefruit juice dose was also investigated.

Among all the volunteers, grapefruit juice intake was associated in only one subject with

gastrointestinal discomfort.

The volunteers fasted for at least one hour before administration of the study drugs to minimize

any possible effect of food on their absorption; during each study day a standardized lunch and

a light lunch were served.
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The doses of the drugs used were recommended daily doses. All of the study drugs were

administered only orally, as none were available as intravenous formulations. Use of

intravenous formulations would have allowed a more direct means of investigating

mechanisms by which grapefruit juice can alter pharmacokinetics, making it possible to

estimate total clearance and bioavailability of the drugs during different study phases.

However, on the basis of previous data, it seems likely that changes in the AUC of high-

clearance drugs with low bioavailability, e.g., simvastatin and buspirone, are primarily due to

alterations in their first-pass metabolism and to a lesser degree in their systemic clearance

(Masica et al. 2000). On the other hand, the AUC of intermediate-clearance drugs is more

sensitive to alterations in their systemic clearance during the hepatic elimination phase. A

single dose of study drug was administered in each study. Previous studies, in which the

CYP3A4 inhibitor has been given for a few days and then the CYP3A4 substrate in a single

dose, have predicted the susceptibility of CYP3A4 substrates, e.g., lovastatin and simvastatin,

to pharmacokinetic interactions with such drugs as itraconazole or erythromycin fairly reliably.

Both females and males were recruited as study volunteers. However, it was considered

unnecessary to balance each study in respect to gender because of the cross-over design.

Furthermore, in previous studies the menstrual cycle has not been found to affect the

metabolism of CYP3A4 substrates (Kashuba et al. 1998; Kharasch et al. 1997). Some of the

female subjects were using OCs that contained ethinyl estradiol, gestodene, desogestrel, or

levonorgestrel, potent mechanism-based inhibitors of CYP3A4 (Guengerich 1988; Guengerich

1990; Back et al. 1991). However, as previous data do not show OCs to have a major effect on

the pharmacokinetics of CYP3A4 substrates in vivo, probably because of the low amounts of

steroids in these products, use of OCs was not an exclusion criterion (Scavone et al. 1988;

Stoehr et al. 1984). In the present studies, OCs showed no consistent effect on pharmacokinetic

results. Regular smokers were not recruited into any of these studies.

The psychomotor effects of buspirone and of triazolam were measured by six and by four tests

validated and widely used for measurement of psychomotor effects of drugs. Before entering

the study, the subjects were properly trained to perform these tests to avoid any learning effect.

While the effects of benzodiazepines on the results of these tests are well known, buspirone

itself has shown previously only minor or no effects on the results (Smith and Misiak 1976;

Stone 1984; Seppälä et al. 1982; Greenblatt et al. 1994).



54

The plasma concentrations of buspirone and of triazolam were measured by a sensitive gas

chromatographic method in Studies I and V, respectively; the between-day CV was satisfactory

for this method. In Study II, plasma cisapride concentrations were measured by HPLC.

Sensitivity and between-day CV were satisfactory. The serum concentrations of statins were

assayed by sensitive LC-MS-MS in Studies III, IV, and VI. The between-day CVs of these

methods were good or satisfactory. In addition, in Studies III and IV, serum HMG-CoA

reductase inhibitory activity was measured by nonspecific REA. With this method, the

between-day CVs were good or satisfactory.

2. Effects of grapefruit juice on the pharmacokinetics of buspirone

In this study, grapefruit juice increased the Cmax and AUC(0-∞) of buspirone about 4-fold and

9-fold. The tmax of buspirone was prolonged by grapefruit juice and the elimination t½ of

buspirone increased by about 50% in the grapefruit juice phase compared to the water phase.

The interaction of grapefruit juice with buspirone was subject to considerable interindividual

variability, the individual increase in Cmax ranging from 2-fold to nearly 16-fold and that in

AUC from 3-fold to 20-fold. Substantial changes in the pharmacokinetics of buspirone were

associated with only modest alterations in the pharmacodynamic results.

Buspirone is almost completely absorbed from the gastrointestinal tract. However, due to its

extensive first-pass metabolism, its bioavailability is only about 5% (Mayol et al. 1985).

