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Abstract

The ever expanding growth of the wireless access to the Internet in
recent years has led to the proliferation of wireless and mobile devices to
connect to the Internet. This has created the possibility of mobile devices
equipped with multiple radio interfaces to connect to the Internet using any
of several wireless access network technologies such as GPRS, WLAN and
WiMAX in order to get the connectivity best suited for the application.
These access networks are highly heterogeneous and they vary widely in
their characteristics such as bandwidth, propagation delay and geographical
coverage. The mechanism by which a mobile device switches between these
access networks during an ongoing connection is referred to as vertical hand-
off and it often results in an abrupt and significant change in the access
link characteristics. The most common Internet applications such as Web
browsing and e-mail make use of the Transmission Control Protocol (TCP)
as their transport protocol and the behaviour of TCP depends on the end-
to-end path characteristics such as bandwidth and round-trip time (RTT).
As the wireless access link is most likely the bottleneck of a TCP end-to-
end path, the abrupt changes in the link characteristics due to a vertical
handoff may affect TCP behaviour adversely degrading the performance of
the application.

The focus of this thesis is to study the effect of a vertical handoff on TCP
behaviour and to propose algorithms that improve the handoff behaviour
of TCP using cross-layer information about the changes in the access link
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characteristics. We begin this study by identifying the various problems of
TCP due to a vertical handoff based on extensive simulation experiments.
We use this study as a basis to develop cross-layer assisted TCP algorithms
in handoff scenarios involving GPRS and WLAN access networks. We
then extend the scope of the study by developing cross-layer assisted TCP
algorithms in a broader context applicable to a wide range of bandwidth and
delay changes during a handoff. And finally, the algorithms developed here
are shown to be easily extendable to the multiple-TCP flow scenario. We
evaluate the proposed algorithms by comparison with standard TCP (TCP
SACK) and show that the proposed algorithms are effective in improving
TCP behavior in vertical handoff involving a wide range of bandwidth and
delay of the access networks. Our algorithms are easy to implement in
real systems and they involve modifications to the TCP sender algorithm
only. The proposed algorithms are conservative in nature and they do
not adversely affect the performance of TCP in the absence of cross-layer
information.
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Descriptors:
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C.4 Performance of Systems

General Terms:
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Additional Key Words and Phrases:
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Chapter 1

Introduction

In this chapter we introduce the problem examined in this thesis along
with a brief overview of the research area. The rise of the wireless access
to the Internet has spawned a variety of wireless access technologies that
enable a mobile device to connect to the Internet using multiple radio
interfaces. The widely differing characteristics of these access technologies
impact on the performance of transport protocols such as TCP used by most
of the common Internet applications. In this thesis we examine how TCP is
affected when a mobile device switches from one wireless access network to
another and propose solutions to adapt TCP to this change by making use
of cross-layer information about the characteristics of the access networks.

1.1 Future Heterogeneous Access Systems
and Challenges

The enormous growth of the Internet and mobile telephony in the last
decade or so has led to the exciting prospect of the interweaving of the two
technologies leading to the emergence of the Wireless Internet [86,94,121].
This scenario has been anticipated in the prescient papers of Mark Weiser
on Ubiquitous Computing [150] and Kleinrock on Nomadic Computing [89].
Among the notable early works in this direction are [19, 20, 33, 90], which
deal with various issues arising from incorporating mobile devices to the
Internet. From its inception in the mid-90’s there has been sustained
and intense research in the area of Wireless Internet led by numerous
experimental investigations coupled with rapid technological strides. In
this emerging scenario it is expected that a wide range of mobile services
and applications such as WWW, real-time multimedia, games, news feeds
and social networking will be available to mobile users in a seamless way
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2 1 Introduction

Figure 1.1: An Example Architecture of Future Heterogeneous Access
Systems. Adapted from [141]

regardless of their geographical location. In this context, the services and
applications will have the need to take into account the characteristics of
the mobile environments to operate satisfactorily [121].

The current state of the evolution of the Wireless Internet is guided by
the goals of ubiquitous computing [150, 151] in which the support for mo-
bility, multimedia communications, wireless broadband, Quality of Service
(QoS) guarantees, seamless coverage and security provide the basis for a
multitude of services and applications that can be readily accessed by mo-
bile users. The emergence of the concept of next generation network (NGN)
provides the technological infrastructure necessary to support the above-
mentioned communication goals [80]. An NGN is a collection of wired and
wireless networks with the Internet Protocol (IP)-based backbone (core).
NGN is also known as all-IP network as IP glues all these networks together.
The key features of the NGN include the anytime anywhere connectivity,
support for data and multimedia services, use of devices which can support
several access technologies and support for integrated service access from
various service providers.

Currently there are a wide variety of wireless access networks such
as Wireless Personal Networks (WPN) (e.g., Bluetooth), Wireless Local
Area Networks (WLAN) (e.g., IEEE 802.11 a/b/g/n), and Wireless Wide
Area Networks (e.g., GPRS, UMTS, WiMAX, Satellite networks) that a
mobile device can use to connect to the Internet. Figure 1.1 illustrates
an example architecture of future heterogeneous access networks. The
inter-networking of the various wireless networks is highly desirable to
provide ubiquitous connectivity as no single wireless network is capable
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of providing the best connectivity, high bandwidth and wide geographical
coverage anytime anywhere. The heterogeneity of these access networks
arising from their diverse underlying radio technologies, geographical cov-
erage ranging from a small area to a wide area, bandwidth ranging from a
few Kbps to several Mbps, latency variations by an order of magnitude or
more and operation under possibly different administrative domains poses
a challenge to the inter-networking of the different wireless networks.

The mobile devices should support access to the different wireless access
technologies so that they can seamlessly roam among the different networks
to provide anytime anywhere connectivity. These devices, known as multi-
modal devices, are currently of two types, namely, multimode terminals and
software-defined radios (SDRs) [99]. A multimode terminal has several net-
work interface cards (NICs) and software that enables switching between
the network interfaces to connect to the different access networks. The
multimode terminals should activate the different network interfaces to de-
tect the service advertisements from different access networks. As battery
power is a critical resource for a mobile terminal, keeping all the network
interfaces alive is not a viable option as it consumes considerable power
even in the ’idle’ mode when no packets are either being received or sent.
So a tradeoff exists between the power efficiency and network discovery
time which has to be minimized. SDRs use adaptable software to imple-
ment radio functions that operate on a generic, flexible hardware platform
consisting of digital signal processors and general purpose microprocessors.
SDRs allow reconfiguration of a wide range of access technologies such as
WLAN, GPRS and WCDMA by selecting the appropriate software mod-
ules. Though this is an attractive technology, advances in reducing the
power consumption and the processing time along with cost reduction are
needed for a wide-spread adoption of SDR [141].

Based on user preferences and service requirements, a mobile device
should be able to detect and select the best available access network at a
given time and changeover to the selected network to maintain connectivity
to the Internet. This switching process from one access network to another
is referred to as handoff 1 [100]. Handoff management should allow a mobile
device to roam among multiple wireless networks in a manner transparent
to applications with minimal disruption in connectivity. The development
of handoff-decision algorithms is an active research area [111]. When a
mobile device moves from one access network to another due to a handoff,
the change in the IP address of the mobile device creates problems as
both routing and host identity in the Internet are based on the IP address.

1The terms “handoff” and “handover” are used interchangeably in the literature.
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Mobility issues such as the management of mobility and handoff, the choice
of the layer best suited for implementing mobility management and the
reduction in the handoff latency are key areas of research [46,91,119].

Even in the case where the mobility and handoff mechanisms provide
a smooth handoff, the transport protocols may be affected by the handoff
as the protocol behaviour depends on the end-to-end path characteristics
which may change significantly due to a handoff. As the Transmission
Control Protocol (TCP) is the dominant transport protocol in the Internet,
it is important to study how TCP is affected by a handoff and devise
solutions to improve the performance of TCP in a handoff. This topic has
been an active area of research [59,64,67,87,88,124,125,133,137, 138] and
is also the focus of the study presented in this thesis.

Provisioning of QoS in terms of guaranteeing a certain bandwidth,
throughput, delay variation bound and cost in a heterogeneous mobile en-
vironment is a challenge as the different wireless access networks that a
mobile device uses to connect to the Internet have widely different charac-
teristics. The issue of secure data flow is also a major concern in heteroge-
neous access systems. As the various networks that participate in an NGN
may belong to different network operators and may operate under differ-
ent administrative domains, it is a challenge to develop suitable billing,
accounting and authentication mechanisms that satisfy the end user. A
discussion of the various research issues in the design and deployment of
future heterogeneous access networks can be found in [141].

1.2 Motivation for Our Research

Contemporary mobile devices increasingly support multiple radio tech-
nologies such as WLAN, GPRS, UMTS, HSPA and WiMAX to provide
wireless access to the Internet. For instance, the current state-of-the-
art mobile phone, Nokia N8-00, supports multiple radio interfaces such as
GPRS/EDGE, HSDPA (maximum speed up to 10.2 Mbps), HSUPA (2.0
Mbps) and WLAN IEEE 802.11 b/g/n along with key applications such as
Calendar, Contacts, music player, Internet, messaging, photos, Ovi Store
that supports games, maps and videos, Web TV, Office document viewers,
Video & photo editor, Mail and Radio [108]. It is envisaged that in the
future mobile devices can support even ten or more radio interfaces to sup-
port a wide range of Internet applications using a broad range of wireless
access technologies [66,126].

The transport protocol TCP [118, 146, 155] is used by a wide range of
applications in the Internet ranging from the classical ones such as e-mail,
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Figure 1.2: Vertical Handoff

Web browsing and file-transfer to the more recent ones such as streaming
audio, video and P2P [37, 128, 144, 148]. Recent measurement studies on
Internet traffic show that TCP still dominates the volume of the Internet
traffic (in terms of packets and bytes) whereas UDP now often accounts for
the larger fraction of the total number of flows on a given link due to the rise
in the streaming and P2P traffic [34,35,158]. TCP is an end-to-end protocol
as it is implemented both at the sender and the receiver and the network
has no ’state’ information about the communicating end points using the
TCP protocol. This characteristic of TCP is vital to the scalability of
the network, robustness of the network operation in the case of the failure
of the network nodes and ease of deployment of new applications. TCP
provides the twin functions of reliable data transfer and congestion control
which enable the applications to adapt their data rates to the available
capacity in the network. The behaviour of TCP is highly dependent on
the end-to-end path properties of the connection such as the round-trip
time (RTT) and the bottleneck bandwidth. As a wireless access network
connects a mobile device to the Internet at the edge of a TCP connection,
it strongly influences the TCP behaviour in often being the bottleneck of
the end-to-end path [45,93].

The term vertical handoff refers to the changeover in which an
active mobile node changes an ongoing connection from one wireless
access network to another which uses a different link technology [100,145].
For example, a mobile device equipped with network interface cards to
connect to WLAN and GPRS may use a WLAN interface to connect to
the Internet when it is indoors and switch over to the GPRS network when
the mobile device moves out of the range of the WLAN. Figure 1.2 shows
a vertical handoff scenario between WLAN and GPRS networks. As a
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vertical handoff results in abrupt significant changes in the bottleneck link
characteristics, it may take TCP several round-trip times (RTT) to adapt
to the path changes during which TCP may experience problems such as
false congestion signals, packet reordering, packet losses and unnecessary
retransmissions which affect the application performance.

Mobility protocols such as Mobile IP [115] aim at hiding the host mo-
bility from the layers above IP. While this is highly desirable from the
modularity perspective, it is not a viable approach if the implications of
mobility affect the segment delivery at the transport layer. A vertical hand-
off that causes a significant change in the access link characteristics cannot
be totally hidden from the transport layer even if the handoff latency is re-
duced to a minimum and no packet drops occur. Regardless of how smooth
or seamless the mobility protocols are made out to be, the problems of TCP
due to a vertical handoff cannot be wished away and deserve to be exam-
ined to find appropriate solutions. This observation is based on numerous
studies in this area including our own work [36,41,64,88].

A natural approach to the solution of the problem of TCP behaviour
in a vertical handoff is to provide information about the changes in the
access link characteristics to TCP to enable it to adapt sooner to the new
end-to-end path after a handoff. Without this information, TCP on its own
can of course adapt to the new path, but the adaptation may take several
round-trip times and during this interval TCP may suffer from unnecessary
retransmissions, packet losses and timeouts. The term cross-layer informa-
tion is used in this context to refer to the information given to TCP from
the lower link layer about the changes in the access link characteristics due
to a handoff. However as the gains of a cross-layer approach are often at
the price of modularity, the cross-layer design has to be done carefully to
avoid introducing unintended coupling effects between the layers [85]. So
the cross-layer assisted TCP algorithms have to be designed conservatively
to avoid aggressive TCP behaviour [130]. The cross-layer assisted TCP
algorithms that are presented in this thesis have been designed with this
consideration in view.

Figure 1.3 positions our research work in the context of the research
challenges in the future heterogeneous access systems.

Our research described in the thesis presents a systematic study of the
behaviour of TCP in a vertical handoff and uses this study as a basis to
devise solutions to overcome the problems of TCP in handoff. A key enabler
of our solutions is the cross-layer information from the link layer about the
occurrence of handoff along with a rough estimate of the bandwidth and
delay characteristics of the access links involved in the handoff. We build
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Figure 1.3: Research Challenges in Future Heterogeneous Access Networks.
Adapted from [141]

a simulation model for the vertical handoff that is implemented in the
network simulator ns-2 [106]. This model is used to study the behaviour of
TCP when a handoff occurs at various instances of the different phases of
a TCP connection such as slow start, congestion avoidance, fast recovery
etc. Simulation provides a compact, versatile tool to examine a wide range
of scenarios quickly which is essential in studying the general behaviour of
a complex protocol such as TCP [114].

1.3 Contributions

The main contributions of this thesis are described below:

• This thesis presents a thorough study of the behaviour of TCP in
various handoff scenarios leading to the identification of the different
problems of TCP in a handoff. Our study not only includes the hand-
off between the most common wireless access networks of today but
also handoff involving access links of arbitrary bandwidth and delay.
This helps us to find the sensitivity of the TCP performance on the
changes in the access link’s bandwidth and delay due to a vertical
handoff.
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• Based on the study of TCP behaviour in a vertical handoff we develop
robust, conservative, cross-layer assisted TCP algorithms to improve
the vertical handoff performance of TCP. These algorithms can be
implemented at the TCP sender and they do not require any mod-
ifications to the TCP receiver. Our algorithms are designed to be
conservative in nature in that they do not make TCP respond ag-
gressively to the cross-layer information. Our algorithms carefully
combine the cross-layer information with the current state of TCP
in deciding the appropriate actions. The solutions proposed here to
improve TCP in a vertical handoff are fairly robust in that they can
tolerate modelling errors such as inaccuracies in the cross-layer in-
formation given to TCP. Besides, the proposed solutions are easy
to implement in real systems as we found from our experiments in
implementing these algorithms in Linux kernel version 2.6.18 [83].

The research reported in this thesis has been published in four original
publications that are referred to as Papers 1, 2, 3 and 4 in this thesis. The
specific contributions of the original papers are described below.

Paper 1: This paper is based on a study of TCP behaviour in vertical
handoff in the specific setting of GPRS and WLAN where an order of mag-
nitude change in bandwidth and delay of the access links can occur due to
a handoff. We explore the problems of TCP due to a handoff and propose
enhancements to the TCP sender algorithm that make use of the binary
information given to the TCP sender on whether a significant increase or
decrease (i.e., an order of magnitude change) in the access link bandwidth
and/or delay due to a handoff has occurred. This study clearly brings out
the beneficial role of cross-layer information regarding handoff in improv-
ing TCP behaviour even when this information is very limited. A novel
simulation model designed to reflect vertical handoff more realistically by
changing the routes the packets take before and after a handoff (rather
than modelling a vertical handoff by changing the link characteristics) is
presented in this paper and this model is used in all our subsequent work.

The work in this paper was carried out in collaboration with Markku
Kojo. Both authors contributed equally to the design of the algorithms
and the planning of the experiments. The ns-2 implementation for the
simulation, the simulation and analysis of the experiments were carried
out by the author with the help of the coauthor. The paper was written
mainly by the author with valuable suggestions from the coauthor. The
simulation model used in this study is adapted from the model developed
by Pasi Sarolahti, Markku Kojo and the author in the paper [133].
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Paper 2: This journal paper is an extension of the work published in
two workshop papers [41, 42]. In this work, we first present a systematic
study of TCP behaviour in a vertical handoff under a wide range of band-
width and delay values of the access links. This study has brought out
the various problems of TCP in the different handoff scenarios. Although
the problems of TCP such as the occurrence of spurious RTOs, packet re-
ordering, packet losses, and unused connection time have been reported
in the literature previously, our study clearly identifies the specific hand-
off scenarios in which these problems arise. Our study also points out an
interesting result that even in the case of a handoff between access links
of the same bandwidth-delay product (BDP), the packet losses can occur
if the old link has much larger bandwidth than that of the new link and
the packet losses can increase considerably as this ratio between the band-
width of the links increases. Besides this study provides a useful basis for
the design and evaluation of algorithms to improve TCP performance in a
vertical handoff.

In the second part of this paper, the algorithms given in Paper 1 are
refined to deal with additional information about the characteristics of the
access links involved in a handoff. In our model a rough estimate of the
bandwidth and delay of the access links involved in a handoff is given to the
TCP sender along with the cross-layer notification about the occurrence of
a handoff. Based on detailed simulation experiments, we show that the
proposed algorithms are effective in avoiding spurious RTOs, in reducing
packet losses, in improving the link utilization immediately after a discon-
nection and in converging quickly to the RTO value of the new end-to-end
path. The problem of packet reordering is not addressed in this paper.

The work in this paper was done in collaboration with the coauthor
Markku Kojo. Both authors contributed equally to the design of the al-
gorithms and the planning of the experiments. The ns-2 implementation
for the simulation, the simulation experiments and the analysis of the ex-
periments were carried out by the author with useful suggestions from the
coauthor. The paper was written mainly by the author with valuable feed-
back and suggestions from the coauthor.

Paper 3: In this paper we study the problem of packet reordering in
TCP due to a vertical handoff and design an algorithm to mitigate the
effects of packet reordering. The idea behind this algorithm is to determine
how likely is packet reordering given the bandwidth of the two access links
and use this information along with Duplicate Selective acknowledgements
(DSACKs), an advanced feature of TCP, for detecting unnecessary retrans-
missions. Our algorithm enables TCP to utilize the high bandwidth that
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may be available after a handoff.
The work in this paper was done in collaboration with Markku Kojo

and Ilpo Järvinen. Ilpo Järvinen participated in discussions on the problem.
Markku Kojo and the author developed the algorithms while the author
carried out the ns-2 implementations, experiments and the analysis of the
results with useful suggestions from Markku Kojo. This paper was written
by the author with corrections and suggestions from the coauthors.

Paper 4: In this paper we study the performance of multiple TCP flows
in a vertical handoff. Although the performance of an individual TCP flow
due to a vertical handoff has been studied in the literature, the effect of a
vertical handoff on multiple TCP flows has been little studied. Our mod-
elling approach adopted in Papers 1, 2 and 3 to study the TCP behaviour
in vertical handoff and devise solutions to improve TCP behaviour in hand-
off is based on a single TCP flow. While this approach has its limitations
in regard to the nature of conclusions that can be drawn, it is valuable in
isolating the problems of TCP without the complexity introduced by com-
peting flows [14]. So in this paper we show that the algorithms described
in Papers 2 and 3 can be easily adapted for multiple TCP flows by scaling
the TCP parameters with the number of TCP flows.

The work in this paper was carried out in collaboration with Markku
Kojo. Both authors contributed equally to the design of the algorithms
and the planning of the experiments. The ns-2 implementation for the
simulation, the simulation experiments and the analysis of the experiments
were carried out by the author with the help of the coauthor. The paper
was written mainly by the author with valuable feedback and suggestions
from the coauthor.

1.4 Structure of the Thesis

The rest of this thesis is organized as follows. Chapter 2 provides the
background to the thesis in describing wireless access networks and vertical
handoff. Chapter 3 describes the problems of TCP in a vertical handoff
and is based on Papers 1 and 2. Chapter 4 describes our cross-layer as-
sisted TCP algorithms for improving handoff performance and is based on
Papers 2, 3 and 4. Chapter 5 gives the conclusions of the thesis and di-
rections for future work. The four original publications which describe the
research presented in this thesis are included at the end of this thesis. We
have included these papers in the numbered references in this thesis and
sometimes refer to them using these numbers [39,40,43,44] in the context
of discussion of related work.



Chapter 2

Wireless Access Networks and
Vertical Handoff

This chapter gives an overview of the common wireless access network tech-
nologies along with a description of vertical handoff that can occur between
any pair of access networks. Section 2.1 describes briefly five common
wireless access networks, namely, Wireless LAN (WLAN), GPRS/EGPRS,
UMTS, WiMAX and Mobile-Fi and a wireless overlay architecture that
organizes wireless access networks in a hierarchical structure to support
seamless connectivity. Section 2.2 describes vertical handoff in wireless
access networks. Section 2.3 describes a simple example of a Mobile IPv6-
enabled vertical handoff architecture involving WLAN and EGPRS. This
example serves as a prototype for our experiments described in Chapters 3
and 4. Section 2.4 provides a summary of the chapter.

2.1 Wireless Access Networks

Wireless access networks are the end-user radio connections to the Internet.
They provide the last (and/ or first) hop between a mobile node and the
fixed wired Internet infrastructure using radio waves. The wireless network
infrastructure consists of base stations, access controllers, connectivity soft-
ware and a distribution system. A base station is the point of attachment
that interfaces the radio signals to the wired network called the distribu-
tion system. The term base station is usually used in cellular networks
whereas in wireless LANs these points of attachment are known as access
points (APs). So the base station has a radio interface to the mobile node
and also an interface to the wired network. A wireless network interface
card (NIC) provides the interface between the mobile node and wireless

11
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Figure 2.1: IEEE 802.11 Infrastructure mode WLAN. (Adapted from [18])

network infrastructure. A wireless network standard defines how a wire-
less NIC operates. For a mobile node to communicate with a base station
both should have a wireless network interface card that implements the
same link layer technology. Some terms defined here are related to wireless
LANs but equivalent terms exist in cellular networks. Based on the link
technologies employed, these access networks vary widely in their charac-
teristics such as geographical range, link bandwidth, propagation delay and
bit-error rate. In this section we give an overview of the common wireless
access networks with an emphasis on their characteristics that influence
the behaviour of TCP. A good overview of the various wireless technologies
and their architectural principles can be found in [110].

Wireless Local Area Network (WLAN)

IEEE 802.11 WLAN [18,72] has emerged as a popular wireless technology
that provides broadband access within a small geographical region (a typical
radius of a few tens of meters).

The basic form of IEEE 802.11 WLAN is called a Basic Service Set
(BSS). There are two forms of BSS, infrastructure BSS and independent
BSS. The infrastructure BSS shown in Figure 2.1 consists of an Access
Point (AP) and a number of stations associated with an AP. Each AP acts
as an interface between the wireline infrastructure and the wireless link with
its mobile nodes (MNs). In the independent BSS, several mobile nodes can
communicate simultaneously with one another in an ad-hoc mode with a
direct path between any two communicating nodes.

Access points (AP) are the base stations in a wireless network. Usually
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a wireline Ethernet is used to connect the multiple APs and such a sys-
tem of AP networks is called a Distribution System (DS). APs can also be
connected via wireless links. A set of BSSs along with a DS is called an
Extended Service Set (ESS). An ESS is identified by its service-set identi-
fication (SSID) and an SSID is often referred to as the name of the access
network. An access router is an IP router in the access network.

The IEEE 802.11 standard covers the physical and MAC-sublayer of the
ISO/OSI reference model [79]. The logical link control (LLC) is defined
in the IEEE 802.2 LAN standard. This allows the existing protocols to
run on top of IEEE 802.11. The IEEE 802.2 LLC is also used in IEEE
802.3 (Ethernet) and IEEE 802.5 (Token Ring) LANs. So the existing
protocols such as TCP/IP can be implemented over WLANs just as in
wired Ethernets.

The IEEE 802.11 has many variants based on the technology used at the
physical layer. The IEEE 802.11a [68] extension provides data rates ranging
from 6 Mbps to 54 Mbps. The IEEE 802.11b [69] supports data rates up to
11 Mbps. IEEE 802.11g [73] is an extension to IEEE 802.11b that supports
data rates up to 54 Mbps and is backward compatible with IEEE 802.11b
but not with IEEE 802.11a. Another standard IEEE 802.11h [74] is an
enhancement of IEEE 802.11a and it is aimed at providing data rates up
to 100 Mbps. The more recent standard, IEEE 802.11n [77], envisages a
maximum throughput of at least 100 Mbps. One-way propagation delay in
a WLAN ranges roughly from 1 ms to 10 ms.

General Packet Radio Service(GPRS)

General Packet Radio Service (GPRS) is a packet-switched extension of
Global System for Mobile communications (GSM) [22,31,122]. GSM com-
bined with GPRS is often known as 2.5G cellular systems. Figure 2.2
illustrates the GSM-GPRS architecture. The mobile nodes connect to the
Base Transceiver Stations (BTS) and each BTS caters to the mobile nodes
in a relatively small geographical area around it called a cell. Several BTSs
are gathered under a Base Station Controller (BSC). BSC handles the ac-
cess to the medium, radio resource scheduling and data transfer from/to
the mobile node. Many BSCs are connected to a Mobile Switching Centre
(MSC). The Gateway MSC (GMSC) handles the connections to a fixed net-
work such as a Public Switched Telephone Network (PSTN) or Integrated
Services Digital Network (ISDN). Several database registers are used for
call control and network management.

The addition of two principal nodes, Serving GPRS Support node (SGSN)
and Gateway GPRS Support Node (GGSN), enhances the GSM network to
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Figure 2.2: GSM/GPRS system architecture. (Adapted from [22])

provide the upgraded packet switching service to GPRS. SGSN handles the
routing of packet-switched data to and from the mobile node, user mobility,
logical link management and the authentication and the accounting func-
tions. The GGSN provides the connectivity to an external packet network
such as Internet and X.25. The GPRS protocol stack follows a layered
architecture up to layer 3 of the ISO/OSI reference model.

GPRS can provide a data rate up to 171 Kbps (theoretical maximum) [22]
with a one-way propagation delay of about 300 ms. The Enhanced GPRS
is called EGPRS or Enhanced Data Rate for GSM Evolution (EDGE) [139]
provides a transmission rate ranging from 128 Kbps to 473 Kbps (theoret-
ical maximum) [104].

Universal Mobile Telecommunication System (UMTS)

UMTS, a third-generation (3G) cellular network [5–9] consists of three in-
teractive domains: Core Network (CN), UMTS Terrestrial Radio Access
Network (UTRAN) and User Equipment (UE). The UMTS Core Network
is based on the GSM Phase 2+ network with GPRS. The UTRAN air in-
terface is based on Wideband CDMA (WCDMA) technology and it can
provide a data rate that ranges from 384 Kbps to 2 Mbps with a link delay
around 150 ms [61].

UMTS High-Speed Packet Access (UMTS/HSPA) [3] is a combination
of two technologies, High-Speed Downlink Packet Access (HSDPA) [11] for
downlink and High-Speed Uplink Packet Access (HSUPA) [1] for the uplink.
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HSPA can provide a data rate up to 14 Mbps with a one-way propagation
delay that ranges from 25 ms to 50 ms. HSPA+ [2], also known as evolved
HSPA, is an enhanced version of HSPA that can provide data rates up to
42 Mbps. UMTS Long Term Evolution (LTE) [4,38,123] is a part of GSM
evolution beyond 3G and the objective of LTE is to provide an extremely
high performance radio-access technology that offers full vehicular mobility
and can coexist with all GSM/UMTS technologies. LTE can provide data
rates up to 100 Mbps with a one-way propagation delay less than 10 ms.

Worldwide Interoperability for Microwave Access (WiMAX)

IEEE 802.16 [48,70,75] is an emerging standard for global broadband wire-
less access and it supports fixed, nomadic, portable and mobile operations.
Worldwide Interoperability for Microwave Access (WiMAX) Forum [152]
is an organization that promotes conformance and interoperability of the
IEEE 802.16 standard. WiMAX supports data rates from 1 Mbps to
40 Mbps and has a one-way propagation delay of less than 100 ms. Mobile
WiMAX [153,154] is compatible with the IEEE 802.16e standard.

WiMAX can operate in fixed access, nomadic, portable and mobile
modes. In the fixed access network, the access is provided through a fixed
antenna and it does not support portability and handoff between APs.
The nomadic mode allows a terminal to access the operator’s network from
different APs. The portable mode of operation allows handoff at walking
speeds. In all the three modes WiMAX can provide a data rate of 40 Mbps
within a cell radius of 10 kilometers. The fully mobile mode allows seamless
connectivity in a mobile environment and its aim is to provide low latency,
low packet loss and real-time handoffs between APs at vehicular speeds
of 120 km/hour or higher. It can support a data rate of 15 Mbps with a
one-way propagation delay less than 100 ms.

Mobile Broadband Wireless Access (MBWA) - Mobile-Fi

Mobile Broadband Wireless Access (MBWA), also known as Mobile-Fi, is
IEEE 802.20 in its technical specifications and is optimized for the data
transport of IP-based services [28, 71]. It promises a ubiquitous, always-
on and inter-operable multi-vendor mobile broadband wireless access net-
work. Mobile-Fi can deliver broadband Internet access with peak data rates
greater than 1 Mbps with one-way propagation delay less than 10 ms. It
can support vehicular mobility classes up to 250 km/hour.

Table 2.1 provides a summary of the key characteristics of the various
wireless access networks that we have described here.
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Table 2.1: Comparison of the Wireless Access Network Technologies

Access Standard Data rate One-way Mobility
Network propagation

delay

WLAN IEEE 802.11b up to 11 Mbps 1-10 ms Low
IEEE 802.11a up to 54 Mbps 1-10 ms Low
IEEE 802.11g up to 54 Mbps 1-10 ms Low
IEEE 802.11h up to 100 Mbps 1-10 ms Low
IEEE 802.11n up to 540 Mbps 1-10 ms Low

2G GSM up to 57.6 Kbps 350 ms High
GPRS up to 171 Kbps 300 ms High
EDGE/EGPRS up to 473 Kbps 300 ms High

3G UMTS 384 Kbps 150 ms High
HSPA up to 14 Mbps 25-50 ms High
HSPA+ up to 42 Mbps 25-50 ms High
LTE up to 100 Mbps < 10 ms High

WiMax IEEE 802.16 up to 40 Mbps 50 ms High

Mobile-Fi IEEE 802.20 >1 Mbps (peak) < 10ms High

Wireless Overlay Networks

As can be seen in Table 2.1, no single wireless access network is capa-
ble of providing a high bandwidth, low propagation delay and wide-area
connectivity to a large number of mobile users simultaneously. For example,
the cellular networks such as GPRS and UMTS provide a wide-area con-
nectivity with low data rates to users with high mobility. On the other
hand WLAN offers much higher data rates to users with low mobility.
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A mobile node equipped with radio interfaces to WLAN and GPRS/UMTS
allows a user to combine the benefits of the high data rate of WLAN when-
ever it is available with the always-on connectivity of GPRS/UMTS. An
architecture which provides an integration of a variety of wireless access
networks with diverse characteristics by combining them in a hierarchical
order ranging from a low-delay, high-bandwidth and short range access
network to a high-delay, low-bandwidth and wide range access network is
called a wireless overlay network [145]. A vertical handoff allows a mobile
user to roam across an overlay network by seamlessly connecting to the
appropriate wireless access network with little disruption in connectivity
and in a manner transparent to the application.

2.2 Vertical Handoff

When a mobile node moves away from a base station (or access point), the
signal strength deteriorates and there is a need to switch to another base
station from where it gets an adequate stronger signal. Handoff (handover)
is the mechanism by which an ongoing connection between a mobile node
and a correspondent node, the entity in communication with the mobile
node, is transferred from one base station to another [100, 117]. Handoff
can be classified as horizontal handoff (intrasystem) and vertical handoff
(intersystem) [100,111,145].

A horizontal handoff involves a mobile node moving between access
networks that use the same link layer technology, for example, from UMTS
to UMTS or from WLAN to WLAN. The need for a horizontal handoff
arises, for example, when the signal strength of the serving base station
deteriorates below a certain threshold value.

A vertical handoff arises when a mobile node moves out of the serving
network to another access network of a different link technology, for exam-
ple, a handoff between WLAN and UMTS. A wireless overlay network is the
conceptual architecture for vertical handoff [145]. A vertical handoff, as in
any handoff scenario, can be of two types based on the connectivity to the
old access router during the handoff, namely, break-before-make (BBM) and
make-before-break (MBB) [100]. In a break-before-make handoff, the mo-
bile node’s connection to the old access router ends before the completion of
the handoff, thereby causing disruption in connectivity which often results
in packet loss. In the worst case, an entire window of TCP segments may be
lost. By contrast, in a make-before-break handoff, a mobile node can have
connection to more than one access router at the same time and the mobile
node ends its connection to the old access router only after establishing
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the connection to the new access router, thereby avoiding packet losses due
to a handoff. In a make-before-break handoff, the mobile node can use both
the old and the new interfaces to send and receive packets simultaneously.

Possible reasons for the occurrence of a break-before-make handoff
include (i) a network interface card that is able to connect to different
radio networks but only to a single network at a given time, e.g., a mobile
phone hardware that can switch between GPRS and UMTS (ii) there is no
overlapping coverage area, e.g., the mobile device is connected to an access
network A and it passes through a tunnel where there is a disruption in
connectivity and at the end of the tunnel the mobile device is connected
to another access network B which uses a different link layer technology
(iii) even if there is an overlapping coverage, the user may not have
access rights to wireless network, e.g., a mobile device moving from access
network A to access network C and it has access rights to A and C and
have no access rights to the network B which comes in between A and
C. In addition to the above scenarios, a break-before-make handoff can
occur in the case of a mobile device with two or more radio interface cards
if there may not be enough power from the battery to have two radios on
simultaneously.

2.3 A Vertical Handoff Architecture with WLAN
and EGPRS

In this section we describe a vertical handoff architecture by taking a con-
crete example of a vertical handoff between WLAN and EGPRS using
Mobile IPv6 as the mobility protocol to illustrate the concepts involved in
this architecture. There are two main internetworking approaches for inte-
grating WLAN and EGPRS/UMTS [10, 32, 127, 140, 157], namely, tightly-
coupled architecture and loosely-coupled architecture. In a tightly coupled
architecture, a WLAN appears as another 3G access network to the 3G core
network providing a seamless service continuation across 3G and WLAN.
As the WLAN is connected to a 3G core network, it requires that the same
access provider must own the WLAN and the 3G parts of the network. In
the loosely-coupled architecture, the WLAN is connected to the Internet
through the WLAN gateway and it does not have any direct connection to
the 3G core network or to any 3G network element. In this architecture,
the WLAN and the EGPRS/UMTS can have different access providers and
the IP addresses of these two access networks will be different. So when a
mobile node switches between these access networks some kind of mobility
mechanism is needed as the two access networks have different IP prefixes.
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Figure 2.3: Vertical handoff Architecture from WLAN IEEE 802.11 to
EGPRS using Mobile IPv6. Adapted from [157]

In the Internet, any device is identified by its IP address. Also at the
network layer, the IP address is used for routing i.e., the IP address is
associated with a fixed network location. This dual role played by the
IP address necessitates the reconfiguring of the IP address when a device
moves from its original location (home network) to another location (foreign
network) in order to support seamless communication [23]. As TCP uses the
IP address and the port numbers to identify a session, the reconfiguration
of the IP address as the device changes its location should be transparent
to TCP and to the higher layers.

