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F o r e w o r d 

The f i rs t "International Conference on Thermionic E lec t r i ca l Power Gene
ra t ion" was held in London, in October 1965. This second conference about 
two and a half yea r s after the London conference gives evidence of the r e 
markable p r o g r e s s in thermionic energy conversion which has taken place 
since that t ime . The strong part ic ipat ion of sc ient is ts from the USSR has 
for the f irs t t ime enabled an intensive exchange of information between 
Eas t and West and has given the opportunity for further pe rsona l contacts 
between the Soviet sc ient is ts and the i r Western col leagues. 

The proceedings include al l papers which have been accepted or invited by 
the P r o g r a m Committee and submitted to the conference Sec re t a r i a t . 
Pape r s a r e reproduced in the i r original form as submitted by the au thors . 
In addition, the proceedings include a contribution "Survey of Exper imenta l 
Work in the USSR" by Dr. Y. A. DANILOV of the Moscow Aviation Inst i tute, 
(Consultant of USSR State Committee for the Utilization of Atomic Energy) 
which was invited during the conference, and two introductions for the panel 
discussion by Dr. Gerald F . TAPE, Commiss ioner of the USAEC and 
Dr. Y.A. DANILOV. 
The d iscuss ions which took place in the conference, a r e attached at the end 
of the respect ive pape r s , with the exception of Session D where the d i s c u s 
sions a r e placed at the end of the Session. 

I am grateful for the cooperation of the contr ibutors who submitted thei r 
text ear ly enough for publication in these proceedings . Unfortunately, no 
contributions or cor rec t ions of t r an sc r ip t s could be retained, which a r r ived 
la ter than August 8th. This deadline has been fixed in o rde r to enable quick 
dis tr ibut ion of the proceedings , which is in the in te res t of a l l . 

F u r t h e r , I wish to thank M r s . Dorpema of I sp ra for providing the t r a n s 
cr ip ts of the d i scuss ions , Dr . L. K. Hansen for his grea t help in editing 
these and M r s . Stalpaer t from the Eura tom Information and Documentation 
Centre in Brus se l s for managing the publication of the proceedings . 

Helmut NEU 
Ispra , 8 .8 .1968 
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OPENING SESSION 

Welcome on Behalf of the Sponsoring Organization 
by Mr. L. BOXER, Head of the Economical and Technical Division, E u r o 

pean Nuclear Energy Agency, P a r i s . 

Ladies and Gentlemen, 

I am anxious to take up as l i t t le t ime as possible of this opening sess ion , 
but on behalf of the Di rec tor General of the European Nuclear Energy 
Agency, I feel bound to record our p leasure in ass i s t ing in the opening of 
this Second International Conference on Thermionic E l ec t r i ca l Power Ge
nerat ion. Our p leasure is twofold, in the sense that as an organisat ion, we 
a r e proud to be associa ted with a function of such scientific impor tance , 
and secondly that we a r e always glad to have a further opportunity to u n d e r 
take with Eura tom a cooperat ive exe rc i s e , of which the re a r e a l ready plenty 
of examples . We all owe pa r t i cu la r thanks to Dr . NEU, the Chai rman of the 
P r o g r a m m e Committee of this Conference, and his colleagues at the I spra 
Joint Resea rch Cent re , who have been responsible for al l the m a t e r i a l 
a r r a n g e m e n t s . 

Those of you who have had a chance to glance through the li t t le note on ENEA 
in the back of your p re l imina ry p r o g r a m m e , will have seen that scientific 
and technological cooperation between the twenty-one OECD countr ies on 
peaceful applications of nuclear energy is one of our pr inc ipa l ac t iv i t i es . We 
firmly believe that the re is a good deal of scope for m o r e co-opera t ive a c 
tivity in those applications of nuclear energy which a r e st i l l far from the 
stage of widespread commerc i a l exploitation, and which thus requ i re con
tinuing governmental support . The technique of thermionic power generat ion 
from nuclear energy sources with its predominant application in space r e 
search , (an a r ea which is a l ready the subject of mass ive governmental in
ves tment) , therefore falls very appropr ia te ly within our scope, especial ly 
in view of i ts connection with heat sources from radioisotopes , where we 
have a para l le l in te res t , and indeed, an active cooperat ive Working Group 
on radioisotopic bat tery development. 

As many of you know, at the end of 1966 ENEA took the initiative in setting 
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up a Liaison Group on Thermionic E lec t r i ca l Power Generation, to p r o 
vide a permanent mechanism for improving information exchange among 
specia l is ts designated from OECD countr ies , and for advising on the plan
ning of these conferences . So far the Group has been successful in b r ing
ing together exper ts from seven countries active in the field, also the 
internat ional in te res t s represen ted by Eura tom and IAEA. It is planned 
to enlarge future part icipat ion in the Group with exper ts from Eas t e rn 
count r ies . 

Once again, as in the case of the F i r s t Conference, it has been possible 
to welcome fellow scient is ts and engineers from the USSR (and other E a s t e r n 
countr ies) to our del iberat ions this week. Their p resence he r e , and the 
scale of the i r contribution to this conference will be a significant element 
in the important new revelat ions which might well emerge during these five 
days . 

We have a full, fascinating and very var ied p rog ramme before u s , from d e 
tailed theoret ica l considerat ions to design development, per formance and 
experience with thermionic genera tors over a wide range of e lec t r i ca l out
put. I feel sure that the exper ts in this increasingly important a r ea of science 
and technology will leave S t resa at the end of this week with the feeling that 
since the f i rs t conference in London three yea r s ago, which ENEA had the 
pr ivi lege of organizing with the collaboration of the Institution of E lec t r i ca l 
Engineers , a very considerable step forward has been achieved in the state 
of the a r t . If that is the resul t , then we shall feel that the little trouble we 
have taken to bring you he re has been more than worthwhile. 

Welcome on Behalf of the Organizing Institution 
by Prof. H. KRAMERS, Di rec tor of the EURATOM Research Establ ishment , 

I sp ra . 

Ladies and Gentlemen, 

Whereas the European Nuclear Energy Agency has willingly given its sponsor
ship to this international and world-wide conference, the task - and the honour 
of the scientific and ma te r i a l prepara t ion was confided to the I spra r e s e a r c h 
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es tabl ishment of the Eura tom organizat ion. 

As a represen ta t ive of this r e s e a r c h es tabl ishment I wish to thank you for 
your confidence in this p r e p a r a t o r y work, which we could pe r fo rm, amongst 
o the rs , because of the p resence at I sp ra of a smal l , but highly proficient 
r e s e a r c h group in the field of thermionic conversion. 

We could have wished of course that our effort in this field would have been 
g rea t e r , but I have to reca l l , that the p r i m a r y object of the countr ies which 
constitute the European Atomic Energy Community is the promotion of r e 
sea rch , development and industr ia l izat ion of nuclear power on a la rge scale 
and on an economic b a s i s . We rea l ize that the d i rec t conversion of heat into 
e lec t r ic i ty by application of the thermionic pr inciple does not fall into this 
domain. On the other hand, we feel that among the var ious methods for d i 
rec t conversion, the thermionic pr inciple combined with nuclear heat, will 
somet ime find i ts justified peaceful application, pa r t i cu la r ly in space-borne 
s y s t e m s . 

In the p resen t competit ion between the var ious branches of "big sc ience" such 
a s ta tement is hardly convincing if it comes to getting the n e c e s s a r y govern
ment support in the form of funds. On the other hand, the development of 
thermionic power generat ion devices is just a field where the long t e r m 
cha rac t e r , the high r i sk , the slow re tu rn on investment and the absence of 
d i rec t national economic and indus t r ia l considerat ions can st i l l great ly profit 
from free exchange of information and par t i cu la r ly from internat ional co l la 
borat ion. If we a r e able to understand this and to g ra sp the occasion of in 
ternat ional collaborat ion, we - and I think now par t i cu la r ly of Western Europe 
would be able to meet the challenge, not only of our powerful world neigh
bours , but a lso of the very advanced technology prob lems which a r e a s s o 
ciated with this field of thermionic conversion - not to speak of "fal l-out" 
or " sp i l l -over" , which always occurs but does not consti tute in itself an 
argument for doing such work. 

It is for r easons which I explained e a r l i e r , that we, as a host , cons ider this 
Second International Conference on Thermionic E l ec t r i ca l Power Generation 
to be of very grea t impor tance , not only to al l pa r t i c ipan ts , but a l so , and 
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par t icu lar ly so, to ourse lves . 

I therefore express my s incere hope that the conference will be a complete 
success . 

Introduction to the Conference 
by Dr. H. NEU, Conference Chairman. 

Ladies and Gentlemen, 

I have the honour to welcome you in the name of the P r o g r a m m e Committee 
and to thank you for coming to S t r e sa . F r o m the reg is t ra t ion forms I l e a r n 
ed that delegations of the following countr ies a re p resen t : Aus t r ia , Belgium, 
Bulgaria, Canada, Czecho-Slovakia, F r a n c e , Germany, Italy,Rumania, 
Soviet Union, Switzerland, The Nether lands, United Kingdom and the United 
States of Amer ica . F u r t h e r m o r e , r ep resen ta t ives of the following International 
Organizations a r e r eg i s t e red : European Space Research Organization, E u r o 
pean Launching and Development Organization, the International Atomic 
Energy Agency and - who a r e the sponsors for this conference - the European 
Nuclear Energy Agency and EURATOM. 

We a r e par t icu lar ly glad that a strong delegation of the USSR has a r r ived and 
we a r e grateful for the support that the International Atomic Energy Agency 
in Vienna has given us to make this poss ib le . 

Research on Cesium filled thermionic diodes was s tar ted about 10 ye a r s ago 
in the labora tor ies of the USSR and independently in l abora tor ies of the USA. 
We a re happy to see here with us many of the p ioneers of thermionic energy 
conversion. 

It is not my intention to descr ibe the events leading from the f i rs t exper iments 
to the thermionic r e s e a r c h of to-day. This will be demonst ra ted by the papers 
presented at this conference. I would like to s t r e s s only one significant fea
t u r e . If you compare the p r o g r a m m e of the London Conference with the S t resa 
P r o g r a m m e , you will find that many more of the p resen t papers concern 
ha rd -ware per formance of conver te r s and resu l t s of longlife out-of-pile and 
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tes t ing. The sess ion on "Integrated Sys tems" , that is to say conceptual engi
neering studies of r e a c t o r s and isotope fueled power units (mostly for space 
power supply), has become the l a rges t sess ion . In this r espec t the Commit 
tee would like to thank the USAEC for making possible important contr ibu
tions on subjects which a r e published for the f i rs t t ime . 

Now let me tel l you something about the scientific organizat ion of this confe
rence . Those -who have attended the London conference may have a l ready 
noted that we a r e not using the so-cal led " rappor teur sys tem" , that is the 
presenta t ion of al l the papers of one sess ion by one or two speake r s . 

On the other hand, not al l of the authors at this conference will be able to 
read thei r paper . I feel that it is ve ry n e c e s s a r y to explain why this is and 
how it came about. 

The P r o g r a m m e Committee felt strongly that we should t r y to give the Con
ference more the cha rac te r of a working meeting than of a represen ta t ive 
event. F o r this purpose , the " rappor teur sy s t em" has m o r e inherent d i sad 
vantages : 

1. P a p e r s have to be submitted r a the r ea r ly to the o rgan ize r s for d i s t r ibu 
tion to the r a p p o r t e u r s . Consequently the authors cannot always p re sen t 
the la tes t r esu l t s and they may have to use m a t e r i a l which has a l ready 
been published before. 

2. It s eems to be difficult somet imes for the r appor teu r s to find out from a 
wri t ten paper detai ls of r esu l t s which the author would rega rd as i m p o r 
tant. 

3. The younger colleagues do not have an opportunity for pe r sona l p r e s e n t a 
tion. 

Thus it was thought that a sys tem with presenta t ion of pape r s by the authors 
is preferable and the P r o g r a m m e Committee decided to use this p rocedure . 
However, when we made the call for papers it happened that 142 abs t r ac t s 
a r r ived compared with about 100 in London. Although we were glad to see 
such a grea t in te res t in the conference, we feared that the reading of 142 
papers in 4 days would not give sufficient t ime for d iscuss ion . We felt that 
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about a half of the sess ion t ime is necessa ry for d i scuss ions . 

What to do? Pa ra l l e l sess ions were not found to be a good solution because 
we expected that most of the par t ic ipants will be in teres ted in all subjects 
t r ea ted . This is quite understandable , as thermionic r e s e a r c h is linked with 
different discipl ines such as physics , metal lurgy and engineering in such a 
way that each special is t in one field needs to know what happens in the other 
fields. Thus, the P r o g r a m m e Committee was forced to accept a solution 
in which only a selection of the papers a re presented by the au thors . The 
t i t les of the papers which a r e not presented orally will be read by the cha i r 
man and put to discussion. 

The selection of papers for o ra l presentat ion was indeed a delicate task for 
the P r o g r a m m e Committee because it had to be done with only the p r e l i m i 
nary abs t rac t s available. We have t r ied to do our best to select those papers 
for ora l presentat ion which we felt to contain the most of novelty or to be of 
a more genera l in te res t . This selection means absolutely no judgment of the 
scientific value of the content. 

As a genera l rule , we suggest to the Session Chairman to give pr ior i ty to 
questions and answers r a the r than general r e m a r k s , read and unread papers 
being t rea ted equally. If t ime is available authors of unread papers may have 
a chance to make some r e m a r k s . It is quite possible that the Committee was 
not able to fully a s s e s s some of the papers from the abs t r ac t s alone, or 
additional t ime has become available because papers have been withdrawn. 
There will be a possibil i ty to reexamine papers in this case together with 
the Chairman and the Vice-Chai rman before each sess ion. 

In o rde r to save t ime, we have recommended that some of the authors com
bine their papers if the contents a re s imi la r and we have also asked that 
two or more papers coming from the same laboratory should be presented 
by one speaker . In the sess ion "Heat Pipe Sys t ems" we have invited two 
speakers to summar ize work in the USA and Europe . There is no ora l p r e 
sentation of papers foreseen at al l on the subject of heat pipes since this 
does not - in our opinion - belong s t r ic t ly to the r e s e a r c h sphere . 

Invited papers for introductory survey purposes have been limited to the 
sess ion where it seems to us highly des i rab le , that is the "Theory of Con-
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v e r t e r s" and "Surface Phenomena" . 

As you will note, we have taken a full half day for a panel d iscuss ion about 
subjects which a r e not only of in te res t for the thermionic r e s e a r c h e r s but 
for those who attend this conference to get a more complete p ic ture of the 
possible application of thermionic conve r t e r s , the competit ion with other 
sys tems and the opinion of the specia l i s t s on p resen t and future of t h e r m i o 
nic s. I have great p leasure in announcing that commiss ioner Gerald Tape of 
the USAEC will personal ly come to S t resa and give an introductory talk about 
"Space Applications of Thermionic Conversion and Comparison with other 
Sys t ems" . He also intends to par t ic ipate on the d iscuss ion about this subject. 
You will agree with me , that this gives the panel d iscuss ion a special impor 
tance and weight. 

With regard to the genera l organization, the re is some information in the 
P r o g r a m m e l i t e ra tu re you have received. If any p rob lems a r i s e , p lease 
do not hes i ta te to contact one of the pe r sons with an orange coloured badge. 
I am mos t indebted to al l who have contributed to bringing the conference to 
the point where it can now s t a r t . In pa r t i cu la r , I would like to thank Dr. 
SMETS and Mr . BOXER of the European Nuclear Energy Agency in P a r i s 
and the m e m b e r s of the P r o g r a m m e Committee for the p repara t ion of this 
conference. Many thanks also go to Prof. KRAMERS, d i r ec to r of I sp ra for 
his grea t in te res t and support , the authors of papers for the i r col laborat ion 
in submitting thei r p repr in t s in t ime , the m e m b e r s of the conference s e c r e 
ta r ia t for the i r ve ry efficient "work and, las t but not leas t , the staff of the 
Public Relations Office at I spra for making al l a r r angemen t s for the s u œ s s -
ful running of thi s conference. 

Ladies and Gentlemen, I have the grea t honour to dec la re the "Second In t e r 
national Conference on Thermionic E lec t r i ca l Power Generat ion" open. 
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SUMMARY OF APPLIED RESEARCH PROGRAM 

IN THERMIONIC CONVERSION DURING RECENT YEARS 

F . Rufeh, D. Lieb and L. van Someren 

The rmo Elec t ron Corporat ion 
85 F i r s t Avenue, Waltham, Massachuse t t s 

I. ABSTRACT 

This paper s u m m a r i z e s the resu l t s of an applied r e s e a r c h p r o g r a m 

which has been in p r o g r e s s for s eve ra l y e a r s . Two new techniques have 

been developed for t reat ing emi t t e r sur faces . These techniques, which 

have resul ted in substant ial improvement in per formance , a r e combina

tions of heat t r ea tment with electropolishing and with e lectroetching. 

E m i t t e r s p repared by these methods w e r e incorpora ted in var iab le -

spacing conver t e r s , and p a r a m e t r i c data was obtained. These data a r e 

useful both for calculations of conver ter designs and for theore t ica l analy

s i s . Another technique invest igated for improving conver te r pe r formance 

was the use of oxygen. Cesium oxide was found to be a good source of 

oxygen and cesium. 

II. TEST CONVERTER 

A versa t i l e va r iab le - spac ing conver ter •was developed to obtain 

p a r a m e t r i c data for the var ious emi t te r sur faces . A schemat ic d iagram 

of this conver te r is shown in F igu re 1. The molybdenum col lector is 

surrounded by an active molybdenum guard ring which is mainta ined at 

the s ame t e m p e r a t u r e and e lec t r i ca l potential as the col lector . Flexible 

bellows allow the in te re lec t rode spacing to be var ied from 0. 5 to 100 m i l s . 

* This work was per formed for the Je t Propuls ion Labora tory , California 
Institute of Technology, sponsored by the National Aeronaut ics and Space 
Adminis t ra t ion under contracts NAS 7-100 and NAS 7-508. 
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III.- C O N V E R T E R S WITH E L E C T R O P O L I S H E D RHENIUM E M I T T E R S 

1 
A. E m i t t e r P r e p a r a t i o n 

The e m i t t e r s u sed in t h i s w o r k w e r e d i s c s of p o l y c r y s t a l l i n e r h e n i 

um m a d e by ro l l ing s i n t e r e d - p o w d e r i ngo t s . The m a t e r i a l w a s at l e a s t 

99- 99% r h e n i u m ; and had a w e l l deve loped p r e f e r r e d o r i e n t a t i o n wi th 

b a s a l (001) p l a n e s p a r a l l e l to the e m i t t e r s u r f a c e . 

The d i s c s u r f a c e s w e r e g round flat, and h o h l r a u m s wi th the — 
6 D 

r a t i o of 5 w e r e m a d e by s p a r k - m a c h i n i n g . An a n n e a l for 30 m i n u t e s 
-6 at 1700 a C at a p r e s s u r e of l e s s t han 10 t o r r fol lowed g r ind ing b e c a u s e 

th i s w a s found to f ac i l i t a t e e l e c t r o p o l i s h i n g . 

T h e s p e c i m e n w a s then e l e c t r o p o l i s h e d , h e a t - t r e a t e d and i n c o r 

p o r a t e d into a v a r i a b l e - s p a c i n g c o n v e r t e r wi th a m o l y b d e n u m c o l l e c t o r . 

B. P a r a m e t r i c Data 

The e l e c t r o d e w o r k func t ions w e r e m e a s u r e d , a n d the p e r f o r m 

ance of the c o n v e r t e r w a s r e c o r d e d in t e r m s of v a r i a b l e - c e s i u m -

t e m p e r a t u r e f a m i l i e s . A t y p i c a l f a m i l y i s shown in F i g u r e 2. It 

def ines an enve lope wh . ch is t angent to e a c h 1-V c u r v e and r e p r e s e n t s 

the c e s i u m o p t i m i z e d p e r f o r m a n c e . Such f a m i l i e s w e r e ob ta ined at 

o p t i m u m c o l l e c t o r t e m p e r a t u r e for a wide r a n g e of e m i t t e r t e m p e r a t u r e s 

and i n t e r e l e c t r o d e s p a c i n g s . T h e e n v e l o p e s of t h e s e f a m i l i e s a r e s u m 

m a r i z e d in F i g u r e s 3 to 5. E a c h of t h e s e f i g u r e s shows the fully opt i 

m i z e d p e r f o r m a n c e with r e s p e c t to c e s i u m t e m p e r a t u r e , i n t e r e l e c t r o d e 

spac ing and c o l l e c t o r t e m p e r a t u r e . The output is c o r r e c t e d for e m i t t e r 

l ead vo l t age l o s s wh ich is 3 m V / a m p . T h e fully o p t i m i z e d p e r f o r m a n c e 

for i n t e r e l e c t r o d e s p a c i n g > 5 m i l s and the e m i t t e r t e m p e r a t u r e r a n g e 

of 1680 to 2040"K is s u m m a r i z e d in F i g u r e 6. T h e se t of da ta shown 

in F i g u r e s 3 to 6 is useful for c o n v e r t e r d e s i g n c a l c u l a t i o n s . 
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IV. CONVERTERS WITH ELECTROETCHED RHENIUM EMITTERS 

A. Emi t te r Prepara t ion 

The emi t te r p repara t ion for these emi t t e r s is s imi la r to the e l ec t ro -

polished emi t te r with the following difference: After being electropol ished, 

the emi t t e r s were subjected to e lectroetching. This p roces s removes 

ma te r i a l select ively from different c rys ta l faces , so that some grains 

a r e etched fas ter than o thers . A rough jagged surface is developed, 

which has a l a rge r fraction of the slow-etching basa l planes than did 

the original surface. Since these basa l planes a r e favorable for 

cesiated thermionic emiss ion, the etching technique is expected to 

produce an emi t te r with a thermionic per formance super ior to that of 

the electropol ished surface from which it was der ived. 

These surfaces a lso were hea t - t r ea t ed for 3 hours at 2380°C to 

ensure stabili ty during conver ter operat ion. 

B. Per formance Data 

Fami l ies of vo l t - ampere cha rac t e r i s t i c s were generated by varying 

the cesium r e s e r v o i r t e m p e r a t u r e . The per formance of the device has been 

summar ized in Figures 7 to 10, using envelopes of the v a r i a b l e - c e s i u m -

tempera tu re famil ies . The col lector t e m p e r a t u r e s were selected 

near the optimum value corresponding to the emi t te r t empe ra tu r e used. 

The dashed line in these figures r e p r e s e n t s the envelope of the spacing 

envelopes co r rec t ed for emi t te r lead voltage l o s s . It cor responds to the 

output at the e lect rodes under fully optimized conditions for the emi t te r 

t empera tu re indicated. The optimized per formances of e lect roetched 
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and e l e c t r o p o l i s h e d e m i t t e r s a r e c o m p a r e d in F i g u r e 11 . T h e i n t e r e l e c 

t r o d e s p a c i n g s in th i s s e t a r e equa l to or l a r g e r than 5 m i l s and the output 

is c o r r e c t e d for e m i t t e r l ead vo l t age l o s s . E t c h e d r h e n i u m shows a s u b 

s t a n t i a l i m p r o v e m e n t o v e r po l i shed r h e n i u m . 

C. E m i t t e r W o r k F u n c t i o n 

E m i t t e r w o r k funct ion w a s d e t e r m i n e d f r o m the m e a s u r e d s a t u r a t i o n 

c u r r e n t unde r i o n - r i c h cond i t i ons . The da ta is p r e s e n t e d in F i g u r e 12 a s 

a function of kTt In P , w h e r e k is the B o l t z m a n n cons tan t , Tg is e m i t t e r 

t e m p e r a t u r e , and Ρ is c e s i u m p r e s s u r e . T h i s da ta was a l s o p lo t t ed as a 

function of T E / T R ) w h e r e TR i s c e s i u m r e s e r v o i r t e m p e r a t u r e . It showed 

a m a x i m u m s c a t t e r of about 0. 1 volt , i nd ica t ing tha t w o r k function does 

not depend only on T E / T R , but s t i l l has a s m a l l d e p e n d e n c e on TE . 

A new c o r r e l a t i o n w a s t r i e d by plot t ing 0E v e r s u s kTE In ( P / C ) , w h e r e 
7 

C = 3. 6 χ 10 . T h e cons t an t C is c h o s e n in an a t t e m p t to obta in a u n i v e r 
sa l r e l a t i o n be tween 0E and TE and P . The s c a t t e r in the da ta for t h i s c o r 
r e l a t i o n is r e d u c e d to 0. 05 V. 

D. V a r i a b l e - S p a c i n g Data 

F a m i l i e s of v o l t - a m p e r e c h a r a c t e r i s t i c s w e r e g e n e r a t e d by v a r y i n g 

the i n t e r e l e c t r o d e spac ing whi le a l l the o the r p a r a m e t e r s w e r e held con

s tan t . T h e c e s i u m p r e s s u r e , e m i t t e r t e m p e r a t u r e s and i n t e r e l e c t r o d e 

s p a c i n g s in t h e s e f a m i l i e s w e r e s e l e c t e d in such a way as to yie ld the vol t -

a m p e r e c h a r a c t e r i s t i c s at v a r i o u s c o m b i n a t i o n s of P d and ion r i c h n e s s 

v a l u e s . The da ta is useful for p l a s m a a n a l y s i s and is shown in F i g u r e s 13 

to 19. 

V. E L E C T R O N E G A T I V E ADDITIVES 

A. Effect of C e s i u m F l u o r i d e 

3, 4, 5 In p r e v i o u s i n v e s t i g a t i o n s f luor ine a p p e a r e d to p r o d u c e a subs t an 

t i a l change in the e m i s s i o n c h a r a c t e r i s t i c s of m e t a l s u r f a c e s . E x p e r i m e n 

ta l s t u d i e s in the p r e s e n c e of c e s i u m showed a def in i te i m p r o v e m e n t 
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in per formance , but the effect was not reproducible and d isappeared after 

a short t ime . A m a s s - s p e c t r o m e t r i c examination of the outgassing of 

cesium fluoride showed that , in the previous m e a s u r e m e n t s , the vapor 

p r e s s u r e of water was high enough to affect the emiss ion c ha ra c t e r i s t i c s 

and overshadow the effect of f luorine. An e laborate t es t vehicle was 

used to study the effect of special ly purified C s F pe l l e t s . These and 

other r e su l t s showed that even where the re is significant fluoride 

coverage , the emi t te r work function is not i nc reased as much as in the 

p re sence of oxygen. The i nc r ea se in work function produced by fluoride 

is 0. 3 eV, while that produced by oxygen is 0.7 eV. The conclusion is 

that, in the previous s tudies , water vapor contamination had been 

responsib le for the init ial improvement and the la ter de te r iora t ion of 

pe r fo rmance . 

7 
B. Converter Per formance with Cesium plus Cesium Oxides 

Cesium oxides were formed on the collector and guard surfaces of a 

var iab le -spac ing conver te r . The additive p r e s s u r e was control led by 

the t e m p e r a t u r e of the collector and guard, and cesium p r e s s u r e was 

controlled by the cesium r e s e r v o i r t e m p e r a t u r e . A definite oxygen 

effect was observed when the collector and guard t e m p e r a t u r e s were 

r a i sed in the range of 600 to 900°K. Oxygen produced a dec rea se of 

0. 3 volt in the cesiated work function of the emi t t e r . 

The per formance improvement was equivalent to an i nc r ea se in 

spacing by a factor of four at the same output. A 300-hour life t es t 

showed stable per formance within ± 10%. . 
Q 

C. Converter Per formance with Cesium Oxide Only 

P re l im ina ry data was obtained to study the possibi l i ty of using cesium 

oxides as a source of both cesium and oxygen. A f ixed-spacing conver te r 

with only one r e s e r v o i r containing cesium oxides was used. The data 

from this conver ter was compared with data from the same emi t t e r and 

collector in a ces ium-only conver te r . In the ces ium-only data, the 
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t empera tu re range of cesium was from 560 to 640°K. In ces ium-oxide-

only data, the t empera tu re range of cesium oxide was 670 to 700eK. 

Therefore , the coldest component of the cesium-oxide-only conver ter is 

about 100'K hotter than the coldest component of the ces ium converter . 

There is a possibil i ty that the operating t empera tu re of the cesium-oxide 

r e se rvo i r can be further increased. A higher t empera tu re range would 

make cesium-oxide-only conver ters more a t t rac t ive for most applications. 

Figure 20 shows a comparison of the envelopes of the cesium-only and 

the ces ium-oxide-only famil ies . The cesium-oxide envelope has a s teeper 

slope than the cesium envelope because the ces ium p r e s s u r e s a r e lower 

and electron scat ter ing is l e s s . 

A 400-hour life tes t showed stable per formance within i l 0%. 
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Fig. 19- Variable-Spacing Family at Τ, = 1690 "Κ 
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Fig. 20. Performance Comparieon of the Cesium-Oxide 
Connector witha Cesium Converter at T( = 1900*K. 
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DISCUSSIONS 

Speaker of paper A - l ; G. N. HATSOPOULOS 

KNOERNSCHILD (Germany): 
How do you m e a s u r e the degree of ion r i chnes s? You mention that spec ta
cular improvements were obtained with additives like Cs -ch lo r ide . How 
large was this improvement? 

HATSOPOULOS (USA): 
We did not m e a s u r e the ion- r i chness unfortunately. We have not found any 
good techniques of doing so. We calculated it from the emi t t e r work-function 
that we measu red at that point and the Saha-Langmuir equation. This is the 
ion- r i chness based on that calculation. As far as some of the spectacular 
resu l t s that I mentioned a r e concerned, the best r esu l t s that were obtained 
were inadvertently with wet Ces ium-F luor ide . The water p resen t in the 
Ces ium-Fluor ide produced the effect. 

Compared, for instance, to the data that I showed he re , the power density 
at the same voltage and at the same t empera tu re would be about twice. Next 
best data that we obtained were with oxygen on the col lector , where we could 
adjust the oxygen p r e s s u r e by adjusting the col lector t e m p e r a t u r e . The r e 
sults in that case , were about 50% bet ter than the resu l t s I p resen ted h e r e . 

PRUSCHECK (Germany): 
F ig . 12 shows a l inear dependence of Ĝ  ve r sus k T ^ In p . The las t t e r m 
is the express ion for i so the rmal change of s tate (compress ion or expansion 
work) if ρ could be replaced by a p r e s s u r e ra t io (which is a lso requi red from 
dimensional reasons) . Can the l inear dependence be explained by the rmody
namics ? 

HATSOPOULOS: 

In this way of plotting the work function, which shows here a much bet ter 
cor re la t ion of the data, has been suggested thermodynamical ly because the 
chemical potential of the vapor, which rea l ly is the m e a s u r e of what forces 
absorption on the surface, is propor t ional to k T ^ log p . Now, as an approxi 
mation you know, kT log ρ va r i e s as the rat io of T r / T because of 
approximately exponential nature of the Cesium p r e s s u r e l ine. 

That is why you end up with the Τ / Τ plot of RASOR. The Τ / Τ plot 
does have some e r r o r in it and once you have good data it is be t ter to plot 
it in kT log p; then you get a much bet ter cor re la t ion . There is a t h e r m o -
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dynamic basis of that. 

Yes, it should be a p r e s s u r e rat io; it should be ρ over some standard p r e s 
sure ρ , but that would require some calculat ions. F r o m here you can find 
what is an appropr ia te standard p r e s s u r e to use which could collapse all 
the data into one line. In fact in some curves that I have not shown, by taking 
appropr ia te p r e s s u r e ρ you can get all these l ines, all of which a r e para l le l , 
to collapse into one. 

PIDD (USA): 
Is there any limitation to the life t ime at elevated t empera tu re of the etched 
surfaces you desc r ibed? 

HATSOPOULOS: 
I do not believe that there is a limitation on life t ime on this surface. We have 
not observed over severa l hundred hours any change of these data that I r e 
port here for the etched surfaces . Another etched converter:, incidentally 
not as good but a lmost as good as this one, is the one which we a re report ing 
tomorrow on an in-pile test and that was for severa l thousands of hours p e r 
fectly s table . So we feel that etching, a proper etching with hea t - t rea tment , 
s tabil izes the surface, and, from there on, it is a stable surface. 

PIDD: 

You get an enhanced performance by t reat ing the surface, but you also can 
get an enhanced performance by electronegative addit ives. Do those two im
provements combine? 

HATSOPOULOS: 

That is a good question. Our problem with electronegative additives is that 
we still don't know how to control them reproducibly, so as to make a c r i 
t ical experiment with an etched surface with an electronegative additive. We 
a r e planning to do this in fact and we hope we will do it soon. Now as to the 
speculation whether they add or not, both effects were tending to inc rease 
the bare work function of the surface. Now, there is a question of how much 
you can increase the bare work function of the surface before that becomes 
a disadvantage, because after a while any theory p r e d i c t s that if you go to a 
bare work function of 7 Volts then things will not be so good. So I don't know 
the answer to that question. 

GROSS (Germany): 
Concerning the question of Dr. PIDD, whether the work function can be in-
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c reased by addit ives: The answer is y e s . We will p resen t measu remen t in 
this conference, showing that the ba re work function of (110) tungsten will 
be increased by oxygen up to 6 eV. 

HATSOPOULOS: 

We have as much concern about bare work function measu remen t as you have 
had and I understand that you have developed a c r i t e r ion of being able to pin 
down bare work function m e a s u r e m e n t s . The trouble with bare work func
tion measu remen t s i s , as you know, the p resence of oxygen in your vacuum. 
So I do not t rus t very much our bare work function m e a s u r e m e n t s , but for 
whatever they were the etching produced about a 0. 3 eV r i se in the work 
function. But that may not be the p roper number because bare work 
function measu remen t s a r e not very rel iable until we develop good control of 
vacuum, - and I think you have done a very nice job recent ly in this di rect ion. 
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CHARACTERISTICS OF A THERMIONIC CONVERTER "WITH A CHLORIDE-
VAPOR-DEPOSITED TUNGSTEN EMITTER AND A NICKEL COLLECTOR* 

V.C. Wilson 
General Electric Research and Development Center 

Schenectady, New York 

ABSTRACT 

A chloride-vapor-deposited (110) tungsten emitter with a 

vacuum work function of 4.96 e .v. was b u i l t into a 0.005-inch-

spaced converter with a n ickel c o l l e c t o r . This converter 

yielded almost the same output power as did a converter with a 

s ing le -c rys t a l (110) tungsten emi t te r , 0.002 inch spacing and 

a molybdenum co l l ec to r . I t i s a lso compared with two other 

similar conver ters . The vapor-deposited (110) tungsten surface 

i s extremely s t ab l e . The co l l ec to r work function decreased 

when the device was l e f t a t room temperature for one month. 

At intermediate Cs coverages, the (110) plane of tungsten 

yie lds a higher e lectron emission than any other plane of 

tungsten. This plane i s a lso the most densely packed and the 

most s table thermally. The San Fernando Laboratories have 

developed a chloride process for vapor-deposit ing tungsten with 

the (110) planes p a r a l l e l to the bulk surface. Several samples 

*This work was supported by the NASA, Lewis Research Laboratory 
under Contract No. NASA 3-8511. 
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of these deposits were mechanically polished, e lectropol ished, 

2 

e lect ro-etched to expose the (110) planes, and had the or ien

ta t ion checked by x-ray d i f f rac t ion . Measurement of the 

surface work function by electron thermionic emission in 

vacuum appeared to be the best c r i t e r i on for se lec t ing a well 

or iented and uniform sample. Heating to 2700°K for 1/2 hour 

produced large (110)-oriented c rys t a l s 1 to 2 mm in diameter. 

These grew at the expense of c r y s t a l l i t e s with other or ienta

t ions . As the percentage of (110)-oriented surface increased, 

the vacuum work function increased and approached 5.0 e.v. 
Additional heating did not change the work functions and the 

3 surfaces appeared to be very s t ab l e . L. Yang and R.G. Hudson 

have made similar observations. 

A sample with ï' - 4.96 e.v. was used as an emitter in a 

5-mil-spaced thermionic converter with a nickel co l l ec to r . 

Figure 1 shows a typical family of load l i n e s . Figure 2 shows 

the envelope of such families a t ó d i f ferent emitter tempera

tu res . The 3 sol id l ines of Fig. 3 compare th i s converter with 

two other converters also having 5-mil spacing and nickel 
/ 0 

collectors at 20 amp/cm . In this design the heat from the 

collector is removed by radiation. As may be seen from Fig. 1, 

at T„ = 2153°K the collector ran at 1061°K for the curve that 
2 gave the optimum output at 20 amps/cm . It is believed that 

for maximum output this is too high a collector temperature 
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for this emitter temperature. The dashed extension of the 

curve for this converter in Fig. 3 is a probable output that 

one would obtain if the collector could be kept cooler. 

0 2 5 0 5 0 7 5 10 1.25 1.5 2.0 
ELECTRODE POTENTIAL DIFFERENCE- VOLTS 

0.25 0.5 0.75 1.0 1.25 1.5 2.0 
ELECTRODE POTENTIAL DIFFERENCE- VOLTS 

Fig. 1 A family of load lines. Fig. 2 Envelopes of load lines 

Originally the collector exhibited a minimum work function 

of 1.61 e.v. in Cs vapor. After a month at room temperature, 

Φ was measured to be 1.43 e.v. Data presented here are with c 
this low Φ . In another experiment a similar result was c 
observed; i.e. the work function of a tungsten surface in 

cesium vapor changed from 1.72 to 1.47 e.v. in three weeks at 

room temperature. In both cases during the initial operation 

period of several hours there was no apparent change in 
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Fig. 4 Comparison of four simi
lar converters. 

converter performance. The changes appeared to occur while the 

converters were left for a few weeks at room temperature. One 

possible hypothesis is that in converters that have been care

fully cleaned and contain cesium, which acts as a getter, the 

oxygen pressure is so low that it takes a few days for a mono

layer of oxygen to accumulate on the collector surface. The 

low work function surface may be a Ni-O-Cs or a W-O-Cs com

pound formed at room temperature, or possibly formed the next 

time the collector is warmed. 

Figure 4 compares the output power of four converters. 

The solid lines represent this converter. The open circles 

give data presented by Athanis and vanSomeren for a thermionic 
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converter with a single-crystal (110)-surface tungsten emitter 

and a molybdenum collector. The data from Athanis and 

vanSomeren has been corrected for the ohmic voltage drop in 

the emitter lead and for a 40°K temperature drop through the 

emitter. It is surprising that the two converters had almost 

identical output powers because the Athanis and vanSomeren 

converter had a 2 mil spacing, whereas the converter of this 

report had a 5 mil spacing and, of course, the collectors are 

different. Possibly nickel is a slightly better collector than 

molybdenum and is sufficiently better to compensate for the 

difference in the spacing. One can conclude that the vapor-

deposited polycrystalline tungsten emitter oriented with the 

(110) crystallites exposed is as good as a single-crystal tung

sten emitter. This fact is significant. Also Fig. 4 shows, 
7 Ά for comparison, data from two other similar converters. ' 

CONCLUSIONS 

Although this converter was not operated for a long period 

of time to demonstrate stable operation with a long life, there 

were no indications of a reduction in output power with opera

tion. Extensive heat treatments of the emitter monitored by 

microscopic observation and work function measurements, indi

cated that the (110) surface was extremely stable. 

The converter with the (110) oriented polycrystal tungsten 

emitter gave almost identical output to one with a single-
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c r y s t a l (110) t u n g s t e n e m i t t e r . 

The c o l l e c t o r work f u n c t i o n d e c r e a s e d w h i l e s t a n d i n g a t 

room t e m p e r a t u r e fo r one month . 
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Résumé -

Nous avons r é a l i s é un type de c o n v e r t i s s e u r cy l indr ique muni d'une 
s t r u c t u r e adsórbante poreuse e t d 'un r é s e r v o i r à césium l iqu ide séparés 
par une vanne ac t ionnab le lorsque le conve r t i s s eu r e s t en fonctionnement. 
Cet te d i s p o s i t i o n permet d ' e f f e c t u e r su r le même c o n v e r t i s s e u r de nombreux 
e s s a i s de conversion avec ou sans phase l i qu ide de césium. Les premiers 
e s s a i s (quelques d iza ines d ' heu res ) ont montré un fonctionnement s a t i s f a i 
sant du c o n v e r t i s s e u r l o r s q u ' i l t r a v a i l l e uniquement avec une s t r u c t u r e à 
césium a d s o r b e . . 

1 - In t roduc t ion 

La s t r u c t u r e la plus simple que l ' o n pu isse env i sager pour un r éac 
teur thermoionique e s t c e l l e du r é a c t e u r formé par un assemblage de diodes 
i n d i v i d u e l l e s t r a v a i l l a n t en vapeur s èche , c ' e s t - à - d i r e exempte de r é s e r 
v o i r à césium l i q u i d e , c ' e s t - à - d i r e de poin t f r o i d . Un moyen de f a i r e fonc
t ionner une c e l l u l e de c e t t e manière e s t d ' i n c o r p o r e r dans l ' e n c e i n t e une 
s t r u c t u r e méta l l ique poreuse pouvant adsorber une q u a n t i t é de césium s u f f i 
san te pour a s s u r e r le bon fonctionnement du c o n v e r t i s s e u r . 

Le p r inc ipe de la p résen te étude e s t le su ivant : le c o n v e r t i s s e u r 
e s t muni d'une s t r u c t r u e adsórbante e t d'un r é s e r v o i r à césium l i qu ide sépa
ré par une vanne d ' i s o l e m e n t . Le c o n v e r t i s s e u r peut donc fonc t ionner avec 
e t sans phase l iqu ide par simple ac t ion sur la vanne ; nous avons a i n s i pu 
comparer e t su iv re l ' é v o l u t i o n des performances dans les deux cas de fonc-
t ionnement. 

2 - Description du système d'essais 

La c e l l u l e conver t i s seuse ( f igure 1) proprement d i t e comporte un 
émetteur à paro i épa isse (4 mm) de façon à avo i r une température homogène 
La surface émet t r i ce e s t de 20 cm2. 4 thermocouples W-Re 5 %, W-Re 26 7„ 
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sont disposés à d i f f é r e n t e s hauteurs dans l ' é p a i s s e u r de la paroi d 'émet
t e u r . Deux na tures d 'émet teur ont é té essayées : molybdène e t tungs tène . 
L'émetteur tungstène e s t obtenu par dépôt pyro ly t ique ( réduct ion de WCI5) 
sur une ébauche en molybdène massif ; l ' é p a i s s e u r du dépôt e s t de 50 à 
100 μ. Le c o l l e c t e u r e s t en molybdène, l ' e space i n t e r é l e c t r o d e e s t de 250 μ 
à f ro id , s o i t environ 150 μ à chaud. La diode es t munie d'un queusot de 
pompage sur lequel sont d i sposés , en pa r t an t de la c e l l u l e : la s t r u c t u r e 
adsórban te , puis la vanne méta l l ique e t enfin le r é s e r v o i r à césium l i q u i 
de. Après pompage e t dégazage, l ' e x t r é m i t é du queusot e s t ob tu rée . 

Les s t r u c t u r e s adsorbantes cho i s i e s sont des éponges méta l l iques 
obtenues par f r i t t a g e de poudres f ines (gra ins de 1 à 5 μ) de tungstène 
ou de molybdène. Le f r i t t a g e e s t e f fec tué à 1 600 °C, i l e s t poursuiv i 
j u s q u ' à ce que la p o r o s i t é de la s t r u c t u r e tombe à environ 25 "L ; le d i a 
mètre des pores e s t d 'environ 5 μ. Quelques cent imètres cubes de c e t t e épon
ge sont placés dans le c o n v e r t i s s e u r , la surface t o t a l e d ' adsorp t ion p r é 
sentée e s t d 'envi ron 1 m.2 . La vanne d ' i so l emen t , ent ièrement m é t a l l i q u e , a 
é t é conçue de façon à pouvoir fonct ionner à 500 °C. 

Le c o n v e r t i s s e u r , muni d'un système de chauffage d 'émet teur e t d'un 
système de re f ro id i ssement de c o l l e c t e u r e s t p lacé sur un montage d ' e s s a i s 
ent ièrement sous vide ( f igure 2 ) . Ce montage d ' e s s a i s permet d'amener, puis 
de s t a b i l i s e r le conve r t i s s eu r à un poin t de fonctionnement quelconque ; 
les paramètres su ivan t s peuvent ê t r e rég lés indépendamment : puissance 
d ' e n t r é e , température du c o l l e c t e u r , température de l ' a d s o r b a n t , tempéra
ture du r é s e r v o i r de césium, r é s i s t a n c e de charge . En o u t r e , douze paramè
t r e s sont e n r e g i s t r é s en permanence : puissance d ' e n t r é e , p res s ion dans 
l ' e n c e i n t e , températures en quatre po in t s de l ' é m e t t e u r , températures en 
deux poin ts du c o l l e c t e u r , température de l ' a d s o r b a n t , température du rése r 
vo i r à césium l i q u i d e , courant de s o r t i e , tens ion de s o r t i e . 

Un système de t r ansmiss ion , é lec t r iquement i s o l é e t é tanche , permet 
de manoeuvrer la vanne de l ' e x t é r i e u r lorsque le conve r t i s seu r e s t en fonc
tionnement . 

3  Résu l t a t s 

3 . 1 . Fonctionnement vanne ouverte 

La première p a r t i e des e s s a i s e s t e f fec tuée vanne o u v e r t e , c ' e s t  à 
d i re avec r é s e r v o i r à césium l i q u i d e . Cette première phase a pour b u t , 
d 'abord de v é r i f i e r les performances de la c e l l u l e en fonctionnement nor
mal (avec phase l i qu ide ) e t simultanément de permet t re au césium de s ' adsor 
ber progressivement sur la s t r u c t u r e poreuse : la température de c e t t e der
n iè re e s t maintenue à une va leur légèrement i n f é r i e u r e à la température du 
c o l l e c t e u r , e l l e détermine le nombre de p a r t i c u l e s adsorbées à l ' é q u i l i b r e 
(fonctionnement à press ion de césium c o n s t a n t e ) . Les f igures 3 e t 4 donnent 
les pr inc ipaux r é s u l t a t s , puissance de s o r t i e e t rendement en fonction de 
la puissance d ' en t r ée e t de la température d 'émet teur pour les deux types 
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d 'émet teur essayés : molybdène e t t u n g s t è n e . Une puissance de s o r t i e de 
5 W/cm2 e t un rendement de 11 "L sont a t t e i n t s à 1 650 °C pour le tungstène e t 
à 1 750 °C pour le molybdène. Les f igures 5 e t 6 r ep ré sen t en t les p r o f i l s 

de température d ' émet teur re levés pendant le fonctionnement du c o n v e r t i s 
s u e r . Nous voyons que la r é p a r t i t i o n de température sur l ' é m e t t e u r e s t 
assez p l a t e (sauf du côté de la connexion) , lorsque la puissance de s o r t i e 
e s t maximale. Par c o n t r e , lorsque la puissance de s o r t i e n ' e s t pas maximale 
l ' é c a r t de température e n t r e les deux ex t r émi t é s de l ' é m e t t e u r peut devenir 
t r è s important ; par exemple ( f igure 6) pour P s / P s M^X = 75 "L, on a : 
Δ Τ ^ 3 0 0 °C. 

3.2. Fonctionnement vanne fermée 

Après c e t t e première phase d ' e s s a i s (environ une centa ine d ' h e u r e s ) , 
le conve r t i s s eu r a é t é s t a b i l i s é à un po in t de fonctionnement donné, la 
communication avec le r é s e r v o i r à césium l i qu ide é t an t maintenue. Pendant 
ce temps, l ' é q u i l i b r e s ' é t a b l i t dans l ' e n c e i n t e de la c e l l u l e : les taux 
de recouvrement s ' é t a b l i s s e n t , sur les sur faces à d i f f é r e n t e s températures 
(émet teur , c o l l e c t e u r , adsorbant , queusot , e t c . . . ) , de façon à ce que en 
tous po in ts de la c e l l u l e , i l y a i t é q u i l i b r e e n t r e la p ress ion de césium 
(imposée par la phase l i q u i d e ) , la température e t le taux de recouvrement 
du point cons idé ré . L ' é q u i l i b r e e s t a t t e i n t lorsque le flux t o t a l d 'atomes 
de césium, t r a v e r s a n t une sec t ion quelconque s i t u é e e n t r e le c o n v e r t i s s e u r 
e t le césium l i q u i d e , e s t n u l . A ce moment, l ' i s o l e m e n t du r é s e r v o i r de 
césium l iqu ide par simple fermeture de la vanne, peut ê t r e r é a l i s é sans 
pe r tu rbe r l ' é q u i l i b r e . La q u a n t i t é de césium emmagasinée dans la c e l l u l e 
e s t a l o r s j u s t e c e l l e néces sa i r e au maintien de l a p ress ion opt imale 
(pour le poin t de fonctionnement i n i t i a l ) . P lu s i eu r s e s s a i s d'une v ing t a ine 
d 'heures ont é té e f fec tués ; la f igure 7 r ep résen te l ' é v o l u t i o n de pu i s san 
ce de s o r t i e en fonction du temps (temps compté après la fermeture de la 
vanne) : la ba i s se de performances e n r e g i s t r é e e s t de l ' o r d r e de 10 à 20 7°. 
Cet te ba i sse e s t due à une b a i s s e de la p ress ion de césium, puisqu 'en e f f e t , 
la remise en communication (par réouver ture de la vanne) du r é s e r v o i r l i q u i 
de (à température opt imale) e t de l ' e n c e i n t e i n t e r e l e c t r o d e provoque la 
remontée immédiate de la puissance de s o r t i e à sa va leur i n i t i a l e . La quan
t i t é de césium provoquant c e t t e ba i s se de p ress ion peut ê t r e est imée à 
l ' a i d e des courbes donnant, d'une pa r t la puissance de s o r t i e en fonction 
de la press ion de césium ( re levée expérimentalement , f igure 8 ) , d ' a u t r e pa r t 
la p ress ion de césium en fonction du nombre t o t a l d'atomes p ré sen t s dans 
l ' e n c e i n t e ( ca lcu lée à p a r t i r des équat ions de 1 'adsorpt ion , f igure 9 ) . 
A i n s i , aux b a i s s e s de performances cons idérées ( f igure 7) correspond une 
consommation moyenne de césium d 'environ 1 μg/heure . 

Pendant le fonctionnement en vapeur sèche , deux s o r t e s d ' o p é r a t i o n s 
ont é té f a i t e s ( f igure 7) : 

 A r r ê t , puis redémarrage du c o n v e r t i s s e u r , après r é t ab l i s semen t des 
températures aux va leu r s i n i t i a l e s , nous re t rouvons sensiblement les mêmes 
performances ( le temps d ' a r r ê t e t de remise en route a é t é décompté, i l 
n ' a p p a r a î t pas sur la f igure 7 ) . 
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 Augmentation de la température de l ' adsorban t après un ce r t a in 
temps de fonctionnement : on e n r e g i s t r e a l o r s une remontée de la puissance 
de s o r t i e à une va leur proche de sa va leur i n i t i a l e . Cette remontée e s t due 
à la remontée de press ion de césium à sa va leur op t ima le . 

4  Conclusion 

Les premiers e s s a i s (quelques d iza ines d 'heures ) de conver t i s seu r s 
sans phase l iqu ide de césium (vapeur sèche) ont mis en évidence un fonc
tionnement s a t i s f a i s a n t . Tou te fo i s , nous avons e n r e g i s t r é dans le temps 
une ba i s se de performances consécutive à une ba i s se de press ion de césium : 
ceci montre que le flux d'atomes inc iden t s é t a i t supér ieur au flux d'atomes 
r é f l é c h i s au moment de la fermeture de la vanne. Deux hypothèses peuvent 
ê t r e avancées : 

 l ' é q u i l i b r e n ' e s t pas a t t e i n t au moment de l ' i so l emen t e t la 
s t r u c t u r e poreuse continue d 'adsorber du césium, 

 i l y a une consommation r é e l l e de césium due à des r éac t ions 
chimiques i n t e r n e s , 

Les e s s a i s de plus longue durée en cours doivent permet t re d ' é l u 
c ider le phénomène e t de rédui re c e t t e ba i s se de press ion : en e f f e t , pour 
que le système s o i t s t a b l e , i l faut que la consommation de césium ( r é e l l e 
ou apparente) s o i t de l ' o r d r e de 10~3 μg/heure , c ' e s t  à  d i r e mi l le fois 
moins que le taux actuel lement mis en évidence . 
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L'examen des dépôts pyro ly t iques se f a i t hab i tue l l ement au micros
cope opt ique : on o b t i e n t a i n s i une idée approximative de la s t r u c t u r e de 
la couche e t on en dédui t les d i r e c t i o n s p r é f é r e n t i e l l e s de c r o i s s a n c e . En 
f a i t , on ne peut observer les dépôts qu 'après une p répa ra t i on soignée de 
l ' é c h a n t i l l o n : enrobage dans une r é s ine thermodureissab l e , coupe, p o l i s s a 
ge mécanique, a t t aque chimique. Cet te p répa ra t i on peut pa r fo i s a l t é r e r 
l ' é t a t de l ' é c h a n t i l l o n , par exemple en i n t r o d u i s a n t des pouss iè res méta l 
l iques dans les i n t e r s t i c e s des c r i s t a u x . De p l u s , la surface examinée e s t 
plane , e t on ne peut observer la d i r e c t i o n des l ignes c a r a c t é r i s t i q u e s qui 
coupent le plan de la p r é p a r a t i o n . Ces l ignes sont t r è s importantes quand 
i l s ' a g i t d'une c ro i ssance c r i s t a l l i n e de type b a s a l t i q u e comme c ' e s t le 
cas dans la décomposition des halogënures en phase vapeur . 

Le microscope é l ec t ron ique secondaire à balayage "Stéréoscan" e s t 
un a p p a r e i l , récemment mis au p o i n t , qui permet d ' obse rve r des é c h a n t i l 
lons de forme quelconque, avec un gross issement supé r i eu r à c e l u i du micros
cope opt ique e t une profondeur de champ c o n s i d é r a b l e . Dans ce t a p p a r e i l , 
un pinceau é l ec t ron ique t r è s fin explore la surface apparente de l ' é c h a n 
t i l l o n par un balayage l i n é a i r e de type t é l é v i s i o n . Un d é t e c t e u r r e c u e i l l e 
les é l e c t r o n s secondai res , quel que s o i t l eur poin t de dépar t à la surface 
de l ' é c h a n t i l l o n . Le même balayage l i n é a i r e e s t appl iqué aux bobines de 
déf lexion d'un o sc i l l og raphe ca thod ique , dont la luminos i té e s t modulée 
par le courant d ' é l e c t r o n s secondai res i s su de l ' é c h a n t i l l o n e t convenable
ment a m p l i f i é . Sur chaque photographie r é a l i s é e à l ' a i d e du S té réoscan , la 
b r i l l a n c e d'un poin t correspond au nombre d ' é l e c t r o n s secondai res émis par 
le poin t r ep ré sen t é sur l ' é c h a n t i l l o n . Cet te q u a n t i t é dépend du matér iau 
e t de l ' i n c i d e n c e des é l e c t r o n s sur la s u r f a c e . 

Les photographies c i dessous montrent des é c h a n t i l l o n s de dépôts de 
t ungs t ène , sur s u b s t r a t molybdène e t de carbure du tungstène obtenu par 
cracking sur un f i l de t ungs t ène . 

La photographie n° 1 au gross issement 10.000, montre la f inesse de 
r é s o l u t i o n de l ' a p p a r e i l , qui met c la i rement en évidence une f a i l l e de 
l a rgeur 0,2 μ. 

/ 
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Sur la photo N° 2 (grossissement 2 .000 ) , on d i s t ingue les c r i s t a l 
l i t e s de molybdène, de dimensions 5 à 10 μ, les colonnes pr ismat iques de 
tungstène de diamètre 1 à 2 μ, des b u l l e s aux poin ts de gra ins en t re les 
co lonnes , dont le diamètre e s t i n f é r i e u r à 1 μ, e t une couche s u p e r f i c i e l l e 
qui recouvre une grande p a r t i e de l ' e x t r é m i t é des co lonnes . Cer ta ines co
lonnes émergent à t r ave r s c e t t e couche. On cons ta te que le tungstène déposé 
à p a r t i r de héxachlorure présente des bu l l e s , comme c e l u i qui e s t déposé 
à p a r t i r d ' hexa f luo ru re , mais de beaucoup plus p e t i t e s dimensions, ce qui 
les r enda i t i n a c c e s s i b l e s à l ' o b s e r v a t i o n au microscope o p t i q u e . 

Sur la photo N° 3 , on remarque que la surface e s t cons t i t uée de 
grosses c r i s t a l l i t e s sphér iques (10 à 30 μ ) , ellesmêmes formées de gra ins 
approximativement sphér iques de moins de 500 A. Les plus grosses c r i s t a l 
l i t e s ont peu de cohésion, c e r t a i n e s se sont déchaussées spontanément. 

La photo n° 4 montre une surface de tungstène que le cracking n ' a 
pas carburée , mais où i l a f a i t a p p a r a î t r e des c r i s t a u x hexagonaux s p i r a 
les de tungstène de 5 μ env i ron . 



- 59 -

Photo N° 1 

Photo N° 2 
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Photo N° 3 

Photo N° 4 
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ABSTRACT - T h i s p a p e r c o v e r s the m e t h o d s u s e d at J P L to i m p r o v e the 
r e l i a b i l i t y and ef f ic iency of t h e r m i o n i c c o n v e r t e r s . T e s t of m o r e than 135 
t h e r m i o n i c c o n v e r t e r s d e m o n s t r a t e d that c o n v e r t e r s , a s s e m b l e d f r o m c a r e f u l l y 
p r o c e s s e d p a r t s and p r o p e r l y e v a c u a t e d , w e r e c a p a b l e of l o n g - t e r m o p e r a t i o n 
with h igh output power d e n s i t i e s at h igh e m i t t e r t e m p e r a t u r e s . A n a l y s i s of the 
m o s t c o m m o n c a u s e s of c o n v e r t e r f a i l u r e s is a l s o i nc luded . 

INTRODUCTION - The effort at the J e t P r o p u l s i o n L a b o r a t o r y to i m p r o v e 
t h e r m o n i c c o n v e r t e r s w a s c a r r i e d out in the fol lowing w a y s : 

a) S y s t e m a t i c p a r a m e t r i c and d i a g n o s t i c t e s t i n g of the c o n v e r t e r s . 

b) Long t e r m life t e s t i n g . 

c) A n c i l l a r y e x p e r i m e n t s involv ing c e s i u m compatibi l i ty , r e a c t i o n s 
be tween i n s u l a t o r s and r e f r a c t o r y m e t a l s , e t c . 

d) D e t a i l e d m e t a l l o g r a p h i c e x a m i n a t i o n of c o n v e r t e r s with a b n o r m a l 
b e h a v i o r . 

e) I n c o r p o r a t i o n of i m p r o v e m e n t s r e s u l t i n g f r o m the above e x a m i n a 
t ions in s u b s e q u e n t c o n v e r t e r s . 

S ince in i t i a t ion of the p r o g r a m in I960, m o r e than 135 c o n v e r t e r s have been 
t e s t e d . The p r o g r e s s r e f l e c t e d by T a b l e 1 can be a t t r i b u t e d m a i n l y to a b e t t e r 
u n d e r s t a n d i n g of the m a t e r i a l s u s e d in a c o n v e r t e r and i m p r o v e m e n t s in t h e i r 
p r e p a r a t i o n and in the c a r e of p r o c e s s i n g the c o n v e r t e r i t se l f . 

L I F E TESTING - A p r o g r a m of t e s t i n g c o n v e r t e r s to ob ta in r e l i a b l e da ta on 
t h e i r l ife and f a i l u r e m o d e s for s t a t i s t i c a l p u r p o s e s h a s been a c t i v e l y p u r s u e d 
at J P L . P a r t of the life t e s t i n g f a c i l i t i e s a r e shown in F i g u r e 1. 

The m a j o r i t y of the c o n v e r t e r s e x a m i n e d w e r e t hose wi th a p l a n a r e l e c t r o d e 
conf igura t ion wi th an e m i t t e r a r e a of 2 to 2. 55 c m and an i n t e r e l e c t r o d e 

*Th i s p a p e r p r e s e n t s the r e s u l t s of one p h a s e of r e s e a r c h c a r r i e d out at the 
J e t P r o p u l s i o n L a b o r a t o r y , C a l i f o r n i a I n s t i t u t e of Techno logy , u n d e r C o n t r a c t 
No. NAS 7-100 , s p o n s o r e d by the N a t i o n a l A e r o n a u t i c s and Space A d m i n i s t r a t i o n . 
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spac ing of a p p r o x i m a t e l y 50 m i c r o n s . Some c o n v e r t e r s t e s t e d , h o w e v e r , w e r e 
buil t wi th w i d e r i n t e r e l e c t r o d e spac ing to c o r r o b o r a t e the p e r f o r m a n c e 
o b s e r v e d in r e s e a r c h  t y p e , v a r i a b l e  s p a c i n g v e h i c l e s , whi le o t h e r c o n v e r t e r s 
had a c y l i n d r i c a l conf igu ra t ion d e s i g n e d to o p e r a t e wi th e m i t t e r h e a t p i p e s . 
F i g u r e 2 i l l u s t r a t e s typ ica l con f igu ra t ions of the l a t e s t c o n v e r t e r s . 

2 
Output power d e n s i t i e s of 1 7 to 20 w / c m at e m i t t e r t e m p e r a t u r e s be tween 
1900°K and 2000°K have been o b s e r v e d in the l a b o r a t o r y du r ing s u c c e s s f u l 
life t e s t s u n i n t e r r u p t e d th roughou t 8, 000 to 15, 000 h o u r s . C u r r e n t s t a t e of 
the a r t p e r f o r m a n c e b a s e d on t h e s e r e s u l t s and independen t t e s t s (Ref. 1) for 
c a r e f u l l y p r o c e s s e d c o n v e r t e r s , o p e r a t i n g u n d e r the above m e n t i o n e d cond i t i ons , 
a p p e a r s to be a l i f e t ime of a p p r o x i m a t e l y 8, 000 h o u r s . C o n v e r t e r s o p e r a t i n g 
at l o w e r e m i t t e r t e m p e r a t u r e s , t h e r e f o r e being sub jec ted to l e s s s t r e s s , a r e 
expec t ed to a c h i e v e even l o n g e r l i fe . Our t e s t s i n d i c a t e tha t the ru l e of " a 
f ac to r of two for e a c h 50°" m a y apply to t h e r m i o n i c c o n v e r t e r s but add i t iona l 
da ta i s needed to s u b s t a n t i a t e t h i s point of v iew. 

F i g u r e 3 p r e s e n t s the c u r r e n t  v o l t a g e c h a r a c t e r i s t i c s of five c o n v e r t e r s which 
a r e r e p r e s e n t a t i v e of a lot of 40 buil t at the s a m e t i m e on a s e m i  p r o d u c t i o n 
b a s i s . The e l e c t r o d e s c o n s i s t e d of a r h e n i u m e m i t t e r and a m o l y b d e n u m 
c o l l e c t o r , with 50 m i c r o n s i n t e r e l e c t r o d e s p a c i n g . 

F r o m e x a m i n a t i o n of the l a t e s t h a r d w a r e  t y p e c o n v e r t e r s capab le of long t e r m 
o p e r a t i o n at an e m i t t e r t e m p e r a t u r e a r o u n d 2 0 0 0 ° F , it a p p e a r s that a p l a t eau 
o r l eve l h a s been r e a c h e d in r e g a r d to t h e i r p e r f o r m a n c e c h a r a c t e r i s t i c s . 
T h e s e l e v e l s a r e output power d e n s i t i e s of 1 7 to 20 w / c m ^ at 0. 6  0 . 7 v, dev ice 
e f f i c i enc ies of 10 to 12%, and a w e i g h t  t o  p o w e r r a t i o of 1.8 g m / w a t t . R e c e n t 
i m p r o v e m e n t s have a l lowed r e d u c t i o n of the e m i t t e r t e m p e r a t u r e by 200°C for 
a given power output dens i ty ; and outputs of 4 w / c m ¿ at 0. 7 ν have been o b s e r v e d 
in c y l i n d r i c a l c o n v e r t e r s o p e r a t i n g at 1700°K. F u r t h e r t e c h n i c a l a d v a n c e m e n t s 
a r e r e q u i r e d if t h e s e p e r f o r m a n c e s a r e to be s u r p a s s e d . F o r e x a m p l e p r e l i m 
i n a r y r e s u l t s have i nd i ca t ed that the in jec t ion of a c o n t r o l l e d amoun t of O, as 
an " a d d i t i v e " in the i n t e r e l e c t r o d e spac ing changes the e m i t t e r w o r k funct ion. 
The c o r r e s p o n d i n g p e r f o r m a n c e could p e r m i t an i n c r e a s e of the i n t e r e l e c t r o d e 
spac ing by a f ac to r of 4 for the s a m e o p e r a t i n g cond i t ions ( F i g u r e 4 ) . S e v e r a l 
m e t h o d s (Ref. 2) for the i n t r o d u c t i o n of l im i t ed a m o u n t s of oxygen have been 
t r i e d inc luding the d e c o m p o s i t i o n of Cu;?0 , M0O3, C s £ 0 2 e t c . H o w e v e r , 
long t e r m c o m p a t i b i l i t y and i n s e n s i t i v i t y of the c o n v e r t e r m a t e r i a l s to r e a c t i o n s 
have not been d e m o n s t r a t e d . 

F A I L U R E ANALYSIS  The e x a m i n a t i o n of c o n v e r t e r s at J P L , r e v e a l e d the 
following a b n o r m a l b e h a v i o r s a c c o r d i n g to t h e i r o r d e r of i m p o r t a n c e . 

a) Output power d e g r a d a t i o n (an uns t ab l e condi t ion g e n e r a l l y l ead ing to 
open c i r c u i t ) c h a r a c t e r i z e d by a g r a d u a l d e c r e a s e in output power 
o r by a d r a m a t i c r e d u c t i o n ove r a v e r y s h o r t t i m e . 

b) Open c i r c u i t (with l o s s of power output and i n c r e a s e in output 
vo l t age ) . 

c) Shor t c i r c u i t 
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D e t e r m i n a t i o n of the c a u s e s of de fec t ive ope ra t ion can be c o m p l i c a t e d by such 
p h e n o m e n a as self h e a l i n g of pin h o l e s o r change in m a t e r i a l cond i t ions r e s u l t i n g 
f r o m m a n i p u l a t i o n s du r ing m e t a l l o g r a p h i c e x a m i n a t i o n s . H o w e v e r , i t w a s 
o b s e r v e d tha t in e a c h type of f a i l u r e the de fec t s w e r e g e n e r a l l y l o c a l i z e d in 
c e r t a i n p o r t i o n s of the c o n v e r t e r . T a b l e 2 g ives the m o s t c o m m o n c a u s e s and 
effects of c o n v e r t e r f a i l u r e a r r a n g e d by l oca t i on r a t h e r than by n a t u r e . 

Output power d e g r a d a t i o n w a s g e n e r a l l y t r a c e d to a change in the s t a t e of the 
e l e c t r o d e s u r f a c e , which a l t e r e d i t s t h e r m a l o r t h e r m i o n i c p r o p e r t i e s . M e t a l l i c 
in t e rd i f fus ion o r i n j ec t ion of g a s e o u s p r o d u c t s such a s f i s s i o n p r o d u c t s o r 
d e s o r b e d g a s e s a l t e r e d the t h e r m a l s t a t e of the e l e c t r o d e s ; the depos i t i on of 
r e a c t i o n p r o d u c t s o r the m i g r a t i o n of f o r e ign p r o d u c t s onto the e l e c t r o d e 
s u r f a c e s af fec ted t h e i r w o r k func t i ons . G r a d u a l d e g r a d a t i o n in power w a s a l s o 
t r a c e d to s low l e a k a g e of c e s i u m v a p o r . D e g r a d a t i o n in p e r f o r m a n c e a l s o w a s 
o b s e r v e d a s a r e s u l t of c h a n g e s in c o n t a c t po t en t i a l r e s i s t a n c e at the j unc t ion 
be tween the c o n v e r t e r and the power output l e a d s . 

The open c i r c u i t condi t ion , excep t -when r e l a t e d to m e c h a n i c a l f a i l u r e s in the 
e l e c t r i c a l c i r c u i t or poor c o n n e c t i o n s , w a s a l w a y s the r e s u l t of l o s s of c e s i u m 
v a p o r , e i t h e r by slow l e a k a g e o r by c a t a s t r o p h i c f a i l u r e . In c a s e of s low 
l e a k a g e , open c i r c u i t f a i l u r e w a s p r e c e d e d by g r a d u a l d e g r a d a t i o n of p e r f o r m 
a n c e . 

T H E E L E C T R O D E S - The s h o r t c i r c u i t condi t ion in a c o n v e r t e r w a s g e n e r a l l y 
t r a c e d to m e c h a n i c a l p e r t u r b a t i o n s of the e l e c t r o d e s and o c c a s i o n a l l y to e x c e s 
s ive depos i t i on of e m i t t e r m a t e r i a l on the c o l l e c t o r s u r f a c e by m a s s t r a n s p o r t 
a c t i o n . M e c h a n i c a l d e f o r m a t i o n s r e s u l t e d f r o m fol lowing: 

a) E l e c t r o d e swe l l ing o r bowing due to t h e r m a l s t r e s s e s 

b) C r e e p of the enve lope 

c) S e p a r a t i o n of p o r t i o n s of the e l e c t r o d e f r o m the s u b s t r a t e by 
K i r k e n d a l l diffusion o r c r y s t a l g r o w t h 

d) F a i l u r e of w e l d m e n t s 

E m i t t e r - M a j o r i m p r o v e m e n t s in the c o n v e r t e r r e s u l t e d f r o m the u s e of 
r h e n i u m a s e l e c t r o d e m a t e r i a l and the u t i l i z a t i o n of e m i t t e r s u r f a c e s wi th 
p r e f e r r e d o r i e n t a t i o n ob t a ined e i t h e r by c h e m i c a l v a p o r d e p o s i t i o n (CVD) a n d / 
o r by s u r f a c e t r e a t m e n t . C o n v e r t e r s wi th h i g h e r p e r f o r m a n c e and wi th g r e a t e r 
r e l i a b i l i t y a r e p o s s i b l e -with r h e n i u m b e c a u s e it i s m o r e s t a b l e than t a n t a l u m o r 
m o l y b d e n u m o r t u n g s t e n and h a s a v e r y h igh " b a r e " w o r k func t ion . M a c h i n i n g 
of r h e n i u m r e q u i r e s p e r i o d i c r e - a n n e a l i n g and i s b e s t c a r r i e d out wi th the s p a r k 
d i s c h a r g e m e t h o d and e l e c t r o n b e a m (EB) w e l d i n g . D e p o s i t i o n of t h in r h e n i u m 
l a y e r s by p y r o l i t i c v a p o r d e p o s i t i o n (CVD) or t h e i r bonding by i s o s t a t i c p r e s s u r e 
on a n o t h e r m e t a l l i c s u b s t r a t e ( e s p e c i a l l y t a n t a l u m ) r e s u l t e d in i n t e r m e t a l l i c 
diffusion wh ich , in t u r n , c a u s e d c o n v e r t e r p o w e r d e g r a d a t i o n and e v e n t u a l f a i l u r e 
by K i r k e n d a l l diffusion ( F i g u r e s 5 and 6) . R h e n i u m s u r f a c e s a r e r a t h e r i n s e n s i 
t ive to c h e m i c a l r e a c t i o n s and c a r b u r i z a t i o n and t end to r e m a i n s t a b l e if t h e r m a l l y 
t r e a t e d ( 2 2 0 0 ° C , 10 h r ) . The b a r e w o r k funct ion of p o l y c r y s t a l l i n e r h e n i u m w a s 
o b s e r v e d to be 4 . 9 ± 0. 1 ev depend ing on i t s s u r f a c e p r e p a r a t i o n . 
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R h e n i u m s u r f a c e s (Ref. 3) ob ta ined by CVD f r o m c h l o r i d e v a p o r wi th 80% of 
the s u r f a c e c o m p o s e d of (0001) p l anes o r i e n t e d wi th in 10° n o r m a l to the s u r f a c e 
have v a l u e s of the b a r e w o r k function be tween 5.09 ev (a s m e a s u r e d by the 
e m i s s i o n method) and 5.28 ev ( e l e c t r o n m i c r o s c o p e m e t h o d ) . Such s u r f a c e s 
have r e s u l t e d in m e a s u r e d c e s i a t e d w o r k funct ions as low a s 1.4 ev. The 
" a p p a r e n t " w o r k function of c e s i a t e d r h e n i u m o b s e r v e d at J P L in h a r d w a r e 
c o n v e r t e r s w a s ~ 3 ev. T u n g s t e n s u r f a c e s ob ta ined by the d e c o m p o s i t i o n of 
t ungs ten f luor ide ( W F , ) had a t endency to expose (100) p l a n e s as a p r e f e r r e d 
o r i e n t a t i o n , with a m e a s u r e d " b a r e " w o r k function of 4.5 to 4.7 ev. The 
s u r f a c e s ob ta ined by d e c o m p o s i t i o n of t ungs t en c h l o r i d e (WC1, ) h o w e v e r , 
showed p r e f e r r e d o r i e n t a t i o n of the (110) p l anes wi th a m e a s u r e d w o r k function 
of 4.7 to 5.05 ev (Ref. 4 ) . In the c a s e of t ungs t en , l ike that of r h e n i u m , the 
s u r f a c e p r o p e r t i e s wi th the h i g h e r w o r k funct ions did not s e e m to be i m p r o v e d 
by e l e c t r o e t c h i n g o r t h e r m a l t r e a t m e n t . H o w e v e r , the p o l y c r y s t a l l i n e s u r f a c e s 
of both m e t a l s have been i m p r o v e d a f te r p r o p e r s u r f a c e t r e a t m e n t , and in the 
c a s e of r h e n i u m a 40% i m p r o v e m e n t in c o n v e r t e r p e r f o r m a n c e h a s been o b s e r v e d . 

It w a s our o b s e r v a t i o n c o n f i r m e d by o the r e x p e r i m e n t s (Ref. 5), t h a t s u r f a c e 
l a y e r s l e s s t han 10 m i l s t h i ck (obta ined f r o m v a c u u m e v a p o r a t i o n , CVD, or 
bonding by i s o s t a t i c p r e s s u r e ) r e s u l t even tua l l y in h e t e r o g e n e o u s s u r f a c e s . T h e s e 
s u r f a c e s r e s u l t f r o m vo lume diffusion of the s u r f a c e d e p o s i t wi th the s u b s t r a t e 
wi th c o r r e s p o n d i n g change in the w o r k funct ion. A newly o b s e r v e d phenomenon 
was the a p p e a r a n c e of K i r k e n d a l l p o r o s i t é s on the e m i t t e r s ide facing the 
e l e c t r o n b o m b a r d m e n t f i l a m e n t . The effect was t r a c e d to the diffusion of e m i t t e r 
m a t e r i a l into a t ungs t en l a y e r d e p o s i t e d f r o m the f i l a m e n t . T h i s effect , and 
a b n o r m a l c r y s t a l g rowth a f te r l o n g - t e r m o p e r a t i o n , t ended to change the hea t 
t r a n s f e r c h a r a c t e r i s t i c s be tween the hea t s o u r c e and the e m i t t e r s u r f a c e . 
D e f o r m a t i o n and sagg ing of the e l e c t r o n - b o m b a r d m e n t f i l amen t du r ing the life 
t e s t a l s o led to a b n o r m a l hea t d i s t r i b u t i o n on the e m i t t e r s u r f a c e . 

C o l l e c t o r - C o l l e c t o r s e x a m i n e d at J P L w e r e of m o l y b d e n u m , r h e n i u m , 
p a l l a d i u m and n i o b i u m . E x p e r i m e n t a l s t u d i e s of h a r d w a r e c o n v e r t e r s i n d i c a t e d 
tha t r h e n i u m (when u s e d with a r h e n i u m e m i t t e r ) w a s the bes t c o l l e c t o r s u r f a c e 
m a t e r i a l . I t s m e a s u r e d " a p p a r e n t " w o r k funct ion was 1.47 ev . M o l y b d e n u m 
w a s the second bes t c o l l e c t o r s u r f a c e m a t e r i a l wi th a w o r k function of 1.55 ev, 
fol lowed by p a l l a d i u m with a w o r k function of 1.51 ev; and f ina l ly n i o b i u m with 
a w o r k function of 1.55 ev. The l a s t t h r e e v a l u e s a r e u n c e r t a i n due to p o s s i b l e 
" a d d i t i v e " c o n t a m i n a t i o n . 