Buspirone is oxidatively metabolized in the liver, yet the specific CYP enzymes involved

remain to be identified (Jajoo et al. 1990). However, the known CYP3A4 inhibitors

itraconazole, erythromycin, diltiazem, and verapamil have all considerably increased buspirone

plasma concentrations in vivo (Kivistö et al. 1997; Lamberg et al. 1998a). In the present study,

the effect of grapefruit juice on the pharmacokinetics of buspirone was smaller than that of

itraconazole but greater than that found for verapamil or diltiazem (Kivistö et al. 1997;

Lamberg et al. 1998a). In humans, CYP3A4 is extensively expressed not only in the liver but

also in the apical enterocytes of the small intestine (Kolars et al. 1992; Paine et al. 1997). Thus,

a large portion of the metabolism of buspirone may occur in the gut wall during the first pass.

Lown et al. have suggested that grapefruit juice inhibits CYP3A4-mediated first-pass

metabolism by direct inactivation of small intestinal CYP3A4 (Lown et al. 1997). Therefore, it
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is probable that the considerable increase in the mean AUC value of buspirone observed in this

study is due to a reduced gut first-pass metabolism caused by grapefruit juice. Findings in this

study give support to the assumption that the gut wall is an important site for the

biotransformation of buspirone, as it may be for some other CYP3A4 substrates with extensive

first-pass metabolism. The magnitude of change in the pharmacokinetics of buspirone caused

by grapefruit juice was almost the same as that in the pharmacokinetics of lovastatin, another

CYP3A4 substrate with low bioavailability (Kantola et al. 1998a).

The prolonged tmax of buspirone during the grapefruit-juice phase may reflect a delayed gastric

emptying caused by the juice. The tmax-increasing effect of grapefruit juice has been seen in

some but not all studies (Fuhr 1998). Lengthening of the elimination t½ of buspirone may also

be caused by postponed tmax or may represent a minor effect of grapefruit juice on the systemic

clearance of buspirone. Neither itraconazole nor the calcium-channel blockers verapamil and

diltiazem greatly prolonged the elimination t½ of buspirone (Kivistö et al. 1997; Lamberg et al.

1998a).

The considerably increased plasma buspirone concentrations during the grapefruit-juice phase

were associated with only slightly altered pharmacodynamic test results. The only significant

change compared to the water phase was seen in the subjective overall drug effect. Relatively

small changes in psychomotor test results in association with markedly increased buspirone

concentrations have been seen also in other studies (Kivistö et al. 1997; Lamberg et al. 1998a).

This can be in part explained by the logarithmic relationship between drug concentration and

effect. In addition, it may be that the classic psychomotor tests reflect more sensitively the

pharmacodynamic effects of benzodiazepines than those of buspirone. On the other hand, it

seems that high concentrations of buspirone are associated with increased frequency of adverse

effects (Kivistö et al. 1997; Lamberg et al. 1998a).

3. Effects of grapefruit juice on the pharmacokinetics of cisapride

This study demonstrated that repeated consumption of grapefruit juice considerably elevates

plasma concentrations of cisapride. The AUC and Cmax were increased by about 140% and 80%

after ingestion of grapefruit juice. In addition, the elimination t½ of cisapride was significantly
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increased by grapefruit juice. The grapefruit juice-cisapride interaction was, however, found to

be subject to considerable interindividual variation.

The oral bioavailability of cisapride is about 50%, due to first-pass metabolism (Van Peer et al.

1986; McCallum 1991). Recently it has been demonstrated that cisapride is biotransformed

mainly by CYP3A4 (Desta et al. 1999; Gotschall et al. 1999; Bohets et al. 2000). It is thus

likely that the considerable increase observed in the AUC of cisapride in the grapefruit-juice

phase of this study was caused by inhibition of CYP3A4. Inhibition of CYP3A4-mediated

metabolism occurred probably to a large extent during the first pass in the small intestine,

because the Cmax was increased by about 80%, whereas the increase in the elimination t½,

although significant, was only about 25%. Moreover, the changes in cisapride Cmax and in

AUC(0-∞) caused by grapefruit juice were correlated, whereas no such correlation was evident

between the elimination t½ and AUC(0-∞) of cisapride. The magnitude of the grapefruit juice-

cisapride interaction was clearly smaller than that of grapefruit juice-buspirone or of grapefruit

juice-simvastatin (Studies I and III). This is conceivable in the light of the bioavailabilities of

these drugs: 50% for cisapride but less than 5% for both buspirone and simvastatin; i.e.,

cisapride undergoes less extensive CYP3A4-mediated first-pass metabolism.