In order to achieve mobility between different IP networks we need pro-
tocols that support mobility which are implemented above the link layer.
While Mobile IPv4, Mobile IPv6 [84, 116] (implemented at the IP layer)
and TCP-Migrate [142] (implemented at the transport layer) are some of
the well-known mobility protocols, protocols such as Host Identity Proto-
col (HIP) [105,107,120] (implemented at the Host identity sublayer - layer
3.5), SCTP [147] and Multipath TCP [54, 62] (implemented at the trans-
port layer) and Session Initiation Protocol (SIP) [63, 136] (implemented
at the application layer) are capable of supporting mobility. Proxy Mo-
bile IPv6 [57] is a network based mobility protocol that extends Mobile
IPv6 functionalities in which a proxy mobility agent in the network does
the mobility signalling with the home agent on behalf of the mobile node
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attached to the network. Mobility-related protocols which are implemented
above the IP layer rely on other layers for location management, e.g., DNS
lookup. A discussion of mobility protocols based on the layer of their op-
eration in the protocol stack is described in [21]. The considerations for
the choice of the layer in implementing a mobility protocol along with the
design tradeoffs involved in the choice are discussed in [46].

Figure 2.3 shows a loosely-coupled vertical handoff architecture inte-
grating WLAN and EGPRS using the Mobile IPv6 as the mobility protocol.
We model this architecture in the simulation experiments described in this
thesis. Instead of Mobile IPv6, it is also possible to use protocols such as
HIP, SCTP and SIP which have support for mobility. In a vertical handoff
involving access networks such as EGPRS, UMTS and UMTS/HSPA, the
mobility may be limited to subnetwork mobility (below IP layer) and it is
transparent to the network layer and the upper layers as the mobile node
changes its point of attachment solely using the link layer mechanisms.
The study of the different internetworking architectures and the various
mobility and handoff signalling schemes is not within the scope of the work
described in this thesis.

Mobile IPv6 is an IP layer mobility protocol based on IPv6. In Mobile
IPv6, a mobile node is identified by a permanent address called the home
address and is associated with a home network, a network having a network
prefix matching that of the mobile node’s home address. The home agent
(HA) is the router that supports mobility in the home network. When
a mobile node moves to another network called the visited network, the
foreign agent (FA) is the router that provides routing services to the mobile
node in the visited network. When a mobile node is in the home network,
conventional methods are used to route packets addressed to it. In the
visited network, the mobile node obtains a temporary address called the
care-of address (CoA) and informs the HA about it. The mobile node
detects that it has moved to a visited network by analyzing the Router
Advertisement it receives from the access routers (AR) and forms a care-of
address.

The association between the home address and the care-of address is
called binding. The mobile node does a binding registration by sending
a binding update message that supplies the care-of address to both the
home agent and the correspondent node. In this example, we assume that
Mobile IPv6 with route optimization where a mobile node can directly
communicate with a correspondent node is used. The home agent and the
correspondent node respond to the mobile node with a binding acknowl-
edgement message. At this point the mobile node can communicate with
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the correspondent node using the new (visited) wireless access network.
A handoff process involves two steps: a handoff decision phase and a

handoff execution phase. At first, either the mobile node or the network
or perhaps both together have to decide when to perform a handoff. This
process is called the handoff decision process. The handoff execution pro-
cess comes after the decision process. The various considerations involved
in these mechanisms are described in [111].

The delay arising from a handoff is due to three main components:
detection period, address configuration interval and network registration
time [36]. The detection time is the time taken by the mobile node from
discovering that it is under the coverage of a new access point by using,
for example, link-layer beacons or Probe Requests to the time it receives
the Router Advertisement from the new access router. Address configura-
tion time is the interval from the time a mobile node receives the Router
Advertisement to the time it takes to update its routing table and assign
a new care-of address. The network registration time is the time taken by
a mobile node from sending a binding update to the home agent as well
as to the correspondent node until the receipt of the first packet from the
correspondent node. This is so because Mobile IPv6 does not specify (as it
is optional) that the mobile node should wait for the binding acknowledge-
ment from the correspondent node. As the connection to the new router
will be operational after a handoff delay, this period can be taken as the
disconnection period for a break-before-make handoff.

Due to the signalling overhead in Mobile IP and the link switching
involved, the resulting handoff delay may be quite large. Fast handoff tech-
niques to reduce the handoff delay are described in [49,91]. A detailed de-
scription of mobility in the Internet, Mobile IP protocols, inter-networking
with Mobile IP and fast handoffs can be found in [119].

2.4 Summary

This chapter describes the background material on wireless access networks
and vertical handoff that provides the context for our work. Wireless ac-
cess networks are the end user radio connections to support mobility in
the Internet. We briefly described WLAN, GPRS, UMTS, WiMAX and
MBWA which are among the common wireless access technologies that
have evolved in the recent past. With the proliferation of wireless access to
the Internet, wireless access technologies play a basic role in the Internet
infrastructure. A comparative view of the characteristics of the different
wireless access networks given in Table 2.1 shows a wide disparity in their
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data rate, propagation delay and mobility. We briefly described the wire-
less overlay architecture, a conceptual scenario for vertical handoff. We
introduced vertical handoff and illustrated a handoff architecture involv-
ing WLAN and EGPRS with Mobile IPv6 as the mobility protocol. This
handoff model is used in our simulation experiments described in Chapters
3 and 4.



Chapter 3

Analysing TCP Behaviour with
Vertical Handoff

In this chapter we describe the behaviour of TCP in a vertical handoff.
We begin this chapter with a brief description of TCP congestion control.
Section 3.2 describes the organization of our simulation experiments and
the simulation model. Section 3.3 describes the problems of TCP due to a
vertical handoff and it is based on Papers 1, 2 and 3. Section 3.4 describes
some example scenarios that show the effect of a vertical handoff on TCP
performance. Section 3.5 provides a summary of the chapter.

3.1 TCP Congestion Control Algorithms

TCP [118], is the most widely used transport protocol in the Internet,
is used by applications such as Web browsing, e-mail, file transfer and
streaming audio and video and it accounts for a bulk of the Internet traf-
fic [34, 35, 37, 128, 144, 148, 158]. TCP is an end-to-end protocol as it is
implemented at the end hosts and the routers inside the network do not
have any knowledge (state) of the protocol. TCP performs the twin goals
of reliable data transfer and congestion control [16,81,118].

The congestion control algorithm used in TCP was essentially intro-
duced by Van Jacobson in a seminal paper in 1988 [81]. The purpose of the
TCP congestion control algorithm is to share the available bandwidth in
the network among the various flows in a fair and efficient manner. Efficient
utilization of the network can be achieved by utilizing the links close to their
capacities and keeping the router buffers small. Fairness is more complex
to define precisely. Intuitively fairness can be interpreted to mean that no
flow is unduly starved. Studies have shown that the fairness achieved by

23
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TCP comes close to proportional fairness which accounts for TCP’s bias
against large RTT flows, i.e., flow rates tend to be allocated such that flows
with larger RTT have smaller rates [143].

TCP belongs to a generic family of sliding window protocols that pro-
vides a reliable, in-order, full-duplex, byte-stream delivery of data to the
applications [118]. The basic unit of data transfer, known as a segment, is
a contiguous sequence of bytes. Each byte is identified by a 32-bit sequence
number. Each segment can be of size less than or equal to the maximum
segment size (MSS) which is negotiated by the TCP sender and the TCP
receiver at the beginning of a connection. The TCP receiver sends a cu-
mulative acknowledgement for byte k to the TCP sender which indicates
that all the bytes with lower segment number than k have been received
successfully and that it is expecting a segment starting from byte k. The
delayed acknowledgement mechanism [30] allows a TCP receiver to refrain
from sending an acknowledgement (ACK) for every segment received, usu-
ally acknowledging every second segment, which results in sending fewer
ACKs thereby saving bandwidth and processing. When the TCP receiver
receives an out-of-order segment it will send a duplicate ACK (dupack) for
the last received in-order segment.

TCP congestion control algorithm uses a window known as the conges-
tion window (cwnd) to determine the maximum number of unacknowledged
(outstanding) packets a connection can have in the network. By dynami-
cally varying the window based on the information from the network about
the level of congestion in the network, TCP seeks to adapt its sending rate
to its proper share of the available network bandwidth. The receiver ad-
vertised window (rwnd) which reflects the amount of buffer space available
at the TCP receiver sets an upper bound on the size of the cwnd .

At the beginning of a TCP connection, TCP starts to probe the un-
known network to determine the available capacity so that it should not
congest the network by sending a large burst of data. The slow-start phase
governs the evolution of the TCP window at the beginning of a connec-
tion. The window starts at a small value, either one or a few segments,
and increases by one segment for each acknowledgement (ACK) received,
thereby doubling the size of the window size for every RTT. This expo-
nential growth of the window during the slow start phase continues until
either the window size reaches a value determined by the variable called
slow start threshold (ssthresh) or a packet loss occurs. The optimal value
of the initial ssthresh is the available capacity in the end-to-end path of
the TCP connection which is the product of the bottleneck link bandwidth
times the RTT of the end-to-end path [65]. The subsequent evolution of
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the window is governed by the congestion avoidance phase. The initial
ssthresh is set to a high value not exceeding the rwnd and is reduced when
a packet loss occurs. In the congestion avoidance phase the window grows
more cautiously and for each acknowledgement received, it increases by the
reciprocal of the current window size. So the window roughly increases by
one segment in a round-trip time.

TCP considers a packet is lost when it receives a dupthresh number of
duplicate acknowledgements (dupacks) or when a retransmission timeout
occurs. As dupacks can arrive due to packet reordering, TCP waits till
it gets a certain number of dupacks, represented by dupthresh, to infer a
packet loss. RFC 5681 [16] defines dupthresh to be 3. For each segment
sent, the TCP sender waits for the acknowledgement for a certain duration
called Retransmission Timeout (RTO) and retransmits the segment if the
acknowledgement has not arrived before the expiry of the RTO timer. TCP
interprets a packet loss detected by an RTO as an indication of severe
congestion in the network. By way of its response, TCP retransmits the
lost packet, reduces the sending rate by setting the cwnd to one segment
and the ssthresh to half number of outstanding packets (FlightSize), and
enters slow start.

When the loss is detected via dupacks, TCP retransmits the missing
packet and sets cwnd to one segment and ssthresh to half the FlightSize.
This is the fast retransmit algorithm implemented in TCP Tahoe [81]. Af-
ter the fast retransmit, TCP Tahoe enters slow start. As a result the pipe,
which refers to the TCP sender’s estimate of the number of outstanding seg-
ments, is emptied fully and all the outstanding segments are retransmitted.
This is especially inefficient in high bandwidth-delay product networks.

TCP Reno [82] is similar to TCP Tahoe except for the difference in
behaviour after a fast retransmit. After a fast retransmit, TCP Reno sets
the cwnd and ssthresh to half the FlightSize and enters fast recovery. At
the beginning of fast recovery, TCP Reno inflates the cwnd by three seg-
ments (i.e., ssthresh +3) assuming that three segments have already left
the network as TCP has received three dupacks. For each additional du-
pack that arrives, cwnd is incremented by one segment and a new segment
is sent if the new cwnd and the receiver window allow it. This implies
that the sender effectively waits for half a window of dupacks before it can
send a new segment. Upon reception of the first acknowledgement that
acknowledges the new data, the cwnd is deflated back to ssthresh. This
ends the fast recovery and TCP continues in congestion avoidance phase.
The advantage of TCP Reno is that instead of flushing the pipe completely
as in TCP Tahoe, it reduces the pipe by half. TCP Reno performs well
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when a single packet is lost in a window but RTO recovery may be needed
for recovering multiple packet losses in a window.

TCP NewReno [52, 65] enhances the fast recovery algorithm of TCP
Reno. At the time the recovery starts, it keeps a variable recover to de-
note the highest sequence number transmitted. NewReno introduces the
concept of partial ACK which acknowledges a retransmitted segment but
not all the segments up to recover. The behaviour of NewReno is similar
to Reno except for its behaviour in regard to partial ACKs. In fast re-
covery, upon the receipt of a partial ACK, NewReno retransmits the first
unacknowledged segment and sends new data if window allows it, as in the
case of Reno. NewReno can recover from multiple packet losses if there are
multiple packet losses in a window but performance degrades especially in
the case of long-delay networks as NewReno can retransmit only one lost
packet per RTT.

The use of the Selective Acknowledgements (SACK) option [101] signif-
icantly improves TCP’s loss recovery mechanism especially when there are
multiple losses in a single window. In TCP SACK, the TCP receiver, along
with an acknowledgement can send information up to four non-contiguous
segments received beyond the first missing segment. The TCP sender can
retransmit the missing segments based on this information. As TCP SACK
algorithm [27] incorporates all the key error-recovery mechanisms, it is effi-
cient [50] and it is the most widely deployed TCP in the Internet [103,109].

As packet loss is interpreted as the congestion signal, the TCP algorithm
has no way of distinguishing the packet losses due to wireless channel errors
from packet losses due to congestion. The choice of packet loss as the con-
gestion indicator might seem appropriate in an era when most of the links
in the Internet were wired links. Besides, the routers have to do very little
else than to drop the packet when the router buffers overflow. In wireless
and mobile environments this assumption no longer holds due to the high
bit error rate, link outages, disconnections and handoffs. As a result, the
congestion control response of TCP in wireless networks can be unnecessary
and inefficient. RFC 3481 [78] describes the problems that TCP encounters
in 2.5G and 3G wireless networks and recommends enhancements to adapt
TCP to the specific characteristics of the wireless and mobile networks.

3.2 Organization of the Simulation Experiments

In order to understand the effects of a vertical handoff on TCP behaviour
we conduct experiments using the ns-2 simulator [106]. The vertical handoff
architecture is assumed to be a loosely-coupled architecture integrating two
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wireless access networks with Mobile IPv6 as the mobility protocol and it
is similar to the integrated WLAN-GPRS architecture shown in Figure 2.3
of Chapter 2. Using the same architecture, we evaluate the performance
of TCP with the enhancements we propose in this thesis. Since we are
interested in evaluating the behaviour of TCP in a vertical handoff, the
two wireless access links involved in the handoff are represented by their
bandwidth and the propagation delay, the two characteristics that affect the
TCP behaviour. We often refer to the propagation delay of an access link
as the ’delay’ of the link. We use the notation ’ x/y link ’ to denote a link
of bandwidth x and delay y. For instance, a link designated as 100 Mbps/2
ms denotes a link whose bandwidth is 100 Mbps and propagation delay
is 2 ms. We also use this notation to refer to a link whose attributes are
specified non-numerically, for instance, a high-bandwidth/low-delay link.
Mobile IPv6 is not simulated but we model that a handoff notification with
the characteristics of the access link will arrive at the TCP sender at the
correspondent node along with the binding updates. Handoff notification
with the binding updates is modelled using a user-defined command in ns-2
with the link characteristics as its parameters.

Simulation Model

The basic idea behind a simulation model for vertical handoff is to provide
multiple paths with different characteristics between a mobile node and its
correspondent node.

In the simulation models used in [58,59], a vertical handoff is simulated
by changing the link characteristics such as link bandwidth, propagation
delay and buffer size so that the same link models the characteristics of
both the links involved in the handoff. When the buffer size is changed,
the default ns-2 behaviour is not to discard packets which cannot be ac-
commodated within the size of the new buffer. This is the approach used in
the aforementioned papers to simulate a make-before-break handoff where
there are no loss of packets during the handoff. To model a break-before-
make handoff where packets may be lost during the handoff, in ns-2 it is
possible to apply an error model with 100 % (or arbitrarily specified loss
percentage) loss on the link which is the approach taken in [58,59]. In our
view, there are many drawbacks in this approach. In a make-before-break
handoff, a mobile node can continue to receive packets for a while from
both the old link and the new link. So modelling the same link to represent
both the links makes it difficult to distinguish the packets arriving through
these links and treat them separately if needed. Another problem with this
approach is that after a handoff, a link will always have the packets of the
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Figure 3.1: Network Topology used in Vertical Handoff Experiments.

old link and it may be difficult to simulate a new link with an empty buffer.
Yet another problem is that it is not possible to represent the background
traffic of the old link and the new link independent of each other.

The simulation model we propose here and use in our experiments in this
thesis reflects a vertical handoff more realistically by changing the routes
the packets take before and after a handoff rather than by merely changing
the link characteristics. We use the ns-2 routing features to this end as ns-2
supports routing updates on-the-fly. By changing the route metrics of the
two links involved in a handoff, packets can be directed along different links.
The route metric of the current route is set to a very low value while that
of the unused route is set to a very high value. When a handoff notification
arrives, the route metric is changed to model a make-before-break handoff.
To model a break-before-make handoff, an error model with a packet loss
rate of 100 % is applied to the old link and after the disconnection period,
the route metric of the new link is set to a small value.

The simulation model used in our experiments is shown in Figure 3.1.
The mobile node MN is capable of switching between the two wireless access
interfaces, namely, Wir1 and Wir2. Both Wir1 and Wir2 have dedicated
base stations BS1 and BS2 that are connected to a common access router
R which has a link to the correspondent node CN. The nodes Wir1 and
Wir2 are introduced between the MN and the respective base stations to
correctly model a break-before-make handoff. Without Wir1 (Wir2), if we
apply an error model with a loss rate of 100 % to BS1 (BS2) node, only the
packets arriving at BS1 (BS2) are dropped and the packets in transit from
BS1 (BS2) to MN will not be dropped. When we apply this error model to
both BS1 and Wir1 simultaneously, the link between BS1 and Wir1 breaks
and the packets that have arrived at BS1 and those in transit between BS1
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and Wir1 are lost. As a result MN loses the connection to the base station
BS1 thereby modelling the break-before-make handoff accurately. The link
between MN and Wir1 (Wir2) has “infinite buffer” and “no” propagation
delay, i.e., Wir1 and Wir2 are local to MN and do not contribute to the
delay of MN’s path to the base station. The propagation delay and the
bandwidth of the fixed links are as shown in Figure 3.1.

Simulation Setup

In order to study the effect of changes in the link bandwidth and delay
on TCP behaviour we categorize our experiments into the following three
classes: (1) handoff between access links which have the same bandwidth
but different delay, (2) handoff between access links which have the same
delay but different bandwidth, and (3) handoff between access links which
have the same bandwidth-delay product (BDP) but with differing band-
width and delay. The choice of the parameters for the bandwidth and
delay cover the entire range of values that are of interest in typical handoff
scenarios.

In our experiments, we use TCP SACK as the baseline TCP to evaluate
its performance in a vertical handoff and to quantify the improvements in
TCP performance due to the use of our algorithms. We refer to TCP SACK
as regular TCP or just ’TCP’ in presenting our experimental results. The
TCP initial window of three 1460-byte segments is selected based on RFC
3390 [15]. Delayed ACK [30], Limited transmit [13] and DSACK [53] are
enabled in TCP. The receiver advertised window is set to 5000 packets so
that it will not be a limiting factor in setting the congestion window. The
TCP packet size is 1500 bytes inclusive of the TCP/IP headers. For the
experiments reported in Paper 1, the WLAN buffer is set to 30 packets and
the EGPRS buffer is set to 32 packets to closely characterize the WLAN,
EGPRS parameters. Channel allocation delays in EGPRS are included in
this paper. For the experiments in Papers 2, 3 and 4, the router buffer size
of each link is set to the BDP of the access link with at least five packets
as the minimum value and no allocation delay is modelled.

In our experiments, only one mobile node and one correspondent node
are considered. One to four bulk TCP flows are transferred from the cor-
respondent node to the mobile node. The small number of multiple flows
in the study is adequate considering that a mobile device typically runs a
small number of applications simultaneously. In our experiments a handoff
can occur once in the lifetime of a TCP connection in any of the TCP
phases, namely, slow start, slow start overshoot, fast retransmit/fast recov-
ery and congestion avoidance. In our experiments, a 20-second interval is
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chosen to cover all the phases of a TCP connection and a handoff can occur
uniformly in any of the 200 points at 100 ms intervals once in the lifetime of
a TCP connection. Each experiment is conducted 200 times corresponding
to the handoff occurring at these 200 points in the 20-second interval. The
duration of each test run includes the completion of the handoff occurring
in the 20-second interval.

Both make-before-break as well as break-before-make handoffs are
examined. The disconnection period for break-before-make handoff is taken
to be 500 ms. As discussed in Section 2.3, the handoff delay which is the
disconnection period for a break-before-make handoff consists of the time
taken for network discovery, authentication and for sending the binding
updates. In our experiments we take the handoff delay to be the minimum
time for the binding updates from the mobile node to reach the correspon-
dent node and it corresponds to the one-way propagation delay of the new
path after the handoff. We choose 500 ms as the disconnection period which
is greater than the largest one-way propagation delay (300 ms) of any of
the access links used in our experiments.

No link errors are modelled in our simulations as we assume that the
packet losses are either due to disconnection or congestion. This choice
is made as the objective of the present study is to isolate the effects of a
vertical handoff on TCP.

Performance Metrics

As we are interested in studying the behaviour of TCP with a vertical
handoff, we study how TCP behaves immediately after the occurrence of a
handoff. As a performance index, we calculate the time taken to transfer
(until acknowledgement is received) ’n’ new data packets through the new
access link after a handoff. The choice of n depends on the severity of the
effect of a vertical handoff and the value of n is chosen to reflect the time
that TCP can take to stabilize after a handoff. We have carried out TCP
performance analysis as n takes values from 50 to 500 in steps of either
50 or 100 packets. Experimental observations show that in many handoff
scenarios, the choice of the value of n as 100 is adequate and for a handoff
to a high-bandwidth/low-delay access link, e.g., handoff to a 54000 Kbps/4
ms link, choosing n to be 500 gives a better evaluation of the proposed
enhancements.

The performance metric in [64,124] is the number of in-order data pack-
ets received in four seconds after a vertical handoff, chosen on the basis that
for a target link bandwidth greater than 256 Kbps, the TCP sender would
have recovered fully in 4 seconds. In our experimental setup some of the
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links’ bandwidth is less than 256 Kbps (e.g., 200 Kbps) and we have ob-
served that four seconds is not enough for TCP to recover fully in many
handoff scenarios. When the target link bandwidth is very high such as
in a 54000 Kbps/4 ms access link, TCP recovery will be complete much
before four seconds after a handoff. So we have chosen to consider the time
taken for the transfer of n new data packets immediately after a handoff as
a better metric than the number of packets transferred in a fixed duration
to evaluate the effectiveness of the TCP recovery in a handoff. In all our
experiments and analysis described in this thesis, we use the term transfer
time of a packet to denote the time interval from the time the packet is sent
from a TCP sender to the time the sender receives the acknowledgement
for that packet from the TCP receiver.

3.3 The Problems of TCP in a Vertical Handoff

We recall that a vertical handoff involves an active mobile node switching
to a new access network whose link characteristics differ significantly from
that of the old access network. For example, if we consider a WLAN of
bandwidth 5 Mbps and one-way propagation delay of 10 ms and an EGPRS
with 200 Kbps and 300 ms as the corresponding quantities, the ratio of
change in bandwidth after a vertical handoff from WLAN to EGPRS is
25:1 whereas the ratio of change in delay is 1:30. So there is an order of
magnitude change in bandwidth and delay after a vertical handoff from
WLAN to EGPRS.

Though the mobility management protocols such as Mobile IP [84,116]
provide a transparent mobility to the transport layer, the order of
magnitude change in bandwidth and delay in the last-hop or first-hop
link characteristics due to a vertical handoff may change the end-to-end
path characteristics significantly and it may take TCP several RTTs to
adapt to the characteristics of the new end-to-end path. Since immediately
after a vertical handoff, TCP still relies on the cwnd and RTT of the old
path, it may unnecessarily invoke congestion control actions resulting in
performance degradation.

TCP is known to converge slowly to the new network conditions after
a vertical handoff [47]. TCP can only increase the sending rate by one
segment per RTT in the congestion avoidance phase. If the new link after
a handoff has a high capacity in comparison to that of the old link, it will
take TCP many RTTs to achieve the corresponding sending rate. Similarly
after a handoff to a low capacity path, TCP halves the cwnd when packet
losses occur. The new path capacity may still be lower or higher than half
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of the old path capacity resulting in under (or over) utilization of the new
path. A significant change in RTT can give rise to spurious retransmission
timeouts (RTOs), delayed timeout recovery and packet reordering. As a
result, a vertical handoff may incur packet losses, intermittent connectivity,
packet reordering and spurious RTOs resulting in either unnecessary
TCP congestion response or inefficient loss recovery that affects TCP
performance [40,43,59,64,67,87,88,133,137,138].

We next describe the various problems of TCP in different vertical
handoff scenarios. While many of these problems have been known in
the literature previously, our systematic exploration in Paper 2 has led to
identifying the specific scenarios in which they occur.

Spurious Retransmission Timeouts (RTOs)

Spurious RTOs are the unnecessary retransmission timeouts caused by de-
layed or lost acknowledgement. It has been observed that even when no
segments are lost, a TCP retransmission timer can expire spuriously and
cause unnecessary retransmissions [60, 97, 98]. As a result of a spurious
RTO, the TCP sender retransmits packets unnecessarily and decreases the
sending rate by reducing the cwnd to one MSS and ssthresh to Flight-
Size/2. Bandwidth is wasted due to unnecessary retransmissions whereas
unnecessary cwnd reduction results in severe underutilization of the link.

In a vertical handoff, spurious RTOs occur when a make-before-break
handoff takes place from a low-delay link to a high-delay link. After the
handoff, the ACKs will be delayed due to the high propagation delay of the
new high-delay link. Due to the small RTO value calculated on the basis
of the old path, the TCP retransmission timer expires before the arrival of
the ACKs through the new link. Usually in a make-before-break handoff
no packets are lost and after a spurious RTO, the late ACKs of the original
packets trigger unnecessary retransmissions of a whole window of segments
during the RTO recovery. After a spurious RTO, the TCP sender in slow
start increases the cwnd on each late ACK received, thereby injecting a
large number of segments in one RTT violating the packet conservation
principle [81]. This situation can lead to severe packet losses if the handoff
is from a high-bandwidth link to a low-bandwidth link even if the BDP of
the two links remains the same. An example scenario is shown in Figure
8a, Paper 2.

TCP Eifel [97, 98] and Forward RTO-Recovery (F-RTO) [131, 132] are
two well-known algorithms to detect spurious RTOs. The occurrence of
spurious RTOs due to a vertical handoff has been the subject of several
studies including our own [40,43,64,67,95,125]. Our experiments described
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in Paper 2 show how sensitive the occurrence of spurious RTOs is to the
access link characteristics. We observe that the spurious RTOs occur in
more than 85-90% of the handoff points when the delay of the new link
is at least eight times that of the old link. From our experiments we find
that the occurrence of spurious RTOs is dependent on the TCP state as
well. For instance, if TCP enters fast recovery just after a handoff, spurious
RTOs can occur due to queueing delay in the new link even with a two-fold
increase in the delay of the new access link. An example scenario is shown
in Figure 10a, Paper 2.

Packet Reordering

Packet reordering occurs when a make-before-break handoff takes place
from a high-delay link to a low-delay link. During a make-before-break
handoff, a mobile node can receive packets through the old link as well as
through the new link. The packets with high sequence numbers sent after
the handoff through the new link arrive at the TCP receiver earlier than
the packets sent before the handoff through the old link. Reordering occurs
at the receiver as the sequence number of the packets arriving through
the new link is greater than the expected sequence number in the TCP
variable rcv.nxt. As a consequence of this reordering, the TCP receiver
sends duplicate acknowledgements (dupacks) over the new link. When the
TCP sender gets three dupacks, it triggers the fast retransmit and fast
recovery algorithms and as a result the cwnd and the ssthresh are reduced.
As the dupacks arise, not due to congestion but due to reordering, the
retransmissions are unnecessary. The cwnd reduction is undesirable if the
BDP of the new path is greater than that of the old path. Packet burst can
occur after a reordering event [64]. When the last in-order packet arrives at
the receiver, it advances the TCP variable rcv.nxt by the amount of packets
received through the new link and the receiver sends a cumulative ACK
through the new link. Upon receiving this ACK, the TCP sender sends a
burst of packets through the new link which may cause severe packet drops
leading to retransmission timeouts if the new link’s transmission queue does
not have the capacity to handle it.

Packet reordering due to a vertical handoff and the conditions for the
occurrence of packet reordering in vertical handoff scenarios are discussed
in [39,64,125]. In the case of handoff involving links of the same bandwidth,
a decrease in the link delay after a handoff generates reordered packets but
as the bandwidth remains the same, sufficient number of dupacks may not
be generated to trigger a false fast retransmit . In the case of a handoff
between the same delay links, it is not possible to inject dupthresh number of
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packets through the new link to overtake the packets through the old link. If
the ratio of the new access link bandwidth to the old access link bandwidth
is greater than dupthresh, enough dupacks may be generated to trigger a
false fast retransmit provided the delay of the new link is smaller than
that of the old link. An example scenario is shown in Figure 1a, Paper 3.
We observe that as the ratio of the old and the new link delays increases,
the fast retransmit algorithm is triggered immediately after a handoff and
the number of unnecessary retransmissions increases. Handoff scenarios
where packet reordering occurs are described in detail in Papers 3.

Unused Connection Time and Reduction in ssthresh

A break-before-make handoff is likely to result in unused connection time.
If the disconnection time is more than the RTO value of a TCP connection,
the RTO timer may expire several times during the disconnection period,
each time doubling the RTO value [113]. When the connectivity is resumed,
the TCP sender needs to wait until the RTO timer expires again before
attempting another retransmission. This unused connection time delays
the start of the recovery of lost packets. This problem is described in detail
in [137].

Our experiments in Paper 1 and Paper 2 show that in addition to the
unused connection time, reduction in ssthresh due to the occurrence of
more than one RTO is a key factor in affecting the TCP performance in
a break-before-make handoff. If more than one RTO has occurred, i.e., a
retransmission is lost, then the ssthresh value is further reduced and the
recovery of the lost packets is carried out mostly in the congestion avoidance
phase with a very low ssthresh value. However, in a break-before-make
handoff, the retransmission is lost due to disconnection and not due to
congestion and so making this reduction in ssthresh is unnecessary. An
example scenario is shown in Figure 9a, Paper 1. When the BDP of the
new link is greater than the reduced ssthresh, TCP performance degrades
due to the underutilization of the new path.

Packet Losses

In a vertical handoff, packet losses occur due to (i) a decrease in BDP after
a make-before-break handoff, (ii) a decrease in bandwidth after a handoff
even if the handoff occurs between same BDP links, and (iii) disconnection
due to a break-before-make handoff. The packet losses due to a decrease
in BDP and disconnection are studied in [40,43,55,56,59,64,87, 102,149].

With a make-before-break handoff from a high-BDP link to a low-BDP
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link, congestion-related packet losses occur due to the decrease in BDP. A
decrease in BDP occurs in the case of a handoff from a high-bandwidth link
to a low-bandwidth link where the delay of both the links involved in the
handoff remains the same or the new link has a smaller delay compared to
the old link. As the TCP sender continues to inject packets into the new
link at the same high rate as before in the old link, it may result in buffer
overflow of the new link and consequent packet losses.

In the case of same bandwidth links, a make-before-break handoff from
a high-delay link to a low-delay link causes packet losses due to a decrease
in BDP. Multiple RTOs are required for loss recovery if there is a significant
reduction in BDP after a handoff as shown in Figure 20a, Paper 2.

An interesting observation from our experiments is that packet losses
can occur in a make-before-break handoff between the same BDP links.
Packet losses occur as the TCP sender continues to send packets into the
new link at the same rate as that in the old link. Typically, if the ratio of
the bandwidths of the old link to the new link is greater than eight, severe
packet losses occur. Figure 24a, Paper 2, illustrates a make-before-break
handoff from a 1600 Kbps/37 ms link to a 200 Kbps/300 ms link. Here both
the links have the same BDP but still packet losses occur. In the handoff be-
tween the same BDP access links, when the bandwidth of a link decreases,
its delay proportionately increases. Both the decrease in bandwidth and
the increase in delay, in effect, increase the delay of the link which causes
spurious RTOs to occur. So packet losses occur both due to spurious RTOs
and due to TCP continuing to send the packets at the high rate of the old
link even after the handoff. Another interesting observation is that even if
the BDP of the new link is higher than that of the old link, packet losses
can occur if the bandwidth of the old link is significantly greater than
that of the old link. In the case of a make-before-break handoff from a
54000 Kbps/4 ms link to a 6000 Kbps/50 ms link which is reported in
Paper 4, the BDPs of the old and new links are 38 and 50 packets respec-
tively. Here also packet losses occur as TCP continues to inject packets at
the high rate of the old link even after the handoff and due to the occurrence
of spurious RTOs as well.

With a break-before-make handoff, the connectivity that is lost for some
duration resumes after the completion of the handoff. This disconnection
causes packet losses. An example scenario is shown in Figure 14a, Paper 2.

Slow convergence of RTO

In a handoff from a high-delay link to a low-delay link, the RTO value may
be very high compared to the new end-to-end RTT. This problem was first
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described in [88]. Our experiments in Paper 2 show that queuing delay in
the old link inflates the RTT and RTO values if the old link has a high
BDP.

As described in RFC 2988 [113], the equations 3.1, 3.2 and 3.3 show
how RTT and RTO values are updated when an acknowledgement for a
segment arrives at the TCP sender.

RTTV AR = (1 − β) ∗RTTV AR + β ∗ |SRTT − R| (3.1)

SRTT = (1 − α) ∗ SRTT + α ∗ R (3.2)

RTO = SRTT + max(G,K ∗ RTTV AR) (3.3)

where R is the current round-trip time (RTT), SRTT is the smoothed
round-trip time and RTTVAR is the round-trip time variation. The pa-
rameters α and β are 1/8 and 1/4 respectively. G is the clock granularity
and K is a constant that has a value 4. RFC 2988 recommends a minimum
RTO value (minrto) of 1 second but many implementations including Linux
TCP allow a minimum limit of 200 ms for the RTO.

We can see from these equations that the exponential moving average
(EWMA) algorithm to update RTT values gives a smaller weight to the
current RTT sample and also to the RTT variance of the current sample
compared to their respective past values. So after a handoff, the RTO
will converge to the RTT of the new low-delay path quite slowly. This
convergence is exceptionally slow when the RTT variables are updated
only once in an RTT [113]. Another problem with the RTT estimator
is that when the RTT suddenly decreases, RTTVAR increases resulting in
an overestimated RTO. In some implementations such as Linux TCP, this
overestimation problem has been mitigated by introducing a variable, MDEV
(mean deviance), equal to |SRTT − R| to calculate the final
RTTVAR [134]. If the current RTT value is less than SRTT , the
current MDEV is given only a weight of 1/32. But in Linux TCP also
the RTO estimator starts to decrease slowly to a low value if the RTT val-
ues remains at a low level as in the case of a handoff to a low-delay access
link [134].

The high RTO value delays the timeout recovery unnecessarily if an
RTO recovery is needed relatively soon after a handoff. Our experiments
show that slow RTO convergence delays the packet recovery especially in
the case of a make-before-break and a break-before-make handoff from a
high-BDP, high-delay link to a low-BDP, low-delay link. Here RTO recovery
is usually needed due to a large number of packet losses. But the loss
recovery is delayed as the RTO value used will be based on the old link and
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the convergence to the new low RTO value is slow. An example scenario is
shown in Figure 20a, Paper 2.