C o n v e r t e r s e x a m i n e d a f te r l o n g - t e r m o p e r a t i o n had a depos i t of e m i t t e r 
m a t e r i a l on the c o l l e c t o r (500A th ick a f te r 5000 h r o p e r a t i o n ) . Th i s a c c u m u l a t i o n 
m a k e s it d e s i r a b l e to build the c o n v e r t e r s u s ing i d e n t i c a l m a t e r i a l s for the 
e l e c t r o d e s . H o w e v e r , c o n v e r t e r s exh ib i t ing d e g r a d a t i o n in p o w e r output a s a r e s u l t 

of a c h a n g e a s g r e a t a s 0.3 ev in the c o l l e c t o r w o r k funct ion p o s s e s s e d a h e a v y 
depos i t ( F i g .7). T h e s e d e p o s i t s w e r e of a s e m i c o n d u c t o r n a t u r e , t h e i r r e s i s t a n c e 
v a r y i n g f r o m 0 to 20 m i l l i o h m s a s a function of the c o l l e c t o r t e m p e r a t u r e . 
G e n e r a l l y , t h e s e d e p o s i t s w e r e found to con ta in not only the e m i t t e r m a t e r i a l 
but a l s o c o n t a m i n a n t s g e n e r a l l y p r e s e n t in the c e s i u m and o t h e r s be l i eved to be 
p r o d u c t s of r e a c t i o n s (Ref. 6) . The r a p i d d e c r e a s e of c o n v e r t e r output and the 
p r e s e n c e of l a r g e a m o u n t s of e m i t t e r m a t e r i a l s i n d i c a t e d a f a s t m a s s t r a n s p o r t 
r e a c t i o n . B a s e d on the e l e c t r i c a l b e h a v i o r of the c o n v e r t e r s i t is be l i eved tha t 
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these react ions were produced by uncontrolled amounts of gases (O-, or H2) 
which had diffused from the conver ter components or had leaked through the 
converter envelope. Also, the deposits were re la ted to impur i t ies such as 
silicon, carbon, and aluminum introduced by chemical react ions between 
converter components or by impure ces ium (Fig. 8). 

In an attempt to mold the configuration of the conver ter to a specific mul t i -
converter so lar -genera tor design, the conver ter configuration was encompassed 
in a 30° angle. Difficulties were encountered in adjusting the collector surface 
tempera ture to that for optimum operation at high output power dens i t ies . To 
correc t this problem, a heat pipe covered with a chromium oxide coating was 
used as a heat t ransfe r and rejection sys tem for the col lector . The heat pipe 
(Ref. 7) was constructed from niobium tubing, with two layers of s ta in less 
steel #400 mesh as a wick and with sodium as the operat ing fluid. Unfortunately, 
nucleate boiling of the liquid at the collector interface led to overheating of the 
pipe when the col lector was operating at power densi t ies of 160 w / c m . The 
overheating caused the m e s h and the pipe walls to alloy and the pipe to fail. 
Improved vapor t ransfe r methods and the use of niobium mesh should overcome 
this difficulty. F igure 9 r ep re sen t s the conver ter with i ts heat pipe and Fig . 10 
i l lus t ra tes the improvement in collector surface t empera tu re due to use of the 
heat pipe which also reduced the conver ter weight by a factor of 4 ( from 378 gm 
to 90.5 gm). 

ENVELOPE - Emi t te r Sleeve - Of the two main components of the envelope, 
the supporting emit ter m e m b e r and the m e t a l - t o - c e r a m i c seal s t ruc tu re , the 
former was found to be the prédominent reason of conver ter fa i lure . This thin 
member is subjected to heavy mechanical and the rma l s t r e s s e s and is exposed 
to chemical react ions from both inside and outside the conver te r . Leakage of 
cesium vapor through the emi t te r sleeve resu l t s in catas t rophic fai lures not 
only by open circui t but also by deformation of the emi t te r as resu l t of over 
heating due to the absence of e lect ron cooling. Examples of recrys ta l l i za t ion 
and impuri ty segregat ion at the c rys ta l boundaries a r e presented in F ig . 11 
and in Ref. 8. The react ions appear to be more pronounced in tantalum and 
tungsten than in m o r e stable m a t e r i a l s such as rhenium and it is suggested 
that whenever possible tantalum should be replaced by other m a t e r i a l s m o r e 
res is tant to chemical reac t ions . A design of a r e - en t r an t , convolute, emi t t e r -
support sleeve (Fig. 12) using heavier gauge m a t e r i a l was t r i ed and was 
apparently successful . 

Preferably EB welding should be used for at tachment of the thin emi t te r s leeve, 
as inert gas welding appears to acce le ra te the recrys ta l l i za t ion (probably as 
a resul t of contaminants in the welding a tmosphere) . It appears that further 
technological improvements a re requi red in the a r ea of emi t t e r - suppor t 
s t ructure , especial ly in devices with high cur ren t outputs. 

Ceramic Seal St ructure - M e t a l - t o - c e r a m i c seals using metal l ized high purity 
alumina and niobium as the meta l m e m b e r appear to be l imited to an operating 
tempera ture of 800°C for long t e r m opera t ions . Less pure alumina or m a t e r i a l 
with large grain concentrat ions of impur i t ies is even more prone to deficiencies 
(Ref.9). The m e t a l - t o - c e r a m i c interface and the ce ramic itself appear to be 
the limiting components of the s t ruc tu re . Recent exper iments have shown that 
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p u r e a l u m i n a l o s e s s o m e of i t s t e n s i l e s t r e n g t h and r e s i s t i v i t y when sub jec t ed 
to high t e m p e r a t u r e s in a c e s i u m a t m o s p h e r e , e s p e c i a l l y when th i s s t a t e i s c o m 
pounded by h igh r a d i a t i o n d o s e s . Slow r e a c t i o n s (with a d s o r p t i o n of c e s i u m 
and even tua l c o l l a p s e of the s e a l s t r u c t u r e ) w e r e o b s e r v e d at the m e t a l - t o -
c e r a m i c i n t e r f a c e a f te r e x p o s u r e at h igh t e m p e r a t u r e for long p e r i o d s of t i m e . 
T h e s e r e a c t i o n s a p p e a r to be due to s low diffusion of the b r a z e m a t e r i a l and 
a t t a c k by c e s i u m of the m e t a l l i z e d l a y e r s (Ref. 10). S teps have been t aken to 
r e d u c e the m e t a l - c e r a m i c t r a n s i t i o n by c e r m e t s o r g r a d e d s e a l s and by the u s e 
of high t e m p e r a t u r e e u t e c t i c b r a z e (Refs . 1, 12, and 13) m a t e r i a l s . C e r m e t 
and g r a d e d s e a l s a p p e a r to have d i s t i nc t a d v a n t a g e s o v e r the s t a n d a r d m e t a l l i z e d 
c e r a m i c - t o - m e t a l s e a l , inc lud ing m e c h a n i c a l w o r k p o s s i b i l i t i e s . F u r t h e r w o r k i s 
r e q u i r e d to deve lop long t e r m m e t a l - c e r a m i c s e a l s c a p a b l e of o p e r a t i o n at h igh 
t e m p e r a t u r e (1100CC and above) . Such s e a l s , m o r e o v e r , could p a r t i a l l y a s s i s t 
in the so lu t ion of the e m i t t e r s u p p o r t p r o b l e m by a l lowing the u s e of h e a v i e r 
m a t e r i a l . 

GASEOUS CONTAMINENTS - T h e c e s i a t e d i n t e r e l e c t r o d e spac ing m a y be con
t a m i n a t e d t h r o u g h the fol lowing p r o c e s s : 

a) Slow o u t g a s s i n g of the c o m p o n e n t s of the c o n v e r t e r . 

b) I n t r o d u c t i o n of c e s i u m i m p u r i t i e s . 

c) R e a c t i o n s be tween c e s i u m and o t h e r m a t e r i a l s . 

d) Slow l e a k a g e o r g a s e o u s p e r m e a t i o n f rom wi th in ( f i s s ion p r o d u c t s ) 
o r f r o m ou t s ide the c o n v e r t e r e n v e l o p e . 

Th i s a c c u m u l a t i o n of g a s e o u s i m p u r i t i e s i s one of the m a j o r r e a s o n s for d e c a y 
of c o n v e r t e r p e r f o r m a n c e . The m o s t p r e v a l e n t r e s i d u a l g a s e s o b s e r v e d in 
w e l l - e x h a u s t e d c o n v e r t e r s a r e a s fo l lows: A r , N~, CO, C O ? , C H . , H ? 0 a n d H ? . 
H y d r o g e n f o r m s 90% of the g a s e o u s bulk. The h y d r o g e n n o t only p r o m o t e s m a s s 
t r a n s f e r r e a c t i o n s a n d / o r m e t a l e m b r i t t l e m e n t but i s a l s o r e s p o n s i b l e for a 
r e d u c t i o n in the c o n v e r t e r p e r f o r m a n c e (Ref. 14). With o x y g e n , h y d r o g e n is 
r e s p o n s i b l e for w a t e r cyc le type r e a c t i o n s and a l s o r e a c t s wi th c e s i u m (and 
oxygen) to f o r m c e s i u m h y d r o x i d e which m a y a t t a c k m a t e r i a l s , e s p e c i a l l y 
t a n t a l u m (Ref. 15). 

It w a s found tha t l a r g e a m o u n t s of H7 could be evolved f r o m the O. F . H . C , 
c o p p e r (up to 16 v o l u m e s of H ? ) u s e a in the c o n s t r u c t i o n of the c o n v e r t e r , 
e s p e c i a l l y if it had been f i r ed with H ? p r i o r to i t s u s e . A n o t h e r s o u r c e of 
h y d r o g e n i s in the c e s i u m in so lu te o r h y d r i d e f o r m . A r g o n and the f i s s ion 
p r o d u c t s k ryp ton , xenon and iodine not only a r e d e t r i m e n t a l to the c o n v e r t e r 
p e r f o r m a n c e (Re f s . 16 and 17) but a l so un favo rab ly affect the h e a t t r a n s f e r 
b a l a n c e in the c o n v e r t e r . Oxygen in s m a l l a m o u n t s a p p e a r s to i m p r o v e the 
p e r f o r m a n c e and c e s i a t e d e l e c t r o d e " a p p a r e n t " w o r k function c h a n g e s 
f r o m 1.5 - 1. 6 ev ( p r i o r to oxidat ion) to 1.32 - 1.3 5 ev (af ter oxidat ion) have 
been o b s e r v e d . 

CESIUM - The m o s t c o m m o n c o n t a m i n a n t s found in c e s i u m a r e as fo l lows: Ca, 
F e , Mn, Si, Na, K, Rb, O, and H ( s o m e in the f o r m of ox ides o r h y d r o x i d e s ) . 
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Table 3 p r e s e n t s s e v e r a l - c e s i u m a n a l y s e s of a s r e c e i v e d and a f t e r - u s e m a t e r i a l . 
The o b s e r v e d i n c r e a s e of Mg in one c a s e can be a t t r i b u t e d to a r e a c t i o n wi th 
" L u c a l o x " (con ta in ing 5000 ppm of Mg) whi le the c o p p e r p r o b a b l y c o m e s f r o m 
r e a c t i o n s wi th the c e r a m i c m e t a l l i z i n g l a y e r (Ref. 18). Al though m o s t of the 
m a t e r i a l s u s e d in m o d e r n c o n v e r t e r s a r e not a t t a c k e d by c e s i u m , r e a c t i o n s h a v e 
been o b s e r v e d with s o m e t y p e s of c e r a m i c s and b r a z e s . A l s o r e a c t i o n s -were 
o b s e r v e d to be o r i g i n a t e d by c e s i u m h y d r o x i d e o r by the p r o d u c t s of r e a c t i o n s 
of m a t t e r (SiO and Ta) t r a n s p o r t e d by the c e s i u m . C e s i u m c o n s i d e r e d for 
c o n v e r t e r u s e should be pur i f i ed by m u l t i p l e d i s t i l l a t i o n (Ref. 6) u s i n g a h e a t 
pipe o r by c r y o g e n i c e n t r a p m e n t . 

SUMMARY - The c u r r e n t s t a t e - o f - t h e - a r t of t h e r m i o n i c c o n v e r t e r s p r o p e r l y 
p r o c e s s e d and a s s e m b l e d f r o m h i g h - p r i o r i t y m a t e r i a l s and o p e r a t i n g at e m i t t e r _ 
t e m p e r a t u r e s of 1900 - 2000°K c o n s i s t of power output d e n s i t i e s of 17 - 20 w / c m 
and qui te r e s p e c t a b l e a v e r a g e life t i m e s of about 8000 h o u r s . P r o g r e s s in the 
deve lopmen t of t h e r m i o n i c c o n v e r t e r s h a s l e v e l e d off and a s u b s t a n t i a l b r e a k 
through in t e c h n o l o g y i s r e q u i r e d before the p r e s e n t p e r f o r m a n c e can be s u r p a s s e d . 
F u t u r e a c t i v i t y for c o n v e r t e r i m p r o v e m e n t should involve the fol lowing f i e ld s : 

1) R e i n f o r c e m e n t of the d e l i c a t e e m i t t e r s u p p o r t s t r u c t u r e . 
2) I m p r o v e m e n t of m e t a l - t o - c e r a m i c s e a l s for o p e r a t i o n at h i g h e r 

t e m p e r a t u r e for l o n g e r p e r i o d s of t i m e . 
3) I n t r o d u c t i o n of " a d d i t i v e s " to i m p r o v e c o n v e r t e r p e r f o r m a n c e . 

4) C o n t r o l and p r e p a r a t i o n of e l e c t r o d e s u r f a c e s to i n c r e a s e the 
power output . 
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Table 1. Thermionic Converter P r o g r e s s 

Parame te r s 

Power Output (w) 

Power Density (w/cm ) 

Efficiency (%) 

Maximum Life (hr) 

Vibration (20 g at 
0 to 2000 epe) 

Shock (100 g for 0 .5msec) 

Power to Weight 
Ratio (w/lb) 

Weight to Electr ical 
Power (lb/kw) 

»Test failed 
t No data available or test no 

1962 

12 

6 

3 

119 

* 

* 
16 

63.5 

1963 

2 5 

12 

5 

1500 

* 

* 
33.6 

30.5 

t performed. 

1964 

36 

18 

8 

3200 

* 

* 
54.0 

18. 5 

1965 

4 4 

22 

12.5 

13,150 

OK 

OK 

72.0 

14 

1966 

50 

20 

10 

15,210 

OK 

OK 

57.0 

17.6 

1967 

50 

20 

11 

t 
t 

t 
280 

3 . 6 

Improve
ment 

Factor 

4 . 2 

3 . 8 

4 . 2 

128 

100% 

100% 

17.5 

17.5 

Table 2. Cause and Effects of 
Converter Fa i lu re 

Emitter 

Recrystallization 
Mechanical Deformation 
Fuel Swelling 
Increase in Thermal Resistance 
Intermetallic Diffusion 
Change in Surface Proper t ies 
Material Peeling 
Collector 
Cracking 
Deficient Brazing 
Change in Surface Proper t ies 
Mass Transport Deposition 
Leads 
Poor Connection 
Short Circuit of Leads 
Brazes 
Porosity 
Material Contamination 
Intermetallic Diffusion 
Sleeve 
Pinholes 
Recrystallization 
Contamination 
Processing Deficiencies 
Creep 
Metal Ceramic Seal 
Diffusion of Brazing 
Deposition on Insulator 
Stress Cracking of Ceramic 
Tubulation 
Stress Cracking 
Collapse of Brazing 
Cesium Reservoir 
Poor Brazing 
Defective Pinch-Off 
Processing 
Insufficient Outgassing 
Cesium Contamination 
Inefficient Supervision 
Material Incompatibility 

Estimated Overall 
Percentages of Fai lure 

Open 
Circuit 

X 

X 

X 

X 

X 

X 
X 
X 
X 

X 

X 

X 
X 

X 
X 

70 

Degra
dation 

X 
X 

X 
X 
X 

X 
X 
X 

X 

X 
X 

X 

X 

X 
X 

X 

20 

Short 
Circuit 

X 
X 
X 
X 
X 
X 
X 

X 
X 

X 

X 

X 

X 
X 
X 
X 

10 

Table 3. Analyses of Cesium 
Impuri t ies 

Elements 

A l 

B a 

B 

C a 

Cu 
C r 

F e 

M g 

Mn 

Ni 

Pb 

Si 

S r 

L i 

T i 

T l 

Na 

K 

Rb 

O 

3 

8 

20 

37 

2 

3 

27 

5 

8 

2 

2 

18 

8 

2 

16 

2 

19 

13 

19 

23 

As Received* 
(ppm) 

5 

8 

16 

24 

5 
2 

26 

8 

3 

2 

2 

24 

2 

16 

2 

2 

29 

13 

115 

-

18 

8 

16 

226 

37 

5 

81 

18 

129 
10 

2 

29 
16 

3 

2 

-
66 

36 

1420 

*Data from Dow, GE, and J P L 
( t ) Limited analysis due to striali a 

After Use in Converter (f) 
(ppm) 

5 

-
-
-

500 

10 

10 

150 

-
-
-
5 

-
-
-
-

20 

-
-
-

5 

-
-

15 

153 

-
27 

50 

-
22 

-
60 
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Figure 5. Tantalum  Rhenium 
P r e s s u r e  Bonded Interface 

(central stage) 
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DISCUSSION 

Speaker of paper A-5 : P . ROUKLOVE 

KNOERNSCHILD (Germany): 
What spacing did you use? 

ROUKLOVE (USA): 
In our conver ter the spacing was approximately 50 m i c r o n s . 

BUSSE (Euratom): 
What was the longest l i fe- t ime you observed with a heat pipe conver t e r? 
What was the working fluid and the operating t empera tu re of the heat pipe? 

ROUKLOVE: 

We have had a l i fe- t ime of about 6, 000 hours and the conver ter is still run
ning. The collecte 
pipe was sodium. 
ning. The collector t empera tu re was 875 K. The working fluid of the heat 
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HIGH PRESSURE CAESIUM THERMIONIC CONVERTER 

WITH A COLD REGION 
B. Stefanov and L. Zarcova 

Bulgarian Academy of Sciences, Institute of Electronics, 
Sofia, Bulgaria. 

ABSTRACT. The possibility to have a room temperature re
gion in a caesium thermionic converter is investigated. For 
this purpose the distribution of partial caesium pressure in 
a heated argon-filled vertically placed tube with a cold regi
on at the top is evaluated by two simple methods. Measurements 
are made in the interval of PCs= Ί0 ^ to 10 Torr and P ^ 2 2 to 
20 Torr. The results show that in the beginning of the opera
tion the distribution of PQ is linear along the axis of the 
tube. This linear distribution is determined by the furnace 
temperature at the bottom and by the room temperature near the 
furnace end. Af-cer some period of time (usually several hours) 
of work, depending on the ratio Ρςο/Ρ^χί ***■ *^β whole heated 

region pc becomes constant sharply diminishing near the fur

nace end. This makes possible the developement of thermionic 

converters in which the. insulators and vacuum sealing can be 

fitted at room temperature· 

1. INTRODUCTION. It is convenient to have a room tempera

ture region in a thermionic converter for various applications. 

This cold region makes possible to solve easily the problems 

connected with the electrical insulation of the leads and with 

vacuum sealed assembling. The difficulty arising in the case 

of high pressure caesium thermionic converter is that pc is 

determined by the temperature of this cold region.To avoid it 

a new type of argonfilled converter operating in conditions 

of caesiuminargon diffusion is proposed here. A similar de

vice was reported several years ago by Bohdansky and Schins 

(1) for measurement of saturated caesium pressure. Although 
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this device operated for equal p. and PQ S > this later was de
termined only by p. provided the heat power of the furnace is 
sufficient. It will be shown below that also in the case when 
PQ <· p. it is possible to have a region with ρ~ constant. 
The main difference between the case of Bohdansky (PQ S= P^T·) 
and ours (Ρϋ8<Ρ^Γ) ie * full stratification of the mixture 
Cs-Ar when PQ 3= PA^ and diffusion condition with presence of 
Ar in the C s layer when Ρς„<ΡΑΓ· Thus our purpose was to eva
luate Cs concentration along the axis of a vertically placed 
tube in the presence of argon. 

2. EXPERIMENTAL DEVICE. The experimental tube was a glass 
one (inner diameter 2 cm and useful length 15 cm) with axially 
stretched, tungstene filament (diameter 0,01 cm and length 7 cm) 
and one or two anode rings (diameter 0,8 cm). Some quantity 
of metallic caesium (of the order of 1 g) was introduced into 
the bottom of the tube. The distance between tne bottom and the 
anodes in various investigated tubes was 10 to 14 cm. The lo
wer part of the tube was placed in a movable furnace so that 
the length of the heated part could be regulated by a displa
cement of the furnace. The temperature distribution in the 
furnace was constant within - 2°K except near the upper end 
where a transition from T~ (temperature of furnace) to Τ (room 
temperature) takes place along 1 to 2 cm. 

3. EXPERIMENTAL METHOD. As mentioned above, two methods 
were used. The first one was elementary enough and consisted 
in the measurement of anode current when the filament was di
rectly heated to~1300°K. The necessary anode-cathode voltage 
was supplied by tne voltage drop along the cathode (the tung
sten filament). In this way it is possible to make only rela
tive measurements, i. e. to establish two position of the ano
de in the heated part of the tube where two values of PQ are 
equal (since Τ is constant, the emission current is determi-
ned only by Pç8)· The second method consists in the measure
ment of anode currents I in converter conditions with a half 

a 



- 77 -

period rectifier technique using a calibrated osciloscope.The 
dependence of I on the cathode temperature Τ was measured 
near the low-temperature maximum of I_ and the exact position 
of this maximum as wel as its value was a basis to evaluate 
the relative variation or absolute value of pCs· 

4. RESULTS AND DISCUSSION. The first several hours (this 
time depends on p G s and pAp) the top of the tube was clean 
without traces of caesium. Por this initial period the measu
rements showed that pc has its maximum value at the bottom of 
the tube and decreases to zero at the cold top. After this ini
tial period visible amounts of caesium are deposited on the 
cold end of glass near the end of the furnace. For this final 
period pc is constant in the whole heated volume of the tube 
and corresponds to the maximum initial value of p C a at tae 
bottom. In the vicinity of the furnace end pc sharply dimini
shes· The initial and the final distribution of pc as wel as 
the temperature distribution along the vertical axis are sche
matically shown in fig. 1. 

A sample of the measurements made by the first method 
(anode current with applied voltage) for the Initial time is 
shown in fig. 2. The two curves represent the dependence of 
the anode current I on the furnace temperature Tf· Curve 1 
corresponds to a distance between the anode and the furnace 
end h = 4,7 cm and curve 2 - to h = 2 cm. The difference in 
the two curves is obtained only by 2,7 cm displacement of the 
furnace. The distance bottom - anode is 13,3 cm. Obviously two 
points on the two curves with the same I have the same PQ S« 
If we assume linear distribution of pc we shall be able to 
calculate the ratio of p« at the bottom for these two condi
tions: Pcsi/Pcs2 a15~3^ T ? =0,5· Experimental results obtai
ned by comparing pressures corresponding to T* and T~ give 
this ratio equ~x to 0,4 for 350°C, 0,5 for 310°C and 0,6 for 
240°C. These small discrepancies can be explained by the dis
placement of the condensation zone into the furnace for higher 
temperature because of the temperature non - uniformity· 

After a period of time curve 2 begins to move towards 
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curve 1 until coinciding with it. Then the final conditions 

are obtained, pc hftirig constant in the heated volume. Some 

simple analytic conciderations can be given here. If the length 

of the tube is much greater than the diameter, one dimensional 

diffusion equation may be considered for the initial time· In 

our case there are no cources and the diffusion equation is 
ρ ρ 

d c/dz s 0 with boundary conditions c= c when z=s 0 (at the 

bottom) and practically c= 0 when z= L. Here L is the length 

of the heated part and c is the Cs concentration proportional 

■co pQ · Obviously the solution has the form cs c (1  z/L). 

The diffusionai flow of Cs through Ar is given by the expre

ssion q= Ddc/dz= De /L, where D is the diffusion coefficient 

of Cs through Ar· In our previous paper (2) we obtained the 

Lennard  Jones potential parameters for Cs  Cs interaction 

ίΤ= 5,66 % and f= 500°K. Combining these values with values 
for argon recommended in (3) according to the formulae 61Z-

6
/
+G

¿VZ a n
^ /̂¿/̂ /ξ?

 w e
 obtained for Cs  Ar interaction 6" = 

4,56 Ä and ¿ =s241°K so that Ds= 85/p^ cm2/sec if T= 400°K, 

PQ C< PAr and PAJ, is taken in Torr· Taking into account that 

c is proportional to Pcs^T*) it is clear that q is propor

tional to the ratio Ρςο^Τ^Ο/ρ^.. The calculation show that 
for Pcs/PAr= 0|1 the rate of Cs deposition on the cold wall 
is 4.10 g/cm sec. To have some quantity of liquid Cs which 
can flow down (of the order of 1 g) a period of 2 hours is 
necessary· 

Qualitatively the same results were obtained by the se
cond method. In fig. 3a and 3b the anode current of a conver
ter is plotted against the cathode temperature Τ for T^= 
140°C. There were in this case two identical anodes in the 
tube situated one above another at a distance of 2,5 cm. The 
heated part of the tube was 14 cm long. The upper curves in 
fig· 3& and 3b correspond to the lower anode, placed 4 cm be
low the furnace end. The lower curves correspond to the upper 
anode, placed 1,5 cm below the furnace end. Fig. 3a is drawn 
for the initial period of work and fig. 3b is for the final 
one. It is seen that in the first case 3a the maxima of the 
curves are dislocated and correspond to Τ = 1190°K and 1225°K. 
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The case of uniform ρς distribution is given in fig· 3b, 
where the two maxima coincide at Τ = 1310°K. 

To correlate the position of the maxima with the value 
of p C g we assumed that lgpCe is a linear function of 1/TC 
(PQ and TQ taken for the maximum). This linear function is 
identical with the curve which corresponds to the condition 
of full compensation of the space charge (see for example (4))· 
We proved that our assumption is true by plotting l£Pç8 vs 
1/T at low  temperature maximum for a converter with simi

lar geometry (5)· The coincidence between the experimental 

points and this linear function was very good. Takin« tae va

lues of TçS 1190; 1225; 1330°K it is possible to find corres

ponding values of ρ0β* 0,55· 10~
3
; 1,1.10"·*; 4,8·10~^ Torr· 

We considered these values as experimentally determined· The 

calculation of the same values gives 0,5·10""̂ ; 1,4* 10*""*; 

5·10""̂  Torr (the first two are calculated according to a li

near distribution and the last corresponds to T). 

5· CONCLUSION. A thermionic converter based on caesium

inargon diffusion would be very convenient for operation. 

The two observed modes of work can be used in different ways· 

The initial mode has a linear distribution of caesium pres

sure. It is useful in experiments where simultaneous measu

rements for a whole pressure interval are needed· The final 

mode has constant caesium pressure in the volume and this 

fact can also be used· The presence of moderate quantity of 

argon (up to PAr/P(js= 100) in a device of such a type is of 

no importance for electronic experiments since the electron

atom effective cross  section of Cs is 1000 times greater 

than thali of argon· 
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CONVERTISSEUR THERMOIONIQUE CHAUFFE PAR FLAMME 

p a r M e l l e M. LATOUCHE-HALLE 

L a b o r a t o i r e s de R e c h e r c h e s G é n é r a l e s 
Compagnie F r a n ç a i s e THOMSON HOUSTON - HOTCHKISS BRANDT 
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Résumé -

Une p a r t i m p o r t a n t e du t r a v a i l e f f e c t u é s u r l e c o n v e r t i s s e u r t h e r m o 
i o n i q u e à flamme r e v i e n t à l a p r o t e c t i o n de l a p a r o i de l ' é m e t t e u r q u i e s t 
p o r t é e à une t e m p é r a t u r e s u p é r i e u r e à 1 400 °C dans l ' a i r . La mise au p o i n t 
d ' u n r e v ê t e m e n t de m u l l i t e e t de s i l i c e s u r molybdène a p e r m i s d ' o b t e n i r 
des p e r f o r m a n c e s i n t é r e s s a n t e s s u r des c o n v e r t i s s e u r s c h a u f f é s p a r une f l am
me . 

En vue de r é a l i s e r un g é n é r a t e u r d ' é l e c t r i c i t é de q u e l q u e s c e n t a i n e s 
de w a t t s , p o r t a b l e , nous avons é t u d i é e x p é r i m e n t a l e m e n t une c e l l u l e chauf 
fée p a r une flamme, pouvan t f o u r n i r une p u i s s a n c e é l e c t r i q u e de 10 w a t t s à 
1 450 °C de t e m p é r a t u r e d ' é m e t t e u r . 

Ce c o n v e r t i s s e u r t h e r m o i o n i q u e à flamme e s t i d e n t i q u e dans son p r i n 
c i p e au c o n v e r t i s s e u r t h e r m o i o n i q u e n u c l é a i r e , mais i l a s e s p r o b l è m e s p r o 
p r e s , e s s e n t i e l l e m e n t d ' o r d r e t e c h n o l o g i q u e , r é s u l t a n t de l ' a t m o s p h è r e 
o x y d a n t e e t c o r r o s i v e dans l a q u e l l e i l t r a v a i l l e . En f a i t , l e p rob lème du 
f o n c t i o n n e m e n t des c o n v e r t i s s e u r s à flamme a é t é r é s o l u a v e c c e l u i de l a 
p r o t e c t i o n des p a r o i s p o r t é e s à h a u t e t e m p é r a t u r e . 

La c e l l u l e t h e r m o i o n i q u e à flamme s e compose e s s e n t i e l l e m e n t d ' u n 
é m e t t e u r p r o t é g é , d ' u n c o l l e c t e u r e t d ' u n r é s e r v o i r de c é s i u m . 

L ' é m e t t e u r e s t l e fond d ' u n e c a p s u l e c y l i n d r i q u e en molybdène de 
50 mm de l o n g , 20 mm de d i a m è t r e e t 5 /10 mm d ' é p a i s s e u r de p a r o i . Les c a p 
s u l e s o n t é t é f a i t e s s o i t à p a r t i r de molybdène e m b o u t i , s o i t p a r u s i n a g e 
de molybdène c o u l é sous v i d e . Nous n ' a v o n s pas o b s e r v é de d i f f é r e n c e s e n t r e 
l e s deux p r o c é d é s quan t aux p e r f o r m a n c e s des c o n v e r t i s s e u r s . 

Le c o l l e c t e u r e s t un c y l i n d r e de molybdène (molybdène c o u l é sous 
v i d e ) d ' e n v i r o n 18 mm de d i a m è t r e . 
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La d i s tance i n t e r é l e c t r o d e e s t 1/10 mm. Ces deux é l ec t rodes sont 
i so l ée s par une alumine de q u a l i t é AL 300 Wesgo , m é t a l l i s é e au t i t a n e 
manganèse e t brasée au c u i v r e . Le centrage des é l ec t rodes e s t a s su ré par 
un emboîtement de la base du c o l l e c t e u r . 

Avant d ' ê t r e brasée à l 'ensemble du tube , la capsule de molybdène 
e s t protégée contre l ' oxyda t ion e t la corros ion de la flamme par un revê
tement r é f r a c t a i r e é tanche . L 'étude de c e t t e p r o t e c t i o n c o n s t i t u e une pa r t 
importante du t r a v a i l f a i t sur la conversion à flamme. 

Les premiers revêtements ont é t é f a i t s sur capsules de niobium. I l s 
é t a i e n t cons t i t ué s d'alumine e t d'un émail bien accordé en d i l a t a t i o n avec 
le niobium, à base d ' a lumine , de s i l i c e e t de magnésie. Mais les r é s u l t a t s 
n ' on t pas é t é t r è s s a t i s f a i s a n t s e t i l a f a l l u chercher un nouveau r e v ê t e 
ment. Comme le niobium p r é s e n t a i t par a i l l e u r s des inconvénients ( t r a i t e 
ments thermiques sous vide exclus ivement , p r o p r i é t é s é l ec t ron iques i n f é 
r i e u r e s ) , la recherche du nouveau revêtement s ' e s t o r i e n t é e vers un support 
mo lybdène . 

De nombreux e s s a i s ont a l o r s é t é f a i t s , e t le revêtement finalement 
adopté e s t à base de m u l l i t e e t de s i l i c e . Une couche de m u l l i t e ( e u t e c t i -
que 3AI2O3, 2 Sj02) e s t déposée par p ro j ec t ion au p i s t o l e t à flamme sur 
la capsule de molybdène. Cet te couche assez inégale après dépôt e s t r e c t i 
fiée af in que son épa i s seur s o i t c o n s t a n t e , e t connue e t que l ' é t a t de s u r 
face s o i t convenable. E l l e e s t a l o r s recouver te de s i l i c e qui, fondue sur 
la mul l i t e , donne un émail de p o r o s i t é n u l l e (au t e s t é l e c t r o l y t i q u e ) . La 
s i l i c e e s t mise en suspension dans un l i a n t e t déposée au p i s t o l e t à pe in 
ture sur la capsu l e , puis por tée à 1 800 °C dans un four haute fréquence, 
sous hydrogène, pour fusion de la s i l i c e avec la m u l l i t e . En f a i t , la 
s i l i c e e s t déposée e t fondue en p l u s i e u r s couches minces s u c c e s s i v e s , pour 
ne pas e n t r a î n e r toute la m u l l i t e dans la fusion e t dégarn i r complètement 
la capsu le . 

Le revêtement a i n s i obtenu e s t g r i s c l a i r e t b r i l l a n t , t r è s homogène 
en é p a i s s e u r , e t p résen te peu de pores ( f igure 1 ) . Si l ' é l a b o r a t i o n de ce 
revêtement e s t assez compliquée, du f a i t de nombreuses opéra t ions s u c c e s s i 
ves mécaniques e t thermiques , i l e s t du moins poss ib l e de juger à l ' o e i l 
nu, immédiatement après la dern iè re opéra t ion de fusion s i le revêtement 
e s t v a l a b l e . S ' i l ne p résen te aucun é c l a t , en p a r t i c u l i e r sur l ' a n g l e v i f 
du fond de la capsu le , aucune fê lure ou microcraque lure , n i aucune s u r 
épa i sseur loca le qui dev iendra i t un poin t chaud dans la flamme, i l cons
t i t u e une p ro t ec t i on e f f i cace dont la durée de vie e s t supér ieure à 
100 h e u r e s , mais n ' a pas é té éprouvée a u - d e l à . 

Dans la vers ion a c t u e l l e des c o n v e r t i s s e u r s à flamme ( f igure 2 ) , la 
capsule protégée e s t , après son é l a b o r a t i o n , brasée au r e s t e de la c e l l u l e 
thermoionique, mais c ' e s t une s o l u t i o n p r o v i s o i r e parce que la b r a s u r e , se 
t rouvant dans une zone encore assez chaude, se corrode t r è s v i t e e t l im i t e 
a i n s i la durée de vie de la c e l l u l e . Cet te brasure sera u l t é r i eu rement 
remplacée par une soudure par bombardement é l ec t ron ique qui pourra ê t r e 
protégée efficacement en même temps que la capsu le . 
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En ce qui concerne les e s s a i s des c o n v e r t i s s e u r s , nous avons remar
qué un temps de formation (temps néces sa i r e pour que le courant optimal 
s ' é t a b l i s s e ) plus ou moins long, a l l a n t d'une p e t i t e f r ac t i on d 'heure à 
p l u s i e u r s heu res . Ce phénomène e s t d i f f i c i l e à e x p l i q u e r . I l ne semble pas 
dépendre de la d i f fé rence d ' o r i g i n e des émetteurs (capsules embouties ou 
us inées dans de la b a r r e ) n i du temps de pompage. I l e s t pos s ib l e que de 
légères d i f fé rences dans les t r a i t emen t s mécaniques ou thermiques modifient 
l ' é t a t de surface de l ' é m e t t e u r e t e n t r a î n e n t une d i f fé rence sur le mouil
lage du césium. 

La f igure 3 montre la v a r i a t i o n de la puissance en fonct ion de la 
température de l ' é m e t t e u r , lue au pyromètre opt ique sur le fond de la 
capsule chauffée , e t la f igure 4 , la v a r i a t i o n de la puissance en fonc
t ion du temps pour l ' un des c o n v e r t i s s e u r s . On peut remarquer que la p u i s 
sance maximale a é t é a t t e i n t e au bout d'un temps re la t ivement long par 
rappor t à la durée de vie t o t a l e du c o n v e r t i s s e u r . 

Au cours d'un e s s a i , la puissance de 10 wat t s a é té obtenue sur une 
c e l l u l e , mais la moyenne se s i t u a i t aux environs de 5 w a t t s , s o i t 1 ,6 W/cm2 
d ' éme t t eu r , à l 400 "C. 

Cinq conve r t i s s eu r s ont é t é montés en s é r i e . Le d i s p o s i t i f e x p é r i 
mental é t a i t t r è s s imple . Les cinq c o n v e r t i s s e u r s ont é té placés· côte à 
c ô t e , assez près l ' un de l ' a u t r e pour r édu i re les longueurs de connexion, 
e t i l s é t a i e n t chauffés chacun par un chalumeau gaz-oxygène. 

I l e s t i n t é r e s s a n t de no te r que le fonctionnement en s é r i e de p lu 
s i e u r s conve r t i s s eu r s ne p résen te aucune d i f f i c u l t é , en ce qui concerne 
l 'amorçage des c o n v e r t i s s e u r s , en p a r t i c u l i e r . Le montage é t a i t conçu de 
t e l l e s o r t e q u ' i l é t a i t poss ib l e de met t re en c o u r t - c i r c u i t chacun des 
conve r t i s s eu r s sans les déconnecter du montage en s é r i e . Le premier conver
t i s s e u r é t an t amorcé, i l s u f f i s a i t d ' o u v r i r le c o u r t - c i r c u i t du su ivant 
pour q u ' i l s ' amorce , e t a i n s i de s u i t e . Avec cinq c o n v e r t i s s e u r s en s é r i e , 
nous avons obtenu plus de 20 W pendant 10 heures ( tens ion 1,3 v o l t s , courant 
18,8 A). 

En conc lus ion , s ' i l r e s t e quelques p e t i t s problèmes technologiques 
à r é soudre , la mise au point d'une paro i étanche , ne se dégradant p a s , a 
permis de f a i r e fonct ionner t r è s correctement les c o n v e r t i s s e u r s en les 
chauffant par une flamme. 
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Figure 1  Coupe micrographique du 
revêtement mul l i te s i l ice 

F igure 2  Conver t i sseur thermoionique 
à f lamme. 
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ARC-MODE THERMIONIC CONVERTER PERFORMANCE: 

MEASUREMENTS AND INTERPRETATION 
by 

A. E. Campbell, Jr. and A. 0. Jensen 
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Pasadena, California 

ABSTRACT 

The performance of thermionic converters has been analyzed by means of 

precision measurements from specially constructed test vehicles with guard-

ringed collectors and variable emitter-collector spacing. Data accumulated 

for 2500 hours testing time established that: 

• Maximum power output of a converter occurs at a pressure-distance 

or pd product of 16 ±0.8 torr-mils, independent of the emitter 

temperature, current level, or collector material. 

• The results of the measurements from the variable-spacing test 

vehicle can be used to predict converter performance accurately 

and are directly applicable to practical converter designs. 

The test vehicles were completely instrumented for measurement and con

trol of spacing and of emitter, cesium, and collector temperatures as well as 

output voltage and current. Steady state measurements were made of the test 

vehicle voltage versus spacing at constant current, constant emitter temper

ature, constant cesium vapor pressure, and constant collector temperature. 

Three distinct regions of interelectrode spacing were found in which a par

ticular mode of operation prevailed. 

In order to establish correlation between research test vehicle data 

and hardware converter performance, several fixed-spacing planar thermionic 

converters were built to reproduce the performance characterized by opera

tion within these three regions. Under identical conditions of operation 

and test, converter performance agreed within 1% to 270 with the data ob

tained in the test vehicle. 
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INTRODUCTION 

The significance of an optimum pressure-distance or pd product for optimum 

arc-mode cesium vapor thermionic converter operation has been realized for 

some time. However, the lack of precision test vehicle measurements which 

correlated with converter hardware performance has obscured the practical 

application of the optimum pd product. This paper provides precision data 

from variable-parameter test vehicles which correlate precisely with data 

obtained from operating converter hardware. In addition, the basic character 

of cesium vapor thermionic converter performance is experimentally examined 

in the various modes of operation: (1) close-spaced or electron space-charge 

limited, (2) plasma arc, and (3) fully developed positive column. 

The converter performance presented in this paper was obtained from practical 

devices of high efficiency (127o to 187»), measured performance (23 to 25 
2 

W/cm ), and demonstrated lifetime (>8000 hours). Th¿se converters were fab

ricated utilizing electron-beam welding and prefabricated subassembly tech

niques, which improved fabrication reliability and led to increased lifetime. 

The thermionic test vehicle data was obtained with high-precision (0.17o) 

measuring equipment and was reproducible within experimental error over a 

period of 2000 to 3000 hours of continuous operation. A key element in the 

correlation of data from these two different devices was the use of stand

ardized test procedures, test setups, and test equipment. 

DISCUSSION 

The thermionic t e s t vehic le shown in Fig . 1 i s a guard-r inged s t r u c t u r e with 

p l a n e - p a r a l l e l e l e c t r o d e s . The e m i t t e r , approximately 3/4 inch in d iameter , 

i s i n d i r e c t l y heated by e l e c t r o n bombardment from a counterwound, pancake 
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filament heater. Emitter temperatures are measured with a micro-optical 

pyrometer which is directly sighted into a 10:1 depth-to-diameter hohlraum. 

The emitter hohlraum is positioned so that extraneous radiation from the 

filament heater does not interfere with the hohlraum temperature measurement. 

Variable spacing is provided by a single-convolute bellows of niobium which 

allows expansion from a condition of shorted electrodes to spacings of 0.030 

inch. An external drive mechanism utilizing a differential thread technique 

allows discrete spacing changes of 0.0001 inch as determined by means of 

dial indicators which can be read to within 0.00005 inch. Return movement 

is provided by spring-loaded ceramic rods so that the spacing variation is 

always a positive movement. In practice this system can operate for 400 to 

600 hours before the indicators require replacement. 

2 The test vehicle collector is 2.00 cm in area and is connected thermally to 

a heat sink which is provided with forced cooling and resistance wire heaters 

to permit operation of thermionic current levels (dc) varying from 10 to 100 
2 

A/cm while maintaining control of the collector temperature. The cesium res
ervoir is thermally isolated from the test vehicle body so that a unique 
cesium reservoir temperature (and vapor pressure) can be established and 
maintained independently of the temperature of the remainder of the test 
vehicle. The electrode materials selected for investigation were rhenium 
emitter, rhenium collector; and rhenium emitter, molybdenum collector. 

The test vehicle was instrumented to measure the voltage output as the inter

electrode spacing was varied. The drift current, all element temperatures, 

and the cesium vapor pressure were maintained constant throughout each run. 

In this manner the critical properties of the plasma, such as electron tem

perature, electron number density, the sheath voltage values, the electrode 
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work functions, and device thermal expansions, remained fixed, permitting 

precision measurement of the test vehicle voltage profile. 

Figure 2 shows a typical curve of output voltage versus interelectrode 

spacing with the other parameters fixed. The curve is divided into three 

regions, since the operation of the test vehicle is characterized by dis

tinctly different phenomena within each region. Region I is designated the 

electron space charge region and extends from zero interelectrode spacing to 

a minimum identified as the plasma onset point. Within this region the 

output voltage is governed by the space charge created from electrons emitted 

by both emitter and collector in the absence of an adequate number of cesium 

ions to neutralize the space charge. 

Region II is a region of plasma formation extending from the onset point to 

the point of maximum voltage output. The increase in voltage output in 

region II is due to the presence of cesium ions in the interelectrode space 

and the subsequent reduction of electron space-charge. The generation rate 

of ions in this region increases to a point of voltage output where the 

volume processes of ionization are maximized. Any further increase in 

spacing results in electron-atom scattering losses which increase linearly 

with spacing. 

This region of wide spacing is region III, which is characterized by the 

linear decrease in voltage output as a function of increased spacing. 

Region III is referred to generically as the positive column region. 

Figure 3 is a specific curve of output voltage versus interelectrode spacing 

for a rhenium electrode system under conditions of constant emitter tempera

ture, collector temperature, cesium vapor pressure, and drift current. In 
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Fig. 3, region I extends from 0 to 0.5 mil, region II encompasses the spacing 

from 0.5 to 4 mils, and region III is the linear portion of the curve beyond 

4 mils. 

Figure 4 is a volt-ampere characteristic obtained in region I of Fig. 3 at 

an interelectrode spacing of 0.2 mil for the conditions of 2008 K emitter 

temperature, 990 K collector temperature, and cesium vapor pressure of 4.1 

torr. The volt-ampere curve is an oscilloscope trace of a 60-Hz ac voltage 

impressed about the dc current level of 38A. The ignition or breakdown point 

is observed at the top of the figure near 64A, providing certain evidence 

that operation at lower current levels (e.g., 38A) is in the electron space-

charge mode. 

A rhenium-emitter, rhenium-collector, close-spaced thermionic converter was 

built and operated in the electron space-charge mode. The voltage output 

from this converter is plotted in Fig. 5, which is a replot of region I in 

Fig. 3 and indicates the agreement of performance between a variable-

parameter test vehicle and a converter. While converter output in region I 
2 can exceed 25 W/cm at voltages in excess of 0.8V, the difficulty of building 

a number of converters with controlled and predictable spacing of a few 

tenths of a mil dictates against this approach. 

The most useful region from thermionic converter design considerations is 

region II, which encompasses the arc-mode operation and, for certain elec

trode material combinations and emitter temperatures, includes interelectrode 

spacings of practical significance. Figures 6 through 10 are an assortment 

of voltage output versus spacing curves obtained over a wide range of emitter 

temperatures, cesium vapor pressures, and drift current levels. In each 

curve the maximum voltage output in region II is designated with a cross (X) 
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which signifies that this is the point of maximum power output for the se

lected voltage level and that an arc-mode thermionic converter has been fab

ricated and operated at that voltage and power output for identical condi

tions of operation which occurred in the test vehicle. The difference in 

performance obtained in the test vehicle and the converters was within the 

experimental error of 17, to 27,. Perhaps the most significant aspect of these 

curves (and all others which were examined) is that the point of maximum 

voltage output always occurs at a value of 16.0 ±0.8 mil-torr as indicated 

in a summary listing of pd values (see Table I). This is true for different 

collector materials as shown in Fig. 11, wherein rhenium and molybdenum col

lectors are compared. Note that the optima occur at the same pd value, but 

at different voltage output levels, owing to their difference in minimum 

collector work function values (Ref. 1). Further, it is hypothesized that 

the 16 mil-torr value should apply for different emitter materials, since 

Figs. 6 through 10 cover a wide range of effective work function values which 

could also be achieved by an emitter material other than rhenium operating 

at a different temperature. 

In region III, voltage output versus interelectrode spacing curves have been 

examined over a pressure range from 1 to 100 torr and from current levels of 
2 6.85 to 50 A/cm . These data arc being analyzed and indicate the formation 

of a positive column wherein the computed values of electric field are con

stant with increased spacing. Figures 12 and 13 are plots of electric field 

versus interelectrode spacing for drift current densities of 6.85 and 25 
2 A/cm . Similar values for electric fields have been reported (Ref. 2) from 

spectroscopic data obtained in wide-spaced converters (Ref. 3) and demon

strate good agreement, considering that the methods of obtaining the data 

are totally different. Two thermionic converters were fabricated with 
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interelectrode spacings for operation in region III. The converter perform

ance is plotted in Fig. 14 (which is Fig. 3 redrawn) with a cross indicating 

the individual converter output. 

In summary, a direct agreement of research test vehicle data and converter 

hardware performance has been established within 27, over a wide range of 

emitter temperatures and interelectrode spacings. 

Also, the fundamental nature of the pressure-distance or pd product has been 

examined, and the value of 16 mil-torr ±0.8 mil-torr is found to optimize 

the converter plasma for maximum power output as established by the fabrica

tion and test of nine thermionic converters. 

TABLE I 

SUMMARY OF PRESSURE-DISTANCE DATA TAKEN FROM 
INTERELECTRODE SPACING VERSUS VOLTAGE OUTPUT CURVES 

Τ . emitter 

1327 

1427 

1427 

1527 

1527 

1527 

1627 

1735 

1735 

1735 

<°c> Τ Cs res 

289 

291 

303 

310 

320 

331 

331 

331 

344 

350 

(°c) ρ 
Cs (torr) 
1.33 

1.43 

1.96 

2.35 

3.01 

4.02 

4.02 

4.02 

5.30 

6.06 

pd (mil-torr) 

16.7 

15.7 

15.6 

16.8 

15.9 

15.7 

15.7 

15.7 

15.9 

16.3 
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Figure 3. Interelectrode Spacing versus Voltage Output for Constant 
Emitter, Collector, and Cesium Reservoir Temperature (all data 
points are dc, steady state) 
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Centre de Physique Elec t ron ique e t Corpuscula i re 

C o r b e v i l l e , Orsay, France 

I . Introduction 

On ε. étudié do3 convertisseurs tkormoioniquos plans ot cylindriques on vue do 

réal iser dos générateurs d ' é l ec t r i c i t é chauffé par une flammo, oxygènepropaao par 

exemple, par la concentration du flux do chaleur sola i re , ou par flux nuc léa i re 

On décrira les différentes technologies u t i l i sées ainsi quo les résul ta ts obtenus 

sur les convortissours cylindriques. 

I I . Convortissours thoraoioaiqucs plans 

Plusieurs convertisseurs thermoioniquos plans à distanco émetteur colloctour fixo 

ou variable ot matériaux d'émottours différents ont été réal isés on vuo d'étudior l ' i n 

fluence do l'ospacoment interélectrodes e t du t rava i l do sort ie do l'émottour sur . l a 

densité do puissance électrique délivrée. 

I I . 1 . Structure de la diode 

La figure 1 montre le schéma dc deux convortissours l 'un b. distance émetteur

colloctour fixe et l ' aut re variable. 
2 

L'émottour ot lo colloctour sont constitués par dos surfaces piones do 77 cm . 

L'émetteur 03t réalisé ooit par usinage dans la masso, soit par fluotournago. La 

paroi latéralo a une épaisseur do 5 à 6/10 mm. La partie omissivo a uno époissour do 

5 mm afin d'assuror une bonne homogénéité do la température. La longueur do la jupe 

ost do 5 cm; cotte dornièro ost soit brasée, soit soudée par bombardement à uno brido 

on acier inoxydable. 

Les matériaux los plus fréquemment utilisés,sont lo molybdène fondu sous vido ou 

lo tantale. Los émottours ont été utilisés soit nus, soit recouverts do tungstèno 
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(monocristallin ou ijolycristallin) ou dc rhénium. 
Le monocristal do tungstèno ost brasé h, 2 5Cû° C au tantalo à l'aide d'une feuille 

do niobium, le tungstène orionté polycristallin ost déposé, par décomposition chimique 
en phase vapeur, b, la surface d'un émetteur on molybdòno. 

Le rhénium ost brasé au tantale avec du ruthénium; copondant étant donné la grande 
vitesse do diffusion entro le ruthénium ot le tantale on dépose par evaporation sur co 
domior, avant brasago, une couche do rhénium servant do barriere do diffusion. La 
distanco émetteur collecteur peut ótre fixe ou variabio à l'aide do trois vis défor
mant viio membrono mince solidaire du collecteur. 

L'émetteur est entouré d'écrans thermiques ot d'un anneau do garde afin do bien 
définir la surface d'émission. Pour mosuror la température, un trou est ménagé dans la 
partie latérale dc la surfaco émottrico. 

L'isolant rui sépare la région dc l'émetteur ot du colloctour est constitué par 
une alumine du type Lucalox brasée sur les parties métalliques en niobium. 

Doux fonôtres on saphir sont braséos directement sur l'alumine ou sur dos tubes 
do niobium, afin dc permettre la mesure do la distance émetteur collecteur ot la 
température à l'aide d'un pyromètro optique Le trou do pyrométrage dans l'émetteur 
est dans l'axe d'une dos fonôtres. 

Lo réservoir do césium ost constitué par le ruousot do pompage. Un.bloc dc cuivre 
entouré d'une résistance do chauffage permet de réguler et d'uniformiser la température. 

Lo colloctour ost refroidi par une circulation d'eau. 
Los températures du collecteur, du réservoir do césium, do la paroi do la diode 

sont mesurées h, 1'aide do thermocouples. 
Le pompage ot le dégazage sont effectués dans une cloche à. vide. 
Le chauffage dc l'émottour ost effectué par bombardement électronique. L'intériour 

do la diode est pompé simultanément par un autre système do pompage. (Fig. 2 - Pig. 3) 
i', partir do ces études on a réalisé dos convertisseurs plans chauffés par le 

soleil ot dos convortissours plans chauffés à la flamme. Dans les doux cas, l'émetteur 
était on molybdène protégé par uno couche dc disiliciuro do molybdène; cependant la 
stabilité dans le temps a 1 900° K de cotte couche a été une Imitation à dos durées 
do vie pouvant intérossor dos dispositifs techniques. 
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(3)(4) 

III.1« Structure do Ια diodo 

La figuro 4treprésente lo schéma de la diodo construite pour los essais on pile 

ot hors Tiilo. U>. A'fu.-u- ¿té ^ ^ ^ ¿ Γ -tí 4VXU.UA UJ. -ù, ^t.^-zU CC^^/.\Í¿Z 

Elle comprend dans los doux cas, un émetteur cylindrique on molybdène fondu sous 

vido recouvert SVJT 20 cm d'uno couche do tungstèno déposé on phase vapeur do 200 ΛΧ 

d'épaissour^
5
'
 6
'

 7K 

L'émottour est brasé av. sor..»ot sur une bague on niobium. 

Le colloctour dans los premières diodos étaient en niobi'.iia pur, mais cornue à 

> 

1 000° K il tend h. perdre la plus grande partio de ces propriétés mécaniques  il passe 

—2 —2 

do Ί Ì 200 kg mm" a 9 800 kg mm"  il a été remplacé par du niobium a 1 Í¡ do zirco

nium pour lequel jusqu'à 980° C il n 'y a pas grande variation. La distance eni.ro émet

teur et colloctour est 200/U à froid ot se réduit à 160ΛΙ lorsque l'émottour est à 

2 0CG° K et lo colloctour à 1 000° K. 

Un dispositif do centrage α été utilisé do manière α éviter los courtscircuits 

émetteurcollecteur on cours do fonctionnement on durée, courtecircuits qui peuvent 

avoir pour cause la déformation du collectour ou do l'émottour par fluago des maté

riau:;. 

Ce dispositif de centrage no doit pas so m étalliser dans le temps, et no doit 

pas amener do perturbation thermique sur l'émottour. 

L'isolement entre émetteur ot collectour est obtenu a l'aide d'une ccromioue du 
"(G) 

typo Lucalox braséo diroctomont au niobium à l'aide d'un alliage titene nickel . 

Le sccllomont peut travailler b une température de 90o° K sans inconvénient on atmo

sphèro dc césium. Los durées actuellement atteintes dépassent 6 OCO heures. 

Le haut du colloctour est raccorde à l'embase émetteur par une soudvuro par bombar

dement électronique. 

Le réservoir do césium est on niobium à 1
 e/o do zirconium ot le césium est adsorbe 

sur du graphite. Co typo do réservoir pornot do travailler sans inconvénient α la 

température do fonctionnement du colloctour, c'estàdire 1 000° K. 

La diode est placée dans une cloche α vide dans laquelle règne uno pression 

inférieure à 10 'forr, do manière h éviter tputo oxydation des parties en niobium 
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et on molybdène. La diodo ollcmÔrao est pompée séparément. 

On introduit après dégazage le césium, puis on effectue le scellement en deux 

temps. Premièrement du queusot dc verre ot ensuite par pincement du queusot en nio

bium. Co dernier est ensuite soudé per bombardement électronique. La figure 5 montre 

une diode cylindrique on cours de pompage. 

III.2. Montage daus la capsule d'irradiation 

La figure 6 schématise la conception dc la capsule d'irradiation. Ullo comprend 

trois partios : 

 la partio activo (diodo, shunt thormiquo) 

 la partie de cfiblagc 

 l'onvcloppo extérieure et lo pied. 

La figure 7 montre la diodo montée avec lo shunt thermique dc colloctour, le 

shunt thermique de l'embase émetteur ainsi que le shunt thermique du réservoir do 

césium. 

L'isolement ontre le collecteur et le shunt thermique est réalisé par schoopage 

d'alumine au pistolet à plasma d'argon. L'isolement entre le côté réservoir et le côté 

ombaso émetteur est réalisé à l'aide d'une céramique, brasée au kovar à l'aide do 

1■outectic argent cuivre. 

Le quouset do pompage est situé du côté réservoir do césium. 

De la diode partent sopt thermocouples do mesure, les connexions do chauffage 

dc la chaufferotto césium ainsi que la chaufferette du shunt thermique, et aboutissent 

à un anneau d'où ils sont repris par les fils dc câblage. 

Dans la zone du câblage, tous les fils do thermocouples sont fixes, guidés à 

travers quatre tubes ot isolés lc3 uns des autresj on bout do cette zone ces fils 

aboutissent sur un autre ennoau qui sert do point froid dc référence arbitrairement 

choisi. Do là ils sont soudés sur le pied à vingt quatre passagos (Fig. 8). 

L'ensemble ainsi préparé est monté dans dos manchons on acier inoxydable qui 

sont alignés sur un banc d'optique et positionnés par dos points de soudure à l'argon 

arc, puis définitivement soudés sous vide par bombardement électronique. On compte 

huit soudures. 

La longueur hors tout dc l'ensemble est do 1,35 m pour un diamètre 70 mm. 
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La capsulo ainsi préparéo ost pompeo ot dégazéo à environ 20C° C, Le dégazage dc 
chacun dos éléments do chauffage est effectué dans un vide ne dépassant pas 10 Torr. 
Lo temps d'opération est do 12 heures. On laisse refroidir, puis on scollo le queusot 
verre, on pince à .la presse le queusot on acier inoxydable quo l'on soude ensuite par 
bombardement électronique. 

III.3. Résultats 
Dos durées effectuées sur dos diodes en laboratoire montrent que certaines ont 

dépassé 5 OCC heures. En pilo lo contractant nous a communiqué les durées suivantes : 
prenièro diode dans la capsule 1 600 heures à 85 watts,, deuxième diode dans la capsule 
1 800 heures ot la durée se poursuit. Dons les deux cas le fonctionnement dos diffé
rents éléments (thermocouples, éléments de chauffage, connexions intermédiaires) a 
montré une grande fiabilité. Le scellement kovar-céramiquo brasé à l'outectique et le 
scellement niobium-aluminc brasé au titane nickel n'ont pas montré do défaillance sous 
le flux do neutrons. 

IV. C o n c l u s i o n 

En résumé les conclusions suivantes peuvent ótre tirées : 
- la technologie utiliséo pour la réalisation dos diodes pianos ou cylindriques et les 
capsules d'irradiation est au point. En particulier on ce qui concerne les scellements 
céramique métal. 

- Los dépôts on phase vapeur ont montré quelques défauts à long terne. 
- La fiabilité de fonctionnement des différents éléments a été excellente. 
- L'utilisation du bombardement éloctroniquo a permis d'apporter une solution simple 
aux différents problèmes d'assemblage ot dc scellements. 

- Dos performances répétées do plus dc 1 000 heures on pile ont été obtenues. 

-ooOoo-
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BILAN DES ETUDES DE DUREE DE VIE DES CONVERTISSEURS THERMO-IONIQUES 

EN LABORATOIRE. 

J . BLIAUX, M. CLEMOT, J . P . DURAND, B. GAYTE 

Service d 'Electronique Physique, Cen t re d 'Etudes Nucléai res de Saclay, 

91 - Gif-sur-Yvet te (France) 

Introduction. 

Afin d 'éprouver la fiabilité des conver t i s seu r s the rmo- ion iques , le S . E . P . 
du C . E . N . Saclay a mis en se rv ice 8 postes d ' e s sa i s de durée de vie . Au cours des années 1966 
et 1967, se ize conver t i s seu r s de différentes origines *' ont été t e s t é s . Les expérimentat ions 
ont por té su r l ' e s s a i des conver t i s seurs avant leur mi se en p i le , su r des études fondamentales 
de fonctionnement et s u r les études de durée de vie . Après a r r ê t , les conver t i s seu r s ont été 
examinés afin de dé te rmine r les causes de défaillance et d'y appor te r les amél iora t ions techno
logiques n é c e s s a i r e s . La p résen te communication rend compte essent ie l lement des pe r fo rman
ces de durée de vie des conver t i s seu r s et des examens " p o s t - m o r t e m " effectués. 

1. Bancs d ' e s sa i s - Système de m e s u r e s . 

Les postes d ' e s sa i s (fig. 1) ont été prévus pour recevoi r des conver t i s seu r s 
de 100 à 200 watts de puissance é lec t r ique. Les éléments constitutifs principaux sont : 

- Alimentation de bombardement 1 500 V - 1 A pour chauffage des éme t t eu r s . 
- Dispositifs de pompage de l 'enceinte d ' e s sa i (prévidage, pompage ionique). 
- Alimentation d ive r ses s imples et régulées (chauffage du col lec teur , du 

r é s e r v o i r de cés ium) . 
- Apparei ls de m e s u r e s et e n r e g i s t r e u r s . 

L ' ensemble est ent ièrement automat isé et pe rme t le fonctionnement sans 
interrupt ion, i l comporte également une platine de sécur i t é a s su ran t les fonctions a l a r m e (qua
lité du vide , t empéra tu re d ' émet teur ) . 

Le ci rcui t de charge ut i l i sé est r e p r é s e n t é pa r la f igure 2. Il comprend : 

a) Un circui t à r é s i s t ance de charge fixe (mise en durée des conve r t i s s eu r s ) . 

b) Un circui t à r é s i s t ance de charge var iab le consti tué d'une généra t r i ce à 
courant continu (étude du conver t i s seur avant mi se en durée) . L 'exci tat ion var iab le de la géné
r a t r i c e pe rmet l 'explorat ion complète des ca rac té r i s t iques I (V), du c i rcui t ouvert au cour t -
c i rcui t . Un sys tème à horloges é lect r iques définit les points de m e s u r e s et les temps de s tabi 
l isation thermique . 

Le re levé systémat ique des p a r a m è t r e s des conver t i s seu r s est effectué soit 

1) Conver t i s seur s fabriqués au t i t r e des cont ra ts C . E . A . / C . S . F . , C . E J V . / C . F . T . H . H . B . 
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sur machine imprimante, soit mis en mémoire sur bande perforée (figure 3). La description 
complète du système de traitement de l'information utilisé et de son application aux convertis
seurs thermo-ioniques a fait l'objet d'une communication précédente [ l ] . 

2. Convertisseurs. 

Les convertisseurs étudiés sont de structure cylindrique, prévus pour un 
fonctionnement à une puissance nominale de 100 watts électriques, ils sont identiques aux modèles 
essayés en pile [2], Leur surface émettrice est de 20 cm , la figure 4 présente un des modèles 
utilisés. 

Le convertisseurs est placé sous une cloche métallique dans un vide infé
rieur à lo" torr . Il est maintenu dans un ensemble pont thermique, refroidi par eau, et muni 
d'une chaufferette pour réguler la température du collecteur. Les températures des points sui
vants sont contrôlées en permanence : 

haut émetteur bas collecteur 
milieu émetteur réservoir césium 
embase émetteur pont thermique collecteur 
haut collecteur eau de refroidissement. 

Les caractéristiques technologiques des 16 convertisseurs testés sont con
signées dans le tableau 1. On distingue 2 séries se différenciant par la nature du collecteur, 
de l'émetteur et du scellement métal-céramique. 

Série 1 : convertisseurs n° 6 - 7 - 8 - 1 0 - 1 5 - 20 - 2 1 - 2 9 - 3 0 
Série 2 : convertisseurs n° 201 - 204 - 205 - 206 - 207 - 208 - 307. 
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Conver t i s 
s eu r nc 

Sér ie 1 

6 

7 

8 

10 

15 

20 

21 

29 

30 

Série 2 

201 

204 

205 

206 

2 0 ? 

208 

307 

Année 
de 

fabric . 

1966 

1967 

! t 

1966 

! I 

I I 

I I 

1 1 

1 1 

1968 

Nature 
col

lec teur 

Mo 

Mo 

Mo 

Mo 

Mo 

Mo 

Mo 

Mo 

Mo 

Nb 

Nb 

Nb 

Nb 

Nb 

Nb 

Nb 1% 
Z r 

Nature 
émetteur 

Mo 

Mo 

Mo 

Mo 

Mo 

Mo 

Mo 

Mo/W 
(θ=50μ) 

Mo/W 
(β=50μ) 

Mo/W 
(ε=200μ) 

Mo/W 
(β=200μ) 

Mo/W 
(β = 200μ) 

Mo/Re 

(β=50μ) 

Mo/Re 
(β=50μ) 

Mo/Re 
(β=50μ) 

Mo/W 
(ε=200μ) 

d. inter

électrodes 

[μ] 

300 

300 

300 

250 

250 

250 

250 

200 

200 

200 

200 

200 

200 

200 

200 

200 

Scellement m é t a l  c é r a 
mique 

b r a s u r e 

Al O Wesgo/Kovar 

b r a s u r e Cu 

Al O Wesgo/W/Nb 
b r a s u r e CuNi 

I I 

Al O Lucalox/Nb 
b r a s u r e NiTi 

1 1 

1 1 

1 I 

I 1 

I 1 

I 1 

C entrage 
émet teur 

oui 

oui 

non 

oui 

oui 

oui 

oui 

oui 

oui 

non 

non 

non 

non 

non 

non 

oui 

Nature du 
r é s e r v o i r 

Cs 

Cs liquide 

I 1 

I 1 

I 1 

I I 

I I 

I 1 

I 1 

I 1 

I 1 

I 1 

I 1 

I 1 

I I 

I 1 

Cs graphi
te 

C C s t ; 
Cg°Cs [3] 

TABLEAU 1, 

1) Les dépôts de W constituant les couches émet t r i ces sont effectués par décomposition en phase 
vapeur de WF su r subst ra t en Mo (e = 2 mm) ; les dépôts de Re sont obtenus pa r dissociation de 
ReCl 3 . 
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3. Pe r fo rmances . 

On ne rend pas compte ic i , des mesures effectués sur les conver t i s seurs . 
Leur étude a cependant fait l 'objet de t ravaux précédents [4]. Des réseaux complets de c a r a c 
tér is t iques ont été re levés et sont i l lus t rés par les figures 5 et 6. 

3 . 1 . ^^^£ n ^^£^^ i}J^^^nY_^W£ s ^£^o , i ^™L s ^_^D_íy£ t . e · 

Le point nominal de fonctionnement est choisi pour une puissance d 'entrée 
donnée (Pg = P p + Pr> , avec P p = puissance chauffage filament, P g = puissance de bombarde
ment), de telle sor te que : 

a) la rés i s tance de charge soit optimum, 
b) la t empéra ture du r é se rvo i r de césium soit optimum, 
c) la t empéra tu re du collecteur soit optimum. 

On obtient ainsi le fonctionnement du conver t isseur au point de rendement 
P S 

maximum η = =j— (P : puissance délivrée) pour une puissance d 'entrée P fixée. Cette dé
P E b E 

termination est effectuée par des re levés statiques des courbes I (V). 

Compte tenu d'une valeur l imite choisie de la t empéra tu re d 'émetteur : 
T E < 1 900 °K, le point nominal correspond à un fonctionnement à P g « 100 W (5 W / c m 2 ) . 

P S 
Les rendements η = — =j— mesurés pour les conver t i sseurs étudiés sont compris entre 

F + B 
9 et 12 % (9 à 10 % pour émet teurs en Mo, 10 à 12 % pour les émet teurs en W et Re) . 

3 .2 . J'jpint _ά£_ί one ti orme nient. 

A t i t re d 'exemple, on indique les ca rac té r i s t iques de point de fonctionne
ment du conver t isseur n° 30, actuellement en essa i de durée : 

Valeurs mesurées à t = 3 260 heures (2 mai 1968) : 

P = 1 300 W η = 10,7 % 

L, = 162 A Τ = 1 570 °C 
O il. 

V = 0,87 V Τ = 605 °C 

Ρ = 140 W Τ = 320 °C. 
O L· S 

3. 3. J3urée_de_vie. 

Le tableau 2 indique les durées de vie de chaque conver t i sseur , leur cause 
d ' a r r ê t , ainsi que l 'énergie totale convert ie . Le fonctionnement des conver t i sseurs pendant le 
test a été fréquemment in terrompu par des a r r ê t s dus à l 'apparei l lage annexe : alimentations 
changement de filament, metall isation des passages haute tension. 

Les d iagrammes de durée de vie sont r eprésen tés par les figures n° 7 pour 
les mei l leurs é léments . 
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Conver t i s 
seur n° 

Sér ie 1 

6 

7 

8 

10 

15 

20 

21 

29 

30 

Série 2 

201 

204 

205 

206 

207 

208 

307 

Durée de 
vie 

[heures] 

10 

58 

93 

250 

262 

450 

1 203 

300 

3 260 

1 120 

250 

172 

5 600 

745 

230 

Energie t o 
ta le convert ie 

[KWh] 

0 , 5 

5 

5 

24 

21 

25 

80 

15 

250 

65 

15 

10 

450 

25,5 

9 , 5 

Causes 

court-
circui t 

X 

X 

X 

X 

X 

X 

X 

X 

d ' a r r ê t 

fuite de 
Cs 

x ^ 

XX p 

X ^ 

X y 

x ^ 

X ç. 

Remarques . 

Scellement mé ta l -cé ramique 

II 

Scellement méta l -cé ramique + 
émetteur pe rcé 

Scellement mé ta l -cé ramique 

Scellement méta l -cé ramique 

50 h. fonctionnement en pile [2] 

Actuellement en fonctionnement 

Scellement mé ta l -cé ramique 
(incident mécanique de montage) 

Emet teur pe rcé (base Mo) 

Actuellement en fonctionnement 

TABLEAU 2. 

Pour les convertisseurs de la série 1, les causes d'arrêt prématuré ont été 
principalement dues à des fuites de césium au scellement métal-céramique. L'amélioration de 
ce dernier (convertisseurs n° 29 et n° 30) a permis de passer de durées de vie de quelques centai
nes d'heures à plus de 3 000 heures de fonctionnement. 

Pour la série 2, les courts-circuits d'abord intermittents puis permanents 
ont constitué les causes d'arrêt. Le convertisseur n° 206, a cependant fonctionné pendant 
5 600 heures. 

défaillances. 
Les différents examens effectués après durée de vie, ont pu expliquer ces 
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4. Examens pos t mor t em. 

4 . 1 . ÇonyjrUs_sjur_s_s_é_rie_l_(n° 6, 7, 8, 10, 15, 20, 21). 

Les examens ont mis en évidence : 

a) Une evaporation importante de l ' émet teur en Mo nu (jusqu'à 150 μ). La 
figure 8 donne le profi l d'un émet teur , l 'hétérogénéité de t empéra tu re au centre explique l ' im
portance de 1'evaporation. 

b) Une recr i s ta l l i sa t ion importante de la surface émet t r ice (figure n° 9). 

c) Une fragilité excessive de la jonction méta l céramique Al O /Cu/Kovar , 

due à l ' inadaptation en dilation, à haute t empéra tu re de l 'Ai O et du Kovar. 

4 . 2 . Çony^rUs_sjurs_série_2_(n° 201, 204, 205, 206, 207, 208). 

Les examens ont montré que les matér iaux constituants présentaient un bon 
comportement aux vapeurs de cés ium. Seuls les émet teurs (Mo/Re, Mo/W) présentaient après 
fonctionnement, une al térat ion importante . Leur étude complète, qui a fait l 'objet d'une commu
nication [5], comportait : 

a) des examens micrographiques (fig. 10, 11). 

b) l 'étude de la diffusion des couches émet t r ices Mo/Re, Mo/W par mic ro 
dureté et mesures à la microsonde de Castaing (fig. 12). 

c) la mesure de variation du t ravai l de sor t ie au microscope à émission t he r 
moionique (fig. 13). 

En r é s u m e , les cour t s c i rcu i t s in termit tents observés avant a r r ê t complet 
des conver t i sseurs ont été vraisemblablement causés par des a r rachements et décollements des 
couches de W et Re. 

Ces al térat ions sont dues à la formation de phases intermétal l iques MoRe 
fragiles dans le cas du Re (fig. 10). 

Dans le cas des émet teurs de W, le phénomène d'interdiffusion MoW associé 
aux défauts du dépôt (pores, gaz occlus) ont provoqué les soufflures et a r rachements de la couche 
émet t r ice (fig. 11). 

Depuis, ces résul ta ts ont été confirmés par l 'examen en cellule chaude du con

ve r t i s seu r nucléaire SIRENE 302 [2]. 

Conclusions. 

Les renseignements stat is t iques obtenus sur les conver t i sseurs soumis aux 
essa is de durée de vie permettent d 'éprouver et d ' amél io re r leur fiabilité. Ceci est i l lus t ré par 
les résu l ta t s obtenus pour la s é r i e 1 : plus de 3 000 heures de fonctionnement après modification 
du scel lement méta l cé ramique . 

La technologie des éléments de la s é r i e 2 est sat isfaisante , un fonctionne
ment de 5 600 heures a ainsi pu ê t re enreg i s t ré . La seule difficulté rés ide dans la stabili té des 
couches émet t r ices Mo/W. Les études en t repr i ses dans le domaine de l 'interdiffusion et dans 
celui du dépôt de W, conduiront vraisemblablement à une nouvelle amélioration des durées de vie 
et à une plus grande stabil i té des per formances . 
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INVESTIGATION OF A Ne-A THERMIONIC GENERATOR 
Martha Bacal, Maria Crlstescu and C. Voci 

Institute for Atomic Physios, Bucharest, Rumania 

ABSTRACT.The results are presented of an experimental inve
stigation of an auxiliary discharge thermionic converter 
filled with a Penning mixture (Ne 99.5$ - A 0.5%). The mea
surements effeoted in the pressure range 1.25 - 4.8 Torr have 
shown that the pressure increase in this range led to an im
provement of the converter performance and also to a reduc
tion of the minimum auxiliary discharge voltage at which the 
converter operation "became possible. It was found that the 
effeet of Penning ionization in a mixture at an auxiliary 
discharge voltage near the excitation potential of the ligh
ter constituent gas is comparable to the effect of the ioni
zation processes acting in the pure heavier constituent gas 
at an auxiliary discharge voltage near to its ionization po
tential. Two discontinuities of the collector current were 
noticed at positive collector voltages. The fact that the 
current increase in the Ne-Α mixture at the first disconti
nuity is much lower than that observed in Argon, corroborates 
the view that this discontinuity is due to the ionization of 
metastables by electrons. 

Our recent investigation of an Argon gas filled auxi
liary discharge thermionic converter (1,2) has pointed out 
that a considerable stepwise increase of the collector 
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current took place for two values of the positive collector 
voltage (denoted as Vy and Vp). This effect was explained in 
terms of ionization of Argon metastable atoms by electrons 
and suggested the idea of using the metastables for ion ge
neration by way of Penning ionization in a noble gas mixture. 
It was expected that in a mixture the metastables would be 
used to a higher extent for ionization in the range of the 
emitter-collector voltage, which is of interest for thermio
nic conversion. Greaves and Kerry (4) have shown recently that 
the Penning effect does not significantly improve the effi
ciency of positive ion generation in the noble gas thermionic 
converter. However no explanation of this result was suggested. 
The present work was performed in order to investigate the 
effect of replacing the pure Argon gas with a Penning mixture 
Ne-A (99.5% Ne - 0.5% A) upon the characteristics of the auxi
liary discharge thermionic converter and especially upon the 
discontinuities of the I-V characteristic in the positive vol
tage range. The same experimental, device and measurement set-up 
as described in the previous works (1,2) has been used. Measure
ments were made at five pressures of the Ne-Α mixture in the 
range 1.25 Torr - 4.8. Torr. 

In Fig. 1 the maximum load current I^ax (i.e. the value 
I« at Vp = 2.7 V), measured at an auxiliary discharge voltage 
( Vo,,ir) slightly exceeding the ionization potential of Neon, 
is plotted against the auxiliary discharge current. The increa
se of the pressure in the mentioned range leads to an improve
ment of the converter performances. The comparison of these da
ta with those obtained for pure A gas, for V slightly excee-

auX 
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ding the ionization potential of Argon (Vaux = 16 V  ref. 1, 

Fig. 3) points out that similar I™
8
^ values are obtained for 

the same auxiliary discharge currents and near pressures. 