Cisapride has been a widely used drug and is generally well tolerated. However, concern has

recently been raised as to its safety because of an increasing number of reported cases in which

use of cisapride is associated with prolongation of the QT interval, ventricular tachycardia and

even death. In the majority of these cases, cisapride has been used in high doses or patients

have cardiac or renal disease or there has been concomitant use of CYP3A4 inhibitors like

imidazole antifungals and macrolide antibiotics (Wysowski and Bacsanyi 1996). It seems that

the increased risk for cisapride-induced arrhythmias is related to high cisapride concentrations.

In a study by van Haarst et al. (1998) combined use of cisapride (10 mg given four times a day)

and clarithromycin (500 mg twice a day) for 5 days caused 3-fold increases in cisapride

concentrations and prolonged the QTc interval significantly from that during cisapride

monotherapy. Furthermore, hypokalemia or administration of other QTc interval-prolonging

drugs together with cisapride may precipitate its arrhythmogenic effect. In vitro cisapride can

concentration-dependently block potassium channels in cardiac myocytes and thus prolong

repolarization time and QTc interval (Puisieux et al. 1996; Drolet et al. 1998). In this study, the

mean QTc interval was slightly but significantly prolonged from baseline during both treatment
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periods. However, despite the considerable increase in plasma concentrations of cisapride

caused by grapefruit juice, no difference was seen between the grapefruit juice and water

phases in the QTc interval. It is possible that long-term coadministration of grapefruit juice and

cisapride or use of a higher single dose of cisapride may have increased the effect of cisapride

on the QTc interval. In a recent study by Gross et al., a single dose of grapefruit juice increased

the AUC of cisapride by about 40% (1999) but had no QTc interval-increasing effect.

Based on such findings, the manufacturer of cisapride has recently warned against concomitant

use of cisapride with potent CYP3A4 inhibitors including grapefruit juice, and sale of

medicinal products containing cisapride was suspended in the USA, Canada, and Germany

during the year 2000.

4. Effects of grapefruit juice on the pharmacokinetics of simvastatin

Grapefruit juice greatly altered the pharmacokinetics of simvastatin. The mean AUC and Cmax

of simvastatin were 16- and 9-fold, respectively, in the grapefruit juice phase compared to

control values, and simvastatin acid AUC was increased about 7-fold.  Grapefruit juice

increased the AUC of active and total HMG-CoA reductase inhibitors 2.4-fold and 3.6-fold.

Simvastatin is an inactive lactone prodrug converted to the pharmacologically active

simvastatin acid by carboxyesterases and even non-enzymatically. Biotransformation of

simvastatin to other metabolites occurs mainly in reactions catalyzed by CYP3A4. In plasma,

simvastatin and its lactone metabolites are in dynamic equilibrium with their corresponding

hydroxy acid forms (Cheng and Jusko 1993). Bioavailability of simvastatin is low, and it is

probably extensively metabolized during the first pass not only in the liver but also in the gut

wall, where CYP3A4 is abundantly expressed (Kolars et al. 1992; Kivistö et al. 1996; Paine et

al. 1997). It is likely that the greatly increased Cmax and AUC values of simvastatin observed in

the present study were caused by inhibition of the small intestinal CYP3A4 by grapefruit juice.