Inability to Adapt to the Increased Capacity

A vertical handoff to an increased BDP path results in the underutilization
of the available capacity due to the inherent inability of TCP to adapt to
the high BDP available after a handoff. If the handoff occurs during the
congestion avoidance phase, increasing the cwnd by one segment in one
RTT will take several RTTs for TCP to fully utilize the increased new link
capacity. This problem is addressed in [56,102,133,149].

In a wireless overlay networks, with the increase in the bandwidth of
an access networks, its delay decreases. For an increase in BDP after a
handoff, either the bandwidth or the delay of the new link should be greater
than the corresponding value of the old link. If the new access link has a
significantly higher bandwidth than that of the old link, TCP may not be
able to use the high bandwidth available after the handoff. Problems due to
packet reordering can arise in this scenario which may lead to a reduction
in cwnd . In the other case, as the bandwidth of the new link is less than
that of the old link, packet losses and the recovery may affect the effective
utilization of the new high capacity available after a handoff. So we observe
that in wireless overlay networks, TCP’s behaviour is overshadowed by the
old link characteristics in the case of a handoff to a link with a higher
capacity.

3.4 TCP behaviour with Vertical Handoff:
Example Scenarios

To observe the effects of the problems of TCP due to a vertical handoff, we
describe some example handoff scenarios where both the bandwidth and
delay of the access links change while the BDP of the two links remains
the same. This scenario brings out most clearly the combined effect of
the changes in bandwidth and delay on TCP behaviour in handoff. For a
detailed description of the experiments involving various handoff scenarios
and the observations based on them, the reader is referred to the Papers 1,
2 and 3.

We consider a set of experiments in which the bandwidth and delay
of one of the links involved in the handoff are varied, while the band-
width and delay of the other link are kept fixed. We have two sets of fixed
bandwidth/delay values for the access links, namely, 200 Kbps/300 ms and
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6400 Kbps/9 ms. For the varying link, the bandwidth/delay combinations
are 200 Kbps/300 ms, 400 Kbps/150 ms, 800 Kbps/75 ms, 1600 Kbps/37
ms, 3200 Kbps/18 ms and 6400 Kbps/9 ms. With these combinations, both
the old and the new access links have a BDP of 10 packets. We perform
the experiments in a handoff from a high-bandwidth/low-delay link to a
low-bandwidth/high-delay link and vice versa.

Handoff from a high-bandwidth/low-delay link to
a low-bandwidth/high-delay link

Figure 3.2 shows that a significant decrease in bandwidth and increase in
delay due to a handoff increases the transfer time for make-before-break
handoffs. Here we fix the new link bandwidth/delay at 200 Kbps/300 ms
while varying the bandwidth and delay of the old link. When there is a
significant increase in delay after a make-before-break handoff, TCP suffers
from spurious RTOs. Spurious RTOs occur in more than 90% of the handoff
points when the ratio of the change in delay is at least eight.

Even when the BDP of the two access links remains the same we have
observed that packet losses will occur when there is a significant reduction
in bandwidth after a handoff. When the old link bandwidth is 1600 Kbps or
higher, (the ratio of the bandwidth of the old link to that of the new link is
eight or more) many packets are lost in a make-before-break handoff due to
the bursty transmission caused by the arrival of late ACKs triggered at high
packet arrival rate over the of the old link resulting in a heavy congestion
on the new low-bandwidth link. In most of the cases, recovery needs one
or more RTOs and the reduction in the sending rate is drastically affected
by the reduced ssthresh and cwnd . The spurious RTOs and packet losses
due to the reduction in bandwidth adversely affect the transfer time after a
handoff even when a make-before-break handoff has no packet losses. The
resulting increase in transfer time for TCP in a make-before-break handoff
is shown in the lower graph in Figure 3.2. The transfer time is almost
doubled for a handoff from a 6400 Kbps/9 ms link to a 200 Kbps/300 ms
link compared to the case of the handoff from a 200 Kbps/300 ms link to
another access link with the same bandwidth and delay.

The upper graph in Figure 3.2 shows the transfer time for TCP to
transfer 100 packets after a break-before-make handoff. Packet loss due to
disconnection is the only problem affecting the handoff to a 200 Kbps/300
ms link either from a 200 Kbps/300 ms link or from a 400 Kbps/150 ms link.
In these two cases, as the RTO is higher than the disconnection period, the
timeout occurs after the disconnection. When the old link delay is 75 ms or
less, timeout occurs during the disconnection period and the retransmitted
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Figure 3.2: Handoff from a high-bandwidth/low-delay link to a low-
bandwidth/high-delay link with fixed BDP. Transfer time for 100 packets
(y-axis) after a make-before-break (MBB) handoff and a break-before-make
(BBM) handoff for the same BDP links with varying bandwidth and delay
of the old link (x-axis) and the bandwidth and delay of the new link fixed
at 200 Kbps/300 ms [Figure 6, Paper 2].

packet is also lost. Another timeout is needed to recover the lost packets.
So the unused connection time and the ssthresh reduction increases the
recovery of the lost packets, resulting in an increased time for the transfer
of 100 packets after the handoff.

Handoff from a low-bandwidth/high-delay link to
a high-bandwidth/low-delay link

Figure 3.3 shows the transfer time for 100 packets after make-before-break
and break-before-make handoffs from a low-bandwidth/high-delay link to a
high-bandwidth/low-delay link when the bandwidth/delay of the new link
is fixed at 6400 Kbps/9 ms. Packet reordering is a problem affecting TCP
when there is a significant reduction in delay and a significant increase in
bandwidth after a make-before-break handoff. Packet reordering leading
to a false fast retransmit results in unnecessary reduction in cwnd and
unnecessary retransmissions. From the lower graph in Figure 3.3 we see
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Figure 3.3: Handoff from a low-bandwidth/high-delay link to a high-
bandwidth/low-delay link with fixed BDP. Transfer time for 100 packets
(y-axis) after a make-before-break (MBB) and a break-before-make (BBM)
handoff for the same BDP links with varying bandwidth and delay of the
old link (x-axis) and the bandwidth and delay of the new link fixed at 6400
Kbps/9 ms [Figure 7, Paper 2].

that it takes about 0.2 seconds to transfer 100 packets if the handoff is
from a 6400 Kbps/9ms link to a link of identical parameters. But when
the handoff is from a 200 Kbps/300 ms link to a 6400 Kbps/9 ms link, it
takes 0.6 seconds to transfer 100 packets. This shows the influence of the
old link characteristics in determining the transfer time after a handoff.

The upper graph in Figure 3.3 shows the transfer time for 100 packets
after a break-before-make handoff to a 6400 Kbps/9 ms link. In the case of
a break-before-make handoff from a high-delay old link (e.g., 200 Kbps/300
ms link), the high RTO value prolongs the start of the RTO recovery. The
RTO value is around 1.3 seconds when the bandwidth/delay of the old
access link is 200 Kbps/300 ms. This means that the RTO timer expires
only 800 ms after the disconnection time of 500 ms. For the handoff from
a 400 Kbps/150 ms link, the RTO value (around 700 msec) is slightly
larger than the disconnection time of 500 ms and the near immediate RTO
recovery reduces the transfer time compared to the case of handoff from
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a 200 Kbps/300 ms link. In the case of a handoff to a link with a lower
delay (75 ms or lower) the increase in transfer time is mainly due to the
occurrence of multiple RTOs and the resulting reduction in ssthresh. The
maximum unused connection time and the reduction in ssthresh account
for the peak in the transfer time in Figure 3.3 for the break-before-make
handoff from a 800 Kbps /75 ms link to a 6400 Kbps/9 ms link.

3.5 Summary

In this chapter we have described our experiments on the problems of TCP
in vertical handoff along with related work. We presented a simulation
model which includes an accurate modelling of both make-before-break
and break-before-make handoffs. We described our experiments involving
both make-before-break and break-before-make handoffs to bring out the
specific problems of TCP in the different handoff scenarios and to show the
extent to which TCP is affected by the changes in bandwidth and delay
of the access links involved in a handoff. These experiments enabled us
to study the effects of changes in delay and in bandwidth separately and
together. The choice of the parameters for the bandwidth and delay cover
the entire range of values that are of interest in typical handoff scenarios.

While spurious RTOs are the main problem of TCP with the increase
in access link delay after a handoff, packet reordering and slow convergence
to the new low RTO value are the problems when a handoff occurs to a
low-delay access link. We analyzed the problems of TCP in handoff by
identifying the various scenarios that lead to these problems; for example,
spurious RTOs occur when there is a significant increase in delay after a
handoff. From our experiments we observed that the occurrence of spurious
RTOs is dependent on the TCP state as well. Even with a two-fold increase
in delay due to a handoff, spurious RTOs can occur due to queueing delay if
TCP enters fast recovery after a handoff. The slow convergence to the low
RTO value increases the recovery time, especially when packet losses occur
due to a large decrease in BDP after a handoff. As the disconnection time
of a break-before-make handoff increases, multiple RTOs occur and the
unused connection time increases. Another serious problem in this scenario
is the repeated reduction in ssthresh due to multiple RTOs which allows
the recovery only in congestion avoidance and that too with a very small
window (usually with size 2). An interesting result of the study is that TCP
behaviour is affected due to a vertical handoff between same BDP links.
For the same BDP links, packet losses can occur when the bandwidth of
the new link is less than eight times the bandwidth of the old link.
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The results of our experimental study on TCP behaviour in a verti-
cal handoff reported in Papers 2 and 3 provide a basis for developing the
enhanced algorithms presented in Papers 2, 3 and 4 to improve TCP per-
formance in a handoff. Table 3.1 summarizes the various problems of TCP
in a vertical handoff along with the scenarios in which they occur.
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Table 3.1: Summary of the problems of TCP in a vertical handoff

Problem Due to Event

Spurious (i) Make-before-break handoff from a low-delay
RTOs link to a high-delay link [43,64,67,125]

(ii) Make-before-break handoff from a high-bandwidth
link to a low-bandwidth link [43]

Packet Make-before-break handoff from a high-delay link
Reordering to a low-delay link and
leading to bandwidthnewlink > dupthresh ∗ bandwidtholdlink

false [39,64,125]
fastretransmit

Packet (i) Make-before-break handoff from a high-BDP
Losses to a low-BDP link [56,58,64,87,102,149]

(ii) Make-before-break handoff from a high bandwidth
to a low bandwidth link for same BDP links [40,43]
(iii) Disconnection due to a break-before-make
handoff [40,43]

Unused Break-before-make handoff
connection disconnection period greater than
time and the RTO of the old path [40,43,137]
ssthresh Repeated RTOs and ssthresh reduction [40,43]
reduction

Inability Handoff from a low BDP link to
catch up with a high BDP link [56,102,133,149]
high capacity

Slow convergence Handoff from high-delay link
to the new RTO to a low-delay link [40,43,88]
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Chapter 4

Alleviating the Problems of TCP
in Vertical Handoff

In this chapter we describe our cross-layer assisted algorithms to mitigate
the problems of TCP in a vertical handoff along with the proposals in
the literature. We begin this chapter by reviewing some general TCP al-
gorithms that can be used to deal with the TCP problems in a vertical
handoff which do not require any cross-layer information regarding hand-
off. Section 4.2 describes cross-layer assisted TCP algorithms for vertical
handoff with the focus on our proposed algorithms. Section 4.3 gives some
example handoff scenarios to illustrate the effectiveness of our proposed
algorithms. The interested reader can find a detailed description of the
various proposals in the literature along with a comparative discussion of
our algorithms in the Papers 1, 2, 3 and 4 that are included in this the-
sis. Section 4.4 presents a discussion of the proposed algorithms and the
Section 4.5 provides a summary of the chapter.

4.1 TCP Algorithms without Cross-layer
Information

In this section we give an overview of the TCP algorithms proposed in the
literature that can be used to mitigate the problems of spurious RTOs and
packet reordering in a general setting. While these algorithms can also be
employed to improve the TCP behaviour in vertical handoff scenarios we
point out the merits and demerits of such solutions.

DSACK [53] is an extension of the TCP SACK [101] in which the
receiver reports to the sender that a duplicate segment has been received.
The use of DSACK to detect unnecessary retransmissions either due to

45
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spurious RTOs or due to packet reordering and to undo the unnecessary
congestion control actions is described in [25,26]. When DSACK informa-
tion is received, the congestion control measures such as the setting of cwnd
and ssthresh that have been taken already are undone (i.e., restoring their
previous values) only if all the segments that are retransmitted by the TCP
sender in the previous window have been duplicated. In a vertical handoff,
TCP may not be able to know for how long it is has to wait to confirm
that all the retransmitted packets in a particular window have been unnec-
essarily transmitted as the characteristics of the access links have changed
significantly after a vertical handoff. Besides, the restoration of the old
cwnd and ssthresh may be inappropriate in a vertical handoff scenario as
the path characteristics have changed after a vertical handoff.

The TCP-Eifel detection algorithm [97, 98] uses the TCP timestamps
option [29] to detect spurious retransmissions. The TCP-Eifel response
algorithm [96] describes the methods to undo the unnecessary congestion
control measures taken during the RTO recovery. The Eifel detection algo-
rithm provides a faster detection of spurious RTOs compared to DSACK
but for every packet there is an overhead of 12 bytes because of the use of
timestamps.

Forward RTO-Recovery (F-RTO) [131,132] is a TCP sender-only algo-
rithm that helps to detect spurious RTOs. Unlike TCP-Eifel it does not
require any TCP options to operate. The F-RTO algorithm retransmits
the first unacknowledged segment as a response to an RTO. By monitoring
the incoming acknowledgements, the algorithm determines whether or not
the timeout was spurious and decides whether to send new segments or to
retransmit unacknowledged segments.

Although both TCP Eifel and F-RTO are effective in detecting unnec-
essary retransmission timeouts, the selection of a proper response is hard
without additional information about the new path.

Various techniques to increase the dupthresh values to avoid the trig-
gering of the fast retransmit algorithm due to packet reordering have been
proposed in [25]. These techniques use a variant of the Limited Transmit
algorithm [13] to preserve the ACK-clocking by sending new data for every
second dupack.

Reordering Robust-TCP (RR-TCP) proposed in [159] uses the DSACK
information to vary the dupthresh value adaptively for triggering the fast
retransmit algorithm. It proposes several algorithms for avoiding the false
retransmits proactively.

TCP-NCR [24] roughly increases the dupthresh value based on the
congestion window of data. TCP-NCR also extends TCP’s Limited
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Transmit algorithm to allow the sending of new data during the period
when the TCP sender is engaged in distinguishing between loss and
reordering.

The above schemes try to avoid triggering false fastretransmits due to
packet reordering, but they do not take into account the characteristics of
the new link in setting the cwnd and ssthresh after a vertical handoff.

4.2 Cross-layer Assisted TCP Algorithms

TCP congestion control algorithms have been designed to enable TCP
to adapt to the fluctuating bandwidth available on its end-to-end path.
However, due to the abrupt significant changes in bandwidth and/or delay
of the access links caused by a vertical handoff, TCP may experience sev-
eral problems due to loss of packets, unnecessary retransmissions, packet
reordering, spurious timeouts before it can adapt to the new end-to-end
path as described in Section 3.3. The assumption that the wireless access
link is the bottleneck link of the end-to-end path of a TCP connection is
justifiable as the bandwidth of the wired links in the end-to-end path is usu-
ally much higher than that of the wireless access links at the end points. So
by providing the easy-to-obtain information about the bandwidth and/or
delay changes of the access links to TCP it is reasonable to explore whether
TCP performance in a handoff can be significantly improved in a majority
of the vertical handoff scenarios. Our experiments with cross-layer assisted
TCP algorithms which are described in this section provide an affirmative
answer.

The Rationale behind Our Algorithms

Previous studies have shown that the end-to-end path of a TCP connection
remains fairly stable over the lifetime of a connection [112]. This fact about
the stability of TCP routes enables us to make a reasonable assumption
that any change in the end-to-end path characteristics that affects TCP
behaviour in a vertical handoff is very likely caused by the changes in the
access link characteristics due to a handoff.

It is possible for a mobile node to easily obtain the information regard-
ing the occurrence of a vertical handoff and the status of the wireless link:
for instance, the mobile node can consider IEEE 802.21 Media Indepen-
dent Handover (MIH) services [76] as a source for this information. IEEE
802.21 aims at developing mechanisms that provide information regarding
the link status and link parameters to the upper layers to optimize the han-
dovers among heterogeneous access networks. For example, the standard
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can provide event notifications such as link-up, link-down and link quality is
degrading etc., and also information regarding the link level characteristics
to the upper layers.

The cross-layer assisted enhancements to the TCP algorithm that we
propose to mitigate the problems of TCP in a vertical handoff require mod-
ifications only to the TCP sender algorithm. If the TCP sender happens to
be on a mobile node, it is easy for the mobile node to inform the changes in
the access link characteristics by using local cross-layer notifications. If the
TCP sender happens to be at the correspondent node, an explicit end-to-
end cross-layer notification from the mobile node will help the TCP sender
to get this information. A study on the feasibility of delivering the link in-
formation using the mobility protocols shows that many mobility protocols
can support this exchange of information [92]. For example, it is possible
to send this information along with the binding update messages in Mobile
IPv6 [84] or as a part of the HIP UPDATE packet with HIP [120]. It is
also possible to send this information as a part of the TCP options. In our
algorithms we model that the delivery of the handoff notifications is piggy-
backed in the mobility signalling messages so that they can be delivered to
the TCP layer exactly when the handoff completes.

Our proposed enhancements are implemented in the TCP SACK algo-
rithm and they are invoked when a cross-layer notification arrives from the
mobile node to the TCP sender at the correspondent node. This cross-layer
notification includes information about the occurrence of a handoff and a
rough estimate of the bandwidth and delay of the old and the new access
links. Our algorithms use these values to check the possibility of the occur-
rence of various problems due to a vertical handoff and devise bounds for
the TCP parameters such as minrto, ssthresh and cwnd to mitigate these
problems. Modifications to the TCP sender are also done when all the
packets sent before handoff are acknowledged and an ACK for new data is
received. The cross-layer notification arrives when the handoff completes
at the network layer. The arrival of the ACK for all the packets sent before
handoff ’completes’ the handoff event at the transport layer. When the
ACK for the new data arrives, we can be sure that the data and the ACK
have taken the new path after the handoff.

Our algorithms are incremental in nature as we have refined them
based on the extent of available cross-layer information. Starting from the
case where the available information was whether a handoff occurred and
whether there was a significant change in the access link characteristics,
we have further developed the algorithms for the case where the available
information provides a rough estimate of the bandwidth and delay of the
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access links involved in a handoff. To deal with the case of multiple TCP
flows, the available information includes the number of TCP flows present.
We have developed the various algorithms individually by isolating the dif-
ferent problems of TCP in a handoff. Our experiments in various handoff
scenarios cause the various problems of TCP in a handoff to occur together
and so our experimental results are based on the combined working of the
various algorithms we have designed.

Our algorithms are conservative in the sense that they are designed not
to be counter-productive in any situation. Our algorithms are relatively
simple and are easy to implement. We conducted experiments based on
the implementation of the algorithms in Linux kernel version 2.6.18 and our
results show that the performance of the proposed algorithms is quite close
to the results obtained in the simulation experiments [83]. In the absence
of the cross-layer information, the proposed enhancements do not affect
the normal behaviour of the TCP algorithm. We evaluated the proposed
algorithms in various handoff scenarios to show their effectiveness. We next
describe the key ideas underlying our proposed algorithms often suppressing
details that may distract in understanding the main ideas behind them. The
complete algorithms are given in the Papers 2, 3 and 4.

Algorithm to Avoid Spurious RTOs

Spurious RTOs occur in a make-before-break handoff from a low-delay link
to a high-delay link as the RTO timer at the TCP sender expires before
the ACK arrives through the high-delay link after a handoff.

Figure 4.1 shows the key steps of the algorithm to avoid spurious RTOs.
In order to avoid the expiry of the RTO timer, we set the RTO based on
the RTT of the new high-delay link. Using the bandwidth and delay values
of the old and the new access links, we find the traversal time for a Data-
ACK pair at the time of handoff. If the traversal time is greater than the
current RTO, there is a possibility of the occurrence of spurious RTOs and
we calculate the minrto based on the new access link delay and update
the RTO timer immediately so that the new minrto comes into effect.
For example in the case of handoff from a 6400 Kbps/9 ms link to a 200
Kbps/300 ms link, the RTO value at the time of handoff is around 200 ms
and the time taken for for the ACK to arrive through the new link alone is
300 ms thereby meeting the condition for the occurrence of spurious RTOs.
Our experiments show that the occurrence of spurious RTOs is dependent
on the TCP state as well. Even with a two-fold increase in delay due to
a handoff, spurious RTOs can occur due to queueing delay if TCP is in
fast recovery state. So in the calculation of minrto we take into account
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When handoff notification arrives
Calculate the traversal time tData ACK

for a data packet sent just before handoff
If (tData ACK > current RTO OR

TCP already in Fast Recovery)/* Possibility of a Spurious RTO*/
Save minrto
Calculate the minrto based on the RTT of the new access link
and the FlightSize at the time of handoff
Update RTO timer

When ACK for a new data segment arrives
If there is an increase in access link RTT after a handoff

Initialize and update RTT variables as for a new connection
Restore minrto

Figure 4.1: Algorithm to avoid spurious RTOs

the effect of the FlightSize along with the delay of the new link. Here
minrto refers to the minimum bound for the RTO value. As we are only
setting the minrto, any change in the delay of the end-to-end path will be
better reflected in the RTO calculation. When an ACK for a new packet
arrives, RTT variables are initialized according to RFC 2988 [113]. This
helps the TCP algorithm to converge to the new RTO value quickly. The
complete algorithm is given in Figure 11, Paper 2 and it does not require
any modification when there are multiple TCP flows.

Paper 1 gives the incRTO algorithm to avoid spurious RTOs. It updates
the RTO value to 3 seconds, which is the initial RTO value for a new
connection when a handoff notification arrives. The RTO is set to this value
since the cross-layer notification informs the TCP sender that a handoff
has occurred to a new link with a significant increase in delay. In the RTT
inflation scheme which has been proposed in [124], RTT is increased to an
estimated RTT value using ICMP messages and RTT is set to 3 seconds if
the ICMP method of estimation fails. The proposal in [67] to avoid spurious
RTOs is to reduce the difference in RTT between the old path and the new
path so that TCP can gradually adapt to the RTO of the new path.

Algorithm to Combat the Effects of Packet Reordering

Figure 4.2 captures the key steps of our algorithm to combat the effects
of packet reordering due to a vertical handoff. A necessary condition for
packet reordering leading to fast retransmit is the case when the ratio of
the bandwidth of the new and the old access links is greater than dupthresh.
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When handoff notification arrives
If (BWnewlink > 3 ·BWoldlink)

/* Possibility of reordering leading to a fast retransmit */
Calculate dupthresh = max(BWnewlink

BWoldlink
, 3)

In Fast retransmit:
Retransmit the first unacknowledged segment

In Fast Recovery:
Transmit a new packet for each dupack until all packets sent
before handoff are acknowledged or dupacks exceed dupthresh
If (# of dupacks > dupthresh)

Return to the normal fast recovery
When ACK for a new data segment arrives
If (DSACK indicates that the retransmission was unnecessary)

Set cwnd and ssthresh based on BDPnewlink

Figure 4.2: Algorithm to combat the effects of packet reordering

If this condition is met when the handoff notification arrives, our algorithm
calculates a new dupthresh value based on the bandwidth of the old and
the new access links. If fast retransmit occurs, the algorithm retransmits
the first unacknowledged packet and in fast recovery, it send a new packet
for every successive dupack thereby utilizing the high bandwidth of the new
link. If the number of dupacks exceeds the dupthresh value, the algorithm
goes back to the normal fast recovery. If the retransmission is identified
as unnecessary using DSACK and if TCP has not returned to the normal
fast recovery, our algorithm infers that the dupacks are generated by packet
reordering and are not due to congestion, and sets the cwnd and the ssthresh
based on the BDP of the new link scaled by the number of flows. If the
condition is not met, our algorithm uses the standard SACK recovery. The
algorithm for a single flow is given in Figure 3, Paper 3 and the multiple
flow version of this algorithm is given in Figure 3, Paper 4.

A nodupack scheme proposed in [64] suppresses the transmission of du-
packs during a handoff. This may lead to RTO recovery if dupacks gen-
erated are due to packet losses. An RTT equalization scheme is proposed
in [124] where RTTs of the packets are equalized by sending the ACK
through a fast link if the data packet has arrived through a slow link and
vice versa to avoid the generation of dupacks. A problem with these schemes
is that it may not be able to utilize the high bandwidth available after a
handoff even though they can avoid the occurrence of a false fast retransmit .
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When handoff notification arrives
If (TCP is not in RTO recovery)

If (FlightSize > Buffering capacity of the newlink)
Set cwnd and ssthresh based on BDPnewlink

Figure 4.3: Algorithm to reduce congestion-related packet losses.

Algorithm to Minimize the Packet Losses

Congestion-related packet losses occur in a vertical handoff if the new path
after a handoff has less capacity than the old path. As the access links are
most often the bottleneck links, packet losses due to congestion may occur
if the FlightSize at the time of handoff is greater than the buffering capacity
of the new link. In our algorithm given in Figure 4.3, we check whether the
above condition arises and if so, set the cwnd and ssthresh based on the
BDP of the new link scaled by the number of flows. Figure 25, Paper 2,
gives the algorithm to minimize the packet losses for a single flow and the
multiple flow version of this algorithm is given in Figure 1, Paper 4.

The algorithms proposed in [102,149] minimize packet losses by measur-
ing the bandwidth and RTT of the end-to-end path and setting the cwnd
to their product (i.e., BDP). These measurements may not be accurate as
they are based on the arrival of ACKs since both the ACKs and packets
may flow through both the old and the new access links in a make-before-
break handoff. In [59], overbuffering is proposed to improve the handoff
performance of TCP and TFRC in which all the link buffers are to set to
the maximum of the BDP of all the links in the end-to-end path. Though
overbuffering may help TCP to have a smooth handoff between links of
different BDPs, this scheme is not practical as it requires the knowledge of
the bandwidth and delay of all the links in the path beforehand.

Algorithm to Reduce the Effects of Disconnection

The unused connection time and the repeated reduction in ssthresh are the
major problems of TCP arising from the disconnection caused by a break-
before-make handoff. Our algorithm to reduce the unused connection time
given in Figure 4.4. Here the TCP sender immediately retransmits the first
unacknowledged packet if it is already in RTO recovery when the handoff
notification arrives. Also the ssthresh variable is set to the BDP of the new
link to avoid the repeated reduction in ssthresh. This algorithm does not
alter the value of cwnd after an RTO as it is not certain that the RTO has
occurred due to a break-before-make handoff. In the multiple flow version
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When handoff notification arrives:
If (TCP is in RTO recovery)

Retransmit the first unacknowledged packet
Set ssthresh to BDP of the new link

When ACK for a new data segment arrives
If there is an increase in access link RTT after a handoff

Initialize and update RTT variables as for a new connection

Figure 4.4: Algorithm to reduce the unused connection time and
to set ssthresh

When handoff notification arrives
If the RTTnewlink << RTToldlink

Initialize RTT variables as for a new connection
When ACK for a new data segment arrives

Update RTT variables

Figure 4.5: Algorithm for fast convergence of RTO

of this algorithm given in Figure 2, Paper 4, the ssthresh is set to the BDP
of the new link scaled by the number of flows.

The immediate retransmission of the first unacknowledged segment pro-
posed in [137, 138] addresses only the problem of unused connection time.
RFC 5681, ”TCP Congestion Control”, recommends that the value of
ssthresh should be reduced only once if the RTO occurs more than once for
the same segment. We have independently arrived at the same conclusion
as elaborated in Section 3.3 of Paper 1 and in the algorithm given in Figure
4, Paper 1. The algorithm suggested in RFC 5681 avoids the unnecessary
reduction of ssthresh but in a handoff scenario where the new link has a
higher BDP than that of the old link, this value of ssthresh is still less than
the capacity of the new link and TCP is not able to readily utilize the high
BDP.

Algorithm for a Fast Convergence of RTO

Our algorithm for a fast convergence of RTO in the case of vertical handoff
to a significantly lower delay link is given in Figure 4.5. When a handoff
notification arrives, if there is a significant reduction in the link RTT after
a handoff, our algorithm initializes the RTT variables as recommended in
RFC 2988. The RTT variables are updated when the acknowledgement for
new data arrives. This algorithm is given in Figure 16, Paper 2, and no
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modification to this algorithm is needed for multiple TCP flow scenarios.
The proposal in [88] gives three methods to avoid the problems of TCP

arising from a sudden change in RTT due to a handoff, namely, the resetting
of the TCP retransmission timer after a handoff, obtaining an accurate RTT
using timestamps, and increasing the weights β and α in Equations 3.1 and
3.2 for the first few RTO updates immediately after a vertical handoff.

Algorithms to Utilize the High Capacity Available after a
Handoff

Our algorithms do not propose any direct method to solve this problem
but they solve this problem indirectly for a vertical handoff in the currently
available wireless access networks organized as a wireless overlay architec-
ture. In our discussion of this problem in Section 3.3, we have seen that
the high BDP scenario after a handoff arises either in a handoff to a new
link with a higher bandwidth and lower delay (compared to the old link) or
to a link with a lower bandwidth and higher delay. In the above scenarios
TCP has problems either due to packet reordering or due to packet losses.
As our algorithms given in Figure 4.2 and Figure 4.3 are effective in miti-
gating the problems of packet reordering and packet losses, they enable an
efficient utilization the high capacity available after a handoff.

Scenarios where handoff occurs to a new access link with higher band-
width and delay than the old link are of interest for study. However, such
handoff scenarios do not seem to arise in the present wireless overlay ar-
chitecture and we have not looked into them. Packet reordering may not
occur in these scenarios as the new link delay is higher than that of the old
link. Packet losses may not occur as the new link has a higher BDP and
bandwidth than the old link. Additional information about the end-to-end
path may be required in setting the cwnd and ssthresh in these scenarios.

A variant of the Quick-Start algorithm [51, 129] that can be applied
after a vertical handoff to determine the capacity of the new path is pro-
posed in [133]. An explicit cross-layer handoff notification is employed to
trigger the Quick-Start algorithm when the handoff completes. In the orig-
inal Quick-Start algorithm, only the cwnd is set based on the Quick-Start
Response but after a vertical handoff, ssthresh and cwnd are made equal
to the Quick-Start Response. Simulation results given in the paper show
that TCP performance in a handoff is improved as Quick-Start is able to
estimate the path capacity after a handoff.

To make effective use of the higher BDP of a new path after a hand-
off, the paper [102] proposes an algorithm in which a mobile node sends
multiple partial ACKs to the TCP sender until the transmission rate in-
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creases to the bandwidth of the new link. Partial ACKs are acknowledge-
ments which cover new data but not all the data sent so far [52]. However,
the sending of more than one ACK for each received packet is not advis-
able as malicious users can exploit it to increase the sending rate aggres-
sively [17,135]. Besides the scheme cannot work if TCP byte-counting [12]
is used by the TCP sender.

A receiver-based mechanism to address the underutilization problem in
a GPRS-WLAN handoff caused by the slow draining of the SGSN buffer is
described in [56]. In this proposal, when an impending handoff is detected,
the TCP receiver sends the receiver advertised window (rwnd) based on
the BDP of the new network and this rwnd will be effective once the mo-
bility registration is complete. The rwnd is increased by two segments so
that there will be sufficient dupacks to trigger the fast retransmit of the
packets queued in the SGSN buffer through the WLAN network. Upon the
completion of handoff, rwnd can be increased based on the measured BDP
of the WLAN network.

A combined TCP receiver-sender approach is proposed in [156] to im-
prove the performance of TCP in a break-before-make handoff. A mobile
device uses the cross-layer information to determine the completion of a
handoff and to make a rough estimate of the bandwidth of the wireless
link. Immediately after the completion of a handoff, the mobile node sends
two dupacks with a new TCP bandwidth option which contains the esti-
mated bandwidth of the new wireless link. Upon receiving the dupacks with
the bandwidth option, the TCP sender sets the ssthresh to the product of
the bandwidth and the smoothed RTT and the ssthresh is updated over the
next four RTT samples. This scheme may not work well in make-before-
break handoff scenarios if the cwnd at the time of handoff is greater than
the new ssthresh value which is calculated from on the bandwidth of the
new link. A speedy probing of the correct BDP may not take place as TCP
is in the congestion avoidance phase.

TCP Enhancements for Multiple Flows

The cross-layer assisted TCP algorithms we have proposed in Papers 1, 2
and 3 are based on the behaviour of a single TCP flow. Using a single TCP
flow to study the behaviour of TCP in a vertical handoff and to evaluate
the proposed enhancements is not altogether adequate to conclude that the
proposed algorithms are effective in mitigating the problems of TCP in a
vertical handoff. On the other hand, using a single TCP flow to study
the problems of TCP in a handoff is valuable to isolate the problems of
TCP without the complexity introduced by the multiple TCP flows. So
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as the next step in our study we examine the behaviour of multiple TCP
flows when they simultaneously undergo a vertical handoff and also how
the algorithms that we have proposed in the case of a single TCP flow can
be adapted to multiple TCP flows in a handoff. This work is reported in
Paper 4.

Our experiments that are reported in detail in Paper 4 show that all
the problems described in Section 3.3 occur in the case of multiple TCP
flows in a vertical handoff.

As multiple TCP flows share a bottleneck link, it is no longer valid to
assume that the available capacity for a flow after a handoff is equal to
the BDP of the new link. We need the capacity of the new link in the
following steps in our algorithms: (i) to check for the incipient congestion
by comparing the FlightSize with the new link BDP in the algorithm to
minimize the packet losses in Figure 25, Paper 2, (ii) to set the ssthresh
after a handoff in the algorithm to reduce the unused connection time and
to set the ssthresh in Figure 15, Paper 2, and (iii) in setting the cwnd and
ssthresh after a handoff in the algorithm to minimize the effect of packet
reordering in Figure 3, Paper 3. If we set the cwnd and ssthresh to the BDP
of the new link divided by the number of flows sharing the bottleneck link
at the time of handoff, this value will represent the share of the capacity of
a single flow. Accordingly we model that the mobile node communicates
to the TCP sender at the corresponding node the number of simultaneous
TCP flows along with the cross-layer notification. The TCP sender then
sets the cwnd and ssthresh after a handoff to the BDP of the new link
divided by the number of flows. With this simple modification to the three
algorithms stated above, our algorithms are able to adapt to the case of
multiple TCP flows in a vertical handoff.

We have evaluated our algorithms for one, two and four TCP flows. As
the number of flows increases, the size of cwnd decreases inversely propor-
tional to the number of flows. So the effect of problems such as spurious
RTOs, packet reordering have a diminishing impact on TCP performance.
For instance, if the cwnd is small, the number of outstanding packets at
the time of handoff will be small. So there will be a small number of pack-
ets that are retransmitted unnecessarily due to the occurrence of a spurious
RTO. We have observed that in the case of sufficiently large values of cwnd ,
the effect of our algorithms in improving the TCP performance is visible.