The auxiliary discharge oould be operated also at V 

values lower than the ionization potential of Ne. In order 

to investigate this effect, the minimum auxiliary discharge 

voltage V™ ** at which the load current suddenly appears (for 

V« « 0 ) was measured ( Fig. 2 ). The data obtained in simi

lar conditions in pure Argon gas, are also shown. The pressu

re increase leads to a reduction of V™„^ from a value near 

aux 

to the ionization potential (of Ñe  in the case of the NeA 

mixture, and of A  in the case of pure A gas), to values 

which are near to the excitation potential of the metastable 

states of Ne  in the case of the NeΑ mixture, and of A  in 

the case of pure A gas. Therefore, as was also observed by 

Greaves and Kerry (3), the values V™Jj* in the Penning mixture 

are higher than those in the heavier constituent gas alone, 

i.e. in A gas. 

For some values of the auxiliary discharge current, two 

discontinuities of the collector ourrent may be notloed, at 
Ne—A ™Ne—A 

collector voltages which will be denoted as V, and V£ . 

_Né—A 

A greater current increase takes place at 71 ; its occurren

ce is accompanied by a bright red glow at the boarder of the 

cathodecollector space. The mentioned discontinuities of the 

colleotor current can be observed only in a limited range of 

the auxiliary dlsoharge parameters (Fig. 3). The discontinui

ties always appear for auxiliary discharge voltages near to 
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the excitation potential of the metastable states of Ne (in 
the Ne-Α mixture) and of A (in the pure A gas). 

In Fig. 4 the I-V characteristic obtained in a fle-A mix
ture at a value V_„_ » 17 V, slightly exceeding the excitation 

aUX 
potential of Ne metastable states (V = 16.61 V and 16.72 V 

ex 
for the Neon P« and Ρ levels respectively) is compared with 
a characteristic obtained in pure A gas at a value V = 16 V 
whioh is slightly higher than the ionization potential of Ar
gon (V* *= 15#75 V). The emitter temperature and the auxiliary 
disoharge ourrent were the same in the two cases. The fact 
that nearly equal currents were obtained for V <: 3.6 V supports 
the view that the effect of the Penning ionization process in 
a mixture at an auxiliary discharge voltage near to the exci
tation potential of the lighter constituent gas, is comparable 
to the effect of the ionization processes acting in the pure 
heavier constituent gas at an auxiliary discharge voltage near 
to its ionization potential. Concerning the discontinuities of 
the collector current which are present in Fig. 4 ( Vp and 
V, ~ ), it can be observed that: 

1) The current increase in the pure A gas at Vp is signifi-Ne—A cantly greater than that occurring in the Ne-Α mixture at V.. . 
2) νηβ"" is somewhat higher than Vp, namely V- "" - Vp ~ 

0.8 V. These facts corroborate the view that the same process-
namely the ionization of metastable atoms by electrons - may be 

Ne—A * 
responsible for the discontinuities at V. (in the Ne-Α mix
ture) and at V« (in pure A gas). Indeed, it was shown that for 
the case of pure A gas (1,2) a correlation existed between V, 
and the difference V^ - Y^9 namely: v£ «* v£ - Ve£ - V ' 
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where V * is the contact potential difference between the 

cp * 

main emitter and the oollector. Of course, for some conver

ter conditions the electrons emitted by the main emitter 

are accelerated by the potential difference across the emi

tter sheath, which may be equal or higher than the applied 

cathodecollector voltage. Therefore, when V„ = Vr, a large 

number of electrons with an energy sufficient for ionization 
Ne Ne 

of the A metastable atoms may be available. As V.  V = 
J CA 

4.95 V, while vf  Vo¿ = 4.26 V, it is to be expected that 

the current increase due to the ionization of the Ne meta

stables by electrons should take place at a cathodecolle

ctor voltage higher with about 0.7 V than in pure A gas. As 

V?
e
~ fulfills this requirement (Fig. 3 and 4), it seems po

ssible that the current increase at V,
e
~" might be caused 

by the ionization of Ne metastables by electrons. The fact 

that the current increase due to this effect in the NeA 

mixture is not as important as that observed in pure A gas, 

may be explained by a depopulation of the Ne metastable le

vels in the NeΑ discharge, due to the Penning effect (4)· 

The efficiency of the Penning ionization process 

might be reduced in the thermionic converters owing to: 

1) the high electron densities present in these devices; 

the interaction thermal electron  excited atom may reduce 

the concentration of the excited atoms available for 

Penning ionization (5), 

2) the separation of the Penning mixture components due 

to thermodlffusion, leading to a reduction of the concen

tration of the heavier atoms near the hot surfaces (6). 
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MODULE THERMOIONIQUE NUCLEAIRE TOUTMETAL 

B.DEVIN, J . P . D U R A N D , P.RAGOT 

Service d 'Electronique Physique 
Centre d'Etudes Nucléaires de Saclay 

91  GifsurYvette (France) 

INTRODUCTION.

On a cherché à r éa l i s e r un module thermoionique, de construction s imple , 
industr ia l isable , et ne faisant pas appel à la technique méta l céramique dont la mise en 
oeuvre est délicate et qui s 'es t révélée ê t re une cause non négligeable de pannes au cours 
des essa is de durée de v ie . Notons d 'a i l leurs que les défauts du scel lement ont été auss i 
bien des problèmes de corrosion (évolution à long t e r m e du scel lement) que des défauts 
mécaniques apparus à la suite de manipulations r épé tées . 

La conception d'un conver t isseur "modulaire", placé ent ièrement à l ' in tér ieur 
du flux neutronique, exige également l 'él imination des matér iaux susceptibles de subir une 
altération grave sous i r radia t ion (gonflement de l 'a lumine) . Enfin, la diode "modula i re" , 
placée en " s é r i e " à l ' in tér ieur des canaux d'un réac teur doit p ré sen te r une surface ex te r 
ne l i s s e , sans a s p é r i t é s , pour le passage du fluide ca lopor teur , et se p rê t e r aux connexions 
électriques "en bout" , ce qui fait re je ter la f e r m e t u r e par queusot. 

Le module "tout métal" rempli t toutes ces conditions. L' idée n 'en est d 'a i l leurs 
pas nouvelle puisque le p r emie r conver t isseur essayé en pile en Europe ne comportait 
aucun isolateur étanche '*/ . 

I  STRUCTURE ET REALISATION DU MODULE NUCLEAIRE . 

Disposition mécanique 

La figure 1 montre la s t ruc ture du module métallique ainsi que les 4 éléments 
indépendants qui le composent. 

Il se distingue d'une diode cylindrique normale par l 'ensemble "col lec teur" . Le 
collecteur de molybdène est recouvert par projection d'une couche d 'a lumine. Il est ensuite 
placé à l ' in tér ieur d'un tube d'alliage de titane et d 'aluminium mince* ' '^ ' , qui est f ret te 
sur la couche d'alumine par p ressage isostatique à chaud. De cette manière on a s su re par 
le jeu de la dilatation différentielle une conductance thermique radiale élevée (3° χ cm^/W) 
entre le collecteur proprement dit et la face externe du conver t i s seur . 

La base de la s t ruc ture du collecteur comporte un logement pour le r é s e r v o i r 
de césium intégré (dans la vers ion finale). Celuici t ravai l le à la t empéra tu re du col lecteur . 
Le rése rvo i r est chargé séparément en graphite cés i é . 

Le tube de t i tanealuminium servant d ' isolateur est soudé d'une par t à la base 
du collecteur , et d 'autre par t à une embase de molybdène, séparée du collecteur par une 
cale d 'alumine. Cette embase reçoit l 'émetteur ' qui y est soudé par bombardement é l ec t ro 
nique pendant la phase finale de montage. L'opération d 'assemblagepompage s'effectue dans 
une enceinte à vide comportant la sp i re HF de dégazage et le canon électronique de soudure 
(fig. 2); le r é se rvo i r de césium est ensuite percuté : il n 'y a aucune opération u l té r ieure de 
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pompage, ni de que us otage. 

Le modèle prototype présenté figure 3 comporte un r é se rvo i r non intégré 
ex te rne pour l 'étude des performances en fonction des t empéra tures relat ives de l 'anode 
et du r é se rvo i r ; le queusot auxil iaire a servi à la séparat ion de l 'ampoule de v e r r e 
contenant la charge de cés ium. 

Dimension optimale du module -

On conçoit a isément que la présence d'une dérivation paras i te sur le circuit de 
charge affecte le rendement global du conver t i sseur . Etant donné que le courant engendré 
par le conver t isseur augmente avec la longueur de l ' émet teur , tandis que le courant dérivé 
par le tube externe diminue, on aurait intérêt à construire le conver t isseur auss i long que 
poss ib le . Mais la per te Joule dans la paroi de l ' émet teur et dans celle du collecteur croît 
rapidement avec leur longueur : il y a donc une dimension optimale de la diode qui fait le 
meil leur compromis possible entre les per tes internes ohmiques et les per tes externes dans 
la s t ruc ture métal l ique. 

Un calcul t r è s simplifié peut ê t re fait en considérant le point nominal de fonc
tionnement de la diode uni ta i re , choisie comme référence , et dont la caractér is t ique I (V) 
à puissance d 'entrée constante a l 'a l lure représentée figure 4 . 

La figure 5 donne le schéma équivalent : A de la diode uni ta i re , B de la diode 
cylindrique à isolateur cé ramique , C de la diode tout -méta l . S, R e et Rf désignent r e spec 
tivement la surface de l ' émet teur , la rés is tance de l ' émet teur et la rés is tance du tube 
ex terne . 

L'application du théorème de Thévenin à la diode tout-méta l conduit au circuit 
équivalent D (figure 4) avec : 

p^ Rf ( ^ / s + R e ) 
V = V° V s + Re ΐ % R = R f /S + R f + Re 

d'où les carac tér i s t iques du point optimal de fonctionnement de la diode toutmétal 

v s = v 0
 R f J S = J 0

 R i 

Ri/S + R e +Rf R i / S + Re 

Le rendement relatif de la diode toutmétal par rapport à la diode unitaire est appelé 

rendement de s t ruc ture de la diode métallique ( Π π ). Il s ' éc r i t : 

V S I S % R i / S ( 1 ) 

'J Sm V J S 
(Re + R i / s ) (Re + Ri/s+Rf ) 

o o 

Alors que le rendement de s t ruc ture de la diode de même dimension mais avec isolateur 

céramique sera i t ( n „,. ) 

R j / s 

se Ri /S + R e 

En exprimant l 'équation (1) en fonction des dimensions géométriques du conver t i sseur , de 
la nature des matér iaux et en imposan t , de p lus , une chute de tension égale dans la paroi 
de l ' émet teur et dans celle du col lecteur , la longueur optimale du convert isseur L, à 
rayon d 'émet teur r constant est donnée par 

L 4 . a 2  (2) 
bc ( 1 + | ) 
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b = Ρ é 

2 R r e J 0 

e m 
2 It r e 2 

α f tube 

. 2 ïï r . 

rayon du tube, α : excès de longueur du tube sur l ' émet teur et e : épaisseur du 

tube P ém est la rés is t iv i té de l ' émet teur à la t empéra tu re de fonctionnement. Cette valeur 
est remplacée par la " rés is t iv i té équivalente" lorsque l ' émet teur est creux et destiné à ê t r e 
chargé par un combustible non conducteur (UO£ par exemple) (soit p* gm = ) 
C'eât le cas pour le modèle p ré sen té . 1  (—ist \ 

r e x t 

La longueur optimale est donc fonction du d iamètre de la surface émet t r ice , 

de la densité de courant émise dans les conditions nominales et des carac té r i s t iques é lec 

tr iques et mécaniques du tube ex terne . 

Le filage à chaud des lingots d'alliage TiAl conduit à des ébauches de tube qui , 
par rectification f inale, peuvent ê t re amenés à une épaisseur de 0,3 mm ; la var ié té d ' a l 
liage retenue pour les essa i s présente une rés is t iv i té p de 195 microohm. . c m . 

La figure 6 donne, en fonction du rayon de l ' émet t eu r , la longueur optimale 
d'une diode toutméta l à émetteur creux conforme au schéma de la figure 1. On a p o r t é 
également sur cette figure la puissance nominale de sor t ie ainsi que le rendement de s t r u c 
ture n c . La valeur portée en pa r amè t r e est la quantité sans dimension carac tér i s t ique 
de la s t ruc ture métallique 

«p t r e m 

A t i t re de comparaison, on a représen té sur la figure 6 le rendement de s t r u c 
ture de la diode céramique et' de la diode toutméta l en fonction de la longueur de l ' éme t 
teur . La présence d'une longueur optimale est c la i re et la per te par rappor t à la diode 
céramique devient t r è s faible aux puissances de sort ie é levées . 

Les conver t i sseurs à émetteur plein, conducteur (Cermet UO, Mó), sont avantagés 
par cette s t ruc tu re . La courbe en pointillé sur la figure 6 en témoigne. 

II  RESULTATS EXPERIMENTAUX.

La diode de la figure 2 a été construite aux dimensions suivantes 

JÓem 

16mm 

em 

55 mm 

épaisseur 

2mm(Mo) 

0 tube 

19.4 mm 

^ u b e 

70 mm 

épaisseur 

0,35 mm 

rés is t iv i té 

0,000195 

μ 

0,0056 

Dans le r é seau de la figure 7 , son point figuratif est r eprésen té par le t r i angle . 
La diode n 'a pas été construite opt imale. Les dimensions ont été choisies afin qu'el le 
s'adapte aux apparei ls d ' essa i s exis tants . Il s 'agit là uniquement d'un prototype destiné à 
mettre au point la méthode de fabricat ion. 

Les performances prédi tes par le calcul et mesu rées sont comparées dans le tableau 

cidessous 

calculé 

mesuré 

vs 

0,474 

0,453 

J S 

187 

182 

Τ 
' e m 
1600°C 

1630°C 

T co l l 

600 

621 

T C S 

682 

678 

9m 

6 , 3 

6,2 

R f 

6 , 2 m ß 

5,6 mft 
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V o J o T e m T
c o l l T C S 7 m 

0 , 8 7 A / c m 2 1600 600 682 11 % 

C a r a c t é r i s t i q u e c o u r a n t - t e n s i o n : 

E l l e e s t tou t à fa i t conven t ionne l l e ; e l l e p e r m e t de r e s t i t u e r la c a r a c t é r i s t i q u e 
I (V) du c o n v e r t i s s e u r s a n s tube e x t e r n e , p a r add i t ion du c o u r a n t d é r i v é dans la r é s i s t a n c e 
R f ( f igure 8 ) . 

C O N C L U S I O N . -

Il n ' e s t p a s d é s i r a b l e d ' e n t r e r i c i dans le d é t a i l t e chno log ique des d i v e r s 
a s s e m b l a g e s qui c o n d u i s e n t à la r é a l i s a t i o n du c o n v e r t i s s e u r . L e u r c a r a c t é r i s t i q u e c o m m u n e 
e s t d ' ê t r e " i n d u s t r i e l s " , c ' e s t à d i r e que chaque é t ape de p r é p a r a t i o n des é l é m e n t s peu t 
s ' e f f e c t u e r s i m u l t a n é m e n t s u r un g r a n d n o m b r e de p i è c e s . L e t e m p s d ' a s s e m b l a g e f ina l 
c o n d u i s a n t depu i s l e s 4 é l é m e n t s s é p a r é s j u s q u ' à la d iode o p é r a t i o n n e l l e e s t d ' e n v i r o n q u a t r e 
h e u r e s . Beaucoup d*e.spoirs sont fondés s u r ce type de c o n v e r t i s s e u r s dont on a t t e n d que le 
s a c r i f i c e c o n s e n t i s u r le r e n d e m e n t de s t r u c t u r e so i t l a r g e m e n t c o m p e n s é p a r la s i m p l i c i t é 
de f a b r i c a t i o n , la r o b u s t e s s e et le p r i x de r e v i e n t . 
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P r o d u c t i o n T h e r m o i o n i q u e de P u i s s a n c e E l e c t r i q u e , S t r e s a , 1968, S e s s i o n E : 
M a t é r i a u x . 
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DISCUSSION 

Speaker of paper A-14: B. DEVIN 

HOLLAND (USA): 
What would the e lec t r i ca l res i s t iv i ty and melting point of the t i t an ium-a lu
minium alloy be ? 

DEVIN (France) : 
L 'al l iage de t i tane-aluminium ut i l isé a une rés i s t iv i té de 195/uOhm-cm. 
Son point de fusion est légèrement infér ieur à celui de t i tane; il n 'a pas été 
m e s u r é je pense qu'i l se ra i t de 1600 à peu p r è s . Il est possible d 'u t i l i se r 
d 'a l l iages d'une rés i s t iv i té plus élevée, 250-280/uOhm-cm, mais ces a l l iages 
sont ex t rêmement durs et cassant et il es t pra t iquement impossible pour le 
moment de les t r ans fo rmer en tubes minces . Les al l iages que nous avons 
ut i l isé ont été t r ans fo rmés pa r filage à chaud sous gaine comme on fait les 
maccaron i . C'est une opération a s sez délicate pour obtenir du p r e m i e r coup 
une épa isseur voisine de l ' épa i s seu r finale. Pour le moment les ébauches 
de tubes font une épa isseur compr ise entre 1 m m et 1. 5 mm; ils sont r é 
duits à l ' épa i s seur de 0. 3 mm par rectif ication. Toutes les opérat ions de 
soudure se font de bombardement électronique et il n 'y a aucune b r a s u r e 
dans le conver t i s seur . 

BUSSE (Euratom): 
What was the thickness of the wall which you assumed in the calculations 
of the r e s i s t a n c e s ? 

DEVIN: 
Nous avons p r i s pour les calculs de la courbe infér ieure l ' épa i s seu r que 
nous avons réa l i sé actuel lement qui es t de 0. 3 mm. La courbe supér ieure , 
la plus élevée, qui est dans la figure, suppose une épa i s seur de 0. 1 mm; et 
une rés i s t iv i t é de l ' o rd re de 200/uOhm-cm. Ça ne para î t pas hors d 'a t te inte . 

BUSSE: 

Do you think you can solve the problem of br i t t lene s s of the al loy? 

DEVIN: 
Il n'y a pas de prob lèmes de fragil i té avec l 'a l l iage qui donne la rés i s t iv i t é 
de 195/uOhm-cm. C'est un all iage commerc i a l et ut i l isé dans la technique 
d'aviation. 

BOHDANSKY (Euratom): 

Do you know whether the alloy changes its res i s t iv i ty due to radiation in the 
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r e a c t o r ? 

DEVIN: 
Aucune expérience pour le moment . Je ne pense pas qu'i l y ait beaucoup à 
c ra indre de ce coté là parce que il est dans un état de pure té ex t rêmement 
pauvre et la c r i s ta l l i sa t ion de grains est tout-à-fai t quelconque, c 'es t v r a i 
ment de tout venant. Et je ne pense pas que les radiat ions puissent beau
coup a l t é r e r la s t ruc tu re . Maintenant, d 'aut re par t , le ti tane et l 'a l luminium 
même ont des sections de capture neutronique a s s e z faibles et je ne vois pas 
de danger de ce coté là. Enfin, la couche d 'al lumine qui sépare le collecteur 
de molybdène de la paroi ex té r ieure de t i tane, e l l e -même est sous forme 
quasipulvéri lante puisqu'el le est déposée au chalumeau il n 'y a pas de p r o 
blèmes là non plus. 

HOLLAND (USA): 
How does the capital cost of an all meta l conver ter compare with the cost of 
a conver ter made with an ordinary ce ramic sea l? 

DEVIN: 
Nous n'avons pas comparé le coût du conver t i s seur avec le conver t i s seur 
normal . La réduction de coût entendu pour ce type de conver t i s seur ne tient 
pas au fait qu ' i l soit ent ièrement métal l ique. La réduction de coût est l iée 
au fait qu' i l est assemblé ent ièrement sous vide, sans pompage par un queusot 
par exemple, et cette réduction de coût s 'applique à mon avis auss i bien aux 
conver t i s seurs avec i so la teurs de céramique as semblés par la même p r o c é 
dure . 

PRUSCHECK (Germany): 
By what means can t i tanium-aluminium be connected to other ma te r i a l s (by 
electron beam welding, a r c welding, soldering)? 

DEVIN: 
Oui, par toutes les méthodes c lass iques pour r e l i e r ensemble deux métaux 
dont les points de fusion sont différents, mais je peux di re qu'en ce qui con
cerne des al l iages t i tane-aluminium et de molybdène il est possible de p r o 
céder d i rec tement par électron-beam-welding avec cer ta ines précaut ions sur 
les épa i s seu r s de paro i . 
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The Incore Thermionic Reactor as a Space Power Source 

by 

H. Andrae, D. Budnick, F. Groß, ¥. Jahns, K. Janner, A. Jester, 
BROWN, BOVERI &. CIE AG, Mannheim; INTERATOM, Bensberg; 

SIEMENS AG, Erlangen. 

1. Summary 
The Incore Thermionic Reactor ITR is a UO^-fueled, sodium-
cooled reactor incorporating 7» 19» 37 or more thermionic 
fuel elements arranged in a solid-hydride moderator, sur
rounded by homogeneous, fully enriched uranium-metallic-
hydrided booster elements and a beryllium reflector. The elec
trical power output can easily be matched to the requirements 
within wide limits by varying the thermal reactor power and 
the number of thermionic fuel elements. 

As a first step towards space application an earth bound proto
type reactor has been designed which has 19 thermionic fuel 
elements. The electrical power output of each fuel element 
amounts to 1 - 2 kW and is generated by seven series-connected 
cylindrical high-pressure cesium-cells of 20 mm diameter and 
5^ mm length of the emitter. The electrical power density for 
a 20 kW unit is about 5 W/cm . The present state of development 
is outlined. 
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2. Reactor and fuel rod design 
During the last six years extensive studies and experiments 
in the field of thermionic energy conversion and advanced 
reactor development have been carried out in the Federal 
Republic of Germany, supported by the "Bundesministerium 
für wissenschaftliche Forschung". The aim of these efforts 
was the development of an Incore Thermionic Reactor suitable 
for installation in spacecraft. Recent work at BBC, INTERATOM 
and SIEMENS has been concentrated on a small metal-hydride-
moderated power reactor using highly enriched uranium as fuel 
and liquid sodium as the coolant /~1_7· Fig. 1 shows a model 
of the reactor. 
The core is k5 cm high and its diameter is about 35 cm. 
The interior is a metal-hydride moderator matrix containing 
19 thermionic fuel rods arranged in a hexagonal lattice. This 
subcriticai assembly is surrounded by a booster zone, which 
consists of closely packed fuel rods containing a homogeneous 
fuel-moderator mixture. They provide criticality of the reac
tor and contain very little structural material in order to 
keep the reactor as small as possible. The outside of the whole 
core is surrounded by a beryllium reflector fitted with adjust
able segments to allow reactor control by variation of neutron 
leakage. The electrical power output level is 20 kW and is 
generated in the thermionic fuel rods, each of them containing 
seven series-connected cylindrical converter cells. The waste 
heat is conducted to the outside of each rod, transferred to 
the liquid sodium coolant flowing in a separate channel and 
then removed from the reactor. In the booster zone, the fuel 
rods are also cooled by sodium flowing through the gaps between 
the elements. 

The following considerations have contributed to the selec
tion of this type of reactor: 

Extensive system studies have shown thermal and intermediate 
reactors to be highly suitable for electrical space power 
supply systems in the range up to several hundred kW /""2.J. 
Some reactors are already in the final development stage and 
have attained a high degree of reliability, as proven in the 
United States by the reactors of the SNAP-Series, one of Which, 
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SNAP 10 A, has already been operating in space /~3_J · The 
use of metal-hydride as a moderator permits the construction 
of small reactors with a few kg of inserted fissionable ma
terial and is suitable for relatively high temperatures ¿T^J* 
Sodium coolant allows high power densities at relatively low 
flow velocities and vapor pressures and thus limits mass for 
pumps and structural material ¿5_/· Sodium has already been 
successfully used as a reactor coolant. 

The arrangement here differs from conventional systems in 
that thermionic fuel rods are introduced ¿^6_/, which are 
shown in Fig. 2. The emitter is a cylindrical body of molyb
denum with a length of $k mm and a diameter of 20 mm, con
taining 46 g UOp-fuel (93 % enriched) in 10 holes drilled into 
the wall. 

In order to improve converter performance and to extend the 
lifetime, tungsten is deposited on the emitter surface 
£~7_7· The electrode spacing is 0.17 mm. The collector 
system (sandwich) consists of layers of 2.3 mm niobium, 
0.2 mm ceramic insulation and 1 mm external NblZr-cladd-
ing tube. The coolant gap is about 3.6 mm.· 

The cells of a fuel rod are electrically series connected. 
The support pin has separate passages for cesium-vapor (dott
ed line) and gaseous fission products, which are removed from 
the rod by holes in the collectors (dashed line). A metal cera
mic seal between adjacent cells keeps the cesium and fission gas 
separated. The emitter is centered in the collector by the support 
pin at one end and a ceramic ring at the other end, in which 
a centering Mo-membrane can slide freely. This design leads 
to relatively large distances of about 16 mm between the fuel-
pins of adjacent cells; while this is a disadvantage from the 
reactivity point of view, it provides a very rigid construc
tion. A central hole of 5 mm diameter permits electrical heat
ing of the emitter for the testing of each cell before as
sembly. Further development in fuel and technology may lead 
to less complicate designs when more information about long-
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time behaviour is available from inpile reactor tests. 

The preliminary operating data are: 

- 1800 K emitter temperature 
- 5 Watts/cm electrical power density and 
- 10 % conversion efficiency jT"S_~/ 

In laboratory and inpile tests much higher power densities 
have been obtained. Fig. 3 shows an experimental arrange
ment that is suitable for both nuclear and electrical heat
ing. Detailed information is given in a paper to be present
ed at this conference ^ 9 _ / · 

Several inpile tests ^7lO,11_7, which were performed from 
1966 to 1968, yielded electrical power outputs between 7,5 
and 9 Watts/cm at emitter temperatures of I9OO0 and'2000°K 
respectively. These data are intended only for orientation; 
short duration tests gave much higher values. Altogether, 
several generations of converter cells have been built and 
tested and a wealth of experience is available on converter 
technology. 

3. Optimization studies 
The relationship between thermal and electrical power for 
the case of the reactor with 19 thermionic fuel rods, taking 
into account electrical and thermal losses in the series-
connection-bridges, is shown in Fig. k. These data are cal
culated from current-voltage characteristics measured by 
Lawrence and Wilson £~ 12_/ on tungsten niobium converters with 
0.17 mm spacing between the electrodes. The cesium-pressure 
was optimized with respect to maximum power density. With in
creasing current density at constant temperature the electrical 
power output reaches a maximum value at the chain-dotted line. 

While 12 kW of electrical power is available at 1673 K it is 
possible to obtain 60 kWatts with the same arrangement at 
2150°K. Maximum efficiency gives lower values. The designed 
power of 20 kW is well down in the low power region and can 
be enhanced considerably. 
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In Fig. 5 the specific mass of a space power system of this 
kind is plotted versus the electrical power. For low emitter 
temperatures the region of small specific mass is very narrow, 
whereas for high temperatures there is a broad minimum. It 
can be seen that operation at maximum power (chain-dotted line) 
is not favourable; the specific mass is about 5 kg/kW higher 
due to higher electrical losses in bridges and electrodes. For 
the reactor and shadow-shield, a total mass of 680 kg was as
sumed. The thermal power in the booster zone, which is four 
times higher than in the thermionic zone, has been regarded as 
waste heat which is radiated into space with an effort of half 
a kg per thermal kW power. At a power level of 20 kWö1 a speci-
fie mass of 60 kg/kWe^ can be expected. 

These data are estimated values, since not much is known at 
present about the components of the flight-system. However, 
the data show the tendency and characterize the range of the 
development program. 

Another method of increasing the power level is to introduce 
a larger number of fuel rods which can operate at lower tempe
ratures, thus avoiding the material problems. Fig. 6 shows the 
specific mass of space power systems over the electrical power 
when reactors with 19, 37, or 61 thermionic fuel rods are 
used. The specific mass decreases from 100 kg/kW at 10 kW 
through 60 kg/kW at 20 kW to less than kO kg/kW at 40 kW. At 
this power level the 19 TI-rod reactor operates with an emit
ter temperature of 2000°K, whereas a 37 TI-rod reactor only 
needs the original design temperatures of 1800 K. 

The specific masses of the two systems are not very different 
at this point, because the ratio of thermal power in the 
booster zone to thermal power in the thermionic core decreas
es with an increasing number of thermionic fuel elements. 
Hence a larger reactor and shield mass is partially compen
sated by a smaller'radiator mass. This is quite advantageous, 
since it offers two ways of attaining a desired power level, 
at the same time allowing account to be taken of the latest 
state of development in the design of thermionic cells. 
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In all cases thermionic fuel rods consist of identical 
cells with constant fuel concentration, which are inter
changeable and can be inserted into any position of the 
inner core. To obtain nearly optimum operating 'conditions 
for all cells, the power density can be flattened by 
variation of the moderator density and adjustment of the 
axial reflector. In the radial direction suitable coupling 
to the booster zone is used to reach a macroscopic maximum-
to-minimum power ratio of about 1.1. 

k. Development Program 

In the design of the reactor emphasis was laid on practi
cability and functional reliability. An optimum specific 
mass must not be achieved at the expense of introducing 
difficult material problems. Under consideration at present 
are zirconium or yttrium hydride as a moderator, designs 
with one common or two separate coolant loops and two ver
sions of the reflector control system. A decision will be 
made within the next few months. 

The first two steps in the ITR-Project are the development 
and· assembly of a terrestrical prototype reactor. The reactor 
will be installed into a spherical pressure vessel of approx. 
3 m diameter which can be evacuated. Its thermal power will 
be approximately 1 MW, the coolant inlet temperature is 500 C, 
and the outlet temperature 65O C. The location has not yet been 
fixed, but the test plant will be built in the grounds of a 
nuclear research centre in Germany and has to be suitable 
for several years' continuous operation. Approximately five 
years will be necessary for development and construction of 
this plant. 

Besides the development groups of BBC, INTERATOM and SIEMENS 
in the recent years several German research groups at univer
sities and nuclear research centres have worked in this field, 
chiefly on fundamental problems. The thermionic group of EURATOM 
at Ispra has also contributed to thermionics and related areas. 
Now the size of the outlined project presents an opportunity 
to set a common goal to all laboratories. 
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DISCUSSION 

Speaker of paper B - l : D. BUDNICK 

SCHOCK (USA): 
I am in teres ted in the seals which you have between each consecutive diode. 
What a r e the dimensions of the sea l s , how a re they fabricated and how much 
experience have you had with them? 

BUDNICK (Germany): 
Mr. JESTER will be so kind to answer your question concernirig the sea ls 
of the conver ter ce l l s . 

JESTER (Germany): 
Until now we have used alumina seals brazed to niobium shee ts . In the d e 
sign we f irst looked for t he rma l shock r e s i s t ance . The sheets which a r e 
brazed to the alumina a r e made very thin so they can match the differences 
in the t h e r m a l expansion. On the other hand we a r e looking for a design in 
which the sea ls between the ces ium vapor space and fission gas room must 
not be vacuum tight. This is possible when sufficient gas products a r e ven
ted from the fuel of the emi t t e r through a separa te channel. 
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RESULTS OF STUDIES ON VARIOUS FAST AND THERMAL THERMIONIC REACTOR SYSTEMS 

R. Pruschek, S. Dagbjartsson, D. Emendörfer, M. Groll,W. Haug, 
B. Röhrborn, Η. Unger, Ε. Wolf 

Institut für Kernenergetik, Universität Stuttgart (Germany) 

Abstract 

The results of various studies on five different thermionic reactor systems 
are reported. Information is given on characteristic data of these devices as 
the amount of fissile material, power output, specific power, mass of compo
nents, total mass etc. Problems of power flattening, long time behaviour, inte
gration of converters to the nuclear heat source as well as specific design 
features of the following types of thermionic reactors are discussed: 
1) moderated incore thermionic reactor (TRIKT), 2) moderated double diode 
thermionic reactor (DDTR), 5) fast incore thermionic .reactor (SRIKT), 4) fast 
outofcore thermionic reactor, emitter heated by heat pipes (WRTR), 5) fast 
outofcore thermionic reactor, emitter heated by thermal radiation (SRAKTWR). 
Among the concepts considered the moderated incore thermionic reactor system 
(TRIKT^ is the most attractive within a few ten to a few hundreds of kWei In 
the lower power range the "Teiltherm'ionikreaktor" (ITR) seems reasonable. 

1. INTRODUCTION 

Studies on five thermionic reactor systems as power supply for space 
crafts are carried out to get information on the preferable reactor design, 
the components, shadow shield, and radiator layout as well as on the re
quired material properties and converter performance. The problems are dis
cussed best on the basis of design studies where physical and technical 
aspects are comprised. Moreover, clues on the specific power of such systems 
are obtained this way. Two of the thermionic reactor systems taken into con
sideration are based on moderated reactors while the other three are fast reac
tors. The five systems can also be subdivided into three incore types (TRIKT, 
DDTR, SRIKT) and two outofcore types (WRTR, SRAKTWR). Data on converter 
performance are employed according to experimental results from outofpile 
converter tests and according to some reports on inpile experiments. The 
prediction of the performance of converters connected in a series»parallel
network is based upon converter models as described in literature. Specific 
design data of the five systems based on 93 % enriched uranium are presented 
in tables 1 to 5· 

2. MODERATED INCORE THERMIONIC REACTOR (TRIKT) 

The emitters are in contact with the nuclear fuel. The waste heat from 
the collectors is removed by means of a liquid metal coolant which is re
circulated via a finned tube radiator by an EMconduction pump. The reactor 
is suitable for the power range from about 50 kWei to a few hundred kWei 
[l>2,3]· As for the application in the lower power range down to about 
20 kWei the design has to be modified. Some of the outer thermionic fuel 
elements are replaced by ordinary fuel rods. The thermionic fuel element zone 
in the center of the core is subcriticai for itself and is driven like an 
exponential pile by neutrons from the surrounding zone. The heat generated 
in the surrounding zone is removed without use for electrical 

This work was supported by the Bundesministerium flir wissenschaftliche 
Forschung of the Federal Republic of Germany. 
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power generation (Teilthermionikreaktor ITR [4]). The execution of such a 
system was recently approved by the government. 

Reactor 
Two different types of fuel are considered. One type consists of a molyb-

denum-UOg matrix. The uranium oxide is filled into several holes of the 
cylindrical molybdenum emitter body which is surrounded by vapor plated 
tungsten. From inpile tests with U02~Mo-fueled emitters it can be .concluded 
that the required life time of TRIKT-converters will be obtained [5] . The 
other type is based on zirconium stabilized uranium carbide fuel which is 
surrounded by tungsten plated molybdenum. The data given in tables 1 to 5 
refer to this type of fuel. The moderator is assembled of zirconium hydride 
prisms of hexagonal cross section. The thermionic fuel rod is arranged with
in the central hole of the moderator prism. The hydrogen diffusion and the 
associated leakage during operation has to be reduced by diffusion barriers 
(e.g. Al20-z). The core is surrounded by a beryllium reflector (Fig.l). The 
radial reflector consists of a rigid part and six angular rotable semi-
cylindrical beryllium drums operated by stepper motors. Power density 
flattening within the core [6J is achieved by variation of lattice pitch 
ratio in the radial direction and variation of the hydrogen concentration 
in the axial direction. Reflector thickness and cell dimensions are opti
mized with respect to maximum specific power. 

Thermal group cell calculations are accomplished by means of multiple 
collision theory within the fuel region and diffusion theory in the con
verter and moderator zone according to Amouyal-Benoist [7]. In some cases 
multigroup first collision theory with 27 energy groups is applied. Spectra 
are calculated using one-dimensional·diffusion theory with 49 energy groups 
(8]. Critical reactor dimensions are obtained from two-dimensional two-group 
diffusion theory. 

Thermionics and Energy Transport 
There are eight cylindrical converter cells per fuel rod connected in 

series. These may be connected to a series-parallel-network out of the core. 
The feasibility of such a network with cross connection resistors within 
the core is investigated in detail at present. The calculated net power 
output of the system amounts to 50 kWei· 

Measured I-V-characteristics of converters with W/Ni-electrodes as re
ported by Lawrence and Wilson [9] are extrapolated to our converter dimen
sions by means of a converter model from Rasor [lO]. The operation point 
given in table 2 corresponds to maximum efficiency of the thermionic fuel 
rods at optimum reservoir temperature (615 K) and optimized connection leads. 

Advantages of the System 
- Low fuel inventory (approx. 10 kg U 235) is required for eriticality 
or the excess reactivity, respectively. Specific costs per kW installed in 
the orbit are therefore low compared to fast reactor systems for power 
units below approx. 100 kWe^. 

- The damage flux is not a limiting design factor. 
- The emitters are attached to.the heat source directly which is favourable 
from thermodynamic reasons. 
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Disadvantages of the System 

The converters may fail by diffusion of fuel and fission products through 

the emitters, due to swelling of fuel resulting in short circuiting (how

ever, inpile experiments with U02Mofueled emitters of the BBCdesign 

have shown that these problems may be solved satisfactorily). 

 The burnup related to the total number of metal atoms within the fuel after 

400 d is approx. 1 %. Nevertheless, the reactivity loss of a TRIKTsystem 
is rather high (5 % caused by burnup and fission product poisoning plus 

some additional percentage caused by hydrogen loss. Therefore, burnable 

poison or high control reactivity is required at the time of startup. 

Comparison of Phoenix Fuel and U 255 with Respect to the Longtime Behaviour 

To get a smaller reactivity loss during burnup the use of phoenix fuel 

(PUO2) was taken into consideration. The calculations are based on a con

verter geometry similar to the BBC cell design [5]· Three different compo

sitions of Puisotopemixtures obtained by reprocessing of fuel elements of 

boiling water reactors were considered for the computations. For the burnup 

calculation the assumed reactor operation time of 400 d at full power was 

divided into four time intervalls. The time dependent neutron flux was 

calculated at each time intervall by transport theoretical methods. 

The phoenix effect(formation of Pu24l)depends on the concentration of 

the neutron absorber Pu 240 within the isotope mixture. The greater the 

initial portion of the isotope Pu 240 the greater the formation of Pu 241 

can be expected. However, the effective absorption cross section of Pu 240 

decreases with increasing Pu 240 concentration due to the self shielding 

effect. 

For discussion of the burnup behaviour of phoenix fuel two further facts 

are of importance which diminish the expected, benefit: 

a) It is rather difficult to maintain the reactivity constant during opera

tion by means of the Pu 240concentration. Because of the high initial 

Pu 239 concentration in the fuel additional Pu 240 is built up which 

impairs the time dependent reactivity characteristics. 

b) The effective absorption cross section of the fission products from Pu

fissions is greater than the absorption cross section of the U 255 fission 

products. The calculations carried put so far have shown the existence of 

the phoenix effect. However, it is too small to be attractive for use in 

moderated thermionic reactors. At the same total number of fissile atoms 

and at the same concentration even greater.reactivity loss is caused by 

burnup and fission product poisoning if U 255 is replaced by phoenix 

fuel. This is true for N H / % = 20 and Nj/Npu = 20, respectively. For 

higher hydrogen concentrations two of the three phoenix fuels in conside

ration yield smaller reactivity losses than U 235. Calculations for 

NH/NU > 60 have not been carried out. If there should be an advantage in 

the reactivity behaviour compared to U 235* the weight increase might 

overcome the gain in reactivity performance. 

Table: Reactivity lossAk/k of the reactor cell by burnup and fission pro

dûct"poisoning. Time of operation at full power 400 dj no fission product 

release; heat flux density 60 W/cm
2
 at the emitter; N H / % = %/Npu = oc 

(Ν = number of atoms in the core). 
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Isotopemixture 

(JÉ) 

fuel 

95 % theor. 

density 

Δ k/k % for 

<* = 20 

Δ k/k # for 

oc= 60 

U 235 
(100) 

uo2 

1,94 

2,35 

Pu 239 (95) 

Pu 240 (4,7) 

Pu 241 (0,3) 

Pu 242 (0) 

Pu02 

1,99 

1,80 

Pu 239 (74) 

Pu 240 (19) 

Pu 241 (6,2) 

Pu 242 (0,8) 

Pu02 

2,07 

2,01 

Pu 239 (50) 

Pu 240 (32) 

Pu 241 (13,5) 

Pu 242 (4,5) 

Pu02 

2,46 

2,46 

3. MODERATED DOUBLE DIODE THERMIONIC REACTOR (DDTR) 

The double diode reactor concept was proposed by the Brown Boveri Cie. 

Its power range amounts from 5 to 50 kWei· This thermal incore thermionic 

reactor is composed of fuel rods which are assembled of two diodes each 

(Fig.2). The fuel is used to contribute to the electric conduction, whereas 

the coolant cannot be utilized to enlarge collector conductivity; otherwise 

a current leakage would occur between converter electrodes and EMconduc

tion pump. The data given in tables 1 to 5 refer to a criticality limited 

reactor. By increasing the moderatortouranium ratio the emitter area of 

the critical reactor can be reduced. 

Reactor 

The core is assembled of 84 cylindrical hollow thermionic fuel rods 

(double· diodes). MoU02
C
ermet is used as fuel. The hydrogen concentration 

is only 85 % of the values of ZrHj γ. If power density flattening should be 

necessary, the Ηconcentration could be raised to its maximum value in the 

outer region of the core. The core is surrounded by a beryllium reflector. 

Both top reflectors, however, are of little effectiveness due to the multiple 

feed through required for tubes and leads. The reflector shell consists of 

a rigid part and six angular rotable semicylindrical beryllium drums for 

control purpose. The reflector thickness is optimized with respect to maximum 

specific power. Core cell dimensions and maximum obtainable concentration of 

fissile material are considered as given quantities. The NR/NUratio is 

adjusted to criticality requirements for a power output of 20 kWel· 

Thermionics and Energy Transport 

Molybdenum is used as emitter material and NblZr as collector. The two 

diodes of each fuel rod are connected parallel electrically. The long 

diodes give rise to high currents. The converters are therefore operated in 

the unignited mode. The thermal and electrical data are based on a mean 

converter power density of 1,2 W/cm and a total efficiency of 5 %· A series
parallelnetwork is feasible out of core. The 84 fuel rods are devided into 

four groups of 10 rods each and four groups of 11 rods each. The coolant of 

each subassembly is circulated by one thermoelectric pump [ll]. The re

dundancy could be increased by using collector heat pipes for each double 

diode. The power output of this system can only be increased by multiplying 

the number of double diodes. Therefore,'the shape of the reactor would be

come a flat disc at high power which is unfavourable from neutron economy 

as well as from shielding requirements. However, the system power could be 
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increased by using two reactors of this type joined together at that top 
side which is free from coolant headers, taking criticality considerations 
into account. For that reason the coolant of each double diode is conducted 
in counterflow through two coaxial coolant channels (Figs.2 and 3) which 
results in an additional pressure loss caused by the reversal of the flow 
around l80 degrees (Fig.3)· Furthermore, the core structure is loosened up. 
It was necessary to insulate the two flow channels by a gap. Thus heat is 
exchanged by radiation only. By that means the temperature at the reversal 
point is raised only by 1 K above the outlet temperature. 

Advantages of the System 
- Each converter is a vacuum tight self-contained system. A leak in one con
verter does not effect the operation of the remainder. 

- Each converter fuel element is vented for fission product release. The 
cavity can be used for testing each converter before reactor startup 
(Fig.3)· For this purpose an electron bombardment heater can be inserted 
into the cavity. 

Disadvantages of the System 
- There are similar material problems as involved with the TRIKT-system. 
- At higher power(level from about 20 kWei) the application of thermo
electric pumps is no longer favourable since they need large volume. 
Furthermore, the height-to-diameter, ratio decreases with increasing 
power which results in flat and, therefore, heavy thermionic reactors. 

- Moderate converter performance due to the large emitter area required 
by the reactor design. 

4. FAST INCORE THERMIONIC REACTOR (SRIKT) 
In comparison to the moderated TRIKT-system the fast reactor has - at 

the same power level - only 2/3 of the TRIKT mass although the quantitv of 
fissile material is several times that of TRIKT. 

Reactor 
The core consists of 37 thermionic fuel elements with UC as fuel [12]. 

It is surrounded by a beryllium reflector. The reflector is divided into 
an inner fixed and an outer movable part which consists of two shells 
sliding in axial direction (Fig.4). These reflector shells of 10 mm thick
ness have a reactivity worth of approx. 4 %. Each of them is infinitely 
variable driven by a servomotor. Power flattening in the core can be 
achieved to a good degree by adjustment of the reflector thickness. 

The dimensions of SRIKT given in tables 1 to 5 are based on parametric 
studies with variation of the reflector thickness, fuel element thickness 
and height-to-diametèr ratio. Criticality, axial and radial flux distribution 
have been calculated by means of multigroup diffusion theory [8] using the 
26-group cross section set of Bondarenko et al. [13]· 

Thermionics and Energy Transport 
The described design study is based on the performance characteristic 

of a Cs-Ba-converter although there is no experience on longtime-behaviour. 
Each of the converter cells is operated at the point of maximum power of 
the I-V-curve at optimum Cs-pressure. By choice of different emitter lenghts 
the condition of constant current can be satisfied although the heat input 
to the converters connected in series varies. For calculation of the 
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electrical output data the results of experiments with a Cs-Ba-converter 
carried out by Psarouthakis have been used [l4]. The emitter temperature 
of the converter cell operated at maximum heat input is limited to 2070 K 
by design. At this temperature, the heat flux to the emitter amounts to 
69 Watts/cm2. With the fuel element arrangement chosen in this design, an 
efficiency of 14 % is achieved. Because of non-uniform heat generation in 
the fuel elements the gross efficiency of the plant is lowered to 12 %. 
This corresponds to a mean electric power density of 6,5 Watts/cm2 and to a 
net power of 50 kWe^. The collector temperature of ll40 K is somewhat 
higher than the barium reservoir temperature (1100 K). 

Advantages of the System 
- High specific power, therefore applicable for electric propulsion [l] . 
- SRIKT-systems are suitable for long-time'missions because of their low 
reactivity loss during burnup. 

Disadvantages of the System 
- High fuel inventory which causes higher costs than a thermal system in 
the low power range ( 100 kW) [l] . 

- Compatibility problems between nuclear fuel and emitter arise in the 
SRIKT-system likewise. The selection of the emitter and fuel materials 
however is not restricted severely by neutron capture considerations. 

- The damage flux in the A^Oyeeramic insulation within the core has here 
its highest value (about 1,6·10*5 MeV/cm2s) of all systems discussed in 
this paper. 

5. FAST 0UT-0F-C0RE THERMIONIC REACTOR, EMITTER HEATED BY HEAT PIPES (WR-TR) 
The fission heat is transferred by means of heat pipes [l6,17] from the 

core through the reflector to the emitter. The converters are located out
side of the top reflectors (Fig.10). The collectors are also cooled by heat 
pipes. Therefore, no pumps are required.According to the calculations 
carried out so far, a heat pipe thermionic reactor of this type seems to be 
suitable for approx. 100 kWei· 

Reactor 
The cylindrical core is an assembly of 367 fuel elements which consist of 

two symmetric parts [l8]. The U02~fuel.is filled in holes of molybdenum 
matrix elements of hexagonal cross section. The emitter heat pipe is fitted 
in the central hole of each matrix element. These have no mutual contact 
within the core. Therefore, a series-parallel-connection of the converters 
of different fuel elements is feasible. The core is reflected by graphite. 
Power density flattening in axial direction is not absolutely necessary, since 
emitter heat pipes are used for heat transfer. 

Thermionics and Energy Transfer 
The two converters of each fuel element are connected in parallel (Fig.6). 

In order to exploit the thermal power of a fuel rod, the converters must have 
large electrode areas and generate therefore hin;h currents. The emitter and 
the collector temperatures are constant within each converter due to the 
application of heat pipes. The emitter heat pipe consists of a Ta-10 W-tube 
whose inner face is plated with tungsten. Lead is used as heat carrier. For 
the collector heat pipe, Nb-lZr is chosen as structure material and sodium 
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as heat carrier. The waste heat is rejected by radiator heat pipes (NblZr/Na). 

They are fitted to the collector heat pipes and soldered together. Therefore, 

no temperature drop at this interface occurs. The radiator heat pipes are 

combined to a truncated cone shaped radiator (Fig.5)· 

Advantages of the System 

 Converters*are outside of the core. The insulation is not exposed to the 

high neutron flux of the core. 

 Problems associated with the direct contact of fuel and emitter ocçuring 

in incore reactors are evaded. 

 A high redundancy of the system can be obtained because each of the 

numerous converters is a selfcontained system. 

Disadvantages of the System 

 Fuel inventory and total weight are high. 

 One part of the radiator is located between reactor and shield (Fig.5» 

the shield is not indicated there). From this, a heavy shield results. 

The development potential of this design to higher power output is there

fore limited. 

 The longtime operation of emitter heat pipes has not been demonstrated 

satisfactorily so far. 

6. FAST OUTOFCORE THERMIONIC REACTOR, EMITTER HEATED BY THERMAL RADIATION 

(SRAKTWR)' 

The cooling of the power plant is done exclusively by heat pipes (heat 

carrier sodium), therefore, no circulation pumps are necessary. In the 

power range from 5 to 25 kWe^, 7080 kg U 235 are needed to obtain criticality. 

Reactor 

The cylindrical core of UC (93 % U 235) is surrounded by a tungsten 

canning. The radial reflector of beryllium consists of a 20 mm thick rigid 

inner shell; the outer shell consists of two 80 mm thick rigid rings at 

each of the core edges and a central part of 50 mm thickness (Fig.8). The 

central part is divided W D six larger and six smaller segments for trimming 

and fine reactor control. Each segment can be moved radially by a magnetic 

jack. For power density flattening in axial direction, the thiokness of the 

radial reflector has been increased towards the core edges. 

Thermionics and Energy Transport 

The core is surrounded by 12 χ 12 planar Csconverters which are heated 

by radiation from the surface of the core [19,20]. The heated emitter shoe 

area of 13 cm
2
 is of rectangular cross section, whereas the emitter area 

of 8 cm
2
 is of circular shape. The planar converter is assembled of a 

molybdenum emitter and a NblZrcollector. Because of the seriesconnection 

of 12 converters at the surface, each half of the reactor has six converter 

rings which are connected to a" 12 χ 6matrix. For a given maximum tempera

ture in the fuel the thermal power was calculated taking into consideration 

the twodimensional distribution of heat sources and the boundary conditions 

which are effected by the converter performance at the surface of the core« 

The converter performance data were predicted by using a theoretical con

verter model [io] . 
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The heat is removed from the collectors by short cylindrical Nb-lZr-heat 
pipes. The collector heat pipes of 12 axially arranged converters are mounted 
to one transport heat pipe which transfers the waste heat to the heat pipe 
radiator (Fig.7)· The transport heat pipes are insulated from the collector 
heat pipes by an A^O-i-layer. A portion of the waste heat transferred by the 
12 transport heat pipes is conducted to the reflector which radiates approx. 
15 % of the waste heat into space. The radiator is formed by 12 rectangular 
radiator heat pipes. 

Advantages of the System 
- Simple design based on demonstrated components (e.g. converters [l2], 
heat pipes [22], core (23]). 

- The converters are separated from the core. The Al20-z-insulators are only 
exposed to a low neutron flux. 

- The converter network and the radiator can be designed for high redundancy. 
- Converters with collector-heat pipes can be tested individually and when 
connected to a converter network. Simulation of the core by an electric 
heater is possible [24]. 

Disadvantages of the System 
- High amount of fuel is required (approx. 7O-8O kg for power plants of 
5-25 kWei)· 

- The specific power is relatively low. 
- The readiator heat pipes used for this design are of complicated struc
ture. 

7. CONCLUSION 
The results of design studies on five different thermionic reactor systems 

carried out at the Institut für Kernenergetik are discussed. The design 
studies are based on nuclear engineering and thermionic conversion aspects. 
A classification of the types taken under consideration with respect to the 
power range could be quoted as follows: SRAKT-WR is applicable in the power 
range from 5 to 25 kWei> while the TRIKT-system is suitable from some ten 
to a few hundred kilowatts. The "Teilthermionikreaktor" covers the lower 
power range. TRIKT-Systems are characterized by low fuel inventory. The 
fast incore thermionic reactor SRIKT is preferable to TRIKT from about 
hundred kilowatts to megawatts. It is characterized by high specific power. 
The thermal and the fast incore types cover a large power range with 
reasonably high specific power, whereas the application of the considered 
out-of-core type with emitter-heat pipes is restricted to power outputs 
in th9 order of 100 kWei-
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Fig. 2: Double Diode Thermionic-Reactor, DD-TR. 
(proposed by BBC). 

Fig. 3: Cross Section of a Double Diode. 
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Tab. 1 : Nuclear DaU Tab. 4 : Heat Rejection System 

fuel {83°/o enrichment ) 

f i ss ionable a toms/ to ta l atoma 

of the fuel 

maaa of U
2 3 5 

number of fuel roda 

moderator 

re f l ec tor th ickness 

peak to average ratio of heat 

flux density 

core height 

neutron spectrum 

displacement of control 

ref lectora by 

react iv i ty loas after 400 d 

operation 

Dim. 



kg 



m m 

m m 

m m 


_ 

% 

TRIKT 

(UC) 0 3 

(ZrC)0,7 

0 ,14 
10 

120 

Ζ Γ Η , . 7 

B e 

go 

1,24 

362 

382 

thermal 

rotation 

5 ,25 

DDTR 

UO 2 M0 

Cerni 

25 

84 

Z r H , , 7 

Be 

76 

1,25 

374 

373 

thermal 

rotation 

. 

SRIKT 

uc 

61 

37 

Be 

60 

1,28 

238 

294 

fast 

WRTR 

U 0 2 

104 

. C 

100 

1,42 

498 

300 

faet 

axial shift rotation 

0 , 2 

SRAKTWR 

UC 

72 




1 ,09 

132 

radial shift 

0 ,05 

Tab. 2 : Converter Data 

e lec trode geometry 

e m i t t e r length 

emi t ter d iameter 

emi t ter area 

■pacing 

emi t ter th ickness 

co l l ec tor th ickness 

Insulation thickness (anode 

t r i l ayer ) 

wall th ickness of outer canning 

emi t ter 

co l l ec tor 
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outer canning 

e m i t t e r  c o l l e c t o r lead 

mode of converter operation 

average emit ter heat flux 

density 

average current density 

average ce l l voltage 

eff ic iency 

number of con ver t er s per fuel rod 

total numbers of conver ters 

Dim. 


m m 

mm, 
c m 
m m 

m m 

m m 

m m 

mm 

-
-
-
-



W / c m j 

W / c m 

V 

% 
-
-

TRIKT 
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40 

10 
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0,25 
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0 . 5 

W o n Mo 

Nb1 Zr 
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Nb1 Zr 

Mo 

ignited 

49 

7 
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10 

8 
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D D  T R 
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19 
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0 , 2 

1 .0 

1,5 

0 , 3 

0 , 3 

Mo 

Nb1 Zr 

A 1 2 0 3 

Nb1 Zr 

Mo 
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24 

0 . 8 

1.5 

5 

2 

168 

SRIKT 

cy lindr. 

30 

30 
2 8 , 3 

1 

0 . 8 

0 , 7 

0 . 3 

0 , 6 
W 

Nb1 Zr 

AI2O3 

Nb1 Zr 

Mo 

unignited 

WRTR 

cy lindr. 

60 

12 
2 2 , 6 

0 , 3 

1,25 

2 ,1 


Re on Mo 

Nb1 Zr 

A 1 2 0 3 

Mo 

ignited 

( s e e Sect. 4) 

54 

7 , 6 

0 .85 

12 

8 
296 

75 

10 

0 . 7 5 

10 

2 
734 

SRAKTWR 

planar 

32 

8 ,05 

0 ,075 

4 

3 


Re on Mo 

Nb1 Zr 

A 1 2 0 3 

Nb1 Z r 

ignited 

54 

1 1 , 7 

0 , 4 6 

10 

144 

Tab. 3 : Temperatures 

max. fuel temperature 

max. emit ter temperature 

average co l l ec tor temperature 

reac tor coolant Inlet t emperature 

reac tor coolant outlet temperature 

surface temperature of emi t ter 

heat pipe 

surface temperature of co l l ec tor 

heat pipe 

Dim. 

Κ 

Κ 

Κ 

Κ 

Κ 

Κ 

Κ 

TRIKT 

2050 

2000 

1000 

883 

923 





DDTR 

2015 

2000 

1000 

873 

947 





SRIKT 

2220 

2070 

1140 

1073 

1113 





WRTR 

2160 

2000 

1050 




2000 

1050 

SRAKTWR 

2300 

1760 

900 





900 

radiator design 

coolant 
working fluid of emi t ter heat pipe 

working fluid of c o l l e c t o r / 

radiator heat pipe 

total length of 'radiator 

radiator width min 

radiator width m a x 

outer d iameter of radiator tube 

tube or heat pipe m a t e r i a l 

tube wal l th ickness 

l iner mater ia l 

radiator surface e m i s s l v i t y 

radiating area 

radiated waste heat 

pump design 

number of pumpe 

e l e c t r i c a l input power 

of the pumps 

Dim. 






m m 

m m 
m m 

m m 


"2 

m 

kW 


«w e l 

TRIKT 

finned 

tubes 

Na 



5900 

800 

16 

B e 

2 , 2 

s t a i n l e s s 

0 , 9 

1 6 , 2 

450 

d. c. con

duction 

1 

DDTR 

finned 

tubes 

NaK78 












450 

t h e r m o 

e l ec t r i c 

d. c. conduc 

t ion 

8 

SRIKT 

finned 

tubes 

Na 

" 

" 






" 

400 

d. c. con 

duction 

WRTR 

heat pipe rad. 



Na 

985 

2285 

0 , 8 

0 , 9 

24 

1300 



" 

SRAKTWR 

heat pipe rad. 



Na 

1200 

420 

420 

99 χ 25 

Be 

2 , 5 

0 , 9 

1,58 

48 



' 

Tab. 5 : Mass of Componente and Power Output 

OT 

r e a c t o r : 

fuel 

moderator 

re f l ec tor 

conver ter s 

s tructure 

supporting f rame 

heat and meteoro id sh ie lds 

control re f l ec tor dr ives 

coolant within reac tor 

m i s c e l l a n e o u s 

total reac tor m a s s 

radiator : 

radiating part 

piping 

coolant within radiator 

total radiator m a s s 

additional components : 

pumps 

bus bare of pumps 

m i s c e l l a n e o u s 

Dim. 

kg 

kg 

kg 

kg 

kg 

kg 

kg 

kg 

kg 

kg 

kg 

kg 

kg 

kg 

kg 

kg 

kg 

kg 
total m a s s of additional components kg 

power plant, shadow shie ld not 

Included 

powe r plant lnclud. shadow shie ld 

net e l e c t r i c a l power 

spec i f i c power shadow shie ld 

not included 

kg 

kg 
kW 

kW/kg 

TRTKT 

20 

142 

150 

55 

27 

31 

10 

30 

20 

10 

495 

41 

25 

32 

98 

65 

30 

43 

138 

731 

1000 

50 

0 ,07 

DDTR 

43 

121 

123 

55 

30 

28 

29 

33 

7 

479 



100 

{est imated) 

48 

4 

24 

76 

655 


20 

0 , 0 3 

SRIKT 

68 


81 

49 

10 

11 

4 

26 

35 

6 

290 













50 



WRTR 

249 

. 
228 

147 

224 


140 

. 
8 


996 

450 

230 

22 

702 






1698 


102 

0 , 0 6 

SRAKTWR 

82 

_ 
115 

17 

9 


. 
4 

. 
2 

229 

17 

11 

28 



2 


259 

412 

6 , 2 

0 ,024 



- 170 -

DISCUSSION 

No speaker of paper B-2 

HEFFELS (ESRO): 
In specific power calculat ions, did the authors include power conditioning 
and what kind of radiat ion shielding? 

BUDNICK (Germany): 
In these power calculations power conditioning is not included, but the po 
wer conditioning will need about 1 to 2 kg p e r kW e lec t r ica l power. Radia
tion shields of li thium hydride a r e used for the shielding calculat ions. Cal
culations were made only for unmanned mi s s ions . 
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MULTIMEGAWATT THERMIONIC REACTOR SYSTEMS 
FOR SPACE APPLICATIONS* 

C. D. Sawyer, P. R. Hill, D. R. WiMns 
General Electric Company 

Nuclear Thermionic Power Operation 
Pleasanton, California 

United States of America 

ABSTRACT 

A review of selected portions of the General Electric Company thermionic 
reactor development program is presented. Typical design features and per
formance characteristics of thermionic reactors with electrical ratings in the 
multimegawatt class are presented by reference to the results of a reactor 
design study carried out for a hybrid nuclear rocket/nuclear electric Mars 
mission. Important elements of related technology from other elements of the 
General Electric program are also presented. In particular, a summary of 
the results of a thermionic reactor critical experiment and the results of pre
liminary reactor stability studies is discussed. 

REACTOR DESIGN STUDIES 

In the development of the technology of the nuclear thermionic reactor concept, primary 
attention has been given to the technology of the thermionic converter, high temperature materials, 
and the fabrication and test of thermionic devices using nuclear heating. Since there are several 
concepts of thermionic reactors, and each differs in content and priorities in its respective develop
ment programs, it is important to examine the potential applications of each to identify more clearly 
the major problems to ensure that the programs are being directed effectively toward the desired 
goal. It is essential to define the intended application of the power system and to interpret the 
various interactions and constraints which connect the application and the power system into an 
effective power plant design. The use of the thermionic reactor to provide large quantities of 
electrical power to an electrical propulsion system for high energy, long time space missions is 
a particularly attractive example of the potential application of nuclear thermionic power systems. 

POWER PLANT CONCEPT 

A conceptual arrangement of the thermionic reactor and the other major power plant components 
is shown in Fig. 1. The thermionic reactor with its shadow shield is located at the apex of a coni
cal radiator. The shield is split to accommodate an intermediate heat exchanger and the pumps 
which circulate liquid metal through the reactor cooling loop. Actuating motors for the reactor 
control elements could be located at this place or with the balance of the power plant auxiliaries on 
the far side of the equipment shield. Auxiliaries include the liquid metal circulating pumps for the 
radiator loop and the instrumentation and control package which provide for over-all control of the 
reactor and power plant. Also included is the power conditioning equipment with its cooling system. 
This equipment provides for conversion of the low voltage direct current output from the thermionic 
fuel elements (TFEs) to power plant distribution voltage. A number of variations upon this arrange
ment (Fig. 1) may be considered. The optimum arrangement will almost certainly depend upon the 
specific application and the particular characteristics and limitations of the boost vehicle used. 

This work was supported by the National Aeronautics and Space Administration and the 
United States Atomic Energy Commission. 
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REACTOR CONCEPT 

A section of the reactor in a plane containing the reactor central axis is shown in Fig. 2. At 
the shield end of the reactor the coolant plenum, which collects the core exit flow, is penetrated 
by the TFE sheath extensions containing the electrical leads and cesium vapor supply passages. 
These extensions penetrate the reactor vessel head through welded closures. The metal-to-ceramic 
seals located external to the face of the reactor vessel head permit access to the electrical lead 
and form a closure to the cesium vapor envelope. In addition, this region also contains the elec
trical connectors and Cs vapor supply system. Reactor control is achieved by motion of segments 
of the radial reflector which consists of 4 in. of Be immediately adjacent to the external lateral 
surface of the reactor vessel. 

The reactor core consists of bundles of TFEs in a hexagonal configuration (Fig. 3). The 
bundle consists of a 40-mil hexagonal stainless steel can holding two or more rings of fuel elements. 
Spacer and filler elements serve the dual function of spacing and restraining the fuel elements 
while also diverting coolant flow to provide uniform cooling around the sheath circumference. 
Coolant flow is controlled by triangular spacers in the cusp-shaped region around the periphery of 
the fuel bundles and by small circular spacers in the internal cusp-shaped region between each 
fuel element. Contact between the spacers, and the fuel elements is limited to small local regions 
of projections and ridges in the spacers and the fuel element sheath. The dual function of these 
spacers is important in restraining thermally or mechanically induced motion of the fuel elements 
which could introduce serious reactivity fluctuations and result in reactor instability. The improve
ment in flow distribution helps suppress instability by reducing the thermal gradients in the sheath 
which cause motion and also reduces stress levels in the sheath and insulator assembly caused by 
the nonuniform sheath temperature. 

The fuel element bundles are arranged into an approximately circular cross section in a 
cylindrical reactor vessel. Coolant flows in two passes through the vessel with the flow proceed
ing down through the annulus between the core and reactor vessel wall and returning up through the 
core. The coolant inlet and outlet pipes are located at the shield end of the reactor. 

The essential features of the TFE are shown in Fig. 4; the materials and dimensions (inches) 
of the TFE are: 

Outside Outside 
Item Material Thickness Diameter Item Material Thickness Diameter 

Sheath Kovar 0.020 0.60 Gap Cs Vapor 0.007 
Insulator AI0O3 0.020 - Emitter W 0.030 
Collector Nb 0.020 - Fuel UOg - 0.406 

These dimensions were selected on the basis of the results of previous optimization studies. The 
most important variable here is the sheath diameter of the TFE which is selected to maximize the 
emitter area density in the core. The 0. 6-inch value represents the practical optimum, the math
ematical optimum yielded values of sheath diameter below that considered favorable in the fabrica
tion sense. The values of material thicknesses are selected at the minimum practical value except 
for emitter and collector. Optimization of the emitter and collector thickness involve cell length, 
emitter area density, fuel volume fraction, and electrode voltage loss. The thicknesses shown 
here reflect fabrication and reliability considerations, but are near optimum values. Emitter 
length is then established by selecting an arbitrary 5% loss of voltage in the electrodes for the 
thermionic design point selected. The precise optimum is believed to be in the range of 3 to 10% 
and causes relatively small variations in over-all system characteristics in this range. 
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ELECTRICAL DESIGN CONSIDERATIONS 

The thermionic reactor consists of numerous converter cells each operating at a relatively low 
output voltage. Since this voltage for each cell is usually less than IV, the need for series connec
tions to limit the reactor output current becomes quite apparent. The TFE concept already provides 
series-connected groups of 12 or more cells. Further advantages might be obtained if more series 
connections of TFEs were provided (e. g. , lower weight of power cables between the reactor and 
power conditioning equipment, and more efficient, lightweight power conditioning equipment). 

On the other hand, the series connection of TFEs for voltage buildup could adversely affect 
reliability. Some upper limit on voltage across the TFE sheath insulator exists and should not be 
exceeded to prevent insulator breakdown and arcing to ground. The mechanical design of the reactor 
is made more complex by requiring internal electrical connections, or penetrations of the reactor 
vessel at both ends for TFE electrical series connections. In addition, the consequences of an 
open circuit failure become increased in proportion to the number of TFEs which are series 
connected. 

For the reactor designs being investigated, the design choice involves grounding the end of the 
TFEs internal to the reactor while alternating the output voltage of pairs of TFEs positive and 
negative about ground (Fig. 5). The circuit diagram shown here implies that pairs of positive and 
negative TFEs have individual power cables and power conditioning modules. While this approach 
can potentially provide a degree of redundancy in the power conditioning system and result in im
proved over-all reliability, it may be desirable to consider parallel-connected groups of TFEs 
connected to a single power conditioning module in terms of weight, efficiency, or complexity. 
Further study is required to make this choice. 

This method of connecting pairs of TFEs results in effectively series-connecting two TFEs 
without requiring internal electrical connections or additional vessel penetration. The maximum 
voltage across the sheath insulator is one-half the effective output voltage of the core. The con
sequences of an open circuit failure in a TFE can be designed to cause a loss in output from only 
that TFE if provision is made in the power conditioning and switching circuitry. 

BACKGROUND TECHNOLOGY 

The background technology of this study in the area of thermionics will be covered in part in 
other papers presented at this conference. In particular, the information presented by Wilson, * ' 

io) (3) 
VanHoomissen, v ' and Wilkinsv ' represent development knowledge and techniques which have con
tributed directly to the evaluation of the reactor system presented in this paper. 

The results of a thermionic reactor critical experiment and studies devoted to thermionic 
reactor stability characteristics not previously been reported are presented next. The Thermionic 
Reactor Critical Experiment (TRCEr was directed toward an evaluation of thermionic reactor 
cores in the lower power range of a few hundred'kilowatt electrical. The results of the experiment 
are useful in developing a better understanding of the physics of thermionic cores over a broad 
range of power levels. 

CRITICAL EXPERIMENT 

The TRCE was a small, compact, uniformly reflected, fast spectrum reactor. Two experi
mental configurations were examined. The first, a Be-reflected system, was used principally to 
examine experiment-to-analysis correlations. The second, performed on Be- and stainless-steel-
reflected systems was directed more toward investigating the influence of reflector variations. 
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Physically, the TRCE was positioned in the hexagonally shaped cells of the Al matrix of a 

horizontally oriented split table assembly; one table was fixed and the other movable (Fig. 6). The 

basic cell structure consisted of stacked hexagonal Al tubes with a nominal spacing of 1. 785 inches 

across the flats. The Al walls of the tubes were 0. 031 inch thick. Six inches of the 14. 76inch

long core was in the fixed table. An axial layout of the initial configuration, Configuration A, is 

shown in Fig. 7. The loading of each hexagonal cell within the core and transition region was done 

with small diameter (~0. 18 inch) rods, and the loading of the reflector region was done with full 

and halfhex size pieces. 

There were five variations of the basic configurations studied. Configuration A consisted of a 

0. 875inchthick transition region surrounding the core and a nominal 6inch Be radial and axial 

reflector and made as symmetric a system as was practical. In Configuration Bl the axial transi

tion region was removed and the axial reflector modified to include a significant amount of stainless 

steel to make the axial direction conform to a situation thought to be more typical of the end reflectors 

of a thermionic reactor design. In the remaining configurations (Table 1) the influence of the com

position and dimension of the radial reflector was investigated. 

A summary of loading data for the five configurations is presented in Table 1. Modifications 
(4Ì 

of published cross section datav ' were used with S¿ quadrature. 

Typical power profiles in the radial and axial directions and the calculated results are shown 

in Fig. 8 and 9. The discrepancy in the axial profile is attributed to a marked streaming effect 

by reflected low energy neutrons in this direction. The stainlesssteelreflected cores exhibited 

power profiles with a much smaller minimumtocenterline power ratio and no peaking at the core 

edge. Gross spectral determinations were made by fission ratios: 

Configuration A Configuration B4 Configuration A Configuration B4 
Element Calculated Measured Calculated Element Calculated Measured Calculated 

U235 
Th232 
U233 
U238 

1. 
0.019 
1.60 
0.080 

1. 
0.020 
1.47 
0.082 

1. 
0.021 

1.61 
0.087 

Np237 
Pu239 
Pu240 

0.47 
0.99 
0.52 

0.50 
1. 10 ± 0. 07 
0.50 

0. 50 

1.00 
0.56 

There is general agreement between measurement and calculation for the threshold detections 

which indicates a reasonable spectral determination in the calculations. The discrepancies in the 

U233 and Pu239 ratios are indicative of the present precision of high energy fission cross section 

data for these isotopes. 

Neutron lifetime measurements were made by both the Rossialpha technique and by the I V 

poisoning technique. For TRCEA, the neutron lifetime was 9. 4 ± 0. 9 μεβΰ and for TRCE-B4 it 
was 0. 6 ± 0. 1 psec. 

Material worth measurements were performed on various materials both at core centerline and 
for core average (core length samples). A selection of experimental results obtained on Configura
tion A are: 

Material Worth (% Ak/gm) Material Worth (% Ak/gm) 

Ni + 1 . 3 ΧΙΟ"! W - 1.3 χ 10~f 
Stainless Steel + 3. 8 x 10"? Re - 2. 3 x IO"? 
Nb <10"c Ta - 1.2 χ 10 
Mo + 1.6 x 10"° 
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TABLE 1. Summary of Loading Data for TRCE 

Volume Fract ion (V) 

Core** 
A 
B l 
B2 
B3 
B4 

Reflector 
Radial 

At 
Bit 
B2t t 
B3Î 
B4t 

Axial 
A 
Bl 
B2 
B3 
B4 

Transition Regioni % 
Radial 

A 
B l 
B2 
B3 
B4 

Axial 
A 
B l 
B2 
B3 
B4 

Length 
(in·) 

14.76 
14.76 
14.76 
14.76 
14.76 

28 
28 
28 
28 
28 

6 
6 
6 
6 
6 

16.51 
28 
28 
28 
28 

0.875 

Oy* 

0.171 
0.174 
0.195 
0.225 
0.217 

AI2O3 

0.046 
0.043 
0.019 

Stainless 
Steel 

0.108 
0.108 
0.108 
0.092 
0.102 

Be 

0.830 
0.828 

0.108 
0.108 
0.108 
0.108 

0.553 
0.553 
0.553 
0.553 
0.553 

0.553 

0.881 
0.881 
0.873 

0.89 
0.636 
0.636 
0.636 
0.636 

Al 

0.069 
0.069 
0.069 
0.069 
0.069 

0.069 
0.069 
0.069 
0.069 
0.069 

0.069 
0.069 
0.069 
0.069 
0.069 

0.094 
0.094 
0.094 
0.094 
0.094 

0.094 

eff 

Experimental 

A 1.0021 
Bl 1.0010 
B2 1.0013 
B3 0.9981 
B4 1.0018 

Calculated 

0060 
0200 
0070 
0120 

1.0200 

V Volume fract ions of theoret ical ly dense mate r i a l s 

♦Oralloy, density 18. 8 g m / c m 3 at 93. 2 at. % U235 

**A11 cores contain V(WOg) = 0.311 V(Ni) = 0. 070 

t 6 . 1 5 in. thick 

1t 3. 52 in. thick 

$ 4. 4 in. thick 

f t 0.875 in. thick 
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Reflector replacement studies also included a 60° sector of radial reflector replaced by BeO in 
Configuration A. This indicated a lower power peaking at the core edge and an extrapolated gain 
of 2. 4% Ak for a radial BeO reflector. Preliminary control element studies were also made and 
the effect of a 4. 4-cm displacement of a 60° radial sector of reflector was measured. This dis
placement produced 2.1% Ak and 1. 5% Ak reductions in reactivity for TRCE-A and TRCE-B4, 
respectively. 

REACTOR STABILITY 

A detailed analysis of the stability characteristics of the thermionic reactor was performed. 
The nonlinear differential equations which describe time-dependent phenomena in the reactor com
ponents were linearized about an appropriate operating point, and written in matrix form. The 
eigenvalues of the system matrix were evaluated numerically to determine the stability properties 
of the system, and key stability parameters were identified through a series of parametric studies. 
In this manner, it was determined that two key stability parameters in a thermionic reactor are 
the fuel and emitter temperature coefficients of reactivity, a-, and a„, respectively. Approximate 
stability criteria for these parameters were derived from a two-region reactor model, and were 
in excellent agreement with the numerical results. These criteria are: 

aE- - ( 1 + V H F E > aF' aE- ( C E / C F ) aF ~Y> Ύ = ( τ V P T > [ H F E / C F + <HFE+ H E ) / C E ] ( 1 ) 

where C F and C_, are the fuel and emitter heat capacities, respectively; H „ E and H„ are the fuel-
emitter and emitter-collector heat conductances, respectively; τ is an "effective neutron lifetime;" 
and Prp is the steady-state thermal power of the reactor. An approximate requirement for the 
reactor to be stable is that the sum of the fuel and emitter temperature coefficients of reactivity 
be negative. Computations of the Doppler coefficients for the small reactor design yield 

7 7 
a-p = + 1. 0 x 10" /°K and a„ = - 6. 0 x 10" /"K. On this basis, it is concluded that such reactor 
designs are stable. 

PARAMETRIC STUDIES 

Parametric studies were made for the reactor concept described in this paper. Reactor 
electrical output was varied over the range of a few thousand to twenty thousand kilowatts electrical 
output, for the two levels of converter electrical performance shown on the following page. At 
each reactor power level, the effects of core length-to-diameter ratio, the TFE bundle size, the 
reactor coolant pressure drop and temperature rise, and the effects of Na in place of NaK were 
investigated for all appropriate combinations and permutations. Reactor criticality was not 
considered in this study since for all reactor sizes above a few thousand kilowatts electrical 
output criticality is not limiting. The study also assumed that the fission power distribution had 
been flattened so that each converter cell throughout the core produced the same thermal power. 
The primary range of interest in this study involves core sizes for which power flattening can be 
achieved to a very high degree; therefore, reactor physics evaluations may be deferred until 
electrical, thermal, and mechanical design considerations are resolved. The studies were 
primarily directed toward reactor geometry and weight and performed so that core designs in
volving integral numbers of fuel bundles having a favorable core pattern and integral numbers of 
converter cells in each TFE were specified. This constraint along with the fixing of electrical 
performance results in reactors which do not always have the exact electrical output desired. 
The studies also incorporate a variety of thermal and hydraulic design criteria developed in 
related programs so that this aspect of the design is also adequate. 
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Converter 
Parameter 

Temperature, °K 
Emitter 
Collector 
Cesium 

Emitter Length, in. 