This fits well the finding that grapefruit juice augments bioavailability of CYP3A4 substrates

by reducing protein expression of CYP3A4 in the small intestine (Lown et al. 1997). As

simvastatin acid is not prone to metabolism by CYP3A4, it is likely that its concentrations were

increased together with simvastatin concentrations due to the dynamic equilibrium between the
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two forms in the plasma. The changes observed in the AUC and Cmax values of active and total

HMG-CoA reductase inhibitors measured by REA were smaller than those of simvastatin. This

is probably caused in the grapefruit-juice phase by reduced production of metabolites of

simvastatin which possess HMG-CoA reductase inhibitory activity. Unlike the Cmax and AUC,

the elimination t½ of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors

remained essentially unaltered. This can be explained by the predominantly intestinal effect of

grapefruit juice and also by the pharmacokinetic properties of simvastatin: it is a high-

extraction drug metabolized to a large extent during the first pass, its systemic clearance

insensitive to the inhibition of the CYP3A4 enzyme. The greatly increased AUC value of

simvastatin in this study may also at least in part be explained by inhibition of the small

intestinal P-glycoprotein. Simvastatin may be a substrate for P-gp, just as the structurally

closely related lovastatin has been found to be (Kim et al. 1999). In vitro, components in

grapefruit juice inhibit P-gp (Takanaga et al. 1998; Eagling et al. 1999), but to date it has

remained unclear to what degree grapefruit juice affects P-gp activity in vivo. In the study by

Lown et al. (1997), grapefruit juice did not alter protein expression of P-gp in the small

intestine. However, it is possible that grapefruit juice can in other ways alter its function.

With the same brand of grapefruit juice and the identical dosing scheme of juice used in both

studies, grapefruit juice increased the AUC and Cmax of simvastatin (Study III) somewhat more

than those of buspirone (Study I). The estimated bioavailability of both of these drugs is less

than 5%. Simvastatin and probably also buspirone are predominantly biotransformed by

CYP3A4 (Prueksaritanont et al. 1997; Kivistö et al. 1997). The difference in the magnitude of

change in pharmacokinetics of simvastatin and buspirone may be partially explained by the

large interindividual variation in the amount of expressed CYP3A4 in the liver and small

intestine and by the relatively small number of study subjects. Three subjects took part in both

Study I and III. Interestingly, for one of these subjects the increase in the AUC of simvastatin

was 38-fold and in the AUC of buspirone 20-fold. Thus, a relatively constant individual

susceptibility even to drastic changes in drug metabolism due to CYP3A4 inhibition by

grapefruit juice may exist.

Lovastatin, like simvastatin, is an HMG-CoA reductase inhibitor that has low bioavailability

and undergoes CYP3A4-mediated metabolism (Jacobsen et al. 1999). Not unexpectedly, the

magnitude of interaction of grapefruit juice with simvastatin and with lovastatin is very similar.
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The same amount of grapefruit juice as in Study III increased the AUC of lovastatin 15-fold

(Kantola et al. 1998a). In that study the effect of grapefruit juice on HMG-CoA reductase

inhibitors was not determined. However, due to the very similar pharmacokinetic properties of

simvastatin and lovastatin, it is probable that the results in that study and the present one would

have resembled each other also in this respect.

The effect of grapefruit juice on the pharmacokinetics of simvastatin is nearly as great as that of

itraconazole and greater than that of erythromycin or verapamil (Neuvonen et al. 1998; Kantola

et al. 1998b). In reported cases of myopathy during administration of simvastatin, the patient

had often also taken potent CYP3A4 inhibitors (Schmassmann-Suhijar et al. 1998; Jacobson et

al. 1997). It seems that an increase in risk for rare but serious adverse effects of HMG-CoA

reductase inhibitors such as myopathy and rhabdomyolysis is associated with high drug doses

and high HMG-CoA reductase inhibitory activity (Tobert al. 1988). As the present studies

demonstrate, grapefruit juice can drastically increase concentrations of certain orally ingested

CYP3A4 substrates. For any given subject, prediction of the magnitude of the interaction is

difficult, given the wide interindividual variation in expression and activity of CYP3A4. Thus,

in some individuals repeated ingestion at least of high amounts of grapefruit juice may cause an

elevation of serum simvastatin concentrations that can increase the risk for adverse-effects of

simvastatin.