We are not aware of any specific previous study dealing explicitly with
TCP behaviour in a vertical handoff when many flows are present.
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4.3 Effectiveness of Cross layer Algorithms:

Example Scenarios

The performance of the algorithms described in Section 4.2 are com-
pared with TCP (the TCP SACK algorithm) in many handoff scenarios.
These experiments and their results are described in Papers 2, 3 and 4. The
TCP SACK algorithm modified by our cross-layer assisted enhancement is
referred to as Enhanced-TCP (which is shown as ETCP in the graphs) and
it can be seen to reduce the adverse effects of a handoff considerably in most
of the scenarios. In this section we show the effectiveness of Enhanced-TCP
in some example handoff scenarios which include those scenarios we have
described earlier in Section 3.4 to illustrate the problems of TCP in a ver-
tical handoff. We also present some handoff scenarios to illustrate the case
of multiple TCP flows.

Handoff from a high-bandwidth/low-delay link to
a low-bandwidth/high-delay link

As described earlier in Section 3.4, the main problems that TCP faces in
a make-before-break handoff from a high-bandwidth/low-delay link to a
low-bandwidth/high-delay link are the occurrence of spurious RTOs and
packet losses due to significant decrease in bandwidth after the handoff.
For a break-before-make handoff in the same scenario, the unused connec-
tion time, repeated reduction of ssthresh and packet losses are the main
problems of TCP arising from a disconnection. To illustrate our results we
have chosen two example scenarios here. In the first case of a handoff from
a 6400 Kbps/9 ms link to a 200 Kbps/300 ms link (which is the same sce-
nario as described in Section 3.4), the BDP of the two access links involved
in the handoff remains the same. In the second case, the handoff from a
54000 Kbps/4 ms link to a 6000 Kbps/50 ms link, the BDP of the new
link after the handoff is higher than that of the old link. The occurrence
of packet losses in both these scenarios shows that packet losses occur not
only in the case of a make-before-break handoff to a lower BDP link which
is rather well-known, but also in the case where a handoff occurs to a link
of the same BDP link or a higher BDP if there is a significant reduction in
bandwidth after the handoff.

Figure 4.6 shows the comparison between the time taken by TCP and
Enhanced-TCP to transfer 100 packets after both a make-before-break
handoff and a break-before-make handoff. The bandwidth and delay of
the old link are varied as shown in the figure but the bandwidth and delay
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Figure 4.6: Handoff from a high-bandwidth/low-delay link to a low-
bandwidth/high-delay link with fixed BDP. Transfer time for 100 packets
after a make-before-break (MBB) and a break-before-make (BBM) handoff
for the same BDP links with varying bandwidth and delay of the old link
and the bandwidth and delay of the new link fixed at 200 Kbps/300 ms
[Combines Figure 23a and Figure 26 of Paper 2].

of the new link are fixed at 200 Kbps/300 ms. The BDP of both the old and
the new link is 10 packets. There is up to 40 % reduction in transfer time
with Enhanced-TCP when the ratio of the bandwidths of the old and the
new link is greater than eight as it avoids the occurrence of spurious RTOs
in the make-before-break handoff. In the break-before-make handoff case
also Enhanced-TCP shows a similar reduction in transfer time by reducing
the unused connection time and by setting the ssthresh to the correct value
of the BDP of the new link. For the Enhanced-TCP, the median value of
the transfer time remains the same for all handoff scenarios. This shows
that Enhanced-TCP is adapting to the new link characteristics quickly.

Figure 4.7 shows the comparison between the time taken by TCP and
Enhanced-TCP to transfer 100 packets after both a make-before-break
handoff and a break-before-make handoff from a 54000 Kbps/4 ms link
to a 6000 Kbps/50 ms link. Here the BDP of the old and the new links are
38 packets and 50 packets respectively. There is about 20-40 % reduction
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Figure 4.7: Time taken to transfer 100 packets after a make-before-break
and break-before-make handoffs from a 54000 Kbps/4 ms link to a 6000
Kbps/50 ms link [Combines Figure 7 and Figure 11 of Paper 4].

in transfer time for the Enhanced-TCP in the make-before-break handoff
compared to TCP. As the links have sufficiently high BDP values, the ef-
fectiveness of our algorithm can be seen when there are four simultaneous
TCP flows. In the break-before-make handoff scenario also, Enhanced-TCP
reduces the transfer time by about 20-40 % compared to TCP.

Handoff from a low-bandwidth/high-delay link to
a high-bandwidth/low-delay link

As described earlier in Section 3.4, the main problems in the make-before-
break handoff scenario are packet reordering and unnecessary retransmis-
sions. For a break-before-make handoff in the same scenario, the unused
connection time, repeated reduction of ssthresh and the packet losses are
the main problems of TCP arising from a disconnection.

Figure 4.8 shows the comparison between the time taken by TCP and
Enhanced-TCP to transfer 100 packets after both a make-before-break
handoff and a break-before-make handoff. The bandwidth and delay of
the old link are varied as shown in the figure but the new link bandwidth
and delay are fixed at 6400 Kbps/9 ms. The BDP of the access links remain
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Figure 4.8: Handoff from a low-bandwidth/high-delay link to a high-
bandwidth/low-delay link with fixed BDP. Transfer time for 100 packets
after a make-before-break (MBB) and a break-before-make (BBM) handoff
for the same BDP links with varying bandwidth and delay of the old link
and the bandwidth and delay of the new link fixed at 6400 Kbps/9 ms
[Figure 27, Paper 2]

the same before and after the handoff. For the make-before-break handoff
from a 200 Kbps/300 ms link to a 6400 Kbps/9 ms link, Enhanced-TCP
has a slightly higher median value for the transfer time than TCP. This is
due to the fact that Enhanced-TCP while utilizing the new path waits for
the packets sent before handoff to arrive through the slow 200 Kbps/300
ms link. Enhanced-TCP has a slightly less transfer time as the bandwidth
of the old link increases (for the case of 400 Kbps/150 ms, 800 Kbps/75 ms
and 1600 Kbps/37 ms links). In the case of a handoff from a 3200 Kbps/18
ms link to a 6400 Kbps/9 ms link, sufficient dupacks will not arrive as the
ratio of bandwidth of the old link to the new link is less than the dupthresh
value three. We observe that with Enhanced-TCP there is only one re-
transmit, the fastretransmit packet, while with TCP the median value of
unnecessary retransmissions is 10.

For the break-before-make handoff shown in the upper graphs in Figure
4.8, the median value of the transfer time for Enhanced-TCP remains the
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same for all handoff scenarios (approximately 1 s) except in the case of the
old link values of 200 Kbps/300 ms and 400 Kbps/150 ms. In these two
cases the disconnection time of 500 ms is smaller than the RTO value and
our immediate retransmission algorithm will not be triggered. Enhanced-
TCP can achieve a 20-45 % reduction in transfer time compared to TCP.
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Figure 4.9: Time taken to transfer 500 packets after make-before-break
and break-before-make handoffs from a 6000 Kbps/50 ms link to a 54000
Kbps/4 ms link [Combines Figure 15 and Figure 19 of Paper 4].

Figure 4.9 shows a comparison between the time taken by Enhanced-
TCP and TCP to transfer 500 packets after both a make-before-break
handoff and a break-before-make handoff from a 6000 Kbps/50 ms link
to a 54000 Kbps/4 ms link. The BDP of the old and the new links are
50 packets and 38 packets respectively. The lower graphs in Figure 4.9
show the transfer time for 500 packets using Enhanced-TCP and TCP in
a make-before-break handoff. Enhanced-TCP takes roughly 30 % less time
than TCP as it is able to utilize the high bandwidth link while waiting
for the packets to come through the slow link and also avoid unnecessary
retransmissions. We observe that in this handoff scenario involving a sin-
gle TCP flow, TCP unnecessarily retransmits 36 packets (median value)
while Enhanced-TCP retransmits only the first unacknowledged packet.
The transfer times for the break-before-make handoff shown in the upper



62 4 Alleviating the Problems of TCP in Vertical Handoff

graphs in the same figure indicate that the Enhanced-TCP obtains about
50 % reduction in transfer time compared to TCP in all the cases of one,
two and four TCP flows.

4.4 Discussion

Our experimental results show that the cross-layer assisted TCP algorithms
enable TCP to adapt faster to the changes in the path characteristics due
to a vertical handoff. While the general algorithms such as TCP-Eifel and
F-RTO are able to detect the problems of TCP such as spurious RTOs and
packet reordering, their responses after the detection are not adequate in
vertical handoff scenarios as they do not take into consideration the changes
in the path characteristics.

The TCP algorithms that we have developed using the cross-layer in-
formation are conservative in nature. In all our algorithms we combine the
cross-layer information with the current state of TCP (as reflected in the
values of the TCP parameters) to evaluate our hypotheses on the potential
problems in a handoff and to set a bound for the TCP congestion control
parameters. As a result, our algorithms are robust and they can tolerate
small variations in the cross-layer information. In the absence of cross-
layer information the proposed algorithms do not adversely influence the
TCP behaviour. We next describe how our algorithms use the cross-layer
information conservatively.

TCP congestion control algorithms should not attempt to increase the
cwnd only based on the information about the increased link capacity in the
absence of adequate information about the end-to-end path [130]. In accor-
dance with this recommendation, our enhanced TCP algorithms combine
the TCP state information with the cross-layer notification to set the cwnd
and ssthresh in a handoff to a link with a higher capacity. For instance, in
the algorithm to avoid the problems of packet reordering (Figure 3, Paper
4), as packet reordering that triggers a false fast retransmit usually occurs
when the new link bandwidth is at least dupthresh times higher than the
old link bandwidth, we use DSACK information also in setting the cwnd
based on the new access link bandwidth.

Even in the case of a handoff involving same BDP links, packet bursts
leading to packet losses can occur when the old link has a much greater
bandwidth (more than eight times) than the new link. Our algorithm to
reduce the packet losses (Figure 1, Paper 4) takes into account the band-
width and BDP of the access links along with the FlightSize at the time
of handoff to determine whether packet bursts are likely and suitably sets
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the cwnd and ssthresh to avoid packet losses thereby eliminating expensive
packet recovery using the low-bandwidth link.

The algorithm to avoid the problems of packet reordering (Figure 3,
Paper 4), sends a new packet in response to each dupack while waiting for
packets to arrive through the old link. This may create a buffering problem
if a large number of packets were in transit through the old link at the time
of handoff. There will not be a large number of packets in transit as the
packet reordering that triggers a false fast retransmit usually occurs when
the new link bandwidth is at least dupthresh times greater than the old
link bandwidth. We also check the possibility of congestion in the new link
based on the FlightSize, BDP and bandwidth of the access links and in the
case of an incipient congestion, new packets will not be sent in response to
dupacks.

The problems of TCP in a handoff to a link of significantly smaller
delay have not received adequate attention in the literature. If a significant
reduction in BDP occurs due to a handoff to a link with a smaller delay (e.g.,
Figure 20a, Paper 2), a large number of packets will be lost and usually
multiple RTOs are needed for the recovery of the lost packets. As the RTT
update algorithm gives less weight to the current sample and the RTO is
updated only once in a window, the RTO value will still be high for many
RTTs after the handoff. If multiple RTOs are needed for recovery as in the
above scenario, this high value of RTO will be doubled every time the RTO
recovery fails leading to a very long recovery process. The algorithm for the
fast convergence of RTO (Figure 16, Paper 2) is triggered in a handoff to
a link with a significantly smaller delay and if an RTO recovery is needed
the recovery will occur soon as the RTO value is now based on the small
RTT after the handoff. In Figure 20b, Paper 2, the algorithm to reduce
the packet losses eliminates the occurrence of packet losses and no RTO
recovery is needed in this scenario.

Our cross-layer notifications do not take into account whether the hand-
off is a make-before-break handoff or a break-before-make handoff, although
the mobile node could get this information. We find in our experiments
that this information is unnecessary in most handoff scenarios. However,
setting the RTO based on the new link delay to avoid spurious RTOs can in-
crease the recovery time in a break-before-make handoff. In this case, the
knowledge that a break-before-make handoff has occurred is helpful and
Enhanced-TCP, instead of invoking the algorithm to avoid spurious RTOs
(Figure 11, Paper 2) which is to be triggered only in a make-before-break
handoff, could trigger the immediate retransmission algorithm (Figure 2,
Paper 4) to speedup the loss recovery. If the disconnection time is greater
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than the RTO, this problem will not arise as Enhance-TCP invokes the
immediate retransmission algorithm.

Our algorithms can be improved by incorporating some methods to
quickly estimate the end-to-end bandwidth and RTT after a handoff and
using these estimates to set the congestion control parameters. We are
currently exploring this topic.

4.5 Summary

This chapter describes our cross-layer assisted solutions to mitigate the
problems of TCP in a vertical handoff along with the related work.
In Papers 2, 3 and 4 we analyzed the problems of TCP in handoff by
identifying the various scenarios that lead to these problems and devised al-
gorithms specific to these scenarios to overcome the problems. We proposed
solutions to the problems of spurious RTOs, congestion-related packet losses,
prolonged disconnections and slow convergence to the new RTO which arise
in a vertical handoff.

Our proposed enhancements are implemented at the TCP sender and
they are invoked when a cross-layer notification arrives from the mobile
node to the TCP sender at the correspondent node. This cross-layer no-
tification includes information about the occurrence of a handoff and an
estimate of the bandwidth and delay of the old and the new access links.
Our algorithms use these values to devise a bound for the TCP parameters
such as minrto, ssthresh and cwnd . Our algorithms are conservative in na-
ture and experimental results show that they are not counter-productive in
any situation. Our algorithms are relatively simple and are easy to imple-
ment. In the absence of cross-layer information, TCP behaviour is virtually
unaltered.

In our experiments we have evaluated the proposed algorithms in var-
ious scenarios to show their effectiveness. Our algorithms can yield up to
40 % reduction in the transfer time immediately after a handoff. Our re-
sults show that TCP has severe performance problems even in a handoff
between same-BDP links and our algorithms are effective in this scenario.

Table 4.1 provides a summary of the problems of TCP in a vertical
handoff along with our proposed solutions.
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Table 4.1: Summary of the problems of TCP due to a vertical handoff and
the proposed enhancements to the TCP Sender algorithm

Problem TCP Sender enhancements

Spurious Set minimum RTO value based on the
RTOs bandwidth and delay of the new link

[Figure 11, Paper 2]

Packet If BWnewlink
BWoldlink

> dupthresh,
Reordering possibility of reordering, Limited transmit,

use DSACK to detect unnecessary retransmission
set cwnd and ssthresh based on BDPnewlink

[Figure 3, Paper 4]

Packet Set the cwnd and ssthresh to the BDP of the
Losses new link in the case of an incipient congestion

[Figure 1, Paper 4]

Unused If TCP is in RTO recovery, retransmit the
connection first unacknowledged packet immediately and
time set ssthresh based on BDP of the new link

[Figure 2, Paper 4]

Slow Initialize RTT Variables and update RTO
convergence if the handoff is to a lower delay link
of RTO [Figure 16, Paper 2]

Inability to The algorithm to mitigate problems due to
catch up with packet reordering and algorithm
high capacity to avoid packet losses can be used

[Figures 1, 3, Paper 4]
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Chapter 5

Conclusions and Future work

In this thesis, we have studied the effect of a vertical handoff on TCP.
The focus of this research has been to perform a systematic study of the
behaviour of TCP in the presence of a vertical handoff and use this study
to develop cross-layer assisted TCP algorithms that are implemented at the
TCP sender to improve the performance of TCP in a vertical handoff.

The wireless access networks by their very nature effect a tradeoff
between geographical coverage, bandwidth and propagation delay.
Ubiquitous mobility requires a mobile node to switch between the different
wireless networks based on the best of connectivity, application needs, user
preferences, etc. The concept of a wireless overlay architecture supports
the internetworking of the various wireless access networks by enabling a
mobile node to switch seamlessly between these networks. A vertical hand-
off results in a changeover of the wireless access network that a mobile
node uses to connect to the Internet. However ’smooth’ the handoff is
made to be by the mobility and handoff mechanisms, the abrupt changes
in the bandwidth and delay of the wireless links involved in a handoff
significantly impact on TCP. TCP on its own can adapt to the changes
in the path characteristics at the cost of loss of performance and time for
recovery. With the growing popularity of wireless access to a multitude of
Internet services and the ever declining cost of the mobile devices equipped
with multiple radio interfaces to connect to the Internet, it is expected that
a handoff can be a common occurrence in the lifetime of a TCP connection.
The wireless access being the endpoints of a TCP connection and also most
likely the potential bottlenecks of the end-to-end path, make it possible to
explore ways to reduce the adverse effects of the handoff by providing the
cross-layer information about the path changes to TCP. We have used the
cross-layer information about the access link characteristics to provide a
useful hint to the TCP algorithm in adapting to a vertical handoff.

67
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In our simulation study we have explored the effect of handoff on TCP
behaviour for a wide range of bandwidth and delay of the access links. Our
studies point out the following conclusions regarding the TCP behaviour:
(i) a significant change in bandwidth and/ or delay of the access links due
to a handoff adversely affects TCP performance, (ii) the performance of
TCP after a handoff depends on the state of the TCP when the handoff
occurs, (iii) even if the BDP of the access links before and after the handoff
remains the same or if the handoff occurs to a higher BDP access link,
packet losses will occur if there is a significant decrease in bandwidth of
the access link after a handoff, (iv) regardless of how smooth the handoff,
TCP may still have performance problems.

We have proposed cross-layer assisted algorithms implemented at the
TCP sender to improve TCP performance in a vertical handoff. We use the
access link characteristics, such as bandwidth and delay, obtained through
the cross-layer notification to put an upper or lower bound on the TCP
parameters such as cwnd , ssthresh and minrto. In all our algorithms we
use the cross-layer information along with the TCP state at the time of
handoff to test our hypotheses regarding the occurrence of a particular
problem (e.g., occurrence of spurious RTOs, possibility of packet reorder-
ing) and then to set the TCP parameters accordingly. This makes our
algorithms conservative and robust. We have shown that our algorithms
effectively address the problems of TCP arising from spurious RTOs, packet
reordering, packet losses, prolonged disconnection and slow convergence to
the new RTO value due to a handoff. The proposed algorithms are simple
and are implemented at the TCP sender with no modification to the TCP
receiver. These algorithms have been evaluated in both make-before-break
and break-before-make handoffs in the ns-2 simulator for access links with
a wide range of bandwidth and propagation delay of interest in real-world
access networks. Our algorithms are shown to yield significant improvement
in TCP performance for many vertical handoff scenarios. These algorithms
can be easily adapted for handoff in multiple TCP flows. In the absence of
cross-layer notifications, our algorithms have no effect on TCP behaviour.
We think that our proposed algorithms are practical and can be adapted
for real-world solutions in wireless access network environments.

Moving to a higher bandwidth environment after a vertical handoff is
challenging to TCP as TCP needs to be more aggressive to fully utilize the
available bandwidth but this cannot be done safely based on the information
about the access link characteristics alone. A TCP sender should probe the
new network path, but often it takes several RTTs before TCP can adapt to
the new path. In the future, we intend to study how TCP can combine the
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notifications regarding the access link characteristics with the information
gathered by probing the new network path and thereby try to converge
quickly and safely to the available network capacity.

It will be of interest to conduct experiments in real access network
environments such as EGPRS, UMTS, WLAN and WiMAX along with the
mobility protocols such as Mobile IP, HIP and Proxy Mobile IP to evaluate
the proposed algorithms for handling both real-time and elastic traffic and
to explore ways to estimate quickly and reliably the characteristics of the
end-to-end path.

Vertical handoff has been an active research topic for the last ten years
or so, yet the level of deployment in practice is not widespread. In the
Next Generation Networks (NGN), vertical handoff and seamless mobility
are essential elements to achieve the “always best connected” experience.
Adapting the research proposals and solutions to the real world presents
opportunities and challenges for mobile networking.
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Abstract

With the growing use of multi-radio mobile terminals a
vertical handoff between different wireless access technolo-
gies is becoming increasingly common. The vertical hand-
off may result in a significant change in the access link char-
acteristics that can affect the performance of TCP dramati-
cally as its behaviour depends on the end-to-end path prop-
erties that also change consequently. We propose a number
of simple enhancements to the TCP sender algorithm which
make use of explicit information about the change in the link
characteristics due to handoff. We study the effectiveness
of the enhancements in a simulated WLAN-GPRS environ-
ment with different handoff scenarios. The enhancements
are shown to improve TCP performance significantly.

1 Introduction

Internet access using mobile devices is increasingly pop-
ular with the introduction of multi-radio mobile nodes
(MNs) equipped with multiple interfaces to access networks
using diverse link technologies. For example, an MN with
interfaces to Wireless LAN (WLAN) and Wireless WAN
(WWAN) can select the appropriate access network based
on the connectivity or performance requirement of the ap-
plication. Switching between access networks is referred to
as handoff and it can be categorized as horizontal handoff
and vertical handoff. Horizontal handoff involves switching
within the same access technology whereas vertical hand-
off involves switching between different access technolo-
gies [10].

Access networks with different link layer technologies
vary widely in their characteristics such as link bandwidth,
latency, bit-error rate and the degree of bandwidth asym-
metry. The wireless access link is commonly the last-hop
(first-hop) link and is usually the bottleneck link on the
end-to-end path. A significant change in the access link
characteristics easily affects the end-to-end path proper-

ties and thereby the behaviour of transport protocols. In
the case of Transmission Control Protocol (TCP) [16], the
most widely used transport protocol in the Internet, vertical
handoff may incur packet losses, intermittent connectivity,
packet reordering and spurious or too late retransmission
timeouts (RTOs), resulting in unnecessary TCP congestion
response or inefficient loss recovery that sacrifice TCP per-
formance [4, 6, 7, 8, 18].

When a vertical handoff occurs, the TCP sender adjusts
its transmission rate and RTO estimate very slowly to the
new end-to-end path as it learns the properties of the new
path implicitly by probing it over several round trips. If the
TCP layer is explicitly notified about the changes in the path
properties, the TCP sender could react more timely and effi-
ciently and possibly avoid false congestion responses. The
TCP layer on the MN can be locally notified of the changes
in the attached access link characteristics, but the TCP layer
on the corresponding node (CN) is completely unaware of
the changes. In order to inform the TCP sender on the CN
some proposals have been introduced recently for delivering
information from the MN to the CN about the path change
due to a handoff [11, 14, 18, 20]. While learning the new
access link characteristics cannot be used to reliably deter-
mine the new end-to-end path properties, learning about sig-
nificant changes in the last-hop (first-hop) link characteris-
tics can be used as a useful hint about a potential change in
the end-to-end path properties.

In this paper we study the problems of TCP due to a ver-
tical handoff in a WLAN-GPRS/EDGE(EGPRS) [3, 19] en-
vironment. We propose a set of TCP sender algorithms that
allow the TCP sender to cope with the problems arising due
to the vertical handoff. These algorithms are invoked as a
response to an explicit indication notifying the TCP sender
about significant change in the access link bandwidth and/or
delay. It is pertinent to point out that the information about
the change in the link characteristics need not be precise
but it is sufficient to indicate changes of an order of mag-
nitude. In addition, we take a conservative approach with
our algorithms by making the TCP sender to react more
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conservatively than the regular TCP reacts in most cases
and by being careful when making TCP more aggressive.
The effectiveness of the algorithm is studied in a simulated
WLAN-EGPRS environment. We apply the proposed algo-
rithms in different handoff scenarios with change in delay
and bandwidth of the last-hop link and analyze TCP per-
formance immediately after the handoff. Our results show
that with the proposed algorithms we can achieve 20-60%
reduction in transfer time.

The rest of the paper is organized as follows. Section
2 gives an overview of the related work. Section 3 dis-
cusses the various aspects of the proposed algorithms for
TCP sender. Section 4 evaluates the proposed algorithms
in different handoff scenarios between EGPRS and WLAN
access networks. Section 5 presents our conclusions.

2 Related Work

A vertical handoff can be of two types based on the
connectivity to the old access router during the handoff,
namely, break-before-make and make-before-break [10]. In
the break-before-make handoff, the connection to the old
access router breaks before the handoff completes, caus-
ing disruption in connectivity and often resulting in packet
losses. In the worst case, the entire window of TCP seg-
ments is lost. By contrast in the make-before-break handoff,
only after the connection to the new access router is oper-
able, the connection to the old access router may be torn
down. Hence, no packet losses occur.

A practical study on the performance of TCP with verti-
cal handoff between GPRS and WLAN is presented in [4].
It points out that the period of disconnection in a break-
before-make handoff often causes TCP to timeout and con-
tributes to the degradation in TCP performance. The high
buffering in GPRS aggravates the performance degradation
as it inflates the round-trip time (RTT) and RTO values.

A thorough study on the effect of the make-before-break
handoff on TCP performance is given in [7]. The paper
suggests a nodupack scheme as a solution to the problem
of packet reordering which occurs with a handoff from a
high-delay to a low-delay link. This scheme suppresses the
transmission of duplicate acknowledgements (dupacks) as
a response to the out-of-order packets arriving through the
new low-delay link during the handoff. Reducing the con-
gestion window (cwnd) is proposed as a solution to over-
come the packet losses due to the bandwidth-delay product
(BDP) decrease.

A comparative study of the effect of vertical handoff on
transport protocols is presented in [6]. It shows that trans-
port protocols have difficulties in adapting to the network
after handoff because of the decrease in the link BDP. Ver-
tical handoff is modelled by changing the bandwidth and
delay of the link and changing the access router buffer size

to reflect the size of the new access router buffer. This type
of modeling cannot simulate the break-before-makehandoff
and does not simulate the make-before-break handoff cor-
rectly in case the new buffer is smaller than the old buffer
as the excess packets in the buffer are discarded if the new
buffer cannot hold all queued packets. To reduce the prob-
lem due to the differences in the link BDPs the paper pro-
poses overbuffering all nodes along the path using the max-
imum link BDP on the end-to-end path. A drawback of this
scheme is that the knowledge of all link BDPs is not avail-
able for all nodes on the path. In addition, overbuffering is
generally not advisable as it increases queuing delay.

The paper [8] identifies packet reordering, BDP mis-
match and spurious RTOs as the problems arising from
a make-before-break handoff. The paper proposes three
schemes, fast response, slow response, and ack delaying to
solve the problem of spurious RTOs due to the handoff from
a low-delay link to a high-delay link. The basic idea behind
these schemes is to reduce the difference in RTT between
the old and new link. In the fast response scheme, after the
handoff, the old low-delay link is used for a short period
for sending the ACKs for the first few packets arriving over
the new high-delay link. In the slow response scheme, the
RTTs for the last few packets that arrive through the old
low-delay link is increased by starting to send the ACKs
over the new high-delay link already before the handoff is
completed. The problem with these schemes is that the
period for which the ACKs are sent through the old/new
link is to be determined carefully so that the RTT estimate
will have a high enough value to avoid the spurious RTOs.
Nonetheless, if the difference in delay is large enough these
schemes cannot avoid spurious RTOs. In the ACK delaying
scheme, the ACKs of the few last low-delay link packets
are delayed at the IP layer. However, a proper value for the
delay period is difficult to determine correctly as the new
end-to-end RTT is unknown.

The Internet draft [14] introduces a model for delivering
link characteristics information from an MN to CNs dur-
ing the handoff procedure. In Mobile IPv6 this information
is included in the Binding Update message and sent to the
CN when a vertical handoff occurs and/or when there is a
significant change in the link characteristics.

The lightweight mobility detection and response
(LMDR) algorithm [20] proposes to make TCP aware of
the path change due to a vertical handoff. It is assumed that
the MN notices the path changes either from lower layers or
through other out-of-band mechanisms. This information is
relayed to the TCP sender on the CN through a new TCP
option. After the path change, the TCP sender resets the
congestion control state, RTT variables and RTO timer as
specified for a new connection in RFC2988 [15], sends an
initial window worth of data over the new path, and contin-
ues in slow-start.
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The paper [18] presents an experimental study in a mo-
bile environment where the MN moves often and intermit-
tent connectivity due to handoffs is common. The authors
observe that the major problem with the intermittent con-
nectivity is the TCP timeouts and retransmission behavior
that can significantly decrease TCP performance or even
cause connections to abort. The paper proposes Host Iden-
tity Protocol (HIP) [13] as a solution to host mobility. If
the disconnection period during a handoff is longer than the
user timeout of TCP, the TCP sender will abort the connec-
tion. They propose a TCP user timeout option with which
the MN can specify a longer user timeout value to avoid a
connection abort during a prolonged disconnected period.
Another proposal, TCP retransmission trigger is used to
trigger the TCP sender to retransmit immediately after the
disconnected period ends. Otherwise, the TCP sender may
wait for a long time until the backed-off retransmission
timer expires, resulting in a long unused connection time.
The trigger can be implemented by sending three gratuitous
dupacks, by introducing a new TCP Immediate Retransmis-
sion option, or by using HIP layer to trigger TCP when the
HIP readdressing exchange completes.

3 A Discussion of the Proposed Algorithms

The proposals [14, 18, 20] provide the basis of our work
to improve TCP performance using the information about
the changes in link characteristics due to a vertical handoff.
We assume that the TCP sender gets a notification regarding
the handoff from the IP layer. This allows timely delivery
of the notification to the TCP sender at the CN, as during
the handoff the outbound packets from the CN take the new
path immediately after the IP mobility registration message,
for example the Binding Update message in Mobile IPv6,
arrives at the CN. The link characteristics information can
be included in the mobility messages [14]. The notifica-
tion includes information about a significant increase or de-
crease in the access link bandwidth and/or delay. We cate-
gorize the problems of TCP due to vertical handoff into 3
classes, namely, problems due to changes in delay, due to
changes in bandwidth and due to intermittent connectivity
and propose enhancements to the TCP sender algorithm to
alleviate these problems.

3.1 Handoff and Changes in Delay

Handoff from a low delay to high-delay link

When a make-before-break handoff occurs from a low-
delay link to a high-delay link, spurious RTOs occur due
to the significant change in RTT [8]. During the make-
before-break handoff, there are no packet losses but TCP
sender times out spuriously and retransmits a large num-
ber of packets unnecessarily. The small RTO value of the

When handoff notification arrives indicating
significant increase in delay:

If (TCP is not in RTO recovery)
Maintain RTO value at 3 seconds until all
segments sent before handoff have been ACKed
Initialize RTT variables as for a new connection

When ACK for a new data segment arrives
Update RTT variables

Figure 1. incRTO algorithm

low-delay path causes timeout to occur as the ACKs for the
packets sent before the handoff take the high-delay link af-
ter the handoff. The spurious RTO causes ssthresh to be-
come half of FlightSize and cwnd to one, resulting in per-
formance degradation.

The incRTO algorithm given in Figure 1 aims at avoiding
spurious RTOs. This algorithm is invoked when the handoff
notification indicating a significant increase in delay arrives
at the TCP sender and the TCP sender is not in RTO recov-
ery at that moment. The algorithm maintains the RTO value
at 3 seconds until the ACKs for all the segments sent before
the handoff notification have been received. At that point,
the RTT variables are initialized as specified for a new con-
nection [15]. The choice of the RTO value of 3 seconds
is based on RFC 2988 which recommends an RTO value
of 3 seconds until a proper RTT is obtained. When ACK
for a segment sent through the new link arrives, the RTT
variables are immediately updated. The case of TCP be-
ing in RTO recovery when the handoff notification arrives
is treated as a case of intermittent connectivity and is dis-
cussed in Section 3.3.

Handoff from a high-delay to a low-delay link

Packet reordering is a problem that TCP faces when a make-
before-break handoff takes place from a high-delay link to
a low-delay link [7]. The packets sent through the low-
delay link after handoff may overtake the packets trans-
mitted through the high-delay link before handoff and this
packet reordering generates dupacks. If the TCP sender re-
ceives a dupThresh number of dupacks (typically 3) it re-
transmits the first unacknowledged packet. TCP halves the
ssthresh and cwnd and continues in fast recovery until all
the packets sent before handoff are ACKed. The retransmis-
sion and the reduction in ssthresh and cwnd are unnecessary
as the dupacks which arrive are due to packet reordering and
not due to congestion losses. DSACK [2] and Eifel [12]
can be thought as solutions to this problem as they undo
the unnecessary congestion control actions due to packet re-
ordering. A proactive action called nodupack scheme which
avoids sending the dupacks and thereby avoiding the unnec-
essary congestion control measures is given in [7].

A more serious consequence of this handoff scenario
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When handoff notification arrives indicating
significant decrease in delay:

If(TCP is not in RTO recovery)
Wait till the segments sent before
handoff have been ACKed
Initialize RTT variables as for a new connection

When ACK for a new data segment arrives
Update RTT variables

Figure 2. RTO-conv algorithm

may be the inflated RTO value. The high-delay link al-
ready has a high RTT and the high buffering (if present)
increases the RTO value [4]. If the handoff from a high-
delay link to a low-delay link occurs in the slow-start phase
or near the buffer overflow points in the congestion avoid-
ance phase, RTO may be very high due to buffering. Af-
ter the handoff, the RTO will converge to the low RTO of
the low-delay path very slowly, as the RTT variables are up-
dated once in an RTT [15]. If the TCP sender is in slow-start
when a handoff to lower BDP link occurs, a slow-start over-
shoot [5] may cause very many packets to be dropped and
an RTO recovery may be needed to recover the lost packets.
An RTO is needed also if a retransmitted segment becomes
dropped, e.g., due to a link error. Invoking the RTO re-
covery will take a longer time due to the high RTO value.
The algorithm RTO-conv given in Figure 2 is intended to
overcome this problem. When all the packets sent before
handoff have been ACKed, we initialize the RTT variables
as recommended for a new link. and we update the RTT
variables immediately on a new ACK. This speeds up the
convergence to the low RTO value of the low-delay path.

3.2 Handoff and Changes in Bandwidth

Handoff from a high bandwidth to a low bandwidth link

When a handoff occurs from a high-BDP to a low-BDP link,
a TCP sender unaware of this change, injects more packets
to the network than the capacity of the low-BDP link and
many packets may get dropped [6, 7]. When the handoff
occurs from a high-bandwidth link to a low-bandwidth link,
the new link potentially has lower BDP and becomes con-
gested, resulting in many packets drops. To avoid this prob-
lem we introduce the cwnd-reduction algorithm (see Figure
3) that makes TCP less aggressive by reducing the cwnd by
half. As a result the TCP sender will inject fewer packets to
the low-bandwidth link which helps to reduce packet losses.

When handoff notification arrives indicating
a significant decrease in bandwidth:

If( TCP not in fast recovery or in RTO recovery)
cwnd = max(2, cwnd/2);

Figure 3. cwnd-reduction algorithm

This cwnd reduction takes place only if TCP is not in fast
recovery or RTO recovery when the handoff notification ar-
rives as TCP has already reduced cwnd in these cases. The
link BDP may not always change although there is a consid-
erable change in bandwidth. For example, if delay changes
to the opposite direction at the same time, the BDP may
remain roughly the same. Here we take a conservative ap-
proach and reduce the cwnd.

Handoff from a low bandwidth to a high bandwidth link

In this scenario, TCP’s inability to efficiently utilize the
high bandwidth available is the main problem. An attempt
to make TCP more aggressive by increasing cwnd is not a
viable approach without proper view of the end-to-end path
conditions. One possibility is to employ an enhanced ver-
sion of TCP Quick-Start as a solution to this problem [17].

3.3 Handoff and Intermittent Connectiv-
ity

When a break-before-make handoff occurs, the MN has
no connection to any access router. As a result the end-
to-end path between the MN and CN is broken and the con-
nection is up again only after the handoff completes. During
this disconnection period, the TCP sender will not get ACKs
for the packets it has already transmitted. If the TCP sender
has unacknowledged data at the expiry of the retransmis-
sion timer, it retransmits the first unacknowledged packet
and doubles the RTO value. TCP doubles the RTO value af-
ter each retransmission attempt [15]. When the end-to-end
connection is up again, TCP sender waits until the RTO ex-
pires before attempting another retransmission. The unused
connection time can be up to one minute depending on the
disconnection length and the next scheduled RTO. This un-
used connection time increases the recovery time of the lost
packets.