Standard Advanced 

1828 2130 
975 1080 
593 633 

1.114 0.835 

Parameter 

Current, A/cm 
Net Voltage, V 9 
Net Output, W/cnT 
Cell Efficiency, % 

Converter 
Standard 

9.0 
0.63 
5.64 

14.8 

Advanced 

18.1 
0.86 

15.5 
18.3 

The thermionic performance data used in the reactor parametric studies were taken from the 
work of Wilson. ' ' For the "standard" converter, a low emitter temperature of 1828°K was selected 
while an emitter temperature of 2130°K was selected to represent a more "advanced" level of con
verter performance. In both cases, the individual converter cell has been optimized for voltage 
and thermal losses and output current density to yield maximum over-all cell efficiency. The 
selection of maximum cell efficiency minimized the size and Weight of the heat rejection system. 
Selection of current densities which maximize thermionic electric power density would result in 
reductions in reactor and shield size, but at the expense of conversion efficiency. The true 
optimum is somewhere between these limiting cases, and experience indicates selection of the 
maximum efficiency condition is more nearly the optimum condition for large power plants. 

Figure 10 represents a summary of the results of the reactor design calculations. Clearly, 
the most important parameter is emitter temperature level with reactor power level being second 
in importance. The variation with power level presented here is an underestimate since the 
calculated reactor weight assumes a full fuel loading in the available fuel volume. For the lowest 
power levels, this is appropriate, but at higher power levels less fuel would be loaded so that the 
actual specific weight is slightly less than that shown. The influence of all other parametric 
variations is small in terms of specific weight covering a range of about ± 5% about the mean line 
for the total range of parametric variations considered. The implication of these results is a 
strong incentive to select the best possible level of thermionic performance. Other reactor par
ameters may be selected on the basis of considerations other than reactor specific weight. 

The results presented in Fig. 10 provide no information relative to the selection of the reactor 
coolant outlet temperature. This temperature essentially determines the converter collector tem
perature and the radiator temperature. Maximum thermionic electrical power density and con
version efficiency for a fixed emitter temperature was found as collector temperature is varied. 
As before, high-power density lowers reactor and shield weight while high conversion efficiency 
and increased collector temperature lower heat rejection system weight. Evaluation of the optimum 
coolant temperature requires consideration of the total system. To accomplish this optimization, 
a simple version of the configuration shown in Fig. 1 was assumed. Trade-offs in reactor, shield, 
and radiator weights were examined for this configuration as reactor coolant temperature was varied. 

Figure 11 presents the weight variation of the major groups of system components and total 
system specific weight variation for two levels of radiator technology. Light-weight radiators 
yield a minimum at a collector temperature of about 1000°K while heavier radiators result in a 
minimum at collector temperatures of about 1075°K. The influence of the decrease in conversion 
efficiency is seen in the radiator curve which shows an increase above 1150°K. The implications 
of this result are quite profound in evaluating long-term reactor development program require
ments. It is seen that very little is gained by increasing reactor outlet temperature above 1000°K 
At this level, ferrous alloy technology can be used as the basis for reactor design. It does not 
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appear that increases in this temperature could result in significant performance improvements. 
While it must be recognized that future developments in thermionic technology may alleviate the 
fall off in conversion efficiency with increasing collector temperatures, extension of heat transfer 
system technology into the range beyond 1000°K does not appear to be required for the thermionic 
reactor concept. 

REFERENCE DESIGN 

The information developed in the reactor parametric studies and in the coolant temperature 
optimization studies were used to identify a reference reactor design of 3880 kWe capacity. The 
configurational features of this reactor are: 

Number of Fuel Bundles 73 Reactor Vessel Outside Diameter at 31.3 
Number TFEs 1387 Active Core, inches 
Design UO, Loading, kg 700 Over-All Length to End of Leads, inches 61.4 
Over-all Diameter at Active Core, inches 40.0 Active Core Length, inches 37 
Hexagonal Bundle Pitch, inches 3.04 Axial Reflector Length (Lower), inches 4. 5 
Radial Reflector Thickness, inches 4 Axial Reflector Length (Upper), inches 6 

Each fuel element has 37 converter cells stacked up in series for a total of 51, 319 converters in the 
entire core. At the upper end of the reactor, space is required for the coolant pipes, structural 
members, electrical connections and power cables, and the Cs vapor supply system. 

The performance parameters of great interest for the reference reactor are: 

Emitter Temperature, °K 2,000 Average Cell Efficiency, % 13.8 
Collector Temperature, °K , *>0 7 5 Electrical Output, Reactor 3.88 
Average Thermionic Output, W/cm 9. 2 Terminals, MW(e) 
Voltage, V 51.4 Reactor Outlet Temperature, °K 1,000 
Current, A 75, 500 Reactor Pressure Drop, psi 10 

For this reactor, a converter performance level of 2000CK has been selected in recognition of the 
important benefits provided in comparison with the minimum emitter temperature of 1828 °K con
sidered in the parametric study. The reactor electrical output is 3880 kW at 51. 4 V and 75, 500 A 
at the reactor output terminals. The heat production rate in the reactor core is approximately 
28,000 kWt. 

The weights of various reactor components 
and the total reactor weight are shown in the 
adjacent tabulation. The TFEs are the dominant 
contribution to the reactor weight. This is char
acteristic of an efficient design since the objective 
is generally to maximize fuel fraction or maximize 
emitter area density or some compromise be
tween the two. The reflectors are relatively 
light primarily because of the very low density 
of Be. 

CONCLUSIONS 

Comprehensive reactor optimization studies were made and included the interactions of 
geometry, thermal design, hydraulic design, and thermionic performance. The results indicated 
that the reactor size and weight were established primarily by the electrical power output required 
and the thermionic performance. The geometric parameters of the reactor, e. g., core length-to-

TFE 
Core Structure, lb 
Reactor Vessel , lb 
NaK Coolant Inventory, lb 
Control Units, lb 
Radial Reflector, lb 
Axial Reflector, lb 

Total Pounds 

5,550 
850 
650 
630 
350 

1,240 
150 

9,420 
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diameter ratio and fuel element bundle size, may be selected on the basis of influences other than 
those of reactor size and weight. In addition, coolant temperature optimization studies indicate 
that the benefits of increasing reactor coolant outlet temperature beyond 1000°K are minimal within 
the limits of present knowledge. This important result permits the consideration of a reactor 
development program which avoids the problems inherent in high-temperature refractory metal 
heat-transfer systems. 

The temperatures and material of the thermionic converter have been chosen as a result of 
extensive thermionic development programs for both electrically and nuclearly heated test devices. 
Liquid metal system conditions and materials have been chosen to remain within the bounds of 
existing technology. The reactor core design incorporates the structural features required to 
provide the required mechanical, hydraulic, and nuclear characteristics. 

Finally, the weight, size, and efficiency of this reactor represent attractive performance 
levels. The values presented are believed to be realistic and represent a design which provides 
for all the reactor requirements that can be recognized at this time. The ability to achieve the 
level of thermionic performance required has been and can be demonstrated in test devices with 
confidence. The achievement of this same level of performance in large scale thermionic fuel 
elements appears to be completely feasible. Accomplishing the degree of power flattening required 
in the core will present reactor development problems, but no technological barrier to accomplish
ing the required goal can be identified. The thermionic reactor core with its very high redundancy 
which results from its incorporation of numerous inherently long-lived thermionic converters 
should provide a power system of great reliability. 
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'Π 
Thermionic Reactor 
Control Element» and Dr ive · 
Cs Supply and Flsalon C u Handling 
Main Shield 
Equipment Shield 
Auxiliary Pump 
Auxiliary Coolant Loop 
Auxiliary Radiator 
Secondary Pump· 
Secondary Coolant Loopa 
Main Hadlator 
P r i m a r y Pumpa 
P r imary Heat Exchanger 
High Voltage Power Terminala 
Power Conditioning Equi o ment 
instrument and Control Package 
Low Voltage Power Linea 

\ 
Conceptual Component Arrangement For A Thermionic Reactor Power Plant 

Reactor Configuration 

30 in. Active C o r · D u m . 
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Bundle Drawing 
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Ρ"""' 
Ceramic 

• Metal 
Seal 

Emitter, e .g . , U02 
Clad with Refractory 
Metal 

Cesium Vapor 

Collector 

Electrical Insulator 

Metal Tubing 

! ! 

Thermionic Fuel Element 

LVDC Low Voltage Direct Current 
LVAC Low Voltage Alternating Current 
HVAC High Voltage Alternating Current 
HVDC High Voltage Direct Current 

IR Inverter Regulator 
TR Transformer 
RE Rectifier 

Basic Electrical Module 

Ilcryllli 
Refle 

Saietie· - 30 hex bars (15 in 
each table half) controlled 
by six actuators (three in 

ch table half) 

Shim· - 12 hex U r s (six in 
each Uble half) controlled 
by four actuator· (two in 
each table half) 

Across Flats 
.—1 12.25 In. 

6 TRCE Radial Layout 
Axial Layout of Configuration A 
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DISCUSSION 

Speaker of paper Β - 3 : P . R. HILL 

PRUSCHECK (Germany): 
Did you take a non-uniform heat source distr ibution into account in your 
pa ramete r s tudies? 

HILL (USA): 
In performing the calculations on this r eac to r we found that this sys tem 
had a significant cr i t ica l i ty marg in and so in o rde r to minimize the cost 
of this study we assumed that we could in fact d is t r ibute UCL· and flatten 
the the rma l power throughout the co re . We did not demons t ra te the ability 

to do that however. 

KNOERNSCHILD (Germany): 
What is the weight of the power conditioning? At what t empe ra tu r e is the 
heat of the power conditioner re leased to the ambient sur roundings? What 
is the voltage entering the power condit ioner? 

HILL: 
We have assumed solid state equipment of the germanium t r a n s i s t o r or s i - -

licon t r a n s i s t o r type and this is typically l imited to t empe ra tu r e levels in 
the range of 100 C, so this is cha rac t e r i s t i c for that t e m p e r a t u r e . 
The voltage of t h e r eac to r was approximately 50 Volts . 

JANNER (Germany): 
What is done in this construct ion or design to prevent a swelling of the 
emit ter by fuel gas? 

HILL: 
A number of methods for dealing with this problem have been invest igated. 
I would suggest that we delay the d iscuss ion of that subject until Dr . VAN 
HOOMISSEN's paper in a l a te r sess ion which d i scusses our in-pile r e s u l t s . 

EINFELD (Germany): 
What is the reason for locating the power conversion sys tem at the shield 
plane ? Semi-conductors a r e used and the radiat ion dose at the shield is 
higher than at the location of the pay- load. On the other hand the cable 
weight i n c r e a s e s . Has the sys tem been optimized in this r e spec t ? 

HILL: 

Perhaps I was not c l ea r in my explanation of the f i rs t s l ide. The power con-
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ditioning equipment was located on the far side of the shield from the reac
tor , and therefore protected. The length of the leads is an important de 
sign p a r a m e t e r , in t e r m s of weight and the e lec t r i ca l losses associated 
with them. These have been studied on a number of occas ions . There is 
a strong incentive to keep the low voltage cables short . 
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ABSTRACT 

Some of the important parameters influencing the design of a thermionic 
reactor for use in an electrical propulsion system are available energy content 
of the reactor fuel form, fast neutron flux level and specific reactor power. 
The relative importance and interrelationship of these parameters are discussed 
and conclusions relating to thermionic reactor design criteria are presented. 
A proposed electric propulsion system utilizing a heat pipe cooled, moderated 
thermionic reactor in conjunction with an arc jet thruster and a highly redun
dant heat pipe radiator is described. The performance of this system is com
pared with that of NERVA for a I+56 day manned Mars mission. 

I. INTRODUCTION 

As progress continues to be made in the exploration of the solar system 
the missions attempted will become increasingly more difficult. As the diffi
culty increases the fraction of the starting package which can be delivered to 
the objective by chemical propulsion vehicles will shrink to such low values as 
to make the missions prohibitively costly. Solid core nuclear reactors such as 
NERVA will alleviate this situation to a degree by increasing the available 
propellent I from UOO to 8OO sec, but in the long run this increase will not 
be sufficient and I values of 5OOO and up will be required. At present, the 
only feasible means of attaining such high propellent exhaust velocities is by 
nuclear-electric propulsion. It is the intention of this discussion to show 
how a beryllium moderated thermionic reactor can form the foundation for a 
very attractive electric propulsion system. In particular, it will be shown 
how an array of such reactors, coupled with arc jet thrusters and heat pipe 
space radiators, can be used to perform a manned Mars landing mission in the 
same time as can be done for the same mission with "conventional" nuclear pro
pulsion and with considerable savings of initial weight in low earth orbit. 

*Work performed under the auspices of the U. S. Atomic Energy Commission. 
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II. SOME FACTORS INFLUENCING THERMIONIC PROPULSION REACTOR DESIGN 

Some of the more Important factors influencing thermionic propulsion re
actor design are the available energy content of the reactor fuel form, the fast 

235 neutron flux level, specific reactor power and the total U inventory. Space 
limitations prevent a detailed treatment of these factors and their inter
relationship, but some often overlooked considerations will be discussed. 

The available energy content of the reactor fuel form might be thought to 
235 

refer to the loss of reactivity caused by U burnup. While this effect can
not be neglected it is not likely to be the factor limiting the amount of 
energy available from the fuel. What will be the limiting factor is the amount 
of fuel swelling caused by the accumulation of fission gases in the fuel body. 
While it is true that fuel configurations can be devised which will vent large 
fractions of the fission gases from the fuel form, it should be recognized that 
except in the unlikely case that 100$, gas release is attained, the problem of 
high temperature creep of fuel form materials will be alleviated but not re
moved by venting. 

Not nearly enough is known about the behaviour of various fuels and fuel 
configurations under irradiation to be able to predict what the energy limit 
for a given fuel is, but certainly it is dependent of fuel temperature, fission 
power density, desired fuel lifetime, fission gas retention fraction, therm
ionic emitter diameter, clad thickness, etc. A rough idea of the sort of be
haviour to expect can be obtained from Foreman's calculation of the swelling of 
reactor fuel during irradiation, due to the formation of a uniform distribution 
of fission gas bubbles. In terms of the tolerable increase in diameter, Ad, 
of a fueled thermionic emitter (an increase which will give a small probability 
of shorting out a given thermionic diode) Foreman's result for a given emitter 
temperature suggests: 

Ad « d ρ * t * d » initial emitter diameter o e o 
ρ » fission power density in the fuel 
t = time 

Here Foreman's I integral has been approximated in the range of tolerable η Ρ o 
swelling (a few volume percent) by the relation I « (Ad/d) " and n, the power 
dependence of creep rate on applied stress, has been taken to be k. This re
sult may be assumed to apply when all the fission gases remain in the fuel 
and probably applies also when a constant fraction of the fission gases is 
retained. 
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The main point to be derived from the above expression is that the energy 

density which can be derived from a given fuel form is not constant, even for 

a fixed emitter temperature. The assumption of the constancy of available 

energy density is frequently made and results in extrapolations such as: if a 

dimensional increase limited lifetime of 2000 hr is attained for a fueled emit

ter 1 cm in diameter, then increasing the diameter to 2 cm (and thus halving 

the fission power density) will double the lifetime. The formula above would 

predict a relatively inconsequential gain in lifetime and a loss of almost half 

the energy density available from the fuel. Such a loss would be intolerable 

because available energy density is the most important parameter in determining 

how difficult a mission a nuclearelectric propulsion system can accomplish. 

Energy density available from the fuel is not the only basic limiting fac

tor in thermionic propulsion reactor design. Of almost equal importance is the 

2 
question of fast neutron damage. Keilholtz et al. have shown that Lucalox 

begins to develop internal microcracks for fast neutron (neutron energy > 1 

21 
MeV) doses above 2.3 χ 10 nvt. It is likely that microcrack formation may 

■5 

be accelerated in a cesium atmosphere. To be sure, small grain size, high 

strength alumina such as Coors AD 999 should show better fast neutron irradia

tion resistance, but a limit will nevertheless exist. Since, for a given neu

tron spectrum and a given fuel density, the amount of neutron damage will be 

proportional to the energy density removed from the fuel, the damage limit can 

be considered as a limitation on the available energy density in the fuel. In 

this case doubling the emitter diameter will increase the neutron damage 

limited lifetime by a factor of two. However, it will also increase the spec

ific weight of the system (kg/kWe)  by an amount approaching two for a fast 

235 
reactor  and will necessarily double the U inventory required for a given 

reactor power output. An alternate way of dealing with the damage limit prob

lem is to introduce moderator into the reactor system to increase the fraction 

of fissions produced by thermal neutrons and thereby decrease the fast flux in 
k 

the reactor. Figure 1 consists of some curves developed by Anderson which 

show how the introduction of beryllium into a reactor fueled with 100$ U0p, 

Mo 60 v/o UOp and Mo kO v/o U0? reduces the damage flux when the fission power 

density in the fuel is held constant. In calculating the damage flux it is 

assumed that the damage done by a neutron is proportional to its energy. In 

general the damage flux given in Figs. 1 and 2 is approximately proportional 

to the flux of fast neutrons with energy greater than 1 MeV, with a propor

tionality factor that varies from 5.1 to 3.9, as the Be/
2
35rj atomic ratio 
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varies from 0 to 150. Although the variation of the proportionality factor is 
relatively minor, it should not be entirely overlooked. It is in such a di
rection that the incipient microcracking Keilholtz saw in Lucalox for a fast 

21 neutron (E > 1 MeV) fluence of 2.3 χ 10 nvt (in a water moderated reactor) 
η 2i 

will occur at a value of 1.7 χ 10 nvt in an unmoderated thermionic reactor. 
k Anderson has also calculated the variation of specific mass of a reactor 

versus damage flux as the latter is reduced by the addition of moderator. 
This result is shown in Fig. 2. The important consideration here is that in
creasing the reactor specific weight by a factor of two can, in this case, 
reduce the damage flux to one-fourth the unmoderated value, with no loss of 
available energy density from the fuel. 

III. PROPOSED THERMIONIC PROPULSION REACTOR CONFIGURATION 

The thermionic reactor proposed for the manned Mars landing mission des
cribed in Section V is a heat pipe cooled, beryllium moderated array of U-
shaped, series-stacked, thermionic fuel rods. Typical construction of the 
fuel rods is shown in Fig. 3 and the general reactor configuration appears in 
Fig. k with the radiator not drawn to scale. Beryllium was chosen as the 
moderator because of its high temperature compatibility with liquid sodium and 
because of the possibility of using it for limited structural support. 

The emitters are fueled with a Mo U0? cermet. The fuel was selected on 
the basis of preliminary irradiation tests which indicated that Mo kO v/o U0_ 
would be useful at a thermal power density of 300 w/cc for 5000 hr in an emit
ter 1.27 cm in diameter. At this power density, the electrical power flux 
from the emitter is 12 w/cm (assuming 13$ efficiency). 

The amount of beryllium required to moderate the reactor was determined 
on the basis of fast neutron damage considerations. It was assumed that the 
cell insulators, sheath insulators and ceramic-metal seals could withstand 
fast neutron exposures of 9 χ 10 nvt at 750°C, and the ratio of Be to U 
was adjusted until this requirement was fulfilled in a 5000 hr lifetime. The 

235 resulting ratio was 100 Be atoms per atom of J U. Actually, the results of 
2 

Keilholtz indicate the tolerable fast neutron flux limit selection was con
servative. However, the most promising available ceramic-metal seal irradia-

5 tion test results have been exceeded by a factor of four. 

Control of the reactor is achieved by a number of rotating drums placed 
in the radial reflector. Thermal neutron poison is placed on one side of each 
drum. 



- 189 -

6 7 Reactor criticality calculations were made with the DTK program ' which 
solves multigroup, angle- and space-dependent neutron transport equations by 
means of the angular segmentation (S ) method. The calculations were done 
with 18 neutron energy groups and the Si. approximation. Los Alamos group-

8 averaged cross sections were used. The reflector used in all criticality 
calculations was 10 cm of beryl li urn. 

Heat pipe cooling of the reactor is very desirable from the standpoint of 
eliminating the necessity for traditional liquid metal pumps. There are many 
possible heat pipe configurations which might be used. One of these is 
sketched in Fig. h. In calculating reactor criticality the effect of the heat 
pipes was taken into account by placing a 15$ void in the moderator. This is 
barely sufficient for sodium heat pipes, operating at their ultimate limit at 
750°C, to provide the necessary heat removal capability and leaves only a fac
tor of two margin for potassium heat pipes operating at the same temperature. 

Power flattening was achieved by two methods. The first of these con
sisted of varying the volume percentage of U02 in the cermet over a range of 
26 to 1*9. This did not prove to be sufficient. A wider variation of UOp 
volume percentage was not utilized because of a ground rule that the fuel com
position not vary too much from the tested composition. The method used to 
flatten the power distribution further was to vary the enrichment of the 
uranium in the cermet over a range of 51 to 93$. This method has the disad
vantage of adding negative reactivity to the system because of the absorption 

238 cross section of J U. The other obvious method of power flattening - that of 
removing fuel from the center of the fueled emitters - was not attempted be
cause it leads to marked increases of power density in the cermet which could 
possibly result in an increased fuel swelling rate. 

The final power flattened reactor configuration has a power output of 
235 2.6 MVfe, a core height of 97.5 cm and core diameter of 98.1 cm. Because J^U 

was removed to flatten the power distribution, the Be/ ""u ratio increased 
from the nominal value of 100 to an average value of 1^0. The total variation 

235 of ~"U density required to flatten the initial power distribution was 2.5 to 
1. This results in the occurrence of differential fractional burnup. In a 
5OOO hr lifetime this effect causes the power density ratio to increase from 
unity to I.05 as is shown by the dashed line in Fig. 5 where relative power 
density is plotted as a function of reactor radius. The effect is compounded 
by the fact that at the start of life the control drums are positioned with 
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the poison towards the core whereas at the end of 5000 hr the poison will be 
substantially oriented away from the core. This produces a change in the 
thermal neutron power density peak in the outer ring of fuel rods so the 
power density ratio is increased by an additional 13$ as is also shown in 
Fig. 5. While the total end-of-life power density variation of 1.18 is not 
intolerable it can readily be reduced to I.09 by designing a I.09 to 1 im
balance in the start-of-life power distribution which will partially compen
sate for the effects of burnup and control. 

The total weight of the power flattened reactor is 293O kg of which the 
235 core constitutes 1917 kg and the reflector IOI3 kg. The mass of U is 

Ikj kg. No allowance has been made for weights of cesium reservoirs, elect
rical and plumbing connections and control rod drives. The weight per unit 
power of the reactor is 1.11 kg/kWe which is broken down as follows: 

Fuel emitters 0.21*0 kg/kWe 
Diode hardware O.I92 
Moderator 0.295 
Reflector O.38U 

Total 1.111 kg/kWe 

The moderator represents slightly more than l/k of the total reactor weight. 
It should be recognized that its presence results in a larger reactor core 
diameter for a given power output vis-a-vis a fast reactor and hence in a 
larger relative weight per unit power for the reflector. 

IV. PROPOSED THERMIONIC PROPULSION SYSTEM 

The discussion in the previous section demonstrates that the in-core 
thermionic reactor concept results in a very lightweight electrical power sup
ply even if considerable leeway is taken in its design. It is important in 
selecting the other components needed in a propulsion system that this light
weight capability not be compromised. This is the compelling reason for 
choosing an arc jet with lithium propellant to provide the propulsive power. 
The arc jet thruster is a low impedance device which gives promise of permit
ting direct coupling to the thermionic reactor, thereby eliminating the need 
for power conditioning equipment. 

In this study the thruster is assumed to have the capability of acceler
ating lithium to an I of 5OOO sec with an efficiency of 75$ for an applied 

sp 
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voltage of 120 V. The I value appears to be within the capability of pre-
sp 

sent day arc jets but considerable development lies ahead before the values 
of efficiency and lifetime assumed here are demonstrated. 

The radiator envisioned in this study makes use of the heat pipe as the 
heat transfer mechanism. It can be coupled to the reactor heat pipe system in 
a header configuration at one end of the reactor and thus eliminate the need 
for conventional liquid metal pumps. The main advantage of the heat pipe for 
this application is that each individual unit is in itself a lightweight and 
inexpensive pumping system. Thus it is possible to use a large number of these 
units in a highly redundant arrangement which will greatly reduce the armor 
thickness (and weight) needed to give the required probability of survival 
against destruction by meteorites. One such redundant arrangement is shown 
in Fig. 6 where it is demonstrated how a series-parallel configuration of 
many small heat pipes can be used to by-pass meteorite punctures. This con
figuration leads to a gradual, and continuously predictable, degradation of 
the radiator rather than the go-no-go performance of more conventional radiator 
designs for which an entire pumping circuit can be destroyed by one meteorite 
puncture. 

Figure 7 shows how the reactor, radiator and arc jet thruster can be 
combined to form a propulsion module. This modular concept has the advantage 
of allowing considerable flexibility in mission planning and also of elimi-
nating the need for developing different propulsion units for different 
missions. 

V. MANNED MARS MISSION 
The manned Mars mission requires several of the reactor-thruster-radiator 

modules described above. One possible arrangement of the modules is to mount 
them in a circular array on the order of 75 m in diameter and 50 m to the rear 
of the command module. In this configuration the neutron and gamma ray 
shielding associated with the individual reactors is just sufficient to pro
tect the radiation-resistant control rod actuators. The bulk of the shielding 
for the command module is provided by the 117,000 kg of lithium propellent re
quired for the Mars mission. This arrangement has the obvious drawback that 
the shielding is used up as the mission progresses. For this reason a sepa
rate shield consisting of 18,700 kg of water is placed between the actual con
trol module and the crew living quarters. It is anticipated that during the 
last kO days of the mission the crew will have to exist in the rather cramped 
quarters of the control module. 
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The weights associated with the various components of the propulsion 
modules have either been calculated - as in the case of the reactor, radiator, 
busbars, control rod actuator shield - or estimated. For each module these 
weights are: 

Reactor core 1920 kg 
Reactor reflector 1010 
Equipment shield 100 
Radiator 171+0 
Controls 80 
Busbar 300 
Arc jet 90 
Lithium tankage and support structure 1+90 

5730 kg 
Since the electric power output per reactor is 2.6 MW and the arc jet 

efficiency has been assumed to be 75$, the jet power per module is 1.9 MW. 
This gives a value for the weight per unit power of 

or = 3.0.kg/kWe 
There is little question but that this value is optimistic. However, the 

mission analysis results show that a value twice this great is still very 
favorable. 

In order to determine the usefulness of propulsion systems with a values 
in the range of 3 to 7 kg/kW a series of propulsion requirement calculations 
was made for a manned Mars landing mission. The mission profile chosen was 

q 
that described by Chovit et al.^ in their determination of propulsion require
ments to do the manned Mars mission with nuclear rocket propulsion. The vari
ous payload masses used were either the same or larger than those used in the 
above reference and included the following: crew capsule and earth reentry 
vehicle, 31,1+00 kg; capsule shielding, l8,600 kg; and Mars lander, 36,1+00 kg. 
The mission time used for comparison purposes was a round trip manned time of 
U56 days with 20 days on the Mars surface. The nuclear-electric propulsion 
system was used to go from a k&O km Earth orbit to a 300 km Mars orbit and 
back to a high Earth orbit. The I was taken to be constant at 5OOO sec and 

SP 
the interplanetary transfer parts of the mission were accomplished by a 
propuls ion-coast-propuls ion cycle. 

One point of difference between the NERVA and the electric propulsion 
mission involved the transfer from a 1+80 km Earth orbit to a high level Earth 
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orbit. This requires 1+0 to 60 days to accomplish with the electric propulsion 
system and must be unmanned because of the long time spent in the Van Allen 
belts. It is assumed that the crew will be delivered to the electric propul
sion vehicle by a chemical rocket with Saturn V capability when the former has 
reached the high level orbit. In making the comparison with the NERVA mission 
the initial masses required in low Earth orbit for the electric propulsion 
system were increased by 109,000 kg to account for the capability of the extra 
Saturn V. Trip times were equated on a basis of total manned time. 

Mission calculations were made using the formulation of Handlesman 
et al. for Earth-Mars transfers calculated for co-planar circular orbits. 
Figure 8 shows the minimum mass in a 1+80 km Earth orbit required to accomplish 
the mission plotted as a function of the a value of the power supply. For an 
cy of 6 kg/kW the mission requires four Saturn V launch vehicles, three of which 
are used to place the electric propulsion system into low Earth orbit with the 
fourth delivering the crew when the system has reached a high level Earth 
orbit. For an a value of about 10.5 kg/kW the electric propulsion system 
requires the same equivalent mass in Earth orbit as. is required for the com
parable NERVA mission. 

Because power supply lifetime is a likely limiting factor in determining 
mission capability, it is instructive to see how it is affected by at. This is 
shown in Fig. 9 for the mission profile requiring four Saturn V payloads. The 
curve shows that reducing a from 6 to 5 kg/kW reduces the required propulsion 
time from 7500 to 1+500 hr. 

The effect shown in Fig. 9 is true of electric propulsion missions in 
general. If mission calculations are made with a view toward reducing propul
sion time, the decrease in a required need not be large. Currently there is 
an overemphasis on developing nuclear-electric power supplies with very long 
lifetimes. It would appear that a better place to put the emphasis would be 
on the development of truly lightweight propulsion systems. 
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DISCUSSION 

Speaker of paper B-4: W.A. RANKEN 

KNOERNSCHILD (Germany): 
What is the pe rmiss ib le damage flux that you have taken into consideration 
for your calculat ions? 

RANKEN (USA): 
Based on present ly existing exper imenta l data, the pe rmiss ib le damage 

21 flux is about 1.7 χ 10 nvt of neutrons with energy g rea t e r than 1 MeV. 
In the reac to r design presented he re the damage flux predicted for a 5000 h 

21 lifetime is approximately o. 7 χ 10 nvt so that damage to the ce ramic should 
not be a problem.However, c e r a m i c - m e t a l seals have not been tested to quite 
such large fluences. The damage flux numbers in the paper a r e obtained by 
integrating neutron flux t imes energy over the ent i re neutron spec t rum and 
normalizing by taking the damage done by a 1 MeV neutron to be unity. The 
damage flux numbers a r e approximately three t imes l a rge r than the values 
for neutron flux above 1 MeV, but the exact rat io depends on the shape of 
the neutron spec t rum. 

KNOERNSCHILD: 
Did you take into account the difference between the damage flux within the 
fuel element and the location of the insula tors ? 

RANKEN: 

Yes, we did. 
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THERMIONIC REACTORS FOR ELECTRIC PROPULSION - PARAMETRIC STUDIES* 

W. G. Homeyer, C. A. Heath, and A. J. Gletzen 
Gulf General Atomic Incorporated 

San Diego, California 

ABSTRACT 

In-core nuclear thermionic power plants consist of a reactor contain
ing thermionic cells, a nuclear radiation shield, a heat rejection system, 
and electrical transmission lines and power conditioning equipment. The 
influence of design parameters on size, mass, and reliability is evaluated 
over a range in power output from tens of kilowatts to several megawatts. 
Methods of achieving high reliability with a minimum sacrifice in size and 
mass are described. The importance of the multiplicity of components and 
their manner of connection is evaluated. 

Major parameters of the reactor include the emitter and collector 
temperatures and electrical power density, the emitter size, the nuclear 
fuel fraction, and the fissile nuclide. The parameters affecting the 
shadow-shield mass include the cone angle, the dose rate allowable, and 
the distance between the reactor and the region to be shielded. For the 
heat rejection system, the coolant composition, the temperature, and the 
multiplicity of components (pumped loops and heat pipes) are important 
factors. Transmission lines are characterized by their composition, 
temperature and length, and by the voltage output of the reactor. Power 
conditioning design is based on voltage input and component ratings. 

* This work was sponsored by the U.S. Atomic Energy Commission under 
Contract AT(04-3)-l67, Project Agreement ík, and the National Aeronautics 
and Space Administration under Contract NAS3-6U71. 
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INTRODUCTION 

In-core nuclear thermionic power plants consist of a nuclear reactor 
containing fueled thermionic converters, a nuclear radiation shield, a 
heat rejection system, and electrical transmission lines and power con
ditioning equipment. The arrangement of three of these components, the 
reactor, shield, and heat rejection system is shown in Fig. 1. The radi
ation shield is a "shadow" shield which protects only the region occupied 
by the crew from radiation. Located within the shield is a heat exchanger 
within which heat is transferred from the activated reactor coolant to a 
secondary coolant which carries heat to the radiator panels. The radiator 
panels are made up of many heat pipes (Ref. l) which serve as fins for 
radiation of heat from the secondary coolant loops. The radiator is 
located within the shadow of the shield where it cannot scatter nuclear 
radiation toward the crew. The power conditioning equipment may be either 
a compact unit located within the radiator and cooled by separate low tem
perature cooling loops connected to a radiator or may be distributed so as 
to radiate waste heat directly to space. In the latter case, it would be 
located to the right of the radiator shown in Fig. 1. 

REACTOR 

The arrangement assumed for the reactor is shown in Fig. 2, and the 
dimensions assumed are given in Table 1. The core contains cylindrical 
thermionic fuel elements and is surrounded by a 10 cm thick BeO neutron 
reflector. In the radial direction, the fuel elements are characterized 
by an emitter diameter, by an emitter clad thickness, and by a center-to-
center (pitch) spacing. The pitch spacing has been assumed to be 0.5 cm 
greater than the emitter diameter to allow space for the plasma gap, 
collector, insulator, sheath, and coolant. In the axial direction the 
diodes consist of a fueled emitter region and an unfueled region in which 
no power is generated and where electrical connections between diodes are 
made. The average density of U0p fuel within the emitter cavity was 
assumed to be no more than 80# of theoretical to allow for fuel zoning 
to flatten the fission power distribution in the reactor. The electrical 
power density of 5 w/cm assumed is the average over the core and includes 
allowances for electrical losses in electrodes and inter-diode connectors. 
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Fig. 2. Reactor and c e l l schematics 



- 204 -

TABLE 1 

REACTOR AND CELL DIMENSIONS 

Reflector thickness 

Core length-to-diameter ratio 

Emitter diameter 

Pitch spacing of cells 

Emitter clad thickness 

Length of fueled emitter 

Length of connection region between 
fueled emitters 

Density of U02 fuel 

Average thermionic electrical power 
density (net) 

t 
r 

L/D 

d 
e 

Ρ 

t 
e 

ι 

s 

10 cm 

1 

1, 2 , 3 cm 

1.5 , 2 . 5 , 3-5 cm 

0 . 1 cm 

5 cm 

2 cm 

ϋ 80% 

5 w/cmc 

The variation in the diameter of the thermionic reactor with reactor 
output power and with emitter diameter is shown in Fig. 3· The U0„ is 
assumed tò be 93% enriched in U-235· As shown in the figure, the diameter 
of the reactor can be reduced if lower power output is required, but only 
to a point at which the criticality limit is reached. At this point, 
which is indicated by the sharp knee in the curves in Fig. 3> the reactor 
diameter can no longer be reduced. Lower power levels are reached by 
lowering the electrical output of the diodes. It is apparent from Fig. 3 
that emitters of smaller diameter are advantageous at higher power levels 
where the size of the reactor is fixed by requirements for electrical 
output. For lower reactor power levels, where nuclear criticality is a 
limitation, emitters of larger diameter which have more space for fuel 
produce a smaller reactor. 

The specific mass of the reactor in kg/kWe (kilograms per kilowatt of 
electrical output) is shown in Fig. h as a function of the reactor output 
power and the emitter diameter. Smaller emitters are shown to produce a 
lighter reactor at high power levels, but at low power levels, where crit
icality limits are reached, they result in a much heavier reactor. As in 
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the previous figure, the portions of the curves to the left of the knee 
are criticality limited reactors with electrical output from the diodes 

o 
reduced below 5 w/cm . Also shown in Fig. h is the tendency for large 
reactors with high power output to have a lower specific mass than low 
power reactors. This trend results from the mass of the reflector be
coming a smaller fraction of the total mass as the size of the reactor 
is increased. 

The specific mass of the reactor is shown in Fig. 5 as a function 
of the power level of the reactor, and the thermionic electrical power 
density. The emitter diameter is 2 cm. 

2̂ 3 Two families of curves are shown, one for U " 0? fuel, and one for 
235 U Op fuel. At the left of each family of curves is the criticality 
limit for an average fuel density of 80%. As shown here, U " 0 ? permits 

2̂ 5 much lighter reactors to be produced for low power levels than does U 0„. 
2̂ 5 

For higher power levels, above the criticality limit for U Op, the dif
ference in reactor mass between the two fuels at any given thermionic 
'power density is much smaller. This small difference results from the 
difference in fuel density required for criticality, and does not reflect 
a difference in size of the reactor. Figure 5 also illustrates the point 
that very low thermionic electrical power densities may be adequate with 
certain combinations of emitter diameter, nuclear fuel, and power output 
requirement from the reactor. If lower thermionic power densities are 
required, lower emitter temperatures may be employed and conversion 
efficiencies will be reduced as shown in Table .2. 

The number of thermionic cells in the reactor is given in Table 3 
for several power levels and emitter diameters. The number of cells in 
the reactor has an important influence on the reliability of the reactor 
and on the mass of the electrical transmission lines. 

RELIABILITY 

The connection of thermionic cells in series-parallel networks to 
enhance the reliability of electrical power generation has been the sub
ject of considerable study. The effects of open and short circuit fail
ures of cells in an electrical network on the output of the network were 
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TABLE 2 

EMITTER TEMPERATURE, POWER DENSITY, AND EFFICIENCY 

Thermionic 
Power Density 

(W/cm2) 

1.0 
1.5 
2.0 
3.0 
4.0 
6.0 
10.0 

Emitter 
Temperature 

(°K) 

1550 
1610 
1650 
1720 
1790 
1930 
2180 

Conversion 
Efficiency 

5.* 
6.1» 
7.4 
8.9 
10.0 
11.7 
13.9 

TABLE 3 

NUMBER OF CELLS IN THE REACTOR 

Power 
Level 
(kWe) 

100 
200 
500 

1,000 
2,000 
5,000 

10,000 

Number of Cells for Emitter 
Diameter of 

1 cm 

76,657 
76,657 
76,657 
76,657 
76,657 
76,675 
127,329 

2 cm 

2,542 
2,542 
3,184 
6,367 
12,733 
31,833 
63,665 

3 cm 

684 
849 

2,123 
4,245 
8,489 

21,222 
42,443 
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studied by Holland (Ref. 2) who concluded that the fraction of power lost 
was independent of the size and shape of the network and was approximately 
twice the fraction of cells which failed. This work was extended by Yates 
(Ref. 3) to the case of short circuits through the coolant system. Here 
we will discuss only one aspect of this question, the influence of the 
number of cells on the reliability of an electrical network. 

If several cells in an electrical network suffer open circuit failure, 
the possibility arises that the failures will be so located as to cause an 
open circuit of the entire network. The reliability of a network to escape 
this type of failure is shown in Fig. 6 as a function of the number of 
diodes in series and the number in parallel. In this case the probability 
of open circuit failure of a cell was assumed to be 0.05· As shown here, 
the open circuit reliability is extremely sensitive to the number of cells 
in parallel but relatively insensitive to the number in series. · Increasing 
the number of cells in parallel from 3 to 4, for example, reduces the prob
ability of an open circuit failure of the network by more than a factor of 
10. 

A second type of network failure which may occur results from failure 
of a sufficient number of cells to cause the power output of the network 
to drop below the minimum allowable level. This type of failure can be 
prevented by designing the network with an initial power capacity which 
includes excess or redundant power to offset losses resulting from cell 
failures. The addition of a large quantity of redundant power, however, 
increases the size and weight of the power plant. The quantity of excess 
power required depends upon the reliability of the individual diodes, upon 
the number of diodes, and upon the reliability required for the network. 
The relationship between power redundancy, network reliability, and the 
number of diodes is shown in Fig. 7 for the case where the diode reli
ability is 0.9. This reliability, which was selected arbitrarily, might 
correspond, for example, to an open circuit probability of O.O5 and a short 
circuit probability of O.O5. As shown in the figure, the reliability of 
the network to maintain minimum power can always be increased by increasing 
the quantity of redundant power, regardless of the number of cells. The 
additional power required to produce a given increment in reliability is 
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much greater, however, for networks with fewer cells. A network reliability 
of 0-99, for example, can be obtained with less than 30$ redundant power 
if there are 1000 cells, but requires nearly 100$ redundant power if there 
are only 10 cells. This difference results from the increased statistical 
predictability of larger numbers. All of the curves are observed to cross 
between 20 and 25$ redundant power. This is near the most probable power 
loss for 90$ reliable cells in a network where fractional power losses are 
about twice the fraction of cells which fail. Figure 7 shows that very 
high network reliabilities can be achieved with a small quantity of redun
dant power if the networks are large. Comparison of Table 3 with Fig. 7 
indicates that the number of cells is sufficiently large, even at 100 kWe, 
for the redundancy requirement to be small. 

RADIATION SHIELDING 

The radiation shields consist of layers of lithium hydride to attenuate 
neutrons and depleted uranium to attenuate gamma rays as shown in Fig. 1. 
The primary shield attenuates radiation from the reactor and protects the 
secondary coolant from activation. The secondary shield attenuates gamma 
radiation from the activated primary coolant in the heat exchanger and 
further attenuates radiation emitted from the reactor. 

The mass of the radiation shield is influenced by the size of the 
reactor, the angle of the cone protected by the shield, and the dose rate 
to which radiation levels are to be reduced at a given distance from the 
reactor. Figure 8 shows the variation in specific mass of the shield 
with the electrical power output of the reactor and the central angle or 
half angle of the shielded cone. Also shown here in tabular form are the 
influences of the distance from the reactor and the dose rate to which 
radiation levels at this distance are to be reduced. The curves show a 
rapid decrease in the specific mass of the reactor as the electrical power 
level is increased. The sensitivity of the shield mass to cone angle is 
also shown. Increasing the half angle of the shadow cone' from 5 to 15 
degrees more than doubles the mass of the shield. The dose rate and 
separation distance have much less influence on the mass of the radiation 
shield. 
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HEAT REJECTION 

The arrangement of the heat rejection system is illustrated in Fig. 1. 
A compact heat exchanger is used to transfer heat from the primary coolant 
to the secondary coolant. The secondary loops distribute the heat to the 
radiator panels which make up the surface of the radiator. These panels 
are composed of many heat pipes which serve as highly efficient fins to 
increase the effective radiating surface area. 

One question of particular interest is the influence of the collector 
or coolant temperature on the mass of the heat rejection system. Higher 
temperatures increase the radiant heat flux and reduce the radiator area, 
but increase the wall thicknesses required due to the loss in strength of 
structural materials and the increase in fluid pressure within the heat 
pipes. In addition, the efficiency of thermionic energy conversion varies 
with collector temperature, passing through a maximum in the vicinity of 
1000°K. The net effect of these factors is shown in Fig. 9. The specific 
mass Of the heat rejection system is shown to pass through a broad minimum 
at a collector temperature of about IO8O K. The mass of the reactor, 
shield, and heat rejection system combined is minimum at a lower collector 
temperature, 1050 K, and remains within 10$ of the minimum over the inter
val between .950 and 1150°K. Results shown in Fig. 9 are for a 300 kWe 
power plant, but the location of the minimum is relatively insensitive to 
the power level. 

The heat pipe fins in the radiator make up more than half of the mass 
of the heat rejection system. The multiplicity of these heat pipes was 
varied to determine if there was an optimum. As shown in Fig. 10, the 
mass of the heat rejection system decreases continuously as the multi
plicity of heat pipes increases. This advantage of smaller, more multiple 
heat pipes results from structural factors and meteoroid survival require
ments. The lengths of the walls of smaller heat pipes are shorter, and 
the area they expose to meteoroids in space is less. Both factors allow 
the walls of small heat pipes to be made thinner with equivalent material 
stresses and meteoroid survival probabilities. 
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TRANSMISSION LINES 

Transmission lines are required to carry the current output from the 
reactor to the power conditioning equipment and back to the reactor. The 
mass of these lines is proportional to their length, cross sectional area, 
and density, while the electrical losses in the lines are proportional 
to their length and resistivity and depend also on their cross sectional 
area and current'. If the additional mass of reactor, shield, and heat 
rejection system necessary to produce an increment of power is known, the 
cross sectional area of the transmission lines can be optimized for mini
mum total mass of the power plant. Characteristics of such optimized 
transmission lines are given in Table 4 for an incremental mass-to-power 
ratio of 10 kg/kWe. The specific mass of the lines is given as a function 
of the output voltage of the reactor and the total length (to and from the 
reactor) of the lines. Also shown here is the variation in the mass of an 
optimized transmission line with operating temperature (due to differences 
in resistivity) and the variation with material at the same operating 
temperature (due to differences in density and resistivity). As indicated 
in the table, the specific mass of the transmission lines varies directly 
with their length and inversely with the voltage output of the reactor. 
Low transmission line temperatures are advantageous if the lines can be 
readily cooled below the reactor and radiator temperatures. Lithium, 
aluminum, and beryllium can provide lighter transmission lines than copper 
because their high resistivity is more than offset by their low density. 
Only the specific mass of the lines is given in Table 4, but other quan
tities of interest can be derived from these numbers easily. The per
centage of the reactor output power lost in the lines is ten times the 
numbers in Table 4; e.g., 4$ of the power output of a reactor with a 
50 volt output is lost in optimized transmission lines 10 meters long. 
The additional mass of power plant required to produce the power dissi
pated in the lines is equal to the mass of the lines, so the total mass 
penalty for power transmission is approximately twice the numbers given 
in Table 4. 
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TABLE 4 

TRANSMISSION LINE PENALTIES 

Length 
(meters) 

IO 
20 
50 
100 

Specific Mass of Transmission 
(kg/kWe) 

50 Volts 

0.4 

0.9 
2.1 

4.3 

100 Volts 

0.2 
0.4 
1.1 
2.1 

Lines 

200 Volts 

0.1 
0.2 

0.5 
1.0 

Copper at 873°K 

Variation with Temperature Variation with Material at 873°K 

T(°K) 

673 
873 
1073 

Relative 

0.88 

1 

1.13 

Mass Material Relative Mass 

Lithium 0.63 
Aluminum (673°K) 0.66 
Beryllium 0.88 
Copper 1 
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POWER CONDITIONING EQUIPMENT 

Power conditioning equipment for electric propulsion by ion engines 

transforms most of the reactor output power from low voltage dc to high 

voltage (3 to 4 kilovolts) dc. Design studies of power conditioning 

equipment employing present day solid state components have indicated that 

modules with 90$ efficiency radiating their waste heat directly to space 

from their chassis can be constructed with a specific mass of 2 kg/kWe. 

These modules employ highly multiple components and include redundant 

components to provide high reliability. 

SUMMARY 

As shown in the previous sections, the masses of the power plant 

components depend on a number of parameters. An arbitrary but consistent 

set of assumptions was made to permit an overall comparison to be made. 

This is given in Table 5« The specific mass of the power plant is shown 

to vary from 35.1 kg/kWe at 100 kWe to 10.7 kg/kWe at 10,000 kWe. This 

variation in specific mass is due primarily to the radiation shield and 

reactor. The specific masses of the other components are relatively 

constant over this power range, with the specific mass of the heat re

jection system actually increasing with power level. At 100 kWe the 

shield is 64$ of the total mass of the power plant and the reactor 21$, 

while at 10,000 kWe the heat rejection system has become the dominant 

factor, contributing 35$ to the total mass. 

Comparison of Table 3 with Fig. 7 shows that a network reliability 

of 0.999 or higher can be achieved with a small quantity of redundant 

power (~ 30$ for 0.9 r e l i ab l e c e l l s ) . Comparison of Table 3 with Fig. 6 

indicates that a voltage output of 100 volts or more can be obtained from 

the reactor even at 100 kWe without compromising the reliability of the 
■jt

network. Figure 10 indicates that a large number of heat pipes can be 

used in the radiator to increase reliability with no sacrifice in mass 

of the heat rejection system. 

There are more than 680 cells in the 100 kWe reactor (Table 3) and 

4 cells in parallel are adequate for an open circuit reliability of 0.999 

(Fig. 6). Thus the number of cells in series is I70, which results in an 

output of 102 volts at 0.6 volts per cell. 



TABLE 5 

SUMMARY 

Component 

Reactor 

Shield 

Heat rejection system 

Transmission lines 

Power conditioning 

Total power plant 

100 kWe 

7.3 
22.5 

3.1 
0.2 
2.0 

35.1 

Specific Mass 

200 kWe 

4.2 
15.0 

3.2 
0.2 
2.0 
24.6 

500 kWe 

2.9 
9-5 
3-3 
0.2 
2.0 

17-9 

(kg/kWe) at 

1000 kWe 

2.5 
6.5 
3.4 
0.2 
2.0 
14.6 

a Power Level of 

2000 kWe 

2.2 

4.5 
3-5 
0.3 
2.0 
12.5 

5000 kWe 

1.9 
3-5 
3-6 
0.6 
2.0 
11.6 

10,000 kWe 

1.6 

2.5 
3.8 
0.8 
2.0 
10.7 

Assumptions 
Emitter diameter of 1, 2, or 3 cm chosen to produce smallest reactor with U-235 and a power density 
of 5 w/cmS. 
Shield cone half angle of 10°, dose rate of 10 mrem/hr, separation distance of 50 meters. 
Collector temperature optimized. 
Voltage output as large as possible but ^ ̂ 00 volts. 
Power conditioning located on far side of radiator from reactor. 

I 

CO 
OD 
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DISCUSSION 

Speaker of paper B-5: W. G. HOMEYER 

SCHOCK (USA): 
What were the dimensions of the radia tor heat p ipes? 

HOMEYER (USA): 
The heat pipe d iameter is var iable and on the o rder of 0. 5 to 1. 0 cm. 
The length is about 10 cm. Heat is ca r r i ed from the heat exchanger with
in the shield to the a r r a y of heat pipes in the radia tor by forced convection 
loops. 

KNOERNSCHILD (Germany): 
Why do you show the conservat ive values of 5 to 10 Wat t s / cm . This m o r -

2 
ning's session indicated that future projects may use 20-30 Wat ts /cm , and 
your work is directed to future applicat ions? 

HOMEYER: 
/ 2 Such power densi t ies as 30 Wat t s /cm a re generally obtained at high current 

densi t ies , and may be difficult to achieve when electrode and lead losses a re 
considered. 

HOWARD (USA): 
I think the papers this morning had lead losses associated with them, but I 
think the spacing of many of those conver te rs was much smal le r than the 
spacing that you a r e talking about. Most of those resu l t s were with 2 mil 
spacing, but they were not e lectrode power densi t ies , they were t e rmina l 
power dens i t ies . 
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EXTERNAL-FUEL THERMIONIC REACTORS* 
By 

M. J. Abbate, C. L. Eisen, Β. Raab, Α. Schock 
Republic Aviation Division of Fairchild Hiller Corporation 

Farmingdale, New York 

Abstract 
The concept of the external-fuel thermionic converter, in which the 

fuel surrounds an inner emitter annulus, is introduced and the major ad
vantages of its use in a thermionic reactor are discussed. In-core reac
tors, ranging from 15-ekW to megawatts, can be designed based on 
external-fuel converter modules of fixed emitter and collector dimensions. 
Sizes and weights of typical reactors in this power range are shown. 

Introduction 

Most in-core thermionic reactor designs are based on internally fueled cells, 

i .e . ,the nuclear fuel is contained within a surrounding cylindrical emitter. At 

Republic Aviation, we have been experimenting with converters and analyzing r e 

actor designs based on externally fueled cells, with the fuel surrounding an inner 

emitter annulus. The collector-coolant tube is positioned within the emitter. 

Figure 1 illustrates the cell configuration in cross section. The emitter and collec

tor dimensions can remain fixed for a wide range of reactor power levels; only the 

fuel thickness and number of cells are changed to satisfy the nuclear and electric 

constraints for reactors of widely varying electric output. 

Among the advantages arising from the external fuel configuration are fuel 

ventability, low fuel temperature drop, easy power and temperature flattening, low 

open-circuit temperature r ise , simple coolant channel geometry, and high fuel 

volume fraction. 

The inherently high fuel volume fraction capability of the configuration makes 

it practical to design external-fuel reactors bridging the spectrum from approximately 

15-ekW to megawatts. 

The externally fueled configuration also permits the design of very long 

diodes without excessive ohmic loss in the electrodes, a fact which permits a 

single (double-ended) converter to extend the full length of the reactor core. As 

Research supported by the U.S. Atomic Energy Commission 
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will be seen, this concept permits elimination of the high voltage insulator from 

the reactor core, where fast neutron damage might seriously degrade its physical 

properties with time. * 

The internal cooling feature also lends itself readily to the use of a heat 

pipe for collector cooling, as well as to flow-through liquid metal or even water 

cooling, if this should be desirable, e .g . , in laboratory testing. 

These advantages will be discussed in greater detail in the following section. 

This will be followed by a description of the size and weight characteristics of a 

family of reactors based on the full-length external-fuel concept, with heat pipe 

cooling. Sample radiator and shield weights are also calculated based on nominal 

input values of radiator specific weight and shield thicknesses and locations. 

Summary of Advantages of External Fuel Design 

1. Venting of Fission Products 

At thermionic fuel temperatures venting of fission products may be necessary 

to prevent fuel swelling. The external-fuel configuration permits venting directly 

into the inter-diode space and thence to space or to a storage condenser. 

2. Testing of Fueled Diodes 

To maximize the reliability of a thermionic reactor, each converter module 

will have to be thoroughly tested prior to assembly of the reactor core. It is 

clearly desirable to conduct these performance tests out-of-pile, by electrical 

heating, since in-pile testing does not readily lend itself to a routine checkout 

procedure for large numbers of converters, and also requires subsequent 

assembly.of radioactive modules. 

Based on a conception of J. P . Davis of Jet Propulsion Laboratory, Propulsion 
Research & Advanced Concepts Section. 
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With the external-fuel configuration, electrically-heated testing of the 

complete, fueled converters can be readily accomplished by radiofrequency 

induction. Figure 2 shows a full-length converter under test by rf-heating. * 

3. Power and Temperature Flattening 

Since thermionic performance is a very sensitive function of emitter temp

erature, thermionic reactors require a much higher degree of temperature flatten

ing than conventional reactors. To achieve this, internally-fueled designs usually 

postulate power flattening by compositional variation. In the external-fuel design, 

flattening can be readily achieved geometrically by varying the fuel volume asso

ciated with each diode, since this can be done without changing diode dimensions 

or performance. As a result, power flattening can be attained with a uniform fuel 

composition. In addition, the use of full-length converters makes is possible to 

shape the axial heat generation profile to compensate for heat loss to the emitter 

leads. 

4. Fuel Temperature Drop 

Fuel temperature drop is the difference between emitter temperature and 

maximum fuel temperature. Under certain design conditions for internally fueled 

cells (large cell diameter or ceramic oxide fuel) this can be excessively high, lead

ing to a design compromise between maximum fuel centerline temperature and 

emitter temperature. In any practical design, particularly where the fuel is to 

be vented, the maximum fuel temperature must be limited in order to reduce its 

volatility and enhance its chemical and mechanical stability. 

For given values of fuel thermal conductivity, emitter heat flux, and fuel 

volume fraction, the fuel temperature drop in the externally fueled design is only 

* Experimental development supported by U.S. National Aeronautics and Space 
Administration. 
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40--50% of that in the internally fueled design. This advantage, which can be dem

onstrated mathematically, arises simply due to the geometric rearrangement of 

heat flow path, since the heat flows radially inward rather than outward. 

5. Open-Circuit Temperature Rise 

In efficient thermionic converters, electron cooling accounts for a major 

fraction ( > 50%) of the emitter heat flux. Under these conditions, open-circuit 

failure (e .g . , loss of cesium) of an internally fueled diode can lead to an emitter 

temperature rise of several hundred degrees. Such temperature excursions of a 

given fuel-emitter subassembly may result in fuel melting and eventual failure 

propagation. 

In the external-fuel diode, the open-circuit temperature rise is substantially 

reduced by an additional cooling mechanism not available in the internal-fuel 

designs, i. e . , heat transfer to adjacent fuel elements. Radiative heat transfer 

between the fuel elements is sufficient to limit the open-circuit temperature rise 

to about § of the corresponding value of the internally fueled design. Moreover, 

an additional reduction of the open-circuit temperature rise can be achieved by 

providing thermal contact or noble gas atmosphere between adjacent fuel elements. 

6. Cell Length 

In general, a maximum possible cell length is desired in order to minimize 

the number of cells which must be series-connected over the height of the reactor 

core. This is desirable in order to keep unfueled volume to a minimum, to reduce 

complexity in design and assembly, and to minimize the effect of emitter temper

ature non-uniformity due to heat conduction in the emitter lead. 
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The limitation on cell length arises from the build-up of ohmic losses in the 

electrodes of the diode itself as its length is increased. This not only consumes 

useful power, but causes different parts of the diode to operate at different voltage 

points on the I-V characteristic, thereby further degrading power output. 

Ohmic losses can be minimized by increasing the thickness (cros s-sectional 

area) of the electrodes, particularly the emitter electrode. In internal-fuel designs, 

the cross-sectional area of the emitter can be raised either by decreasing its inner 

diameter, which leads to an undesirable reduction in fuel volume fraction, or by 

increasing its outer diameter and hence its circumference, which raises the diode 

current per unit length and diminishes the resultant reduction in ohmic loss. In 

the external-fuel configuration, by contrast, increasing the emitter and/or fuel 

thickness does not affect the emitter surface area. Therefore, the electrical con

ductance can be increased without simultaneously raising the diode current, thus 

obtaining the full benefit in ohmic loss reduction. As a result, for a given fuel 

volume fraction and power density, the optimum length for external-fuel diodes 

is greater than that for internal-fuel diodes, which makes it practical to design 

and operate a single (double-ended) converter which extends over the full length of 

the reactor core. The full-length module introduces several advantages of its own: 

a) Ceramic seals and leads are located beyond the ends of the reactor 
core. 

b) Fuel-emitter thermal expansion contributes to reactor stability. 

c) A high voltage insulator is not needed within the reactor core. 

This last advantage can be realized either if a non-conductive coolant is used, 

if a separate liquid metal loop is used to cool each parallel group of modules, or if 

heat pipes are used for cooling. The parametric study results presented in the 
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next section are based on heat pipe cooling, although use of the other cooling 

options yield similar results. 

7. Fuel Volume Fraction 

Because the fuel is the outermost element, with the largest cross-sectional 

area, the external-fuel cell will tend to have the largest fuel volume per cell when 

compared with the internal-fuel cells of similar volumetric power density. 

A high fuel volume fraction is especially important in low power systems 

since these are usually criticality limited. Our studies have shown that the 

external-fuel configuration permits practical designs with fuel volume fractions of 

over 80% by the use of full-length diodes, and volume fractions of more than 65% 

with stacked diodes. Thus, criticality can be achieved in extremely small reflected 

core volumes since such cores are virtually homogeneous blocks of fuel pierced by 

a number of small holes containing converters. This makes it possible to design 

an in-core thermionic reactor with fewer than 20 converter modules, which would 

produce lO-to-15-ekW. 

Higher power reactors are not so clearly limited by criticality requirements. 

However, the high fuel-volume fraction possible with the external-fuel design 

results in an enhanced capability for power flattening by fuel distribution, and also 

permits a wide latitude in choice of fuel itself, either as to isotope(U-233, U-235), 

composition, enrichment, diluent fraction (e .g. , high metal-fraction cermets), or 

the possible addition of resonance absorbers to enhance stability by increasing the 

fuel Doppler coefficient. 
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Heat-Pipe Cooled System 

The simple cylindrical coolant channel realized in the external-fuel design 

makes it practical to consider the use of heat pipes for collector cooling (Figure 

3). In order to keep the heat pipe diameter small and thereby limit the core 

volume devoted tb the coolant space, the effective length of each pipe is minimized 

by introducing a liquid metal heat exchanger at each end of the reactor. The con

denser ends of the pipe extend into the heat exchanger tubes and are cooled by a 

cross-flowing liquid metal (e .g . , NaK). In this design option, the high voltage 

insulator is in the heat exchanger section where fast neutron flux is considerably 

reduced. 

The designs were based on an axial heat transfer limit imposed by the vapor 

flow speed. Although vapor speeds approaching Mach 1 have been achieved in high-

performance heat pipes, * ' the designs were conservatively based on a limiting 

vapor speed of Mach 0.3. 

Ih order to permit a broad survey of large numbers of design variables to 

see how these effect reactor size and weight, a computer program (PASER) was 

constructed which optimizes converter electrode dimensions to minimize overall 

system weight. In any one calculation diode length is specified so that the 

optimization in effect produces the minimum core diameter consistent with the 

specified output electric power and number of converters. Diode length and 

number of converters are then varied in discrete steps for given output electric 

power, thereby covering the complete range of system variables at the disposal 

of the designer. 

In order to permit the analysis of a large number of cases a number of 

simplifying assumptions were made in the PASER program: 
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1. Critical size was assumed to be a function only of fuel volume fraction; the 

variations in volume fractions of the nonfuel materials were assumed to be 

of secondary importance. 

2. A large number of onedimensional 26group neutron transport calculations 

were run to determine radial and axial reflector savings and geometrical 

buckling for the necessary range of fuel volume fractions, with other materials 

being represented in typical volume fractions. These calculations were then 

correlated and used to determine critical core size in the parametric survey 

calculations. 

3. Emitter temperature was taken to be constant over the length of the diode and 

emitter lead was optimized for maximum efficiency. 

4. The diode currentvoltage characteristic was taken to be a straight line 

tangent to the point of maximum power. 

With these assumptions, converter internal losses are accurately taken into 

account both as to ohmic dissipation and as to variations in local voltage along the 

length of the converter. The program then proceeds to optimize emitter diameter, 

emitter thickness and collector thickness for minimum system weight. Both 

radiator weight and shield weight are calculated based on the following assumptions: 

2 2 

Radiator specific weight = 1.15 kg/m (2 lb/ft ) 

Radiator emissivity = 0. 84 

Shields: 5. 08 cm tungsten 

96.4 cm LiH 

Shielded angle = 15 degrees 

Among the more significant results of the survey is the finding that, at least 

for systems in the submegawatt power range, optimum converter length is in the 

Te of 20to25 cm. It was also seen that decreasing the emitter diameter of 

■«verter (and hence the power per converter) and increasing the number of 

invariably resulted in a decrease in overall system size and weight. 
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These findings are illustrated in Figure 4 for the 360-ekW system. It can be seen 

that for emitter diameters greater than 1.15 cm , a converter approximately 

23 cm in active length is optimum. This optimum is a broad one; the weight 

penalty paid for a 20cm converter length for a fixed total number of converters 

is less than 1 percent. 

Converters of approximately 1.25 cm in emitter diameter and 20 cm in 

length have been built and successfully tested in the laboratory; however, for con-

servativeness in mechanical design the reference designs selected at the various 

power levels are based on converters with emitter diameters in the range of 1.5 

to 1.75 cm. The results for systems ranging from 15 to 3600 ekW are shown in 

Table 1. 

It should be noted that all of the systems could be designed with modules of 

identical size; this would merely result in slightly off-nominal output power at 

each power level. 

More exact design calculations done at the 360-ekW power level, which take 

into account the actual emitter temperature distribution and true converter current-

voltage characteristic as well as more precise nuclear calculations indicate that 

the PASER calculations result in an underestimate of system size and weight by 

some 3-to-6 %. From Figure 4 it can be seen that this can be compensated by 

a decrease in emitter diameter to the range of 1.2 to 1.3 cm , if desired. 

Conclusions 

External-fuel thermionic reactors are seen to offer a number of design 

advantages over the more common internal-fuel designs. Static design calculations 
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illustrate the extreme flexibility of the concept in satisfying a wide range of power 

requirements without variation in converter design. This makes it practical to 

build and prove the feasibility of an in-core thermionic reactor at a modest power 

level and to confidently extrapolate the experience so gained to larger, more costly, 

systems. 

References 
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Table 1. PASER-Calculated Reference Designs — Heat Pipe Cooled Systems 

Output Power 
(ekW) 

No. of 
Diodes 

Active Diode 
Length (cm) 

Emit te r 
Diameter(cm) 
Heat Pipe ID 

(cm) 
Power P e r 

Diode (watts) 
Net 

Efficiency (%) 
Fuel Volume 

Fract ion 
Core 

Diameter (cm) 
Core Volume 

(eu. M) 
Uranium 

Inventory(kg) 
Core Mass 

(kg) 
Reactor 

Mass (kg) 
Shield Mass 

(kg) 
Radiator 

Mass (kg) 
Total Mass 

(kg) 
Burn-up (a/o 
pe r y r . ) 

Volts 

15 

18 

20.3 

1.74 

0.980 

833 

11.1 

0.813 

22 .1 

0. 0079 

50 

74 

322 

569 

24 

915 

0.105 

3.6 

30 

36 

20.3 

1.74 

0.980 

832 

11 .1 

0.720 

25 .1 

0.010 

58 

97 

383 

624 

49 

1056 

0.185 

7.2 

60 

90 

20.3 

1.50 

0.890 

666 

11.0 

0.629 

29.7 

0.014 

71 

132 

477 

708 

99 

1284 

0.308 

18.0 

360 

468 

22 .9 

1.62 

0.955 

769 

10.9 

0.397 

57 .1 

0.059 

190 

524 

1376 

1378 

593 

3347 

0.710 

47 .0 

1200 

1386 

22.9 

1.75 

1.00 

865 

11 .0 

0.33 

100 

0.18 

483 

1721 

3677 

2720 

1994 

8393 

0.862 

70 

1800 

2106 

22 .9 

1.74 

1.07 

854 

11.0 

0.319 

122 

0.27 

6884 

2512 

5196 

3571 

2996 

11764 

0.914 

108 

3600 

4920 

22.9 

1.57 

0.935 

731 

10.9 

0.307 

167 

0.50 

1231 

4615 

9194 

5755 

6059 

21008 

1.08 

123 

Emitter Temperature = 2000°K 
Collector Temperature = 1000°K 
Cesium Reservoir Temperature = 620°K 
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Figure 1. Externally fueled cell in Cross Section 

Figure 2. External-Fuel Diode Under Test by RF-Heating 
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Figure 3. Schematic Drawing of Heat-Pipe Cooled Full Length Module 
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DISCUSSION 

Speaker of paper Β-6: Α. SCHOCK 

BUSSE (Euratom): 
Mr . SCHOCK presented the in teres t ing external fuel-concept with a quite 
impress ive l is t of advantages . I would like to ask him if he could comment 
a lso on the disadvantages of this concept. In what way would this concept 
be inferior to the normal concept with in te r io r fuel? 

SCHOCK (USA): 
F i r s t , the fuel e lement geometry is m o r e complicated and therefore is m o r e 
difficult to make . Hexagon fuel e lements with a hole have been made of course 
but it is not quite as easy as making a simple cyl indr ical element that ex
pands outward. Another problem occurs with the full-length diode. If one 
gets into megawatts power, or above, one must stack the co re . The advan
tages of the external fuel concept a r e not so c lea r in this c a se . 

DAVIS (USA): 
I would like to add a few comments . I think that one of the major unce r t a in 
t ies in this design concept is the long t e r m maintenance of the in t e r -e l ec t rode 
gap and spacing between modules for these re la t ively long 8 to 10 inch diodes. 
Also at least as far as our analys is is concerned, these diodes a r e not exac t 
ly " F e r r a r i s " in per formance; the re a r e some losses due to the inc rease in 
2 

I. R per formance degradation of both the emi t t e r and the col lector . In gene
ra l I think the i r per formance is somewhat below what could be achieved by 
much sma l l e r internal ly fuelled diodes . But the penalty is not profound. 
GROSS (Germany): 
Mr. SCHOCK said that the fuel is not overheated because you concentra te 
the heat , but can you give some data on the radia l heat fluxes along the fuel 
which you expect. Secondly, you said that the c e r a m i c - m e t a l seal is not 
inside the neutron flux. Looking at your figure 3, I would expect that high 
fluxes of fast neutrons would be just t he r e , where your m e t a l - c e r a m i c 
seals a r e . 

SCHOCK: 
Let me answer the second question f i r s t . I said that the high voltage insu
lator, that is the insulator that sees the r eac to r voltage r a the r than the in
dividual diode voltage, is outside of the co re . With r ega rd to the f i rs t ques 
tion, our emi t t e r heat flux is the same as everybody e l s e ' s emi t t e r heat 
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flux; of course the heat flux becomes smal le r as you get further away from 
the emi t t e r . It is not obvious, but if you go through the mathemat ics , you 
find that for a given fuel volume fraction and a given fuel conductivity and 
a given emi t t e r heat flux, the Δ Τ in the fuel is about half as much when 
you go from the outside to the inside as the other way round. 
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UNINSULATED IN-CORE THERMIONIC DIODE CONCEPT 
Jerry P. Davis 

Henrik G. Grönroos 
J e t Propuls ion Laboratory 

C a l i f o r n i a I n s t i t u t e of Technology 
Pasadena, C a l i f o r n i a , U.S.A. 

ABSTRACT 

A major area of uncertainty concerning the feasibility of in

core thermionic diodes is the performance of insulator material. Of 

particular concern is the performance of the sheath insulator required 

to prevent shorting to the liquid metal cooling system. 

It is possible to conceive of an in-core thermionic reactor 

design which eliminates all insulator materials from the core itself 

and still permits series connection of diodes to build output voltage 

to a reasonable magnitude. The emitter-collector seals in the full core-

length externally fueled diode are already outside the core. The collec

tor-insulator-sheath trilayer construction could be eliminated by utiliz

ing the liquid metal-filled coolant tube itself to carry the current out 

of the core. Just outside the reflector, the desired series-parallel 

connections could be made by substantial busbars. These busbars would 

also serve as the structural members maintaining the tube-to-tube 

spacings. 

This work presents the results of one phase of research carried out 
in the Propulsion Research and Advanced Concepts Section of the Jet 
Propulsion Laboratory, California Institute of Technology, under 
Contract NAS7-100 sponsored by the National Aeronautics and Space 
Administration. 

+ Group Supervisor # Senior Scientist 
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Independent circuits would be established to form the radiator. 

One tube would make several loops in the radiator with appropriate fin

ning. Finning would be electrically interrupted where one coolant loop 

was adjacent to another loop at a different potential. Inches of separa

tion could be* employed and insulated supports could be utilized for 

structural integrity. No current flows through these coolant tubes 

beyond the point of busbar coupling; they are simply isopotential 

surfaces. 

Two major areas of uncertainty concerning feasibility of in

core thermionic diodes are the nuclear fuels and insulator materials. 

For systems of 10,000-h life yielding 50 kWe net power delivered to an 

ion engine for propulsion application, fuel burnups are fairly low, 

~0.3 at. %, for which fuel swelling for vented carbides, vented U0„, or 

unvented U0_-W is hoped to be tolerably small. Insulator performance, 

however, remains a distinct area of uncertainty for present thermionic 

reactor concepts. 

Insulators are required for seals to contain the cesium inter

electrode gas, and to insulate collector structure from the liquid metal 

coolant, thereby permitting voltage output to be increased by series 

connection of diodes from the base 0.7 V available for an individual 

diode. For the externally fueled and pancake reactor designs, this col

lector or sheath insulator is not exposed to cesium gas. In the flash

light design, the sheath insulator is exposed to cesium. Radiation damage 

to insulators in the expected range of integrated fast neutron fluxes has 

indicated that potential cracking problems may exist. The dielectric 
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strength of cracked insulator, both exposed and unexposed to cesium gas, 

is presently not known. Several experimental programs, including one 

being funded by JPL, are presently under way at various facilities. 

Seal insulators can be located outside the core itself for both the 

externally fueled and flashlight designs where integrated fast neutron 

flux is somewhat lower than within the core. In the pancake design, 

seal insulators are necessarily located within the core. At the present 

time, therefore, the question of insulator integrity is a significant 

and uncertain area of concern affecting, in various degrees, all the 

presently contemplated thermionic reactor designs. 

It is possible to conceive of an in-core thermionic reactor 

design which eliminates all insulator materials from the core itself and 

still permits series connection of diodes to build output voltage to a 

reasonable magnitude. The cesium seals in the full core-length double-

ended externally fueled diode, as proposed by Republic Aviation, are 

already outside the core. The collector-insulator-sheath trilayer con

struction could be eliminated by utilizing the liquid metal-filled cool

ant tube itself to carry the current out of the core. Just outside the 

reflector, the desired series-parallel connections could be made by sub

stantial busbars. These busbars would also serve as the structural 

members maintaining the tube-to-tube spacings. The emitter and fuel 

structure is basically hung from its respective coolant tube. Additional 

support, if required, could be obtained from pins at the top and bottom 

of the fuel element cladding, which are electrically insulated from grid 

plates above and below the core. Since temperatures are relatively low 

and space is not a problem, substantial insulator sections could be employed. 



- 240 -

In a 50-kWe design, roughly 130 diodes are required. These 

could be connected, for example, 7 in parallel and 19 in series for about 

12-V output. The paralleled diodes could have their coolant tubes mani

folded to a single tube which then proceeds to the radiator. Thus 19 

independent circuits would be established to form the radiator. One 

tube would make several loops in the radiator with appropriate finning. 

Finning would be electrically interrupted where one coolant loop was 

adjacent to another loop at a different potential. Again, inches of 

separation could be employed and insulated supports could be utilized 

for structural integrity. No current flows through these coolant tubes 

beyond the point of series-parallel busbar coupling; they are simply 

isopotential surfaces. 

A significant advantage of this concept is inherent protec

tion against potential shorts to ground. Where the coolant loop is 

isolated from the electrical system as in all other in-core diode con

cepts, insulator breakdown from collector to sheath represents a short 

to ground. This type of failure is intolerable and must be protected 

against by fusing or some other positive means. In this concept, no 

such grounding possibility exists within the core itself. Outside the 

core, massive insulation can be provided to protect against this type 

of failure. 

Since it is generally desirable to arrange diodes in a series-

parallel matrix to minimize power loss from open and short circuit failures, 

it is further possible to arrange the paralleled diodes in a single fuel 
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element having a continuous fuel region. Several additional advantages 

result from such an arrangement: (1) It is possible to parallel the 

diodes within the core itself by means of tungsten webs which also 

serve to couple the outer fuel clad electrically to the emitter reducing 

the axial resistance to current flow. Only series coupling need be 

accomplished above and below the core. (2) Open circuit failure of a 

single diode in the module results in very much lower temperature rise, 

on the order of only 100 to 200 C, than internally fueled diodes. This 

is brought about by the direct thermal conduction coupling of the fuel 

and web region to the other diodes in the module. (3) Volume required 

for spacing between modules is reduced over that required for single 

diode externally fueled designs. Spacing may be increased to 1/8" or 

greater still maintaining high fuel volume fractions within the core. 

A typical seven-diode module and overall conceptual arrangement is 

shown in Fig. (1). 

The major uncertainty in this design concept is the long-term 

maintenance of the inter-electrode gap and spacing between modules for 

these ~ 10-in. long diodes. Relative to the inter-electrode gap stability, 

thermal cycling tests and diode operations by Republic Aviation Division 

on their externally fueled diode designs have not resulted in inter

electrode shorts to date. 

A toroiodal pump design has been evolved which permits a single 

pump structure to provide flow requirements, maintain electrical isola

tion between independent coolant loops, and operate directly from un

conditioned reactor output current. Pumping power requirement is of the 

order of 5% of reactor output. 
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A HEAT PIPE THERMIONIC REACTOR CONCEPT 
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Abs t rac t 

An out -of-core thermionic r eac to r concept is p resen ted for space 
power supply in the range of 30 to 100 kWe using Lithium heat pipes in 
c ros sed l a y e r s , each heat pipe bearing one conver te r . The concept is 
based on the assumpt ion of a successful development of high t empe ra tu r e 
heat pipes (1500 to 1600°C) and re la ted conver te r sys tems for long period 
operat ion, since considerable p r o g r e s s has been achieved in this field at 
I sp ra . 

The conver te r s a r e located outside the Beryl l ium ref lector on four sides 
of a near ly cube shaped fast r eac to r c o r e . Heat is t r anspor ted from the 
(UZr) carbide fuel to the heat pipes· by t h e r m a l heat radiation hence e l im i 
nating high t empe ra tu r e compatibi l i ty- and e lec t r i ca l insulation p rob lems . 
The c rossed layer a r rangement combined with radiat ive heat t r ans fe r 
allows a s imple core s t ruc tu re with a. highly re l iable cooling sys tem using 
the redundancy pr inc ip le . Four movable ref lector segments on the top side 
se rve for r eac to r start · up and power control . 