5. Effects of grapefruit juice on the pharmacokinetics of atorvastatin and pravastatin

Grapefruit juice increased the AUC of atorvastatin acid and atorvastatin lactone about 2.5-fold

and 3.3-fold, and the AUC values of active and total HMG-CoA reductase inhibitors were

higher during the grapefruit juice phase than during the water phase. The AUC of the principal

active metabolite 2-hydroxyatorvastatin and its lactone form were reduced by grapefruit juice,

and the elimination half-lives of both atorvastatin acid and 2-hydroxyatorvastatin and their

respective lactones significantly prolonged. In contrast, grapefruit juice had no effect on the

AUC, Cmax, or elimination t½ of pravastatin, whether measured by LC-MS-MS or REA.

Atorvastatin is an HMG-CoA reductase inhibitor administered as the calcium salt of the active

hydroxy acid form of atorvastatin acid. Its bioavailability after oral administration is about



60

12%. Atorvastatin is extensively metabolized and has at least two active metabolites, 2-

hydroxyatorvastatin and 4-hydroxyatorvastatin, which are formed by CYP3A4. It has been

estimated that 70% of the HMG-CoA reductase inhibitory activity of atorvastatin is accounted

for by its metabolites (Lea and McTavish 1997).

Grapefruit juice increased the concentration of atorvastatin considerably less than that of

simvastatin in Study III. This most probably reflects the less extensive CYP3A4-mediated

atorvastatin first-pass metabolism compared with that of simvastatin. However, that the

magnitude of the effect of grapefruit juice on the pharmacokinetics of atorvastatin was nearly

as great as that of itraconazole suggests the importance of the small intestine and CYP3A4 in

atorvastatin first-pass metabolism (Kantola et al. 1998c). In addition to grapefruit juice and

itraconazole, the known CYP3A4 inhibitor erythromycin has been found significantly to

increase atorvastatin concentrations (Siedlik et al. 1999). During the grapefruit-juice phase, 2-

hydroxyatorvastatin and 2-hydroxyatorvastatin lactone concentrations were significantly

reduced. This most likely resulted from the reduced CYP3A4-mediated formation of 2-

hydroxyatorvastatin from atorvastatin caused by grapefruit juice.

Pravastatin is a hydrophilic HMG-CoA reductase inhibitor administered as a sodium salt of the

active pravastatin acid. About 34% of the pravastatin dose is absorbed after oral administration,

and approximately 50% of this absorbed dose undergoes presystemic metabolism, the oral

bioavailability of pravastatin being about 20%. Pravastatin is metabolized by several enzymes

to at least 17 different metabolites that contribute less than does the parent pravastatin to HMG-

CoA reductase inhibitory activity. In the present study, grapefruit juice very little affected the

pharmacokinetics of parent pravastatin or HMG-CoA reductase inhibitors. Moreover, in

previous studies the known CYP3A4 inhibitors itraconazole, erythromycin, and diltiazem did

not much affect the pharmacokinetics of pravastatin  (Neuvonen et al. 1998; Donahue et al.

1998; Azie et al. 1998). However, cyclosporine has been found to increase pravastatin

concentrations significantly (Regazzi et al. 1994; Olbricht et al. 1997). It has been hypothesized

that this interaction between pravastatin and cyclosporin may be caused at least in part by

cyclosporine through the inhibition of membrane transporter proteins such as P-gp. For

instance, inhibition of P-gp in the gut wall may increase serum pravastatin concentrations. In

any case, it has been proposed that inhibition of CYP3A4 does not interfere with pravastatin

metabolism to such a degree that this would be of clinical relevance (Jacobsen et al. 1999). It is
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thus conceivable that grapefruit juice did not increase serum concentrations of pravastatin in

this study because the predominant mechanism of action of grapefruit juice is CYP3A4

inhibition.

6. Effect of grapefruit juice dose on the interaction between grapefruit juice and

triazolam

In the present study, in which the effect of grapefruit juice dose on the pharmacokinetics and

pharmacodynamics of the orally administered CYP3A4 substrate triazolam was investigated by

means of a randomized four-phase cross-over study, a single 200-ml dose of normal- or double-

strength grapefruit  juice increased the AUC of triazolam by about half, and repeated ingestion

of double-strength grapefruit juice led to an increase of 150% in the AUC of triazolam. The

Cmax of triazolam was increased 40 to 50% during the three grapefruit-juice phases compared

with that of the water phase. The elimination t½ of triazolam was increased by 54% during the

repeated ingestion of grapefruit juice, but remained unaffected by single-dose grapefruit juice.