We propose an algorithm called rxmt-immediate given
in Figure 4 to avoid this problem. This algorithm retrans-
mits the first unacknowledged packet immediately if the

On the first expiration of RTO:
Save ssthresh

When handoff notification arrives:
If (TCP in RTO recovery)

Retransmit the first unacknowledged packet
Restore ssthresh
If there is a significant change in delay

Initialize RTT variables as for a new connection
When ACK for new data arrives

Update RTT variables

Figure 4. rxmt-immediate algorithm
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TCP sender is in RTO recovery when the handoff notifica-
tion arrives. According to the TCP congestion control algo-
rithms [1], after a timeout the TCP sender will set ssthresh
to FlightSize/2 and cwnd to 1. If more than one timeout
occurs, ssthresh value is further reduced in many imple-
mentations. The purpose of this reduction in ssthresh and
cwnd is to account for the severity of the congestion. But in
the break-before-make handoff, the RTO occurs more than
once due to disconnection and not due to congestion. There-
fore, the ssthresh is restored using the ssthresh value after
the first expiration of RTO in the rxmt-immediate algorithm,
that is, the ssthresh becomes reduced only on the first RTO.
In addition, if there is a significant change in delay we ini-
tialize the RTT variables as for a new connection. The RTT
variables are updated immediately when the first ACK for a
data segment sent after the handoff arrives.

4 Evaluation of the Proposed Algorithms in
WLAN-EGPRS Environment

We examine the performance of the proposed algorithms
in a simulated WLAN-EGPRS environment using ns-2 [9]
network simulator. The WLAN bandwidth ranges between
1 - 50 Mbps though the higher bandwidths are not realized
in practice and one way propagation delay ranges roughly
between 1 - 10 ms. The EGPRS bandwidth ranges from 128
to 473 Kbps (theoretical maximum) and one way propaga-
tion delay ranges from 300 ms to 350 ms.

4.1 Simulation Setup

MN

BS1

BS2

R1 EH

GPRS/EDGE

WLAN

(200Kbps, 300ms)

(5Mbps, 10ms)

100Mbps, 2ms

100Mbps, 2ms

MN − Mobile Node

EH − End Host

BS − Base Station
R1 − Router

100Mbps, 2ms

Figure 5. Network Topology for Handoff Tests

In this study, we take the WLAN bandwidth to be 5 Mbps
and one way propagation delay of 10 ms whereas the corre-
sponding parameters for EGPRS are chosen to be 200 Kbps
and 300 ms. For this combination of bandwidth and de-
lay, we can see that the BDPs of both links are nearly the
same though the ratios of change in bandwidth and delay
with EGPRS-WLAN handoff are 1:25 and 30:1, respec-
tively. This corresponds to an order of magnitude change
and is seen as ’a significant change’ in our algorithms.

The network topology used in our experiments is shown
in Figure 5. MN can be attached to both WLAN and

EGPRS wireless access technologies. Both EGPRS and
WLAN links have dedicated base stations, BS1 and BS2,
which are connected to a common wireless access router
R1 via 100 Mbps links. The router has a 100 Mbps link to
CN. The one way propagation delay of the fixed links is 2
ms. The router buffer for WLAN and EGPRS are 30 and
32 packets, respectively. As ns-2 supports routing updates
on the fly by changing the route metrics for the links, we
model the handoff by changing the route the packets take
before and after the handoff.

We consider a single TCP flow from CN to MN. The
TCP packet size is 1500 bytes which includes the headers.
In our simulation we consider handoff to occur in all phases
of a TCP connection, namely, at the beginning of a connec-
tion, just before and during the slow-start overshoot, and
in the congestion avoidance phase. For WLAN to EGPRS
handoff, the handoff occurs once during the first 10 seconds
of the TCP connection at any of the 100 observation points
at 10 ms intervals whereas the EGPRS to WLAN handoff
occurs during the first 20 seconds to allow all phases of a
TCP connection also with the slower EGPRS. Both make-
before-break as well as break-before-make handoffs are ex-
amined. For break-before-make handoff the period of dis-
connection is taken to be 500 ms.

We compare TCP performance with and without the
proposed enhancements by measuring the elapsed time to
transfer ’n’ packets after handoff where n varies from 50
to 200. We report the results only for the case where n is
100 as the results are very similar in all cases. As the base-
line TCP, we use the standard TCP Sack1 algorithm given
in ns-2 simulator.

4.2 Handoff from WLAN to EGPRS

 6

 8

 10

 12

 14

 16

 18

 0  1  2  3  4  5  6  7  8  9  10

 T
im

e 
to

 tr
an

sf
er

 1
00

 p
ac

ke
ts

 
 a

fte
r 

ha
nd

of
f (

se
co

nd
s)

 

Handoff Time

TCP
TCP+incRTO()+cwnd-reduction()

Figure 6. Time taken to transfer 100 pack-
ets after a make-before-break handoff from
WLAN to EGPRS

Figure 6 summarizes the results by providing the time
taken for transferring 100 packets after a make-before-break
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Figure 7. WLAN - EGPRS make-before-break handoff - The problem of Spurious RTO is shown in (a)
with regular TCP. This problem is eliminated in (b) with incRTO+cwnd-reduction

handoff. The x-axis shows the time at which handoff occurs
after the beginning of the connection. The y-axis shows
the elapsed time in seconds to transfer 100 packets after
the handoff. In this test the algorithms incRTO and cwnd-
reduction become effective.

When the handoff occurs during the congestion avoid-
ance phase from 0.7 second onwards the reduction in trans-
fer time with our algorithms is due to avoiding the harm-
ful effect of the spurious RTOs and the reduction in packet
losses due to cwnd reduction, yielding approximately 45%
reduction in transfer time.

During the slow-start phase (0 to 0.7 second), especially
around the slow-start overshoot, both regular TCP and TCP
with our algorithms are required to recover a large number
of packets that are dropped due to slow-start overshoot, re-
sulting in inefficient progress after the handoff. However,
the regular TCP cannot avoid the spurious RTO that occurs
either just before the slow-start overshoot or during the re-
covery from the slow-start overshoot. In the former case,
the regular TCP behaves over-aggressively as the spurious
RTO results in unnecessary retransmission of several pack-
ets at a high rate, making the overshoot even worse. In the
latter case, the handoff occurs during the SACK-based fast
recovery and with the low RTO value the retransmission
timer expires several times spuriously during the recovery,
forcing the TCP sender to continue the recovery slowly with
a small cwnd and reduced ssthresh value.

Figure 7(a) provides a closer look into a specific instance
of WLAN-EGPRS make-before-break handoff. The hand-
off occurs after 2.5 seconds when the TCP connection is in
the congestion avoidance phase. TCP timeouts spuriously at
2.7 seconds. The ACKs of the original transmissions start
arriving over the EGPRS link at 3.05 seconds and trigger
TCP to retransmits about 37 packets unnecessarily. As the
ACKs are arriving continuously, TCP continues by sending
new packets overloading the new link and about 20 packets

are lost. After this, the dupacks for unnecessary retransmis-
sions start arriving and RTO expires again twice before the
RTO recovery starts to make progress. As the RTO expires
more than once, in ns-2 the ssthresh value is reduced to 2
forcing the TCP sender to continue with a small cwnd for a
long time.

TCP with incRTO avoids the spurious RTO as the RTO
value is set to 3 seconds till the ACKs for all segments sent
before the handoff have arrived. From Figure 7(b) we ob-
serve that there are no unnecessary retransmissions. The
TCP sender continues to send new data when it starts to get
the ACKs over the EGPRS link. The cwnd-reduction algo-
rithm is also executed here and as the cwnd is halved, there
are no additional packet losses.
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Figure 8. Time taken to transfer 100 pack-
ets after a break-before-make handoff from
WLAN to GPRS

The results with the break-before-make handoff from
WLAN to EGPRS are illustrated in Figure 8. When the
handoff occurs in the congestion avoidance phase (starting
after 0.7 second), TCP with rxmt-immediate is able to re-
duce the time to transfer 100 packets after the handoff by
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Figure 9. WLAN - EGPRS break-before-make handoff - The problem of Prolonged disconnection is
shown in (a). The rxmt-immediate algorithm reduces the handoff delay as shown in (b)

about 30%. This is due to the fact that the RTO expires dur-
ing the disconnection and the rxmt-immediate algorithm im-
mediately retransmits when the handoff notification arrives
and reduces the ssthresh value only once, decreasing the
delay in recovering the lost packets and allowing the TCP
sender to continue with larger window. When the handoff
occurs during the slow-start, TCP has to recover the packet
drops due to slow-start overshoot in addition to the losses
due to the disconnection, resulting in worse and unstable
results with both TCP variants.

Figure 9(a) shows the time-sequence graph of a break-
before-make handoff occurring at 1.1 seconds with the reg-
ular TCP. The TCP sender timeouts and retransmits at 1.3,
1.7 and 2.5 seconds. The first retransmission is lost due to
disconnection. The second retransmission makes it to the
receiver, but the RTO expires the third time before the ACK
arrives at the TCP sender. Because of the multiple timeouts
the ssthresh becomes 2 and cwnd 1, and the TCP sender
continues the RTO recovery very slowly with small cwnd.

The same scenario employing TCP with rxmt-immediate
is shown in Figure 9(b). The second retransmission occurs
at 1.6 seconds triggered by the handoff notification. The
ssthresh value stored by the rxmt-immediate algorithm is
16, allowing the TCP sender to recover much faster in slow
start.

4.3 Handoff from EGPRS to WLAN

In the case of make-before-break handoff from EGPRS
to WLAN, in the present simulation setup, TCP with our
enhancements behaves in a similar way as regular TCP as
no RTO recovery is needed and therefore the RTO-conv al-
gorithm is not invoked. This is because the SACK-based
fast recovery is able to recover all losses due to the slow-
start overshoot as well as later losses during the congestion
avoidance.

The results for the break-before-make handoff from EG-
PRS to WLAN with a 500 ms disconnection period showed
that TCP with our enhancements behaves similarly to the
regular TCP. This is because the RTO value is large in EG-
PRS, and a timeout will not occur during this short discon-
nection. Therefore, TCP will not enter the rxmt-immediate
algorithm.
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Figure 10. Time taken to transfer 100 packets
after a break-before-make handoff from EG-
PRS to WLAN - Disconnection period 4 sec-
onds

We run the simulations also with longer disconnection
periods. Starting from the disconnection period of 2.5 - 3
seconds that is roughly the same as the RTO value in use
with EGPRS, the rxmt-immediate algorithm starts to be-
come effective. With a disconnection period of 4 seconds
and longer, our algorithm becomes consistently effective
and significantly improves the TCP performance.

The results with a 4-second disconnection period are
shown in Figure 10. In this case, the rxmt-immediate() al-
gorithm improves the performance by about 40-60 % in all
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other cases except in the very beginning of the connection
as ns-2 initializes the RTO and RTT variables with overly
high value and the RTO expires only after the handoff com-
pletes.

5 Conclusions and Future Work

In this paper, we have proposed enhancements to the
TCP sender algorithm to improve TCP performance in the
presence of vertical handoff with the help of notifications
about the significant changes in the access link character-
istics. We have grouped the changes due to vertical hand-
off as arising from changes in delay, bandwidth and con-
nectivity and proposed enhancements to adapt TCP to var-
ious handoff scenarios. Our solutions effectively addressed
the problems arising from spurious RTOs, packet losses,
prolonged disconnection and slow convergence to the new
RTO value due to a handoff. The proposed enhancements
have been evaluated in both make-before-break and break-
before-make handoffs in WLAN-EGPRS environment and
the simulation results show significant performance gain
with the enhancements in the majority of the test cases.

Moving to the higher bandwidth environment is chal-
lenging to TCP as TCP needs to be more aggressive but
this cannot be done safely based on the access link charac-
teristics only. A TCP sender should probe the new network
path, but often it takes relatively long before TCP adapts to
the new path. In the future, we intend to study how TCP
could use more detailed notifications regarding the changed
access link characteristics as useful hints, combine the hints
with the information gathered through probing the new net-
work path and thereby try to converge faster but safely to
the new end-to-end RTT and available network capacity. In
addition, we intend to run experiments in a real network en-
vironment with EGPRS and WLAN access networks.
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1 Introduction 

Today mobile nodes (MNs) are often equipped with multiple radio interfaces to connect 
to access networks using diverse link technologies in order to support the best of 
connectivity, services quality, application needs and user preferences. In such a  
multi-access mobile environment, the connectivity of an MN may change very widely 
across access networks with different orders of bandwidth, latency and error 
characteristics during the lifetime of a connection. The switching between the access 
points of different type is known as a vertical handoff (Manner and Kojo, 2004). 

A significant change in the access link characteristics easily affects the end-to-end 
path properties and thereby the behaviour of transport protocols. In the case of 
transmission control protocol (TCP) (Postel, 1981), the most widely used transport 
protocol in the internet, a vertical handoff may incur packet losses, intermittent 
connectivity, packet reordering and spurious retransmission timeouts (RTOs) resulting in 
unnecessary TCP congestion response or inefficient loss recovery that sacrifice TCP 
performance (Hansmann and Frank, 2003; Kim and Copeland, 2003; Gurtov and 
Korhonen, 2004; Kim and Copeland, 2004; Huang and Cai, 2005, Schütz et al., 2005; 
Daniel and Kojo, 2006; Sarolahti et al., 2006; Schütz et al., 2008). 

When a vertical handoff occurs, the TCP sender adjusts its transmission rate and RTO 
estimate very slowly to the new end-to-end path as it learns the properties of the new path 
implicitly by probing it over several round trips. If the TCP layer is explicitly notified 
about the changes in the path properties, the TCP sender could decide whether the path 
characteristics have changed notably and react more timely and efficiently and possibly 
avoid false congestion responses. The TCP layer on the MN can be locally informed of 
the changes in the attached access link and its characteristics by using a cross-layer 
notification. However, the TCP layer at the other end of the connection is not aware of 
such changes. Therefore, introducing an explicit end-to-end indication is needed. 

The earlier proposals in improving TCP with vertical handoff can be categorised into 
two main classes: 

1 sender-based algorithms 

2 receiver-based algorithms. 

The sender-based algorithms (Daniel and Kojo, 2006; Sarolahti et al., 2006; Tsukamoto 
et al., 2006; Lin and Chang, 2007; Schütz et al., 2008) assume that the sender gets an 
explicit notification that the handoff has occurred and enhancements to the TCP sender 
algorithm are proposed. The receiver-based algorithms (Matsushita et al., 2007) modify 
the TCP receiver algorithm when the receiver gets the notification regarding the handoff. 
Hansmann and Frank (2003); Kim and Copeland (2003), Huang and Cai (2005) propose 
both TCP sender and receiver enhancements. 

In this paper we make the following contributions: 

1 We analyse TCP performance with a vertical handoff between access networks 
having a wide range of link bandwidth and delay to identify the various problems 
that affect TCP behaviour. 

2 We deliver explicit link delay and bandwidth information to the TCP sender and by 
taking advantage of this information we develop further our cross-layer enhanced 
TCP algorithms to cover a wider set of changes in the access link characteristics. 
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3 We compare the performance of TCP enhanced by our algorithms with the regular 

TCP performance. We propose delivering information about access link 
characteristics in the mobility signaling messages from the MN to the correspondent 
node (CN). The simulation study is carried out with ns-2 network simulator 
(Network Simulator ns-2, 2005). 

We demonstrate that our proposed enhancements are effective in avoiding spurious 
RTOs, reducing packet losses due to change in the capacity of the links, improving the 
link utilisation immediately after a disconnection and converging to the RTO value of the 
new end-to-end path quickly. As we are interested in studying the behaviour of TCP due 
to handoff we study how TCP behaves immediately after a handoff. As a performance 
index, we calculate the time taken to transfer (to get the acknowledgment) 100 new data 
packets through the new path after a handoff. With the proposed algorithms TCP 
performance is improved in many of the handoff scenarios and in some scenarios the 
improvement is more than a factor of two. Our proposed enhancements are conservative 
in nature and do not adversely affect the TCP performance when the cross-layer 
notification is unavailable. 

The rest of the paper is organised as follows. Section 2 gives a brief description of the 
related work in this area. In Section 3 we introduce the simulation setup used in carrying 
out the vertical handoff experiments. In Section 4 we discuss our findings on the 
problems affecting TCP performance with a vertical handoff and in Section 5 we discuss 
these problems further and propose solutions to mitigate these problems. Section 6 
evaluates the performance of the proposed TCP algorithms in various vertical handoff 
scenarios along with a comparison with TCP. In Section 7 we present our conclusions. 

2 Related work 

Stemm and Katz (1998) introduced the term vertical handoff in the context of wireless 
overlay networks. They defined vertical handoff as the switching between base stations 
which use different link level technologies in a wireless overlay network. 

Handoffs can be divided into two categories based on the connectivity to the access 
router: break-before-make and make-before-break (Manner and Kojo, 2004). In  
break-before-make handoff, an MN is associated with only one access point at a  
time and the old connection breaks before the new connection is operational while in 
make-before-break handoff, the MN is associated with more than one access point at a 
time and it ends its connection to the old access router only after establishing the 
connection to the new one. 

Hansmann and Frank (2003) identify packet reordering, segment burst due to delay 
difference, and packet losses due to a decrease in the access link bandwidth-delay product 
(BDP) as the main problems affecting TCP due to a vertical handoff. They propose a 
nodupack scheme for packet reordering which suppresses the transmission of dupacks 
during the handoff. The authors also propose to reduce the congestion window (cwnd) to 
overcome the packet losses due to a BDP change. However reducing only the cwnd may 
make TCP more aggressive by taking it to slow-start. 

A TCP scheme for seamless vertical handoff (Kim and Copeland, 2003) introduces a 
handoff option (HO) in the TCP header to identify the beginning and end of a handoff. 
During a vertical handoff the TCP sender stops the retransmission timer, suspends the 

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

   436 L. Daniel and M. Kojo    
 

data transfer and initiates a slow-start after the handoff. However with a  
make-before-break handoff, entering the slow-start phase unnecessarily retransmits many 
packets. In another paper by the same authors (Kim and Copeland, 2004), it is pointed out 
that a sudden change in RTT due to a handoff affects the TCP performance. The paper 
proposes that by resetting the retransmission timer after a handoff from a high-delay 
network to a low-delay network performance of TCP Reno can be improved. 

The RFC 3708 on DSACK use (Blanton and Allman, 2004) states that undoing the 
incorrect congestion measures due to packet reordering can be taken only if we confirm 
that all retransmitted packets in a particular window are retransmitted unnecessarily. In 
vertical handoff scenarios where there is a significant change in delay (and bandwidth) of 
the paths involved in a handoff, restoring the old cwnd and ssthresh values may adversely 
affect the performance of TCP if the BDP of the new path is smaller than the BDP of the 
old path. 

Eifel algorithm (Ludwig and Meyer, 2003) and F-RTO algorithm (Sarolahti and 
Kojo, 2005; Sarolahti et al., 2003) are two approaches to detect spurious RTOs. In 
vertical handoff scenarios, these algorithms are effective in avoiding the unnecessary 
retransmissions but not in congestion control response as the selection of a proper 
response is hard without additional information about the new path. 

Overbuffering is proposed in Gurtov and Korhonen (2004) to mitigate the problems 
of a BDP change. However, this scheme is not easy to implement as the operators would 
need to know the bandwidth and delay of all the links on the end-to-end path in setting 
the buffer sizes and so overbuffering in all nodes along the path is hard to deploy. 

A practical study on the performance of TCP with vertical handoff between GPRS 
and WLAN is presented in Chakravorty et al. (2004). This study identifies the delay in 
handoff as the cause of TCP to timeout often thereby affecting TCP performance. The 
high buffering in GPRS aggravates the performance of TCP as it inflates the round trip 
time (RTT) and retransmission timeout (RTO) values. 

To solve the problem of spurious RTOs caused by the increase in RTT after a vertical 
handoff, both sender and receiver based enhancements are proposed in Huang and Cai 
(2005). The basic idea behind these schemes is to reduce the difference in RTT between 
the old link and the new link either by sending a few packets through the new slow link 
or by sending a few ACKs through the old fast link. In order to get good results, one 
should be able to determine a proper value for the duration of using the old or the new 
link for the above purpose. 

Schütz et al. (2005) propose TCP retransmission trigger which causes TCP to attempt 
a retransmission when the connectivity is restored and it shows that this method is useful 
for paths with intermittent connectivity. However, there can be unnecessary 
retransmissions with this scheme in the case of a make-before-break handoff. Our earlier 
proposal rxmt-immediate (Daniel and Kojo, 2006) is more conservative than the 
retransmission trigger as retransmission takes place only if TCP sender is in RTO 
recovery. Schütz et al. (2008) propose an extension to TCP, TCP response to connectivity 
change indications (RLCI) in response to a lower-layer notification called connectivity 
change indications (CCI). A TCP sender receives the CCI either from its local stack or 
through a TCP option when there is a change in connectivity. CCI is taken as a signal to 
TCP to re-probe the network path to find the characteristics of the new path. The TCP 
sender may send an initial window of data on the new path and reset the congestion 
control state, RTT variables and RTO timer as recommended in RFC 2988 (Paxson and 
Allman, 2000) for a new connection. The cwnd should not be adjusted when the ACKs 
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for the packets delivered through the old link are received as they do not reflect the 
current path parameters. TCP timestamps option (Borman et al., 1992) may be used to 
distinguish the ACKs transmitted before or after the CCI. If a connection is stalled in an 
exponential backoff, TCP may retransmit the first unacknowledged segment. 

Lin and Chang (2007) propose a vertical handoff-aware TCP (VA-TCP) where a TCP 
sender gets a notification from the MN regarding the handoff. During a vertical handoff 
when the TCP sender detects that a packet sent over the old access network is lost, it only 
retransmits the missing segment but does not invoke any congestion control actions. 
After the handoff, the TCP sender estimates the bandwidth and RTT using the packet-pair 
scheme (Keshav, 1991) and sets the cwnd and ssthresh to the BDP calculated using the 
bandwidth and the RTT estimates. A potential problem with this approach is that if a 
handoff occurs to a network with a smaller BDP continuing with the old cwnd even for a 
few RTTs during the packet-pair estimation may congest the network leading to a costly 
RTO recovery.. 

ACK pacing (Matsushita et al., 2007) is a receiver based mechanism to improve the 
performance of TCP with vertical handoffs. When a handoff decision is made, an MN 
calculates the BDP of the end-to-end path before and after the handoff. If the BDP of the 
new path is less than that of the old path, the TCP receiver sends duplicate ACKs until 
the transmission rate is reduced below the bandwidth of the new wireless access link. 
After the handoff the ACKs are sent at a rate depending on the bandwidth of the new 
link. However, the duplicate ACKs will force the sender to unnecessarily retransmit an 
already received packet. If the BDP of the new path is larger, multiple partial ACKs are 
sent until the transmission rate increases to the bandwidth of the new link. However, 
sending more than one ACK for each received packet is not advisable as malicious users 
can exploit it to increase the sending rate aggressively (Allman et al., 1999 and Savage et 
al., 1999). 

Tsukamoto et al. (2006) address the problem of a large change in bandwidth of the 
access links before and after a vertical handoff and proposes two schemes to overcome 
this problem. In the first scheme, the TCP sender goes to slow-start as soon as the 
interface change is detected. However, going to slow-start may lead to inefficient 
utilisation of the wireless link after a handoff and also may unnecessarily retransmit the 
segments whose ACKs are delayed in the case of a make-before-break handoff from a 
low-delay to a high-delay link. In the second scheme known as bandwidth-aware scheme, 
TCP sender goes to slow-start after a vertical handoff and the bandwidth of the new path 
estimated using a single packet-pair (Keshav, 1991). The ssthresh is set to the BDP 
calculated using the bandwidth and the RTT of the new path. Simulation results show 
that bandwidth-aware scheme is capable of 80% utilisation of the available bandwidth. 

As there may be a significant change in link characteristics due to a vertical handoff, 
Sarolahti et al. (2006) study the suitability of Quick-Start (Sarolahti et al., 2007a) to set 
the cwnd and ssthresh after a vertical handoff. An explicit cross-layer handoff 
notification is employed to trigger quick-start when the handoff completes. Simulation 
results show that TCP performance is improved significantly by using quick-start after a 
vertical handoff. 

The work reported in this paper is an extension of our earlier work (Daniel and Kojo, 
2006). We present a comprehensive study of the problems of TCP in the presence of 
vertical handoff along with a detailed analysis of the algorithms and the results of the 
experiments. 
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3 Simulation setup 

The simulation model we use in our experiments is shown in Figure 1. The MN is 
capable of switching between two wireless access interfaces, namely Wir1 and Wir2. 
Both Wir1 and Wir2 have dedicated base stations BS1 and BS2 that are connected to a 
common access router R which has a link to the CN. The delay and bandwidth of the 
fixed links are as shown in Figure 1. Our simulation model reflects the vertical handoff 
realistically by using the ns-2 routing features, i.e., by changing the route the packets take 
before and after a handoff. We assume that during a handoff, only the access links are 
changed and the rest of the path remains the same. When a handoff notification arrives, 
the route metric is changed to model a make-before-break handoff. To model a  
break-before-make handoff, an error model with a packet loss rate of 100% is applied to 
the old link and after the disconnection period, the route metric of the new link is set to a 
small value. In this model we can treat the packets from different wireless interfaces 
separately. 

Figure 1 Network topology used in vertical handoff experiments 

 

The nodes Wir1 and Wir2 are introduced to correctly model the break-before-make 
handoff. In ns-2 when an error model is applied, the packets are dropped at a node. 
Without Wir1/Wir2, if we apply the error model at BS1/BS2 the packets in transit from 
BS1/BS2 to MN will not be dropped. The link between MN and Wir1/Wir2 has ‘infinite 
buffer’ and ‘no’ propagation delay, i.e., Wir1 and Wir2 are local to MN and do not 
contribute to the delay of MN’s path to the base station. In order to drop both data as well 
as ACKs during a break-before-make handoff the error model is applied in both 
directions of the old link. 

4 Analysis of TCP behaviour with vertical handoff 

In this section we discuss our findings on regular TCP performance with a vertical 
handoff based on simulations. The purpose of the simulation is to identify the problems 
of TCP in vertical handoff involving links of wide-ranging bandwidth and delay. The 
results are used as basis for developing the enhanced algorithms discussed in Section 5. 

In order to study the effects of changes in link bandwidth and delay on TCP 
behaviour we categorise our experiments into the following three classes: 
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1 handoff between links which have the same bandwidth but different delay 

2 handoff between links which have the same delay but different bandwidth 

3 handoff between links which have the same BDP but bandwidth and delay differ. 

The choice of the parameters for the bandwidth and delay cover the entire range of values 
that are of interest in typical handoff scenarios. 

We use the TCP SACK algorithm implemented in the ns-2 simulator. There is a 
single TCP flow, for instance a file transfer, from the CN to the MN. The TCP packet 
size is 1500 bytes with the TCP/IP headers included. The router buffer size of each link is 
set to the BDP of the link if the BDP is greater than five packets; otherwise, it is set to 
five packets. A handoff can occur once in the lifetime of a TCP connection in any of the 
slow start, slow-start overshoot, fast retransmit/fast recovery or congestion avoidance 
phases. In our experiments a 20-second interval is chosen to cover all the phases of a 
TCP connection and a handoff can occur uniformly in any of the 200 points at 100 ms 
intervals. The duration of each test run includes the completion of the handoff occurring 
in the 20-second interval. Both make-before-break as well as break-before-make handoffs 
are examined. The disconnection period for break-before-make handoff is taken to be 500 
ms. No link errors are modelled as we assume that the packet losses are either due to 
disconnection or congestion. This choice is made as the present study is devoted to the 
effect of vertical handoff on TCP. 

In all the experiments, the parameter (bandwidth/delay) of either the old link or the 
new link is kept constant and we vary the parameters of the other link. As we are 
interested in studying the behaviour of TCP with a vertical handoff we study how TCP 
behaves immediately after the handoff. As a performance index, we calculate the time 
taken to transfer (to get the acknowledgment) ‘n’ new data packets through the new path 
after a handoff where n varies from 50 to 200. We report the results only for the case 
where n is 100 as the results we get are similar for all values of n. In all the performance 
graphs given in this paper, the x-axis shows the link parameters and the y-axis shows the 
lower quartile, median, and upper quartile of the time (in seconds) to transfer 100 packets 
after the handoff. 

4.1 TCP behaviour due to changes in delay 

The aim of these experiments is to study the effect on TCP of a change in the access link 
delay arising from a vertical handoff. We vary the delay of one of the links involved in a 
handoff while the delay of the other link is kept fixed at 300 ms. The varying link delays 
are 150 ms, 75 ms, 37 ms, 18 ms, 9 ms and 1 ms so that the ratio between the delays of 
the two links is two, four, eight, 16, 32 and 300 respectively. This range is wide enough 
to accommodate the majority of different access links deployed at present. These 
experiments are repeated for link bandwidths of 200 Kbps, 1600 Kbps and 6400 Kbps. 
As the link delay is the varying parameter in all the experiments, we study the behaviour 
of TCP with handoff from a low-delay link to high-delay link and high-delay link to  
low-delay link separately. 

Figure 2 shows the transfer time for make-before-break and break-before-make 
handoffs on 6400 Kbps and 200 Kbps links as the delay of the old link varies from 150 
ms to 1 ms while the delay of the new link is fixed at 300 ms. The main problem that 
affects the performance of TCP in a make-before-break handoff from a low-delay link to 
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a high-delay link are the occurrence of spurious RTOs and the unnecessary congestion 
control actions associated with it. As a result of a spurious RTO, the TCP sender 
retransmits packets unnecessarily and decreases the sending rate by reducing the cwnd 
and ssthresh. 

Given that the delay increase is significant, the small RTO value based on the 
measurements over the low-delay path causes the TCP retransmission timer to expire 
spuriously as the ACKs take the high-delay link after the handoff resulting in a 
significant increase in RTT. Typically no packet losses occur during a make-before-break 
handoff. Hence when the TCP sender times out spuriously, it retransmits a full window of 
packets unnecessarily and continues in congestion avoidance with reduced cwnd resulting 
in performance degradation. 

As can be seen from Figure 2 due to the adverse effect of spurious RTOs, the 
performance penalty with the make-before-break handoff becomes more severe with the 
increase in the ratio of the delays of the old and the new links. We observe that for 1600 
Kbps and 6400 Kbps links with make-before-break handoff, spurious RTOs occur in 
more than 85% of the handoff points when the delay of the new link is at least eight times 
the delay of the old link and they occur in less than 20% of the handoff points when this 
ratio is less than eight. For low-bandwidth links, such as 200 Kbps links, serialisation 
delay reduces the ratio between the old and the new link delays thereby reducing the 
occurrence of spurious RTOs. Our experiments with 200 Kbps links show that the 
spurious RTOs occur only in 10–40% of the handoff points, increasing with the decrease 
in the old link delay. 

With a break-before-make handoff the connectivity is lost for some period of time 
and resumes after the handoff completes. During this disconnection period the 
retransmission timer may expire several times, each time doubling the RTO value. When 
the connectivity is resumed, the TCP sender needs to wait until the retransmission timer 
expires again before attempting another retransmission. This unused connection time 
delays the start of the recovery from lost packets. If more than one timeout has occurred, 
i.e., a retransmission is lost, ssthresh value is further reduced. However, the 
retransmission is lost due to disconnection not due to congestion, making this reduction 
of ssthresh unnecessary. 

In Figure 2 we can see that for the 6400 Kbps links, the break-before-make handoff 
from a 75 ms link to a 300 ms link shows a sharp increase in transfer time. Due to the 
relatively high BDP of the 75 ms link (80 packets) a large number of packets are lost due 
to disconnection. This typically requires an RTO recovery. The retransmission timer 
expires once during the disconnection period of 500 ms and the TCP sender doubles the 
RTO value. Another RTO is required to recover the losses and ssthresh is reduced to two 
after this RTO. This reduction in ssthresh is the main reason for the long transfer time. 
Even if the link becomes operational before the second RTO, TCP will not retransmit the 
lost segment until the second RTO occurs. Here we observe an unused connection time 
(100 ms to 300 ms) after the handoff completes which further increases the transfer time. 
For the handoff from the 150 ms link, the retransmission timer will not expire during the 
disconnection period of 500 ms and the lost packets are recovered by a single RTO 
recovery and ssthresh is reduced just once. With smaller link delays (i.e., 9 ms and 1 ms) 
the link BDP is small and only a small number of packets are lost during the 
disconnection. For the break-before-make handoff between 200 Kbps links as the link 
BDP is less than five packets it never results in significant number of packet losses and 
the transfer time remains roughly the same in all cases. 
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Figure 2 Handoff from a low-delay to a high-delay link with a fixed bandwidth (200 Kbps,  

6400 Kbps) 

 

Note: Transfer time for 100 packets after a make-before-break (MBB) and  
break-before-make (BBM) handoff with varying delays of the old link. The delay 
of the new link is fixed at 300 ms. 

With a make-before-break handoff from a high-delay link to a low-delay link, the main 
problems of TCP are due to 

1 the decrease in the link BDP after a handoff resulting in congestion-related packet 
losses 

2 the ACKs arriving through the new link triggering more packets to be sent to the low 
BDP link resulting in packet losses 

3 the slow convergence of RTO to the new path delay. 

Figure 3 shows the make-before-break and break-before-make handoffs from a 300 ms 
delay link to a new link with varying link delays when the link bandwidth is 200 
Kbps/1600 Kbps. In the case of 1600 Kbps links, when a make-before-break handoff 
occurs from a 300 ms link to a low-delay link, many packets are dropped due to the large 
decrease in BDP which requires RTO recovery. For the low link delays (delay from 18 
ms down to 1 ms), after a make-before-break handoff, as the ACKs arrive through the 
new fast link the sender injects packets quickly to the new low BDP link which further 
congests the link. The initial packet losses due to the decrease in BDP and the packet 
losses due to the high sending rate after the handoff cause a series of RTOs. This 
accounts for the transfer time being nearly the same or greater than the corresponding 
transfer time for break-before-make handoff when the new link delay decreases from 18 
ms to 1 ms. The large difference between the median and the quartiles for the  
make-before-break handoff when the delay of the new link is either 9 ms or 1 ms link is 
due to the variable number of RTOs required for the loss recovery. The high buffering in 
the old high BDP link inflates the RTO value and invoking RTO recovery takes a long 
time due to the slow convergence of the RTO to the new path values. We observe a 
similar TCP behaviour for the handoff between 6400 Kbps links. In the case of 200 Kbps 
links, the decrease in BDP due to handoff is within five packets for all the delay values of 
the new link. As a result the graph for make-before-break handoff with a 200 Kbps link is 
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nearly constant. In a break-before-make handoff from a high delay link to a low-delay 
link, all packets sent during the disconnection are lost in addition to packets lost due to 
the decrease in BDP. This accounts for the increase in transfer time of a  
break-before-make handoff compared to that of a make-before-break handoff in a similar 
scenario. 

Figure 3 Handoff from a high-delay link to a low-delay link with fixed bandwidth (200 Kbps, 
1600 Kbps) 

 

Note: Transfer time for 100 packets after a make-before-break (MBB) and  
break-before-make (BBM) handoff with varying delays of the new link. The delay 
of the old link is fixed at 300 ms. 