Cr i t ica l m a s s and react ivi ty control calculat ions have been made for two 
core designs "A" and " B " varying the core size and the number of conver 
t e r s . Engineering studies of the r eac to r and i ts integrat ion into a space 
power plant of 50 kWe resul ted in specific m a s s e s of about 12 to 17 kg/kW 
without and 21 to 27 kg/kW with a shadow shield. The concept s eems to be 
par t i cu la r ly a t t rac t ive with r e spec t to engineering, s implici ty of the r e a c 
to r core and rel iabi l i ty . 

1. THE CONCEPT 

Heat pipes a r e useful for extract ing heat from compact r eac to r co re s and 
t r ans fe r r ing it to thermionic conver te r s outside the ref lector [ 1 J . 
Severa l proposals for "heat pipe thermionic r e a c t o r s " have been d iscussed 
in the l i t e r a tu re , having an output e l ec t r i ca l power of 50 kW [ 2 ] , 1 MW 
L 3 ] and 10 MW |.4 J · 

In this paper an engineering concept is p resen ted for the power range of 
about 30 to 100 kWe. The concept is based on the assumpt ion of a s u c c e s s 
ful development of high t empe ra tu r e heat pipes operating at 1600 C (or at 
leas t 1500 C) for t ime per iods of over one yea r . There is actually no in
dication that heat pipe cor ros ion would be an obstacle to reach this a im. 
Ea r ly t e s t s with W/Li heat pipes after 1000 h operat ion at 1600 C showed 
ext remely low cor ros ion [ 5 ] and demons t ra ted that (in principle) a s o 
lution is poss ible , although tungsten is not a suitable s t ruc tu ra l m a t e r i a l . 



- 244 -

RCA repor ted on the operation of a t i tanium-zirconium-molybdenum alloy 
tube with lithium for 9000 h r s at 1475-1500°C [ 7 ] . Recent p r o g r e s s in 
the understanding of the cor ros ion mechanism has resul ted in large i m 
provements in the life of Li heat pipes making use of ductile wall m a t e 
r i a l s (Nb- lZr and Ta). The SGS-Ta/Li sys tem seems to hold par t icu la r 
p romise for long life operat ion at 1600 C (this will be repor ted in another 
paper of this conference [ 6 ] ). 

Lithium has been found to be the best working fluid for an operation t empe
ra tu re of 1500 to 1600 C, having a large heat t r anspor t capacity. A max i 
mum heat flow of about 7 kW has been measured with a pipe about 50 cm 
long and a vapor channel d iamete r of 0. 76 cm [ 6 ] , a resul t which is in 
good agreement with calculations [ 8 J . 

The concept further profits from the fact that the technology of the out-of-
core thermionic conver te r is in a r a the r advanced state and that out-of-
core conver te r s of high rel iabi l i ty and lifetime have a l ready been deve
loped [ 9 ] . 

The f i rs t prototype of a "heat pipe thermionic conver te r" , which combines a 
normal thermionic conver te r with a high t empera tu re heat pipe (1500 C -
1600 C) for the emi t t e r heat supply (emit ter heat pipe) and a low t empera tu re 
heat pipe (700 C-800 C) for heat rejection from the col lector into space 
(collector heat pipe),has been presented at-the London Conference in 1965 L 10 J 
Severa l other conver te r s of the same type have been built and tested since 
that t ime in I sp ra . Life t e s t s a r e in p repara t ion . If the cor ros ion problem 
of the emi t t e r heat pipes could be solved, there does not seem to be a major 
technical obstacle which could prevent the development of such conver te r s 
with the same rel iabi l i ty as other types of out-of-core conve r t e r s . 

Except for the heat pipe thermionic conver te r itself, all other r eac to r com
ponents needed in this concept can ei ther be made by applying existing t ech
niques or could actually be developed without foreseeable major difficulties. 

F ig . 1 shows the pr incipal a r rangement of the r eac to r , the ref lector and 
the conversion sys tem. It is charac te r ized by the following fea tures : 

- fast, parallelepiped shaped core with a (UZr, C) mixed fuel and a Be r e 
flector of the same shape, 

- thermionic conver ter located outside the ref lector on four sides of the 
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parallelepiped in such a manner that the emi t t e r heat pipes a r e a r ranged 
in c rossed l aye r s , each emi t t e r heat pipe bearing one conver te r , 

- heat t r anspor t from the nuclear fuel to the heat pipes by t h e r m a l r ad i a 
tion, hence eliminating high t empe ra tu r e compatibili ty and e lec t r i ca l in
sulation p rob lems , 

- r eac to r control by four movable ref lector segments on the top side of the 
core . 

The c ros sed heat pipe layer a r r angemen t provides sufficient space for l o 
cating the conve r t e r s . It r ep re sen t s fu r thermore a highly re l iable core 
cooling sys tem by using the redundancy pr inc ip le : If a heat pipe fails ( e .g . 
through a leak or dest ruct ion of the capi l lary sys tem) its equivalent t he rma l 
conductivity drops , its t empera tu re r i s e s rapidly, hence blocking the no r 
ma l heat flux from the fuel to the defective heat pipe. In this case each heat 
pipe of the neighbouring l a y e r s , which c r o s s the defective heat pipe take 
over pa r t of the heat flux. 

If n is the number of heat pipes in one layer , this pa r t can be es t imated to be 
about 1/2 n if a heat pipe fails in one of the in ternal l aye r s and l / n if a 
heat pipe fails in the two outer l a y e r s . The resul t ing inc rease in heat flux 
of al l part icipat ing heat pipes r emains therefore smal l enough to avoid in
to lerable overheating . 
This cooling sys tem is a lso applicable to a t he rma l r eac to r co re , where 
the modera to r is located between sets of at leas t two heat pipe l a y e r s . 
Cr i t ica l m a s s calculations of a z i rconium hydride modera ted core , how
ever , have shown that a t h e r m a l core of this type offers no advantage with 
respec t to the total r eac to r m a s s except that the U--, . content is much s m a l 
ler) against a fast co re . It has been found that the engineering of such 
a t he rma l core is more complicated than that of a fast co re . 

2. DESIGN PARAMETERS OF THE REACTOR AND THE CONVERSION 
SYSTEM 

Four different design types of the heat pipe thermionic r eac to r (HPTR) con
cept descr ibed above have been chosen, the var ia t ions being in core s ize , 
conver te r cent ra l spacing (see Fig . 2), and the cooling of the co l l ec to rs . 

The meanings of the following symbols a r e : 

"A" - a design with 192 heat pipes and conver te r s (8 l ines of 6 conver te r s 
on each of the four s ides) , a cen t ra l spacing of 6 cm and a core size 
of 36 χ 36 χ 4 1 . 6 cm (without re f lec tor ) . 

" B " - a design with 120 heat pipes (6 l ines of 5 conver te r s ) , cen t ra l spacing 
of 5 cm and a core size of 25 χ 25 χ 26 cm. 
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" L " - cooling of the col lectors with a liquid meta l loop . 
"H" - cooling of the col lectors with heat p ipes . 

One of the cha rac te r i s t i c data of the HPTR concept is the average heat flux 
2 

Q per cm of the heat pipe surface which depends on the produced the rma l 
power and is different for the core designs "A" and " B " . The t empera tu re 
of the fuel surface, which is l imited by the ma te r i a l p roper t i es , depends on 
the heat flux Q , the surface t empera tu re T of the heat p ipes , the e m i s -
sivi t ies e of the fuel and heat pipe surfaces and the geometry of fuel and 
heat pipes (which is different for the design "A" and "B"). 
This is demonstra ted in Fig . 3 for a fixed emi t t e r t empera tu re of 
1600 C assuming an overal l conversion efficiency of 10%. Fo r simplici ty 
the emiss ivi ty of the fuel surface is taken equal to that of the hea tp ipe . Assum
ing that ε-value s over 0. 8 could hardly be achieved, from Fig . 3 it can be 
deduced that in o rde r to avoid intolerably high fuel t empe ra tu r e s (fuel su r 
face should be below 2000 C) design "A" has a l imit at about 130 kWe and 
design " B " at about 50 kWe. 

Tables 1 to 4 give design data for three r e a c t o r s : 

1. "A" - r eac to r for 50 kWe output (50-A), using e i ther liquid meta l or heat 
pipe collector cooling. J\ne -value below 0. 5 is neces sa ry for a fuel s u r 
face t empera tu re of 1900 C. This r eac to r may therefore be considered 
on the safe side of per formance and engineering. 

2. " B " - r e a c t o r for the same power output (50-B), represent ing a compact 
and advanced core design. 

3. "A" - r eac to r for 100 kWe (100-A) with a s imi la r heat t r ans fe r c h a r a c t e 
r i s t i c as the 50-B reac to r , but requir ing ra ther la rge conver te r s of 520 
Watt power each. 

F o r the conve r t e r s , normal performance data a r e taken (see Table 1 and 
Fig . 2). With constant emi t te r t empera tu re and constant e lec t r i ca l power 
density of the conver t e r s , the var ious power outputs a r e achieved by diffe
rent emi t t e r a r e a s . 

3. NUCLEAR CHARACTERISTICS 

3. 1 Cr i t ica l m a s s and ref lector thickness 

F o r a p a r a m e t r i c study of the c r i t i ca l m a s s the following m a t e r i a l compo-



- 247 -

sition was assumed: 

- a fuel of Uranium carbide s tabil ized with 30 percent by volume of Z i r c o -
nium (UC + 3 0 v / o Z rC) , 93% enriched, density 11 g / c m at 20 C, ope
rat ion temperature 1900 C, 

/
2 o 

cm at 20 C, operat ion t e m p e r a 
tu re 700°C, 

- heat pipes of tungsten with 8 m m inner d i ame te r and 10 m m outer d ia -
meter, densi ty 19.3 g / c m at 20 C, operat ion t empera tu re 1600 C. 

Two different calculation methods (diffusion and "Monte Car lo")were e m 
ployed. 

In performing the p a r a m e t r i c analys is a mult igroup (19 groups) one d imen
sional (spherical·, geometry) diffusion calculation was adopted. The Gaze 
[ 11 ] computer p r o g r a m was employed and the neutron c r o s s - s e c t i o n l i 

b r a r y was obtained by condensation of the 200 group GGC-II [ 12 ] l i b ra ry . 
Two d imensional diffusion calculat ions in cyl indr ical geometry were a lso 
done with the same l ib ra ry for some pa r t i cu la r c a s e s . The computer p r o 
g r a m SQUID [ l3 J was employed for this purpose . 
F o r the final a s s e s s m e n t of the c r i t i ca l m a s s of the chosen r eac to r , th ree 
dimensional Monte Car lo calculat ions were per formed with the aid of the 
TIMOC [ 14 ] computer p r o g r a m , using a mult igroup (26 groups) c r o s s -
section l i b ra ry especial ly adapted to fast r e a c t o r s [ 15 J . 

A discrepancy of about 1. 5% in react ivi ty resul ted between the Monte Car lo 
calculat ions and the diffusion calcula t ions . This incorpora tes both the dif
ferences between the t r anspor t and diffusion approach and the differences in the 

neutron c ro s s - s ec t i on l i b r a r i e s . A cor rec t ion of 1. 5% in k -, was therefore 
e i i 

introduced in al l diffusion calculat ions . 

As the dimensions of the r eac to r core were fixed for the "A" and " B " d e 
s igns , the fuel volume fraction and ref lector th ickness were var ied to get 
k , , = 1. 03 in the diffusion calculat ions for the hot co r e . F o r the "A" eff 
de sign, calculations were made with a spher ica l core of 24 cm radius c o r 
responding to the 36 χ 36 χ 4 1 . 6 cm parallelepiped; for the " B " design with 
a 25 χ 25 χ 26 cm core , the corresponding radius is 16. 1 cm. Some resu l t s 
of the calculations modified for parallelepiped shapes and adapted to the 
resu l t s of additional Monte Car lo calculat ions a r e presen ted in F i g s . 4 and 5. 

It can be seen from Fig . 4 that the r eac to r m a s s has a minimum for a 
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r e f l e c t o r t h i c k n e s s of about d = 7 c m . H o w e v e r , with i n c r e a s i n g r e f l e c t o r 

t h i c k n e s s the U ?_ conten t d e c r e a s e s (F ig . 4) and the p o w e r d i s t r i b u t i o n 

b e c o m e s m o r e f la t tened (F ig . 5). A r e f l e c t o r t h i c k n e s s of 11 c m w a s 

c h o s e n for both d e s i g n s "A" and " B " . The c o r r e s p o n d i n g c o r e da ta a r e 

given in Tab le 2. It m a y be noted tha t r e s u l t s of a two d i m e n s i o n a l c a l c u 

la t ion of the p o w e r d i s t r i b u t i o n in a c y l i n d r i c a l g e o m e t r y show no d a n g e 

rous p e a k p o w e r at the r e f l e c t o r b o u n d a r i e s . We expec t tha t th i s i s a l s o 

va l id for p a r a l l e l e p i p e d shaped c o r e s . 

3. 2 T e m p e r a t u r e coef f ic ien t 

P r e l i m i n a r y t e m p e r a t u r e coeff ic ient ca lcu la t ionsof the r e a c t i v i t y w e r e 

c a r r i e d out b e c a u s e of the inf luence of the t h e r m a l e x p a n s i o n . Using the 

following l i n e a r t h e r m a l e x p a n s i o n d a t a : 1 3 . 1 0 ( C) for the fuel, 

4. 32 . 1 0 " 6 ( ° C ) _ 1 for W and 17. 2 . 1 0 _ 6 ( ° C ) " 1 for Be it fol lows tha t 

Δ k / k = - 3. 10 ( C) for the "A" d e s i g n . No a t t e m p t i s m a d e to e v a l u a t e 

the a c t u a l t e m p e r a t u r e coeff ic ient by including the D o p p l e r ef fect . 

3. 3 R e a c t o r c o n t r o l 

Monte C a r l o t h r e e d i m e n s i o n a l c a l c u l a t i o n s for the " A " c o r e r e s u l t i n a r e a c 

t iv i ty d e c r e a s e of 7. 8% when tak ing off the whole top r e f l e c t o r . T h i s o f fe rs 

the p o s s i b i l i t y of subdiv id ing the top r e f l e c t o r into 4 s e g m e n t s (F ig . 6) 

and a s u p p o r t f r a m e which r e m a i n s fixed du r ing n o r m a l o p e r a t i o n , but 

which m a y be r e m o v e d e x p l o s i v e l y in a c c i d e n t cond i t ions and the r e a c t o r 

t h e r e b y shut Jown . 

It is e s t i m a t e d tha t n o r m a l o p e r a t i o n of 50-A r e a c t o r s wi l l not a c t u a l l y 

r e q u i r e a r e a c t i v i t y c o n t r o l h i g h e r than 2 % . Th i s i nc ludes both the p a s s a g e 

f rom cold to hot cond i t ions a f t e r s t a r t - u p and the r e a c t i v i t y l o s s due to 

b u r n - u p for the r e a c t o r running at 500 kWth for two y e a r s . 

F r o m Monte C a r l o c a l c u l a t i o n s , u s ing the shape a p p r o x i m a t i o n of F i g . 6, 

it fol lows that the four s e g m e n t s c o n t r o l 0 . 9 % r e a c t i v i t y each when the 

s u p p o r t i n g a r m opens t hem by 40 , r e s u l t i n g in a to t a l of 3. 6%. To s t a r t 

the r e a c t o r , t w o of the s e g m e n t s a r e moved in by a s p r i n g load to give cold 

c r i t i c a l i t y [ 16 ] , whi le the o t h e r s a r e m o v e d by s t e p p e r m o t o r s o r an 

a d e q u a t e h y d r a u l i c s y s t e m for fine r egu l a t i on p u r p o s e s . 
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4. CONCEPTUAL ENGINEERING 

The engineering studies have been performed mostly with the aim of finding 

whether ser ious design p rob lems exist and making rea l i s t i c m a s s e s 

t imat ions . The following is re la ted , pa r t i cu la r ly with r ega rd to dimensions 

and data, to the large core design "A" for 50 kWe. The s t ruc tu re of the " B " 

design is in pr inciple quite s imi lar jhowever . 

4. 1 Core s t ruc tu re 

Fig . 7 and 8 show the reac to r and conver te r a s sembly par t ia l ly sectioned 
and in view. 

The a lmos t cubic active zone consis ts of c ros sed l ayers of 208 equidistant 
(UZr, C) fuel b a r s . In this way rec tangular channels 1. 92 χ 2. 6 cm running 
through the whole core a r e achieved, providing a minimum distance between 
fuel and heat pipes (outer d iamete r 1 cm) of 0.46 cm at operat ion t e m p e r a 
t u r e . 

There a r e two possible design solutions of in te res t for the fuel set u p : 

1) The different fuel l aye r s a r e mechanical ly interlocked and par t ia l ly s in
tered together in o rde r to form a strong selfsustaining unit (see fig. 8). 
The fuel a ssembly is fixed in the center of the bottom ref lec tor . During 
heating up the core from room t empe ra tu r e to operat ion t e m p e r a t u r e , 
the heat pipes change the i r cold geometr ic posit ion inside the heat pipe 
channels . This imposes no p rob lems as the horizontal d is tance between 
fuel and outer heat pipe in the top layer changes by 0. 228 cm for an a v e 
rage core t empera tu re of 1900°C and an average Be re f lec to r t e m p e r a 
ture of 700°C. 

2) In an a l t e r n a t i v e so lu t ion the fuel b a r s a r e m a d e up of a r e f l e c t o r p i e c e 

a t one end, t h e r m a l i n s u l a t i o n s e c t i o n s and a c e n t e r i n g p i e c e a t t he o t h e r 

end ( see F i g . 7) . In t h i s c a s e s ing le fuel b a r s a r e i n t r o d u c e d t h r o u g h h o l e s 

i n s i d e the r e f l e c t o r and fixed f r o m the o u t s i d e . A m i n i m u m c l e a r a n c e of 

0. 033 c m b e t w e e n the fuel l a y e r s i s r e q u i r e d to m e e t t h e e x p a n s i o n d i f fe 

r e n c e e x i s t i n g b e t w e e n thè r e f l e c t o r and the fuel . Such an a r r a n g e m e n t 

p r o v i d e s the m o s t e x a c t h e a t p ipe p o s i t i o n i n g , but m a y g ive r i s e to s e 

r i o u s p r o b l e m s for the fuel ( touching and s i n t e r i n g ) . A s the t h e r m a l c o r e 

e x p a n s i o n p e r p e n d i c u l a r to the fuel l a y e r p l a n e s i s d e t e r m i n e d by t h e r e 

f l e c t o r , t he nega t ive r e a c t i v i t y t e m p e r a t u r e coef f ic ien t i s s m a l l e r . 

The h igh fuel s u r f a c e t e m p e r a t u r e s r e q u i r e a n ef fec t ive coa t ing a g a i n s t v a 

p o r i s a t i o n . W o r W / R e a l l o y s a r e p o t e n t i a l c a n d i d a t e s for t h i s [ 1 7 ] . T h i s 

p r o t e c t i o n l a y e r m u s t h o w e v e r follow the e x p a n s i o n of the fuel . The t h e r m a l 

i n s u l a t i o n of the c o r e to the r e f l e c t o r i s m a d e up of W and Ta foi ls r e d u c i n g 

the h e a t l o s s e s to the r e f l e c t o r to about 1%. 

4 . 2 R e f l e c t o r 

Al l e m i t t e r hea t p i p e s a r e fixed i n s i d e the r e f l e c t o r and e l e c t r i c a l l y i n s u 

l a t ed f r o m i t . E a c h s ide p a r t of the r e f l e c t o r c o n t a i n s 48 h o l e s p r o v i d e d wi th 

e l e c t r i c a l c e r a m i c a l i n s u l a t o r s ( s ee e .g . F i g . 1). Coo lan t p a s s a g e s i n s i d e 

the r e f l e c t o r k e e p the t e m p e r a t u r e in the 650°C to 700°C r a n g e . 

The h e a t g e n e r a t e d i n s i d e the r e f l e c t o r and the h e a t l o s s e s f r o m the c o r e , 
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(about 3. 2 kw , for each face) a r e extracted e i ther by liquid meta l in a by
pass or by heat p ipes . 
The top reflector and the movable control segments radiate the i r waste 
heat di rect ly to the protect ion housing (see Fig . 9 and 10), the surface of 
which is sufficiently large to radiate it into the space. 
4. 3 Conver ters and thei r cooling 
The conver te r col lectors a r e cooled e i ther by Na or NaK loops ("L" design) 
or by col lector heat pipes ("H"). 
Fig . 7a shows the general " L " conver ter a r rangement and Fig . 7b a s i m 
plified c ro s s - s ec t i on of a conver te r . Each conver ter has a col lector sand
wich. The 48 conver te r s of each face a r e welded intoja s ta inless s teel box 
forming a compact heat exchanger cooled by 2360 cm / s e c of Na at an in
let t empera tu re of 620°C and an outlet t empera tu re of 665°C. 
The corresponding collector t empera tu re s a re 705°C at the inlet and 
750°C at the outlet. 
The "H" a r rangement is shown in F ig . 8. Each of theJ:wo col lectors a r e cooled 
by one Na heat pipe(channel c ro s s - s ec t i on about 4 cm ), which c a r r i e s away 
about 4. 7 kW waste heat. A standard e lec t r i ca l insulation is required be 
tween neighbouring collector heat pipes operating at 800°C. 
In o rde r to avoid too large a r eac to r d i ame te r ( la rger shadow shield m a s s ) 
the actual conver te r s a r e not optimized to minimum m a s s (having l a rge r 
d i ame te r s and being shor te r ) . The conver te r s a r e a r ranged in para l le l s e r i e s 
connection with c ros s connector r e s i s t ances [ 18 ] and cu r ren t leads with op
t imized c ros s - sec t i ons L 19 ] . The " L " design has network units of 3 χ 8 
conver t e r s , the "H" design units of 4 χ 6 conve r t e r s . 
4. 4 Radiator sys tems 
In the HPTR-50-BL space power plant (Fig. 9) the waste heat from the four 
conver te r modules is t ranspor ted by Na to two annular ducts (heat exchangers) 
where the heat is t r ans fe r red to the heat pipe ends. The liquid meta l is then 
fed back by an EM-pump (620°C) to the conve r t e r s . The conically shaped r a 
diator consis ts of 302 independent Na-SS-heat pipes a r ranged in four single 
rows, mechanical ly held together by stiffener r ings , of which two serve as 
heat exchangers . This s t ruc ture is covered on the outside by a copper r a 
diating skin (radiator surface) . Fo r 475 kW the rma l power the radiating a r ea 
is 18.9 m 2 . Assuming ε = 0. 9 [ 16 ] the average radiation t empera tu re is 
640°C. 
In the HPTR-50-BH plant (Fig. 10) 96 approx. 2. 20 m long collector heat 
pipes distr ibuted around the shadow shield form a conically shaped radia tor 
working at 800°C with a surface a rea of 7 m 2 ( e = 0. 9). Although this r a 
diator sys tem looks more simple than the "L" radia tor , there a r e some 
technological incer ta int ies involved. 
4. 5 Shadow shield and reac to r support 
The lithium hydride shadow shield is 76 cm thick and housed in a SS-vesse l . 
In this set up the integrated flux at a distance of 1 0 m will be 1 0 1 2 nvt after 
2 y e a r s . Gamma radiation was found to be negligible [ 20 ] [ 21 j . The shield 
top section, where most of the heat is generated, is cooled by a heat pipe 
radia tor sys tem to 550°C. The heat removal is more difficult for the "H" 
design because of the closely spaced radia tor heat pipes surrounding the 
shadow shield, and neutron scat ter ing requ i res special attention. 
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F o r launching conditions the r eac to r is supported by the rad ia to r sys tem 
and a central ly positioned te lescope boom, providing the requi red dis tance 
from the payload in space and serving as the e lec t r i ca l power lead. 

4. 6 Meteor i te protect ion 
The meteor i t e protect ion is designed for a survival probabil i ty of 99% over 
a period of two y e a r s for the " L " rad ia to r sys tem and 99. 9% for the m o r e 
sensi t ive p a r t s , which a r e the control s y s t e m s , the conve r t e r s , the liquid 
meta l tubing and the "H" rad ia tor heat pipes [ 22 ] . The " L " rad ia to r 
sys tem is l e ss sensi t ive to meteor i t e damage than the "H" rad ia tor because 
failure of heat pipes in the " L " rad ia to r does not in te r rupt conver te r cool
ing. Therefore , the heat pipes of the " L " rad ia tor a r e protec ted by a 0. 8 mm 
SS wall on the outer side, those of the "H" rad ia tor by a 2 m m SS wall . 

5. RESULTS 

Considering specific m a s s e s and technical per formance the re is a strong 
competit ion between in -core (fast or thermal ) and out -of-core space r e a c 
tor concepts in the power range up t o 100 kW e lec t r i ca l output. Resul t s of 
this study have to be evaluated in this light. 

5. 1 Mass analys is 

One of the interes t ing re su l t s is that the HPTR concept with radia t ive heat 
t r ans fe r to the heat pipes shows specific m a s s data which a r e quite c o m p a r 
able or inferior to in -core data (as far as available e . g . [ 23] [24])in the po 
w e r range 30 to 100 kWe. 

The reac to r m a s s of the HPTR concept depends strongly on the heat t r a n s 
fer conditions ( e -va lues and fuel t e m p e r a t u r e ) . In F ig . 11 m a s s data of 
table 4 a r e p resen ted . Two shaded bands give an es t imat ion for m a s s regions 
without and with shadow shield, taking the 50-A design as the mos t p e s s i m i s 
t ic and the 50-B design as the mos t opt imist ic solution. It should be noted 
that the "H" designs (collector cooled with heat pipe) show sma l l e r m a s s e s 
than the " L " designs (loop cooling). 

These r e su l t s a r e at f i rs t sight somewhat surpr i s ing because the HPTR co res 
a r e r a the r large in size (Table 2), having an average t h e r m a l power density 
which is r a the r smal l (Table 3) and a quite high fuel m a s s (Table 4). There 
i s , however, an explanation why in -co re r e a c t o r s a l so have no s m a l l e r s p e 
cific m a s s e s : the total emi t t e r a r e a is de termined for a ce r t a in e l ec t r i ca l 
power output through the necess i ty of a high heat flux from the fuel to the 
emi t t e r in o rde r to obtain a high conversion efficiency. This s eems to be 
difficult to bring into agreement with the cr i t ica l i ty condition in the smal l 
power range . Fo r in ternal fuel sys t ems (fuel inside the emi t te r ) emi t t e r d ia 
m e t e r s become unfavorably large [ 25 ] . Another possible solution is a two-
zone core with an active conversion zone and a booster zone. As no e l ec t r i ca l 
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power is generated in the booster zone the overal l efficiency can be ra the r 
smal l (below 50 kWe only a few percent) , hence increasing the specific r a 
diator m a s s . F o r t he rma l co res calculations have shown [ 2 4 ] that the boos
t e r zone solution is the preferable one. It is well understood that these incom
patibility problems do not exist for heat pipe cooled c o r e s , because heat pipes 
can be used as flux t r a n s f o r m e r s , allowing a high heat flux on the emi t t e r and 
a sma l l e r heat flux at the fuel sur faces . 

5. 2 Engineering and c r i t i ca l technological a r e a s 

The main cha rac te r i s t i c features of the HPTR engineering a r e : 

i — very simple core s t ruc tu re , 

ü — no e lec t r i ca l insulation and compatibili ty problems between fuel and 

heat pipes at high t e m p e r a t u r e s , 

iii— highly rel iable core cooling sys tem (under the assumption that the heat 

pipe cor ros ion problem is solved), 

iv— smal l fuel burnup (0. 15 to 0. 3 atomic % per year ) ; therefore probably 

no fuel swelling problem, 

ν — vacuum tight metal c e r amic joints a r e not exposed to the main neutron 

flux, 

vi — all ce ramic pa r t s a r e operating at t empe ra tu r e s below 800 C, 

v i i  no inherent engineering problems for incorporat ion of the r eac to r into 

a space power sys tem, 

viii—heat pipe conver te r s can be l i fe tested outofpile under the same work

ing conditions as la te r on in the space plant; only the emi t t e r heat pipes 

have to be tested inpi le , 

ix _ the whole conversion sys tem can be assembled and tes ted outofpile 

before mounting into the space plant. 

Among the main c r i t i ca l technological fields a r e the following: 

i  development of high t empera tu re heatpipes for long l i fe t imes (see 

Chapter 1), 

ü  high operation t empera tu re of the fuel (1900 C to 2000 C), 

iii «. development of high emiss iv i ty surfaces of fuel and heat pipes; repor ted 

ε values for re f rac tory meta l surfaces a r e in the range 0. 5 to 0. 6 and 

not sufficiently high; there a r e however, good hopes that by special p r e 

parat ion (e. g. blackening by sintering powders on the radiat ive sur faces , 

slotting of surfaces) stable ε values up to 0. 75 may be obtained, 

iv— checking experimental ly whether the r eac to r has a sufficiently large 

negative t empera tu re coefficient of the react ivi ty . 
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If a technical solution for a high t e m p e r a t u r e m e t a l - c e r a m i c - m e t a l sand
wich (direct t h e r m a l contact between fuel and heat pipe at 1600 C) could be 
found (as seems to be assumed in [ 2 ] [ 3 ] [ 4 ] , this would enable an 
inc rease in the power output of the HPTR concept considerably above 100 kWe 
and dec rea se the specific m a s s e s compared to those repor ted he re for the 
radiat ive heating sys tem. 

5. 3 Conclusion 

The HPTR out-of-core concept is competit ive with i n - co re concepts with r e s 
pect to specific m a s s and seems to be par t i cu la r ly a t t rac t ive with r e spec t to 
engineering, s implici ty of the core and re l iabi l i ty . 
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Table 1 Conversion ayetem data for 

HPTR design 

Total electrical power output Pe 
Electric power density w 
Emitter temperature T„ 
Collector temperature T-
Electrical output of one 
converter 
Overall efficiency 
Number of convertere equal 
number of heat pipes N 
Cell center epacing U (fig.2) 
Emitter diameter Dg (fig.2) 
Emitter length Lj, 
Overall converter 
outer diameter D (Pig.2) c 

kW 
W/cm2 

°C 
°C 

Watt 
* 

cm 
cm 
cm 

cm 

"L" and " 

50-A 

50 
6 

1600 
730/800* 

260 
10 

192 
6 

4.5 
3.2 

5/5.8 

H" cooling 

50-B 

50 
6 

1600 
730/800* 

417 
10 

120 
5 

3.5 
6.3 

4/4.8 

# 

100-A 

100 
6 

1600 
730/800* 

520 
10 

192 
6 

4.7 
5.9 

.5.2/5.8 

Table 3 Data for heat transfer inside the core 

HPTR deeign 

Average thermal core 
power density q 
Average radially radiated heat 
flux on the heat pipes 4 r 

Surface temperature of 
heat pipes T„ 
Hurface temperature of 
nuclear fuel T 
Working fluid of heat pipes 
Heat pipe channel 
Heat pipe outer diameterD. (Fie. 2) 

Heat pipe vapor channel diameterD 

W/cm3 

'il/cm2 

°C 

cm 
en 
en 

50-A 

9.3 

23 

1600 

see Pig. 3 
Li 

1.92x2.6 
1 

0.76 

50-B 

30.8 

59 

1600 

see Fie 
IJ. 
1.6* 
1 

0.76 

100-A 

18.6 

46 

1600 

3 see Pig.3 
Li 

1.92x2.6 
1 

0.8 

Table 2 Core and reflector data 

HPTR deeign 

Core size (parallelepiped) 
Puel (93# enrichôment) 
Mass of U 235 
Puel volume fraction 
Atomic burn-up per year 
Average thermal fuel 
power density 
Reflector material 
Reflector thickness d 
Reactivity control 

cm 

Kg 
* 
* 

W/om3 

cm 
* 

50-A 

36x36x41.6 
UC+30v/oZrC 

151.3 
35 
0.15 
26.6 

Be 
11 
3.6 

50-B 

25x25x25.95 
UC+30 v'oZrC 

73.3 
56 

0.31 
55 

Be 
11 

100-A 

36x36x41.6 
UC+30 T'oZrC 

151.3 
35 
0.3 
53.2 

Be 
11 
3.6 

Table 4 Mass date 

HPTR deeign 

Puel mass 
Reflector and control system 
Emitter heat pipes (s&S - Ta^ 

Converters 
Heat removal eystem 
Structure and local 
meteroid protection 
Total mass without shield 

Shield mass 
Total mass with shield 

EM-pump power consumption 
Power output 
Specific mass without shield 
Specific mass with shield 

for "L" and "H" coo Ung * 

kg 
kg 
kg 

kg 
kg 

kg 
kg 

kg 
kg 

kW 
kW 

kg/kW 
kg/kW 

50-A 

222 
281 
43 

74/85 * 
215/ 119 

103/ 118 
938/ 868 

462/ 490 
1400/1358 

3/ --
47/ 50 
20/17.4 

29.8/27.2 

50-B 

107 
160 
27 

54/61 * 
208/ 142 

94/ 114 
650/ 611 

383/ 419 
1033/1030 

3/ --
47/ 50 

13.8/12.2 
22.0/20.6 

100-A 

222 
281 
43 

119/130 * 
344/ 224 

207/ 277 
1216/1177 

564/ 602 
1780/1779 

4/ --
96/ 100 

12.7/11.8 
18.6/17.8 

Converter collectors cooled by liquid metal/Converter collectors cooled by heat pipes 
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Fig. 1 Heat Ripe Thermionic Reactor ( HPTR ) concept 

_ principle arrangement _ 

Fig. 2 Converter arrangement on the 

reflector surface. 

Top reflector 
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ι ω 

Φ ® ! 

Control segments 

[mm.] 

Fig. 6 Reactor control system for the "A' 

design with shape approximation 

of the segments for calculation 

purposes. 
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Electrical Power output Pe ·

Fuel surface temperature fqr different thermal 

emissivity and different design "A " and "B " 

I 
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Reflector thickness d »

Fig. 4 Masses of U235, Be reflector and of fuel and 

reflector vs the reflector thickness for a 

parallelepipeded shaped core 36x36x41.6 cm. 

Reac tor _ 

Be Refle ctor^" 

U 235 

keff = 1.01 

1.2 

1.1 

1.0 

o 
Q: 

0.9 

Fig. 5 

d=9cm 

 . d= 11 cm 

\d=7 cm 

i 
Ii 
1* 

10 20 [cm] 

Radius 

30 

Power distribution of a spherical core 

[equivalent to a parallelepipeded shaped 

core 36x36x41.6 cm] for different reflector 

thicknesses d. 

$ 

5

r TF = 1950°C ;cT=0.75 
I TF =2000"C ; £ =0.65 

o: Tfr = 1900°C;£=0.47 "| 
See also 
Fig. 3 

Δ : TF=2000°C; ε =0.75 1 

© : Liquid metal cooled converters 
© ' Heat pipe cooled converters 

1 1 1 h 
0 20 40 60 60 100[kWe]l20 

Net Electrical Power output [d.c] *■ 

Fig. 11 Specific masses of HPTR space power 

plants a) without, b) with shadow shield 

according to data table 4 ; 

'/////, estimated region for "H " design 

Tp = fuel surface temperature . 

E = thermal emissivity 
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DISCUSSION 

Speaker of paper B-8 : H. NEU 

RAS OR (USA): 
You have quoted specific weights for 2000 C and, I bel ieve, 1900 C fuel 
t e m p e r a t u r e s ? What is the t e m p e r a t u r e of the emi t t e r heat pipe? 

NEU (Euratom): 
The t empera tu re of the emi t t e r heat pipes is assumed to be 1600 C in both 
cases (fuel surface t empe ra tu r e 1900 C and 2000 C). 

RASOR: 
Did the specific m a s s e s not include the weight of the shield? 

NEU: 
There a r e two regions of specific m a s s shown in F ig . 11: One including the 
shadow shield m a s s and the other excluding the shadow shield m a s s . The 
shadow shield m a s s e s were calculated under the assumption, that in a d i s -

12 tance of 10 m e t e r from the r eac to r core the integrated flux is 10 nvt 
after 2 y e a r s . As this indicates shielding is not provided for manned mis s ions . 

GRIAZNOV (USSR): 
Which components were taken into account in the weight evaluation of the 
power s tat ion? In pa r t i cu la r , were the weights of the components for r ad i a 
tion protect ion and the semi-conductor power conditioner taken into account ? 
What was the output vol tage? 

NEU: 
In the weight es t imat ion we included the r eac to r , the conve r t e r s , the r ad i a 
tor , the radiat ion and meteoroid protect ion and other components , which be 
long to a space power plant. The power t r ansmi s s ion line from the end of 
the radia tor to the payload and the power conditioning equipment were not 
included. The output voltage is about 20 Volts . 

GRIAZNOV: 
Which thermionic e lements did you cons ider , e lements of severa l conver t e r s 
in se r i e s or single conver te r e l emen t s? 

NEU: 
Each emi t te r heat pipe is t ranspor t ing the heat from the core to the emi t t e r 
of one single conver te r . The upper pa r t of the emi t t e r heat pipe s e rves d i 
rectly as the e lect ron emi t t e r . The col lector can be cooled by another heat 
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pipe. 

PRUSCHECK (Germany): 
A cladding of the fuel e lements will be required. What ma te r i a l s do you 
consider for this purpose and a r e they compatible with the fuel? Did you 
check the the rma l emiss ive p roper t i e s of such claddings at the t e m p e r a 
ture necessa ry during operat ion? 

NEU: 

We suggest that a tung s ten-rhenium alloy is a suitable cladding ma te r i a l . 
There is one problem involved, which I have not mentioned: In o rde r to 
allow fuel expansion and therefore to produce a negative t empera tu re coef
ficient of the react ivi ty, this cladding has to follow the fuel expansion. 
Therefore it must be a ductile m a t e r i a l . We have just begun to study this 
problem. 
Concerning the compatibility of the fuel with a re f rac tory meta l s cladding, 
there a r e resu l t s published in London by General Atomics which show, that 
(UZr)C is compatible with tungsten at 1800 C. It may be that a W-Re alloy 
with a smal l amount of Re is compatible a lso . 
We did not yet check the stabili ty of the the rma l emiss iv i ty values during 
long time operat ion. We suggest, that a stable value of 0. 5 may be obtained 
with no major difficulties; a higher value (e. g. 0. 75) may be possible with 
grooved surfaces or by other blackening methods . 

UNGER (Germany): 
Why does this reac tor have a cubic and not a cyl indrical fo rm? A cubic 
form makes power flattening more difficult. 

NEU: 
The approximately cubic core shape resu l t s from a cooling sys tem with 
c rossed heat pipe l a y e r s . This sys tem provides more space for locating 
the conver te rs and is more rel iable than a sys tem where all heat pipes a r e 
pa ra l l e l . If one of the heat pipes fails , than the neighbouring heat pipes 
have to t r anspor t additional heat, the t empera tu re of the heat pipe r i s e s 
and the conver te r s have to operate with a l a rge r heat input. In our sys tem, 
if, for instance, 20 other heat pipes c ro s s this defective heat pipe, the heat 
flow of the other heat pipes is increased only to 5%. 

UNGER: 

This is t rue . In the cylindrical form, if one heat pipe fails , the heat goes, 
in a hexagonal sys tem, to 6 other heat pipes which then accomodate the heat. 
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Abstract 

A survey of conceptual out-of-core thermionic systems using heat pipes has been made to 
identify critical technology areas, investigate feasibility for space application, locate parameter 
regimes of interest, and estimate specific mass values. The survey included preliminary com
parisons of required, current, and projected state-of-the-art in these critical areas of technol
ogy. Temperatures and powers were surveyed in the ranges from 1400°K to 2200°K and from 
10 kWe to lOMWe, respectively. A cylindrically symmetric geometry with a linear display of 
system components was studied. 

In general, out-of-core thermionic systems with heat pipes appear to be attractive candi
dates for use in space over a broad range of electric power levels, meeting the requirements of 
both advanced auxiliary power and nuclear (electric) propulsion. 

I. Introduction 

The advantages of thermionic conversion for space power generation have been discussed 
frequently, and need little discussion at this conference. A convenient reference is an article by 
B. G. Voorhees.'2) A heat source that can be easily matched with thermionic conversion over 
a range of powers from a few tens of kWe to many MWe, is the nuclear reactor. A sizable body 
of literature has grown that discusses such a union, with convenient references being again 
Voorhees(2) and also Schreiber and Sa lmi / · " The major activity has been centered on in-pile 
concepts. Intrinsic difficulties with this concept, however, result from the fact that use in space 
implies relatively high temperatures, long lifetimes, and high power densities to provide low 
specific mass. This combination (1) causes swelling of fuel that distorts the sensitive diode gap, 
(2) causes release of fission products into the similarly sensitive diode plasma, and (3) causes 
radiation degradation of in-core electrical insulation. Furthermore, the investigation of these 
problems is extremely costly, requiring long-time irradiation in fast spectrum reactors at very 
high neutron fluxes and temperatures. 

The disadvantages of in-pile systems can be circumvented by the use of nearly isothermal 
heat pipes to transport the reactor power with a low temperature loss to an externally located 
thermionic converter. '4' Furthermore, the heat flux transformer properties of heat pipes refine 
the match between source and convertor, and retain conversion efficiency lost in the in-pile 
system by axial power flattening problems. 

The Lawrence Radiation Laboratory reviewed out-of-core thermionic space power in 1966, 
and reported an interesting conceptual design for a 2000°K emitter, 10 MWe system intended for 
use with electric propulsion, with a calculated 6-9 kg/kWe.^' This system showed the compat
ibility of heat pipes, nuclear reactors, and thermionic conversion in the context of space power 
generation. Subsequently, Heath and Lantz studied the conceptual feasibility of an 1800°K emitter, 
36 kWe system having a specific mass of 8.3 kg/kWe using U*33 a n ( j based on technology avail
able relatively early .16' E. S. Pedersen has also studied this general concept, apparently inde
pendently. Pedersen studied a 2100°K emitter, 1 MWe-system and obtained 5.3 kg/kWe.i''' 

During this same period, the performance of heat pipes in a zero-gravity (space) environ
ment has been demonstrated,'° ' and many laboratories have successfully tested a variety of heat 
pipe sizes, materials, temperatures, and internal and external configurations.^) Limitations on 
heat pipe performance appear, within the approximate bounds set forth originally by Co t t e r , " 0 ' 
to be previously caused by incautious preparation (undue contamination), and presently to the 
availability of laboratory environmental equipment that can function at the desired temperatures 
and heat fluxes. Also,anticipated problems with start-up and catastrophic burnout seem to have 
been conquered, and even higher axial fluxes than predicted originally by Cotter may be possible 
if special precautions are taken.il 1) 

Continuing effort at Lawrence Radiation Laboratory on out-of-core thermionic space power 
has been to elucidate more realistic conceptual system designs and to develop a consistent and 
explicit basis for evaluating these systems as space power sources for all reasonable power 
levels and with reasonable temperatures, for both manned and unmanned applications. A secon
dary objective is to show the growth potential in both power and power per unit mass, as needs 
increase and as available materials improve in temperature capability, respectively. This will 
ensure that investment in the required development will provide worthwhile long-term returns. 
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This paper is a progress report on a survey of out-of-core systems in which the primary 
variables are reactor temperatures between 1400°K and 2200°K and electric power levels between 
10 kWe and 10 MWe, and in which a variety of property specifications or component models are 
available for individual investigation in terms of their effect on system performance. The results 
of this survey will permit, with increasing confidence as models are improved, 1) assessing the 
feasibility and competitive performance of these systems, 2) selection of power and temperature 
ranges, 3) identification of vital technologies for emphasized activity, and 4) credibility that 
comes from spanning a set of conditions that is wide enough to identify trends, in a manner de
tailed enough to permit comparisons with component specifications from other systems without 
undue extrapolation. 

This survey is accomplished by a computerized optimization of four independent variables 
that describe the system. A trade-off among these variables minimizes specific mass within 
specified constraints for each system. The system is characterized by reactor temperature, 
electric power output, and.at present, by an imposed geometry that is cylindrically axisymmetric 
and requires a linear ordering of reactor, heat exchanger, shield, electrical insulator/heat ex
changer, thermionic diode array, radiator, and (at a distance in space) payload. Each of these 
components is described by a model intended to be the simplest that is still adequate to retain the 
essential features of the component. 

II. Discussion of Models and Property Values 

A plan view of the system is shown in Figure 1. The three lengths, Rj,, R2, and R3, have 
been arbitrarily held fixed at values of 15 cm, 5 cm, and 5 cm, respectively (future model im
provements will link these to heat fluxes and control requirements that vary from system to 
system). The flare half-angle, Θ, is one of the four independent variables by which a partially 
optimized system is obtained. The remaining three independent variables susceptible to varia
tion for minimum specific mass, within the constrained volume of phase space searched, are the 
volume fraction of fuel in the reactor core, the temperature drop across the electrical insulation 
in the insulator/heat exchanger, and the temperature of the diode collector. 

A. Geometry 

The geometric description of the system model shown in Fig. 1, although greatly 
simplified, permits a realistic treatment of all important interactions characteristic of a shadow-
shielded system. Enveloping (4τ) shields, obviously much more massive, are excluded from- the 
present study although their feasibility is not questioned. 

A fixed payload distance of 50 m is assumed, and systems having a shield flare angle ade
quate to cover any desired shadow diameter at this distance can be selected. 

B. Heat Pipes 

Heat pipes throughout the system are 1-cm (ID) cylindrical tubes made of tungsten 
alloy that contain the customary grooves plus screen capillary structures. The wall thickness is 
determined by vapor pressure of the heat pipe fluid and tungsten alloy creep strength, except that 
a fabricability minimum of 0.5 mm is set. The creep strength used throughout is for pure tung
sten, shown in Figure 2, but a tungsten alloy is supposed to be the material actually used. For 
several reasons lithium is the heat pipe fluid except in the radiator; where lower temperatures 
may make sodium desirable for its higher vapor pressure. First, lithium is compatible with the 
tungsten and UN materials technology being developed for reactors, within this survey's temper
ature range, under a current LRL program. Second, above perhaps 1200°K, it is a superior 
heat pipe fluid to any other until its vapor pressure becomes so high, at very high temperatures, 
that the weight penalty for tungsten creep resistance (also a function of temperature—see Figure 
2) is prohibitive. Third, the only other apparent candidate, silver, is inferior in this application 
for all temperatures of interest, because its improved heat pipe capabilities compared to lithium 
appear only at temperatures too high to be of practical interest (at the end of the survey range, 
around 2000°K). 

Axial heat fluxes for these heat pipes are first computed according to optimized internal 
dimensions derived at LRL and elsewhere using Cotter's equations'^0 ' for the case where screen 
and channel characteristic dimensions are equal. These are shown in Figure 3 for a 100-cm-long 
pipe. In the radiator, a pressure drop appropriate to an adiabatic transport section is introduced. 
As remarked in the introductory section to this paper, J. Kemme'1 1 ' is decoupling groove and 
mesh dimensions to obtain still higher axial fluxes. Deserving emphasis is the fact that the axial 
heat fluxes actually used in this survey are constrained to be no more than 50% of the values shown 
in Figure 3 (cf. Table 1). Since Cotter's equations'1 0 ' have shown reasonable agreement with 
experiment for sodium except at very low t e m p e r a t u r e s ^ ) (i.e., low vapor pressure), the axial 
heat fluxes used seem comfortably realizable. (As also remarked earlier, limitation on exper
imental demonstration of lithium heat pipes presently stems from equipment, not heat pipe 
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capability or fabrication.) Implied groove and screen dimensions are within present fabrication 
capability. 

Radial heat fluxes into the heat pipes are constrained to be less than 400 W/cm^. Such a 
value is reasonable, when compared with customarily observed values in excess of several hun
dred W/cm2 into sodium-filled heat pipes. The reasonableness of comparing sodium to lithium 
in the absence of experimental data follows if it is assumed that heat pipe limits are set by phe
nomena (probably incipient boiling) similar in gross mechanism to the phenomena operating to 
produce burnout heat fluxes- at solid-liquid interfaces. The latter fluxes are in fact very similar 
to those achieved in heat pipes, regardless of mechanism identification, and correlations of burn
out data show that lithium should permit almost 103 W/cm^. Deverall and Kemme^S) have already 
run ~200 W/cm^ Li heat pipes. Actually the point is nearly academic, since in the reactor, 
radial heat fluxes are rarely or never as high as 400, because other limitations are more strin
gent than heat pipe capability. This is particularly true of lower power systems of earliest inter
est, where very modest (< 102 W/cm2) radial fluxes appear in the reactor. 

C. Reactor 

The reactor consists of a core plus a weightless, unspecified region surrounding it 
that is described by the dimensions Rj, Ro, and Rg, mentioned earlier. This surrounding regiqn 
will contain, as necessary, a reflector and/or control system. The bare core itself is required 
to have a multiplication factor, keff, of 0.9, thus permitting adequate shutdown margin when un-
reflected. The fuel is uranium nitride, of the necessary enrichment, and all structural material 
is assumed to be the same tungsten alloy used in heat pipes. The core is composed of UN, W, 
Li (heat pipe fluid), and a reserve volume, proportional to the fuel volume, which is assumed 
in the calculations to date to have the properties of Li but which can represent (1) any other 
thermal bonding fluid, (2) a space to accommodate fuel swelling, (3) a means for creating an 
effective fuel density less than theoretical, or a combination of these, possibly time dependent. 
Although this bond-swelling-density volume can be varied parametrically, it has not proven 
to be a strongly influential parameter in the range of zero to 25% of the fuel volume fraction 
for the systems studied most carefully to date. Therefore, in the data reported here, this 
volume is. set at a representative value of 15% of the fuel volume. 

A constraint is placed on the stress in the fuel that results from the thermal gradient be
tween the fuel centerline in a regular array and the associated heat pipe wall. Although systems 
limited by three different values of maximum stress have been investigated in detail, the results 
to be presented here will be based on a limit of 10,000 psi. This s t ress limit, and the associated 
temperature drop itself, are interpreted as a limit on radial heat flux into the heat pipe. An 
acceptable radial heat flux into a reactor heat pipe, therefore, is always less than or equal to the 
smallest of three values: 1) 400 W/crn^ set by heat pipe considerations, 2) the flux derived from a 
maximum allowable thermal fuel s tress , 3) the flux derived from a maximum allowable tempera
ture drop across the fuel. 

A basic variable for a particular system is the reactor temperature, from which all other 
temperatures are derived. This is a spatially independent, average temperature. A local max
imum (i.e. centerline) fuel temperature is immediately available by adding the fuel Δ T just described. 
Axial temperature variations are reduced greatly by the properties of heat pipes. Gross radial vari
ations have been ignored, in the belief that radial power flattening can be readily achieved in non-
criticality-limited reactors, and that a nonuniform distribution of heat pipes in the core can alle
viate the problem in criticality-limited cores. (Nonuniform distribution of heat pipes in the re 
actor heat exchanger is an additional possibility for obtaining radially uniform thermionic diode 
array temperatures^ Since all data generated have been based on U*35 fuel, radial power flat
tening by the use of U^33 i s an available method to achieve uniform radial core temperature pro
files. 

The reactor core length is established as the largest required by the following three cr i 
teria: 1) the total volume of fuel must be enough so that the burnup does not exceed a preset 
maximum; 2) the heat pipe flux limit in the core must not be exceeded; 3) the (bare) core must 
have a multiplication factor, kefj = 0.9. To date, a 20,000-hour lifetime and a 3% burnup limit 
have been set for all systems surveyed. 

D. Shield 

The shield is assumed to be BeO, to tolerate the high temperature heat pipes piercing 
it in transit from reactor to converter. The effect of neutron streaming through these heat pipes 
is not explicitly included in the calculations, which are otherwise based on simple one-group re
moval theory. The adequacy of this approximation was tested in one instance by comparison 
against a multiregion, one-group neutron and 6-group gamma shielding calculation for the entire 
system, and was found to agree within 10% in shield mass. If the neutron streaming issue should 
prove serious, even though the length-to-diameter ratio of these holes is quite small, curved or bent 
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heat pipes are believed possible. Furthermore, although the highest power systems have quite high 
heatpipe (i.e. streaming path) volume fractions, these systems lie well in the future in terms of 
need, and the low. powsr systems of early interest have streaming path volume fractions that are 
5% to 10% or less. That is, neutron streaming, which is ignored in these calculations, may pre
sent no problems of significance, and,if it does, solutions appear to be either at hand or real
izable by the time a solution becomes necessary for distant future needs. 

Shield attenuation is fixed by the following requirements. For manned payloads a 20,000hour 
dose of about 17 remis allowed, leaving a margin for additional natural dose (e.g. solar flares). This 
implies a shield dose attenuation requirement, which then determines the shield thickness. Unmanned 
shields are set to provide only a shield dose.attenuation 10"3 less than man rated shields. 

E. Insulator Heat Exchanger 

Both this heat exchanger and the reactor heat exchanger (see Figure 1) are regions 
where heat flows from one set of heat pipes to another. In both cases, the heat flux is 400 
W/cm2, and the flow path is as implied by the leftmost portion of Figure 4a. The difference be
tween the two cases is that no BeO spacerinsulator intervenes in the case of the reactor heat 
exchanger. This reentrant heat pipe joint is also a characteristic of the thermionic diode (see 
below), as Figure 4a shows. The mass of both heat exchanger regions is invariably a small 
proportion of the system mass. It is calculated according to the heatpipe wall thickness, times 
the density of W, times the area implied by the thermal power transported divided by the preset 
heat flux, 400 W/cm2. (The weight of the very thin layer of BeO is ignored.) 

No temperature drop is accounted for in the reactor heat exchanger. In the insulator heat 
exchanger, the temperature drop across the BeO is one of the four independent variables. This 
insulator provides high temperature electrical insulation along with acceptable thermal conduc
tivity, and is shielded from the nuclear radiations in the core. This insulator makes possible 
series connection of many diodes to obtain the desired output voltage (see below). A correspond
ing insulator is required in the inpile thermionic concepts (which have the electrical insulation 
within the reactor core). 

A power loss in the insulator is calculated from the thermal and electrical conductivities 
of BeO and the maximum (series string) voltage sustained across the insulation. This voltage 
has been arbitrarily fixed at 400 volts. The BeO electrical resistivity used is LRL data on ultra
pure material,'14) ancj ¿s shown in Figure 5. The BeO thermal conductivity is assumed to be 
0.15 W/cm°C at all temperatures, and is obtained from work reported by M. T. Simnad, et a l / 1 5 ) 
Earlier system survey calculations have shown that if the BeO is removed and heat transport is 
accomplished by blackbody radiation, the result is a heavier system at all temperatures of interest. 
On the other hand, the increase in specific mass can be regarded as an upper limit on any penalty 
caused by difficulties that might not be resolved in connection with thermal contact between W and 
BeO. For example, this upper limit is less than 25%, at 1800°K for powers of 100 kWe and less. 

F. Thermionic Converter 

The converter is assumed to be an array of diodes formed by concentric cylindrical 
surfaces in a manner illustrated in Figure 4. Concentric cylindrical heat pipe/diode configura
tions have been suggested by Busse/ 1 ") The properties of the converter are assumed to be 
determined by emitter and collector temperatures, and are characterized by a conversion effi
ciency, an emitter power density, and an effective endon array electrical power density. The 
conversion efficiency is assumed for simplicity to be a separable product of a function nj^Tg) of 
the emitter temperature and a function n2Í'Tç/Tjr;) of the ratio of the collector temperature to the 
emitter temperature, with two alternatives each [thus, yielding four possible ways to obtain a 
value for the array efficiency, η(Τ£, Τς.)]. This assumption is suggested by Leonard's work 
(see below), and is not inconsistent with experimental data. In all cases, it is assumed that 
electrode spacing, plasma pressure, surface properties, and materials have been held at values 
yielding maximum efficiency. (Masses of diodes specifically, and properties generally, have 
been thought of as corresponding to tungsten emitter, molybdenum collector, and cesium plasma.) 

The diode efficiency used, as a function of emitter temperature for the case of no back 
emission (negligible T Q / T ^ ) , is either the value quoted by Leonard^1?) or that value less a fixed 
decrement of 0.05. The justification for the use of Leonard's data (shown in Figure 6) is that 
controlled introduction of electronegative or electropositive additives might result once again in 
the better values obtained before 1965, when trace quantities of impurities spoiled reproducibil
ity, but occasionally produced the efficiencies quoted by Leonard from the literature available 
at that time. The justification for the much more pessimistic but reproducible efficiencies, ob
tained by subtracting 0.05 (5%) fçom Leonard's data, is that they compare satisfactorily with 
data obtained by Lieb and Rufeh,d°' by Wilson and Lawrence , ' ^ ' and computed by Wilkins using 
the SIMCON semi-empirical computer code/20) Leonard's data include losses caused by thermal 
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conduction along interconnections in arrays, but not resulting from I2R losses. Since the diode 
weight is a relatively small proportion of the system weight in most cases of interest, a simpli
fying but not significant assumption can be made. This is, that when the diode array is opti
mized as constrained by its inclusion in an entire system, so that efficiency is more important 
than specific mass, small losses in efficiency will result in going from diode to diode array. 
This assumption has heen implied as a first approximation by Busse.'1*·) 

Information on the influence of collector temperature on maximum diode efficiency is not 
well-established. A priori, it may be supposed that a factor, depending on Tç relative to Tj¡ 
and multiplying ni(T¿) as discussed above, would be unity (at temperatures above the Cs r e se r 
voir temperature) until back emission becomes significant, and then fall monotonically until 
T E = Tç , where a zero efficiency might be expected to occur. Such an over-simplified model 
has been used in the survey to date, with the efficiency falling linearly to zero at T Q / T J ; = 1 
from either Tc /Tg = 0.55 or T^/T^ = 0.67. The former value is consistent with experimental 
data of Blue and Ingold^21) and Wilson and Lawrence/22) nS approximated by straight lines,and 
the latter value is similarly implied by Leonard's data / 1 ' ' ) As these data mature, they can be 
readily introduced into the survey results. 

The power density of the emitter surface influences only the converter specific mass, it
self a relatively small proportion of the system specific mass. It does so by determining the 
total emitter area required to produce the demanded system electric power. (The emitter and 
collector thicknesses are set at 2 mm and 1 mm, respectively.) The emitter surface power den
sity used was obtained by adjusting the data of Lieb and RufehdS) to the conditions where max
imum efficiency is expected to occur, namely around 0.8 volt and a gap of about six mils. The 
result of a fit to this adjusted data is shown in Figure 7. The specific mass of the diode array 
actually has an additive term independent of area, intended to account for array structure, 
amounting to 0.8 kg/kWe. 

The overall array power density, defined as the system total electric power output divided 
by the frontal area presented by the array perpendicular to the system axis, is constrained to be 
less than 250 W/cm2. This is a reasonable although somewhat optimistic value presently under
going further investigation at LRL. This parameter is important at very high system powers but 
has no influence at low and intermediate powers. 

G. Radiator 

The radiator is composed of heat pipes, probably with sodium as working fluid, and 
arranged to have a high redundancy. A possible configuration is the truncated cone suggested by 
Salmi, (2 3) although the achievement of sufficiently low temperature drops between heat pipes may 
be problematical. Flat heat pipe radiators that are redundant except for an armored central 
feed and return line are being designed at LRL, and appear attractive. A radiator configuration 
is not specified in this survey, except that the radiator must fit in the shadow cone of the shield 
and not have an unreasonable ratio of length to width (or diameter). The weight is computed 
first as proportional to the required radiating area for blackbody radiation, assuming an emis
sivity of 0.8. The proportionality constant is 1.8 g/cm2. In order that unreasonably long radi
ators not be produced by the optimization process, this proportionality is arbitrarily modified 
to increase the radiator weight by a factor [1 + 0.2 (L/D - 1)], where L/D is a figure of geomet
rical merit computed conveniently as the ratio of a flat radiator length to twice the value of S2 
shown in Figure 1. Very long radiators are undesirable because of temperature drops incurred 
from heat pipe to heat pipe, and to the mechanical rigidity required to resist flexing. Although 
this modifying expression produces reasonable system configurations, it is expected that future 
careful design of actual radiators will yield a realistic modifier that reflects the undesirability 
of extremely long radiators, and that the modifier used here will be interpretable as a first-order 
approximation. This procedure is believed to produce a reasonable system mass, inasmuch 
as the radiator proportionality factor typically turns out to be 2.5 g/cmz or more for the 
systems investigated, compared to the geometry-independent value of 1.8 g/cm2. When the total 
system is recomputed without the inclusion of this modifier, but having preset flare angles as 
determined by earlier calculations using this modifier, total specific masses are indeed r e 
duced somewhat (at 1800°K, for example, by roughly 1 kg/kWe. 

HI. Results 

Figure 8 shows the total system specific mass for a system with a man-rated shield and 
Figure 9 shows corresponding data resulting from shielding requirements for unmanned payloads. 
There is a heavy incentive for exceeding temperatures in the reactor core of 1400°K, while 
1800°K is both attractive and reasonable. 2000°K yields a small improvement, and 2200°K, omit
ted for purposes of clarity, is actually harmful to specific mass (due to the need for thicker-
walled heat pipes). 
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Figure 10 shows the incentive to obtain the more optimistic conversion efficiencies (see 
discussion of models). The ordinate in Figure 10 is the ratio of data obtained with the pessi
mistic conversion efficiencies (Figure 6 less 5% and an efficiency break point at Tc/Tjr = 0.55) 
to the data shown in Figure 6 with an efficiency break point at Tç /T^ = 2/3. In the power range 
of early interest, penalties of the order of 1.5 are seen to be assessed in system specific mass 
(at 1800°K). 

Figure 11 is a cross plot at 100 kWe of the data shown in Figure 9. It shows explicitly the 
typical rapid rise in specific mass below 1800-1900°K, the temperature-independent region 
around 2000-2200° K, and the upswing beginning at 2200° K. 

Characteristic parameters typical of the systems described by this study are illustrated in 
Table 1. The system described there would supply 100 kilowatts of auxiliary power for a manned 
mission. Its 10° shield flare angle would shadow a circle more than 17 m in diameter at the 
crew vehicle distance assumed (50 m), providing substantial room for extravehicular activity. 

The data obtained here will doubtless change, as refinements are made in the component 
models used, and the specific mass will in general increase as realism is improved. For 
example, some additional tens of degrees in temperature will be lost at various heat pipe/heat 
pipe interfaces, and small additional weight will be necessary to realize the reflector control 
system for the reactor. However, relatively little change in the system specific mass is ex
pected after re-optimization. Therefore, it is believed justifiable to draw certain general con
clusions from the foregoing results. 

IV. Conclusions 

Thermionic converters can be linked with nuclear reactor power sources and heat pipe 
thermal transport, to produce conceptually sound and reasonable electric power generators for 
space applications. Such generators are competitive in specific mass at reasonable tempera
tures, have a high degree of performance improvement potential, and great power up-rating 
potential from low levels. The advantages of such a generator that were anticipated in the 
Introduction section appear realizable. Conservatism in expected heat pipe performance is not 
a heavy penalty. It needs to be shown that thermionic converters, when freed from the rigors of 
a nuclear core, can yield reliably the high efficiencies obtainable in the laboratory, over life
times of 20,000 hours and more. For this purpose, an emitter temperature of 1800°K seems to 
be satisfactory, and significantly lower temperatures are acceptable initially if necessary to 
achieve the required lifetimes. 

A place in the space program awaits reliable, long-life thermionic conversion systems. 
The course of their development and their application no longer appears to require diode place
ment in the extremely high intensity nuclear radiation fields found in compact power reactors. 
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Table 1. 100 kWe Electr ic Power Generated at 1800°K Reactor Temperature System Config
uration, Manned Payload. 

Values of Geometrical Parameters 
in Figure 1: 

R, = 

R 3 = 
* C = 
L . = 

15 cm 
5 cm 
5 cm 

10.1 cm 
46.1 cm 

θ = 10.0" 
Sj = 26.8 cm 

Core Data: 
Volume fractions 

Heat Pipes (ID) 0.18 
Heat Pipe Wall (W) 0.04 

Number of 
Heat Pipes - 75 

S 2 = 41.1 cm 
81.3 cm 

Payload 
diameter = 17. 6 meter s 

Shield Data: 
Heat Pipe Axial Flux - 8.6 kW/cm 2 

Heat Pipe Volume Fraction - 5.3% 
Converter Data: 

Emitter Temperature - 1790°K 
Col lector Temperature - 1330°K 
Diode Efficiency - 12.5% 
Array Efficiency - 11.8% 
Array end-on Power 

Density - 18.8 W/cm 2 

Radiator Data: 
Radiating Area - 5.3 m 2 

Length of Flat Radiator, L·p - 2.2 m 
Figure of Merit, L F / 2 S 2 - 2.7 

Fuel 0.679 Axial Heat Pipe 
Bond/Swell 0.101 Flux - 14.4 kW/cm 2 

1.000 Radial Heat Pipe 
Flux - 78 W / c m 2 

Thermal S tres s 
in Fuel - 10,000 ps i 

Fuel Centerline 
Temp -~1850°K 

Burnup in 
20.000 hrs - 0.63% 

U 2 3 5 Fuel 
Sys tem Data: 

Elec tr ic Power - 100 kWe 
Electr ic Voltage - 400 volts 
Thermal Power - 850 kW t h 
Specific M a s s e s , kg/kWe 

Reactor 
Reactor Heat Exchanger 
Shield 
Insulator Heat Exchanger 
Convertor 
Radiator 

TOTAL 

- 1.48 
- 0.02 
- 9.00 
- 0.04 
- 1.67 
- 1.27 
13.48 

REFLECTOR AND/OR 
CONTROL SYSTEM 

RADIATOR 

Figure 1. System Geometry. 
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STRENGTH DATA FOR TUNGSTEN 
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Figure 2 . Strength Data for Tungsten. Figure 3 . Axial Fluxes for 100cm Heat Pipes. 
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Figure 4 a . Converter Array Conf igurat ion 
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Figure 4 b . Detai ls of Converter A r r a y . 
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Figure 5. Electrical Conductivity of BeO. 
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Figure 6. Diode Efficiency vs. Emitter Temperature. 
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Figure 7. Converter Power Density vs. Emitter Temperature. 
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Figure 8. System Specific Mass vs. Electric Power — 
ManRated Shields. 

2 .0 

O 
ι— 
< 

1.0 



_ 



I I I I I I I I 

1 1 1 1 1 1 l l 

1 

1600°K 

1800°Κ 

2000° Κ 

I . 

ι—1 1 1 1 II 





" 

1 1 I I I I 

10 kW 100 kW 1 MW 

ELECTRIC POWER  Pc 

10 MW 
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STABILITY AND CONTROL CONSIDERATIONS FOR 

THERMIONIC REACTORS* 
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Henrik G. Grönroos and Jerry P. Davis 

Jet Propulsion Laboratory 

California Institute of Technology 

Pasadena, California, U.S.A. 

ABSTRACT 

Results of stability and control studies of incore thermionic re

actor space powerplants are discussed. Stability criteria obtained from 

linear models are found to apply satisfactorily to nonlinear models, pro

vided the thermionic diode operates in a region where the currentvoltage 

value is determined by a unique emitter temperature. The implications of 

crossover of the characteristic curves are discussed. Analog simulation is 

used to obtain the dynamic behavior of nonlinear plant models. 

Control concepts are discussed, and it is concluded that a control

ler maintaining constant output voltage for expected load conditions appears 

feasible. Although the system is nonlinear, a controller design based on 

linear theory should perform satisfactorily. It appears that the effects of 

nonlinearities and disturbances can be made small without recourse to 

sophisticated control systems. 

1. Introduction 

This paper presents a summary of some results of dynamics studies 

of small, fast incore thermionic reactor space powerplants. The main objec

tive of these studies has been to delineate the problems of stability and 

control. The investigations are motivated by the novel character of the 

thermionic reactor concepts, and therefore a relative lack of knowledge of 

their dynamic behavior. 

In a thermionic reactor, electric load variations are directly and 

instantaneously reflected into the reactor core and affect its thermal bal

ance, in addition the cesium space charge gas pressure significantly affects 

This work presents the results of one phase of research carried out in 

the Propulsion Research and Advanced Concepts Section of the Jet 

Propulsion Laboratory, California Institute of Technology, under 

Contract NAS7100 sponsored by the National Aeronautics and Space 

Administration. 

Senior Scientist # Group Supervisor 
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the thermionic conversion performance, and the possibility of "emitter 

temperature runaway", and its consequences, are discussed subsequently. 

A series stacked internally fueled diode assembly constitutes the 

basic module selected for detailed numerical evaluations. The chosen design 

values represent values close to those expected for a 50 to 100 kwe system. 

The control system studies have been based on the chosen reference 

design, and have applied state variable feedback design techniques. This is 

a linear design method, but application of results to the nonlinear system 

indicate that the method is satisfactory. Earlier reported control system 

2 
studies have been expanded, and some of these developments are commented 

upon. 

2. Analytical Model 

The analytic model of the thermalhydraulic system in a thermionic 

reactor powerplant is relatively straightforward for all components, except 

for the thermionic diodes, and can draw from a large experience. The neutron 

kinetic equations are also well known; however, the determination of the 

temperature coefficients of reactivity requires extensive calculations. The 

coefficients generally have large error margins, and therefore have been 

treated as variables in order to define stability regions. For the class of 

small fast reactors considered, a point kinetics model for the neutron density 

has been found to be applicable. The representation utilized in the investi

gations at the Jet Propulsion Laboratory is illustrated 

TRANSPORT 
DELAY 

AND PUMP 

I*" 
HEAT 

EXCHANGER 
PRIMARY SIDE 

♦ 
DELAY 

RAOIATOR 

t 
TRANSPORT 

DELAY 

f 
HEAT 

EXCHANGER 
SECONDARY SIDE 

♦ 
TRANSPORT 

DELAY 
AND PUMP 

PRIMARY COOLANT I SECONDARY COOLANT 
LOOP LOOP 

Figure 1: Diagram for Analysis of a Thermionic 

Reactor Space Powerplant. 
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by the block diagram in Figure 1. Significant non-linear elements are intro
duced by the neutron kinetics, the diode current-voltage characteristics, 
and the energy transfer in the interelectrode gap. Non-linear system models 
up to twentyforth order have been investigated by analog simulation methods, 
including digital computers in a hybrid arrangement for time delay 
simulation. 

The current-voltage characteristics were represented as shown by 
Figure 2.a. and neglected cesium reservoir temperature variations. This rep
resentation may be applied in a limited range to a thermionic converter opera
ting at higher than optimum cesium pressure. If the cesium pressure is op
timized with respect to a given operating point, the characteristic curves 
will cross over as illustrated by Figure 2.b. This situation may for some 
operating conditions lead to emitter temperature runaway, which in turn may 
cause the reactor system to oscillate. To illustrate this possibility con
sider Figure 2.C. where the current density has been plotted against the 
emitter heat input for a given load. If the heat input is increased over 
the. maximum allowed, the operating point is driven to a high emitter tempera
ture and small electrical power output. When the thermal power is lowered a 
critical value is again reached and the converter is driven to a low emitter 
temperature. Depending on the magnitude of the feedback coefficients of 
reactivity and thermal lags, conditions for sustained oscillations can exist 
at least for the open loop uncontrolled system. A lowering of the cesium 
pressure may also bring an originally stable system into the unstable mode. 
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Emitter temperature runaway, which has been observed experimental
ly, requires a non-linear analytical description if it is to be accounted for 
in a stability analysis. If characteristics as shown in Figure 2.a. apply, 
a linearized description is usually sufficient. 
3. Open Loop Stability 

Although linear analytical models only approximately describe tran
sients, they are useful for evaluating stability criteria. For simplified 
analytical models it is observed that for the magnitudes of temperature coef
ficients of reactivity conceivable for the reference design, the zero-
frequency instability is the only type observed. Only by increasing the 
expected values of the coefficients by factors of ten or more can oscillatory 
instabilities occur. 

In general the temperature coefficients of reactivity are negative. 
Only for particular combinations of reactor size and composition and liquid 
metal coolant volume fractions does the coolant (Li-7, NaK) contribute a 
positive temperature coefficient of reactivity. However, in a low power core 
requiring fully enriched unalloyed nuclear fuel the Doppler coefficient of 
reactivity may be positive for the fuel region. There is considerable un
certainty both with respect to sign and magnitude of this coefficient. 
Furthermore the fuel-emitter complex expands into a void, i.e. into the inter
electrode gap and the axial separation, which greatly reduces prompt fuel 
expansion effects on reactivity. The combination of Doppler coefficient and 
fuel expansion may therefore yield a net positive, but small, temperature co
efficient of reactivity; a destabilizing effect. The emitter provides a nega
tive contribution, as do other structural regions. The latter are delayed. 
The magnitudes of the temperature coefficients obviously depend strongly on 
the design of the reactor. 

A plot of the necessary ratio of a. ./a . for stability for 
J fuel emitter J 

the complete model is shown in Figure 3.a. Other temperature coefficients 
of reactivity have been set to zero. The general shape of the curves in 
Figure 3.a. has been confirmed with the analog computers both for linear and 
non-linear models. Such a simple characterization of stability is not 
generally applicable. An illustration of this is shown in Figure 3.b., 
which gives the computer-measured stability regions for o? ,, versus 

collector 
(cr. . + OÍ ). The curves show a knee at a ,, = - 4 · 10"6 
fuel emitter collector 

6k/k . °K"1. The large radiator mass introduces a thermal time constant 
leading to resonance peak at about 0.007 Hz. 



277 

ι — 

r-
Ζ 
LU 

υ 
LL. 
LL 
LO 
O 
o 

Ρ Ϊ 
r- Ψ <r ί
ο: _1 

LU 3 
LL. 

LÜ 

> 
h· 

tfí 

O 
Q. 

— « 
Ζ 
I I I 

o 
LL 
LL 
LU 
O 

o 
LL 

LU 

ί 

α: I I I 
1 -
Η 

LU 

LU 
> 
t? 
( 0 
LU 
Ζ 

- 1 . 0 

-ο .β 

- 0 . 6 

- 0 . 4 

- 0 . 2 

0 

F 

ι 

Ο L 

S« 
ι υ β -

FUEL THERMAL CONDUCTIVITY, wem" 

a) 

LU 

ι- o St ω α 

Ιέ 
^ LU 
- I O 
Ρ lj-
LL LU 

O 
υ 

y 2 

o -

τ 1 1 
UNSTABLE ABOVE CURVE 

REGION FOR ZERO FREQUENCY 
ASYMPTOTIC STABILITY 

COMPLETE SIMULATION 
MODEL WITH NO COOLANT 
TRANSPORT DELAY I 

-15 -10 - 5 0 
COLLECTOR FEEDBACK COEFFICIENT 

a c l 0 6 , 8k /k-°K" ' 

b) 
Figure 3: Stability in a Thermionic Reactor Powerplant as a 

Function of Temperature Coefficients of Reactivity. 
The overall conclusions from the stability and transient studies 

are that the system is inherently stable excluding the previously discussed 
possible consequences of emitter temperature runaway. However, the generally 
small inherent feedback leads to a relative large change in operating point 
even for minor perturbations. The self regulation is inadequate, necessita
ting active control. However, the thermal transients following various 
perturbations can be controlled with a conventional control system. 
4. Controls 

The design of a controller and the control philosophy depends on 
the application of the thermionic reactor powerplant. As was indicated 
above, the inherent response to a load perturbation is not consistent with 
maintaining satisfactory operation over a range of electric loads. Through 
reactivity control, and thus thermal power control, the desired response 
must be programmed into the controller function. 

An important question is whether the reactor should provide the 
controlled output, thus simplifying the power conditioning; or 
all controlled electrical power is supplied by a power conditioner accepting 
any output from the reactor. In the latter case a programmed reactor re
sponse along the maximum power or maximum efficiency locus, or constant emit
ter temperature control for minimizing thermal stress, are possible control 
modes. In the former case constant output voltage at the reactor terminals 
appears to be the best control mode. Our studies have concentrated on this 
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control mode. A separate study has indicated that only minor efficiency 
penalties are incurred by constant voltage control over optimum voltage 
control down to as low as 10% of rated full power. 

If a load perturbation is relatively small or of short duration 
there is no need for adjustment of the reactor power level during the tran
sients. The thermal lag of the reactor system will generally give small 
temperature perturbations even for relatively large, but short time, load 
variations. Dead band and dead time for reactor control element activation, 
are essentially determined by the specifications on the output and the time 
it takes for the emitter to change temperature by a set amount, say 50°K. 
For the worst case, open circuit at the reactor terminals, this time is about 
3 seconds for the reference design under study. 