Pharmacodynamic effects of triazolam were significantly greater during the multiple-dose

grapefruit juice phase than the water phase.

Only a few studies have addressed the role of grapefruit juice dose in grapefruit juice-drug

interactions. In a study by Edgar et al. (1992) 200 ml of normal-strength grapefruit juice

affected the pharmacokinetics of felodipine as much as did double- strength juice at 200 ml.

Thus, our results concerning the effects of a single dose of normal- and double-strength

grapefruit juice on the Cmax and AUC of triazolam are in accordance with the findings of Edgar

et al. The effect of repeated ingestion of grapefruit juice on felodipine pharmacokinetics was

investigated by Lown et al. (1997), who found that a single dose (250 ml) of grapefruit juice

increased the AUC and Cmax of felodipine by 116% and 225%, respectively; grapefruit juice

ingested three times daily for 5 days increased felodipine AUC and Cmax by 211% and 335%.

Our findings are in line with theirs, demonstrating that repeated ingestion of grapefruit juice

has a greater effect on the AUC of CYP3A4 substrates than does one single dose. Lown et al.

found that multiple-dose administration of grapefruit juice inactivated small intestinal CYP3A4

significantly more than did a single dose of juice. Thus it appears that inhibition of CYP3A4-
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mediated metabolism accumulates when grapefruit juice is ingested repeatedly, probably

because the rate of regeneration of the active enzyme is exceeded by its rate of inactivation.

Lown et al. did not report their elimination t½ of felodipine, but the activity of their hepatic

CYP3A4 was unaffected by multiple-dose grapefruit juice, as measured by erythromycin breath

test. On the other hand, in our study the elimination t½ of triazolam after multiple-dose

grapefruit juice was significantly prolonged. Assuming that the volume of distribution of

triazolam was unchanged, prolongation of the elimination t½ of triazolam suggests that chronic

administration of grapefruit juice can reduce systemic clearance of triazolam, probably by

inhibiting the hepatic CYP3A4. It appears that the increase in triazolam AUC during the

multiple-dose grapefruit juice phase compared to the single-dose phases can be explained by

decreased hepatic elimination of triazolam, because the t½ but not Cmax of triazolam was

increased by the repeated ingestion of grapefruit juice. In previous studies, grapefruit juice has

increased the Cmax and AUC of orally administered CYP3A4 substrates, but when

administered intravenously has not affected their pharmacokinetics (Ducharme et al. 1995b;

Kupferschmidt et al. 1995; Lundahl et al. 1997). However, in those studies a single dose of

grapefruit juice was ingested once or twice in association with drug administration.

Coadministration of cisapride with a single dose of grapefruit juice has increased cisapride

AUC by about 50% without altering the elimination t½ of cisapride (Gross et al. 1999). In our

Study III, both the AUC and elimination t½ of cisapride were increased significantly after

repeated ingestion of grapefruit juice. In a recent preliminary report of Veronese et al. (1999),

ingestion of grapefruit juice three times daily for 3 days increased the AUC of intravenously

administered midazolam 5.9-fold compared with that of their control, and activity of the

hepatic CYP3A4 was inhibited by grapefruit juice as measured by erythromycin breath test.

Thus, it appears that during repeated ingestion, active ingredients in grapefruit juice, e.g., the

lipophilic compounds furanocoumarins, may reach the systemic circulation in concentrations

sufficient to inhibit both the small intestinal and the hepatic CYP3A4.
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7. Duration of effect of grapefruit juice on the pharmacokinetics of simvastatin

In this study the aim was to investigate how long after ingestion of grapefruit juice its effect on

the pharmacokinetics of simvastatin lasts. Simvastatin, a substrate for CYP3A4, was used as

the model drug, as it has proven to be very sensitive to CYP3A4 inhibition (Study III;

Neuvonen et al. 1998; Kantola et al. 1998b). Grapefruit juice was ingested on 3 consecutive

days to reveal its maximal duration of effect on the pharmacokinetics of the CYP3A4 substrate.