Packet reordering is observed when a make-before-break handoff occurs from a  
high-delay to a low-delay link as packets with higher sequence numbers traversing the 
new low-delay link arrive at the receiver earlier than the packets sent through the old 
high-delay link before handoff. A false fast retransmission will be triggered only when at 
least a dupthresh number (usually three) of out-of-order segments for each in-order 
segment are received. As the bandwidth remains the same before and after the handoff, 
sufficient dupacks may not be generated to trigger a false fast retransmission. 

4.2 TCP behaviour due to changes in bandwidth 

In this set of experiments, we vary the bandwidth of the links involved in the handoff 
while keeping the delay of the links constant. The bandwidth of one of the links is varied 
while the bandwidth of the other link is kept fixed at 6400 Kbps. The varying link 
bandwidths are 200 Kbps, 400 Kbps, 800 Kbps, 1600 Kbps and 3200 Kbps. The 
experiments are conducted for the link delays of 300 ms, 75 ms, 9 ms and 1 ms. As the 
link bandwidth is the only variable, we study the behaviour of TCP in a handoff from a 
low-bandwidth link to a high-bandwidth link and from a high-bandwidth link to a  
low-bandwidth link separately. 

Figure 4 shows the transfer times for make-before-break and break-before-make 
handoffs when the bandwidth of the old link is fixed at 6400 Kbps and the new link 
bandwidth is varied. The major problem affecting TCP here is the packet losses due to 
decrease in BDP. For the break-before-make handoff, the recovery of the lost packets due 
to disconnection increases the transfer time compared to that of the make-before-break 
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handoff. For the 6400 Kbps/300 ms link, the slow-start overshoot starts around 9.3 
seconds resulting in large packet losses due to the high BDP of the link (320 packets) 
which leads to an RTO recovery. It can be seen in Figure 4 that for links with 300 ms 
delay the BDP decrease is maximum when the bandwidth decreases from 6400 Kbps to 
200 Kbps and the transfer time shows maximum increase. When a handoff from 6400 
Kbps to 200 Kbps occurs during the slow-start recovery, TCP needs a series of RTOs to 
recover the lost packets as there is a significant decrease in the BDP of the new link 
(from 320 packets to ten packets). This accounts for the high third quartile value (almost 
double the median) of the transfer time. The high transfer time decreases with increase in 
bandwidth of the new link. 

Figure 4 Handoff from a high-bandwidth link to a low-bandwidth link with fixed delay (9 ms, 
300 ms) 

 

Note: Transfer time for 100 packets after a make-before-break (MBB) and a  
break-before-make (BBM) handoff between same delay links with varying new 
link bandwidth and the bandwidth of the old link fixed at 6400 Kbps. 

In the make-before-break handoff between low-delay links (9 ms and 1 ms), the increase 
in serialisation delay due to the decrease in bandwidth after a handoff may result in 
spurious RTOs. The major problems affecting TCP here are the decrease in BDP and 
spurious RTOs. For higher delay links (i.e., 300 ms link), the serialisation delay adds 
little to the total delay and no spurious RTOs are observed. 

Figure 5 shows the transfer time for the make-before-break and break-before-make 
handoffs between 300 ms and 9 ms links when the handoff occurs from a low-bandwidth 
link to a high bandwidth bandwidth link. The bandwidth of the old link is varied and the 
new link bandwidth is fixed at 6400 Kbps. The main problem affecting TCP here is its 
inability to efficiently utilise the high bandwidth available after a handoff. We can see in 
Figure 5 that the transfer time between 300 ms delay links depends mainly on the 
bandwidth of the old link even though the new link bandwidth/delay is 6400 Kbps/300 
ms in all the cases and the new link has a higher BDP than the old link. For the handoffs 
occurring during or after the slow-start overshoot, the reduced cwnd and ssthresh of the 
old path decrease the TCP sending rate even though a high BDP link is available after the 
handoff. In the worst affected case of 800 Kbps link, the slow-start overshoot starts 
around 6.5 seconds and approximately 120 packets are lost. The first lost packet is 
retransmitted in fast retransmit but the ACK gets delayed resulting in a spurious RTO. As 
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the link is already congested due to slow-start overshoot, some retransmitted packets are 
also lost resulting in another timeout. The consequent reduction in cwnd and ssthresh 
values further reduces the sending rate for handoffs occurring after the slow-start 
overshoot. There is an additional burden to the recovery in the break-before-make 
handoff owing to packet losses due to disconnection. 

Figure 5 Handoff from a low-bandwidth link to a high-bandwidth link with fixed delay (9 ms, 
 300 ms) 

 

Note: Transfer time for 100 packets after a make-before-break (MBB) and a  
break-before-make (BBM) handoff between same delay links with varying old link 
bandwidth. The bandwidth of the new link fixed at 6400 Kbps. 

TCP behaviour for make-before-break handoff between 9 ms delay links is similar to the 
behaviour we described for 300 ms links. In the case of break-before-make handoff, TCP 
will be in RTO recovery during the disconnection period and another RTO is required to 
recover the losses. As explained in Section 4.2 the unused connection time and the 
ssthresh reduction are the main problems due disconnection. The high RTO value of the 
low-bandwidth links increases the unused connection time resulting in increased transfer 
time. For 200 Kbps links, the unused connection time is about 700 ms and as the 
bandwidth increases the unused connection time decreases. As the RTO value gets 
clamped to the minrto, the unused connection time for higher bandwidths (from 800 
Kbps) is 100 ms. As the ssthresh reduction is not significant here as the BDP of the old 
link for all the bandwidths used in the experiments are less than or equal to five. 

4.3 TCP behaviour due to changes in bandwidth and delay for fixed  
bandwidth-delay product (BDP) 

In this set of experiments, the bandwidth and delay of the links involved in a handoff are 
different while their BDP remains unchanged. We vary the bandwidth and delay of one 
of the links involved in the handoff while the bandwidth and delay of the other link are 
kept fixed. We have two sets of fixed bandwidth/delay values namely, 200 Kbps/300 ms 
and 6400 Kbps/9 ms. For the varying link, the bandwidth/delay combinations are 200 
Kbps/300 ms, 400 Kbps/150 ms, 800 Kbps/75 ms, 1600 Kbps/37 ms, 3200 Kbps/18 ms 
and 6400 Kbps/9 ms. With these combinations, both old and new access links have a 
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BDP of ten packets. We perform the experiments for a handoff from a  
high-bandwidth/low-delay link to a low-bandwidth/high-delay link and vice versa. 

Figure 6 Handoff from a high-bandwidth/low-delay link to a low-bandwidth/high-delay link with 
fixed BDP 

 

Note: Transfer time for 100 packets after a make-before-break (MBB) and a  
break-before-make (BBM) handoff for the same BDP links with varying bandwidth 
and delay of the old link and the new link fixed at 200 Kbps/300 ms. 

Figure 6 shows that a significant decrease in bandwidth/increase in delay due to a handoff 
increases the transfer time for both make-before-break and break-before-make handoffs. 
Here we fix the new link bandwidth/delay at 200 Kbps/300 ms while varying the 
bandwidth and delay of the old link. When there is a significant increase in delay after a 
make-before-break handoff, TCP suffers from spurious RTOs whereas in a  
break-before-make handoff, unused connection time and the ssthresh reduction are the 
main problems. Spurious RTOs occur in more than 90% of the handoff points when the 
ratio of change in bandwidth (or delay) is at least eight. 

Figure 7 Handoff from a low-bandwidth/high-delay link to a high-bandwidth/low-delay link with 
fixed BDP 

 

Note: Transfer time for 100 packets after a make-before-break (MBB) and a  
break-before-make (BBM) handoff for the same BDP links with varying bandwidth 
and delay of the old link and the bandwidth and delay of new link fixed at 6400 
Kbps/9 ms. 
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When the old link bandwidth is 1600 Kbps or higher, many packets are lost in a  
make-before-break handoff due to the bursty transmission caused by the arrival of late 
ACKs at the high rate of the old link resulting in heavy congestion on the new  
low-bandwidth link. In most of the cases, recovery needs one or more RTOs and the 
reduction in the sending rate is drastically affected by the reduced ssthresh and cwnd. 

Figure 7 shows the performance of make-before-break and break-before-make 
handoffs from a low-bandwidth/high-delay link to a high-bandwidth/low-delay link when 
the new link is fixed at 6400 Kbps/9 ms. Packet reordering is a problem affecting TCP 
when there is a significant reduction in delay after a make-before-break handoff. In the 
case of break-before-make handoff with a high delay old link (for 200 Kbps/300 ms and 
400 Kbps /150 ms links), the high RTO value prolongs the start of the RTO recovery. For 
links with lower delay (from 75 ms to lower link delays) the increase in transfer time is 
mainly due to the occurrence of multiple RTOs and the resulting reduction in ssthresh. 
The maximum unused connection time and the reduction in ssthresh account for the peak 
in the transfer time for the break-before-make handoff from 800 Kbps/75 ms link to 6400 
Kbps/9ms link in Figure 7. 

5 Cross-layer enhanced TCP algorithms 

In this section, we propose solutions to mitigate the problems of TCP described in 
Section 4. Our algorithms described here take a conservative approach in setting the TCP 
congestion control parameters. We elaborate further the problems with TCP behaviour in 
vertical handoff scenarios while we discuss the proposed enhancements to the TCP 
sender algorithm. The baseline TCP used in our experiments is the TCP SACK algorithm 
implemented in ns-2 simulator and we refer to it as regular TCP. The enhancements are 
invoked upon arrival of a handoff notification from the lower layer. Here we assume that 
the MN sends the handoff notification to the TCP sender at the CN, including an estimate 
of the bandwidth and delay of the two access links involved in the handoff. 

5.1 Cross-layer notifications 

A number of mechanisms to support host mobility in IP networks have been developed. 
They include both basic protocol support for IP mobility such as Perkins (2002), Johnson 
et al. (2004), Henderson (2007) and various enhancements to reduce packet loss as well 
as the amount and latency of signalling, for example Koodli (2005), Soliman et al. 
(2005), El Malki (2007). All these mobility management mechanisms aim at hiding the 
host mobility from the layers above IP. However, this is not a viable approach if the 
implications of the mobility interact with the segment delivery at the transport layer. A 
vertical handoff that results in significant changes in end-to-end path properties cannot be 
totally hidden from the transport layer even if the handoff latency is reduced to minimum 
and no packets are dropped. Therefore it would be advisable to explicitly notify the 
transport layer of any significant changes in path properties. 

Cross-layer notifications have been shown to be beneficial to TCP when path 
characteristics change widely due to a vertical handoff (Schütz et al., 2005; Daniel and 
Kojo, 2006; Sarolahti et al., 2006). During a vertical handoff, the TCP layer at the MN 
can be locally notified about the changes in the path characteristics at the time the 
handoff is executed. This information regarding the path characteristics can be sent to the 
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TCP layer at the CN, for example, as TCP options (Schütz et al., 2008), or along with the 
mobility registration message such as the Binding Update message in mobile IPv6 
(Johnson et al., 2004) or with the readdress packet in HIP (Moskowitz and Nikander, 
2006) to be further forwarded to the TCP layer. A TCP sender can take the notifications 
about the characteristics of the network path and adjust the congestion control parameters 
and RTO estimate so as to adapt to the new path in an efficient and timely manner 
thereby improving transport performance. In this paper we suggest delivering the 
notifications piggybacked in the mobility signalling messages so that the notifications can 
be delivered to the TCP layer exactly when the handoff completes. 

5.2 TCP enhancements to avoid spurious RTOs 

A more detailed analysis of results discussed in Section 4 exposes that spurious RTOs 
can occur mainly due to the following conditions when a make-before-break handoff 
occurs: 

1 there is a significant increase in link delay after the handoff 

2 TCP is in fast recovery when the handoff occurs 

3 TCP enters fast recovery after the occurrence of the handoff but before the ACKs for 
all packets sent before the handoff are received. 

Next we discuss these conditions in detail. 

Case 1 

Figure 8 Comparison of regular TCP (a) and enhanced TCP (b): make-before-break handoff at 
8.2s from a 6400Kbps/9ms link to a 200Kbps/300ms link 

 
(a) (b) 

In Sections 4.2 and 4.3, we observed that spurious RTOs occur in more than 85–90% of 
the handoff points when the delay of the new link is at least eight times that of the old 
link. A typical scenario giving the time-sequence graph of a make-before-break handoff 
from a 6400 Kbps/9ms link to a 200 Kbps/300 ms link is shown in Figure 8a. We see that 
handoff occurs at 8.2 seconds after the beginning of a TCP connection, causing a sudden 
increase in RTT as the ACKs start taking the new high-delay link. A spurious RTO 
occurs at 8.4 seconds and the TCP retransmits the first unacknowledged segment. The 
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late ACKs for the segments sent before the handoff, start arriving at 8.5 seconds 
triggering a retransmission of a full window of 21 segments unnecessarily. As the late 
ACKs arrive back-to-back roughly at the line rate of the old high-bandwidth link, 
unnecessary retransmissions are triggered at a rate which far exceeds the capacity of the 
new link. Therefore the new link is congested soon. The late ACKs for data segments that 
took the new path after the handoff start arriving at 8.8 seconds, triggering transmission 
of new data segments. These segments enter the router queue in front of the new link 
which is filled with unnecessary retransmissions and experience a long queuing delay in 
addition to the high delay of the new link. As the RTO estimate converges very slowly to 
the long RTT of the new path, the total delay for these segments exceeds the current RTO 
value resulting in another spurious RTO at 9.7 seconds followed by unnecessary 
retransmission of the current window again. 

Case 2 

Figure 9a shows an example where TCP is in fast recovery when a make-before-break 
handoff occurs from a 800 Kbps/75 ms link to a 200 Kbps/300 ms link. The TCP sender 
congests the old link and fast retransmits at 5.9 seconds. The retransmitted segment 
enters a long queue of the bottleneck router. After this a handoff occurs at 6.0 seconds. 
The retransmitted segment arrives at the TCP receiver after experiencing a relatively long 
queuing delay and triggers an ACK that takes the new high delay link, adding further 
delay in the arrival of the ACK. This causes a spurious RTO at 6.3 seconds. This 
condition arises even when the delay of the new link is only four times the delay of the 
old link, which alone is not enough to cause a spurious RTO. 

Figure 9 Comparison of regular TCP (a) and enhanced TCP (b): make-before-break hand-off at 
6.0s from a 800Kbps/75ms link to a 200Kbps/300ms link 

 
(a) (b) 

Case 3 

Here the TCP sender enters fast recovery after a make-before-break handoff. This 
situation is illustrated in Figure 10a. The handoff is from a 400 Kbps/150 ms link to a 200 
Kbps/300 ms link, where the ratio of change in delay is only two. The sender has already 
congested the old link after which a handoff occurs at 10.9 seconds. The TCP sender, 
unaware of the handoff, continues transmitting new segments clocked by the ACKs 
arriving roughly at the line rate of the old link and thereby quickly filling the router queue 
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in front of the new link. When the third dupack arrives at 11.6 seconds, indicating a 
packet loss on the old link, the TCP sender fast retransmits the lost segment. However, 
the queuing delay on the new link delays the delivery of the fast retransmitted segment 
and spurious RTO occurs at 12.4 seconds. 

Figure 10 Comparison of regular TCP (a) and enhanced TCP (b): make-before-break handoff at 
10.9s from a 400Kbps/150ms link to a 200Kbps/300ms link 

 
(a) (b) 

In addition to the cases discussed above there are scenarios where queuing delay 
increases due to the increase in link serialisation delay resulting in spurious RTOs as the 
ACKs get delayed. This situation arises in make-before-break handoffs from a  
high-bandwidth link to a low-bandwidth link when TCP is either in fast recovery before a 
handoff or TCP enters fast recovery after a handoff. As the effect of serialisation delay is 
conspicuous for low delay links, these accounts for the occurrence of spurious RTOs for 
a make-before-break handoff from a high-bandwidth link to a low-bandwidth link 
described in Section 4.2 for the same delay link experiments (9 ms and 1 ms). 

To avoid the occurrence of spurious RTOs we calculate the following parameters 
which are used in the enhanced TCP sender algorithm. In a make-before-break handoff 
where neither the data segment nor its ACK is lost, we may consider the data segment 
sent just before handoff traversing the old link with its ACK traversing the new link. The 
minimum RTT of this data segment-ACK pair can be calculated by the following formula 
taking into account only the access links. 

 
_         old newlink oldlink oldlink newlink newlinkRTT D SDpkt D Dack= + + +  

where 

oldlinkSDpkt  - serialisation delay for a data packet on the old link 

newlinkSDack  - serialisation delay for an ACK on the new link 

oldlinkD  - propagation delay for the old link 

newlinkD  - propagation delay for the new link 

The RTT of the data segment-ACK pair traversing the new link is calculated based on the 
new access link delays: 
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  2    newlink newlink newlink newlinkRTT D SDpkt SDack= ⋅ + +   

The new link BDP is calculated as follows: 

  newlink newlink newlinkBDP BW RTT= ⋅  

where  - bandwidth of the new link. newlinkBW
The proposed algorithm to avoid spurious RTOs is given in Figure 11. The algorithm 

takes into account all three cases discussed above and it is invoked on the arrival of a 
handoff notification indicating an increase in the link delay. Here we calculate the minrto 
based on the new access link delay and update the RTO timer immediately so that the 
new minrto comes into effect. Thus any change in the delay of the end-to-end path will 
be better reflected in the RTO calculation. It, however, takes effect only if the TCP 
sender is not already in RTO recovery when the notification arrives. 

Figure 11 Algorithm A1 to avoid spurious RTOs. 

 

Regarding Case 1 and Case 2, the spurious RTO occurs either due to a significant 
increase in the link delay or due to queueing delay of the old link. In order to address 
Case 1, the TCP sender checks if the  (the minimum estimated RTT for a 

data segment traversing the old link and its ACK taking the new link) is greater than the 
current RTO. For Case 2 the algorithm checks if the TCP is already in fast recovery when 
a handoff notification arrives. If the TCP sender is in fast recovery, the queuing delay in 
the old link may increase the effective RTT for the fast retransmitted segments beyond 
the current RTO value even though the  is not larger than the current RTO. 

If any of these conditions is true, we set the minrto to the sum of the , an 

estimate for the queuing delay in the old link and a rough estimate of the rest-of-the path 
delay (here taken as 200 ms which is the default minrto value used in ns-2 and in many 
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m of the 

delay. 

real TCP implementations). Strictly speaking, instead of  we can use 
 but here we are slightly overestimating the new minrto value. 

newlinkRTT

_  old newlinkRTT

ath 

In order to address Case 3 the TCP sender sets the minrto to the su
newlinkRTT  , an estimate for the queuing delay in the new link and a rough estimate of the 

rest-of-the p
In addition to setting the minrto value, we update the RTO timer immediately to 

allow the new minrto value to take effect as soon as possible. When the ACK for all the 
segments sent before the handoff has been received, we initialise the RTT variables and 
the RTO timer as recommended for a new connection in RFC 2988 (Paxson and Allman, 
2000) provided there is an increase in the link delay after the handoff. The RTT variables 
are updated immediately upon the arrival of the first valid ACK and the minrto is restored 
to its default value. 

The effectiveness of the algorithm in avoiding spurious RTOs can be seen in Figures 
8b, 9b and 10b against the corresponding cases shown in Figures 8a, 9a and 10a for 
regular TCP. 

Figures 8a and 8b represent the behaviour of TCP with and without the algorithm A1 
for Case 1. The ACK for the first outstanding segment arrives after 337 ms but the RTO 
value of the regular TCP at handoff is only 200 ms resulting in spurious RTO. Algorithm 
A1 calculates the minrto to be 552 ms, sets RTO to this value, thereby avoiding the 
occurrence of spurious RTO. 

A comparison of Figures 9a and 9b shows the effect of algorithm A1 for Case 2. We 
see that TCP is in fast recovery when the handoff occurs at 6.0 seconds. There are 24 
segments outstanding at that time. The arrival of the ACK for the fast retransmitted 
segment takes 529 ms which is more than the RTO value of the regular TCP (440 ms) at 
the handoff and the RTO timer expires spuriously before the arrival of the ACK. The use 
of algorithm A1 results in the minrto value of 1220 ms, thereby avoiding spurious RTOs. 

For Case 3, Figure 10a shows that there are 22 segments outstanding when TCP fast 
retransmits. The arrival of the ACK for the fast retransmitted packet takes 1.17 seconds 
which is more than the RTO value of the regular TCP (850 ms) at that point and spurious 
RTO occurs due to the late arrival of the ACK. Using the algorithm A1, the minrto is 
calculated to be 2.12 seconds and the resulting larger value of RTO is effective in 
avoiding the spurious RTO as can be seen in Figure 10b. 

5.3 TCP enhancements to minimise congestion-related packet losses 

Congestion-related packet losses may occur due to a handoff occurring from a high-BDP 
path to a low-BDP path. The BDP of the bottleneck link determines the minimum size of 
the TCP window that may fully utilise the bottleneck link. The congestion point of the 
bottleneck link is determined by the BDP of the link, the router queue size in front of the 
link and the number of packets in flight elsewhere on the end-to-end path. 

Figure 12a shows a make-before-break handoff from 1600 Kbps/75 ms link to 400 
Kbps/150 ms link. The old link BDP is 20 packets while the new link BDP is ten packets. 
When a handoff occurs at 6.5 seconds TCP continues to inject packets to the new link at 
the previous rate and several packets starting from sequence number 764 are lost. On the 
new high-delay link it takes about 2.5 seconds for the TCP sender to recover the lost 
packets and adapt to the sending rate of the new link. 
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Figure 12 Comparison of regular TCP (a) and enhanced TCP (b): make-before-break handoff at 
6.5s from a 1600Kbps/75 ms link to a 400 Kbps 150 ms link 

 
(a) (b) 

If the FlightSize at the time of handoff is greater than the buffering capacity of the new 
link, packet losses due to congestion may occur after the handoff. Therefore we check 
whether the FlightSize exceeds the estimated buffering capacity of the new link. We 
assume that the router queue size in front of the access link equals the BDP of the link so 
that the link has a total buffering capacity of twice the link BDP. The total buffer capacity 
of the end-to-end path is likely to be larger than this estimate allowing some slack in the 
estimate. In order to avoid the underutilisation of the new access link we reduce the 
congestion window (cwnd) and the slow-start threshold (ssthresh) to the BDP of the new 
link. The algorithm for reducing congestion-related packet losses is given in Figure 13 
and is invoked if TCP sender is not in RTO recovery. A flag, cwnd_reduced, is set to one 
so that cwnd is not reduced further if TCP enters fast recovery to recover lost packets sent 
before the handoff. This flag is cleared when all packets sent before handoff is ACKed. 

Figure 13 Algorithm A2 to reduce congestion-related packet losses 

 

A comparison of Figure 12a and Figure 12b shows the effect of the algorithm A2. The 
FlightSize when the handoff notification arrives is 39 packets whereas the BDP of the 
new link is only 11 packets. As this FlightSize is larger than twice the BDP of the new 
link, the algorithm A2 sets the ssthresh and cwnd to the BDP of the new link which 
effectively avoids the congestion-related losses and allows the TCP sender to smoothly 
continue data transmission over the new link. 

5.4 TCP enhancements to reduce the effect of disconnection 

The main problems of TCP in a break-before-make handoff are excessive ssthresh 
reduction, packet losses and unused connection time. A typical break-before-make 
scenario shown in Figure 14a illustrates these problems. It shows a break-before-make 
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handoff between 6400 Kbps links with link delay changing from 9 ms to 300ms in a 
handoff. The handoff occurs at 7.0 seconds and there are 20 outstanding packets at that 
time. All the packets from sequence number 3427 to 3446 except 3428 and 3430 are lost 
due to the disconnection arising from the break-before-make handoff. Although packet 
3426 was received, the TCP receiver did not send the ACK for it immediately because of 
the delayed ACK feature of TCP. In this scenario, we see that the first retransmission 
timeout occurs at 7.2 seconds and the retransmission of packet 3426 is lost during the 
disconnection period of 500 ms. A second retransmission of packet 3426 at 7.6 seconds 
reaches the receiver. After the first retransmission, the ssthresh is reduced to half of the 
FlightSize (ten packets) and after the second retransmission the ssthresh is further 
reduced to two. The loss recovery carried out in congestion avoidance takes a very long 
time over the high-delay link even though the BDP of the new link is very high (320 
packets). The unused connection time is about 100 ms in this scenario. 

Figure 14 Comparison of regular TCP (a) and enhanced TCP (b): break-before-make handoff at 
7.0 s from a 9 ms link to a 300 ms link with identical bandwidth of 6400 Kbps 

 
(a) (b) 

Note: Disconnection period is 500ms. 

Algorithm A3 shown in Figure 15 is used to reduce the unused connection time and to 
avoid the unnecessary ssthresh reduction. Upon the first expiry of the retransmission 
timer for a given TCP segment, the TCP sender reduces cwnd and ssthresh as usual and 
then saves the reduced ssthresh value. If the TCP sender is already in RTO recovery 
when the handoff notification arrives, the TCP sender immediately retransmits the first 
unacknowledged packet and restores the saved value of ssthresh. 

The effect of algorithm A3 in reducing the unused connection time and avoiding 
ssthresh reduction can be seen by comparing Figure 14a and Figure 14b. The improved 
performance of algorithm A3 is mostly due to the restored ssthresh value. With 
immediate retransmission in algorithm A3, the retransmission occurs at 7.5 seconds as 
soon as the connection is restored and the unused connection time of 100 ms in the 
regular TCP is eliminated. However, the effect of unused connection time becomes more 
visible for longer disconnection periods that allow RTO to backoff to a large value. 
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Figure 15 Algorithm A3 to reduce the unused connection time and to restore the ssthresh 

 

5.5 TCP enhancements for a fast convergence of RTO 

In a handoff from a high-delay link to a low-delay link, the RTO value may be very high 
compared to the new end-to-end RTT. The RTO may be even higher due to the queuing 
delay, if the old link has a high BDP. After a handoff, the RTO will converge to the RTT 
of the low-delay path very slowly. This convergence is outstandingly slow when the RTT 
variables are updated only once in an RTT (Paxson and Allman, 2000). The high RTO 
value delays the timeout recovery unnecessarily if an RTO recovery is needed relatively 
soon after a handoff. The algorithm A4 given in Figure 16 helps TCP to converge faster 
to the new RTO value by initialising the RTT variables and updating the RTT variables 
again immediately when an ACK for a data segment sent over the new path arrives to 
reflect the end-to-end delay of the new path. 

Figure 16 Algorithm A4 for fast convergence of RTO 

 

We designate the TCP sender algorithm incorporating the enhancements given by 
algorithms A1, A2, A3 and A4 as the enhanced TCP. In Section 6 we study the behaviour 
of the enhanced TCP in various handoff scenarios. 

6 Performance comparison: regular TCP vs. enhanced TCP 

In this section we discuss the second set of experiments to evaluate the performance of 
enhanced TCP and compare its performance to regular TCP. The experimental setup used 
here is the same as in Section 3. 
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6.1 Handoff between same bandwidth, different delay links 

Figure 17 Handoff from a low-delay link to a high-delay link with fixed bandwidth (1600 Kbps, 
6400Kbps), (a) make-before-break handoff and (b) break-before-make handoff 

 
(a) (b) 

Note: Transfer time for 100 packets after a make-before-break (a) and break-before-make 
handoff (b) between 6400 Kbps and 1600 Kbps links with varying delays of the old 
link. The new link delay is fixed at 300 ms. The disconnection period for  
break-before-make handoff is 500 ms. 

We recall from Section 4.1 that the key problem affecting TCP performance in a  
make-before-break handoff from a low-delay to high-delay link is the occurrence of 
spurious RTOs along with the unnecessary congestion control actions associated with it. 

Figure 17a shows the transfer time for 100 packets after a make-before-break handoff 
for 6400 Kbps links and 1600 Kbps links for regular TCP and enhanced TCP. The delay 
of the new link is fixed at 300 ms and the old link delay is varied as in Section 4.1. For 
the handoff between 6400 Kbps links enhanced TCP achieves a reduction in transfer time 
(median value) of 35–65% by avoiding spurious RTOs. When the ratio of the link delays 
is less than eight, enhanced TCP behaviour is similar to that of regular TCP as the 
spurious RTOs occur rarely in this situation. For handoff between 1600 Kbps links, 
enhanced TCP behaviour resembles the case of 6400 Kbps links described above and it 
achieves a reduction in transfer time up to 55%. 

For low-bandwidth links such as 200 Kbps links, serialisation delay reduces the ratio 
between the old and new link delays which decreases the occurrence of spurious RTOs 
and enhanced TCP performance is only slightly better than that of regular TCP. 

Figure 17b shows the transfer time for a break-before-make handoff for bandwidth 
values of 6400 Kbps and 1600 Kbps. With the disconnection period of 500 ms, the 
regular TCP will be in timeout recovery in most of the handoff points. Here the enhanced 
TCP applying algorithm A3 will retransmit the first unacknowledged packet immediately 
when the link comes up and reduce the ssthresh value only once thereby decreasing the 
delay in the recovery of lost packets allowing the TCP sender to continue with a larger 
window. In the case of 6400 Kbps links enhanced TCP reduces the transfer time up to 
55%. The performance improvement of enhanced TCP is very significant (about 55%) 
for the handoffs from 75 ms delay link to 300 ms delay link. For a 1 ms delay link, the 
old link buffer is set to a minimum value of five packets and the link BDP is small. This 
allows only a slight performance improvement for enhanced TCP over regular TCP as 
ssthresh will have a low value anyway. For link bandwidth value of 1600 Kbps the 
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enhanced TCP reduces the transfer time up to 45 %. The algorithm A3 is invoked if TCP 
is in RTO recovery when the handoff notification arrives. For the handoff from 150 ms 
link, TCP will not be in RTO recovery and there is no performance improvement in using 
enhanced TCP in this case. 

Figure 18 shows a comparison of the transfer time for regular TCP and enhanced TCP 
after make-before-break and break-before-make handoffs from a high-delay link to a 
low-delay link when both links have the same bandwidth of 1600 Kbps. 

As discussed in Section 4.1 the main problems of the regular TCP in a  
make-before-break handoff from a high-delay link to a low-delay link (links of the same 
bandwidth) are: 

1 decrease in the link BDP after a handoff resulting in congestion-related packet losses 

2 the slow convergence of RTO to the low delay of the new link. 

Figure 18 Handoff from a high-delay link to a low-delay link with fixed bandwidth (1600 Kbps) 

 

Note: Transfer time for 100 packets after a make-before-break (MBB) and  
break-before-make (BBM) handoff between 1600 Kbps links with varying new 
link delays and the delay of the old link is fixed at 300 ms. 

Figure 19 Handoff from a high-delay link to a low-delay link with fixed bandwidth (200 Kbps)  

 

Note: Transfer time for 100 packets after a make-before-break (MBB) and a  
break-before-make (BBM) handoff between 200 Kbps links with varying new link 
delays and the delay of the old link is fixed at 300 ms. 

Algorithms A2 and A4 of enhanced TCP enable it to mitigate these problems. Algorithm 
A2 enables enhanced TCP to minimise the packet losses by setting the cwnd and ssthresh 
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to the BDP of the new link. Algorithm A4 helps a rapid convergence of RTO to the RTT 
value of the new path. In Figure 18, we can see that there is up to 85 % reduction in the 
transfer time with enhanced TCP. Similar improvement can be observed with the handoff 
for 6400 Kbps links. 

Figure 20 Comparison of regular TCP (a) and enhanced TCP (b): make-before-break handoff at 
15.0s, between 1600Kbps links from 300ms to 1 ms 
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(a) (b) 

To understand the effect of a large decrease in BDP on regular TCP let us consider a 
specific example shown in Figure 20a. Here the handoff between 1600 Kbps links occurs 
at 15.0 seconds with the link delay changing from 300 ms to 1 ms, i.e., the link BDP 
decreases from 80 packets to one packet. There are 124 packets outstanding at the time of 
handoff. Many packets are lost due to the very low buffering capacity of the new link 
(approximately six packets). TCP fast retransmits the first unacknowledged packet at 
15.62 seconds. TCP is not able to recover all the lost packets with the fast recovery and 
an RTO recovery occurs at 17.08 seconds. The new value of ssthresh (61 packets) is still 
significantly larger than the buffering capacity of the new link. The TCP sender increases 
cwnd in slow start relatively fast beyond the capacity of the new link, resulting in several 
packet losses and another RTO recovery is triggered at 20.01 seconds. One more RTO 
recovery at 25.77 seconds is necessary to recover all the lost packets yielding very poor 
performance. On the other hand, we can see from Figure 20b that, immediately after the 
handoff, the enhanced TCP stops injecting more segments to the network as cwnd is 
reduced down to the BDP of the new link. This effectively avoids any congestion-related 
losses after the handoff. Once enough cumulative ACKs have arrived, the TCP sender 
continues transmitting new segments in congestion avoidance, resulting in an ordinary 
steady-state behaviour with an occasional packet drop and subsequent fast retransmit and 
cwnd reduction. 

For the break-before-make handoffs, we can see from Figure 18 that there is about 
35-50% reduction in transfer time except in the case of handoffs from a 300 ms link to 
links with delays of 150 ms and 75 ms. RTO recovery is essential to recover the lost 
packets in all the scenarios. When the BDP decrease is at least a factor of eight, setting 
the ssthresh to half the FlightSize again results in losses in the RTO recovery phase 
leading to a further RTO. By contrast, the algorithm A2 enables enhanced TCP to set the 
cwnd and ssthresh to the BDP of the new link avoiding the losses during the RTO 
recovery. However, for the handoffs to a 150 and 75 ms delay links, setting the ssthresh 
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to BDP of the new link underutilises the path slightly resulting in about a 10% increase in 
the transfer time for enhanced TCP. 

Figure 19 shows the transfer time for the make-before-break and break-before-make 
handoffs between 200 Kbps links. For the make-before-break handoffs the enhanced TCP 
reduces the transfer time by 15%. It is interesting to note that the upper quartile values of 
the transfer time for regular TCP is almost double that of the corresponding value for 
enhanced TCP. This high value is due to the reduction in sending rate by the occurrence 
of more than one RTO to recover the lost packets. The underutilisation of the link causes 
a slight increase in the transfer time for the enhanced TCP with break-before-make 
handoffs to moderately high delay links (150 ms, 75ms and 37 ms). Setting the ssthresh 
to the new link BDP is beneficial in handoffs to small delay links (18 ms, 9 ms and 1 ms). 
Enhanced TCP has a comparable median and upper quartile values whereas for regular 
TCP the upper quartile is about 25% larger than the median due to the occurrence of 
RTOs. 

6.2 Handoff between same Delay, different BW Links 

Figure 21 compares the time taken by regular TCP and enhanced TCP to transfer 100 
packets after a make-before-break handoff for 300 ms and 9 ms delay links. 

Figure 21 Handoff from a high bandwidth link to a low-bandwidth link with fixed delay  
 (9 ms, 300 ms) 

 

Note: Transfer time for 100 packets after a make-before-break (MBB) handoff between 
same delay links of 300 ms and 9 ms with varying new link bandwidth. The old 
link bandwidth is fixed at 6400 Kbps. 

For the 300 ms delay link with regular TCP, a make-before-break handoff from a  
high-bandwidth to a low-bandwidth link results in congestion-related packet losses. The 
enhanced TCP by applying algorithm A2 sets ssthresh and cwnd to the BDP of the new 
link to avoid packet losses due to congestion and this reduces the transfer time (median) 
by about 25–35%. The Figure 21 also shows that there is at least a 25% reduction in the 
upper quartile values of the transfer time for enhanced TCP. In the case of handoff 
between links 9 ms delay the slight reduction in transfer time (5%) is due to algorithm A1 
used in enhanced TCP to avoid spurious RTOs. 