Reactivity rate and total reactivity insertion limits, can be 
implemented by limiting the control signal (u in Figure 1). Placing a limit 
on this signal will not cause stability problems. This is not necessarily 
true if a limit is placed on other state variables, A second order control-
1er, with a compensator, has been evolved by linear design techniques, and 
applied to the non-linear simulated system with good results. 

The studies so far have not considered cesium reservoir temperature 
perturbations. Since the optimum reservoir temperature increases with in
creasing emitter temperature and with increasing electric current there is 
incentive to couple the reservoir temperature control to power demand. Also, 
the prevention of emitter temperature runaway would imply the desirability of 
this. The internal reservoir design concepts would have some inherent temper
ature compensation if properly coupled to the emitter temperature or power 
level. 
5. Conclusions 

This paper has discussed some of the main points in thermionic 
reactor stability and control. It may be stated that the investigations have 
built up a theoretical understanding of the kinetic behavior of a thermionic 
reactor. Stability of the system appears to be attainable under foreseeable 
circumstances. The control start-up and variable power operation appear 
feasible with conventional controller systems. Several problem areas were 
pointed out, and some of their consequences were indicated. 
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DEVELOPMENT OF A 1 0 0 WATT ( e ) 
ISOTOPE THERMIONIC ELECTRICAL POWER MODULE 

E. W. WILLIAMS 
GENERAL ELECTRIC MISSILE AND SPACE DIVISION 

VALLEY FORGE, PENNA. (USA) 

R. C. HOWARD 
THERMO-ELECTRON CORPORATION 

WALTHAM, MASS. (USA) 

INTRODUCTION 
On June 30, 1966 the United States Atomic Energy Commission initiated a four-phase program leading to 

the development of 100 watt(e) isotope thermionic modules employing curium 244 and polonium 210 as isotopie 
fuels. These modules are to be used as basic power units, which in multiples, can supply spacecraft elec
trical power requirements in the 0.5 - 2 kw range. 

This program was an outgrowth of the SNAP-13 Program which represented the initial United States 
effort toward development of the basic technology needed to realize an isotope thermionic generator. The 
principal difference between SNAP-13 and the current program involves the degree to which space flight re
quirements are considered. The basic objective of the SNAP-13 Program was to demonstrate the isotope ther
mionic principle by means of building and testing an electrically-heated laboratory device on which no 
flight requirements were imposed. The current program is directed toward the development of an isotope 
fueled thermionic module which is capable of satisfying the flight qualification and nuclear safety re
quirements associated with space flight. 

The Isotope Thermionic Module Development Program is being conducted for the Atomic Energy Com
mission by the General Electric Missile and Space Division. General Electric is being supported in this 
effort by Thermo-Electron Corporation who is performing the thermionic diode work and contributing to the 
overall module design. 

This paper deals with tbe results of the Phase I effort which was completed in February, 1967. 
Phase I was concerned primarily with developing preliminary module designs and Phases II - IV involve 
hardware development and testing of these designs. 

DESIGN REQUIREMENTS AND GUIDELINES 

The module designs are to satisfy the following requirements: 

1) Module Power Output at End-of-Mission(EOM) : 100 watts(e) 

2) Mission Duration: 

Cm-244 module - 1 year* 
Po-210 module - 90 days* 

3) Total System Power (ECM): 0.5 to 2 kw(e). 

4) Spacecraft Bus Voltage: 28 ν ί 107. continuously for mission duration. 

5) Dynamic environment generally in accordance with MIL-STD-810A. 

6) The system nuclear safety philosophy is based on containment of the fuel during all oper
ating conditions and accident environments. Those cases involving long-term deleterious 
environments which may ultimately result in fuel release are to be limited by the design to 
situations in which such release will not represent significant radiological hazards. 

*Both designs allow for an additional 35 days between assembly and launch, since the modules are in an 
operating condition as soon as they are assembled. 



282 -

DESIGN ENVIRONMENTS 

The module design environments are divided into the following five categories: 

1) Normal operating environment 

2) Dynamic qualification environment 

3) Re-entry environment 

4) Impact environment 

5) Post Impact environment 

The modules are required to be operating and to deliver the specified performance under environments (1) 
and (2). It is not necessary for the modules to remain operational under the remaining three environment 
groups. 

The selected design environments are summarized in Table 1. In the absence of a specific application 
these environments were chosen as being representative of a variety of typical space missions. 

DESIGN DESCRIPTIONS 

The module design concept is shown in Figure 1. The curium and polonium designs are Identical except 
for a slightly larger fuel capsule and emitter in the polonium design. Consequently, Figure 1 is illustra
tive of both designs and these are described simultaneously below. 

The modules consist of the following major subassemblies: 

1) Heat Source 

2) Thermionic Diode 

3) Thermal Insulation 

4) Electr ica l Leads and Lead-Throughs 

5) Module Housing and Helium F i l t e r 

Each of these subassemblies i s described below: 

Heat Source 

The heat source is composed of the isotope fuel compound and its associated metal matrix, the fuel 
liner, and the fuel capsule. 

The curium 244 and polonium 210 isotope compounds are combined with a refractory metal to increase 
the thermal conductivity of the resulting fuel form and la the case of polonium 210 to reduce the power 
density to a useable level. 

The fuel matrix is enclosed in a liner to provide concainment and allow decontamination prior to 
introducing the fuel into the hot cell where the module fueling operation will be performed. 

Curium 244 and polonium 210 are both alpha-emitters and as such generate helium gas as they decay. 
This gas must be restricted, during the mission life, from the module housing volume surrounding the fuel 
capsule because it would thermally short the insulation. Several potential approaches for handling the 
helium are outlined below: 

Contain the helium within a cermet fuel form for the mission life. 

' Provide sufficient void volume within the fuel capsule to allow containment of the helium 
for the mission life. 

' Vent the helium to the aft compartment of the module housing. 

• Vent the helium to the surrounding environment. 

Further development work is required before a final selection of the method of handling the helium can 
be made. 
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TABLE 1 . DESIGN ENVIRONMENTS 

ENVIRONMENT 

Ambient Temperature 

Ambient Pressure 

Vibration (Stausoldal) 

Vibration (Random) 

Shock 

Acceleration 

Sta snail on Point Kent Flux 

Dynamic Pressure 

Terminal Velocity 

Surface Haroneas 

Module Orientation 

NORMAL 

OPERATING ENVIRONMENT 

Ground Space 

0°F to 140°F ¿0°F 

1 Atm ΙΟ
 3

 Torr or 

leas 

DYNAMIC 

QUALIFICATION ENVIRONMENT 

70°F * 2 0 1 

1 Atm 

Frei) (epa) Amplitude 

Slà1 ^ 6.5 in. b.A. 
182000 ± 5g 

one octavc/mln/axls 

Frtq (epa) PSD (g
2
/ cps) 

Below ?0 υ db/Oct. 

70400 0 .3 

400000 0 db/Oct. 

6001000 0.14 

10002000 2 db/Oct. 

33g a 101 

11 ma * 1 0 1 

Peak Terminal Sawtooth 

12j 3  4 Minutes 

REENTRY 

ENVIRONMENT 

Negligible 

Negligible 

Sec Notca 1 L 3 

Sec Notes 2 1 3 

Sec Notes 1 1 3 

IMPACT 

ENVIRONMENT 

 « ° F to 120°F 

1 Atm 

Sec Nok: 4 

230 ft/aec 

Smooth Granite 

See Note 4 

POSTIMPACT 

ENVIRONMENT 

30°F to 80°F (Water) 

40°F to 120°F (Land) 

300 ft Sea Water 

1 Atm (Land) 

1  Acceleration and dynamic pressure environments to in· Uised on reentry into the earth's atmosphere under tin· [o l lowln; conditions 

V„  36, 000 ft/sec 

y ■ 30° (measured down Trom the local horizonLnl) 

h,,  300,000 ft. 

2  Stagnation point heat flux environment to bo Uised on worst destali conditions resulting [rom reentry Into the earth's atmosphère under 'he following 

conditions 

case 1  V .  25,350 ft/sec 

y  o. I
o
 (measured down from the local horisontal) 

h c 420,000 ft . 

case 2  Ve  30,000 ft/«oc 

y * 0° (measured down from the loe.il horizontal) 

li,.  430, 000 (t. 

3  Preliminary definition, more, debilled remiry studies required 

4  Definition requires more dotailcd reen In.' studies. 

ELECTRICAL LEADTHROUGH 

THERMAL 
INSULATION 

FUEL MATRIX 
ENCLOSED IN FUEL 
LINER 

FUEL 

CAPSULE 

EMITTER ELECTRICAL LEAD \ DIODE COLLECTOR \ MODULE HOUSING 

DIODE CESIUM RESERVOIR DIODE EMITTER 

Figure 1. Isotope Thermionic Module Configuration 
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Thermionic Diode 

A planar thermionic diode is used as the energy conversion device. The emitter and collector mate
rials are etched-rhenium and nickel respectively. The emitter surface is diffusion bonded to the fuel 
capsule allowing conduction hest transfer between the fuel capsule and the emitter. The interelectrode 
spacing is nominally five mils and is established by thermal expansion of the rhenium diode sleeve. The 
heat source and emitter are cantilevered from the diode sleeve and the diode is brazed at the base of the 
collector to the module housing center bulkhead. Copper Inserts are used in the collector structure to 
reduce the thermal Impedance and consequently, the temperature drop through the collector. 

The cesium reservoir is located on the aft end of the module housing and is connected to the diode 
collector by a Kovar tube. A passage is provided in the collector to allow cesium vapor to pass from the 
reservoir to the interelectrode gap between the emitter and the collector. The cesium reservoir location 
must be remote from the other diode components because it operates at significantly lower temperatures. 

Thermal Insulation 

In order to minimize thermal losses the fuel capsule and diode sleeve are thermally Insulated. 
Muim-layered radiation shields are used to perform this function. The module reference designs use 
120 shields packaged in three 40 - layer groups. The shield packages adjacent to the high temperature 
surfaces are made from layers of one mil tungsten f o i l separated by thorium oxide ( T t ^ ) powder. 

The 40 layers are packaged between two concentric tungsten cylinders each with a wall thickness of 
three mi l s . The outer two shie ld packages are constructed In a similar manner except the f o i l material 
Is 0.3 mil tantalum packaged between three mil tantalum cyl inders . The mean spacing between a l l f o i l 
layers i s 0.0014 inch. The shie ld assembly Is made in two parts with a s l i p jo int to f a c i l i t a t e the 
module fueling and final assembly operation. One part of the shie ld assembly Is supported from the 
thermionic diode, and the remaining portion Is supported and e l e c t r i c a l l y insulated from the module housing. 

Electr ical Leads and Lead-Throughs 

The module housing i s used as the diode co l l ec tor e l e c t r i c a l lead In order to minimize the number of 
module housing penetrations. The e l e c t r i c a l connection from the co l lec tor to the module housing i s made 
at the base of the co l lec tor where I t i s brazed to the housing center bulkhead. A copper bus serves as 
the emitter lead and i s connected e l e c t r i c a l l y to the emitter through the Insulation support r ing , the 
emitter r ing , and f ina l ly the emitter s leeve . The copper lead Is clad with nickel to prevent vaporized 
copper from plating out on other module components and causing e l e c t r i c a l shorts . 

The emitter lead passes through the module housing center and aft bulkheads, and i s e l e c t r i c a l l y i n 
sulated from the housing at both these points . A conventional ceramic to metal lead-through Is used to 
support and e l e c t r i c a l l y Insulate the emitter lead from the module housing at the center bulkhead. An 
all-metal lead-through performs this function at the aft bulkhead because i t can withstand earth Impact 
and thermal shock better than a ceramic to metal s ea l . The all-metal lead-through provides a high Im
pedance path between the emitter lead and the module housing by connecting these two components by a 
long, thin metal path. The metal path cons is t s of a ser ies of concentric Haynes-25 cylinders where each 
cylinder i s welded at one end to the cylinder enclosing I t and at the other end to the cylinder i t en
c l o s e s . The result ing high Impedance between the lead and the housing allows the power loss through the 
all-metal lead-through to be held to l e s s than 2.5 percent of the diode power output. 

Module Housing 

The module housing serves numerous functions. Its primary purpose is to provide containment for the 
Isotope fuel under accident and abort induced environments such as earth re-entry, earth Impact, and water 
submergence. In addition, it serves as the module mounting surface, the collector electrical lead, the 
radiator from which the waste heat is dissipated, and maintains a protective environment for the oxidation 
sensitive internal components. 

To accomplish these functions the module housing Is a composite structure. The basic Impact shell 
is made of Haynes-25. A copper sleeve Is diffusion bonded to the Haynes-25 shell over a portion of its 
Inner surface area to Improve the thermal conduction path from the diode mounting point on the module 
housing center bulkhead to the cylindrical surface area which is used as a radiator. The copper is clad 
with nickel to prevent vaporized copper from plating out on other module components and causing elec
trical shorts. The nickel clad is diffusion bonded to the copper. 
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A foamed Haynes-25 insert Is brazed to the forward end of the module housing to partially absorb 
and distribute impact loads. 

In those power system applications where the waste heat is dissipated directly from the module 
housing to space by thermal radiation a high emissivity coating will be applied to the external housing 
surface. 

PERFORMANCE 

The principal performance parameters for the curium 244 and polonium 210 reference designs are sum
marized in Tables 2 and 3 respectively. Module power output (PM) and efficiency ( 1 M) as a function of 
time into the mission are shown in Figures 2 and 3. 

In order to minimize fuel loading requirements the modules are designed to operate at peak diode 
efficiency at the end-of-mission (EOM). In addition, to avoid wide and repeated variations in diode 
emitter and isotope fuel operating temperatures, resulting from changes in spacecraft power demand, the 
modules are. operated at a constant output voltage. The output voltage selected is that value corres
ponding to the diode peak efficiency point at EOM. The control necessary to operate the modules at con
stant voltage Is provided by the power conditioning equipment. 

Curium 244 with a half-life of 18.4 years requires essentially no power flattening over the one year 
mission duration. Polonium 210 with its relatively short half-life of 90 days, requires considerable 
power flattening. A completely passive technique which is controlled by the natural decay of the isotope 
fuel is used to accomplish the power flattening. Consider the polonium module design (Figure 3). At the 
beginning-of-mission (BOM) the excess thermal energy available from the isotope fuel naturally causes the 
cesium reservoir to operate at a higher temperature than it does at EOM. This higher than optimum cesium 
reservoir temperature causes a high diode current flow and consequently large quantities of energy are 
removed from the heat source by electron cooling. The removal of energy by this technique accomplishes 
the power flattening and holds the emitter and fuel operating temperatures down to acceptable levels. As 
the mission proceeds the isotope energy output decays and the cesium reservoir temperature naturally de
creases, resulting in a decrease in the energy transferred from the heat source by electron cooling. 
This trend continues until at EOM the cesium reservoir temperature is optimum and the module is operating 
at the peak efficiency design point. The effectiveness of this power flattening approach is illustrated 
In Figure 3 which indicates that the polonium module operates at essentially constant efficiency. 

CONCEPTUAL POWER SYSTEM DESIGNS 

The Isotope thermionic modules described above are employed in multiples and combined with other 
components to form a space power system. The basic isotope thermionic power system concept and designs 
for two specific missions are presented in the following paragraphs. 

Power System Concept 
A block diagram of a typical curium 244 isotope thermionic power system is shown in Figure 4. The 

power system consists of the following major components: 

1) Isotope Thermionic Modules 

2) Low Voltage Electrical Leads 

3) Power Conditioning Equipment 

4) High Voltage Leads 

The power system is made up of a number of thermionic modules arranged in a series-parallel circuit 
and connected to the power conditioning equipment by the low voltage leads. The number of modules re
quired is defined by the spacecraft power requirements and the efficiency of the components connecting 
the modules to the spacecraft load. The power conditioner consists of a DC/DC converter and a shunt 
regulator. The DC/DC converter steps the voltage output of the modules up to the nominal 28 volts sup
plied to the spacecraft bus. The shunt regulator provides the control necessary to operate the modules 
at a constant output voltage and regulates the voltage supplied to the bus. The module voltage operating 
point selected is that value associated with the diode peak efficiency point at the end-of-mission. The 
shunt regulator accomplishes this function by sensing the output voltage of the DC/DC converter. When 
the spacecraft power requirements decrease from their maximum value the voltage output at the DC/DC 
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TABLE 2. CURIUM MODULE PERFORMANCE PARAMETERS 

MODULE PERFORMANCE 

Diode Interelectrode Spacing, d  inches 

Diode Sleeve Size Parameter, A /L A_  1/cm 

Diode Emitter Temperature, TE  °K 

Diode Efficiency, τι  percent 

Diode Output Voltage, V  volts 

Diode Output Current Density, J  amps/cm 

Diode Output Power, P n  watts 

Diode Cesium Reservoir Temperature, T„  °C 

Diode Emitter Area, A„  cm
2 

Diode Output Current, L.  amps 

Diode Emitter Diameter, D„  inches 

Diode Lead Résistance, R,  ohms 

Diode Lead Voltage Drop, L VD  volts 

Diode Lead Electrical Power Loss  watts 

Module Output Voltage, V,(  volts 

Module LeadThrough Resistance, R, _  ohms 

Module LeadThrough Current, I, _  amps 

Module LeadThrough Electrical Power Loss  watts 

Module Output Current, 1  amps 

Module Electrical Power Output, Ρ  watts 
M 

Diode Thermal Input, Q n  watts 

Shield Insulation Loss, Q_  watts 

Joint Insulation Loss, Qj  watts 

Diode .Sleeve'Insulation Edge Loss, Q.  watts 

Helium Vent Tube Loss, Q„  watts 
η 

Total Thermal Insulation LOBS, Q_ watts 

Module Overall Thermal Power Req'd, o  watts 

Percent Thermal Insulation Loss, percent 

Module Overall Efficiency, η  percent 
M 

Module Overall Dimensions  inches 

Module Weight  pounds 

Module Specific Powerwatts/lb 

BOM 

0.005 

0.00870 

1879 

14.22 

0.717 

10.70 

111.2 

310 

14.52 

155.5 

1.698 

0.000108 

0.0168 

2.61 

0.701 

0.234 

3.06 

2.19 

152.44 

107.0 

782 

28.60 

19.74 

42.70 

2.68 

93.72 

876 

10.70 

12.20 

MOM 

0.005 

0.00870 

1871 

14.40 

0.717 

10.60 

110.6 

307 

14.52 

154.3 

1.698 

0.000108 

0.0167 

2.57 

0.701 

0.234 

3.06 

2.19 

151.24 

106.0 

768 

28.00 

19.36 

41.70 

2.67 

91.73 

860 

10.69 

12.32 

EOM 

0.005 

0.00870 

1863 

14.60 

0.717 

10.50 

110.0 

305 

14.52 

153.0 

1.698 

0.000108 

0.0165 

2.53 

0.701 

0.234 

3.06 

2.19 

149.94 

105.3 

754 

27.50 

18.97 

41.20 

2.66 

90.33 

844.33 

10.68 

12.49 

4 Dia χ 10 

13.35 

7.88 
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TABLE 3. POLONIUM MODULE PERFORMANCE PARAMETERS 

MODULE PERFORMANCE 

Diode Interelectrode Spacing, d - inches 

Diode Sleeve Size Parameter, AS /LSAE - 1/cm 
Diode Emitter Temperature, T-, - °K 

Diode Efficiency, η - percent 

Diode Output Voltage, VD - volts 

Diode Output Current Density, J - amps/cmz 

Diode Output Power, Ρ_ - watts 

Diode Cesium Reservoir Temperature, TR - °C 
o 

Diode Emitter Area, A» - cm 

Diode Output Current, I D - amps 

Diode Emitter Diameter, D E - inches 

Diode Lead Resistance, R, - ohms 

Diode Lead Voltage Drop, AVD - volts 

Diode Lead Electrical Power Loss - watts 

Module Output Voltage, V - volts 

Module Lead-Through Resistance, R, _ - ohms 

Module Lead-Through Current, Ι , _ - amps 

Module Lead-Through Electrical Power Loss - watts 

Module Output Current, L . - amps 

Module Electrical Power Output, P . , - watts 
M 

Diode Thermal Input, Q_ - watts 

Shield Insulation Loss, Qg - watts 

Joint Insulation Loss, Q - watts 
J 

Diode Sleeve/Insulation Edge Loss, Q„E - watts 

Helium Vent Tube Loss, Q„ - watts 
11 

Total Thermal Insulation Loss, O -watts 

Module Overall Thermal Power Req'd, QT - watts 

Percent Thermal Insulation Loss - percent 

Module Overall Efficiency, η - percent 

Module Overall Dimensions - inches 

Module Weight - pounds 

Module Specific Power - watts/lb 

BOM 

0.005 

.0.00870 
1870 

12.68 

0.574 

14.16 

173.2 

326 

21.30 

302.0 

2.050 

0.000108 

0.0326 

9.85 

0.542 

0.234 

2.45 

1.405 

299.55 

162.2 

1362 

32.20 

19.53 

49.15 

2.66 

103.54 

1465.0 

7.07 

11.08 

MOM 

0.005 

0.00870 
1802 

12.80 

0.574 

11.40 

139.5 

305 

21.30 

243.0 

2.050 

0.000108 

0.0259 

6.21 

0.549 

0.234 

2.45 

1.405 

240.55 

132.0 

1090 

27.30 

16.49 

43.17 

2.64 

89.60 

1180.0 

7.60 

11.18 

EOM 

0.005 

0.00870 
1740 

12.90 

0.574 

9.00 

110.0 

280 

21.30 

191.8 

2.050 

0.000108 

0.0205 

3.88 

0.554 

0.234 

2.45 

1.405 

189.35 

104.8 

852 

24.80 

14.99 
37.52 

2.62 

79.93 

931.9 

8.59 

11.26 

4 Dia x lO.5 

14.70 

7.13 
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THERMIONIC 
MODULES 

POWER CONDITIONING EQUIPMENT 

Figure 4. Block Diagram of a Typical Curium 244 Fueled Isotope Thermionic Power System 

converter terminals attempts to Increase. The shunt regulator senses this changing voltage and compen
sates for the change in spacecraft load by varying a load resistance which is in parallel with the 
spacecraft load. This technique allows the DC/DC converter, and consequently the thermionic modules 
output voltage to be held constant regardless of variations in the spacecraft power demands. Finally, 
the power conditioning equipment is connected to the spacecraft bus by the high voltage electrical leads. 

The polonium 210 fueled power system operates in essentially the same manner as the curium 244 
fueled power system except the shunt regulator also performs a power flattening function. The power 
output generated by each module above the required 100 watts is dissipated in the shunt regulator vari
able load resistors in the same manner that changes in spacecraft power demands are handled. For this 
reason the shunt regulator precedes the DC/DC converter in the polonium 210 power system to eliminate 
the necessity of handling relatively large quantities of power In the DC/DC converter which is not going 
to be used by the 'spacecraft load. 

la order to satisfy the nuclear safety Intact re-entry philosophy, the clustered modules require 
re-entry protection. One approach for providing this protection Is shown In Figure 5. In this concept 
the modules are grouped within a common re-entry vehicle and the vehicle side panels are used as the 
space radiator. There are numerous approaches for providing the required re-entry protection and each 
application must be considered on the basis of its specific requirements. 

Figure 5. Clustered Module Power System Concept-Apollo Re-entry Vehicle Configuration 
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Power System Designs 
During the Phase I Program conceptual power system designs were developed for a mars orbiter 

(Voyager) and a lunar roving vehicle (Lunar Scientific Survey Module). Conceptual drawings of these 
spacecraft, equipped with isotope thermionic power systems, are shown in Figures 6 and 7. 

Table 4 summarizes the principal performance parameters associated with the Voyager and Lunar 
Scientific Survey Module power system designs. Table 5 presents a percentage weight breakdown for the 
major components making up the power system. 

Table 6 compares the weight of an isotope thermionic power system with the weights of the other 
types of power systems designed for the Voyager and Lunar Scientific Survey Module spacecraft. 

SUMMARY AND CONCLUSIONS 
To the extent that experience e x i s t s , the preliminary designs presented have been based on current 

s tate -of - the-art in the areas of diode performance, isotope character i s t i c s , thermal Insulation e f f e c t i v e 
ness , material combinations, and fabrication techniques. A reasonable development e f fort i s expected to 
lead to prototype units capable of sat is fy ing a l l the design and nuclear safety requirements. 

During the Phase I study the module designs presented here were shown to be compatible with a variety 
of space missions and to offer at tract ive performance when compared with other competing types of power 
systems. The principal features of the isotope thermionic modules are: 

1) High Efficiency (~ 127.) - The high thermal to e l e c t r i c a l e f f ic iency resu l t s in reduced fuel c o s t , 
Improved fuel a v a i l a b i l i t y , and s impl i f ies the nuclear safety problem. Compared to s ta te -of - the-art 
isotope thermoelectric generators the isotope thermionic modules require approximately one-third the 
fuel loading for the same power output. 

2) High Heat Rejection Temperature (~50O°C) - The high heat reject ion temperatures resu l t in small 
radiators and make the system insens i t ive to i t s surrounding environment. This l a t t er condition makes 
isotope thermionic systems particularly well suited to applications where the environmental sink tem
perature i s high and/or continually varying over a wide range (lunar surface, solar probes, e t c . ) . 

3) High Specific Power - The isotope thermionic modules offer a spec i f i c power of 7 to 8 wat t s / lb . 
compared with isotope thermoelectric generator values which are typica l ly around 1.5 wat t s / lb . 

4) Small Size - The isotope thermionic modules deliver 100 watts (e) at EOM from a cylinder 
4 .0 inches in diameter and 10.0 inches long. This compares with the SNAP-27 isotope thermoelectric 
generator which develops 56 watts (e) and i s 15.7 inches in diameter by 18.1 inches long. 

These character is t ics make isotope thermionic power systems part icularly attract ive for planetary 
exploration since the system i s su i tab le , without s igni f icant modifications for missions toward and away 
from the sun. 

The above conclusions are based on current s ta te -of - the-art thermionic diode performance. There i s 
every reason to expect that diode performance w i l l continue to Improve with a corresponding improvement in 
the performance estimates made in th i s study. 
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Figure 6. Voyager Spacecraft Concept with 
Iaotope Thermionic Power System 

Figure 7. Lunar Scientific Survey Module Concept 
with Isotope Thermionic Power System 
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TABLE 4 . SUMMARY OF POWER SYSTEM PERFORMANCE 

MISSION 

Voyager 
LSSM 

LIFE 

1 year 
9 0 days 

FUEL 

Cm-244 
P o - 2 1 0 

POWER 
OUTPUT 
(WATTS) 

6 4 0 
411 

OVERALL 
SYSTEM 

EFFICIENCY 
(PERCENT) 

9.6 
8.8 

POWER-TO-WEIGHT 
RATIO 

(WATTS/POUND) 

1.83 
2.16 

TABLE 5 . PERCENTAGE BREAKDOWN OF POWER SYSTEM WEIGHTS 

POWER SUPPLY COMPONENT 

Thermionic Modules 
Re-entry Protection 
Low Voltage Leads 
DC/DC Converter-Regulator 
Shunt Resistors 
Mountings, Booms, and Separation Devices 

WEIGHT-PERCENT OF SYSTEM 
VOYAGER 

30 
19 

9 
15 

2 
25 

LSSM 

37 
31 

6 
11 

4 
11 

TABLE 6 . COMPARISON OF POWER SYSTEM WEIGHTS-POUNDS 

MISSION 

Voyager 
LSSM 

ISOTOPE 
THERMIONIC 

355 
190 

SOLAR 
ARRAY 

425 
NA 

FUEL 
CELL 

NA 
NA 

ISOTOPE 
THERMOELECTRIC 

735 
287 

NA - not applicable 
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DISCUSSION 

Speaker of paper B  l l : E .W. WILLIAMS 

RASOR (USA); 

The safety design philosophy was descr ibed as total containment of the i s o 

tope. Can the sys tem survive ea r t h bu r i a l on r e  e n t r y ? 

WILLIAMS (USA): 

We have looked at a la rge number of these abort environments in the safety 

ana lys i s . Ea r th bur ia l (in some soils) is one of the abort environments that 

we can not survive and a question of the fuel solubility and react ion in the ■ 

ear th mus t be answered before we can de termine what the magnitude of 

that hazard might be. You have t rouble with two environments out of about 

10 or" 12 that a r e fairly significant. One of those is ea r th bur ia l , the other 

is the launchpad f ireball , which can be gotten around but r equ i r e s additions 

to the sys tem. Whatever the concept i s , when you put the total sys tem toge

ther we have to consider this p rob lem. I should add that I know of no isotope 

the rmoe lec t r i c flight sys tem in which the fuel containment does not mel t on 

ear th bur ia l in ce r ta in types of soi l . 

KNOERNSCHILD (Germany): 

You showed in the f i rs t slide of the ent i re a s sembly the t he rma l insulation 

and you .said that you had an oxide coating on those sheets of meta l in o rde r 

to reduce the heat l o s s , but do these sheets now have contact to each other , 

then it i s not radiat ion shielding but it i s . . . 

WILLIAMS: 

The way this shielding body is made up, it is a ve ry thin re f rac tory me ta l 

foil usually about 0. 3 mi l in thickness and you actually wrap this on itself, 

but before you make each wrap you spray or paint this oxidepowder to p r o 

vide a separat ion between the me ta l sh ie lds . The oxide of course has a very

poor t h e r m a l conductivity so that the re is a conduction component but this 

is very smal l ; the radiat ion is the predominant component. I think the re will 

be a paper presented on this t o  m o r r o w I believe by Mr . DUNLAY, and it is 

probably not worth going in to g r e a t e r detai l at this t ime . 

KNOERNSCHILD: 

If the sheets a r e p r e s s e d together so t he re is no a i r space, then the re would 

be only conduction. But I p r e s u m e your dioxide powder sprayed on the foil 

has a porous s t ruc tu re , so that at high vacuum heat is mainly t r a n s f e r r e d 
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by r a d i a t i o n . 

WILLIAMS: 

Wel l , the m e t a l p i e c e s do not c o m e t o g e t h e r of c o u r s e . The oxide p r o v i d e s 

the s e p a r a t i o n b e t w e e n the ad j acen t m e t a l w r a p p i n g s , but I th ink you p r o 

bably can see it t o m o r r o w . They wi l l p r o b a b l y show you s o m e s a m p l e s . 

E I N F E L D ( G e r m a n y ) : 

What is the r e a s o n for the h i g h e r sa fe ty of the t h e r m i o n i c s y s t e m in c o m p a 

r i s o n to the t h e r m o e l e c t r i c s y s t e m ? Due to the h i g h e r o p e r a t i n g t e m p e r a 

t u r e s of the fuel of the t h e r m i o n i c g e n e r a t o r , t he fuel c a p s u l e s t r e n g t h is 

l e s s than in the c a s e of t h e r m o e l e c t r i c s . 

WILLIAMS: 

F i r s t of a l l I did not m e a n to say tha t the sa fe ty p r o b l e m s w e r e l e s s in a 

t h e r m i o n i c d e v i c e than they w e r e in a t h e r m o e l e c t r i c d e v i c e . I do not b e 

l i eve tha t I sa id t h i s , a t l e a s t I did not m e a n t o . I sa id tha t fuel r e q u i r e d 

w a s s u b s t a n t i a l l y l e s s which r e d u c e d the c o s t , and. . . Oh, I p r o b a b l y know 

w h e r e you got i t , I s a id it r e d u c e d the n u c l e a r sa fe ty p r o b l e m s . The r e a s o n 

it d o e s r e d u c e the p r o b l e m s is b e c a u s e for the s a m e p o w e r output of c o u r s e 

you have l e s s fuel, t ha t is the poin t I m e a n t to m a k e t h e r e . F o r the s a m e 

p o w e r output , you would have 1/3 of the fuel involved in the c a s e of a t h e r m 

ionic d e v i c e , v e r s u s a c o m p a r a b l e p o w e r output for a t h e r m o e l e c t r i c g e n e 

r a t o r . Tha t w a s the only point I m e a n t to m a k e . 

To a n s w e r y o u r o t h e r q u e s t i o n . The t h e r m i o n i c d e s i g n i s qu i te d i f fe ren t 

f r o m the t h e r m o e l e c t r i c g e n e r a t o r . In m o s t t h e r m o e l e c t r i c g e n e r a t o r s , t he 

fuel c a p s u l e a c t u a l l y s e r v e s a s the c o n t a i n m e n t v e s s e l for the fuel f r o m the 

n u c l e a r safe ty s t andpo in t . Th i s m e a n s it t a k e s the i m p a c t l o a d s , e a r t h 

b u r i a l , e t c . , so tha t the c a p s u l e is the d e v i c e which p r o v i d e s the c o n t a i n 

m e n t for the fuel . At the high t e m p e r a t u r e s involved in t h e r m i o n i c g e n e r a 

t o r s , we can not u s e that a p p r o a c h b e c a u s e f i r s t of a l l we have to u s e r e 

f r a c t o r y m e t a l s which ox id ize qui te e a s i l y , so we d iv ide the r e s p o n s i b i l i t y 

of t h i s n u c l e a r safe ty c o n t a i n m e n t of the fuel be tween th i s i n n e r r e f r a c t o r y 

m e t a l c a p s u l e which s i m p l y con t a i n s the fuel u n d e r a l l known o p e r a t i n g c o n 

d i t ions and t h i s ou t s ide modu le hous ing which a c t u a l l y i s , f rom the n u c l e a r 

safe ty s t andpo in t , the c o n t a i n m e n t hous ing . Tha t is the c o n t a i n e r tha t we 

do not want the fuel to get out of. 

Now, s o m e of the p r o b l e m s a r e s imp l i f i ed , we b e l i e v e , in c o m p a r i s o n to 

t h e r m o e l e c t r i c s . Th i s ou t s ide c y l i n d e r for i n s t a n c e o p e r a t e s in o u r c a s e at 
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a t empera tu re of about 500 C . In the case of a t he rmoe lec t r i c genera tor 
the comparable t empera tu re is about 850 C for the body which is contain
ing the fuel. Also because of our smal l size we have at Genera l E lec t r i c 
some impact experience on capsules of this size and in this t empe ra tu r e 
range, and this leads us to believe that the impact capability of the module 
housing will be pre t ty good. However, we have not conducted tes t s on this 
pa r t i cu la r device to answer that question as yet. 

DANILOV (USSR): 
What was the specific power at the e m i t t e r ? 

WILLIAMS: 
2 

The diode cur ren t density was 10. 7 Amps pe r cm . 

DANILOV: 
P lease indicate the full charge of the i so topes . 

WILLIAMS: 
In a cur ium design we had about 880 Watts in the initial fuel loading. In the 
case of the Polonium 210 design the fuel loading is about 1700 Watts because 
you have a big power flattening problem of course with the Polonium, which 
has a very short half-l ife. 

DANILOV: 
How did the cha rac t e r i s t i c s of the conver te r change in the t ime with the use 
of Po210; does this isotope p resen t any in t e r e s t ? 

WILLIAMS: 
I did not include the Polonium - module per formance simply because of 
t ime l imi ta t ions . Slide 11 (Fig. 3) shows the predicted per formance with 
the Polonium - module. An approach which is totally pass ive is used to 
accomplish the power flattening, it works like th i s : At the beginning of m i s 
sion when you have a grea t deal of excess energy available from the isotope 
the ces ium r e s e r v o i r tends to run at a much higher t empera tu re than the 
optimum value. This higher ces ium r e s e r v o i r t empera tu re resu l t s in higher 
cur ren t flow and consequently a g r e a t e r e lect ron cooling t e r m . This higher 
electron cooling t e r m thereby takes away a great deal of the excess energy, 
from the fuel. This holds the fuel and diode emi t t e r t e m p e r a t u r e s down to 
acceptable leve ls . Now as t ime p a s s e s and the isotope power decays the 
cesium r e s e r v o i r t empera tu re natural ly d e c r e a s e s , and it tends to move 
towards the optimum value that we d e s i r e at the end of miss ion . With an 
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ini t ial t r i m of the sys tem at the beginning we a r e able to use this comple te
ly pass ive technique to provide the power flattening. 

GRIAZNOV (USSR): 

What is the comparison of the specific weight cha rac te r i s t i c s (kg/kwe) of 
the genera tor devices with the rmoe lec t r i c and the thermionic conve r t e r s? 

WILLIAMS: 

A compar ison has been made . We had also conducted studies separa te 
from this p rog ram for isotope the rmoe lec t r i c gene ra to r s , to c a r r y out those 
mi s s ions . The figures that you see in the far righthand column of slide 17 
(Table 6) r ep resen t the weights of those isotope the rmoe lec t r i c sys tems com
pared with the weight shown here for the isotope thermionic sys tem. These 
weights include al l the comparable components that I l isted before for the 
thermionic devices . I do not know the exact efficiencies of those sys tems 
but I 'm sure they a r e in the range of 4 - 5 % . 

GRIAZNOV: 

What is the value of the e lec t r ic power, where reac to r sys tems begin to be 
competit ive with isotope sys t ems , considering the weight, economy and 
radiation (in the sense of safety)? 

WILLIAMS: 
I have not looked at that a r e a myself in a ve ry long t ime and I do not feel 
that I am in a good position to answer that question. We looked in this p r o 
g ram at thermionic sys tems up to 2 kW. The only reason we limited our 
selves to 2 kW was the par t i cu la r module size that we had picked - the 
100 Watt module s ize . We looked at one sys tem which was a manned ear th 
orbiting vehicle, which was 2 kW and at that size this 100 Watt module size 
was getting a little smal l . We could have acquired a l ighter sys tem if we 
had gone to a l a rge r module s ize, maybe to 200-250 Watts. I 'm sure that 
the isotope thermionic s will look a t t rac t ive - well above the 2 kW number . 
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ABSTRACT 

In 1961, the United States Atomic Energy Commiss ion undertook 

a p r o g r a m to develop the technology requi red for the construct ion of 

isotope-heated the rmionic conver t e r s . Under a sub-cont rac t to the 

Mart in Company, T h e r m o Elec t ron Corporat ion conducted the t h e r m i 

onic genera to r development and tes t ing. The reference design used 

throughout the p r o g r a m incorpora ted a 12. 5 watt diode enclosed in a 

vacuum-t ight envelope. The isotope fuel was a s sumed to be an alpha

emitte r. 

An extensive p r o g r a m of design, development, and tes t ing was 

c a r r i e d out on the genera to r to de te rmine its l ifet ime, per formance , 

and res i s t ance to dynamic loads . More than twenty gene ra to r s w e r e 

fabricated and t e s t ed with e l ec t r i ca l hea te r s simulating the isotope 

heat source . All the gene ra to r s w e r e per formance tes ted , some were 

l i fe- tes ted, and th ree w e r e environmental ly tes ted . By the conclusion 

of the program, a genera to r had successfully survived shock and 

vibration testing and the life and per formance goals had been substan

t ial ly exceeded. 

The purpose of this paper is to desc r ibe the gene ra to r design and 

to summarize the major resu l t s achieved during the e lec t r ica l ly heated 

tests . The efficiencies, power outputs, and l i fet imes will be presented . 

The design i te ra t ions leading to the successful environmental t e s t s will 

be descr ibed. 
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DESCRIPTION OF GENERATOR DESIGN 

The configuration of the SNAP-13 isotope thermionic genera tor is 

shown in F igure 1. The genera tor is fabricated in th ree components: 

the fuel capsule, the upper casing assembly and the lower casing a s s e m 

bly. The the rmal shields a re attached to the upper casing assembly . 

The lower casing assembly contains the remaining par t s of the genera

to r including the cesium diode, the cesium r e s e r v o i r , and the auxil iary 

heaters and thermocouples . 

Final assembly of a fueled genera tor would be accomplished in a 

remotely operated fueling fixture. F i r s t the fuel capsule would be 

brazed to the back of the emi t t e r s t ruc tu re using an electron bombard

ment heater . Then the upper and lower casing as sembl ie s would be 

joined and brazed together using a second e lect ron bombardment heater . 

After casing outgassing, the pump-out tube extending from the bottom of 

the genera tor would be remotely pinched off to complete the genera to r 

assembly. 

A c ross section of the genera tor is shown in F igure 2. The gen

e ra to r case is 4. 2 inches long and has a d iamete r of 2. 64 inches. The 

case is a thin walled s ta in less s teel vesse l lined with copper to provide 

good the rma l conductance. The case se rves both as the vacuum con

tainment for the diode and the heat rejection radia tor . The diode and 

isotope capsule a re cant i levered from the bottom of the case and a r e 

free to expand within the casing. The fuel capsule is not constrained 

by the thermal shield assembly which is supported from the top of the 

casing. Project ing through the bottom of the case a re the emi t t e r lead, 

the ces ium r e s e r v o i r tubulation and the casing pump-out tube. When a 

genera tor is fabricated with an e lec t r i ca l heater simulating an isotope 

fuel, the hea ter leads penet ra te the sealed casing through the lead-

throughs located at the top of the casing. 
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The conver te r is a p lanar ces ium diode employing a rhenium 
2 

eïriitter and a molybdenum collector with an a r e a of 4. 8 cm . The 

emi t t e r - co l l ec to r spacing is 0. 009 inch. The e m i t t e r is supported 

from the bottom of the col lec tor through the diode lead- through s t r u c 

t u r e and the emi t t e r space r . The cyl indr ical space r has a 0. 005 inch 

wall th ickness . With th is wall th ickness and using a high s t rength 

tanta lum alloy (Ta-8 W-2 Hf), the space r provides adequate s t ruc tu ra l 

support for the fuel capsule during dynamic load tes t ing . The fuel 

capsule is 1 inch in d i ame te r , 1. 7 inches long, and weighs approxi

mate ly 0. 5 pound-

The efficiency of the SNAP-13 genera to r is d i rec t ly influenced 

by the effectiveness of the t h e r m a l shields surrounding the isotope 

fuel capsule . The purpose of the shields is to min imize the loss of 

heat from the top and s ides of the fuel capsule. This in turn forces 

the ma jo r port ion of the heat genera ted by the isotope fuel to flow into 

the emi t t e r . With the t h e r m a l shield configurations available during 

the SNAP-13 p r o g r a m , the heat loss was somewhat l e s s than 0. 5 watt 
2 

cm of capsule surface a r e a at a gene ra to r output power level of 

12. 5 wat t s . This resu l t s in a shield effectiveness g r e a t e r than 85%. 

As d i scussed in another paper , t h e r m a l insulat ion with much g r e a t e r 

effectiveness is now avai lable . 

The combination of high dynamic loads and the requ i red high-

t e m p e r a t u r e and long-life operat ion imposes s eve re r e s t r i c t ions on 

the design of the diode hea te r used to tes t the g e n e r a t o r s . The life 

t es t gene ra to r s used a r e s i s t ance heated tungsten filament which radi 

ated from the filament to the wal ls of the surrounding hea te r capsule. 

While sui table for life tes t ing this type of hea te r does not exhibit 

sufficient s t ruc tu ra l s t rength for dynamic tes t ing of the gene ra to r s . 
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A conduct ion diode h e a t e r w a s u sed in g e n e r a t o r No. I I A and 

fulfilled the high s t r u c t u r a l s t r e n g t h r e q u i r e m e n t s . T h e d e s i g n of 

th i s h e a t e r i s shown in F i g u r e 4. The h e a t e r u s e d a s h e a t h h e a t e r 

e l e m e n t c o n s i s t i n g of a t a n t a l u m c e n t e r conduc to r , BeO insu la t ion , 

and t a n t a l u m shea th . The co i led h e a t e r e l e m e n t w a s m o u n t e d and 

b r a z e d t o a g r o o v e d t a n t a l u m c o r e to p r o v i d e a good t h e r m a l conduc

t ion pa th b e t w e e n the h e a t e r e l e m e n t and the c a p s u l e b a s e . 

T E S T R E S U L T S ( L I F E AND P E R F O R M A N C E ) 

T h e des ign goa ls for the g e n e r a t o r s w e r e long l i fe , high eff ic iency, 

high s t r u c t u r a l s t r e n g t h to w i t h s t a n d d y n a m i c loading , and r e m o t e 

componen t a s s e m b l y . A s u m m a r y of the des ign s p e c i f i c a t i o n s and 

the g e n e r a t o r t e s t r e s u l t s a r e shown in T a b l e 1. G e n e r a t o r s No. 8A-1 

and No. 8B-1 w e r e c o n s t r u c t e d to e s t a b l i s h t h e l o n g - t e r m o p e r a t i n g 

l i fe . Ef f i c iency and d y n a m i c load c h a r a c t e r i s t i c s w e r e i n v e s t i g a t e d 

w i th g e n e r a t o r No. I I A . R e m o t e a s s e m b l y w a s a c c o m p l i s h e d on 

G e n e r a t o r No. 13. 

G e n e r a t o r s No. 8A-1 and No. 8 B - 1 w e r e c o m p l e t e d in S e p t e m b e r 

1962 and p l a c e d on life t e s t . Due to u n c e r t a i n t i e s in t h e l o n g - t e r m 

o p e r a t i n g life of the diode h e a t e r s , the g r o s s input p o w e r to e a c h gen

e r a t o r w a s l i m i t e d to 170 w a t t s . With t h i s input p o w e r , t he g e n e r a 

t o r s p r o d u c e d an output of a p p r o x i m a t e l y 6 w a t t s , The life t e s t of 

both g e n e r a t o r s con t inued in to Augus t ,1 963, wi thout s ign i f ican t change 

in output . A r e s i s t a n c e change then o c c u r r e d in the diode h e a t e r of 

g e n e r a t o r No. 8 B - 1 . The d e c i s i o n w a s m a d e to t e r m i n a t e the life 

t e s t of g e n e r a t o r No. 8A-1 be fo re diode h e a t e r d a m a g e o c c u r r e d and 

u s e th i s g e n e r a t o r in the d y n a m i c t e s t p r o g r a m . A c c o r d i n g l y , the 

life t e s t of g e n e r a t o r No. 8A- 1 ended on August 27, 1 963, a f t e r a t o t a l 

of 547 0 h o u r s of o p e r a t i o n . The life t e s t of g e n e r a t o r No. 8 B - 1 



- 301 -

continued until i ts diode hea te r failed on September 26, 1963, accumu

lating a total of 6404 hours of genera to r operation. 

The casing was removed from genera tor No. 8B-1 and diode opera

tion checked with an e lec t ron bombardment hea ter . The diode output 

was identical with the design output observed after fabricat ion. The 

diode was then s tored for 11 months until a vacuum stat ion became 

available for additional life tes t ing. Genera to r No. 8B-1 was placed 

back on life tes t in August 1964 at a power level of 12. 5 wat t s . Opera 

tion at the 12. 5 watt level continued to December 1964 when a full yea r 

of life tes t ing was achieved. The power level was then inc reased to 

20 wat t s . A total of over 13, 000 hours of operat ion was accumulated. 

No degradation was observed throughout the l i fe- tes t ing. 

Genera to r No. H A was fabricated with a conduction diode hea te r to 

obtain m e a s u r e m e n t s of the genera to r efficiency and to pe rmi t dynamic 

test ing of the genera to r at operating t e m p e r a t u r e s . The output cha rac 

t e r i s t i c s of the genera to r a r e given in F igure 4. The net efficiency of 

the genera tor for a 1500°C capsule t e m p e r a t u r e was 8. 7%. At this 

operating condition, the t e m p e r a t u r e difference between the hea te r 

capsule and the emi t t e r face was approximately 35°C and resul ted in 

an emi t t e r t e m p e r a t u r e of about 1465°C. The net efficiency of the 

genera tor at the 12. 5 watt operating condition was approximately 7% 

with a corresponding emi t t e r t e m p e r a t u r e of about 137 5CC. 

DYNAMIC TESTING 

Dynamic load t es t s simulating an Atlas Centaur launch w e r e 

ca r r i ed out on th ree gene ra to r s ; No. 8A-2, No. 8A-1 and No. 11 A. 

Genera to r s No. 8A-2 and No. 8A-1 were not specifically designed to 

withstand dynamic loading but the t e s t s yielded p re l imina ry exper i 

menta l data on the s t ruc tu ra l aspec ts of the basic genera to r design. 
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Genera tor No 8A-2 was dynamically tes ted at room t empera tu re . 

With the exception of inadequate strength in the design of the cesium 

r e s e r v o i r tubulation, the genera tor successfully passed the acce le ra 

tion, vibration and shock t e s t s without de t r imenta l effect. Diode 

operation was checked at the completion of the dynamic t e s t s and 

no change was detected. 

The l i fe- tes t genera tor No. 8A-1 was dynamically tes ted at 

operating t empe ra tu r e after 5470 hours of operation. Again the ce

sium rese.rvoir was physically res t ra ined . No damage occur red to 

the genera tor under full acce lera t ion and shock loads and under vi

brat ion test ing at 25% and 50% of full load. At full vibrat ion load

ing, de-ignition occurred immediately and no rma l operation could 

not be res to red . The pos t - tes t examination showed that the thin-

walled emi t t e r space r has been damaged. 

The design of genera tor No. H A included higher s t rength com

ponents for the space r and the cesium r e s e r v o i r tubulation. The 

space r was s trengthened by using the tantalum alloy (Ta-8 W-2 Hf) 

to replace the pure tantalum space r used in e a r l i e r genera to r s . 

The s t rength of the r e s e r v o i r tubulation was inc reased by adding a 

s ta in less steel outer tube. The adequacy of the improvements in 

the genera tor s t ruc tu ra l design were confirmed by the dynamic t es t 

ing of genera tor No. H A . Full level vibrat ion loading was applied 

at operating t empera tu re without fai lure. 

Remote component assembly of the SNAP-13 genera tor was 

successfully performed on genera tor No. 13 (e lectr ical ly heated) 

in November 1964. Before final assembly , the genera tor was 

tes ted for 24 hours at power levels from 12. 5 watts to 35 watts to 

insure sat isfactory operation. The genera tor components were 

then instal led in the fueling fixture and the capsule and casing b razes 
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completed. Tes t s during and after the final assembly confirmed 

that the operation of the completed genera to r was not affected by 

the remote assembly p rocedure . 
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TABLE ι 
SNAP-13 GENERATOR SUMMARY 

DESIGN SPECIFICATIONS 
End-of-Life Power Level 
Operating Life 
Isotope 
Generator Weight 
Dynamic Loading 

12. 5 watts 
]30 days 
Alpha Emitter 
4 pounds 
10 g acceleration, )8 g vibration, 25 g shock 

TEST RESULTS (electrically heateJ) 
Type 

Power 
Life 
Efficiency 

Dynamic Loading 

Test Generator 

11B, 13, 14, 15 
8B-1 
I IA 

8A-2 

8A-1 

I IA 

Results 

up to 35 watts 
over 13, 000 hours 
7% at T E = 1375° C, Ρ = 12. 5 watts 
8. 7% at T E = 1465° C, Ρ = 20 watts 
passed acceleration, vibration shock 

(room temperature, reservoir restrained) 
passed acceleration, shock 

(operating temperature, reservoir restrained) 
passed vibration 

(operating temperature) 
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Figure 2. Cross Section of Generator #14 
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Figure 1. Generator #14 Components 
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Figure 3. Cross Section of Conduction Heater Figure 4. Generator #11A Output Characteristics 
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Abstract : 
The thermionic generator to be built in cooperation 

between U.M. and B.B.C, is presented. A detailed des
cription of the design and the optimization of the generator 
as it stands now is given. Experimental results of measure
ments with a plane parallel diode using a polycrystalline 
tungsten emitter and a molybdenum collector at emitter tempe
ratures between 1800°K and 1900°K will be discussed. 

The compatibility of systems containing the following 
elements or compounds have been considered : La„0 , PbO, Pb, 
ThO«, Th, W, 0 , He. The experiments are carried out at tem
peratures up to 2 500°K. Tests up to 2.000 hours are conduc
ted at 2100°K. The permeability of ThO -coatings for helium 
has been tested on boron-containing spheres. Helium release 
is measured by heating the particles and collecting the gas. 
The metal ceramic seal has been developed, tested for about 
5.000 hours at 1000°K and 20 torr cesium pressure; it is 
still leak tight. A Nb 1 % Zr collector heat pipe filled 
with sodium is running for about 12.000 h at 1100°K without 
degradation. The emitter lead has been proven to withstand 
temperature cycles between 7 50°K and 2200°K. 
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INTRODUCTION 

Brown, Boveri & Cie A.G., Mannheim (BBC) and the Union 

Miniere (UM) have undertaken the development of an actinium 

fueled thermionic generator. The purpose of this undertaking 

is to demonstrate the feasibility of such systems and to accu

mulate experience for the future production of operational 

units. A project goal is to have the generator operating and 

under test in 1969-1970. 

1. GENERAL DESCRIPTION AND OPTIMIZATED CONCEPTION 

The generator general design is shown in figure 1. The 

cylindrical heat source is surrounded by a removable thermal 

shield and its lower base is joined to the emitter of the 

plane parallel thermionic converter. 

The fuel will be actinium oxide in the form of spherical 

particles having a diameter of 500 ,u , coated with a 25 ,u 

thick layer of thorium oxide and embedded in a porous sin

tered tungsten matrix. The power density of this matrix 

will be 4 5 w/cmB, pure actinium oxide having a power density 

of 119 W/cm3. 

The actinium oxide itself is limited to a density of 

about 90 % to allow the swelling due to the production mainly 

of lead and due to the oxidation of the oxygen gettering ma

terial. A Th0_ coating of the order of 2 5 ,u thickness will 

confine the fuel inside the spherical particles. It will 
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allow helium to escape at the operation temperature. A sup
plementary 5 ,u thick layer of tungsten is required to insure 
good bonding with the matrix. 

The matrix is made by filling the void between the fuel 
particles with tungsten powder and by sintering at high tem
perature. An adequate porosity for helium venting is so 
ensured. 

The overall conductivity has not yet been measured, but 
the equations given by A.E. Powers (1) yield for the overall 
conductivity of the fuel matrix combination a value of ap
proximately 22 % of the thermal conductivity of pure tungsten. 
These results were found relatively insensitive to the thermal 
conductivity assumed for Ac 0 , which was taken equal to a 

_2 preliminary value measured for La O at 2000°K (10 W/cm°C). 
The filling percentage of tungsten was chosen to maximize 

the product of thermal power density and thermal conductivity, 
to assure the minimum temperature rise in the fuel. 

The matrix is enclosed in a W-2 5 % Re cylindrical capsule 
joined to the emitter block; the other faces of the capsule 
are surrounded by a thorium oxide spaced thin metallic foils 
heat shield. 

The plane parallel converter (fig. 1) has a high barework 
function-emitter, such as e.g. W (110), Re or W-Re, with an 
area of 4 cm2. The inter electrode spacing will be optimized 
to' obtain a maximum overall efficiency. The waste heat is 
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removed from the Mo-collector plate by a Nb- 1 % Zr heat 

pipe filled with Na and provided with fins. 

The pumping lead, which passes through the radiatively 

cooled cesium bath, is introduced through the center of 

the heat pipe. The emitterlead is W-2 5 % Re, 2 7 mm in dia

meter, 40 mm long and has a 0.2 mm wall thickness. The 

metal-ceramic seal is of high purity alumina brazed between 

0.1 mm molybdenum diaphragms which are in turn brazed into 

Nb-1 % Zr rings. The mechanical spacing of the electrodes 

is ridgidized through a segmented ceramic brazed between 

the two rings. 

From the best data available on plane parallel diodes, 

a practical optimum operating point for the emitter was 

chosen at 1800°K and an heat flux through the emitter sur

face of about 40 W/cm2. With a total heat production of 

2 50 W, heat fluxes and temperature distributions calcula

tions yielded the present generator configuration. In the

se calculations, the best data available for heat conducti

vities, materials strength at high temperature and chemical 

compatibilities were used. 

The present state of the generator configuration and 

performance is as follows : 

capsule diameter 2 7 mm 

wall thickness 4 mm 

total length of the capsule 31 mm 
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gap between the top of the matrix and 
the upper wall 1 mm. 

Heat losses through the thermal shield 13 W 
Heat losses from the inactive part of the emitter 17 W 
Heat losses through the emitter leads 65 W 

Total losses 95 W 

maximum temperature of the fuel 1980°K 
emitter temperature 1800°K 
temperature difference between center 
and outerpart of the emitter _ 5°K 
collector temperature 970°K 
output voltage 0.55 V 
available electrical power output 23 W 
overall efficiency 9 % 

This present optimum configuration will be conti
nuously redesigned as new results become available from 
the converter or the heat source. 

2. FUEL BEHAVIOUR 
It is envisaged to put the fuel in the form of spheres 

containing an oxygen getter and coated with Th0_. The 
spheres are prepared by the agglomeration process. 

The spheres together with tungsten powder are vibro-
compacted into a tungsten-»rhenium capsule. 
2.1 Preparation process 

The preparation process of the spheres of a diameter 
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of 400-500 yum has been studied by agglomeration of 
La^O.-powder as a simulator for Ac 0 . Sintering is 
carried out at temperatures up to 1800°C under an at
mosphere of dried argon. The density varies between 
80 and 92 % T.D. depending on the sintering tempera
ture. The yield of the preparation process is 98 % 

when carried out on batches of more than 20 g powder. 
For the preparation of the coating of Th0„ two 

processes hava been studied : agglomeration of Th0„-
powder onto the spheres and fluidized bed technique. 

The agglomeration process has many advantages over 
the fluidized bed technique because the equipment is 
simple to use and is the same as needed for the sphe-
roidization. So, it is a suitable process for 
application in hot cells. It has been possiHe to 
prepare coating in this way as thin as 20 ,um. Sin
tering occurs at about 1600-1800°C under argon. The 
fluidized bed process is based on the reaction : 

Thl4G + 2 H20G ¿ ^ Th02s + 4 HIQ 

ThIÆ is prepared separately from the fluidized bed 
system. The vapour is carried to the fluidized bed 
by argon as carrier gas. Reaction takes place at 
1000°C in hydrogen with an excess of water vapour 
(five times the calculated necessary amount). The 
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hydrogen concentration is 30 v/o of the total gasflow. 
The partial pressure of ThI. is 0.1 - 0.3 mm Hg. Flui-
dization occurs in an inconel tube of diameter 20 or 
2 5 mm in a gasflow of 3 or 5 1/min. The deposition 
rate at 1000°C is 1 to 1.5 /um/hour. 

The coatings prepared in both ways are very adhe
rent. However, the fluidized bed coatings are not 
exactly spherical, which may cause difficulties in vi-
bro-compaction (fig. 2 and 3). 

298 The free energy of formation of La" 0_ H_ is 
-428.57 kc°l/mole. The oxide may dissociate according 
to LaoO-3 £=5 2LaO + O . This dissociation, though 2 ¿S^" G G 

small, is not negligible. Therefore, high vacuum and 
hydrogen atmosphere must be avoided in all high tempe
rature processes. La~0_ is also very sensitive to hu
midity. In normal (humid) air complete desintegration 
of spheres occurs in a short time. 

2.2 High temperature reactions 
Very complicated systems arise during decay of the 

fuel. Besides the starting materials, Ac_03 , Th02 
and W, shortlived daughter products, lead helium and 
oxygen are formed, while the oxygen may give rise to 
formation of PbO and of W O . The helium formed in 

x y 
the decay process and the lead or leadoxide vapour 
and the oxygen might give very high gas pressures at 
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2000°K if retained in the spheres. In the study of the 

high temperature reactions it has been assumed that 

each product may come into contact with any other possi

ble product. So, combinations of the system La„0o 

PbO  Pb  O  ThO5  W  W O have been examined at 

¿ x y 

temperatures up to 2 500°K. 

Pb + 0. The vapour pressure of lead is given by : 

log ρ (in mm Hg) = 10,130 Τ  0.958 log Τ + 11.16 

and that of PbO by the formula : log ρ(atm) = 8.7002 

13,858/T. 

The dissociation of PbO is rather high. The vapour 

pressures of lead and lead oxide give considerable con

tributions to the total pressure at 2000°K. Besides 

the oxygen from the dissociation of PbO free oxygen is 

left from the decay of Ac 0 . 

La
2°3 + Pb Lead does not react with lanthanumoxide. 

On heating a mixture of lanthanum oxide and lead the 

latter gradually escapes by diffusion. After cooling 

down to room temperature lead may be found as small 

spheres on the outer surface of the La^O spheres. 

La
2°3 + PbO . Lead oxide does not react with lantha

num oxide, however it lowers the melting point (2). 

The melting point of lanthanum oxide containing 10 mo

le % PbO is estimated to be 2200°C. In practice lead 

oxide escapes from the spheres probably after disso
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ciation into lead and oxygen. Lead may be temporarily 

found in lanthanum oxide after heat treatment of a mix

ture of lanthanum oxide and lead oxide at high tempera

ture. The oxygen may cause reactions with tungsten or 

other oxygen getters. 

La
2°3 + PbO + W. The tungsten present in the neigh

bourhood of the spheres is oxidized by the oxygen from 

PbO. Lead vapour escapes by diffusion preferentially 

by grainboundary diffusion. When a barrier is present 

this may temporarily stop the migration of lead (fig.4). 

Tungsten acts as an excellent oxygen getter being oxi

dized to Wxo„ of variable composition (fig.5). In a 

mixture of lanthanum oxide and tungsten, this Wx0 re

acts with lanthanum oxide to give 3La2o WO, (melting 

point 2050°C), which is retained in lanthanum oxide 

(fig.6). 

La2Ü + Ψ. No reaction between lanthanum oxide and 

tungsten has been observed. It has been reported that 

some LaO may dissolve into tungsten (3). This has not 

yet been confirmed. 

Th02
 + w

·
 T

^
e
 sphere coating material, Th02 has 

been found compatible with tungsten up to the maximum 

testing temperature, 2500°C. 

Th02 + Pb. Also no reaction has been found between 

thorium oxide and lead. The lead easily diffuses 
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through thorium oxide. 
W + Pb. Tungsten and lead are compatible as long as 

no oxygen impurities are present. 
ThQ2 + PbO + W. The PbO formed in La„0 readily 

diffuses outwards through the ThO^ coating towards tung
sten which is oxidized to W 0 of variable composition 
(fig.7). In a closed system this tungsten oxide may 
diffuse into thorium oxide. After cooling down to room 
temperature PbWO. has been found preferentially on the 
grain boundaries (fig.8). On micrographs different 
tungsten oxides are clearly visible. The lead from the 
dissociation of lead oxide evaporates from thorium oxi
de. 

La O + ThO . Lanthanum oxide and thorium oxide do 
not react. However, lanthanum oxide diffuses into tho
rium oxide giving a zone of composition (Th, La)'·>- (f ig. 9) 
The reactivity of (Th,La)0„ is similar to that of pure 
ThO„. Even at 2 500°K no reaction has been observed of 
(Th,La)0_ with either W O or tungsten. The interdif-2 x y ' 
fusion zone seems to be very stable. 

Gaspressure 
For each disappearing Ac-atom five He-atoms are for

med. This helium if retained in the fuel would exert 
at 2000°K a very high pressure after a decay time of 
half a year. All the fuel materials have therefore to 
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be permeable for helium. This has been investigated in 
a simulation test. In spheres of La-O. containing a 
boron compound and coated with thorium oxide helium has 
been produced by 10 (n,££ ) reaction in the high flux 
testing reactor BR2. Most of the boron compounds lower 
the melting point of La^O to low values (e.g. 1200°C). 
Two types of coatings have been examined : fluidized 
bed coatings of 8 and 18 ,um and agglomeration coatings 
of 20 and 40-50 yum thickness (fig.10). After irradia
tion the spheres have been heat treated at rising tempe
rature up to 1650°C. Helium release was measured by 
means of a helium leak detector. In the case of the 
fluidized bed coatings helium release already started at 
room temperature and was completed at about 1000°C. The 
Th05 coatings prepared by agglomeration process showed 
a helium release starting at about 400°C. The release 
rate is rapid at 550°C and still increases with increas
ing temperature. The rate at constant temperature is 
initially very rapid but gradually slows down. The relea
se is complete at about 1600°C after a few hours. The 
higher He release rate»which fluidized bed coatings show, 
is ascribed to impurities of iodine. Iodine could be 
detected during the heat treatment. 

From these experiments it has been concluded that the 
helium pressure will be very low, because helium will 
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readily diffuse out. 

The oxygen pressure will be kept at very low values 

when an oxygen getter, like tungsten is present. As 

has been mentioned, oxidized tungsten reacts with Lan

thanum oxide and is retained in the fuel. When no get

ter is present, oxygen disappears from the fuel and then 

reacts with the filler, material. It is therefore con

cluded that also the oxygen pressure in the fuel can be 

maintained at a low value. 

Lead oxide, or lead and oxygen diffuse through tho

rium oxide (fig.11). In short term tests at 2000°C 

some lead has been found after heat treatment of a mix

ture of lanthanum oxide and lead oxide. This lead ap

parently did not give any cracks. After cooling it was 

retained in lanthanum oxide as small grains at the ou

ter surface. 

It may be concluded that the total gas pressure in 

the spheres might be kept at a very low value, cer

tainly so when one considers that in a real actinium 

oxide case the conditions are much less severe than in 

these experiments. 

3. CONVERTER DEVELOPMENT. 

The thermionic converters built until now differ from the 

converter to be joined to the capsule only in the use of a 
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polycrystalline tungsten emitter and a tantalum emitter lead. 

The material for the collector is molybdenum. The interelec

trode gap in this converter is 0.14 mm being ne.rly indepen

dent of the emitter temperatures in the range of 1800 to 

1900°K. 

Figure 12 shows one of the thermionic converters completed 

3.. 1 Measurements 

Current-voltage curves were measured with the converter 

shown in figure 12. The polycrystalline tungsten emitter 

was heated by electron bombardement. The emitter tempe

ratures were measured pyrometrically. 

The converter was outgassed at temperatures of about 

150°K higher than the highest working temperatures before 

filling it with cesium by distillation, while being pump

ed by a Vac Ion-pump. Outgassing was checked by measur

ing the bare work function of the emitter. After about 

50 hours pumping, the work fi notion stabilized at a value 

of 4,65CV. 

The vacuum read on the Vac Ion-pump was better than 

10 torrs. 

In order to measure families of current-voltage curves, 

the collector temperature and the cesium bath temperature 

were varied, by additional heaters at the collector and 

the cesium bath. 

At constant emitter and collector temperature, a family 
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of I-V curves was measured at different cesium tempe
ratures. In the same way, families for three collector 
temperatures in the range of 930 and 1010°K were taken 
at emitter temperatures of 1800°K, 1850°K and 1900°K res
pectively. The results are given in fig. 13. These cur
ves show the maximum output power versus the output vol
tage. 

For clearness sake, only the envelopes of the families 
of curves taken at the fixed emitter temperatures with 
different collector temperatures, are given. Thus, these 
curves are optimized with respect to cesium pressure and 
collector temperature. The voltage was measured between 
the collector and the cold end of the emitter lead, so 
these curves show the available power output. 

In the same figure, the lower curves give the elec
trode efficiency versus the output voltage; they are a-
gain optimized with respect to collector temperature and 
cesium temperature. 

The electrode efficiency was calculated according to 
a proposal of Block et al (4). 

q. 3-V« 

3 = net current density 
Vp = voltage measured at the electrodes 
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φ = 0 - 0 , 1 7 , where 0 is the Richardson-work-function 
corresponding to the net current as given by 
Kitrilakis et al (5). 

Of* Heat loss by inter electrode radiation, given by 

£ σ ( Τ | - T * ) with S =0.18 
Oca Heat loss by cesium gas conduction calculated accord

ing to Kitrikalis et al (6). 

For the discussion of these curves, it must be consi
dered that the data are not fully optimized because the 
electrode spacing was always constant. At 1800°K the 
spacing was about twice the optimum spacing, at 1900°K, 
it was about six times larger than the optimum value. 
Therefore, these data are somewhat lower than those 
which are to be expected under fully optimized conditions. 
From the measured data at 1800°K, one calculates an elec
trode efficiency of 15 %, at an output voltage of 0.55 
volt. the output power being about 20 watts. At 1900°K, 
the converter delivers 32 watts electrically at 0.65 volt 
output voltage with an electrode efficiency of 18 %. 

3.2 Component Tests 
The most critical parts of the thermionic converter 

are the metal ceramic seal, the emitter lead and the heat 
pipe collector. Special attention is therefore paid to 
development and testing of these components. 
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3.2.1 Metal Ceramic Seal 

The metal ceramic seal has to work at about 

1000°K. It must be leak tight at this temperature 

and stable with regard to cesium attack and thermal 

shocks. Some of these metal ceramic seals are al

ready constructed and are being tested. A cross 

section is given figure 14. 

For testing, the metal ceramic seal is closed 

by plates on both sides, one plate being connected 

with the cesium bath. The device is continuously 

evacuated by a Vac Ion-pump. Radiant heaters are 

facing the end plates. The cesium bath is also 

heated by a radiant heater. The entire assembly is 

thermally shielded, both on the ends and sides, 

with several layers of tantalum foil. Furthermore, 

different collector materials can be tested in this 

device. In this first seal, a nickel- and a molyb

denum electrode have been integrated. The first 

metal ceramic seal is running now for 5-000 hours 

in a cesium atmosphere of about 20 torrs at 1000°K. 

During this time, it has been thermally shocked 

30 times between 300 and 1000°K. The metal ceramic 

seal is still leak tight. 

3.2.2 Collector material tests 

In the thermionic Conversion Specialist Confe-
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rence 1967, Palo Alto(7),preliminary measurements 

of the effective work functions of nickel and molyb

denum have been reported.In the meantime,these mea

surements have been repeated several times.The results 

are given .in fig.15 which shows the difference in the 

effective work function between nickel and molybdenum 

as a function of the ratio TTT/T„ (=collector tempera-
V Cs c 

ture/cesium bath temperature).The work function was 

computed by the Richardson equation.The saturation 

current was determined by the measured I-V curves.The 

collector temperature was 723°K,the cesium bath tem

perature was varied between 373°K and 500°K. Curve 1 

of fig.15 was measured during a period of 170 hours. 

The work function of the nickel electrode is 0.02 5 eV 

to 0.12 eV higher than that of the molybdenum electro

de, depending on the value of T_/T . 

To test reliability of these results, the measur

ing cell was operated at 1000°K with a cesium bath tem

perature of 660°K for 80 hours. After that time, mea

surements were repeated at 72 3°K, resulting in a lar

ger difference between the work functions, as shown 

in curve 2. 

The work function of the molybdenum electrode is 

0.05 to 0.14 eV lower than that of the nickel electrode. 

This indicates that for collector material 
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molybdenum is superior to nickel. The data taken 

after 4500 hours, marked by crosses in fig.15 agree 

with those of curve 2, indicating that the values 

reached after about 2 50 hours operation remained 

stable. The work function data of the molybdenum 

collector are shown in fig.16. The work function 

rose slightly between curves 1 and 2 approaching a 

stable value after 2 50 hours (curve 2). 

3.2.3 Emitter lead 

According to optimization calculations, the emit

ter lead should be thin and long. Therefore, the 

emitter lead is one of the most critical parts of 

the converter. For the first series of converters, 

a tantalum emitter lead of optimum geometry has been 

chosen. It has a length of 27 mm, a diameter of 

27 mm and a wall thickness of 0.15 mm. In order to 

reduce the heat losses by radiation, the lead was 

polished inside and outside. The tungsten emitter 

block was joined to a tantalum transition piece by 

brazing with niobium at 2 500°C. The emitter lead 

was then electron beam welded to the transition pie

ce. The tantalum emitter was brazed to the Nb 1 % 

Zr support ring with Nb 78 % Zr. Such an emitter 

subassembly., shown in fig. 17, has been submitted to 

35 thermal shocks (27°K/sec) between 700 and 2300°K. 
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Thereby, the dimensions of the emitter lead did 
not change and the joints remained leaktight. 

3.2.4 Collector - Heat Pipe 
The lifetime of a heat pipe is mainly determined 

by the corrosion of the wall material by the work
ing fluid. The heat pipe of the thermionic conver
ter consists of Nb 1 % Zr and is filled with sodium. 
Such a heat pipe is presently life tested in a hori
zontal position in order to approach space condi
tions. It has been running until yet for 13.000 
hours at a temperature of about 1100°K, transferring 
a power of 500 watts. Until now, it shows no signs 
of deterioration. 

4. DISCUSSION 
In a general way, the results obtained up to now have pro

ven the feasibility of the concept of the generator as out
lined in Chapter 1. 

Further experiments and developments are mainly oriented 
to determine the final specification of the system and to im
prove its reliability and lifetime. 
4.1 Fuel 

The compatibility tests on the fuel materials have 
shown that no difficulties are to be expected when it is 
assumed that the behaviour of actinium oxide is similar 
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to that of lanthanum oxide. The starting materials are 

compatible with one another. Reactions between diffe

rent components are due to oxygen donors. In presence 

of tungsten, either added to the fuel as a getter or 

outside the spheres as filler material, oxygen is imme

diately bonded to products which are not harmful. He

lium easily escapes from the spheres together with lead 

or lead oxide. The gas and vapour pressures are there

fore kept at a very low value. The reactions and the 

diffusion processes already take place at rather low 

temperatures, and the rate of reaction and diffusion at 

1600°C is rapid. Therefore, a temporary increase in 

temperature would only have as result a higher diffusion 

rate and a more rapid escape of the gases. 

The picture of the fuel behaviour at high temperature 

is not essentially altered by a change in temperature 

between 1600 and 2000°C. This has been confirmed by 

short term tests. 

A first long term test has been performed at 1700°C 

for about 1000 h. The results show that the particles 

after this treatment were unchanged, the coating too was 

still perfect. The La O itself showed some porosity, 

the lead and lead oxide had diffused out. Further long 

term tests are being carried out at this moment, with 

fuel containing different getters and with different 



- 325 -

compositions. 
4.2 Converter development 

As a first step to optimize the converter, an evalua
tion of the performance characteristics based on the 
measured values given in fig.13 and using a procedure 
developed by Rasor (8) and Kitrikalis (9)., has been made. 

Using this analysis, the performance for optimum con
ditions including optimum spacing were calculated. The 
results of the calculation at an emitter temperature of 
1800°K are shown in fig.18. 

With a heat flux of 40 W/cm2 which was obtained and 
used in the optimization calculation of the heat source, 
the electrode efficiency is 15 % with an electrical out
put at the electrodes of 6 W/cm2 and a voltage of 0.6 V 
at the electrode (fig.18). Taking into account the los
ses in the optimized emitter lead, the data given in 
Chapter 1 are obtained. These data were already nearly 
realized in the measurements performed with a converter 
using a polycrystalline W emitter (fig.13). For poly-
crystalline W the optimum spacing at this point would 
be 0.08 mm, but emitters with a higher bare work func
tion will yield a larger optimum spacing, thus improv
ing the reliability of the converter. Therefore, fur
ther measurements with converters having W(110) and W-Re 
emitters will be carried out in a near future. The data 
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obtained by this measurement will be used to recalcu
late the optimization of the converter. This improved 
characteristic of the converter will be used for the 
final optimization of the whole generator. 

To test lifetimes of the most critical parts of the 
converter, several life test units are under construc
tion. 

Although the resistance of the emitter structure, 
including welds and brazes, have been proved sufficient
ly stable against thermal shocks, no emitter structures 
including the emitter leads have been life-tested so 
far. It is planned to test converters with Ta-emitter 
leads and with W-Re emitter leads. 

The metal ceramic seal and the heat pipe are nearly 
completely developed and further life-tests are under
way, although no serious problems are to be expected 
with these components. 
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Fig. a 
Spheres of l a O + PbO coated with TfcOafr*5o) 2 3 

ThO coatiag ou Laa03 spheres (*i5o) 

Fig. 5 
Lead retained in spheres of La O + PbO 
after heat treatment at i70o°C (» lpoo) 

W-oxygen ge t t e r in L a ^ . W-particles are 
surrounded by lead (* íooo) 
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Fig. 6 

Heat treated sphere of (La20 + PbO + VT). 