Administration of multiple-dose grapefruit juice with simvastatin increased the AUC of

simvastatin 13.5-fold compared with the water phase. After an interval of 24 hours between

ingestion of the final dose of grapefruit juice and intake of simvastatin, the effect of grapefruit

juice was reduced to such a degree that the AUC of simvastatin was 2-fold that of the water

phase. When simvastatin was given 3 days after cessation of grapefruit juice intake, the AUC

of simvastatin was less than 50% greater than for the water phase. After an interval of 7 days

between cessation of  grapefruit juice intake and intake of simvastatin, no change occurred in

the AUC of simvastatin. The mean change in the AUC value of simvastatin acid induced by

grapefruit juice was smaller than the change in the AUC value of simvastatin, this increase

vanishing in 3 days. This is in line with the previous observation that simvastatin acid is not

readily metabolized by CYP3A4.

A previous study has shown that a single dose of grapefruit juice may increase felodipine Cmax

and AUC for up to 24 and 10 hours (Lundahl et al. 1995). In another study, volunteers were

given a single oral dose of nisoldipine with water, with grapefruit juice, or 14 to 96 hours after

a 7-day period of thrice daily ingestion of grapefruit juice (Takanaga et al. 2000a). Grapefruit

juice affected nisoldipine pharmacokinetics for at least 3 days after the last intake of juice.

Taking into consideration previous results of the accumulating effect of repeated intake of

grapefruit juice, our present findings seem to be in line with those of these two studies.

Recently, Rogers et al. (1999) published a study in which volunteers ingested grapefruit juice

for 3 consecutive days during breakfast and received 40 mg lovastatin in the evening. The AUC

of lovastatin was increased about 1.9-fold by the grapefruit juice, thus demonstrating the

significance of time-interval between the grapefruit juice and CYP3A4 substrate ingestion in

the extent of grapefruit juice-drug interaction.
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According to Lown et al. (1997) grapefruit juice alters the pharmacokinetics of CYP3A4

substrates by inactivating the small intestinal CYP3A4. Thus, duration of grapefruit-juice effect

depends on the rate of de novo synthesis of the small intestinal CYP3A4. In the present study it

was roughly estimated that the t½ of effect of grapefruit juice on the AUC of simvastatin was

shorter during the first day after grapefruit juice ingestion, 7 to 8 hours, than during the

following days, 30 to 40 hours. Takanaga et al. constructed a pharmacokinetic model based on

the results of two previous studies (Lundahl et al. 1995; Lundahl et al. 1998). According to this

model, the terminal t½ of CYP3A4 was 8 hours (Takanaga et al. 2000b). In the subsequent

study with nisoldipine, the terminal t½ of CYP3A4 was calculated to be 30 hours, i. e., at 3-fold

to 4-fold greater than the initial value (8 hours). The authors speculate that one explanation for

this divergence of results might be the different length of times of data collection between these

two studies (Lundahl et al. 1995; Takanaga et al. 2000a). The intake scheme for grapefruit juice

was also different between the two studies. On the basis of these studies it appears that a large

portion of the small intestinal CYP3A4 is regenerated, and most of the effect of both single-

and multiple-dose grapefruit juice disappears within 24 hours after juice intake.

Previous studies have assumed that the predominant mechanism of action of grapefruit juice is

inhibition of CYP3A4-mediated first-pass metabolism mainly in the intestinal wall. On the

other hand, one can speculate as to the contribution of this possible inhibition of the hepatic

CYP3A4 or P-gp to duration of the grapefruit juice effect. In particular, it appears that the

intestinal  and hepatic CYP3A4 are not coregulated (Lown et al. 1994). Differences in the

catalytic activity and relative amounts of CYP3A4 in the liver and intestine may constitute one

cause of the interindividual variation observed in duration of the grapefruit juice effect.

However, in one recent study, intravenous diltiazem did not affect the AUC of lovastatin, thus

supporting previous proposals that the small intestine is the main site of the first-pass

metabolism of lovastatin and thus probably also of simvastatin (Masica et al. 2000). The

smaller the AUC initially, the larger the increase due to CYP3A4 inhibition caused by

grapefruit juice (Lown et al. 1997).

There are studies suggesting that by inhibiting P-gp, grapefruit juice may alter significantly the

pharmacokinetics of orally administered drugs (Takanaga et al. 1998; Edwards et al. 1999).