With the break-before-make handoff between 300 ms delay links, enhanced TCP 
behaves similarly to regular TCP as the retransmission timer will not expire during the 
disconnection period of 500 ms. In the case of a break-before-make handoff between 9 
ms delay links, TCP will be in RTO recovery when the handoff notification arrives and 

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

    Employing cross-layer assisted TCP algorithms 459    
 

 
this causes enhanced TCP to invoke the algorithm A3 to immediately retransmit the first 
unacknowledged packet. As the BDP of the new link is small, the cwnd and ssthresh 
values are also small and restoring the cwnd and ssthresh values using the algorithm A3 
does not bring much performance improvement to enhanced TCP. 

Figure 22 compares the make-before-break and break-before-make handoff 
performances of regular and enhanced TCPs for the 9 ms delay links. The problem that 
TCP faces here is its inability to efficiently utilise the high-bandwidth available after a 
handoff. In the case of a make-before-break handoff from a low-bandwidth to a  
high-bandwidth link, there is no improvement in enhanced TCP performance as our 
algorithms are conservative in nature and do not attempt to blindly increase the cwnd in 
the absence of adequate information about the end-to-end path (Sarolahti et al., 2007b). It 
can be seen in Figure 22 that for break-before-make handoff between 9 ms links there is 
10–40% reduction in transfer time with enhanced TCP due to the algorithm A3. In the 
case of handoff from a 200 Kbps link to a 6400 Kbps link, the unused connection time is 
about 700 ms for regular TCP whereas for enhanced TCP avoids this delay by applying 
algorithm A3 and reduces the transfer time by 40%. For higher bandwidths, the reduction 
in transfer time for the enhanced TCP is only 10% as the unused connection time has the 
much smaller value of 100 ms. 

Figure 22 Handoff from a low-bandwidth link to a high-bandwidth link with fixed delay (9 ms)  

 

Note: Transfer time for 100 packets after a make-before-break (MBB) and a  
break-before-make (BBM) handoff between 9 ms links with varying old link 
bandwidth. The new link bandwidth is fixed at 6400 Kbps. 

6.3 Handoff between links of the same bandwidth-delay product (BDP) with 
different bandwidth and delay 

In this set of experiments we have two sets of fixed bandwidth/delay values namely, 200 
Kbps/300 ms and 6400 Kbps/9 ms. 

Figure 23a shows the time taken to transfer 100 packets after a make-before-break 
handoff from a high-bandwidth/low-delay link to a 200 Kbps/300 ms link. The problems 
arising in a make-before-break handoff are the occurrence of spurious RTOs and the 
packet losses due to the change in bandwidth. A couple of observations can be made 
here. Starting from the ratio of eight (between bandwidth and delay of the new link to 
that of the old link) enhanced TCP yields up to 45% reduction in transfer time (median). 
With the regular TCP spurious RTOs occur in almost all handoff points while enhanced 
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TCP avoids the spurious RTOs by using the algorithm A1 and reduces the packet losses 
by using the algorithm A2. Enhanced TCP behaves similarly to the regular TCP when the 
above ratio is less than eight. 

We observe that there are scenarios where the algorithm A2 is not invoked though it 
could be beneficial to apply it. If there is a significant reduction in bandwidth due to a 
make-before-break handoff, segment burst in the new link can cause packet losses even if 
the new link capacity is not reached when the handoff completes. Figure 24a and Figure 
24b present a comparison of regular TCP and enhanced TCP in one such scenario when a 
make-before-break handoff takes place from a 1600 Kbps/37 ms link to a 200 Kbps /300 
ms link at 8.9 seconds. The BDP of both the links is ten packets. Due to the increase in 
link delay after the handoff spurious RTO occurs at 9.1 seconds and the regular TCP 
retransmits the first unacknowledged segment. The late ACKs for the segments sent 
before the handoff, start arriving at 9.2 seconds triggering unnecessary retransmissions. 
As the late ACKs arrive back-to-back roughly at the line rate of the old high-bandwidth 
link, unnecessary retransmissions are triggered at a rate which far exceeds the capacity of 
the new link. Therefore the new link is congested soon and we can see from Figure 24a 
that many retransmissions are lost. The late ACKs for data segments (from sequence 
number 1109 onwards) that took the new path after the handoff start arriving at 9.6 
seconds triggering more new packets to be sent to the already congested new link. It is 
interesting to note that the new packets sent after the handoff are also dropped. As TCP is 
already in RTO recovery, the duplicate acknowledgements are not taken as an indication 
of a new instance of congestion (Allman et al., 1999) and regular TCP needs another 
RTO at 10.18 seconds to recover the lost packets. The recovery takes more time with the 
high-delay link and the performance of regular TCP is drastically affected. 

Figure 23 Handoff between same BDP links (from a high-bandwidth/low-delay link to a low-
 bandwidth/high-delay link), (a) transfer time and (b) dropped packets 

 
(a) (b) 

Note: Transfer time for 100 packets (a) and the number of dropped packets (a) after a 
make-before-break handoff between the same BDP links with varying bandwidth 
and delay of the old link and bandwidth and delay of the new link are fixed at 
200Kbps/300ms. 

We observe in Figure 24b that the enhanced TCP avoids spurious RTO in the same 
scenario but incurs the loss of the last new packets sent after the handoff even though 
these losses are fewer than the losses of regular TCP. The late ACKs for the segments 
sent before the handoff start arriving back-to-back at 9.2 seconds roughly at the line rate 
of the old high-bandwidth link triggering 16 new packets which congest the new link. 

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

    Employing cross-layer assisted TCP algorithms 461    
 

 
This is because the algorithm A2 is not at all invoked as the FlightSize is less than twice 
the BDP of the new link and so there is no consequent window reduction. A fast 
retransmit at 10.7 seconds is needed to recover these losses. The algorithm A5 given in 
Figure 25 is a modification of the algorithm A2 to make it effective when there is 
significant reduction in bandwidth due to a handoff. As we have noted earlier for make-
before-break handoffs between same BDP links that the regular TCP performance 
becomes poor when the bandwidth and delay change by a factor of 8 or more. So in 
algorithm A5, if the bandwidth of the old link is at least 8 times the bandwidth of the new 
link, algorithm A5 sets the cwnd and ssthresh to the BDP of the new link when the 
FlightSize is greater than 1.5 times the BDP of the new link. Otherwise, as in algorithm 
A2, the cwnd and ssthresh is set to the BDP of the new link when the FlightSize is greater 
than two times the BDP of the new link. 

Figure 24 Comparison of regular TCP (a), enhanced TCP with algorithm A2 (b), and enhanced 
TCP with algorithm A5 (c): make-before-break handoff at 8.9s from a 1600Kbps/37ms 
link to a 200Kbps/300ms link 

 
(a) (b) (c) 

Figure 24c shows the effectiveness of algorithm A5. The window is reduced to the BDP 
of the new link as the ratio of decrease in bandwidth is eight even though the FlightSize is 
smaller than twice the BDP of the link. We can see that there are no packet losses 
incurred with enhanced TCP when using the algorithm A5. Figure 23a shows the transfer 
time taken by the regular TCP and the two versions of the enhanced TCP. The slight 
reduction in transfer time for the enhanced TCP using the algorithm A5 is due to 
elimination of packet losses as shown in Figure 23. 

Figure 25 A5: Modified algorithm to reduce congestion related packet losses 
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Figure 26 shows the time taken to transfer 100 packets after a break-before-make handoff 
from varying bandwidth/delay links to a 200 kbps/300 ms link. We can see that 
immediate retransmission after a break-before-make handoff is beneficial with old link 
delay of 75 ms or less as in these cases the retransmission timer has already expired when 
the handoff notification arrives. In this case enhanced TCP retransmits the first 
unacknowledged packet immediately and restores the ssthresh value as in algorithm A2. 
Enhanced TCP behaves similarly to the regular TCP when the difference in the old and 
new link delays is small. 

When the old link bandwidth/delay is fixed at 6400 Kbps/9 ms we observe that with a 
make-before-break handoff enhanced TCP performs better as it is able to avoid spurious 
RTOs with the increase in delay of the new link. In the break-before-make handoff, 
immediate retransmission improves the performance of enhanced TCP. 

Figure 26 Handoff between same BDP links (from a high-bandwidth/low-delay link to a  
low-bandwidth/high-delay link) 

 

Note: Transfer time for 100 packets after a break-before-make handoff between the same 
BDP links with varying bandwidth and delay of the old link and the bandwidth and 
delay of the new link are fixed at 200Kbps/300ms. The disconnection period is  
500 ms. 

In one set of experiments we fix the bandwidth and delay of the old link to 200 Kbps /300 
ms and the bandwidth and delay of the new link is varied. The main problems that TCP 
faces with a make-before-break handoff in this scenario are packet reordering and the 
inability to utilise the high bandwidth available after a handoff. Packet reordering in 
vertical handoff scenarios is a problem in its own right and we are not addressing it in the 
present study. Sarolahti et al. (2006) describes how Quick-Start can be used to effectively 
utilise the high bandwidth available after a handoff. 

In the case of break-before-make handoff the retransmission timer is not likely to 
expire during the disconnection period of 500 ms and enhanced TCP behaves similarly to 
regular TCP. Figure 27 compares the make-before-break and break-before-make handoff 
performances of regular and enhanced TCPs when handoff occurs from a  
low-bandwidth/high-delay link to 6400 Kbps/9 ms link. We can see in Figure 27 that the 
regular TCP is unable to utilise the high bandwidth available after a make-before-break 
handoff. In break-before-make handoff with a disconnection period of 500 ms, TCP is in 
timeout recovery when the handoff notification arrives when the delay of the old link is 
less than 150 ms and enhanced TCP yields better performance by using algorithm A2. 
Figure 27 shows 20–45% reduction in transfer time with enhanced TCP when the delay 
of the old link is smaller than 150 ms. For the handoff from 300 ms delay link and  
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150 ms delay link, the retransmission timer may not expire during the disconnection 
period and enhanced TCP behaves similarly to regular TCP as the algorithm A3 will not 
be invoked. 

Figure 27 Handoff between same BDP links (from a low-bandwidth/high-delay link to a  
 high-bandwidth/low-delay link) 

 

Note: Transfer time for 100 packets after a make-before-break (MBB) and  
break-before-make (BBM) handoff for the same BDP links with varying bandwidth 
and delay of the old link and the bandwidth and delay of the new link are fixed at 
6400 Kbps/9ms. 

7 Conclusions and future works 

In this paper we give a detailed study of the behaviour of TCP in the presence of vertical 
handoff and identify the problems of TCP in various vertical handoff scenarios. We then 
propose enhancements to the TCP sender algorithm to improve TCP performance in the 
presence of vertical handoffs. These algorithms are assisted with explicit cross-layer 
notifications indicating the changes in the access link characteristics. We group the 
changes due to the vertical handoff as arising from changes in delay, bandwidth and 
connectivity and propose enhancements to adapt TCP to various handoff scenarios. Our 
algorithms effectively address the problems arising from spurious RTOs, packet losses, 
prolonged disconnection and slow convergence to the new RTO value in a vertical 
handoff, yielding significant TCP performance improvement. 

The study on the effect of vertical handoff on TCP and the algorithms proposed in 
this paper are based on our experiments with a single TCP flow. In the presence of 
multiple flows our proposed algorithms might not give expected performance 
improvements in all scenarios. Therefore, we would like to study how our proposed 
algorithms enable TCP to cope with a vertical handoff and tune these algorithms when 
necessary to get a better performance. We would like to study how to combine the link 
information in the explicit notifications with the information gathered through TCP 
probing the new network path and thereby trying to converge faster but safely to the new 
end-to-end RTT and available network capacity. Further it would be of interest to 
evaluate the algorithms in the setting of real networks. 
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Abstract

In this paper we propose an enhancement to the TCP
sender algorithm to combat packet reordering that may oc-
cur due to a vertical handoff from a slow to a fast access
link. The proposed algorithm employs cross-layer notifica-
tions regarding the changes in the access link characteris-
tics. Our algorithm avoids unnecessary retransmissions by
dynamically changing the dupthresh value according to the
bandwidth and delay of the old and new access links in-
volved in the handoff. In addition it uses DSACK informa-
tion to infer that there are no congestion-related losses and
selects proper values for cwnd and ssthresh after the hand-
off. Simulation results show that the unnecessary retrans-
missions caused by packet reordering in a vertical handoff
can be effectively minimized over a wide range of bandwidth
and delay ratios of the access links. In addition, our algo-
rithm is effective in reducing the congestion-related packet
losses due to a decrease in bandwidth-delay product (BDP)
after a handoff.

1. Introduction

Packet reordering is not an uncommon phenomenon in
the Internet [3]. The main reasons for the occurrence
of packet reordering are local parallelism in high-speed
routers, differentiated services, link layer retransmissions
in wireless links and multi-path forwarding [22]. Multi-
path forwarding may take place in some wireless overlay
networks when a mobile node (MN) switches between dif-
ferent access technologies.

With the proliferation of wireless access technologies to
the Internet, MNs equipped with multiple radio interfaces
(for example, WLAN and GPRS/UMTS) are increasingly
common. During the lifetime of a connection, an MN may
switch among different access networks to have the best
of connectivity, services quality, application needs and/or
user preferences. Vertical handoff refers to the switching
between the access points based on different link layer tech-

nologies [15]. The bandwidth and latency of the access
links involved in a vertical handoff may differ by an or-
der of magnitude. For example, in a handoff from GPRS
to WLAN, the effective bandwidth typically increases from
200 Kbps to 5 Mbps (a maximum of 55 Mbps) while the la-
tency decreases from 300 ms to less than 10 ms. In a make-
before-break handoff [15], the connection to the old access
router is broken only after the new connection is operational
and for a while the packets can traverse both the paths.
The differences in bandwidth and RTT of these paths may
lead to packet reordering. In a break-before-make handoff
packet reordering is not common as the connection to the
old access router is broken before the connection to the new
access router is made.

Packet reordering may have adverse effects on TCP.
TCP relies on duplicate acknowledgements (dupacks) and
retransmission timeouts (RTOs) to detect a packet loss.
When a number of dupacks equal to a preset value (called
dupthresh, usually 3) arrive at the TCP sender, TCP as-
sumes that a packet loss has occurred, triggers the fast re-
transmit algorithm to retransmit the first unacknowledged
segment, reduces the congestion window (cwnd) and slow-
start threshold (ssthresh) and continues in fast recovery [2].
If the dupacks have been generated due to packet reorder-
ing, such false fastretransmit and the consequent reduction
in sending rate degrades TCP performance [5, 22].

Several measures have been proposed to avoid the prob-
lem of packet reordering [5, 22, 4]. In all these schemes,
dupthresh value is increased which enables TCP to avoid
taking congestion control measures to a certain degree when
reordering occurs but it increases the recovery time for
dropped packets as timely action for packet losses cannot be
taken. If TCP does not receive enough dupacks, e.g., due to
small window size when a packet loss occurs, the TCP fast
retransmit algorithm will not be invoked which results in a
retransmission timeout that drastically reduces the through-
put. The nodupack scheme proposed in [10] to combat the
problem of packet reordering due to a vertical handoff sup-
presses the transmission of dupacks during a handoff and
it may need timeout recovery in case of packet losses. So
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there is a tradeoff between timely detection of packet loss
and making TCP robust to packet reordering.

Various techniques to increase the dupthresh values to
avoid the triggering of the fast retransmit algorithm have
been proposed in [5]. These techniques use a variant of
the Limited Transmit algorithm [1] to preserve the ACK-
clocking by sending new data for every second dupack. Re-
ordering Robust-TCP (RR-TCP) proposed in [22] uses the
DSACK [9] information to vary the dupthresh value adap-
tively for triggering the fast retransmit algorithm. It pro-
poses several algorithms for avoiding the false retransmits
proactively. TCP-NCR [4] roughly increase the dupthresh
value based on the congestion window of data. TCP-NCR
also extends TCP’s Limited Transmit algorithm to allow the
sending of new data during the period when the TCP sender
is engaged in distinguishing between loss and reordering.
TCP-NCR and TCP-RR try to avoid triggering false fastre-
transmits due to packet reordering, but these schemes do not
take into account of the characteristics of the new link after
a vertical handoff. This may lead to either underutilization
of the new path or packet losses if the capacity of the new
path is smaller. The algorithm we propose in this paper also
tries to adapt to the characteristics of the new path after a
vertical handoff.

Eifel [14] is designed to detect and avoid unnecessary re-
transmissions and also to undo congestion control measures
already taken. If the bottleneck link bandwidth-delay prod-
uct (BDP) of the new path after a vertical handoff is smaller
than that of the old path, restoring the congestion window
is likely to result in congestion on the new bottleneck link.
According to [6], the congestion control measures that have
been taken already should be undone only if all retransmit-
ted packets in a particular window have been retransmitted
unnecessarily. In a vertical handoff, as the path characteris-
tics may change after the handoff, the TCP sender may have
to wait for a very long time to confirm that all the retrans-
missions in a particular window were unnecessary. So in
vertical handoff scenarios, to undo the congestion control
measures already taken, the TCP sender needs additional
information about the new path as there can be a significant
change in the delay and the bandwidth of the paths involved
in a handoff.

Estimating the changes in the end-to-end path proper-
ties after a vertical handoff is difficult as well as time con-
suming. If the TCP sender is explicitly notified about the
changes in the access link properties such as bandwidth and
delay due to a vertical handoff it can infer the possibility
of packet reordering and defer from invoking the fast re-
transmit algorithm even when three dupacks arrive. The
TCP layer on an MN can be locally informed of the changes
in the attached access link characteristics by using a cross-
layer notification. As the TCP layer at the other end of the
connection, at the correspondent node (CN), is not aware

of such changes, the introduction of an explicit end-to-end
notification will help TCP to adapt to the changes due to a
vertical handoff [20, 7, 19, 8, 12, 13].

This paper reports a follow-up work on the research pre-
sented in our earlier papers [7, 8]. In those papers we de-
scribed the various problems arising from a vertical hand-
off including packet reordering and proposed algorithms to
mitigate the effect of some of these problems such as spu-
rious RTOs, congestion-related packet losses, fast conver-
gence to the new RTT and unused connection time. How-
ever, combating the effect of packet reordering was left for
future work. In this paper we propose a solution to the prob-
lem of packet reordering due to a vertical handoff by intro-
ducing an enhancement to the TCP sender algorithm which
makes use of the cross-layer notifications about the band-
width and delay of the access links involved in a handoff.
The resulting TCP adaptively determines a dupthresh based
on the bandwidth and delay of the old and the new links.
After a vertical handoff, it sets the cwnd and ssthresh based
on the access link parameters and DSACK information. Ex-
perimental results show that our enhanced TCP algorithm is
able to adapt to a vertical handoff by minimizing the unnec-
essary retransmissions.

The rest of the paper is organized as follows. In Section
2 we describe the problem of packet reordering arising from
a vertical handoff. In Section 3 we present the algorithm to
mitigate the effects of packet reordering. In Section 4 we
evaluate the performance of the proposed TCP algorithm in
various vertical handoff scenarios. In Section 5 we present
the conclusions of this study.

2. Packet reordering due to vertical handoff

Packet reordering may occur when a make-before-break
handoff occurs from a slow access link to a fast access
link [10, 7]. During a make-before-break handoff, an MN
can receive packets through the old link as well as through
the new link. The sequence numbers of the packets arriv-
ing through the new link are greater than the expected se-
quence number as the packets with high sequence numbers
sent after the handoff through the fast new link arrive at the
TCP receiver earlier than the packets sent before the hand-
off through the slow old link. As a consequence of this re-
ordering, the TCP receiver sends dupacks over the new link.
When the TCP sender gets three dupacks, it triggers fast re-
transmit and fast recovery algorithms, and as a result the
cwnd and the ssthresh are reduced. As the dupacks arrive
not due to packet loss but due to reordering, the retransmis-
sions are unnecessary. The cwnd reduction is undesirable
unless the BDP of the new path is smaller than that of the
old path.

We study the effect of reordering due to a vertical hand-
off using ns-2 [17] simulations. The baseline TCP for our
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Figure 1: Comparison of regular TCP and enhanced TCP: make-before-break handoff at 12 sec from a 200 Kbps/300 ms link
to a 800 Kbps/75 ms link.
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Figure 2: Comparison of regular TCP and enhanced TCP: make-before-break handoff at 20 sec from a 200 Kbps/300 ms link
to a 1600 Kbps/37 ms link.

study is the TCP-Sack1 algorithm in ns-2 and we refer to it
as regular TCP. We now describe the behaviour of regular
TCP for two packet reordering scenarios where the ratio of
the delays (or bandwidths) of the old and the new links are
such that the arrival pattern of dupacks differ. The BDP of
the links involved in a handoff is kept constant in order to
isolate the effect of reordering.

Consider a handoff from a 200 Kbps/300 ms link to a
800 Kbps/75 ms link, the ratio of the link delays is 4 and
the two links have the same BDP of 10 packets. An in-
teresting behaviour of regular TCP is shown in Figure 1a.
A handoff occurs at 12.00 sec, and 8 out-of-order packets
are received but they are not consecutive as the packets sent
before handoff through the old link arrive at the receiver in-
between. As the first two groups of dupacks consist of only
two of them, the fast retransmit is triggered only by the third
dupacks group at 12.40 sec. The last packet through the
old link arrives earlier than the retransmissions through the

new link and the fast recovery completes at 12.65 sec. The
unnecessary retransmissions through the new link gener-
ate dupacks and TCP invokes fast retransmit unnecessarily
again at 12.75 sec. Thus TCP reduces the cwnd twice which
brings down the sending rate. While the reordering and TCP
entering fast retransmit are observed to occur nearly at all
handoff points, the behaviour described above where TCP
subsequently goes into fast retransmit is observed in 20 %
of the handoff points.

Figure 2a shows a time-sequence graph for a handoff
from a 200 Kbps/300 ms link to a 1600 Kbps/37 ms link.
In scenario of the Figure 2a the handoff occurs at 20.00 sec
and the last packet sent before handoff arrives at the receiver
at about 900 ms after the handoff. All forward progress of
the flow happens over the new link starting from a reordered
ACK at 20.07 sec. Then six packets are received out of or-
der and their dupacks trigger fast retransmit at 20.19 sec. 12
packets are unnecessarily retransmitted.
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We observe that as the ratio of the link delays increases,
the fast retransmit algorithm is triggered immediately after
a handoff and the number of unnecessary retransmissions
increases. Our algorithm described in Section 3 minimizes
these unnecessary retransmissions.

3. The proposed algorithm

As the end-to-end path characteristics of a TCP con-
nection over a fixed Internet can be assumed to be rela-
tively stable over the lifetime of the connection, we regard
the changes in the path characteristics as arising from the
changes in the access link characteristics due to a vertical
handoff. We calculate a set of parameters from the access
link characteristics. These parameters are taken as a rough
estimate of the link characteristics and the algorithm makes
a conservative use of these values in order to ensure that the
lack of accuracy in determining these parameters does not
make the algorithm aggressive.

Cross-layer notifications have been shown to be benefi-
cial to TCP when path characteristics change widely due to
a vertical handoff [20, 19, 7, 8, 21]. Many evaluations have
been made on how to deliver the link characteristics infor-
mation [20, 12, 13, 18, 21]. In essence, the TCP layer at
the MN can be locally notified of the changes in the local
link characteristics during a vertical handoff. This informa-
tion can be sent to the TCP layer at the CN as a TCP option
or along with the mobility registration message such as the
binding update message in Mobile IPv6 [11] to be further
forwarded to the TCP layer. A TCP sender can interpret
the notification from the lower layers as a hint about the
characteristics of the end-to-end path and adjust the con-
gestion control parameters and RTO estimate so as to adapt
to the new path in an efficient and timely manner. But even
though a very conservative TCP approach is selected like
with the Response Connectivity Change Indication (RLCI)
mechanism [21] which forces TCP to slow-start if the new
network path is unknown, unnecessary retransmissions may
occur in the case of make-before-break handoffs.

In this work we model that the MN can deliver the hand-
off notification piggybacked in the mobility signalling mes-
sages so that it can be delivered to the TCP layer at the CN
exactly when the handoff completes. Along with the cross-
layer notification regarding the handoff, the TCP sender
gets the information regarding the bandwidth and delay of
the old and the new access links. The enhancements pro-
posed here are TCP sender-specific and are invoked only
upon the arrival of the handoff notification. So in the ab-
sence of the handoff notification, we get the performance of
the regular TCP.

The enhancement to the TCP sender algorithm (with
SACK [16] option enabled) to minimize the unnecessary
retransmissions due to packet reordering in a vertical

When handoff notification arrives with the
information regarding the old and the new access links

// Congestion possible due to bandwidth/BDP decrease?
If (FlightSize > 2 · BDPnewlink)

Set cwnd reduction to 1
If ((cwnd reduction = 1) AND

(BDPoldlink > BDPnewlink) AND
(BWnewlink < 8 · BWoldlink))

Set cwnd and ssthresh to max(2, BDPnewlink)
If (TCP is not already in Loss recovery)

// False fast retransmit possible due to reordering?
If ((BWnewlink > 3 · BWoldlink) AND

(cwnd reduction = 0))
set reordering flag to 1
dupthresh = max(BWnewlink

BWoldlink
, 3)

In Fast retransmit:
Retransmit the first unACKed segment
If (reordering flag = 1)

Save cwnd in cwnd prev
In Fast Recovery:

If (reordering flag = 1)
Send a new segment for every dupack
If (# of dupacks > dupthresh)

Set return fastrecovery to 1
Return to the normal fast recovery

On the arrival of a new ACK indicating that
all packets sent before handoff are ACKed:

Reset cwnd reduction
If ((DSACK indicates that the retransmission

after the handoff was unnecessary) AND
(return fastrecovery = 0) AND
(cwnd < min(cwnd prev, BDPnewlink))

Set cwnd to min(cwnd prev, BDPnewlink)
Set ssthresh to max(cwnd prev, BDPnewlink)

Reset reordering flag, return fastrecovery
Reset dupthresh to 3
If (there is a significant change in delay)

Update the RTT variables

Figure 3: Algorithm to minimize the unnecessary retrans-
missions due to packet reordering in a vertical handoff

handoff is given in Figure 3. The parameters used in the
proposed algorithm such as BDP of an access link and the
RTT of the data segment-ACK pair traversing an access
link are calculated as follows:
BDP<link>= BW<link> · RTT<link>

RTT<link> = 2 · D<link> + SDpkt<link> + SDack<link>

where
SDpkt<link> - Data packet serialization delay on the access link
SDack<link>- Serialization delay of ACK on the access link
D<link> - Propagation delay of the access link
BW<link> - Bandwidth of the access link
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The enhanced TCP algorithm is invoked when a handoff
notification arrives with the information regarding the
old and the new access links. The algorithm is executed
only if there is no imminent congestion in the new path.
At the time of a handoff, if the FlightSize is greater than
the buffering capacity of the new link, packet losses due
to congestion may occur after the handoff. Therefore
we check whether the FlightSize exceeds the estimated
buffering capacity of the new link. We assume that the
router queue size in front of the access link equals the BDP
of the link so that the link has a total buffering capacity
of twice the link BDP. If there is congestion, we set the
flag cwnd reduction, and modify cwnd and ssthresh as
follows. The cwnd and ssthresh are set to BDPnewlink if
the BDP of the old link is greater than the BDP of the new
link and the new link bandwidth is less than 8 times the
old link bandwidth; otherwise cwnd and ssthresh remain
unchanged. We observe from our experiments that if the
new link bandwidth is greater than 8 times the old link
bandwidth, the TCP sender is able to recover packet losses
due to decrease in BDP using fast recovery. Reducing the
cwnd in this scenario will reduce the sending rate thereby
adversely affecting the performance of TCP. Any procedure
related to DSACK detection and change of dupthresh is
invoked only if there is no congestion in the new link at the
time of handoff.

The enhanced algorithm makes use of the cross-layer in-
formation to determine whether reordering due to the hand-
off can lead to a false fast retransmit. If the ratio of the new
bottleneck link bandwidth to the old bottleneck link band-
width is greater than the dupthresh, enough dupacks may
be generated to trigger a false fast retransmit. If this condi-
tion arises, the algorithm sets a flag called reordering-flag
and max(BWnewlink

BWoldlink
, 3) is set as the dupthresh. In fast re-

transmit, if the reordering-flag is set, TCP retransmits the
first unacknowledged segment and saves the cwnd in a vari-
able cwnd prev. For every dupack which arrives in fast re-
covery, TCP sends a new segment to keep the ACK-clock
running until one of the following events occurs: (1) If the
total number of dupacks exceeds the dupthresh, TCP goes
back to fast recovery and sets the flag return fastrecovery,
(2) If all the packets sent before handoff have been acknowl-
edged, TCP resets the dupthresh back to the normal value
of 3. If the segment retransmitted after the handoff is iden-
tified as unnecessary by the DSACK information, and TCP
has not returned to fast recovery, the algorithm infers that
the dupacks are generated by packet reordering and are not
due to congestion and calculates the new cwnd and ssthresh
values. If the current cwnd is less than both cwnd prev
and BDPnewlink , then TCP sets cwnd to the smaller of the
cwnd prev and the BDPnewlink and ssthresh to the larger
value so that TCP can slow start to find the new path char-
acteristics.

The main advantages of our algorithm are (1) it is con-
servative in that it will not restore the cwnd and ssthresh
if congestion exists in the network path, (2) it utilizes the
new path partially while waiting for the packets to arrive
through the old path, and (3) it effectively uses the DSACK
information to set the cwnd and ssthresh of the new path.

4. Simulation results

In this set of experiments, we consider the vertical
handoff scenarios where packet reordering occurs, i.e., the
handoffs from a low-bandwidth/high-delay link to a high-
bandwidth/low-delay link. In order to study the effect of
the change in BDP after a handoff, we categorize our exper-
iments into the following three classes: (1) handoff between
same BDP links, (2) handoff from a high BDP to a low BDP
link, and (3) handoff from a low BDP to a high BDP link.

The simulation environment is the same as that described
in our earlier paper [8]. We consider a single TCP flow
from the CN to the MN. The TCP packet size is 1500 bytes
with the TCP/IP headers included. In our experiments a 20-
second interval is chosen to cover all the phases of a TCP
connection and a handoff can occur uniformly in any of the
200 points at 100 ms intervals. The duration of each test run
includes the completion of the handoff occurring in the 20-
second interval. No link errors are modelled as we assume
that the packet losses are due to congestion. This choice is
justified as the present study is devoted to the effect of ver-
tical handoff on TCP. In this set of experiments, the hand-
off occurs from a low-bandwidth/high-delay link to a high-
bandwidth/low-delay link. The old link bandwidth/delay is
fixed at 200 Kbps/300 ms and the new link bandwidth/delay
is varied.

To study the behaviour of TCP with vertical handoff we
focus on how TCP behaves immediately after the hand-
off. As a performance index, we calculate the time taken
to transfer (to get the acknowledgment) ’n’ new data pack-
ets after a handoff through the new path where n varies from
50 to 200. We report the results only for the case where n is
100 as the results obtained are similar for all values of n.

4.1. Handoff between same BDP links

In this set of experiments the old link bandwidth/delay is
fixed at 200 Kbps/300 ms and the new link bandwidth/delay
is varied between 400 Kbps/150 ms and 6400 Kbps/9 ms
as shown in Figure 4a. With regular TCP we observe that
packet reordering due to a handoff from a high-delay link to
a low-delay link triggers false fast retransmits in more than
80 % of the handoff points except in the case of a handoff
to the 400 Kbps/150 ms link in which not enough dupacks
are generated. As a result many packets are retransmitted
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unnecessarily and cwnd and ssthresh are reduced. The cor-
responding results for enhanced TCP show that unnecessary
retransmissions are avoided.

Figure 1 compares the behaviour of regular TCP and en-
hanced TCP for a handoff at 12 sec from 200 Kbps/300 ms
to 800 Kbps/75 ms link. We can see that as enhanced TCP
retransmits only the first unacknowledged segment, the fast
retransmit triggered by the unnecessary retransmissions is
avoided and enhanced TCP is able to send more packets
than regular TCP which accounts for its slightly better (10
%) performance.

Figure 2 shows the behaviour of regular TCP and en-
hanced TCP when the handoff occurs at 20 sec from a 200
Kbps/300 ms link to a 1600 Kbps/37 ms link. Even though
the time taken for both regular and enhanced TCP to send
100 packets is almost the same, enhanced TCP avoids un-
necessary retransmissions and window reduction.

As the ratio of the delay of the old and new link increases
(handoff to 6400 Kbps/9ms link) regular TCP is able to send
more packets through the new fast link even though there
are unnecessary retransmissions and window reduction. En-
hanced TCP waits for all the packets through the old slow
link to arrive and does not fully utilize the capacity of the
new link even though it is transmitting one packet per du-
pack which results in poor performance (20 %). In such sit-
uations where the new link has a significantly higher band-
width and lower delay than the old link, we have to examine
whether it is preferable to wait for the packets through the
old link so that we can avoid unnecessary retransmissions
and cwnd reduction or to utilize the available capacity of
the high-bandwidth link although a part of the capacity is
wasted in unnecessary retransmissions.

4.2. Handoff from a high BDP link to a low
BDP link

In this set of experiments the new link BDP is five pack-
ets half that of the old link. When there is a BDP decrease
after a handoff our algorithm to mitigate the effect of packet
reordering is not invoked as the fast retransmit algorithm
may be triggered due to packet losses caused by BDP de-
crease. We can see in Figure 4b that in all handoff scenarios
except the case of the handoff to a 400 Kbps/75 ms link
enhanced TCP behaves similar to regular TCP. In the case
of a handoff to a 400 Kbps/75 ms link, regular TCP needs
RTO recovery to recover the lost packets due to BDP change
whereas with enhanced TCP the packet losses are kept to a
minimum as we set the cwnd to the BDP of the new link,
yielding about 20 % reduction in transfer time. For the
handoff to 800 Kbps/37 ms link, setting the cwnd to the
BDP of the new link, reduces the packet losses but the re-
duction in sending rate nullifies the improvement achieved.
For the handoffs to 1600Kbps/ 18 ms link, 3200Kbps/9 ms

link and 6400 Kbps/ 4 ms link as our algorithm is not at all
invoked the behaviour is similar to regular TCP.

4.3. Handoff from a low BDP link to a high
BDP link

In this set of experiments the new link BDP is 20 packets,
double that of the old link. As can be seen in the Figure 4c,
the proposed algorithm is effective (up to 30 % reduction
in transfer time) with the increase in BDP after a handoff.
Our algorithm is not invoked in the handoff to 400 Kbps/
300 ms link as there is no scenario leading to a false fast
retransmit. In the case of handoff to 800Kbps/ 150 ms link,
regular TCP suffers from multiple fast retransmits similar
to the case described in Figure 1a resulting in high variation
in the quartile values, whereas enhanced TCP yields a 38 %
reduction in transfer time. For the cases of handoff to 3200
Kbps/37 ms and 6400 Kbps/ 18 ms links, enhanced TCP
avoids unnecessary retransmissions even though the trans-
fer time is comparable with that of regular TCP. In general,
avoiding the unnecessary retransmissions as well as win-
dow reduction and slow starting to the new BDP makes the
enhanced TCP perform better than regular TCP.