Formation o f 3 La20  WO and some lead (* 000) 

Fig. 7 

Oxidized tungsten. Different tungstenoxydes 

are v i s i b l e ( x
 500) 

Fig. 8 

Formation ol" PbWO . i n ThO (. * looo) 
Τ 

Di 

F i ¡J . 9 

f fusion zone between La,0 and ThOa ( * 1000) 
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Fig. io 
taini 

with.ao μη ThOa by agglomeration ( x 100) 
La 0 spheres containing ti tanium boride coated 

Fig. i i 
Diffusion of lead from sphere of La a0 3 + PbO 
through 1h0a coating (x 500) 
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^ 

Flg. 12 : Therm ion fe Converter 
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Electrode Spacing 
= 0,137 mm, F = 4 cm2 

TR = 590 - 670 °K 
T c = 930 -1010 °K 

O 0,2 0,3 0,4 0,5 0,6 0,7 Ο,δ 0,9 V 1,0 
Output Voltage 

~~ Maximum Power and Computed Electrode 
Fig. 13 Efficiency versus Output Voltage 

Vac-Ion-Pump 

Cesium Reservoir Heater 

Cesium Reservoir 

Metal Ceramic Seal Heater 

Thermocouple 

Metal Ceramic Seal 

^JESizlj 'm ΰ1ΙΕ55\ W 
F i g . 14 Metal-Ceramic-Seal with Cesium Reservoir 
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F i g . 15 
Difference in VJ or k Function between a Nickel 

and a Molybdenum Collector 

.o 

o 
c: 

«S 

£ A4 

Tc = 723 

1 Test Duration: 170 hrs 

2 Test Duration: 250 hrs 

+ Test Duration: 4500 hrs 

1,7 

Τc I Tes ■ 

F i a . 16 
Work function of Molybdenum Collector 
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¿^^ 

Emitter, polycrystalline Tungsten 

Transition Piece, Tantalum 

Emitter Lead, Tantalum 

yi 

m 
L· 

Electrical Output Ring, Copper 

3 / E m i t t e r Support Ring, Nb1 Zr 

Fig . 17 Emitter Subassembly 

BROWN 
BOVERI Calculated optimum converter data 

Fig. 18 : Electrode efficiency η , electrical power output 

Ν at the electrodes, and heat f Iux Q from the emitter sur

face to the collector surface as functions of the output 

voltage V at the electrodes (calculated for optimum condi

tions). 



- 336 -

DISCUSSION 

S p e a k e r s of p a p e r B - 1 3 : M . J . BRABERS and F . GROSS 

ROUKLOVE (USA): 

Why w a s a finned r a d i a t o r u sed i n s t e a d of the d i r e c t r a d i a t i o n by the hea t 

p ipe ? 

GROSS ( G e r m a n y ) : 

We have m a d e s o m e c a l c u l a t i o n s r e g a r d i n g hea t r a d i a t i o n . The r e s u l t was 

tha t finned r a d i a t o r s have a l o w e r w e i g h t - p o w e r r a t i o , than a s y s t e m us ing 

a d i r e c t l y r a d i a t i n g hea t p i p e . 
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A MINIATURE ATOMIC BATTERY BASED 
ON THERMIONIC CONVERSION 

N. S. Rasor* , K. A. Gaspe r , J . G. DeSteese 
McDonnell Douglas Corpora t ion 

Donald W. Douglas L a b o r a t o r i e s 
Richland, Washington 

ABSTRACT 

A genera l opt imizat ion of the radioisotope-fueled the rmion ic conver t e r r evea l s an 
a t t rac t ive and previous ly unrecognized region of p r a c t i c a l impor tance at the 
f rac t ional -wat t level . Opt imum in te rac t ion of v a r i a b l e s is defined analyt ical ly . 
I l lus t ra t ive examples a r e given of what can be achieved with p r e s e n t and pro jec ted 
technology. A demons t r a t ed 1 mw conver t e r fueled with P m - 1 4 7 is desc r ibed and 
device applicat ions a r e outlined. 

INTRODUCTION 

Recent developments in the technology and applicat ion of m i c r o c i r c u i t s have s t imu
lated inc reased i n t e r e s t in f rac t iona l -wat t radioisotope-fueled e l ec t r i c power suppl ies , 
genera l ly known as "a tomic b a t t e r i e s " . It wil l be shown he re in that the rmion ic energy 
convers ion p o s s e s s e s a t t r ac t ive fea tu res at power leve ls in the range of 10 μw to 1 w. 
This previous ly unrecognized region of p r a c t i c a l impor t ance for. t he rmion ic conver 
sion appears as a consequence of the employment of much lower c u r r e n t dens i t i es than 
previous ly cons ide red . Lower c u r r e n t dens i t i es p e r m i t the use of much l a r g e r e l ec 
t rode spacings , much lower e l e c t r o d e t e m p e r a t u r e s and a grea t ly simplified config
ura t ion . These cons ide ra t ions in tu rn p e r m i t the use of e lec t ron ic and t h e r m a l design 
fac tors which a r e i m p r a c t i c a l at high c u r r e n t dens i t i e s , but which a r e readi ly avai lable 
to obtain a t t r ac t ive device s i ze s and efficiencies for the f rac t iona l -wat t appl ica t ions . 
The opt imum in te rac t ion of v a r i a b l e s for this new region of the rmion ic conve r t e r 
application wil l now be defined. 

OPTIMIZATION 

Basic Cons t ra in t s - The r e f e rence configuration chosen is shown in F i g u r e 1. The 
fuel pel le t is a r ight c i r c u l a r cyl inder of height h and d i a m e t e r D, which includes the 
e m i t t e r s of the rmion ic diodes on its s u r f a c e s . F ive va r i a t ions cons ide red a r e : 
(a) emiss ion from one p lana r sur face only; (b) e m i s s i o n f rom both p lana r su r faces 
only; (c) emiss ion from all su r faces ; (d) emi s s ion from the cy l indr ica l sur face only; 
and (e) emis s ion from the cy l indr ica l and one p lanar surface only. F igu re 2 shows 
the re la t ionship among the v a r i a b l e s imposed by t h e r m a l and e lec t ron emis s ion con
s t r a i n t s , as der ived in Appendix A, for the opt imum h e i g h t - t o - d i a m e t e r ra t io r . The 
fuel pel let d i a m e t e r D and e m i t t e r t e m p e r a t u r e T e a r e r e l a t ed to the effective col
lec tor work function 4>c, the output vol tage V, the to ta l output c u r r e n t I, the config-
ura t ional p a r a m e t e r a (F igure 1), the net t h e r m a l emis s iv i ty of the cy l indr ica l region 
e c , and the net t h e r m a l volume power densi ty of the. fuel pel let p'. The net power 
densi ty ρ ' i s computed f rom the difference between the heat genera ted in the fuel 
pellet (of average power densi ty p) and that removed f rom it by e lec t ron cooling and 
conduction through the e m i t t e r suppor t s . 

*Consultant to Donald W. Douglas L a b o r a t o r i e s 
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FIGURE 2. INTERRELATION OF VARIABLES. SOLID 

LINES ARE LOCI OF T e (IN °K) AND X 0 ( I N 

MM). BROKEN LINES ARE LOCI OF >)'D/<C 

(IN WATTS/cm
2
). DRAWINGS REPRESENT 

FUELED EMITTERS FOR 1 MW OUTPUT 

(SEE TABLE III) 

Optimum Bat tery for Given I and φ^  F igure 3 shows values of output voltage V m a x 

which yield the sma l l e s t bat tery lor given values of I and φ^ with negligible e lec t ron 
cooling. The values V m a x for significant e lec t ron cooling a r e somewhat higher than 

max ' 
as shown in Equation B2 of Appendix Β 

Vacuum Mode  F o r a vacuum thermionic diode with e lec t rode spacing d, t rue col
lec tor work function φε, and emi t t e r work function Φβ < e V 4 ^ ^ + 2 k T e , a sufficiently 
good approximation for p resen t purposes is 

t>' = Φ + k T 
c c e 

fe · ' ) ' 

V  Φ 
r
c

 T
c 

for d > χ 

for d < χ 
(D 

where 

= b U a / I ) 1 / 2 T 
3 / 4 

D (2) 

and b = 1. 4 χ 10 (amp) / Κ . Values of χ a r e included in F igure 2. The p e r 
formance of the bat tery in the vacuum mode there fore is independent of spacing for 
d < x0> However, as can be seen from Equation 1 and F igure 2, the ba t te ry d iamete r 
D requi red for a given I i n c r e a s e s rapidly for spacing d appreciably g r e a t e r than 2x . 
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FIGURE 3. LOCI OF OPTIMUM OUTPUT VOLTAGE 

V m a x AND ASSOCIATED </>c. DRAWINGS 

REPRESENT FUELED EMITTERS FOR IN

DICATED OUTPUT POWERS WITH D / d * 300 

ANDp 1 WATT/cm
3
(SEE TABLE I I I ) . 

In p r a c t i c e , the d í a m e t e r  t o  s p a c i n g 
ra t io D/d often is m o r e c lose ly r e l a t ed to 
what i s p rac t i ca l ly achievable than is the 
spacing d alone. It can be shown that for 
constant I and D/d , m i n i m u m ba t t e ry s ize 
o c c u r s n e a r V = V m a x for η < 0. 05. Maxi
miza t ion of efficiency η with r e s p e c t to I 
(using V = V m a x in Equation B  l ) , shows 
that with a given achievable value of D/d 
m a x i m u m efficiency occu r s for φ£.  1. 09 Φα 

over the range of F i g u r e s 2 and 3. This 
in t u r n l e ads , via t h e p rev ious equat ions , 
to the r a t h e r r e m a r k a b l e conclusion that 
for given va lues of p, ec> Φα, and D/d , 
t h e r e ex is t s an opt imum total output power 
for which the efficiency is a m a x i m u m . 
F o r th i s fully opt imized c a s e , d 0 pt = 2. 2x 0 , 
and the opt imum tota l c u r r e n t is 

v2 
amp (3) I . = (3 χ 10 

opt v ■
u
>.T.

3/2
sr 

Because T e and V m a r e insens i t ive to 
all v a r i a b l e s , the opt imum total output 
power is re la t ive ly insens i t ive to all prop
e r t i e s of the device except the d i a m e t e r 
to  spac ing ra t io D/d . 

Discharge Modes  The preceding f o r m a l i s m is readi ly applied to both the ignited and 
unignited d i scha rge modes of the ce s ium diode, but sufficient space is not available 
for its descr ip t ion h e r e . However , it can be shown that for a given D/d , the effi
ciency in the vacuum mode is g r e a t e r than that in e i ther the ignited or extinguished 
modes for e m i t t e r t e m p e r a t u r e s below about 1400°K. This in t u rn e s t ab l i she s , 
through Equation 3, the m a x i m u m tota l power for which the 'vacuum mode is super, 
ior for a single ce l l ( £ 1 wat t ) . 

Effect of Col lec tor T e m p e r a t u r e in the Vacuum Mode  It can be shown that a col lec tor 
t o  e m i t t e r t e m p e r a t u r e ra t io up to T c / T e = 0 .78 will not apprec iably affect the e l e c 
t r i c a l output of the opt imized ba t t e ry . However , rad ian t heat t r a n s f e r is reduced by 
a factor of about 0. 6 for this condition, which is equivalent to a s i m i l a r reduct ion in 
the value of ec in the foregoing r e s u l t s . 

COMPONENT TECHNOLOGY 

Relat ive Impor tance of P r o p e r t i e s  Table I s u m m a r i z e s the preceding r e s u l t s through 
the use of approximat ions appropr i a t e in the region of v a r i a b l e s of F i g u r e s 2 and 3. 
Although the re la t ions in Table I a r e not p r e c i s e , they a r e useful for recognizing the 
re la t ive impor tance of the diode p r o p e r t i e s . Values of these p r o p e r t i e s which a l ready 
have been achieved in expe r imen ta l dev ices , and those which should be obtainable with 
existing technology, a r e s u m m a r i z e d in Table II and a r e then d i s c u s s e d . 
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Table I - Approximations for Vacuum Mode Operat ion 
Case 

d<x 0 = 1 0 - 3 ( f ) 7 ^ c m 

D 
- j - given 

I (amp) 

Given 

3 2 
(5χ10- 7 ) & φ ε "2(^) 

(optimum) 

v m a x ( v ) 

0. 144>c 

0. 15Φ€ 

Efficiency, η (forn<0. 06) 

[ ι ο 8 \ Φ < χ 0 + 9 ] 
-1 

( 2 x l 0 V \ ( d
D ) +9 

L a p 0 J 

- 1 

(p in watts/cm-^, Φ€ in ev) 

Table II - P r o p e r t i e s Obtainable with Known Technology 
(demonst ra ted - projected) 

d 

0. 2 - 0. 02 mm 

D / d 

100 - 1000 

a 

6 

*e 

1.5 - 1. 3 ev 

Φ 

1. 5 - 1. 0 ev 

ec 

0. 05 - 0 . 02 

Ρ 

0. 3 - 100 
w / c m J 

Elect rode Configuration - The spacings (0.02 S d s 0. 2 mm) and d i a m e t e r - t o - s p a c i n g 
ra t ios (100 S D/d £ 1000) p resen t ly employed in high power thermionic conve r t e r s 
a re quite conserva t ive for the low power devices desc r ibed h e r e , because of the much 
lower t e m p e r a t u r e and heat flux r e q u i r e m e n t s . In addition, the fuel can be fully en
closed within a cyl indr ica l emi t t e r (F igures l c - e ) , so that 4 < a < 6 is quite feasible 
without the use of complex t h e r m a l shielding. 

Surface P r o p e r t i e s - At the low emi t t e r opera t ing t e m p e r a t u r e s and c u r r e n t dens i t i e s , 
the required emi t t e r work function φβ can be obtained with conventional r e f rac to ry me ta l s 
i m m e r s e d in ces ium vapor at p r e s s u r e s so low that no significant e lec t ron sca t te r ing 
o c c u r s . The emi t t e r ope ra t e s near the work function min imum where the co l l ec to r s 
of conventional c o n v e r t e r s usually ope ra t e . F u r t h e r m o r e , it is now feasible to use 
very low work function photocell surfaces as the co l lec to r . S imi la r ly , a lower value 
of radiant emiss iv i ty e can be mainta ined at the lower t e m p e r a t u r e s employed h e r e . 

Net Fuel Power Density - The power densi ty ρ obtainable with available radioisotopes 
and the genera l technology of the i r use as heat sou rces a r e d i scussed adequately e l s e 
w h e r e . However, the re la t ively low t e m p e r a t u r e and smal l s ize of the fuel capsule 
in the presen t application great ly suppres s p rob lems of m a t e r i a l s compatibi l i ty and 
helium containment which have a r i s e n in previous rad io i so tope- the rmion ic dev ices . 

Pa r t of the total fuel heat is lost through the emi t t e r suppor ts and by e lec t ron cooling. 
This reduces the effective power densi ty of the fuel capsu le . The effective power 
density p 0 (defined in Equation B - l ) takes into account the reduction in ρ caused by 
e lec t ron cooling in the absence of lead and support l o s s e s . Again because of the 
relat ively low t e m p e r a t u r e involved, and due to the absence of t h e r m a l insulat ion or 
radiat ion shie lds , a wide var ie ty of m a t e r i a l s and methods can be used, including 
c e r a m i c spacer g ra ins in multifoil insulat ion. 

I l lus t ra t ive Examples - Scale drawings of the fuel capsule for a 1 mi l l iwat t ba t te ry 
a r e included in F igure 2 with the operat ing point at the cen te r of the drawing for each 
ca se . Each case also is s u m m a r i z e d in Table III. Case A r e p r e s e n t s diode property-
values which a l ready have been demons t ra ted , combined with a fuel power densi ty 
P0= 1 w a t t / c m ^ , which can be achieved with many rad io i so topes . This includes Pm-147 
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TABLE III 
SUMMARY OF EXAMPLES SHOWN IN FIGURES 2 AND 3 

(ec = 0.05, α - 6) 

CASE 
A 

Β 

A' 

B' 

A 

Β 

C 

D 

E 
F 

G 

OUTPUT FWR. (MW) 

1 

3 

2.7 

0.1 

1 

10 

100 

300 

(ev) 

1.5 

1.1 

1.3 

"o w 
cm 3 

1 

10 

1 

10 

1 

10 

1 

• 
V 

(volt) 
0.20 

0.23 

0.17 

0.35 

0.60 

0.63 

0.17 

0.18 

0.23 

0.27 

0.30 

Τ β 
(°K> 
810 

920 

650 

780 

810 

920 

690 

730 

780 

900 

1030 

·· 
η 
(%) 
0.3 

1.8 

2.2 

9.6 

1.0 

5.0 

0.2 

0.9 

2.4 

4.2 

3.0 

d 
(mm) 
0.09 

0.02 

0.04 

0.02 

0.09 

0.02 

0.20 

0.06 

0.03 

0.05 

0.08 

D 
(cm) 
0.74 

0.20 

0.40 

0.11 

0.74 

0.20 

0.40 

0.52 

0.81 

1.44 

2.35 
OPTIMUM; EXCEPT FOR 0.60 AND 0.63 ν IN CASES 

A AND Β 
DOES NOT INCLUDE LEAD AND SUPPORT LOSSES 
MAXIMUM; CASES C-G ARE FOR D/d <300 

(half-life 2. 6 y e a r s ) and Pu-238 (86 y e a r s ) , 
which would r equ i r e no shielding for mos t 
appl ica t ions . Case Β r e p r e s e n t s the same 
diode p rope r ty values as Case A, butwith 
P0= 10 w a t t / c m , such as could be ob
tained using Po-210 (0. 4 y e a r s ) , or 
C m - 2 4 4 (18 y e a r s ) , requi r ing minor and 
m o d e r a t e shielding re spec t ive ly for bio
logical appl ica t ions . C a s e s A' and B'show 
the reduct ion in the size obtained for 
C a s e s A and Β when a technical ly feasible 
lower co l lec tor work function is employed. 
Al terna t ive ly , C a s e s A and Β show the 
change in C a s e s A' and B'which would 
occur if the output voltage w e r e i nc reased 
f rom the opt imum V m a x = 0.2 volt to 
V = 0. 6 volt; 

Doubling the indicated spacing would in
c r e a s e the d i a m e t e r by l e s s than 10% for 
all c a s e s . Optimizing the co l lec tor t e m 
p e r a t u r e would d e c r e a s e the d i ame te r 
by a|S much as 30% and i n c r e a s e the effi
ciency by as much as a factor of 2. 

The drawings in F i g u r e 3 r e p r e s e n t fuel 
capsu les for va r ious power levels with 

, 0 - . ._>.,.—. . As can be seen in Table III, the 100 mi l l iwat t c a se is 
approximate ly fully opt imum (maximum efficiency) in accord with the exp re s s ions in 
Table I for this D/d . 

D/d < 300 and Ρ = 1 w a t t / c m 3 . 

EXPERIMENTAL MODELS 

Seve ra l min ia tu re the rmion ic ba t t e r i e s have been cons t ruc ted and opera ted using 
P m - 1 4 7 or e l e c t r i c a l heat s o u r c e s . Cyl indr ica l t an ta lum e l e c t r o d e s , spaced 0. 2 5 m m 
apar t with sapphi re ba l l s , have been used as a read i ly avai lable and reproduc ib le 
means of verifying the x r i m a r y p r inc ip les of the concept , and for developing f ab r i ca 
tion, a s sembly , d iagnos t ics and in t eg ra l r e s e r v o i r technology. A device with a 2 c m 
d i ame te r e m i t t e r containing t r ip ly encapsula ted P m ^ O j powder as fuel, de l ive r s 
about 1. 5 mi l l iwat t s with an effective fuel capsule power densi ty of 0. 3 w a t t s / c m 3 . 
This device , shown in F i g u r e 4 has opera ted in excess of 2500 hours in a continuing 
t e s t with no observed degrada t ion beyond that expected due to radioisotope decay. 
The exper imen ta l r e s u l t s genera l ly give confidence that C a s e s A and Β in F i g u r e 2 
can be achieved with demons t r a t ed m a t e r i a l s and techn iques . F u t u r e diode t e c h 
nology development will be d i rec ted p r i m a r i l y toward uti l izing lower co l lec tor work 
functions, and improving the e m i t t e r suppor t and a s s e m b l y des ign. 

APPLICATIONS 

A lengthy d i scuss ion of the a r e a s of p r a c t i c a l use for m in i a tu r e the rmion ic b a t t e r i e s 
is nei ther poss ib le nor appropr i a t e h e r e . However , s e v e r a l exist ing genera l a r e a s of 
potential use for such devices can be ci ted: e l ec t r i c watches (10 μw); b iomedica l 
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sensors and stimulators, including cardiac 
pacemakers (0. 1 to 1 mw); and various 
ecological, geophysical and military t e l e m 
etry units (11000 mw). In addition, 
multiple cel l miniature thermionic batter
ies (0. 11 watf /cel l ) can compete favorably 
in s ize and weight with more conventional 
isotopepowered generators up to tens of 
watts. Furthermore, such arrays pos
s e s s a much higher degree of redundant 
reliability than previous thermionic gener
ators. Modular encapsulation and the much 
lower temperatures of the miniature diode 
system should also greatly reduce crucial 
fuel handling and containment problems. 

APPENDICES 

A  Basic Thermal, Emiss ion and Con
figuration Constraints  At steady state, 
the rate of heat generation P_ in a fuel 
pellet of average volume power density ρ 
is equal to the rate at which heat is lost 
by thermal radiation P r , by electron cool
ing P e , and by conduction P c through the 
emitter lead and supporting structure with 
thermal conductance G, i. e. , 

-· 

FIGURE 4. Pm-147 FUELED 1 MILLIWATT THERMIONIC 

BATTERY (ACTUAL SIZE) 

P r + P e + P c = i D h p / 4 (A l ) 

where Ρ = I (eV + «?'c + 2kT ), Ρ = G(T e  T c ) , 

Ρ = σ(Τ„ r e T c H  d ^ + Π€. 
πο2 

+ p«duDh + q e ^ D h ) (Α2) 

and Τ and Τ are the respective emitter and collector temperatures, σ and k are 
the StefanBoltzmann and Boltzmann constants respectively, e is the electronic 
charge, and e¿ and 

regions respectively, 
parameters (m, n, p, 

e are the net thermal emiss iv i t i es of the diode and nondiode 
The configurational variations are represented by the set of 
q) given for each in Figures l a  l e . 

For a given current I, the heat removed by conduction and electron cooling is rela
tively insensitive to all, variables . It is convenient, therefore, to define a net heat 
generation rate P ' 

?'-- p-4 

 P g  d 

P + P 
e c 
rD

3 

P c ) , with an associated net volume power density 

(A3) 

Accordingly, to a good approximation, the minimum fuel pellet volume is obtained 
when dPg/dh = 0, which from Equations 1 and 2, occurs for the optimum heightto

diameter ratio 

^¿pt 

me , + ne 
d o 

P
£
d + q

£
o 

(A4) 
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The value of the optimum ratio r for each configurational variation is given in 

Figures la  l e . Note that a square cylinder is optimum for all variations if e¿ = «0. 

Furthermore, Equations A2 and A4 require that 

D = 6<rec(T^T^)/p' (A5) 

where e = pe¿ + q€Q is the net thermal emissivity of the cylindrical region. For 

negligible collector emission, Equations A4and A5, and the Richardson equation com

bine to give 

'» LvV)
2 

,2 

Te =(eV+ +;) /k£n \\-^) —  ^ (T¡  TJ ) 
A l r a T

e ,m4 m4
 2 

(A6) 

where A is the Richardson constant. 

The values of a = m + 4 pr for each configurational variation are included in Figure 1. 

The unique relationship of Te and p'D/ec to the quantities eV + $¿. and (p'/€c)
2
 I/a, for 

T e » T c , is shown in Figure 2. The appropriate value of p'can be found by iteration, 

using values of Te , D and eV + Φς: attained from Figure 2 in Equations A-2 and A-3. 

Β - Optimum Battery for Given I and φ^ - The efficiency of conversion of heat into 
electrical power, neglecting conduction and lead losses but including electron 
cooling, is 

IV 
η = - ^ - = βη' ( B - l ) 

/ eV + φ' + 2kT \ _ 1 

where η ' = ^ - . a = ( 1 + " ' ' \ e η') and ρ = p _-*- Ü&

,poD
3
r '

 V e V
 ' °

 P π
 rD

3 

The smallest battery is obtained when the efficiency Λ is maximized. Differentiation 

of Equation Bl with respect to V, with T e » Τ , shows that maximum efficiency is 

obtained for a given current I and effective collector work function φ' when the out

put voltage is 

V =V' (1 + 7η') for η'< 0. 1 (B2) 

max max
1
 " 

where V' = ( φ ' + lOkT )/l le 

max
 v T

c e 

Values of V and corresponding values of φ' are included in Figure 3. 
m a x ï & T C & 
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DISCUSSION 

Speaker of paper B - l 5 : J . DESTEESE. 

PRUSCHECK (Germany): 
What a r e the electrode m a t e r i a l s . Especial ly , what is the ma te r i a l of the 
co l lec tor? 

DESTEESE (USA): 
The col lector ma te r i a l was tantalum with controlled surface impur i t i es . 
These surfaces show work functions in the range 1.4 to 1. 5 eV. 

KARETNIKOV (USSR): 
Could you give the vo l t -ampere cha rac te r i s t i c of such a diode in the range 
of p a r a m e t e r s which you cited at the beginning of your pape r? 

DESTEESE: 
F igures 2 and 3 a r e a bet ter indication of performance than specific current-
voltage cha rac t e r i s t i c s . These devices can be built to have pract ica l ly any 
current -vol tage cha rac te r i s t i c within the domain shown in Fig . 2 and in fact 
you may consider F ig . 2 as a modified current -vol tage plot. 
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THERMIONIC ELECTRICAL POWER GENERATION 
FROM REENTRY PLASMAS* 

I. PERFORMANCE 
II. INTEGRATED SYSTEM 

K.J. Touryan and M.M. Sluyter 

Sandia Laboratory, P.O. Box 58OO 

Albuquerque, New Mexico 87II5 

ABSTRACT 

The paper describes the theory of a plasma power generator from a 

reentry vehicle. The nose cone serves as a thermionic emitter and the 

vehicle afterbody as collector. Performance parameters are ident i f ied. 

Experiments indicate satisfactory correlation with the theory. More

over, to increase the conductivity of the plasma, the nose cone was 

impregnated with cesium. Various size pore emitters were used. Experi

ments show signif icant increase in the electron density. Final ly, an 

integrated system is described. The system uses the electr ical power 

derived thermionically to produce magnetic f ields which interact with 

the conducting flow f i e l d . I t is suggested that a possible application 

of such a device would be for trajectory control of reentry vehicles. 

♦This work was supported by the U. S. Atomic Energy Commission, 
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SECTION I: CONVERTER PERFORMANCE 

INTRODUCTION 
During atmospheric entry the surface of a vehicle is heated by the 

hot ionized ai r surrounding i t , to temperatures where thermionic emission 

could become signi f icant. Temperatures near the stagnation point of the 

nose cone may be in excess of 10,000°K, while those on the vehicle after

body may be about 3000-5000°K. 
1-3 Extensive studies at the Sandia Laboratory have shown that such 

energy levels could be used readily to generate DC-power i f the vehicle 

could be allowed to operate as an "external" thermionic converter. 

This paper describes the theory of such a converter and a potential 

application in which the power obtained is used for the control of a 

re-entry vehicle. 

THEORY 

The schematic of a re-entry body is shown in Figure 1. The nose 

cone serves as the emitter. The electrons are conducted through the 

ionized ai r plasma and collected over the afterbody which serves as an 

anode. An internal load between the cathode and the anode completes the 

c i rcu i t . The plasma mode of the generator operates in the region where 

the Debye sheath is essentially coll isionless and is smaller than the 

electron or ion Larmor rad i i . 

Neglecting capil lary ion emission and assuming a space-charge neu

tral ized emission, the current-voltage (C-V) characteristic of the 

device i s : 
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'¿Λϊ 

(1) 

σ, - 1 

^ ( τ τ Λ π Μ . " I r (internal) 
TV + Ve/ 

For the space-charge controlled sheath at the cathode, the f i r s t 

term in Eq 1 is modified to include the effect of a double sheath. This 

implies the possibi l i ty of trapped electrons near the wall and, conse

quently, the current density is determined using a more detailed number 
4 

density balance near the cathode, including a simple f i r s t - co l l i s i on 

model. 

Unlike a plasma diode, the device acts more l ike a plasma generator. 

The primary contribution to the voltage comes from the f i r s t term of 

Eq 1. I t can be seen that the following performance parameters are 

c r i t i c a l : 

1. Large emitter area for increased short-c i rcui t current. 

2. Large collector-to-emitter area rat io for increased short-

c i rcu i t current. 

3. Τ (emitter) » Τ (col lector) . 

4. High plasma electron temperature T" for high-voltage operation. 

5. High plasma conductivity and short emitter-collector separation. 

6. Emitter and collector materials. 

7. Capillary ion emission from a porous emitter. 
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EXPERIMENTS 

To ver i f y the analyt ica l p red ic t ion , an extensive set of experiments 

were performed in the Sandia Laboratory plasma arc j e t s . Sat isfactory 

correlat ions were obtained between the s imp l i f i ed theory (see Eq 1) and 

experiments. 

To fu r ther neutra l ize the space charge and increase the plasma con

d u c t i v i t y , a series of seeding tests were conducted using cap i l l a ry Cs-ion 

emission from porous tungsten, and tungsten-rhenium emitters (nose-cone). 

The porous emitters were tested at surface temperatures in the range 

2800°C < Τ < 3200°C. Figure 2 shows the s h o r t - c i r c u i t current output 

from f ine pore s i ze , coarse pore s i ze , and so l i d emi t ters . The re la 

t i ve l y poor performance of the f ine-pore-s ize emitters could be traced 

to the s in ter ing of tungsten p r i o r to depletion of cesium. 

Both argon and nitrogen were used in the a rc - je t tests and electron 

density p ro f i l es in the emit ter v i c i n i t y were obtained from Η - l i n e 

broadening measurements (by adding traces of hydrogen). They indicate 

a fac tor of 3 to 5 increase in electron density over the no-seeding, 

sol id-tungs ten emit ter case. 

Calculations s im i la r to those given by Taylor and Langmuir, or more 

recently by LeBihan and Maugis, show that zero- f i el d cesium-ion current 
2 

densit ies average 10 ma/cm fo r the coarse-pore-size emit ters. This is 

in good agreement with experimentally measured current values. 

SECTION I I : AN INTEGRATED SYSTEM 

An average re-entry t ra jec tory is characterized by large ve loc i ty 

and density changes wi th gradients which are d i rec t l y proport ional to the 

re-entry angle. For a r e a l i s t i c estimate of thermionic power generat ion, 
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several sets of f low-f ie ld calculations were made, for both ba l l i s t i c 

trajectory and orbi tal re-entry path. 

The dissociated-ionlzed a i r model consisted of 12 a i r species, as 

well as Cs and Cs . The resulting electron temperatures and number 

density curves were used with estimates of emitter-collector surface 

temperatures to calculate the thermionic performance characteristics of 

the re-entry vehicles. Figures 3 and 4 show the expected power output 

from these generators. Clearly, an orbi ta l entry yields a higher power 

level and maintains a more uniform output than a ba l l i s t i c entry. 

A potential application of these properties is an integrated system 

in which the converter-derived power is u t i l i zed for orbi tal re-entry 

f l i gh t control. In concept this envisions the use of electr ical power 

to generate magnetic f ields which, by interacting with the conducting 

flow f i e l d around the body, w i l l produce forces and torques. A theory 

for the magnetic and f l u i d dynamic interaction has been worked by the 

authors for spinning bodies of revolution. The system consists of a 

conventional structure of copper coils capable of generating a peak f i e l d 

of 1000 gauss. The coils would weigh 0.9 kg and occupy a space of 0.012 χ 
-4 3 10 m . The power consumption is calculated at 2.8 kw. The effect of 

the magnetic f i e l d is to decrease the velocity and the axial drag. More

over, the original torque exerted by the viscous f l u i d and opposing the 

spin is reduced as a result of the magnetic interaction. 

Scalar electr ical conductivity was assumed throughout since reduc

t ion 1n conductivity, due to i t s tensor nature, is shown to be of small 

magnitude. 
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Fig. 2. Short-circuit current output with and without seeding (0.1 gm/sec) 
from tungsten emitters, 3/4 inch diameter 
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United States of America 

ABSTRACT 

The design and testing of two single-cell fission powered t he rm
ionic conver ters is presented. Single-Cell In-Pi le Test 509 (SCIP-
509) contained a vent in the emi t te r clad which allowed fission gases 
to pass into the interelectrode space . Single-Cell In-Pi le Test 510 
(SCIP-510) had a sealed emi t te r clad s t ructure which contained 
fission gases within the clad. Layouts and photographs of the 
hardware , operational current-vol tage charac te r i s t i c s , and post -
operational resu l t s a re presented. 

INTRODUCTION 

A significant decision in the design of a fission powered thermionic converter is. 
the choice of method for accommodation of the fission product gases generated in the 
fueled emi t te r s t ruc tu re . It is the purpose of this paper to present the design and 
testing of two single-cell converter tes ts alike in all significant design features , 
except in the handling of the fission product ga se s . Single-Cell In-Pi le Test 509 
(SCIP-509) contained a vent in the emi t te r clad which allowed the fission gases to pass 
into the interelectrode space; Single-Cell In-Pi le Test 510 (SCIP-510) had a sealed 
emi t te r clad s t ruc ture which contained the fission gases within the clad. The extended 
operation of these two conver ters allows at least a qualitative comparison between the 
operation of vented and non-vented conver ter configuration. 

A discussion of the design of the SCIP conver te r s , the testing environment and 
method of test ing, the operational r e su l t s , and finally post-operat ional examination 
allow a framework from which the qualitative comparison can be made. To aid in the 
clar i ty of presentat ion, the SCIP-510 tes t is reviewed f i rs t . 

*This work was performed for the Atomic Energy Commission under Contract No. 
AT(04-3)-189, P . A . 32. 
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SCIP-510 Design 

Construction details of SCIP-510 are shown in Figure 1. At the left is a cut-away 
drawing of the complete converter . At the center is an enlarged view of the active diode 
region, while at the far right is a photograph of the emi t te r . 

The emit ter was fueled with uranium dioxide in the form of a cored pellet. This 
pellet was enclosed in a tungsten emit ter clad. The vapor-deposited tungsten cylinder 
was sealed at both ends by electron beam welding vacuum arc cast tungsten caps in 
place. To one of these end caps, a tungsten pin was attached to stranded copper wire 
which led to the support post in a meta l - to-ceramic seal assembly. The spacing of the 
emit ter from the nickel collector was accomplished by the use of small tungsten pins 
imbedded in a molybdenum ring, which in turn was supported by a pair of alumina 
insulators placed in a machined groove in the collector. Identical assemblies were 
located at each end of the emi t te r . The cesium re se rvo i r assembly contained one gram 
of liquid cesium; The nickel collector assembly was welded to the ce ramic- to -meta l 
seal assembly by a nickel to Inconel weld. Electr ic output of the thermionic converter 
appeared across the meta l - to-ceramic seal . 

Encapsulation of the converter and installation in the test reac tor are shown in 
Figure 2. At the left is a photograph of the encapsulated converter without its outer 
capsule can, which is shown in the photograph at the center . At the far right is a 
schematic drawing of the capsule installation in the reac tor . 

The collector heat distr ibutor, e lectr ic t r im heater , and the variation of hel ium-
argon gas mixture in the capsule permitted temperature control of the collector during 
operation. A s imilar arrangement of heat distr ibutor , heater , and gas gap controlled 
the cesium rese rvo i r tempera ture . The irradiat ion capsule was located in a positioning 
device next to the active core and just outside the p re s su re vessel of the irradiation 
reactor . This arrangement allowed variation of converter power input by movement of 
the converter toward and away from the reactor core . A flexible metal hose, containing 
instrumental and power leads, connected the capsule to a control console. 

SCIP-510 was originally installed in the test reac tor during March, 1966. During 
insertion, a slow r i se to power was made to permit acquisition of current-voltage 
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charac te r i s t i cs over a wide range of test conditions. After reaching the life test output 
of six watts per square cent imeter , current-vol tage charac ter i s t ics were again taken. 
Throughout the test period of 3,596 hours , current-vol tage charac te r i s t ics were 
obtained approximately every 200 hours . Input power was somewhat variable due to 
reac tor operation and method of test control . Emit ter temperature was inferred by 
the examination of the I-V charac te r i s t ics and their comparison with out-of-reactor 
tests of s imi la r conver te r s . Figure 3 presents I-V charac te r i s t ics measured very 
soon after the s ta r t of test and shortly before the test ended. It is seen that for 
essentially the same emit ter and cesium re se rvo i r t empera tu res , the charac te r i s t ics 
of the diode remained unchanged throughout the course of the testing. 

After 3,596 hours of testing, a short circui t appeared between the emit ter and 
collector. The site of the short circui t was examined in a hot cell , and the emit ter 
was found to be bulged by about 0. 007-inch at the maximum. No detectable fission 
products were found external to the tungsten emi t te r , thus documenting the leak tight
ness of the tungsten clad throughout the operation. The resu l t s of the measurements in 
the hot cell a re consistent with the hypothesis that the fission gas p re s su re internal to 
the tungsten clad had caused c reep in the tungsten wall, such that the tungsten eventually 
shorted to the nickel col lector . Analytical calculations based on approximately 100% 
re lease of fission gases and using available c reep data for tungsten corroborate the 
hypothesis. 

SCIP-509 

SCIP-509 was essentially identical to the SCIP-510 described in the preceding 
except for the design of the emit ter s t ruc ture itself. A vent in one end of the emit ter 
allowed ¿he fission gases to escape into the interelectrode spaces while containing the 
UO_ fuel in the tungsten emi t te r . The diameter of the vent (Figure 4) was 0. 020-inch. 

The operation of SCIP-509 was s imi la r in all important aspects to that of SCIP-510. 
The device operated in the reac tor for 2, 812 hours , at which time a leak in the 
envelope developed allowing gases from the capsule into the converter , and the con
ver ter was withdrawn from the r eac to r . The behavior of the converter was consistent 
with the hypothesis that the buildup of fission gases in the interelectrode space caused 
an increase in the thermal losses from the emi t te r , thereby reducing the efficiency of 



356 

conversion. For constant load current and emit ter temperature , an increase in input 
power oi' approximately 10'/ί was required to overcome the increased thermal cooling 
effect of the fission gases . This effect increased asymptotically during the first 1,000 
hours of operation and thereafter remained essentially constant. Thermionically, the 
major effect noted was a lowering of the optimum cesium rese rvo i r tempera ture . 
Figure 5 shows comparative output charac ter i s t ics from SCIP-510 and SCIP-509 at 
around the 2, 700-hour operating t ime. It can be seen that SCIP-509 continued to produce 
comparable output but at lower cesium rese rvo i r t empera tures . From these cha rac 
ter is t ics it is seen that although the effect of the fission gases is certainly measurable , 
the overall effect is not large. 

Upon disassembly of the converter in the hot cel l , the emit ter was measured to 
show no detectable change in dimensions and generally was in excellent condition. 
Figure G is a photograph of the SCIP-509 emit ter as it appeared after operation. The 
vent hole can be seen in the end cap. No detectable amounts of uranium were found 
external to the emit ter , and fission products other than the inert fission gases were 
present only in t ract amounts. A total of 1.63 standard cubic cent imeters of xenon 
plus krypton were found in the diode space. This corresponds to a p r e s s u r e of 178 
to r r of p res su re at operating tempera ture . Significantly, this is some lOf1 t imes the 
cesium p re s su re associated with the 290 C optimum cesium re se rvo i r tempera ture . 

SUMMARY 

In conclusion, two in-pile thermionic tests have been operated for t imes of approx
imately 3,000 hours , one with a sealed emit ter and one with a vented emi t te r . The 
sealed emit ter test was terminated by the shorting of the emit ter to the collector, 
probably due to creep of the tungsten clad caused by internal fission product gas 
p r e s s u r e . The vented test was terminated due to a failure of the envelope, an indepen
dent event. The fission product gases were released from the emit ter as intended. 
The UO fuel was contained in the emit ter as intended, and the overall effect on the 
operation of the converter was hypothetically explained by the increased thermal 
losses from the emit ter to the collector. 
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DISCUSSION 

Speaker of paper C - I : J . E . VAN HOOMISSEN. 

BUGL (Euratom): 
What was the wall thickness of the tungsten e m i t t e r ? How high was the 
p r e s s u r e due to fission gas r e l ea se in your closed sys t em? What was the 
fast flux you accumulated during the tes t on the tungsten e m i t t e r ? 

VAN HOOMISSEN (USA): 
The wall th ickness of the emi t t e r was 40 m i l s , the fission gas p r e s s u r e in 
the conver ter was roughly 200 T o r r and we would multiply it by about 20 
to take it back into the confines of the emi t t e r so that the re might be a p r e s 
sure of 4000 T o r r . I do not have a number at the moment for the fast flux 
above, 1 MeV. 

SCHOCK (USA): 
How was the emi t t e r t empera tu re m e a s u r e d ? 

VAN HOOMISSEN: 
The emi t t e r t empera tu re was inferred by looking at the I-V cha rac t e r i s t i c s 
which were compared with out-of-pile r e s u l t s . There was no thermo-couple 
on the emi t t e r s themse lves . We also at the same t ime had relat ively good 
ca lo r imet r i e m e a s u r e m e n t s . One ican calculate back to the emi t t e r t e m p e 
ra tu re with this information. There were no d i rec t m e a s u r e m e n t s . 

SCHOCK: 
Have you any explanation why the optimum cesium p r e s s u r e was so differ
ent in the vented and unvented t e s t s ? 

VAN HOOMISSEN: 
I don't . I think that the theore t ic ians could have some opinions but we do 
not have a definite explanation. 

PEEHS (Ge rmany) : 
Have you sectioned the emi t t e r after i r rad ia t ion? Have you found some UO_ 
behind the heat shield? 

VAN HOOMISSEN: 
We have not completed the longitudinal sectioning of the vented case , so we 
cannot state whether or not there is any UO_ behind the tungsten d isc . 

PEEHS: 
Have you some information about the t empera tu re distr ibution during i r r a -
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d i a t i o n ? 

VAN HOOMISSEN: 

No d i r e c t m e a s u r e m e n t s of c o u r s e , h o w e v e r , one c a n m a k e a n a l y t i c a l e s 

t i m a t e s . 

P E E H S : 

How do you exp la in the m e c h a n i s m tha t no U O _ - l o s s o c c u r s ? 

VAN HOOMISSEN: 

A s one can see f r o m the s t r u c t u r e of the ven t , one p a s s e s t h r o u g h a r e l a 

t ive ly c o o l e r a r e a a s one m o v e s out of the e m i t t e r . We have looked at t h i s 

e x p e r i m e n t a l l y out of the r e a c t o r and have s e t the ven t s i z e a t an o p t i m u m 

so tha t the fuel wi l l s t ay in and the gas c o m e out. 

DEVIN ( F r a n c e ) : 

What w a s the spac ing of the c o n v e r t e r ? 

VAN HOOMISSEN: 

7 m i l s . 

DEVIN: 

W e r e y o u r I-V c u r v e s t aken with DC o r an AC s w e e p ? 

VAN HOOMISSEN: 

A C . 

DEVIN: 

And what w e r e the s t e ady c o n d i t i o n s ? 

VAN HOOMISSEN: 

They w e r e not a l w a y s exac t ly the s a m e , but for the ones p r e s e n t e d we u s e d 

a p p r o x i m a t e l y 10 A m p s / c m DC. 

SCHOCK: 

If the vent hole was app rec i ab ly ' c o o l e r than o t h e r p a r t s of the fueled e m i t 

t e r , how can you be c e r t a i n tha t the ven t was not p lugged with UO a f t e r a 

while ? 

VAN HOOMISSEN: 

J u s t by examin ing it a f t e r w a r d . It does not a p p e a r to be p lugged at a l l . 
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Waltham, Massachuse t t s , USA 

ABSTRACT 

Under United States Atomic Energy Commiss ion sponsorship , 

The rmo Elec t ron Corporat ion is conducting an Advanced Technology 

P r o g r a m aimed at improving the life and per formance of in-pile 

c o n v e r t e r s . This p r o g r a m involves the in-pi le and out-of-pile t e s t 

ing of thermionic conver t e r s incorporat ing improved e lec t rode s u r 

faces . Several different tungsten and rhenium emi t te r surfaces a r e 

being investigated over a f ive-year per iod. 

As an initial phase of this effort, The rmo Elec t ron Corporat ion 

has conducted a l o n g - t e r m in-pile tes t of Converter SD-4 in the 

Battel le Memor ia l Inst i tute Reac to r . The cyl indr ical conver te r had 

an e tched- rhen ium emi t t e r , a molybdenum-coated niobium col lector , 

and a uranium-dioxide vs tungsten c e r m e t fuel. Both in-pile and out-

of-pile t e s t s were performed on SD-4. 

This paper d e s c r i b e s the design of SD-4 and the tes t r e s u l t s 

obtained in-pile and out-of-pi le . A compar ison is presented for 

the diode per formance at var ious t imes throughout i ts tes t h is tory . 

The col lector t e m p e r a t u r e , ces ium r e s e r v o i r t e m p e r a t u r e , power 

output, power input, and efficiency a r e repor ted . Based on emi t te r 
I 

t e m p e r a t u r e s m e a s u r e d during out-of-pile t e s t s , e s t ima tes a r e presented 

of the emi t t e r t e m p e r a t u r e s during in-pi le t e s t s . The in-pile ca lo r ime t ry 

techniques used to m e a s u r e power input a r e descr ibed with supporting 

tes t data. 
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INTRODUCTION 

In S e p t e m b e r of 1965, T h e r m o E l e c t r o n s t a r t e d an i n - p i l e t e s t at 

the BMI r e a c t o r u n d e r USAEC s p o n s o r s h i p . The t e s t c o n s i s t e d of a 

c y l i n d r i c a l t h e r m i o n i c c o n v e r t e r wi th a r h e n i u m e m i t t e r fueled with 

a c e r m e t of UO -W. The e x t e r n a l e n v i r o n m e n t of the c o n v e r t e r w a s 

a s t a t i c vacuum f o r m e d by an in i t i a l p u m p - o u t and sea l -o f f of a s t a i n 

l e s s s t e e l hous ing . The t e s t o p e r a t e d i n - p i l e for 8125 h o u r s o v e r a 

p e r i o d of about two y e a r s . M o r e than 80 c y c l e s b e t w e e n shutdown 

and full p o w e r o c c u r r e d du r ing th i s p e r i o d . The a v e r a g e e l e c t r o d e 
2 power d e n s i t y th roughou t the t e s t l i f e t ime w a s 7. 8 w a t t s / c m . F o r 

fixed r e f e r e n c e l eve l s of r e a c t o r p o w e r , c e s i u m p r e s s u r e , and 

c o l l e c t o r t e m p e r a t u r e , the diode p e r f o r m a n c e w a s s t ab l e t h roughou t 

the life of the t e s t . The t e s t w a s t e r m i n a t e d when d i f f icu l t ies 

o c c u r r e d in a u x i l i a r y h e a t e r s and coolan t s y s t e m s which c a u s e d a 

l o s s in con t ro l of the c e s i u m r e s e r v o i r t e m p e r a t u r e . 

In the fol lowing s e c t i o n s , the d e s i g n of the c o n v e r t e r and the 

t e s t c a p s u l e is d e s c r i b e d . In the s u b s e q u e n t section.- the t e s t 

h i s t o r y and a s u m m a r y of the t e s t da ta a r e p r e s e n t e d 

DESIGN 

The c o n v e r t e r d e s i g n u s e d in the i n - p i l e p r o g r a m ( F i g u r e 1) 

p e r m i t s e i t h e r o u t - o f - p i l e t e s t i n g with e l e c t r i c a l hea t ing or i n - p i l e 

t e s t i n g wi th f i s s ion h e a t i n g . The b a s i c d e s i g n ph i losophy is to a l low 

c o m p l e t e t e s t i n g of the d iode o u t - o f - p i l e wi th only m i n o r m o d i f i c a t i o n s 

n e c e s s a r y for t e s t i n g i n - p i l e . The d e s i g n i nc ludes p r o v i s i o n s for 

independen t c o n t r o l of e m i t t e r , c o l l e c t o r , and c e s i u m r e s e r v o i r 

t e m p e r a t u r e s . In add i t ion , the c o l l e c t o r cool ing a r r a n g e m e n t p e r m i t s 

an a c c u r a t e c a l o r i m e t r i e m e a s u r e m e n t to be m a d e of to ta l h e a t 

r e j e c t e d . T h u s a r e l i a b l e e s t i m a t e of c o n v e r t e r e f f ic iency can be 
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obtained during both out-of-pile and in-pi le tes t ing. In Table 1, a 

summary of the conver ter design p a r a m e t e r s is presented . 

The ce rme t fuel is in a hollow, cylindrical shape and is clad 

internal ly with tungsten and external ly with rhenium. The purpose of 

the internal clad is to suppress evaporat ion of the uranium contained 

in the ce rmet . By preventing this evaporation, loss of fuel is min i 

mized and the stabili ty of e lectron bombardment heating is great ly 

improved. Thermocouple holes at th ree axial locations in the fuel 

annulus a r e provided to obtain an axial t e m p e r a t u r e profile of the 

fueled-emit ter during out-of-pile test ing. The rhenium external clad 

on the fuel a lso acts as the emi t te r . This clad has an extension approxi

mately 0. 4 inch longer than the fueled length, which se rves as the 

"optimized lead." The extension is joined to a molybdenum support 

ring which, in turn , joins to one of the niobium seal flanges. The 

other end of the rhenium emi t te r has a smal l d iameter pin which fits 

into an insulated hole in the col lector bottom. This pin provides 

additional support and alignment for operat ion and for any shock and 

vibration which might occur during shipping and handling. 

Inside the inner tungsten l iner of the fuel is a cavity to pe rmi t 

e lec t ron bombardment heating of the fue led-emit ter . The e lect ron bom

bardment gun which occupies this cavity during out-of-pile tes t ing, con

s i s t s of a helical filament at tached to a mass ive cent ra l rod for al ign

ment. The gun includes e lec t r ica l insula tors and its own radia tor to 

diss ipate heat conducted out of the cavity. After e lec t r ica l test ing is 

completed, the gun is removed and the "closure plug" is welded as 

shown in Figure 1. In making this weld, no other par t of the diode 

s t ruc tu re is heated, thus eliminating any t e m p e r a t u r e effect on the 

r e s t of the s t ruc tu re . This is a key aspect of the design because it 

insures that a valid compar i son can be made of in-pi le to out-of-pile 

diode behavior . If the conver te r were the rmal ly cycled or otherwise 
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affec ted d u r i n g th is o p e r a t i o n , the c a u s e of any change in b e h a v i o r 

could not be r e l i a b l y d e t e r m i n e d . 

At a r a d i a l gap of about 0. 010" f rom the e m i t t e r , t h e r e is a 

c y l i n d r i c a l c o l l e c t o r m a d e of m a s s i v e n i o b i u m . At one end, the 

c o l l e c t o r is jo ined to one of the n iob ium s e a l f l anges and , a t t he o the r 

end, to the bo t tom c o l l e c t o r p lug . Shea thed h e a t e r s a r e i m b e d d e d in 

the ou t s ide s u r f a c e of the c o l l e c t o r . A n iob ium tube c o v e r s t h e s e 

h e a t e r w i r e s and p r o v i d e s a s m o o t h s u r f a c e for the "hea t c h o k e " fins 

which m a i n t a i n the d i f f e r ence b e t w e e n the c o l l e c t o r t e m p e r a t u r e and 

the w a t e r coolant t e m p e r a t u r e . T h e s e fins a r e m a d e of n iob ium and 

a r e jo ined on t h e i r o u t s i d e s u r f a c e to a w a t e r cool ing j a c k e t a l s o m a d e 

of n iob ium. The c o m b i n a t i o n of the h e a t e r w i r e s wi th the hea t choke 

fins c o n s t i t u t e s the c o l l e c t o r t e m p e r a t u r e c o n t r o l s c h e m e . S ince th i s 

e n t i r e s t r u c t u r e is b r a z e d t o g e t h e r , a c c u r a t e p r e d i c t i o n and c o n t r o l of 

c o l l e c t o r t e m p e r a t u r e i s p o s s i b l e . The t h i c k n e s s of the c o l l e c t o r w a s 

s e l e c t e d a s a c o m p r o m i s e b e t w e e n the s p a c e a v a i l a b l e in the i n - p i l e 

t e s t hole (2. 75") and the t e m p e r a t u r e u n i f o r m i t y of the c o l l e c t o r . T h r e e 

-ho les a r e p r o v i d e d in the c o l l e c t o r w a l l s for s h e a t h e d t h e r m o c o u p l e s to 

obta in a m e a s u r e m e n t of the a x i a l t e m p e r a t u r e v a r i a t i o n . 

The c e s i u m r e s e r v o i r tubu la t ion i s j o ined to the b o t t o m c o l l e c t o r 

'plug and c o m m u n i c a t e s wi th the d iode t h r o u g h s l a n t e d ho le s in the bo t tom 

plug. At the o t h e r end of the tubu la t ion , t h e r e is a c e s i u m r e s e r v o i r 

c h a m b e r . The d e s i g n of th i s c h a m b e r p r e v e n t s l iquid c e s i u m f rom 

sp i l l ing into the diode r e g a r d l e s s of i t s i nc l ina t ion . T h u s , d u r i n g d i s 

a s s e m b l y in the hot c e l l , a l l c e s i u m can be r e m o v e d f rom the c o n v e r t e r 

by cu t t ing-of f the c e s i u m r e s e r v o i r and , t h e r e f o r e , no c o n t a m i n a t i o n of 

the diode i n t e r i o r wi th c e s i u m oxide need o c c u r . Shea t hed h e a t e r w i r e 

is b r a z e d to the r e s e r v o i r and c o p p e r s t r a p s a r e c o n n e c t e d f rom the 

r e s e r v o i r to the w a t e r cool ing j a c k e t s u r r o u n d i n g the c o l l e c t o r . T h i s 

c o m b i n a t i o n of h e a t e r w i r e and cool ing s t r a p s p e r m i t s c o n t r o l of the 
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cesium r e s e r v o i r t empera tu re despite the uncer ta in t ies in gamma 

heating ra tes 

The main diode insu la to r - sea l is of the "SET" type of construct ion 

and consis ts of niobium flanges brazed to alumina r ings , The emi t te r 

cur ren t leads a r e connected to the emit ter support ring with threaded 

sc rews , The collector cur ren t leads a r e connected to a flange on the 

outside coolant jacket with threaded rods held by nuts. Inlet and outlet 

water tubes a r e b razed at the top end of the coolant jacket which con

tains a double thread for water flow. 

The conver ter is supported within a 2 , 7 5 " tube which occupies a 

fuel element position in the BMI reac to r , This tube is evacuated after 

outgassing and then sealed off with a valve. Except for a z i rconium 

getter heated by gamma radiat ion, the vacuum within the tube is s ta t ic . 

In Figure 2, a photograph of the completed in-pile a ssembly is shown 

p r io r to inser t ion into the in-pi le tube, This a ssembly consis ts of the 

conver ter , two water cooling l ines , six sheathed hea ter l eads ; twenty 

thermocouple leads , six voltage leads , and the emi t te r and col lector 

bus b a r s , 

TEST HISTORY 

Converter SD-4 has been operated for 100 hours out-of-pile and 

about 8125 hours in-pi le . The resu l t s obtained during most of the tes t 

period a r e summar ized in Figure 3 which displays power input, power 

output, efficiency, ces ium r e s e r v o i r t e m p e r a t u r e , and col lector t e m 

pe ra tu re . The points shown r ep re sen t the data recorded at periodic in-

te rva ls by the reac tor operat ing technicians . In general) the ces ium 

r e s e r v o i r and collector t e m p e r a t u r e s were maintained near optimum 

levels . However, day- to-day drifts in ces ium r e s e r v o i r t empera tu re 

and in collector t empe ra tu r e occur red throughout the tes t duration. 

Thè total testing t ime can be divided into eight per iods . The first 

period was the 100 hour out-of-pile tes t , shown in Figure 3 to the left 
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of z e r o - h o u r s of i n - p i l e o p e r a t i o n , The second p e r i o d w a s the in i t i a l 

2 5 h o u r s of i n - p i l e t e s t i n g . The t h i r d p e r i o d c o n s i s t e d of a t r a n s i e n t 

in e m i t t e r t e m p e r a t u r e c a u s e d by a r e d u c t i o n in p o w e r input to the 

e m i t t e r . Th i s t r a n s i e n t l a s t e d unt i l the 600 h o u r po in t , a l though it w a s 

v i r t u a l l y o v e r by the 300 hou r point . The four th p e r i o d w a s a s t e ady 

run of about 300 h o u r s at a s l igh t ly r e d u c e d r e a c t o r p o w e r l eve l n e c e s s i 

t a t ed by a n o t h e r e x p e r i m e n t on the r e a c t o r . The fifth p e r i o d w a s a s t e a d y 

run f rom about the 1400-hour point to about the 2 6 0 0 - h o u r poin t a t full 

r e a c t o r p o w e r l e v e l s . The r e a c t o r w a s shut down for m o d i f i c a t i o n s a t 

about the 2 6 0 0 - h o u r point . The s ix th p e r i o d w a s a f a i r l y s t e a d y run 

a f te r the r e a c t o r w a s r e - s t a r t e d unt i l the 6 1 0 0 - h o u r po in t , when a m a l 

funct ion in the c e s i u m r e s e r v o i r h e a t e r o c c u r r e d . The s e v e n t h p e r i o d 

c o n s i s t e d of o p e r a t i o n wi thout the c e s i u m r e s e r v o i r h e a t e r and ex tended 

f rom the 61 0 0 - h o u r point to the 7 327 -hou r poin t . Dur ing the i n i t i a l p a r t 

of th i s period, . D o w t h e r m i n s t e a d of w a t e r w a s u s e d a s a coo lan t to 

a c h i e v e the d e s i r e d c e s i u m r e s e r v o i r t e m p e r a t u r e . Th i s p e r i o d ended 

when the cool ing l i n e s b e c a m e c logged wi th a c a r b o n - t y p e s u b s t a n c e 

c a u s e d by d i s s o c i a t i o n of the D o w t h e r m The e igh th t e s t p e r i o d w a s 

s t a r t e d a f t e r the c a r b o n s c a l e w a s f lushed out of the coo lan t l i n e s . 

H o w e v e r , the s c a l e buil t up a g a i n d u r i n g th i s p e r i o d and f inal ly led to 

t e r m i n a t i o n of the t e s t a f t e r 812 5 h o u r s In the fol lowing p a r a g r a p h s , 

e a c h of t h e s e t e s t p e r i o d s is s u m m a r i z e d 

T h r o u g h o u t a l l e ight t e s t p e r i o d s no p e r f o r m a n c e d e g r a d a t i o n of 

the c o n v e r t e r was o b s e r v e d At p e r i o d i c i n t e r v a l s the c e s i u m t e m p e r a 

t u r e , c o l l e c t o r t e m p e r a t u r e and power input w e r e r e - s e t a t r e f e r e n c e 

l eve l s c o r r e s p o n d i n g to a data point t aken d u r i n g the f i r s t 25 h o u r s , 

T h e s e points a r e shown in F i g u r e 4 at the 2 5 - h o u r . 1 7 1 1 - h o u r ; 

2 6 1 5 - h o u r , 3 1 1 0 - h o u r 4 3 0 0 - h o u r 7 0 0 0 - h o u r : and 7 8 9 0 - h o u r po in ts 

T h e s e poin ts a r e shown in r e l a t i o n to a s w e e p c u r v e t aken du r ing the 

in i t i a l o u t - o f - p i l e t e s t s Dunne; the f i r s t 261 5 h o u r s the r e f e r e n c e 
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points were taken at very closely set ces ium r e s e r v o i r and collector 

t empe ra tu r e s . As mentioned in the following discuss ion, a shift in the 

ces ium r e s e r v o i r thermocouples occur red during the shutdown after 

the 2615-hour point. Therefore the indicated ces ium r e s e r v o i r t e m 

pera tu res shown for subsequent points a r e somewhat higher . However, 

no significant difference is believed to exist in the actual ces ium r e s e r 

voir t empe ra tu r e for any of the points shown in F igure 3 at l e ss than 

5000 hours . At about the 6150-hour point, one of the ces ium r e s e r v o i r 

thermocouples failed completely. For the las t two points (7 000 and 

7 890) it was impossible to get the ces ium r e s e r v o i r t e m p e r a t u r e lower 

than those values shown in Figure 3. Despite these difficulties, r e 

markably close agreement was observed over a wide range of the I-V 

curve throughout the 8125 hours of tes t ing. A s u m m a r y of the oper

ating cha rac t e r i s t i c s of the conver ter over its test h i s tory is shown in 

Table 2, 

A Out-of-Pi le Test Period. The conver ter was operat ing out-of-pile 

for approximately 100 hours at a varie'ty o f t e s t conditions. Over 90 p e r -
/ 2 cent of the operating t ime was at output power levels above 8 w / c m 

(electrode power density), In Table 3, a typical operating point during 

these tes ts is descr ibed. No evidence of per formance degradat ion was 

observed between the beginning and end of the tes t period. In addition 

to s teady-s ta te operating data, p a r a m e t r i c sweep data were obtained as 

shown in Figure 4. 

Heat t ransfe r m e a s u r e m e n t s were made on the cesium r e s e r v o i r 

s t raps and the heat choke fins. The t he rma l r e s i s t ance of the s t raps 

was determined by measur ing the cesium r e s e r v o i r t e m p e r a t u r e as a 

function of power input to the cesium rese rvo i r ' hea te r . Since gamma 

heating of the r e s e r v o i r and the s t raps occurs during in-pi le operat ion, 

this r e s i s t ance was cr i t ica l to the achievement of r e s e r v o i r t e m p e r a t u r e 

control in-pi le . Since the heat choke fins r ep re sen t a fixed the rmal 
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r e s i s t a n c e t h r o u g h which the hea t r e j e c t e d f rom the c o l l e c t o r m u s t flow, 

the t e m p e r a t u r e d r o p a c r o s s the fins can be u s e d a s a t h e r m a l power 

i n d i c a t o r . T h e r e f o r e ¡ the r e l a t i o n s h i p b e t w e e n power input and th i s 

t e m p e r a t u r e d i f f e r ence w a s d e t e r m i n e d for S D - 4 d u r i n g the o u t - o f - p i l e 

t e s t s . T h e s e da ta p rov ided input and eff ic iency m e a s u r e m e n t s d u r i n g 

i n - p i l e o p e r a t i o n . 

B. In i t ia l I n - P i l e T e s t P e r i o d . Dur ing the f i r s t 25 h o u r s of o p e r a t i o n , 

the p e r f o r m a n c e of the d iode was s t e a d y and c l o s e l y dup l i ca t ed the p e r 

f o r m a n c e o b s e r v e d in the 100 hou r o u t - o f - p i l e t e s t At p e r i o d i c i n t e r 

va ls d u r i n g the i n - p i l e t e s t , d iode c u r r e n t - v o l t a g e c h a r a c t e r i s t i c s w e r e 

d e t e r m i n e d by sweep ing a r o u n d the s t a t i c o p e r a t i n g point . In F i g u r e 4 

an i n - p i l e I -V c h a r a c t e r i s t i c t aken du r ing th i s p e r i o d is c o m p a r e d to one 

of the o u t - o f - p i l e c h a r a c t e r i s t i c s . The o u t - o f - p i l e I -V c u r v e c o r r e s 

ponds to a m e a s u r e d c e s i u m r e s e r v o i r t e m p e r a t u r e of 2 9 0 ° C , a m e a s 

u r e d c o l l e c t o r t e m p e r a t u r e of 670 °C, and an e s t i m a t e d e m i t t e r t e m p e r a 

t u r e of 1575°C. The i n - p i l e po in t s ( c i r c l e s ) c o r r e s p o n d to a m e a s u r e d 

c e s i u m r e s e r v o i r t e m p e r a t u r e of 290°C - 305°C : a m e a s u r e d c o l l e c t o r 

t e m p e r a t u r e of 682 "C, and an e s t i m a t e d e m i t t e r t e m p e r a t u r e of 1575°C. 

The two m e a s u r e d c e s i u m r e s e r v o i r t e m p e r a t u r e s c o r r e s p o n d to two 

d i f fe ren t t h e r m o c o u p l e s a t t a c h e d to the c e s i u m r e s e r v o i r . The d i f f e r ence 

b e t w e e n the r e a d i n g s is a t t r i b u t e d to the m e t h o d of t h e r m o c o u p l e a t t a c h 

m e n t . In T a b l e 4, the p e r f o r m a n c e is d e s c r i b e d in m o r e de t a i l and c o m 

p a r e d to two s u b s e q u e n t o p e r a t i n g p e r i o d s . The exce l l en t a g r e e m e n t 

b e t w e e n the i n - p i l e and o u t - o f - p i l e I-V c h a r a c t e r i s t i c s s t r o n g l y r e i n 

f o r c e s the va l id i ty of the e m i t t e r t e m p e r a t u r e e s t i m a t e s . The a g r e e m e n t 

a l s o i n d i c a t e s that the i n - p i l e p e r f o r m a n c e of d iode SD-4 w a s v i r t u a l l y 

i den t i ca l to i t s o u t - o f - p i l e p e r f o r m a n c e . 

C. T h i r d P e r i o d . Af te r the f i r s t 2 5 h o u r s of s t e a d y o p e r a t i o n , a d r o p 

off in power output w a s o b s e r v e d at a fixed r e a c t o r p o w e r l e v e l . The r e 

duc t ion in power output was a c c o m p a n i e d by a c o r r e s p o n d i n g r e d u c t i o n in 
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optimum cesium r e s e r v o i r and collector t e m p e r a t u r e s and by a shift of 

the diode ignition voltage to lower leve ls . The emit ter t empe ra tu r e was 

obviously going down. The reduction in emi t te r t e m p e r a t u r e continued 

for about 75 hours and then s ta r ted to r ecover . After 300 hours of in-

pile operat ion the diode output had recovered to within about 85% of its 

initial level . After 600 hours , the recovery in emi t te r t empera tu re and 

output was essent ia l ly complete. 

It is apparent that some heat loss mechan i sm existed during this 

period which prevented the emi t te r from receiving its "normal" fraction 

of the heat generated in the fuel. The "normal" fraction is defined he re 

as that fraction which it received pr ior to and after the reduced emit ter 

t empera tu re tes t period. This normal fraction is about 98%, the 2% loss 

being caused by the rma l radiat ion out of the cavity. Of course , of the 

heat reaching the emi t te r , a significant fraction is conducted and radiated 

from the emi t te r support s leeve. One possible mechan i sm for the 

additional heat loss could have been conduction from the fueled-emit ter 

and its support sleeve through gases p resen t in the cavity. Although 

accura te analyt ical predict ions of such heat los ses in the cavity would be 

ext remely complicated, approximate calculations indicate that heat 

losses of a few hundred watts might occur if a i r or nitrogen were present 

at tens of mi l l ime te r s of p r e s s u r e . 

A likely source of gas could have been outgassing of the nickel plug 

which was used to close the gun cavity after out-of-pile operat ion was 

completed. Since the nickel c losure plug was not exposed to the diode 

in te r io r , it was not thoroughly outgassed at a t e m p e r a t u r e above its 

expected operating level . When the diode began operat ion in-p i le , gamma 

heating plus conduction from the emi t te r s leeve r a i s ed the t e m p e r a t u r e 

of the nickel to an est imated 800 °C. Extensive outgassing undoubtedly 

occur red , causing the p r e s s u r e in the sealed cavity to r i s e substantial ly 

This gas could have been eventually removed from the cavity by the 
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" g e t t e r i n g " ac t i on of the e m i t t e r s u p p o r t r i n g which i s m a d e of w e l l -

o u t g a s s e d m o l y b d e n u m . R e m o v a l of the gas could have c o r r e s p o n d e d 

to the r e c o v e r y in e m i t t e r t e m p e r a t u r e . 

The gas m i g h t have b e e n due to a n o t h e r s o u r c e , c o m m u n i c a t i o n 

b e t w e e n the cav i ty and the e n v i r o n m e n t s u r r o u n d i n g the d iode . If a l e ak 

deve loped in the c l o s u r e plug weld o r in one of i t s b r a z e s , gas could 

have e n t e r e d the cav i t y f rom t h e c a p s u l e tube r e g i o n . T h i s p o s s i b i l i t y 

is enhanced by the fact tha t the p r e s s u r e in the tube i n c r e a s e d r a p i d l y 

a t the beg inn ing of the i n - p i l e o p e r a t i o n and r e c o v e r e d r a p i d l y a f t e r 

about 300 h o u r s of o p e r a t i o n . The in i t i a l s u r g e in p r e s s u r e w a s due 

to o u t g a s s i n g of t h e s h e a t h e d h e a t e r l e a d s and o t h e r c o m p o n e n t s in the 

tube and the r e c o v e r y in p r e s s u r e r e s u l t e d f r o m the pumping a c t i o n of 

the z i r c o n i u m g e t t e r l o c a t e d a t t he b o t t o m of the t u b e . T h e p r e s s u r e 

gauge in the tube had a full s c a l e r e a d i n g of 2 5 m i c r o n s . Within 2 5 

h o u r s , the need le on the p r e s s u r e gauge went o f f - s c a l e and did not 

c o m e b a c k o n - s c a l e unt i l t he 300 hour poin t . The c l o s e c o r r e s p o n d 

ence of th i s p r e s s u r e t r a n s i e n t wi th the e m i t t e r t e m p e r a t u r e t r a n s i e n t 

s u g g e s t s tha t they m a y have b e e n r e l a t e d . 

R e g a r d l e s s of the c a u s e t h e r e is no doubt tha t the t e m p o r a r y r e 

duc t ion in output p o w e r w a s due to a r e d u c t i o n in e m i t t e r t e m p e r a t u r e . 

If the diode had u n d e r g o n e d e g r a d a t i o n of e m i t t e r s u r f a c e p r o p e r t i e s . , 

the o p t i m u m c e s i u m t e m p e r a t u r e would have i n c r e a s e d r a t h e r than 

d e c r e a s e d . F u r t h e r m o r e , the c o m p l e t e r e c o v e r y of the output and a l l 

o the r diode t e m p e r a t u r e p a r a m e t e r s e s s e n t i a l l y e l i m i n a t e s any effect 

o t h e r than a t r a n s i e n t e m i t t e r hea t l o s s . As add i t i ona l c o n f i r m a t i o n , 

a t e s t was p e r f o r m e d du r ing th i s p e r i o d to show tha t the full output 

could be r e c o v e r e d by i n c r e a s i n g the e m i t t e r t e m p e r a t u r e . T h i s w a s 

a c c o m p l i s h e d by o p e r a t i n g at a s t a t i c point c o r r e s p o n d i n g to t e r m i n a l 

output vo l tage of 0. 8 volt i n s t e a d of 0. 7 volt . The I-V s w e e p c u r v e s 

ob ta ined at each condi t ion a r e shown in F i g u r e 5, The d i f f e rence in the 
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average cur ren t between the sweep curves is 18 amps which c o r r e s 

ponds to a difference in electron cooling of about 50 wat ts . Based on out-

of-pile p a r a m e t r i c r e s u l t s , this 50 watt difference cor responds to a 

difference in emit ter t empera tu re of about 35°C. The e lect rode power 
/ 2 density for curve "A" at a t e rmina l output voltage of 0.7 is 7. 9 w / c m 

2 / 2 
instead of 7. Ow/cm for curve "B". The 7. 9 w / c m is equal to the power 

density obtained under s tat ic conditions pr ior to and after the emi t te r 

t empera tu re t rans ien t Thus, by increas ing the emit ter t empera tu re 

by 35°C, full output power density was recovered . 

D. Fourth Per iod. As mentioned previously, the diode output had com

pletely recovered by about the 600-hour point. The power input and power 

output remained essent ia l ly constant for about the next 200 hours . At the 

760-hour point, the r eac to r power level was reduced to accommodate 

another exper iment in the r eac to r . This reduced reac tor power level 

was maintained until the 1400-hour point when the other exper iment was 

withdrawn from the r eac to r . The reduced reac to r power resu l ted in a 

reduction in diode input power of about 30 watts and a corresponding r e 

duction in diode output power of about 9 wat ts . The diode output power 
/ 2 density at the e lect rodes averaged about 7. 3 w / c m during this period. 

E. Fifth Period. After the r eac to r power was r e s t o r e d to its normal 

level, a constant power tes t period of over 1200 hours was accomplished, 
. 2 The average electrode power density during this t ime was about 8 w / c m 

and the overal l efficiency varied from about 13. 5% to 14%. The diode 

cha rac te r i s t i c s remained very constant except for a slight improvement 

in overal l efficiency with increas ing t ime. At the 2615 hour tes t point 

the diode was removed from the reac tor to pe rmi t modifications to be 

made to the r eac to r . 

At about the 1700 and the 2600 hour points, exper iments were p e r 

formed to examine the diode cha rac t e r i s t i c s very carefully for t r a c e s of 

degradation. At each point, the ces ium r e s e r v o i r t e m p e r a t u r e , the 

collector t empera tu re , and the Dower inDut were set at the same levels 
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as existed at the 2 5-hour point. Both static and sweep data were taken 

at each point. The resu l t s of the static experiments a r e summar ized in 

Table 4. The reproducibi l i ty of the three points is quite remarkable. , 

the only noticeable change being a slight improvement in overal l effi

ciency. Since the re is some uncertainty in the determinat ion of input 

power, this improvement is probably not significant. 

F . Sixth Period. When the reac to r was r e - s t a r t e d at the 2615-hour 

point after the th ree month shutdown the diode re turned to its former 

performance level . Since the reac to r fuel e lements had been re-shuffled, 

some uncer ta int ies existed in neutron and gamma flux levels and d i s t r i 

butions. A period of severa l days was requi red to r e - e s t ab l i sh equili

b r ium. After stable operation was r e s to red , at about the 2800-hour 

point the diode output and input were slightly higher. The only signifi

cant change in conditions was a 12°C inc rease in the optimum indicated 

ces ium r e s e r v o i r t empe ra tu r e . Since the cesium r e se rvo i r t he rmo

couples a r e only mechanical ly at tached, their position could have been 

shifted by handling of the capsule during the reac to r modifications. 

Consequently, it is not cer ta in that a 12 °C change in actual ces ium r e s e r 

voir t empera tu re did occur . As is evident in Figure 3, the collector 

t empera tu re a lso increased by about-20°C. In Figure 4, the data points 

taken from sweep measu remen t s at 3110 hours and 4300 hours a r e shown 

with previous r e su l t s . The str iking reproducibi l i ty of all the data jo in ts 

strongly suggests that no significant changes in diode operating con

ditions or performance have occur red . This stable operation continued 

until the ces ium r e se rvo i r heater failed at the 6100-hour point. 

G. Seventh Per iod. After remote a t tempts to repa i r the ces ium r e s e r 

voir heater were unsuccessful , the water coolant surrounding the col lec

tor was replaced with Dowtherm "A," an organic liquid capable of higher 

operating t empe ra tu r e s . Since the cesium r e se rvo i r is connected to the 

cooling jacket through two copper s t raps , the increased t empera tu re of 
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the cooling jacket resul ted in higher cesium r e s e r v o i r t e m p e r a t u r e s . 

Control of the ces ium r e s e r v o i r t e m p e r a t u r e was achieved by varying 

the flow r a t e and inlet t e m p e r a t u r e of the Dowtherm. Operation of the 

diode for the seventh tes t period was r e sumed using this control tech

nique, which proved quite adequate. However, during s ta r tup and 

ear ly operat ion of the seventh per iod, the col lector thermocouples 

indicated absurdly low t e m p e r a t u r e s . After about twenty hour s , the 

indicated t empe ra tu r e s inc reased but sti l l were about 60° C lower than 

the previous data. Since the r eac to r power level and core posit ion 

were unchanged, it is a s sumed that the difference was caused by move

ment of the thermocouples within the tes t capsule. This movement 

could have been caused by the higher p r e s s u r e s within the coolant tubes , 

result ing from the higher p r e s s u r e drops n e c e s s a r y with Dowtherm as 

compared with water . Since the input power m e a s u r e m e n t s a r e based 

upon the m e a s u r e d t e m p e r a t u r e differences between the col lector and 

the coolant jacket , no input power or efficiency es t imates w e r e made 

beyond the 6103-hour point. 

During the first few hundred hours of the seventh tes t per iod, an 

i nc rease was noted in the t he rma l impedance between the coolant and 

the cesium r e s e r v o i r . To offset this i nc r ea se the Dowtherm flow r a t e 

was inc reased , thus lowering the coolant jacket t e m p e r a t u r e , and thereby 

the cesium r e s e r v o i r t e m p e r a t u r e . At about the 6360-hour point, the 

impedance had increased enough to pe rmi t water to be used instead of 

Dowtherm as the coolant. Accordingly, the Dowtherm was flushed out 

of the lines and replaced by wate r , and operat ion was continued until 

the 7327-hour point. During the las t few hundred hour s , the p r e s s u r e 

drop in the water coolant sys tem inc reased appreciably . Eventually, 

the p r e s s u r e drop caused too grea t a reduction in flow ra te to pe rmi t 

safe operation. Therefore , tes t ing was stopped to examine the condition 

of the coolant lines and sys tem. A carbon-type scale was found in the 
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water coolant, which was causing clogging of the flow passages . Appar

ently, this scale was created by radiation damage to the residual Dow

therm left in the sys tem after it was flushed with water . Several 

a t tempts were made to remove this sca le . Rever se flushing with water 

and soaking and flushing with acetone were performed a l ternate ly for 

severa l weeks . Finally enough scale was removed to allow the original 

flow ra te to be r e s to red , and operat ion of the conver ter was resumed. 