However, Eagling et al. (1999) concluded that the in vivo effects of grapefruit juice are only to

a minor extent caused by modulation of P-gp function.  Furthermore, our results with
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simvastatin are in line with those of  Lundahl et al. (1995) and Takanaga et al. (2000a), who

used dihydropyridine calcium-channel blockers as the model drugs, which are not good

substrates for P-gp. Thus, in the present study, relationships between time after intake of

grapefruit juice and its effects can probably be explained by inhibition of CYP3A4 of different

degrees.

8. Clinical implications

Grapefruit juice can substantially interfere with the pharmacokinetics of some concomitantly

ingested CYP3A4 substrates. CYP3A4 is a major drug-metabolizing enzyme in humans,

participating in the metabolism of about half the drugs used therapeutically. Of the drugs

studied in this series of investigations, simvastatin and cisapride seem to have the potential for

clinically relevant pharmacokinetic interactions with grapefruit juice. Both drugs undergo

considerable CYP3A4-mediated first-pass metabolism and produce dose-dependent and, even

serious adverse effects. High serum concentrations of simvastatin increase risk for myopathy,

and cisapride prolongs the QT interval in a concentration-dependent manner. Further, at least in

high doses, grapefruit juice may increase risk of adverse effects of buspirone and atorvastatin.

That the pharmacokinetics of CYP3A4 substrates are subject to considerable interindividual

variation makes it difficult to predict the magnitude of the grapefruit juice effect for any

individual patient. The unpredictability of the effect can be further increased by variation in the

content of the active components in grapefruit juice. It is recommended to refrain from

simultaneous use of grapefruit juice with CYP3A4 substrates that have a substantial first-pass

metabolism and a narrow therapeutic range. If the dose-response curve is flat, reduction of drug

dose can be applied. It has been suggested that if an interaction between grapefruit juice and a

CYP3A4 substrate is not excluded in a pharmacokinetic study, and this drug is contraindicated

for use with itraconazole and erythromycin, then it should not be taken along with grapefruit

juice (Kane and Lipsky 2000). Because of the additive CYP3A4 inhibitory effect, caution

should be exercised if the patient is already using drugs that are considered moderate CYP3A4

inhibitors, e.g., diltiazem or verapamil.
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The oral bioavailability of CYP3A4 substrates with extensive intestinal first-pass metabolism

may be enhanced by their coingestion with grapefruit juice (Fuhr 1998; Ameer and Weintraub

1997). In the case of cyclosporine, for example, it may thus be possible to reduce doses and

achieve significant cost savings. However, because of the unpredictability of the grapefruit

juice effect, appropriate dose adjustments may necessitate more frequent cyclosporine blood-

concentration monitoring, and this can reduce any savings gained.



67

CONCLUSIONS

From the six studies the following conclusions can be drawn:

1.  Grapefruit juice, particularly in multiple doses, may increase plasma concentrations of some

CYP3A4 substrates with low oral bioavailability almost as strongly as does the potent CYP3A4

inhibitor itraconazole. Grapefruit juice probably acts mainly by inhibiting CYP3A4-mediated

first-pass metabolism in the small intestine. However, some effects of grapefruit juice may

result in part from modulation of the function of P-glycoprotein.

2.  The magnitude of the effect of grapefruit juice on the pharmacokinetics of a CYP3A4

substrate is related to the extent of its CYP3A4-mediated first-pass metabolism.

3.  Multiple-dose ingestion of grapefruit juice affects CYP3A4 substrate pharmacokinetics

significantly more than does a single dose, and may also inhibit hepatic CYP3A4 during the

elimination phase.

4.  The effect of multiple-dose grapefruit juice on the pharmacokinetics of CYP3A4 substrate

with extensive first-pass metabolism subsides markedly within 24 hours and disappears

completely within 3 to 7 days after termination of ingestion of  grapefruit juice.

5.  Concomitant use of grapefruit juice with CYP3A4 substrates should be avoided if these are

subject to extensive first-pass metabolism and have a narrow therapeutic range; alternatively,

the dose of the CYP3A4 substrate drugs should be reduced accordingly.
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