5. Conclusions and future work

In this paper we have proposed an enhancement to the
TCP sender algorithm which makes use of the cross-layer
notifications to avoid the problems of TCP due to packet
reordering in a make-before-break vertical handoff. Simu-
lation results presented in the paper show the effectiveness
of the algorithm when the bandwidth(or delay) ratio of the
access links varies over a wide range. Further study is re-
quired to see when it is preferable to utilize the high capac-
ity link available after a handoff instead of taking measures
to avoid unnecessary retransmissions.

As it is difficult as well as unreliable to obtain the ex-
act bandwidth and delay of the access links, we have used
the link characteristics available from the MN as hints or
bounds for setting the initial values of the TCP congestion
control parameters. We need to study how the information
obtained by probing the end-to-end path characteristics can
be integrated with the cross-layer notification for a faster
convergence of TCP parameters after a vertical handoff.

The study on the effect of vertical handoff on TCP and
the algorithm proposed are based on our experiments with
a single TCP flow. In the presence of multiple flows, the
algorithms are likely to require further enhancements. In
addition to the experimentation of the algorithm with multi-
ple flows we intend to evaluate the algorithm in real network
environments.
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Figure 4: Transfer time for 100 packets after a make-before-break handoff (a) to a same BDP link (b) to a low BDP link
(c) to a high BDP link with varying bandwidth/delay of the new link while the old link is fixed at 200Kbps/300ms (200
repetitions). The x-axis shows the link parameters and the y-axis shows the lower quartile, median, and upper quartile of the
time (in seconds) to transfer 100 new packets after the handoff.
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ABSTRACT
The performance of an individual TCP flow with a vertical handoff
has been studied in several papers. However, the effect of a vertical
handoff on multiple TCP flows has been little studied. In this pa-
per we study the behaviour of multiple competing TCP flows with
a vertical handoff. As a part of this study we evaluate the cross-
layer assisted TCP enhancements for a vertical handoff that we had
earlier proposed and analyzed for a single TCP flow. We show
that our algorithms can be adapted for multiple TCP flows with mi-
nor modifications and that they are effective in improving multiple
flow-TCP performance in the presence of a vertical handoff.

Categories and Subject Descriptors
C.2.1 [N]: etwork Architecture and Design; C.2.2 [N]: etwork Pro-
tocols; C.4 [P]: erformance of Systems

General Terms
Performance, Algorithms

Keywords
Vertical Handoff, TCP, Wireless Access Networks, Cross-layer no-
tifications

1. INTRODUCTION
The problem of Transmission Control Protocol (TCP) [25] be-

haviour in the presence of vertical handoffs [22] has grown in sig-
nificance with the proliferation of wireless access networks to con-
nect to the Internet and has been an active research area in recent
years [8, 9, 12–15, 26, 31]. These studies have shown that the po-
tentially significant differences in the bandwidth and/or delay of
the two access links involved in a vertical handoff can affect TCP
performance. The major problems of TCP due to a vertical hand-
off are the unnecessary retransmissions and congestion window
(cwnd) reduction due to spurious RTOs and packet reordering as
well as packet losses due to abrupt changes in the link capacity
and link disconnection. Several cross-layer assisted enhancements
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have been proposed in the literature to mitigate these problems and
to improve TCP performance [7–9, 12–15, 18–20, 26, 29, 30, 32].
These studies have focused on the effect of handoff on a single
TCP flow. However, the effect of competing TCP flows has not
been taken into account in evaluating the various proposed solu-
tions. As multiple parallel TCP flows tend to affect TCP behaviour
in general and more so in a vertical handoff, the resulting change
in TCP behaviour has to be studied and taken into account in the
proposed solutions. Such an approach in evaluating the adaptations
of TCP algorithms in a dynamic environment has been suggested
previously in [2] as a step closer to real-world networks.

In this paper we first study how TCP performance is affected by
a vertical handoff when multiple TCP flows are present and then
describe how the cross-layer assisted TCP enhancements for verti-
cal handoff that we had proposed earlier for a single TCP flow [6,9]
can be easily adapted for the case of multiple TCP flows. We show
that with the inclusion of the number of simultaneous TCP flows in
the cross-layer information, we can easily modify our earlier algo-
rithms to adapt to multiple flow scenarios.

The rest of the paper is organized as follows. Section 2 gives
a overview of the related research work on methods to improve
TCP performance with a vertical handoff. Section 3 describes our
algorithms to adapt TCP to a vertical handoff when multiple TCP
flows are present. Section 4 describes the results of the simulation
experiments to evaluate these algorithms. Section 5 presents the
conclusions of the study.

2. RELATED WORK
We present an overview of the research dealing with the prob-

lems of TCP in the presence of vertical handoffs. The solutions
proposed in these papers are in the context of a single TCP flow. To
the best of our knowledge the behaviour of multiple TCP flows in
a vertical handoff has not been described explicitly in the research
literature. We categorize the related work based on the problems of
vertical handoff they try to solve.

To avoid the problem of spurious retransmission timeouts (RTOs)
that may occur due to a vertical handoff, [19] suggests that upon
receiving a handoff notification, a TCP receiver should send the ac-
knowledgement for a received packet through both the old and new
interfaces and also reset the RTO value to 3 seconds. The use of
ICMP messages to calculate the new RTO value after a handoff has
been proposed in [26] as a solution to the spurious RTO problem.
The TCP-Eifel detection algorithm [21] uses the TCP timestamps
option [5] to detect spurious RTOs. Forward-Retransmission Time-
out (F-RTO) algorithm [28] is a TCP sender-only algorithm that
helps to detect spurious RTOs.

Setting the cwnd appropriately after a handoff is crucial both in
avoiding the congestion-related losses due to a handoff to a lower
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bandwidth-delay product (BDP) link as well as in effectively uti-
lizing the higher BDP of a new link after a handoff. Slow-starting
to find the new cwnd value after a handoff is proposed in [18]. The
use of the Quick-Start algorithm [27] to find the correct sending
rate with the help of routers is proposed in [29]. In the propos-
als [20, 32] the BDP of the end-to-end path after a handoff is cal-
culated as the product of the bottleneck link capacity estimated us-
ing the packet-pair algorithm [17] and the round-trip time (RTT)
and then the cwnd and slow-start threshold (ssthresh) are set to
this BDP value. An explicit cwnd reduction trigger from the mo-
bile node which signals the difference between the BDP values of
the old and new link is proposed in [14]. BDP probing, proposed
in [19], is a technique which initially sends two back-to-back pack-
ets just after a handoff to estimate the capacity of the bottleneck
link and then sends the data packets at the rate of the estimated
capacity to find the available bandwidth. A receiver-based mech-
anism proposed in [12] addresses the problem of abrupt change in
link capacity due to a vertical handoff. When an impending handoff
is detected, the TCP receiver sends the receiver advertised window
(rwnd) based on the BDP of the new network and this rwnd will be
effective once the mobility registration is complete. Overbuffering
is suggested in [13] to reduce the effects of BDP change due to a
handoff.

To mitigate the problems arising from packet reordering due to a
vertical handoff, a nodupack scheme is proposed in [14] and it sup-
presses the transmission of dupacks during a handoff. However,
this may delay the loss recovery if the reordering occurs due to a
handoff. An RTT-equalization scheme is proposed in [26] which
sends the acknowledgements for the packets received from the fast
interface through the slow interface and vice versa. DSACK [11],
an extension of SACK in which the receiver reports to the sender
the receipt of a duplicate segment, can be used to detect packet re-
ordering and to undo the consequent congestion control actions [3].

To minimize the unused connection time after a handoff, a TCP
retransmission trigger that causes TCP to attempt a retransmis-
sion when the connectivity is restored after a handoff is proposed
in [30].

A detailed account of the research work in this area can be found
in Chapter 5 of [6].

3. TCP ENHANCEMENTS FOR MULTIPLE
FLOWS

In this section we present a brief overview of the problems of
TCP in vertical handoffs and describe the modifications we propose
in this paper to our earlier algorithms [6,7,9] in order to adapt them
for handoffs in the context of multiple TCP flows. Our algorithms
make use of the cross-layer information regarding the occurrence of
a handoff, the bandwidth and delay of the access links involved in
the handoff and the number of TCP flows undergoing the handoff.
Our modelling assumption is that the mobile node can send the
above information to the TCP sender at the correspondent node
along with the mobility signalling.

3.1 Spurious RTOs
Spurious RTOs occur when a make-before-break handoff [22]

occurs from a low-latency link to a high-latency link. After the
handoff, the acknowledgments (ACKs) will be delayed due to the
higher delay of the new link. TCP retransmission timer expires be-
fore the arrival of the ACKs through the new link due to the small
RTO value calculated on the basis of the old path. This spurious
RTO will cause unnecessary retransmission of packets and reduc-
tion in cwnd and ssthresh. Unnecessary retransmissions waste the

bandwidth and reduction in cwnd and ssthresh reduce the sending
rate, resulting in performance degradation.

In order to avoid the occurrence of spurious RTOs we calculate
the minimum RTO (minrto) based on the new access link delay and
update the RTO timer immediately so that the new minrto comes
into effect. As a result any change in the delay of the end-to-end
path will be reflected better in the RTO calculation. As the minrto
calculation is based on the access link delay alone, the RTT vari-
ables are initialized as in RFC 2988 upon the arrival of the ACK
for the data sent through the new access link. This enables the RTO
to adapt to the end-to-end RTT quickly. No modification to this
algorithm is needed for multiple TCP flow scenarios. Due to space
limitations this algorithm is not given here and the reader is referred
to [6, 9] for details.

3.2 Packet Losses due to Congestion
Packet losses can occur when there is a decrease in BDP after a

handoff. When a handoff occurs from a high-bandwidth link to a
low-bandwidth link, significant packet losses can occur even when
the BDP of the two links remains the same.

We first introduce the algorithm used to avoid the packet losses
due to a decrease in BDP in the case of a single TCP flow and then
describe the modification to this algorithm for the case of multi-
ple TCP flows which is shown in Figure 1. We set the cwnd and
ssthresh to the BDP of the new access link if the FlightSize at the
time of handoff is greater than twice the BDP of the new access link
(or 1.5 times the BDP of the new access link in case the bandwidths
of the old and new link differ significantly). A detailed discussion
of the rationale of this algorithm can be found in [6,9]. When there
are multiple flows sharing a bottleneck access link it is no longer
appropriate to set the cwnd of each TCP flow to the BDP of the
new link. Accordingly the cwnd and ssthresh) is set to the BDP
of the new link divided by the number of concurrent flows that use
the link at the time of handoff. This value corresponds to a single
flow’s share of the bandwidth when a number of flows share the
bottleneck link. Here we make the assumption is that the bottle-
neck link is the last/first hop wireless access link. This assumption
is justifiable as the bandwidth of the wired links in an end-to-end
path is usually much higher than that of the wireless access links at
its end points.

When a handoff notification arrives
If ((TCP not in RTO recovery)

If (BWoldlink >= 8 ∗ BWnewlink)
If (FlightSize > 1.5 ∗ (BDPnewlink/N))
/* N refers to the number of flows */

cwnd_reduction = 1
Else if ( BWoldlink < 8 ∗ BWnewlink)

If (FlightSize > 2 ∗ (BDPnewlink/N)
cwnd_reduction = 1

If (cwnd_reduction == 1)
cwnd = max(2,BDPnewlink/N)
ssthresh = cwnd
cwnd_reduced = 1

Figure 1: Algorithm to reduce congestion-related packet losses
for multiple flows. Adaptation to multiple flows shown in bold.

Figures 2 and 3 describe our algorithms to reduce the unused
connection time and to combat the problems arising from packet re-
ordering in a vertical handoff in the setting of multiple TCP flows.
In these algorithms also we set the cwnd and ssthresh in the same
manner based on the number of simultaneous TCP flows through
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the bottleneck link. This is the only modification necessary to adapt
our algorithms designed for a single TCP flow to the case of multi-
ple TCP flows in the presence of a vertical handoff. As the informa-
tion about the number of flows can be easily included in the handoff
notifications, our algorithms are easy to implement in practice.

3.3 Unused Connection Time and
ssthresh Reduction

When a handoff notification arrives:
If (TCP in RTO recovery)

Retransmit the first unacknowledged packet
Set ssthresh to max(2,BDPnewlink/N)

/* N refers to the number of flows */
If there is a significant change in delay

Initialize RTT variables as for a new connection
When ACK for new data arrives

Update RTT variables

Figure 2: Algorithm to reduce the unused connection time and
to set ssthresh. Adaptation to multiple flows shown in bold.

Figure 2 gives our algorithm to reduce the unused connection
time and to set the ssthresh in a break-before-make handoff. When
a break-before-make handoff occurs, the end-to-end path between
the mobile node and correspondent node is broken and the con-
nectivity resumes only after the handoff is completed resulting in
packet losses. If the disconnection period is greater than the current
RTO value, the retransmission timer expires. The TCP sender re-
transmits the first unacknowledged segment and doubles the RTO
value. For each subsequent timer expiration for the same segment,
TCP doubles the RTO value again [24]. When the end-to-end con-
nection is up, the TCP sender needs to wait until the retransmission
timer expires again before attempting another retransmission. This
unused connection time can be up to one minute [24] depending
on the disconnection length and the next scheduled RTO and it in-
creases the recovery time of the lost packets. If more than one time-
out has occurred, i.e., a retransmission is considered to be lost, the
ssthresh value is further reduced in some implementations resulting
in inefficient recovery. By retransmitting the first unacknowledged
segment immediately if the TCP sender is in RTO recovery when
the handoff notification arrives and setting the ssthresh to the BDP
of the new link scaled by the number of flows, our algorithm given
in Figure 2 is able to mitigate the problems due to a long discon-
nection in a break-before-make handoff.

3.4 Packet Reordering
Packet reordering is a problem that TCP faces when there is a

significant reduction in delay after a make-before-break handoff.
The packets sent through a low-delay link after the handoff may
overtake the packets transmitted through the high-delay link before
the handoff and this causes packet reordering which generates du-
packs. If the TCP sender receives a dupthresh number of dupacks
(typically 3) it enters fast recovery, halves the ssthresh and cwnd
and continues in congestion avoidance. The retransmission and
the reduction in ssthresh and cwnd are unnecessary as the dupacks
which arrive are due to packet reordering and not due to congestion.

We briefly describe the main idea behind the algorithm given
in Figure 3 and refer the reader to [7] for its detailed description.
If the bandwidth of the new access link is greater than dupthresh
times the bandwidth of the old access link, there is a possibility of
packet reordering leading to false fast retransmit. If this condition
arises, a new dupthresh value is calculated based on the ratio of

the bandwidth of the two access links. In fast retransmit, the TCP
sender saves the previous cwnd value if there is a possibility of
reordering. In fast recovery, the TCP sender sends a new segment
for every arriving dupack until all the segments transmitted before
the handoff are acknowledged or the number of dupacks exceeds
the dupthresh. In the latter case TCP returns to the normal fast
recovery [10]. If the retransmission is identified as unnecessary
using DSACK information, the cwnd and ssthresh are set to the
BDP of the new access link scaled by the number of flows.

When a handoff notification arrives with the
information regarding the old and the new access links

/* Congestion likely due to bandwidth or BDP decrease ? */
If (FlightSize > 2 · (BDPnewlink/N))

Set cwnd_reduction to 1
If ((cwnd_reduction = 1) AND

(BDPoldlink > BDPnewlink ) AND
(BWnewlink < 8 · BWoldlink))

Set cwnd and ssthresh to max(2, (BDPnewlink/N))
/* N refers to the number of flows */

If (TCP is not already in Loss recovery)
/* False fast retransmit likely due to reordering ? */
If ((BWnewlink > 3 · BWoldlink) AND

(cwnd_reduction = 0))
set reordering_flag to 1
dupthresh = max(BWnewlink

BWoldlink
, 3)

In Fast retransmit:
Retransmit the first unACKed segment
If (reordering_flag = 1)

Save cwnd in cwnd_prev
In Fast Recovery:

If (reordering_flag = 1)
Send a new segment for every dupack
If (number of dupacks > dupthresh)

Set return_fastrecovery to 1
Return to the normal fast recovery

On the arrival of a new ACK indicating that
all packets sent before handoff are ACKed:

Reset cwnd_reduction
If ((DSACK indicates that the retransmission

after the handoff was unnecessary) AND
(return_fastrecovery = 0) AND
(cwnd < min(cwnd_prev, (BDPnewlink)/N))

Set cwnd to min(cwnd_prev, (BDPnewlink/N)
Set ssthresh to max(cwnd_prev, (BDPnewlink/N)

Reset reordering_flag, return_fastrecovery
Reset dupthresh to 3
If (there is a significant change in delay)

Update the RTT variables

Figure 3: Algorithm to combat the problems arising from
packet reordering in a vertical handoff. Adaptation to multi-
ple flows shown in bold.

3.5 Slow RTO convergence
After a handoff, the RTO will converge to the RTT of the new

path very slowly. One reason for this is that the formula for up-
dating the smoothed RTT (SRTT) value at the TCP sender gives
a much smaller weight to the current RTT sample compared to
that of the previous SRTT value. Another reason is that the RTT
variables are updated only once in an RTT and not for each ACK
received [24]. In order to quickly converge to the RTO value corre-
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sponding to the new path, we initialize the RTT variables as in RFC
2988 if the old and the new RTT values differ by a factor of two or
more and the new RTT value is greater than minrto. No modifica-
tion to this algorithm is needed for multiple TCP flow scenarios.
Due to space limitations we do not give this algorithm here and the
reader refer to to [6, 9].

4. SIMULATION RESULTS
We use the ns-2 network simulator to model the behaviour of

TCP in a vertical handoff. This section describes the simulation
experiments and our results obtained. We first discuss the simu-
lation setup, and then move on to investigating different types of
vertical handoff scenarios.

4.1 Simulation Setup
In the simulation model the mobile node is capable of using both

the access links involved in a vertical handoff. Both access links
have dedicated base stations that are connected to a common wire-
less access router by 100 Mbps links. The router has a 100 Mbps
connection to a server (correspondent node) in the fixed network.
The propagation delay over each of the fixed links is 2 ms. Un-
less otherwise stated, the router buffer size of each link is set to
max(BDP<link>, 5) packets. We consider bulk TCP flows from
the correspondent node to the mobile node. A detailed description
of the simulation environment is given in [6, 9].

The baseline TCP used in the experiments is TCP SACK [4]
and is referred to as regular TCP. TCP SACK with the enhance-
ments we had proposed earlier [6, 9] is referred to as Enhanced-
TCPv0 (ETCPv0) and the TCP SACK in conjunction with the al-
gorithms described in Section 3 is referred to as Enhanced-TCPv1
(ETCPv1). The TCP packet size is 1500 bytes including the TCP/IP
headers.

In our experiments a 20-second interval is chosen to cover all the
phases of a TCP connection and a handoff can occur uniformly in
any one of the 200 instances at 100 ms intervals. The duration of
each test run includes the completion of the handoff occurring in
the 20-second interval. No link errors are modelled as we assume
that the packet losses are solely due to congestion.

In order to study the behaviour of TCP with vertical handoff we
focus on the TCP behaviour immediately after a handoff. As a per-
formance metric, we calculate the time taken to transfer (to receive
the acknowledgment) a specific number of packets. This time is
calculated with respect to the slowest flow. In comparing the per-
formance of the enhanced TCP with the regular TCP, we use the
median value of the time taken to transfer 100 packets after a hand-
off. In all the performance graphs given in this paper, the x-axis
shows the number of flows and the y-axis shows the lower quartile,
median, and upper quartile of the time (in seconds) to transfer 100
packets after the handoff.

We are categorizing our experiments into two classes, (i) hand-
off from a fast link to a slow link and (ii) handoff from a slow
link to a fast link. We have chosen the following four sets of
bandwidth and delay combinations to reflect the situations arising
in handoff involving access networks such as EGPRS [23], HS-
DPA [1], WiMAX [33] and WLAN [16]. A rough range of the
bandwidth and propagation delay (one-way) of the access networks
such as EGPRS (200 Kbps/300 ms), HSDPA (700 Kbps/75 ms,
2000 Kbps/50 ms, 6000 Kbps/50 ms), WiMax (2000 Kbps/50 ms,
11000 Kbps/20 ms) and WLAN (11000 Kbps/10 ms, 54000 Kbps/2
ms) is used in our experiments. In the first two experiments, the
BDP of the access links held constant while the BDP of the access
links in the second experiment is higher. In the second class of
experiments the BDP of the two access links involved in a hand-

off differ. Here we perform two sets of experiments in which the
BDP of the access links in the second set is higher than that in the
first set. In each of the experiments we study the behaviour of TCP
flows for the case of one, two and four long, simultaneous TCP
flows.

4.2 Handoff from a Fast link to a Slow link
In this section we describe a set of experiments where a handoff

occurs from a fast link to a slow link. As the problems that oc-
cur with a make-before-break handoff differ from that of a break-
before-make handoff we discuss the two cases separately.

4.2.1 Make-Before-Break Handoff
The main problems of TCP in a make-before-break handoff from

a fast link to a slow link are the occurrence of spurious RTOs and
unnecessary retransmissions associated with them in addition to the
packet drops due to a decrease in bandwidth. Our experiments de-
scribed here show that the algorithms designed to avoid the spu-
rious RTOs and to reduce the packet losses that are described in
Section 3 are effective and improve the performance of TCP.

First we consider a handoff occurring between same BDP links
even though the bandwidth and delay of the new access link dif-
fers considerably from that of the old link. The BDP of both ac-
cess links is 10 packets. The problems in this case are the occur-
rence spurious RTOs and unnecessary retransmissions associated
with them in addition to the packet drops due to a decrease in band-
width.
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Figure 4: Time taken to transfer 100 packets after a
make-before-break handoff from a 6400Kbps/9ms link to a
200Kbps/300 ms link

Figure 4 shows the time taken by regular TCP, ETCPv0 and
ETCPv1 to transfer 100 packets after a make-before-break hand-
off from a 6400 Kbps/9 ms link to a 200 Kbps/300 ms link. For a
single TCP flow ETCPv1 and ETCPv0 show a 40 % reduction in
transfer time compared to that of regular TCP. In the case of two
flows a similar reduction in transfer time is seen whereas in the
case of four flows the performance of regular TCP and ETCPv1
are nearly the same. The reason for this is that with the increase
in the number of flows there is a consequent decrease in the size of
the cwnd of each flow. As a result the typical problems of TCP in
vertical handoff due to spurious RTOs and cwnd reduction do not
have a significant impact on TCP performance. In the case of four
flows, we can see that ETCPv0 performs worse than both regular
TCP and ETCPv1 as ETCPv0 sets the cwnd to the BDP of the new
link resulting in an aggressive behaviour leading to packet losses.
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Figure 5: Time taken to transfer 100 packets after a
make-before-break handoff from a 54000Kbps/2ms link to a
2000Kbps/50 ms link
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Figure 6: Time taken to transfer 100 packets after a
make before-break handoff from a 11000Kbps/10ms link to a
700Kbps/75ms link

In this category of same BDP access link handoffs we next de-
scribe a handoff from a 54000 Kbps/2 ms link to a 2000 Kbps/50
ms link. Here the BDP of the links is set to a higher value (18 pack-
ets) and a higher bandwidth and lower delay compared to the cor-
responding values in experiment described above. Figure 5 shows
that in the case of a single flow ETCPv1 and ETCPv0 reduce the
transfer time for 100 packets after a handoff by about 40 % com-
pared to regular TCP. We can also see from this figure that for two
and four flows ETCPv1 still shows up to 30 % improvement in
transfer time over regular TCP. With the increase in BDP, the cwnd
for each flow increases resulting in packet losses that occur due to
a make-before-break handoff. ETCPv1 improves the performance
over regular TCP as it avoids packet losses due to spurious RTOs
and cwnd reduction.

In the second class of experiments, the BDP of the access links
differ. We have two sets of experiments in this class, namely, a
handoff from a 11000 Kbps/10 ms link to a 700 Kbps/75 ms link
(BDP of 18 and 9 packets respectively) and a handoff from a 54000
Kbps/4 ms link to a 6000 Kbps/50 ms link (BDP of 50 and 38
packets respectively).
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Figure 7: Time taken to transfer 100 packets after a
make-before-break handoff from a 54000Kbps/4ms link to a
6000Kbps/50ms link

The main problem of regular TCP in a make-before-break hand-
off from a 11000 Kbps/10 ms link to a 700 Kbps/75 ms link is the
large number of packet losses due to the reduction in BDP (BDP
reduction from 18 packets to 9 packets) and also due to large de-
crease (about 15 times) in bandwidth. RTO recovery is needed to
recover the lost packets and more losses may occur before regular
TCP adapts itself to the cwnd of the new path. On the other hand,
ETCPv1 sets the cwnd based on the BDP of the new link and the
number of flows and is able to avoid the packet losses. Figure 6
illustrates the transfer time taken for regular TCP and ETCPs in
this scenario. In the case of a single TCP flow, with ETCPv1 and
ETCPv0, there is approximately 60 % reduction in transfer time of
regular TCP.

When there are two TCP flows, packet losses lead to RTO re-
covery in the case of regular TCP but there are no packet losses
for ETCPv1. The reduction in transfer time for ETCPv1 is around
50 % as the available bandwidth for a single flow is halved. When
the number of flows increases to four, the available bandwidth share
of the flows decreases. Regular TCP suffers packets losses and
needs RTO recovery, while with ETCPv1 there are no packet losses
as it sets the cwnd and ssthresh to the new link BDP scaled by the
number of flows. ETCPv1 is able to reduce the transfer time by
about 50 % compared to regular TCP. Figure 6 shows that ETCPv0
reduces the transfer time of regular TCP by about 35 % but there
are still packet losses as it sets the cwnd and ssthresh to the new
link BDP which is larger than the BDP corresponding to the flow’s
share of bandwidth when there are four simultaneous flows.

In a make-before-break handoff from a 54000 Kbps/4 ms link
to a 6000 Kbps/50 ms link, both the access links have sufficiently
high BDP values of 50 packets and 38 packets respectively. Figure
7 shows that ETCPv1 shows a 20-40 % reduction in the transfer
time compared to the regular TCP even when there are four simul-
taneous TCP flows. This significant improvement in performance
shows the effectiveness of our algorithms when the cwnd is suffi-
ciently large.

4.2.2 Break-Before-Make Handoff
Next we describe the experiments involving a break-before-make

handoff from a fast link to a slow link. Here we carry out the same
set of experiments as in the case of make-before-break handoff de-
scribed earlier.
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Figure 8: Time taken to transfer 100 packets after a
break-before-make handoff from a 6400Kbps/9ms link to a
200Kbps/300ms link
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Figure 9: Time taken to transfer 100 packets after a break-
before-make handoff from a 54000 Kbps/2ms link to a 2000
Kbps/50 ms link, disconnection period 1s

A break-before-make handoff results in packet losses and un-
used connection time. The algorithm in Figure 2 retransmits the
first unacknowledged packet immediately if TCP is already in RTO
recovery when a handoff notification arrives and this helps to utilize
the connection as soon as the new access link is up after a handoff.
The proper setting of the ssthresh by the algorithm helps in avoid-
ing unnecessary reduction of ssthresh due to repeated timeouts.

Figure 8 shows the time taken for transferring 100 packets by the
three TCP versions in a break-before-make handoff from a 6400
Kbps/9 ms link to a 200 Kbps/300 ms link. We can see that in the
case of a single flow both ETCPv0 and ETCPv1 reduce the trans-
fer time by about 40 % compared to regular TCP. As the number
of flows increases to four, the cwnd available for a single flow de-
creases and this reduces the number of packet losses due to a dis-
connection . In the case of four flows, we observe that ETCPv0
incurs additional losses resulting in increased transfer time com-
pared to regular TCP and ETCPv1.

The marked improvement in the performance of the ETCPv1
over the regular TCP in a break-before-make handoff from a 54000
Kbps/2 ms link to a 2000 Kbps/50 ms link can be clearly seen from
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Figure 10: Time taken to transfer 100 packets after a break-
before-make handoff from a 11000 Kbps/10ms link to a 700
Kbps/75 ms link, disconnection period 1s
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Figure 11: Time taken to transfer 100 packets after a break-
before-make handoff from a 54000 Kbps/4ms link to a 6000
Kbps/50 ms link, disconnection period 1s

the Figure 9. Figure 10 shows that for all the flows, ETCPv1 re-
duces the transfer time by about 50 % compared to regular TCP.
Figure 11 shows that ETCPv1 is effective in a break-before-make
handoff from a 54000 Kbps/4 ms link to a 6000 Kbps/50 ms link.
As the cwnd is sufficiently large ETCPv1 performs better than reg-
ular TCP when there are four simultaneous TCP flows. We can also
see from this figure that there is about 20-40 % reduction in transfer
time with ETCPv1 compared to regular TCP for all the flows.

4.3 Handoff from a Slow link to a Fast link
In this section we describe a set of experiments where both make-

before-break and break-before-make handoffs occur from a slow
link to a fast link.

4.3.1 Make-Before-Break Handoff
Packet reordering is the main problem of TCP in a make-before-

break handoff from a slow link to a fast link. After a handoff, pack-
ets through the fast new link may arrive at the receiver sooner than
the packets sent before the handoff through the slow old link re-
sulting in packet reordering. Our algorithm given in Figure 3 is
designed to mitigate the problems arising from packet reordering.
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Figure 12: Time taken to transfer 100 packets after a
make-before-break handoff from a 200Kbps/300ms link to a
6400Kbps/9ms link
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Figure 13: Time taken to transfer 100 packets after a
make-before-break handoff from a 2000Kbps/50ms link to a
54000Kbps/2ms link

Figure 12 shows the results of a make-before-break handoff from
a 200 Kbps/300 ms link to a 6400 Kbps/9 ms link. Even though
the transfer time of ETCPv1 and TCP are quite the same, we have
observed in our experiments that ETCPv1 reduces the unnecessary
retransmissions caused by packet reordering.

Figure 13 shows the results for a make-before-break handoff
from a 2000 Kbps/50 ms link to a 54000 Kbps/2 ms link. In the
cases of one and two TCP flows our algorithm in Figure 3 reduces
the transfer time taken by regular TCP by about 30 %. In the case of
four flows, the cwnd for a single flow is relatively small and the un-
necessary retransmissions and cwnd reduction due packet reorder-
ing have only a minor effect on TCP performance. We can see from
Figure 13 that when there are four simultaneous TCP flows sharing
the link at the time of handoff, ETCPv1 and regular TCP have com-
parable performance. In our experiments we observed that ETCPv1
is effective in reducing the unnecessary retransmissions caused by
packet reordering.

Figure 14 shows the results of the transfer time taken by regular
TCP and ETCPv1 in a handoff from a 700 Kbps/75 ms link to a
11000 Kbps/10 ms link. Here the handoff is from a low BDP link
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Figure 14: Time taken to transfer 100 packets after
make-before-break handoff from a 700Kbps/75ms link to a
11000Kbps/10ms link
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Figure 15: Time taken to transfer 500 packets after make-
before-break handoff from a 6000Kbps/50ms link to a
54000Kbps/4ms link

to a high BDP link. ETCPv1 shows an improved performance,
more than 50 % reduction in transfer time of regular TCP for all
the flows.

Fig 15 shows the time taken to transfer 500 packets after a make-
before-break handoff from a 6000 Kbps/50 ms link to a 54000
Kbps/9 ms link. Packet reordering is again the main problem of
TCP in this scenario. ETCPv1 utilizes the new high bandwidth
link effectively and is able to transfer 300-400 packets while wait-
ing for the packets sent earlier through the old link. Here we have
taken the time to transfer 500 packets after a handoff which is an
adequate time in this scenario for TCP to recover from the effects
of a handoff. ETCPv1 is able to reduce the transfer time of regular
TCP by about 30 % in this scenario.

4.3.2 Break-Before-Make Handoff
In an break-before-make handoff, our algorithm in Figure 2 im-

mediately retransmits the lost segment and thereby helps to utilize
the fast link after the handoff.

As shown in Figure 16 for a break-before-make handoff from a
200 Kbps/300 ms link to a 6400 Kbps/9 ms link the transfer time
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Figure 16: Time taken to transfer 100 packets after a
break-before-make handoff from a 200Kbps/300ms link to a
6400Kbps/9mslink, disconnection period 1s
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Figure 17: Time taken to transfer 100 packets after a break-
before-make handoff from a 2000Kbps/50ms link to a 54000
Kbps/2ms link, disconnection period 1s

of ETCPv1 and regular TCP are equal for all the flows. This is
because the RTO value of the old access link (2.5 seconds to 3 sec-
onds) is larger than the disconnection period of one second and a
timeout will not occur during the disconnection time. Therefore
ETCPv1 and ETCPv0 will not enter the algorithm given in Figure
2. When a disconnection period is four seconds or longer the al-
gorithm in Figure 2 will be entered and consequently there will be
significant improvement arising from its use.

We can observe from Figure 17 that ETCPv1 shows nearly 50 %
reduction in transfer time over regular TCP when a break-before-
make handoff occurs from a 2000 Kbps/50 ms link to a 54000
Kbps/2 ms link. The reason for this improvement is due to abil-
ity of ETCPv1 to utilize the high bandwidth link immediately after
a handoff by using the algorithm in Figure 2 whereas regular TCP
waits for the next RTO to start the transmission after the handoff.
We can see from Figure 18 that in a handoff from a 700 Kbps/75
ms link to a 11000 Kbps/10 ms link ETCPv1 shows 50 % reduction
in transfer time over regular TCP for all the flows.

Figure 19 shows the time taken for transferring 500 packets after
a break-before-make handoff from a 6000 Kbps/50 ms link to a
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Figure 18: Time taken to transfer 100 packets after a
break-before-make handoff from a 700Kbps/75ms link to a
11000Kbps/10ms link, disconnection period 1s
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Figure 19: Time taken to transfer 500 packets after a
break-before-make handoff from a 6000Kbps/50ms link to a
54000Kbps/4ms link, disconnection period 1s

54000 Kbps/4 ms link. We can see that ETCPv1 obtains over 50 %
reduction in transfer time over regular TCP for all the flows we
consider in our experiments. The reason for the improvement is the
same as given in the previous paragraph.

5. CONCLUSIONS
In this paper we study the behaviour of multiple TCP flows in the

presence of a vertical handoff. Through extensive simulations we
show that the proposed cross-layer assisted algorithms, which uti-
lize the information about the number of simultaneous TCP flows
and the bandwidth and delay of the access links, are effective in
avoiding the problems of TCP due to a vertical handoff and im-
prove TCP performance. The problems of TCP in a vertical hand-
off due to the number of unnecessary retransmissions and packet
losses are aggravated with the increase in the size of the cwnd. With
the increase in the number of TCP flows the size of the cwnd de-
creases roughly in inverse proportion to the number of TCP flows
that share the bottleneck access link. Consequently, as the num-
ber of simultaneous TCP flows increases, the typical problems of
TCP due to spurious RTOs, packet reordering and cwnd reduction
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arising from a vertical handoff tend to have diminishing impact on
TCP performance, in particular if the cwnd is small. However, if
the cwnd is sufficiently large the algorithms proposed in this paper
will be effective for multiple TCP flows in various vertical handoff
scenarios.
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Errata for Paper 4

1. Page 21 last paragraph of the left column, 38 and 50 packets instead
of 50 and 38 packets

2. Page 21 last but one paragraph right column, 38 and 50 packets
instead of 50 and 38 packets

3. Page 23, the 3rd paragraph from bottom, the sentence Fig 15 shows
... 54000 Kbps/4 ms instead of 54000 Kbps/9 ms

4. Page 24, in the figures Fig 16, 17, 18 and 19 the disconnection period
is 500 ms instead of 1 second
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