Except for the problems with the flow ra te and the collector t he rmo

couples, the performance of the diode was quite stable throughout the 

seventh tes t period. The e lect rode power density averaged about 
/ 2 / 2 

8 w a t t s / c m , with fluctuations of ±1 wa t t / cm . These fluctuations were 

caused by day- to-day changes in reac to r power level and in cesium 

r e s e r v o i r t empe ra tu r e . 

H. Eighth Test Per iod. The eighth and final tes t period ran from the 

7327-hour point to the 8125-hour point. Dowtherm was used initially as 

the coolant, and control of ces ium p r e s s u r e was achieved by varying the 

Dowtherm flow ra te . As before, fouling of the coolant jacket surface 

gradually occur red due to decomposit ion of the Dowtherm. Eventually 

this fouling caused a very high p r e s s u r e drop and consequent reduction 

in flow ra te . At about the 7 890-hour point the Dowtherm was replaced 

by water to reduce the coolant jacket t e m p e r a t u r e , and thereby the 

ces ium r e s e r v o i r t empe ra tu r e . This permi t ted an additional 2 35 hours 

of testing before the clogging became too great to keep the cesium r e s 

ervoir t empera tu re down to acceptable levels . After further a t tempts to 

unclog the coolant passages were unsuccessful, ' the diode was removed 

from the reac tor for hot cell examination. As can be seen in F igure 3 

the per formance of the diode was normal throughout this test period. 

During the last 65 hours the clogging caused the cesium t empera tu re 

to be well above its normal level and therefore caused a slight reduction 

(~15%) in the conver ter output. However, the reduction was about that 

expected for such off-optimum cesium r e s e r v o i r conditions. 
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T A B L E 1 

SUMMARY OF S D - 4 DESIGN PARAMETERS 
TABLE 2 

SUMMARY OF SD-4 OPERATING CHARACTERISTICS 

Fuel F o r m : 

Type 
Fuel 
Diluent 
Loading, vol . % UC" 
Dens i ty , % 
G e o m e t r y 
T h i c k n e s s , i n c h e s 
Inner Clad 

Emit ter : 

Mater ia l 
T h i c k n e s s , inches 
Surface Condition 
D i a m e t e r , inches 
Length, inches 
A r e a , cm^ 

Diode Structure: 

Insulator 
F l a n g e s 
Co l l ec tor 
C e s i u m R e s e r v o i r 
Emit ter support 
E x t e r i o r Environment 

C e r m e t 
UO 
w 
80 
95 
Annular 
0. 080 
W 

Rhenium 
0. 018 
T r e a te d 
0. 500 
1. 500 
15 

Al O 
Nb * 
Nb (Mo coated) 
Ni 
Mo 
Vacuum {—10 m i c r o n s ) 

Out-of-Pile: 

Test Tüne, houre 

Average Electrode Power Density W/cm 

Average Overall Efficiency, % 

Average Estimated Emitter Temperature, *C 

Diode Characteristics 

In-Pile: 

Test Time, hours 

Average Electrode Power Density, W/cm 

Average Overall Efficiency, % 

Average Estimated Emitter Temperature, 'C 

Diode Characteristics 

Fuel Characteristics 

Power Density, W/cm 

Equivalent Lifetime of Solid 0 .9" Fuel Rod, 
hours 

Average Burnup, f i se /cm 

Maximum Burnup, f iee /cm 

Average Burnup, U atom % 

Maximum Burnup, U atom % 

Total Number of Cycles 

100 

B. 0 

13. 1 

1600 

Stable 

8125 

7 .8 

13.7 

157 5 

SUble 

324 

26 ,700 

3. l x IO2 0 

7 . 3 X 1 0 2 0 

1.7 

4.0. 

~ 8 0 

Power output at the terminals divided by total electrical power 
input (bombardment plus filament power). 

Power output at the electrodes divided by the total nuclear power 
input to the emitter as estimated by calorimetry. 
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TYPICAL OPERATING CONDITIONS FOR SD-4 
DURING OUT-OF-PILE TESTS 

TABLE 4 

SUMMARY OF SD-4 REPRODUCIBILITY TESTS 

Total Operating Time (hours) 

Filament Power, watts 

Bombardment Power, watts 

Total Power Input, watts 

Estimated Average Emitter Temperature, 'C 

Average Collector Temperature, "C 

Cesium Reservoir Temperature, 'C 

Output Current, amps 

Voltage Drop in Emitter Lead, volts 

Output Voltage (At Diode Output Terminals) , volts 

Output Power (At Diode Output Terminals) , watts 

Output Power Density (At Diode Output Terminals) , _ 
wat ts /cm 

Output Power Density (At Diode Electrodes), watts /cm 

Overall Efficiency {Electrical Power at Terminals with 
no Heater Cavity Correction), % 

Net Efficiency (Electrical Power at Terminals with a 
60-watt Heater Cavity Correction), % 

Net Design Efficiency (Electrical Power at Electrodes 
with a 70-watt Heater Cavity Correction), % 

100 

Ml 

705 

846 

1600 

650 

298 

168 

0. 101 

0.680 

114 

7 .60 

8.75 

13. 5 

14. 5 

16.7 

Accumulated In-Pile Te i t Time, hours 

Reactor Power Level, megawatts 

Estimated Average Emitter, 
Temperature, e C 

Average Collector Temperature, C 

Average Cesium Reservoir 
Temperature, *C* 

Output Current, ampi 

Voltage Drop in Emitter Lead, volts 

Output Voltage (At Diode Output 
Terminals) , volts 

Output Power Density (At Diode Output 
Terminals) , w/cm^ 

Output Power Density (At Diode 
Electrodes), w/cm2 

Estimated Input Power, watts 

Overall Efficiency," % 

25 

2 . 0 

157 5 

680 

298 

150 

0. 09 

0.70 

7 .00 

7 .90 

780 

13.4 

1711 

2 . 0 

157 5 

685 

M9 
148 

0. 09 

0.70 

6.92 

7 .80 

770 

13.4 

2614 

2. 0 

157 5 

682 

298 

149 
0.09 

0.70 

6.96 

7 .85 

760 

13.7 

This temperature is the average of the two thermocouples 
on the cesium reservoir . 
Power output at the terminals divided by the total nuclear heat 
generated in the fuel. 

. « . · . - Urrnt l*M »«f, v»*) 

- ( Λ — ta·.*.-...(s») 

Figure 2. In-Pile Assembly' 

Figure 1. Design of Converter SD-4 
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HOURS 
OP 
25 
1711 
26IS 

3110 
4300 

7000 
7890 

VC 
670 
682 

6Θ5 
682 
705 

700 
660 
691 

Tc,.*C 
2 9 0 * 
290-305 

287-310 
287-308 
305-323 t 

302-318 
311 - ? ♦ 

310 ? 

m DURING OUTOFPILE TESTS.ONLY ONE 
THERMOCOUPLE WAS ATTACHED TO 
RESERVOIR 

AFTER THE 2613 HOUR POINT.THE 
RESERVOIR THERMOCOUPLE MECH. 
SHIFTED 

THERMOCOUPLE MECHANICALLY 

t AT THE 5070 HOUR POINT.ONE OF 
THE RESERVOIR THERMOCOUPLES 

FAILEO 

0.4 Ο.Θ 1.2 1.6 

TERMINAL OUTPUT VOLTAGE.VOLTS 

CESIUM RESERVOIR TEMPERATURE 

288" 

COLLECTOR TEMPERATURE 645'C 

ACCUMULATED HRS OF INPILE 

OPERATION  277 HRS 

AVERAGE CURRENT: "A"  117 AMPS 

" B "  135 AMPS 

SWEEP POINT 

0.6 0.7 0.8 0.9 1.0 

TERMINAL OUTPUT VOLTAGE, VOLTS 

Figure 4. Comparison of IV Sweep Data at 
Controlled Reference Points during 
OutofPile and InPile Operation 

Figure 5. IV Sweep Data During Emitter 
Temperature Transient 
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DISCUSSION 

Speaker of paper C-2: R. C. HOWARD. 

GUSKOV (USSR): 
Were there pronounced t empera tu re changes, t he rma l shocks, of the cathode 
during the exper iments? 

HOWARD (USA): 
I believe there were about 80 sudden t h e r m a l shocks in which the r eac to r 
power was .lost instantaneously. We never went up in power suddenly but we 
came down many t imes suddenly. 

SCHOCK (USA): 
Was the reac to r neutron flux and hence the the rma l power constant during 
the t e s t ? 

HOWARD: 
There were 5% fluctuations. 

SCHOCK: 
Was the position of the tes t specimen -within the reac to r always the same? 

HOWARD: 
Yes. 

DEVIN (France) : 
We notice also quite general ly a slow increase in efficiency during say the 
first 1000 hours of experience and we at t r ibute this to the fact that some 
recrys ta l l iza t ion occurs at the emi t t e r surface and that this r e c r y s t a l l i z a 
tion leads to the increasing of the high work function g ra ins . Thus the a v e 
rage work function of the emi t t e r s becomes higher . We general ly notice 
also that we have to reduce the ces ium p r e s s u r e during the tes t , to keep 
the optimum per formance . 

HOWARD: 

In this case at least for the f i rs t 5000 hours we did not see any genera l in
c r e a s e of efficiency. If any inc rease occurred it was very smal l . 

DEVIN: 
On slide 4 which contains the I-V data, a r e the data m a r k s for steady state 
conditions ? Is the IV curve for AC or steady state conditions ? 

HOWARD: 
The curve is AC. The point that we were sweeping about was such that we 
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could sweep and then switch to the steady s ta te . We did not sweep very 
wide as you noticed. There is very small difference in emi t te r t e m p e r a 
ture between the sweep and steady state points . 

PEEHS (Germany): 
Have you found some swelling effect after i r rad ia t ion? 

HOWARD: 

Our resu l t s a re not complete. We did the neutron-radiographs of the device 
before we removed the emi t te r and it looked like that there was a very 
small dis tort ion of the emi t te r , not enough of course to cause a short . It 
was difficult to measu re this dis tort ion but it might have been a few mi l s . 
Of course you do not know whether to at t r ibute that to fission gas p r e s s u r e 
or just the fact that it is a ce rmet . Many cycles on a ce rmet general ly 
cause some distort ion. In fact with this number of cycles we would have ex
pected much more ser ious distort ion than we observed. 

PEEHS: 

Have you perhaps made a theoret ica l considerat ion of the swelling effect? 

HOWARD: 
Others have. Mr. RANKEN may discuss that when he gives his paper . 

HARBAUGH (USA): 
Was the ce rmet fuel outgassed at high t empera tu re s p r io r to inser t ion into 
the conver te r? 

HOWARD: 
The fuel and the emi t te r were made at the same t ime by hot isostat ic p r e s 
sure bonding. 
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LONG TERM OPERATIONS OF INPILE AND OUTOFPILE THERMIONIC CONVERTERS* 

by 

J.W. Holland, M.K. Yates. D.E. Schwarzer and J. Kay 

Gulf General Atomic Inc. 

P.O. Box 608, San Diego, California 92112 (USA) 

ABSTRACT 

Ten cylindrical geometry converters with series designation Mark VI 

have been life tested inpile for a total of 20,03*4 hours, an average 

life of 2003 hours, and an average electrode power density of 7.2 \}/cxaß. 

The longest test to date ran for 53^9 hours at an average electrode power 

density of 10 W/cm2. That test designated as IC15 was fueled with UO2 

and achieved a burnup of 2 χ 1θ20 fission/cm3. 

Outofpile models of the Mark VI converters were life tested for a 

total of 51,5^2 hours, an average life of 6M+3 hours and an average power 

density of 7·9 W/cm2. The longest test to date ran 10,^θβ hours at an 

average electrode power density of 8.6 W/cm . Both unfueled and fueled 

versions were tested. 

Part I is sponsored by the U. S. Atomic Energy Commission under Contract 

No. AT(0Ì43)l6T, Project Agreement Ik, and Part II is sponsored by the 

National Aeronautics and Space Administration under Contract No. NAS 3Ö50U. 
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PART 1 

LIFE TESTS OF FISSION HEATED THERMIONIC CONVERTERS 

INTRODUCTION 

Development of fission heated cylindrical geometry thermionic conver
ters, designated as the Mark VI series, has been in progress at Gulf 
General Atomic Incorporated since I962. The first converters tested 
served to eliminate gross defects from the converter design and test 
apparatus. The first long term test was conducted in 196k when IOO6 hours 
were achieved on a 90UC-10ZrC fueled converter, designated as Mark VI IC-6. 
Including that test, a total of ten Mark VI IC-series converters have been 
life tested to date for a total operating time of 2003^ hours. Nine of the 
ten converters were fueled with 90UC-10ZrC; one converter was fueled with 
UO2· Because significant differences were observed between converters 
using the two types of fuel· the test results will be presented according 
to fuel type. 

CONVERTER DESIGN AND PARAMETERS 

The configuration of the Mark VI in-pile converter is shown in Fig. 1. 
Significant design and material features are: 

Fuel--U02 or 90UC-10ZrC, 93$ U235 Collector material—wrought molybdenum 
Emitter material--CVD (WF6) tungsten Interelectrode spacing--0.020 cm hot 
Emitter area--13 cm2 Insulator seal--Litton design, Lucalox-Nb 
Emitter diameter--1.Gh cm Cesium reservoir--2 grams liquid 
Fuel clad thickness--0.1 cm Fission product retention volume--20 cnP 

These converters were tested either in the Gulf General Atomic TRIGA 
or the General Electric Test Reactor. Waste heat from the conversion process 
was dissipated by way of gas gaps to reactor cooling water. Temperatures of 
the cesium reservoir and collector were adjustable by means of electrical 
heaters. Instrumentation included: chromel/alumel thermocouples for 
measuring cesium reservoir, collector and converter body temperature profiles; 
W/Re thermocouples located between the emitter wall and the fuel to measure 
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changes in the emitter temperature; voltage probes for measuring converter 
and electrode potentials; and a shunt for measuring the cell current. 

Several parameters were calculated from the measured data. Changes in 
emitter temperature and values of relative power, Pr, and efficiency, T|r, 
were computed by means of a correlation that related changes in cell 
voltage to differences in plasma losses arising from cesium pressure changes 
required to maintain maximum cell voltage. The relative power is defined 
as the fraction of the output that can still be produced at the initial 
operating conditions except for the cesium reservoir temperature which was 
optimized. The relative efficiency is defined similarly. Methods for 
calculating these parameters are described in Ref. 1. The initial emitter 
temperature was estimated by performance comparison with similar converters 
in which the emitter temperatures were accurately determined. Changes in 
emitter temperature were computed using the same correlation. The thermo
couples in the fuel cavity were used only as a rough guide to the emitter 
temperature since they read as much as 200° C higher than the emitter 
temperature. 

Deviations in the relative power from unity are interpreted to be 
caused by work function changes, alterations in the interelectrode gap or 
in the scattering of electrons by a foreign gas. Deviations in the relative 
efficiency from unity arise from the combined effects of changes in the 
relative power and changes in thermal transport such as would result from 
an electrode emittance change or from a change in electron waste heat. For 
these converters the external environment was an inert gas, either helium 
or argon, so that inleakage of these gases would also contribute to the 
thermal transport if such were to occur. Inleakage of fission gas from the 
fuel chamber into the converter is another possibility. 

IN-PILE TEST SUMMARIES 

A summary of the in-pile tests is presented in Table 1. Listed are 
the test designation, fuel and electrode materials, test durations, average 
electrode power density and emitter temperature, final relative power and 
efficiency, test termination date, burnup, and failure mode. Several 
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generalizations on this table are apparent. First, the highest average 
performance of 10 W/cm2, and longest operation, 53^9 hours, were obtained 
from the U02 fueled IC-15 converter. Also, the final power and efficiency 
relative to initial values were somewhat greater than unity. For the 
carbide fueled converters the average output powers were generally lower, 
ranging between h to 7 W/cm2. The final relative power and efficiency were 
sometimes substantially below unity, and ranged down to as low as O.k-5 in 
one case. 

In all but three cells, IC-11, IC-12, and IC-15, the failure mode was 
related to envelope leaks which allowed inleakage of gas into the converter 
interior. Test IC-11 was terminated by contractual -commitment and IC-12 
and IC-15 by interelectrode shorting. The location of leaks in the envelope 
were not found in hot cell examinations, but from examination of similar 
out-of-pile converters the most probable locations were in the seal or in 
joints between dissimilar converter components. The IC-15 interelectrode 
short was found to have been caused by breakage of a getter ring during 
movement of the cell. The short found in IC-12 was related to a change in 
the emitter geometry due to a fuel interaction. 

PERFORMANCE TREND IN UO2 FUELED CONVERTER 

The trends in relative power and efficiency of the UO2 fueled Mark VI 
converter test IC-15 are shown in Fig. 2. The relative power factor varied 
between 1.00 and 1.10 over the 53^9 hours of operation. The relative effi
ciency factor varied between O.9 and 1.10. An upward trend in both the 
factors indicates the cell performance was improving. The reason for the 
improvement is attributed to the diffusion of oxygen through the fuel 
cladding. Experimentation has demonstrated that the bare emitter work 
function increases at emitter temperatures below I8OO0 C when oxide fuels 
are in contact with the inside wall of the emitter. The upward trend in 
the IC-15 performance was accompanied by a slight decrease in emitter tem
perature which is thought to have been responsible for the increase in 
performance. 



- 389 -

PERFORMANCE TRENDS IN 90UC-10ZrC FUELED CONVERTERS 

Relative power and relative efficiency factors are shown in Fig. 3 for 
IC-6 through IC-1^, all fueled with 90UC-10ZrC. In examining these trends, 
several conclusions are reached. First, in the longest tests the relative 
powers were typically on the order of 80$ by 2500 hours; and, second, there 
were additional thermal losses amounting to 10 to 25$ as evidenced by the 
differences between the Pr and T|r factors. In the two cases of IC-10 and 
IC-13, Pr dropped below 80$, but these decreases were expected since they 
were accompanied by decreases in emitter temperature. This effect is dis
cussed below. 

A decrease in Pr by 15$ was indicated in the carbide fueled emitter 
out-of-pile tests (Part II) so that there appears to be little added effect 
by the nuclear environment on the relative power. 

The observed changes in relative power are interpreted to be the result 
of work function changes due to the diffusion of uranium to the emitter 
surface. Experiments investigating the effects of uranium (from non-
stoichiometric UC-ZrC fueled emitters) on work function and thermionic per
formance have been conducted which showed that accumulation of uranium on 
the emitter surface lowered the emitter work function from k.6 eV at l800°C 
to as low as 3·5 eV at 1500°C. Decreases in emitter work functions yield 
significant decreases in performance. A decrease in emitter work function 
by 0.1 eV was found to have resulted in a 10$ loss of output power. The 
cause for uranium diffusion to the emitter surface was attributed to the 
substoichiometric carbon content of the fuel. 

The decrease in the relative efficiency appears to be significantly 
higher in-pile than out-of-pile. The cause for the higher thermal losses 
is not certain, but some insight is obtained in comparing the 2500 hour IC-11 
test to the 3300 hour IC-12 test. In doing so, one observes an almost 
identical correspondence between the two results--that the relative efficiencies 
stabilized at the same values at about 2500 hours. This seems to rule out 
erratic phenomena such as inleakage of the helium containment gas into the 
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converters as the cause for the rather large decrease in efficiency. About 
half the effect could be explained if the emissivity of the collector 
changed from 0.15 to 0.8. Such an emissivity change could have been 
related to tarnishing of the collector surface by active gases or from the 
accumulation on the collector of fuel material or fission products. It is 
unlikely that enough fuel material could have collected on the emitter at 
its operating temperature to affect its emissivity. Surface roughening of 
the emitter could be a minor factor. Inleakage of fission gases from the 
fuel chamber on the other hand cannot in theory be eliminated as a causative 
factor since there is enough xenon buildup in the fuel chamber to give the 
observed results. Part of the added thermal loss may have been due to 
increased electron waste heat caused by an increase in effective collector 
work function or by an increase in kinetic energy of electrons entering 
the collector surface. It is estimated that such effects would have pro
bably constituted less than 5$ change in T!r. 

CONCLUSIONS 

The primary conclusion from these tests is that the oxide fueled 
converter presently represents the highest state of development as exhibited 
by its superior performance, stability and life. We speculate that the 
carbide fueled tests all suffered from a common difficulty of having employed 
a fuel substoichiometric in carbon. Future tests of carbide fueled converters 
with increased carbon content will determine the usefulness of the carbide 
fuel in its upgraded form. 

As shown in Fig. k, progress is being made in increasing the longevity 
of the tests. The increased longevity has been due to the combined efforts 
of improving the technology of fabricating converters, and the test environ
ment. Our present goal of 10,000 hours of reproducible operation seems to 
be within reach in the next few years. 
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PART II 

LIFE TESTS OF ELECTRICALLY HEATED THERMIONIC CONVERTERS 

INTRODUCTION 

As a companion effort to the in-pile program, development of an out-
of-pile electrically heated Mark VI converter was undertaken for the purposes 
of determining: l) the life and failure modes of the cells under high 
vacuum and outside of the nuclear environment, 2) the effects of fuel 
diffusion on the thermionic performance without the complications of fission 
products, 3) performance reproducibility, and, k) effects of electrode 
material selection. To study the effects of fuel diffusion, slabs of fuel 
materials were imbedded within the emitter walls. Emitter thermocouples 
were also employed in the emitter walls to obtain accurate measurements of 
emitter temperature and hence direct determinations of the relative power. 
Since the input power was easily determinable, the relative efficiency was 
also directly derivable. Effect of electrode material selection on converter 
performance was studied in several converters by varying the crystal 
orientation of the tungsten emitter and by replacing the previously used 
molybdenum collectors with niobium. 

To date eight of these life converters (LC-series) have been tested 
for a total time of 51,5^2 hours, an average life of 6M4-3 hours, and an 
average power density of 7-9 W/cm2. One converter is presently under test 
with 9353 hours of stable performance accumulated. 

This part of the paper is organized according to the following subjects : 
Converter Design and Parameters; Test Summaries; Performance Reproducibility; 
Effect of Electrode Materials on Performance; Performance Trends; and 
Conclusions. 

CONVERTER DESIGN AND PARAMETERS 

The configuration of the Mark VI LC-series converter is shown in Fig. 5· 
It may be noted that the working part of the electrode configuration is 
essentially identical to the in-pile Mark VI. The main differences in 
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instrumentation were the inclusion of W/Re thermocouples in the emitter wall 
for a direct measurement of emitter temperature and the ability to directly 
measure the input power. When fuel slabs were contained within the emitter 
wall, they covered 53$ of the surface area and were located at 0.1 cm from 
the emitter surface, the same clad thickness as used for the in-pile cells. 

The converters were operated in ion pumped bell jars. Power to the 
emitter was supplied by means of electron,bombardment. Collector and cesium 
reservoir heat sinks were fit onto the outside diameter of the collector 
structure and cesium reservoir and were either water or air cooled. Electrical 
heaters were used for automatic control of the collector and cesium reservoir. 
Both the cell and electrode potentials were measured as well as the cell 
current. For some of the converters, emitter and collector work functions 
were routinely measured to correlate work function alterations to changes in 
performance. 

TEST SUMMARIES 

A summary of the out-of-pile tests is presented in Table 2. Listed are 
the test designations, electrode and fuel materials, test durations, average 
electrode power density and emitter temperature, final relative converters 
contained W-6o v/o U02 cermets; three converters contained UC-ZrC in various 
molar percentages of 30-70, 50-50 and 90-10; one converter was unfueled. 
These converters all employed emitters fabricated by means of hydrogen reduc
tion of WF6 and used molybdenum collectors. The unfueled converters, LC-7 
and LC-9 used different combinations of electrode materials. 

With respect to performance the converters, with one exception, produced 
average output powers between 6.8 and 8.8 W/cnr2. That one exception was LC-6 
which will be discussed in greater detail below. Conclusions regarding the 
final relative power and efficiency are made when the performance trends are 
discussed below. 

The distribution of failure modes among the seven converters failed to 
date has been one short circuit and seven envelope leaks. One converter, LC-3, 
actually failed by „envelope leak plus an interelectrode short caused by a 
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broker, getter ring. The envelope leaks were generally located at the 
junction of two dissimilar converter components. Usually, the leaks were 
either in the final braze or the insulator seal. 

PERFORMANCE REPRODUCIBILITY 

Among the cells, six have used tungsten emitters, made by the hydrogen 
reduction of WFg, and polycrystalline molybdenum collectors spaced at ,008 in. 
from the emitter. The initial maximum power densities of these six cells 
are compared with each other to examine the degree of performance reproduc
ibility achieved in these cells. For a comparator an earlier cell designated 

2 as OC-5 is used because it was performance mapped over a wide range of 
operating conditions and corresponds well with the performance of cells with 
similar materials and spacing-produced in other laboratories. 

The initial performances mentioned above are compared in the table 
below where the comparative factor is the initial maximum output power of 
the cell divided by the output of OC-5 at the same current density, emitter 
temperature, and collector temperature as used for the compared cell but 
at optimum cesium pressures. In examining the results there is found close 

Out-of-Pile Po 
Converter Designation Fuel Po (OC-5) Tj¡, Tc, J, T R o p t 

LC-1 30UC-70ZrC 0.77 
LC-2 W-6o v/° U 02 Cermet 0.97 
LC-3 W-6o V o u°2 Cermet 0.97 
LC-U None 0.8U 
LC-5 90UC-10ZrC Ó.98 
LC-6 50UC-50ZrC 0.66 

comparisons between OC-5 and LC-2, LC-3, LC-5, certainly within experimental 
errors. Converters LC-1 and LC-6 both contained UC-ZrC fuel material. Their 
low relative initial outputs of 0.77 and 0.66, respectively, were attributed 
to fuel diffusion to the emitter surface during processing which lowered the 
emitter substrate work function. The low relative output of the unfueled 
cell LC-U of 0.8U was attributed to gaseous contamination of the electrodes. 
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Except for the effects of gaseous and fuel contamination in the cells, the 
out-of-pile cells have demonstrated reproducible performance. The effect 
of electrode materials on converter performance is discussed in the next 
section. 

EFFECT OF ELECTRODE MATERIALS ON PERFORMANCE 

One of the purposes of testing different combinations of electrode 
materials and crystal orientations was to determine performance advantages 
that might be gained through selection of electrode materials. The con
verters selected for comparison of electrode materials are: 

Converter Emitter/ 
Designation Preferred Orientation Collector 

LC-7 W/{lOo[ Nb 
LC-9 W/.llo} Nb 
OC-5 W/JlOo} Mo 

The LC-9 emitter surface was made by the hydrogen reduction of WCL5. 
The orientation was determined to be a partial {llOj; its vacuum work 
function was h.'jQ eV. By comparison, latest reported values3 for the {llOj 
orientation range around 5·0 to 5·^ eV. The performance advantage to using 
emitters with work functions greater than obtained for LC-9 is discussed in 
Ref. k. Electrode work function measurements on LC-7 and LC-9 are alsc 
presented in Ref. h. 

By comparing the performances of LC-7 and LC-9, both with niobium col
lectors, the advantage was determined for a converter using a U.78 eV work 
function tungsten emitter over a ^.55 eV work function tungsten emitter. 
By comparing OC-5 and LC-7, the performance advantage was found for a poly-
crystalline molybdenum collector over the use of a polycrystalline niobium 
collector. 

Maximum electrode power densities of LC-7, LC-9 and OC-5 are compared 
in Fig. 6 as a function of current density at an 18OO0C emitter temperature. 
The cesium reservoir and collector temperatures were optimized at every 
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point on these curves. The results show that the improved emitter work 
function by 0.23 eV in LC-9 yielded a significant performance increase over 
the LC-7 performance. At 12 A/cm2 LC-9 produced 21$ more power" than LC-7. 
The advantage diminished at low currents, but at higher currents the 
advantage grew larger. The optimum current density is shown to be higher 
for the higher performance converter. Comparing the output of LC-7 to the 
extrapolated output of LC-9 at optimum current densities, the maximum 
performance advantage of LC-9 is estimated to be 25$. 

The increase in output resulting from use of molybdenum over niobium 
for the collector is found by comparing the OC-5 and LC-7 curves. The com
parison is a little lopsided in favor of the molybdenum collector because 
the OC-5 hot spacing was .008 in., or .001 in. smaller than the LC-7 hot 
gap. Using correlation data? to correct for the difference in spacing, 0C-5 
at a .009 in. spacing would have produced about 8$ less power to make the 
real performance advantage of 0C-5 29$ at 12 A/cm . Again the advantage 
diminishes at low currents and becomes larger at higher currents. At optimum 
current densities the difference is about U0$. 

PERFORMANCE TRENDS IN OUT-OF-PILE LIFE TEST CONVERTERS 

Trends for the power and efficiency of eight out-of-pile life test converters 
relative to their initial values are shown in Fig. 7· In all of these tests 
the relative power exhibited fair stability and remained within ±15$ of the 
initial value over their test durations with two exceptions: l) the unfueled 
LC-U showed a temporary 4̂-0$ increase in power during the first 600 hours 
that was interpreted as being due to oxygen contamination remaining from the 
fabrication process; and, 2) the 50UC-50ZrC fueled LC-6 showed a very low 
initial performance due to a uranium contaminated emitter. 

In all of the tests with the exception of LC-1 the relative efficiency 
closely tracked the relative power which indicates there were no significant 
added thermal losses. In LC-1 the relative efficiency was found to be about 
10$ less on the average than the relative power except near the end of the 
test. In the postoperational examination of LC-1 a defect in the emitter 
structure was found that had allowed a direct introduction of the carbide 
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fuel into the gap. From the operating data the defect was determined to 
have occurred 2*4-2 hours after the start of the test. The large decrease 
in T|r between 5000 and 717*4- hours was attributed to leakage of atmospheric 
contaminants into the converter through an envelope leak which occurred at 
the time of a shutdown for thermocouple calibration. 

The scatter in the LC-2 and LC-3 values is attributed to changing of 
oxygen contamination on the emitter resulting from fluctuations in the 
emitter temperatures. The fluctuations were due to varying input powers, 
changing operating parameters and shutdowns. In a separate experiment the 
source of contamination was attributed to the oxide fuel. Part of the 
scatter in the LC-2 and LC-3 values was the result of uncertainties in the 
determinations of Pr and 71 r due to- varying operating conditions employed 
in the test, 

In the LC-5 test the relative power gradually decreased to about O.85 
over the first 3000 hours and then remained constant thereafter. The cause 
of the decrease was related to an accumulation of uranium on the emitter 
surface to lower its work function and decrease output power. The relative 
efficiency appeared to track the relative power within 5$ which is within 
experimental uncertainties and thus no significant added thermal losses are 
indicated. 

The very large changes in the power and efficiency of LC-6 were related 
to uranium diffusion to the emitter surface from the 50UC-50ZrC fuel. The 
main reason LC-6 showed such large changes was that the emitter temperature 
was operated at about 165O C. At that temperature the emitter work function 
is lowered to about k eV by uranium accumulation. The cell output was about 
the level expected from an emitter with a *t- eV work function. In vacuum work 
function measurements on the emitter after it had been removed from the con
verter, it was found that if the emitter had been operated at 18000 C, the 
output would have been closer to the output Of 0C-5· 

The relative power and efficiency factors for unfueled LC-7 and LC-9 
tests showed no change throughout their operation, indicating completely 
stable performances. 
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In Fig. 8 relative powers of LC-1, -2, -3, -k, and -5 are normalized to 
the OC-5 performance, for the purpose of comparing LC-1 through LC-5 on an 
equal basis. In this way, the fact that LC-1 and LC-*4· began at lower power 
densities than the rest of the cells can be factored into the comparison. 
Test data on LC-1, LC-*4-, and LC-5 are presented as curves while the LC-3 data 
are presented as a band ±l6$ wide, because of fluctuations in the relative 
power due to varying operating conditions employed during its test.' The LC-2 
test data are omitted since they fall within the LC-3 band. Converter LC-5 
began 2$ below OC-5 and was operating at an output power of l6$ below OC-5 
at 5500 hours at the time of the cesium leak. Converters LC-1 and LC-*4- began 
23$ and l6$ below OC-5, respectively, and ended (prior to cesium leakage) at 
25$ and 23$ below OC-5, respectively. 

The most significant observation is that in all cases the upper limit 
of loss in power density in these LC-series converters appears to be 25$ as 
long as the emitter temperature is maintained in the region of l800 C. A 
similar result was shown for the in-pile tests where the upper limit on power 
loss was about 20$. The explanation of this power loss limit is that once 
the collector became contaminated, additional accumulation caused little 
effect, and the emitter operated at a high enough temperature that gross 
accumulation of fuel or contaminants did not occur. The fact that LC-1 
electrodes were heavily contaminated with fuel tends to support the theory 
of a 25$ limit on loss of Pr for the operating conditions used in these tests. 

CONCLUSIONS 

The main conclusions reached from these tests were : 

1) High work function emitters yielded a significant performance advantage. 
2) Converters with niobium collectors exhibited completed stable performance 

but inferior performance to the molybdenum collector. 
3) Carbide fuels in LC-1, LC-5, and LC-6 were most likely substoichiometric 

in carbon. 
h) Operation of uranium rich carbide fueled emitters at temperatures below 

I8OO0C leads to significant performance losses. 
5) The added thermal loss mechanism observed in the carbide fueled in-pile 

converters was not found in the carbide fueled out-of-pile converters. 
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TABLE 1 

INPILE TEST SUMMARY 

Test 

lc6 

ic7 

ic8 

ic9 

IC10 

ICU 

IC12 

IC13 

ICll* 

Snit ter / 
Collector Fuel 

W/Mo 

W/Mo 

W/Mo 

W/Mo 

W/MO 

W/MO 

W/Mo 

W/Mo 

W/Mo 

90UC10ZrC 

90UC10ZrC 

90UC

90UC

90UC

90UC

90UC· 

90UC

90UC

lOZrC 

lOZrC 

lOZrC 

lOZrC 

lOZrC 

lOZrC 

lOZrC 

Hours 

Average 

Electrode 

Power 

Density 

(W/cm
2
) 

Average 

Emitter Final 

Temperature Relative 

(°C) Power 

Final Test 

Relative Termination Burnup 

Efficiency Date (f/cc) Failure Mode 

IC15 W/Mo U0„ 

1006 

520 

1552 

IIO5 

1552 

2506 

3300 

1796 

1328 

5369 

7.3 

6.k 

ó.3 

6.8 

6.9 

6.9 

6.2 

U.5 

k.o 

10.0 

17Ó0 

1720 

1650 

1660 

1650 

1690 

1670 

ii*90 

1620 

1730 

0.80 

0.90 

0.80 

0.90 

0.60 

O.8O 

O.8O 

O.7O 

0.95 

1.10 

O.65 

O.8O 

O.60 

O.8O 

0Λ5 

O.60 

O.5O 

O.5O 

O.85 

1.01 

VI9/ÖU 

6/28/64 

12/k/ôk 

6/28/05 

12/7/61* 

Q/26/63 

6/3/66© 

6/30/66 

6/30/66 

10/13/67© 

3χκΑ9 

NC 

5xl0
19 

3x10*9 

SxlO« 

Sxio
19 

1.6x1ο
20 

7χΐο!9 

NC 

2xl02° 

Envelope leak-not found 
Envelope leak-no post-

operational 
Envelope leak-not found 
Envelope leak-not found 
Envelope leak-not found 
None-contractual committment 
Short due to growth on emitter 
Envelope leak-not found 
Envelope leak-no post-

operational 
Short due to getter ring 

CO 
CD 
CD 

0 Test Interrupted for reactor shutdown of several months. 



TABLE 2 

OUT-OF-PILE TEST SUMMARY 

Total 
Emitter/ Test 

Test Collector Fuel Hours 

Average 
Electrode Average 
Power Emitter 
Density Temperature 
(W/cm2) f C ) 

Final Final 
Relative Relative 
Power Efficiency 

Test 
Terminat ion 
Date F a i l u r e Mode 

LC-1 W/Mo 30UC-70ZrC 7171* 6.8 1750 0.90 0.1*0 h/Z!/65 

LC-2 W/MO W-U02 c e r m e t 3235 7.8 165O 1.10 1.10 12/29/61* 

LC-3 W/Mo W-U02 c e r m e t IOU06 8.6 1750 1.10 1.10 11/31/66 

* 

LC-i* W/MO - 73**5 8 .7 1750 l . o o 1.00 11/11/65 

LC-5 W/Mo 9OUC-10ZrC 7558 8.8 1750 Ο.85 Ο.85 12/18/65 

LC-6 W/Mo 50UC-50ZrC 2800 U.8 165Ο I . I 8 1.13 8/IO/66 

LC-7 W/Nb — 3671 6.7 I8OO Ο.99 Ο.99 7/13/67 

LC-9 *w/Nb — 9353 7.9 1700 1.01 1.00 

Envelope leak - cesium ».ttack 
on insulator metal l iz ing 

Envelope leak - crack in emitter 
stem at trans i t ion jo int 

Envelope leak + short; leek not 
found; ge t ter ring broken end 
shorted 

Envelope leak - f ina l closure 
braze 

Envelope leak - cesium tube-
co l l ec tor braze 

Envelope leak - f inal closure 
braze 

Envelope leak - Cu-Nb weld in 
cesium reservoir 

O O 

+ Still operating as of 3/12/68 
* Emitter from WC16 
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CURRENT DENSITY (AMP/CrT) 

Fig . 6--OC-5, LC-9, and LC-7 performance comparison 
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DISCUSSION 

Speaker of paper C-3 : J . W. HOLLAND. 

UNGER (Ge rmany) : 
What was the reason for choosing 90% UC and 10% Z r C ? 

HOLLAND (USA): 
A s e r i e s of compatibili ty exper iments showed that this composi t ion 'was ade
quate for at leas t g ross compatibili ty effects. The additional z i rconium is 
to r a i se the melting point. And the composition of 9 0 / l 0 gives you a high 
melting point. You sti l l have the z i rconium presen t . 

UNGER: 
In what form was the fuel in the conver ter ; was it s intered or was it a m o r e 
solid s t ruc tu re ? 

HOLLAND: 
All the fuel he re was s in tered . 

UNGER: 
How high was the percentage of theore t ica l densi ty? 

HOLLAND: 
General ly the UO s tar ted out at 90% theore t ica l . The (UZr)C was in va
rious composi t ions, but I think the lowest percentages were about 80%. 

UNGER: 
Was there no p r e s s u r e on the emi t t e r , e i ther by fission gas r e l ea se or by 
swelling ? 

HOLLAND: 
On our longest t e s t s the fission product p r e s s u r e did not exceed 1 a tm. 

UNGER: 
And you do not have the effect of growth of the e m i t t e r ? 

HOLLAND: 
No growth effects,no. 

UNGER: 

Within say one mi l ? 

HOLLAND: 
Yes. 
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HAUSNER (Euratom): 
Did you seal the UO -fuel into the emi t te r under vacuum and if so, did you 
find a redis t r ibut ion of UO outside the fueled region? 

HOLLAND: 
There was a UO_ fuel converse , they were backed up with ei ther Helium or 
Argon, and UO was not found outside the emi t t e r cabin. 

STEHLE (Germany): 
What was the s tochiometry of the fuel, that is , the oxygen/uranium ra t io? 

HOLLAND: 
I don't know. 

STEHLE: 
What was the maximum center l ine t empera tu re of the UO -fuel? 

HOLLAND: 
That was not measu red . I would guess 2200 C. 

STEHLE: 

Have you finished your pos t - i r rad ia t ion examinations ? 

HOLLAND: 
No; this tes t -was just completed. 

SCHOCK (USA): 
In your in-pile t e s t s , what was kept constant, the heat input to the diode, 
or the emi t t e r t empera tu re ? 

HOLLAND: 
It was our objective to keep the emi t te r t empera tu re constant. But this did 
not always work out because of changes in neutron requi rements for other 
t es t s at the same t ime . We were running three t e s t s at one t ime on the same 
location. 

SCHOCK: 

How did the emi t t e r geometry in your UO_ tes t compare with p rac t ica l d e 
signs for r e a c t o r s , par t icu lar ly with respec t to the void volume available 
for fission gas accumulat ion? 

HOLLAND: 
I don't r eca l l exactly how big it was, something like 50 cc . And this was 
just a means of keeping the a tmosphere above the fuel separa te from the 
a tmosphere around the conver ter . 
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DEVIN (France) : 

Je voudrais savoir d'une par t quelle a été la durée de vie des thermocouples 
tungstène-rhénium placés dans l ' émet teur et d 'aut re pa r t si la t empéra tu re 
optimale du r é s e r v o i r de césium a dû ê t r e modifiée au cours de l ' expér ience . 

HOLLAND: 
The life t ime general ly was around a 1000 hours . The changes in emi t t e r 
t empera tu re were calculated by means of a cor re la t ion with other p a r a m e 
t e r s . On the UO ? tes t , the one you a r e re fe r r ing to, the var ia t ion of the op
t imum cesium r e s e r v o i r t empera tu re is negligible, a very slight i n c r e a s e . 
The reason for this is that the smal l per formance improvement that we had 
was just offset by a dec rease in the emi t t e r t e m p e r a t u r e . 

DANILOV (USSR): 
What were the durat ions of the exper iments ; what-were the maximum and 
minimum dura t ions? What a r e the most typical reasons for the te rminat ion 
of the exper iments? 

HOLLAND: 
The longest tes t was 5,400 hours , the shor tes t tes t was 520 hour s . The 
average was 2, 000 hour s . 
Concerning your other question, in these t e s t s the re was one terminat ion 
due to the shorting of the e lec t rodes and the r e s t were re la ted to envelope 
leaks . These conver te r s were tes ted in gas e i ther hel ium or argon, so when 
the envelope leaked the gas went in. 

DANILOV: 

How does one explain the dec rea se of the power and the efficiency in the 
f irs t 2, 000 to 3, 000 hou r s? Especia l ly as in the preceding relat ion one 
could see even an inc rease of the power and efficiency. Could one explain 
this with the penetrat ion of fission fragments into the in te r -e l ec t rode gap? 

HOLLAND: 
The previous repor t where the per formance improved was for a UO„ fuel 
conver te r . The other conver te r s where the per formance dec reased were 
fueled with U C / Z r C . The difference mus t be in the fuel. 

LANGPAPE (Germany): 
Did you find any cor ros ion of the emi t t e r surface or an abnormal high eva
poration ra te of the emi t t e r m a t e r i a l due to oxygen diffusion through the 
emit ter? 
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HOLLAND: 
No cor ros ion was observed except a slight etching of the surface. But this 
was not any more than would have occurred with an-unfueled emi t te r . 

LANG PAPE: 
Did you find an unusually large effect of collector t empera tu re on the con
v e r t e r performance due to build-up of cesium oxide on the collector surface? 

HOLLAND: 
Yes. 
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RETENTION OF FISSION GASES IN THE UOg PHASE OF 
Mo U02 CERMETS IRRADIATED AT HIGH TEMPERATURES* 

W. A. Ranken, M. C. Chaney and A. J. Patrick 
Los Alamos Scientific Laboratory 

University of California 
Los Alamos, New Mexico 

ABSTRACT 

Measurements have been made of the retention of xenon and krypton in 
the UO« phase of Mo U0? cermets for samples irradiated at average tempera
tures varying from l800° to 2100°K and at fission heating rates between 220 
and 280 W/cm . The measurements show that large fractions of the fission 
gases are released during irradiation from cermets having average U0„ par
ticle diameters of ~22μ. The data is interpreted in terms of a gas bubble 
diffusion mechanism and effective diffusion coefficients are obtained. 
These values are among the lowest reported in the literature. 

The fractional release from 125u U0p spheres, also irradiated in the 
form of Mo U0? cermet, is only slightly less than for the 22u UOp particles. 
This result is due to the collection of fission gas bubbles at the UOp 
grain boundaries. Gas release occurs when the fission gas pressure causes 
the UOp particles to crack along the weakened grain boundaries. 

INTRODUCTION 
Although a large body of literature describing theoretical and experi

mental investigations of fission gas migration and release in U0„ now 
exists, the studies have been primarily concerned either with post-
irradiation annealing experiments, the results of which cannot be extra
polated to long term irradiations at high temperature, or with long term 
irradiations of fuel forms where dimensions and temperature gradients are 
large. This paper reports measurements of gas release and retention made 
for UOp irradiated for long times at high temperature under conditions 
where both U0? dimensions and temperature gradients were small. 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
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EXPERIMENTAL 
The irradiation specimens consisted of Mo U0? cermet cylinders O.63 cm 

in diameter and 2.5*+ cm long. These cylinders were clad with ~.01 cm of 
tungsten in order to prevent the evaporation of U0? from the cermet surface. 
The Mo UOp cermets were of two general types. In one of these the average 
UOp particle diameter was approximately 22μ and no effort was made to sur
round each particle with the molybdenum matrix. This type of cermet is 
shown in Fig. 1. The other type of cermet consisted of 125μ average diam
eter UOp spheres embedded in a matrix of molybdenum as is shown in Fig. 2. 

The cermet specimens were irradiated in either the Materials Testing 
Reactor or the Omega West Reactor for times ranging from 5000 to 8OOO hr at 
temperatures varying from I8OO0 to 2100°K and with fission power densities 
ranging from 220 to 280 watts per cubic centimeter of cermet. The tempera
ture measurements were, with one exception, indirect and specimen tempera
tures decreased by as much as 200°K during irradiation for 8OOO hr so that 
sample temperatures can only be quoted as averages with an error limit ap
proaching 100°K. Power density values were obtained from radiochemical 
burnup determinations. 

The techniques used to determine the quantity of krypton and xenon, 
which remained in the U0? particles is fully described elsewhere. In brief, 
the procedure was to remove the molybdenum from the irradiated cermet sam
ples by electrochemically dissolving it in 10 normal sodium hydroxide. Fol
lowing this procedure the U0? particles were collected, washed and placed in 
a vacuum flask with a frozen solution of equal parts of hydrochloric and 
nitric acid. The solution was then heated to its boiling point and allowed 
to remain there for 30 minutes. The inert gases,which were liberated when 
the UOp particles dissolved, were driven from the solution and collected in 
a sample can immersed in a liquid nitrogen bath. Mass spectrometric 

85 analysis and Kr counting were used to determine the quantity of inert 
fission gases collected. Radiochemical burnup measurements were used to 
calculate the amounts of these gases produced during irradiation and thus 
to obtain fractional retention and escape values. 

RESULTS 
Because of variations in irradiation time and average U0? particle 

size, the fractional retention data obtained for the U0? phase of the Mo U0? 
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cermet fuels can best be represented in the form of an effective diffusion 
coefficient. Such a representation appears in Fig. 3 where effective dif
fusion coefficient values are plotted as a function of reciprocal tempera
ture. The derivation of effective diffusion coefficients from fractional 
release data was based on a diffusion calculation assuming spherically shaped 
particles. Correction of the measured gas release values for recoil was 
straightforward iri the case of the 125μ spheres. For the case of the small 
particle cermet, the U0? was assumed to be in cylindrical form in so far as 
recoil effects are concerned. In making the diffusion coefficient calcula
tions no consideration was given to trapping site theory. This is because 
trapping of fission gases into defects and bubbles takes place on a time 
scale much shorter than the irradiation times in these experiments so that 
the observed diffusion coefficients probably represent the motion of the 
trapping sites themselves, i.e., bubble diffusion. 

The experimental points in Fig. 3 which were obtained for the small 
(22μ) particle cermet (solid circles) show a spread of almost a factor of 
four in magnitude, a spread which may be largely due to the inaccuracy of 
the temperature determination. An estimate of the substantial error involved 
in fitting a curve to the data is given by the shaded region. 

85 The measurements shown in Fig. 3 are specifically for Kr . However, 
in those cases where mass spectrometric measurements were made, the ratio 
of xenon to krypton was the same as the production ratio. This would indi
cate that the effective diffusion coefficient in Fig. 3 applies also to 
xenon and would fit a picture whereby xenon and krypton move together in 
diffusing bubbles. 

The general range of diffusion coefficient vs temperature data shown 
in Fig. 3 is at the low end of the very wide spread in measured diffusion 
coefficients given by Belle. It is generally recognized that this spread 
is as wide as it is because the values were based on post-irradiation an
nealing measurements at a time when the important effect of gas holdup in 
trapping sites was not recognized. However, the values in Fig. 3 are much 
higher than would be predicted by the post-irradiation annealing results of 
MacEwan and Stevens taken at l673°K wherein .the effect of trapping was in
deed considered and was in fact the main point of the paper. This would 
suggest that results obtained from high temperature annealing of fuels ir
radiated at low temperature are not applicable in predicting gas release 
from fuels irradiated at high temperature. 
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It should be realized that the wide error range in the effective dif
fusion coefficient shown in Fig. 3 does not connotate a similarly wide vari
ation in fractional release values from the U0? phase of the cermet. This 
is demonstrated by Fig. k where the shaded region in Fig. 3 has been con
verted to fractional release values to be expected in 10,000 hrs from U0? 

particles having a diameter of 22 μ, . 

It is also important to note that the high fractional release values 
shown in Fig. k do not imply similarly high values for shorter irradiation 
times. The diffusion theory calculation predicts a time dependence which is 
shown in Fig. 5· Once again the shaded band represents the possible error 
in the diffusion coefficient measurements. It can be seen that fractional 
release values may be small for irradiation times less than 1000 hr. This 
would be especially true for large particles of U0? where sufficient gas 
pressure must build up in the grain boundaries to cause separation. The 
curve in Fig. 5 does not apply to this case. 

Although fission gas fractional release values for small particles are 
indeed large, one might reasonably expect them to be much lower for cermets 
made with 125u diameter particles since the diffusion model predicts that 
fractional release values scale as Dt/a where D is the diffusion coeffi
cient, t the irradiation time and a is the radius of the particle. Measured 
gas release fractions from the 125̂ · U0? particles do not show this behaviour 
and, in fact, are only slightly lower than the release fractions obtained 
for 22μ particles. The explanation for this behaviour can be seen in Fig. 2, 
which shows the appearance of the U0? particles after 3250 hr of irradiation. 
It is apparent that fission gas has collected at the U0p grain boundaries. 
Fig. 6 is an electron micrograph of an irradiated U0? particle showing a 
region where pullout during polishing has exposed what appear to be hemi
spherical depressions caused by gas bubbles at the grain boundaries. The 
collection of fission gas in bubbles at the grain boundaries simultaneously 
weakens the grain boundaries and exerts a pressure tending to separate the 
grains. Eventually grain boundary separation occurs and the fission gases 
escape. Thus the gas release from the U0? is governed by the U0? grain 
size rather than the U0? particle size. This effect is shown in Fig. 3 
where the "x" point represents the effective diffusion coefficient calcula
ted from a measured gas escape fraction of 62$ when diffusion from a 125μ 
diameter sphere is assumed. The circled "x" is the diffusion coefficient 
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obtained from the same 125μ particle gas escape data, but calculated on the 
basis that diffusion escape is determined by the grain size. The grain size 
was taken to be 28μ based on photomicrographs such as Fig. 2. It can be 
seen that this procedure brings the diffusion coefficient obtained from the 
125μ particle irradiation into good agreement with those obtained from the 
irradiation of 22μ particles. 

CONCLUSION 
It has been demonstrated that for long term irradiations significant 

fission gas release occurs from U0? at temperatures as low as Γ7Ό0°Κ even 
under conditions-where temperature gradients are relatively small; i.e., 
on the order of 100°c/cm. Release results can be interpreted on the basis 
of a diffusion model which postulates that gas escape occurs from U0? grains 
by the diffusion of small bubbles to the U0? grain boundaries where trapping, 
and eventual grain separation, occurs. Attempts to observe bubbles in the 
irradiated U0? grains by replica electron microscopy have not been success
ful. This may mean that the bubbles in the grain are too small to be 
detected with the 100-200μ resolution attainable with the replicating 
technique. 
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Fig. 2 Photomicrograph of Mo UOg cermet containing 125μ diameter U0r 
spheres. 



1.0

lü 
co 
< 
UJ 
_ j 
üJ 
tr 

o 
r
O 
< 

tr 
ÜL 

I 

φ
ι· 

I 

1600 1700 1800 1900 2000 2100 

TEMPERATURE °K 

"' Fig. k Diffusion theory prediction of temperature dependence of 

fractional release of fission gas from 22μ UOg particles 

irradiated for 10,000 hr. 

1000/Τ (°K) 

Fig. 3 Effective diffusion coefficient vs reciprocal temperature for 

small particle UOg irradiated in cermet form for 5ΟΟΟ8ΟΟΟ hr. 



FRACTIONAL RELEASE 

Diffusion theory prediction of time dependence of fractional 
release 
1873°K. 

Fig. 6 -»— 10/i ► 

I 

I—■ 

CO 

I 

release of fission gas from 22μ UOg particles irradiated at 

Electron micrograph of irradiated UOp showing evidence of 

fission gas bubble collection in U0„ grain boundaries. 



- 419 

DISCUSSION 

Speaker of paper C-4: W. A. RANKEN. 

PEEHS (Germany): The recoi l length of fission products is about 10/u. 
Therefore , a good deal of fission gas mus t have escaped from the 20/u p a r 
t ic les and have been injected into the Mo by recoi l . How do you explain that 
you have found no differences between the li t t le and the big UO pa r t i c l e s ? 

RANKEN (USA): The diffusion coefficients given in the paper have been c o r 
rected for the effect of recoi l l o s s . The actual recoi l loss from the 20/u p a r 
t ic les is less than one would at f i rs t suspect because in the ce rme t form 
many of the UO par t i c les a r e contiguous to other UO pa r t i c l e s . Therefore 
a toms recoil ing from one par t ic le may be injected into another UO_ pa r t i c l e . 
The actual recoi l escape values for the smal l UO par t ic le c e r m e t s a r e a p 
proximately 35%. 

PEEHS: We have found UO_-migrat ion in a U O . - M o - c e r m e t by annealing 
out-pile for 500 h, e . g . the UO - s i t e s become round. Have you found the 
same effects after your i r r ad ia t ions? 

RANKEN: We have found that the re i s indeed some further s intering of the 
ce rme t during the long t e r m i r rad ia t ions at high t e m p e r a t u r e . 

PEEHS: Have you found any dimension changes during i r rad ia t ion of your 
specimens ? 

RANKEN: Some dimensional change general ly occurs with the amount d e 
pending on specimen t e m p e r a t u r e , i r rad ia t ion t ime and a considerable num
ber of other fac tors . 

ROBERTSON (Canada): The paper quoted t empera tu re gradient of 1 0 0 ° c / c m . 
Was this a macroscopic gradient or the microscopic gradient in the p a r 
t i c les? 

RANKEN: The t empera tu re gradient quoted was the approximate total g r a 
dient. The maximum microscop ic gradient in the fuel pa r t i c l e s is about 
60 C /cm for the 125/u UO_ pa r t i c l e s and under 15 C /cm for the smal l UO_ 
pa r t i c l e s . 

ROBERTSON: Did F ig . 5, which is predict ion, make any allowance for r e 
solution of the fission product g a s e s ? Such r e - e n t r y is required to explain 
the notable scarc i ty of fission product gasbubbles in i r rad ia ted UO_. 
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RANKEN: The actual measu remen t s of gas re leased from the UO gave 
values of 60-70% escape of the gas which remained in the UO_ after recoi l 
cor rec t ions had been made . This would indicate that re-solut ion is not ef
fective in retaining gas in the UO_. However, it may be the mechanism that 
keeps gas bubbles smal l while they a r e diffusing towards the grain boun
d a r i e s . It is not effective in keeping bubbles from growing at the UO grain 
boundaries . 

SCHOCK (USA): In your view, does the molybdenum ma t r i x make any con
tribution to fission gas retent ion? 

RANKEN: In our depicted ce rme t it does not. 

SCHOCK: How does the ventability of your ce rme t compare with bulk UO ? 

RANKEN: That is a r a the r difficult question.to answer . The comparison 
depends cr i t ica l ly on the fuel t empera tu re , the length of t ime the fuels have 
been i r rad ia ted and the magnitude of the the rmal gradient in the bulk UO_ 
fuel. 
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EXPERIENCES DE CONVERSION THERMO-IONIQUE "SIRENE" EN PILE 
et 

EXAMENS APRES IRRADIATION DU CONVERTISSEUR "SIRENE 302" 
J. BLIAUX, M. CLEMOT, B. DEVIN et P. DUMAS 

Service d'Electronique Physique - Centre d'Etudes Nucléaires de Saclay, 
91 - Gif-sur-Yvette (France) 

Résumé 

TRITON. 
On rend compte des expériences de durée de vie effectuées dans la pile piscine 

Les 3 convertisseurs présentés sont semblables et irradiés dans des capsules indi
viduelles. La surface émettrice est de 20 cm2 et comporte un revêtement pyrolytiquede tungstè
ne. L'espace interélectrodes est de 0,2 mm. La pression de césium est réglée soit par la tem
pérature d'un bloc de graphite (qui est voisine de celle du collecteur) soit par la température d'un 
réservoir de césium classique. 

Des durées de vie de l 'ordre de 2 000 heures ont été obtenues. Les mesures effec
tuées pendant ces tests sont présentées dans cette première partie. 

Dans la deuxième partie, on présente les résultats de l'examen, après irradiation du 
convertisseur SIRENE 302, effectué en cellule chaude : perturbation de la surface émettrice, 
réaction UOo-Mo, transfert par evaporation de l 'U02, bon comportement du graphite et vérifi
cation du court-circuit émetteur-collecteur. Ces résultats confirment ceux obtenus précédemment 
en laboratoire. 

1.1. Introduction. 

On décrit dans la première partie les essais relatifs aux convertisseurs thermo-ioni
ques nucléaires SIRENE 302, SIRENE 29 et SIRENE 304*: mesures et durée de vie en pile (Réac
teur TRITON, pile piscine de 6 MW). 

Dans la deuxième partie on donne les résultats des examens post-mortem du convertis
seur SIRENE 302 effectués à SACLAY au LECI (Laboratoire d'Examen des Combustibles Irradiés). 

1.2. Description de l'expérience. 

Le schéma de l'expérience est représenté sur la figure (1) : 
Le convertisseur est placé dans le bas d'une canne d'expérience qui est suspendue à 

un bras d'ascenseur pouvant se déplacer verticalement ; de ce fait le convertisseur reçoit un flux 
neutronique variable modifiant ainsi la puissance thermique injectée dans l'émetteur. Le refroi
dissement du collecteur est assuré par une circulation d'eau de pile sous pression. L'ajuste
ment des températures de collecteur et du réservoir de césium est assuré par deux chaufferettes 
pouvant fournir au maximum 1 500 Wth et 500 Wth respectivement. 

La pression de césium est déterminée par la température d'un bloc de graphite avec 
du césium comme produit d'insertion suivant l'équilibre [Cx, C ] 

C Cs » C Cs + C s / * 
x « y 

»Convertisseurs fabriqués au titre des contrats CEA/CSF et CEA/CFTH-HB. 
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Les équil ibres ut i l isés sont soit [C 
du r é s e r v o i r est voisine de celle du col lecteur . 

10 
C 2 4 ] , s o i t [ C 2 4 , C„„] [ l ] . La t empéra tu re 

36 

La puissance électr ique convert ie est évacuée par la connexion du r é s e r v o i r de cé
sium et par l ' embase d 'émet teur (rel iées success ivement à deux tubes métalliques coaxiaux de 
forte section constituant la canne support) et connectées à la charge rés i s t ive par des câbles 
de trt>s faible r é s i s t ance . 

La tension du conver t i s seur est p r i s e ent re le bas du collecteur et l ' ex t rémi té supé
r i eu re de l ' embase d 'émet teur . 

Les t empéra tu re s sont mesu rées par des thermocouples Chromel Alumel à l ' excep
tion de cel les ducombus t ib l e et de l ' émet teur mesu rée s par des thermocouples WRe 5 % 
WRe 2G %. 

Après i r radia t ion la par t i e active contenant le conver t i s seur est désaccouplée de sa 
canne support , et t r anspor t ée dans un château en plomb jusqu'aux cellules chaudes pour exa
mens p o s t  m o r t e m . 

1.3. Conver t i s seur SIRENE (fig. 2). 

Le conver t i s seur thermoionique nucléai re SIRENE est de géométr ie cyl indrique. Il 
contient un cyl indre d'oxyde d 'uranium enrichi à 20 % (8 g. d'U235). La surface émet t r i ce est 
de 20 c m 2 et la distance in te ré lec t rodes de 0,20 mm à froid. 

La géométr ie des conver t i s seurs res tant prat iquement identique (les éca r t s p rove
nant des va leurs des r é s i s t ances thermiques) , les conver t i s seurs SIRENE 302, 29 et 304 ne dif
fèrent que sur les points importants suivants : 

Rése rvo i r de césium 

Emet teur 

Col lecteur 

Cent rage 

Scellement 
m é ta l  cé ramique 

SIRENE 302 

cés iumgraphi te 

C 2 4 C S ^ C 3 6 C S 

200 μ\\'/Μο 
( W F J 

b 

NbZr 1 % 

non 

L i c a l o x / / N i  T i / / 
NbZr 1 % 

SIRENE 29 

césium liquide 

50 μ\ν/Μο 
( W F J 

b 

Mo 

oui 

Alumine WESGO//W/ 

C u  N i / / N b 

SIRENE 304 

cés iumgraphi te 

C 1 0 C S ^ C 2 4 C S 

200 M W / M O 

( W F J 
b 

NbZr 1 % 

oui 

L u c a l o x / / N i  T i / / 
NbZr 1 % 

Montages annexes . 

Le circui t de charge , l 'équipement électronique et le fonctionnement autonome sans 
survei l lance ont été décr i t s en détail dans une publication précédente [2]. 

1.4. Essa i s p r é l i m i n a i r e s . 

Une expérience SIRENE 300 identique mais sans combustible a précédé les expér ien
ces effectives. Elle a pe rmis de dé te rmine r les va leurs du chauffage par rayonnement f dans 
les différents canaux et à différentes profondeurs . 

Les puissances Y dégagées dans les pièces mass ives du conver t i s seur interviennent 
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dans le bilan thermique (fig. 3) , donc dans l 'es t imat ion du rendement . 
Au début dé chaque mise en pile d'un conver t i s seu r , les r é s i s t ances the rmiques 

sont mesu rée s en injectant success ivement des puissances connues dans l 'é lément chauffant du 
r é se rvo i r de césium puis dans celui du col lec teur . 

Les va leurs des r é s i s t ances thermiques t rouvées pour chacun des conve r t i s seu r s 
sont : 

R i 

R 2 

Pi 

p2 

r i 

r 2 

SIRENE 302 

5,7 °C/W 

10,3 °C/W 

0,11 °C/W 

0,52 °C/W 

( 3°C/W au total , 

( e s t imé d ' ap rès 

) SIRENE 300 

SIRENE 2 9 

16 ,5 °C/W 

17,0 °C/W 

0,18 °C/W 

0, 52 °C/W 

( 1,14 °C/W 

calculé < 

( 3 , 1 °C/W 

SIRENE 304 

4 ,7 °C/W 

4 , 9 ° C / W 

0,376 °C/W 

0,39 °C/W 

[ 3 °C/W au total , 
\ es t imé d ' après 
' SIRENE 300 

1.5. Rendement . 

Le flux neutronique et le chauffage pa r rayonnement Y engendrent une puissance 
(PATT7, + P v _) dans l ' éme t t eu r . Le bilan thermique dans l ' éme t t eu r est 

JNIL. I iL, 

P = P + P = P + P + P + P 
T NE KE o EB EC ER 

avec : 

Τ 

EB 

EC 

ER 

puissance injectée dans l ' émet teur 

puissance de so r t i e 

puissance évacuée de l ' éme t t eu r v e r s la base d 'émet teur 

puissance évacuée de l ' émet teur v e r s le pont thermique col lec teur 

puissance évacuée de l ' émet teur v e r s la connexion du r é s e r v o i r de 
cés ium. 

D 'ap rès les r é su l t a t s de l ' expér ience SIRENE 300, la valeur de Ρ ρ ΐ Γ r ep r é sen t e une 
fraction <1 de la puissance thermique t r a n s m i s e par l ' éme t t eu r , et dont la valeur est fonction 
des r é s i s t ances t he rmiques , donc : 

P = α [P + P + P 
EC L EC *ER EB soit 

EC 
P = P + -

τ ο α +Δ<χ 

L' imprécis ion sur le t e r m e α provient surtout de l ' impréc i s ion sur la connaissance 
du chauffage Y et sur le flux thermique évacué par l ' embase d ' éme t t eu r . 



 424 

a v e c : 

L e b i l an t h e r m i q u e du pont c o l l e c t e u r d é t e r m i n e P p u i s q u e 

p + p + p 

EC PC Y PC 
cas (τ 

PC V PC 

T P F
4 ) ♦ (Tpc  TpF) j

PC 

Y PC 
r
p c 

T 
P F 

p 2 

p u i s s a n c e de la c h a u f f e r e t t e du pont c o l l e c t e u r 

p u i s s a n c e Y d a n s le pont c o l l e c t e u r 

t e m p é r a t u r e du pont c o l l e c t e u r 

t e m p é r a t u r e de la p a r o i f r o i d e 

r é s i s t a n c e t h e r m i q u e e n t r e le pont c o l l e c t e u r et la p a r o i f r o i d e . 

P o 1 
L e r e n d e m e n t e s t lì = ——— = — 

T 
1 + 

C E 
( 

1 

~Kã 
) 

R e n d e m e n t d e s c o n v e r t i s s e u r s au po in t n o m i n a l : 

S I R E N E 302 (85 Wu) 

S IRENE 29 (70 Wu) 

S I R E N E 304 (95 Wu) 

( 1 0 , 8 + 1,0) % 

( 9 , 8 +_ 0, 9) % 

( 1 0 , 1 + 1 , 1 ) % 

1.6 . R é s u l t a t s de d u r é e de v i e . 

L e s c o n v e r t i s s e u r s a v a i e n t déjà sub i d e s t e s t s p r é p a r a t o i r e s en l a b o r a t o i r e ; le t a 

b l eau s u i v a n t i nd ique l e s d i f f é r e n t e s p e r f o r m a n c e s en l a b o r a t o i r e p u i s en p i l e : 

D u r é e p r é a l a b l e en 

l a b o r a t o i r e (h) 

P u i s s a n c e n o m i n a l e en 

l a b o r a t o i r e (W) 

D u r é e t o t a l e en p i l e (h) 

D u r é e s a n s d é g r a d a t i o n 

en p i l e (h) 

C a u s e de l ' a r r ê t c o n s t a 

t é e ou p r é s u m é e . 

R é g i m e m o y e n de f o n c 

t i o n n e m e n t en p i l e (W) 

E n e r g i e c o n v e r t i e en 

p i l e (kWh) 

S I R E N E 302 

10 

100 

2 050 

1 6 50 

C o u r t  c i r c u i t i n t e r 

m i t t e n t pu i s p e r m a 

nent 

85 

150 

S I R E N E 29 

300 

6 0 * 

500 

10 

C o u r t  c i r c u i t p e r m a 

nent et a r c 

70 

0 , 5 

S I R E N E 304 

10 

100 

1 982 

1 980 

F u i t e d a n s la c a p s u l e 

a y a n t e n t r a î n é la d e s 

t r u c t i o n du c o n v e r t i s 

s e u r 

90 

160 

* C o n v e r t i s s e u r de p u i s s a n c e n o m i n a l e 100 w a t t s , a y a n t é t é t e s t é en l a b o r a t o i r e à p u i s s a n c e 

r é d u i t e . 

L e s c o u r b e s de d u r é e d e v ie c o n c e r n a n t l e s c o n v e r t i s s e u r s 302 et 304 son t r e p r é s e n 

t é e s s u r l e s f i g u r e s 4 et 5. 
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1. 7. M e s u r e s . 

C o m p t e t enu d e s d u r é e s de v i e c i - d e s s u s , l e s m e s u r e s n 'on t é t é e f f ec tuées que s u r 
2 c o n v e r t i s s e u r s : 

L e s e x a m e n s s u r S I R E N E 29 ont p o r t é s u r t o u t s u r l ' é t u d e de la c a u s e du c o u r t - c i r 
cu i t . 

L e s m e s u r e s p lus c o m p l è t e s s u r S I R E N E 302 et S I R E N E 304 son t r e p r é s e n t é e s s u r 
l e s f i g u r e s c i - j o i n t e s . 

L e s t h e r m o c o u p l e s C h r o m e l - A l u m e l ont fonc t ionné n o r m a l e m e n t ; p a r c o n t r e l e s t h e r 
m o c o u p l e s W R e 5 % - W R e 26 % (fils nus m o n t é s d a n s d e s b i f i l a i r e s de g luc ine) ont donné d e s i n 
d i c a t i o n s de t e m p é r a t u r e v a r i a b l e s en fonct ion du t e m p s p o u r un m ê m e c o n v e r t i s s e u r . L ' é v o l u 
t ion d e s t h e r m o c o u p l e s é m e t t e u r et c o m b u s t i b l e a é t é p l u s r a p i d e p o u r S I R E N E 304 que p o u r 
S IRENE 302 , s u r t o u t en c e qui c o n c e r n e l ' é m e t t e u r . 

On r e t r o u v e p a r c o n t r e de g r a n d e s s i m i l i t u d e s s u r l e s c a r a c t é r i s t i q u e s P u i s s a n c e d e 
s o r t i e en fonc t ion de la p u i s s a n c e du r é a c t e u r ( p r o p o r t i o n n e l l e à la p u i s s a n c e i n j e c t é e ) . C e t t e 
f o r m e de c a r a c t é r i s t i q u e ava i t déjà é t é t r o u v é e en l a b o r a t o i r e [ 3 ] , l e s e x p é r i e n c e s en p i l e la c o n 
f i r m e n t (fig. 6) . 

L a v a l e u r de la t e m p é r a t u r e du r é s e r v o i r de c é s i u m s e m b l e m o i n s c r i t i q u e que n e l e 
l a i s s a i e n t p r é v o i r l e s e x p é r i e n c e s f ines de l a b o r a t o i r e : c e l a e s t s a n s dou te dû a u x h é t é r o g é n é i t é s 
de t e m p é r a t u r e s du c o l l e c t e u r et a u s s i d e l ' é m e t t e u r . 

L e r é s e r v o i r de c é s i u m peu t f o n c t i o n n e r à d e s t e m p é r a t u r e s v a r i a b l e s s u i v a n t la quan 
t i t é de c é s i u m i n t r o d u i t e . D a n s l e s e x p é r i e n c e s S I R E N E 302 et S I R E N E 304 , l e fait que l e r é s e r 
v o i r de c é s i u m ne so i t p a s i s o t h e r m e (et ce p o u r d e s r a i s o n s de c o m m o d i t é s t r u c t u r a l e ) , condui t 
à une p l a g e d ' i n c e r t i t u d e s u r la t e m p é r a t u r e d e l ' é l é m e n t du b loc d e g r a p h i t e où s e déf in i t la t r a n 
s i t i on r é v e r s i b l e C 24' c 3 6 o u C 1 0 - '24- L e c o n v e r t i s s e u r S I R E N E 302 a fonc t ionné a v e c u n e 
t e m p é r a t u r e m o y e n n e de g r a p h i t e de 792 °C , et l e c o n v e r t i s s e u r S I R E N E 304 a v e c une t e m 
p é r a t u r e m o y e n n e de g r a p h i t e de 688°C (voir f i g u r e s 7 et 8) . 

L a p u i s s a n c e i n j e c t é e t h é o r i q u e , d é d u i t e à p a r t i r de l ' é c a r t T c o m D - T £ m e j . m e s u r é 
au début de l ' e x p é r i e n c e et de la d é p r e s s i o n de f lux [4 ] , donne u n e v a l e u r à 10 % p r è s de la p u i s 
s a n c e t h e r m i q u e r é e l l e ob t enue à p a r t i r du b i l a n t h e r m i q u e . B ien que la p u i s s a n c e t h e r m i q u e de 
la p i l e (6 000 + 150 kW) so i t m a i n t e n u e c o n s t a n t e , l e f lux n e u t r o n i q u e en un point v a r i e au long du 
c y c l e du r é a c t e u r et en fonc t ion d e s e x p é r i e n c e s v o i s i n e s . I l e s t p r é v u d a n s l e s p r o c h a i n e s e x p é 
r i e n c e s de r é g u l e r la p o s i t i o n du c o n v e r t i s s e u r en fonc t ion d 'un d é t e c t e u r du t y p e " n e u t r o n - é l e c 
t r o n " afin d ' a s s u r e r une p u i s s a n c e i n j e c t é e r i g o u r e u s e m e n t c o n s t a n t e : s i non i l s e m b l e t r è s dif
f i c i l e de d é c e l e r l e s évo lu t ions d ' a n t i r é a c t i v i t é du c o n v e r t i s s e u r ( p r o d u i t s de f i s s i o n p a r e x e m p l e ) . 

1 .8 . C a u s e s d ' a r r ê t . 

L e s c a u s e s d ' a r r ê t p r é s u m é e s son t : 

S IRENE 302 1) d é c o l l e m e n t c o u c h e W / M o 

2) c o n t a c t é m e t t e u r c o l l e c t e u r 

( c o u r t - c i r c u i t i n t e r m i t t e n t ) 

( c o u r t - c i r c u i t p e r m a n e n t ) 

S IRENE 29 1) con t ac t é m e t t e u r c o l l e c t e u r 

2) a r c d a n s l e c é s i u m 

( l i n é a r i t é de la c a r a c t é r i s t i q u e I (V), 
v o i r f ig . 9) 

(décroch~-ne*rt b r u t a l de : i - a r a c t é r i s -
t i q u e I (V) d a n s la p a r t i e n é g a t i v e du 
c o u r a n t ) 

S IRENE 3 0 4 : 1) fui te d a n s la c a p s u l e é t a n c h e ( e n t r a î n a n t la d e s t r u c t i o n du c o n v e r t i s 
s e u r t r è s r a p i d e m e n t , p a r r é a c t i o n à 
h a u t e t e m p é r a t u r e ) . 
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2. EXAMENS POST MORTEM SIRENE 302. 

Le conver t i sseur SIRENE 302 a fonctionné en pile pendant 2 050 heures ; après une 
désactivation radioactive de six semaines , les examens en cellule chaude ont pu d é m a r r e r . 

2 . 1 . Conver t i sseur . 

Après découpage de la par t ie act ive, le conver t isseur a été extrait de son enceinte 
étanche (fig. 1). L 'aspect extér ieur du conver t isseur (pièces non oxydées, chaufferettes en excel
lent état) a prouvé la qualité du vide autour du conver t i sseur . La figure 2 représen te la courbe 
d 'émission γ globale re levée sur le conver t isseur [ l ] : les deux pics du Cs 134 prouvent que le 
césium est r e s t é dans les deux blocs de graphite, les t ro is pics du Ta 182 correspondent aux col
l i e r s externes de pr i se de tension et de fixation du thermocouple, l 'act ivi té centrale correspond 
principalement à l ' émiss ion Y du combustible. 

Le conver t i sseur a été découpé et les composants principaux ont été examinés. 

2 .2 . Réservoi r de cés ium. 

Les deux blocs de graphite pyrolytique initialement introduits ont été re t rouvés sous 
forme de six to res d 'épaisseur 3 mm environ chacune, ayant conservé une bonne tenue mécanique 
malgré le gonflement dû à l ' inser t ion du césium ; la fig. 3 r ep résen te l'un de ces t o r e s . L 'analyse 
du spec t re Y dû au Cs 134 seul a montré un enrichissement en césium plus important aux ext ré
mités supér ieure et inférieure de l 'ensemble des deux blocs. 

2 . 3 . Espace in te ré lec t rodes . 

Dans l 'espace in teré lec t rodes a été recuei l l ie une petite quantité de poudre noire dans 
laquelle l 'analyse spectrographique a montré la p résence de Cs 134 (réaction n, Y avec 
Cs 133), du Cs 137, du Ce 144, du Zr 95 et du Nb 95. Ces quatre de rn ie r s corps peuvent prove
nir soit d ' impuretés contenues dans les matér iaux consti tuants, soit de fissions d 'uranium l ibre 
diffusé. On note également la présence de Ta 182, qui pourrai t provenir d'une impureté de l ' é 
metteur ou du collecteur (Mo ou Nb). La présence éventuelle de W n'a pu ê t re mise en évidence 
par suite de la br ièveté de la période (24 heures) . 

2 .4 . Emet teur . 

Le cylindre émet teur (fig. 4) présente extér ieurement quelques cavités et soufflures 
analogues à cel les observées en laboratoire [2]. Une tache brune importante à l ' ex t rémi té de 
l ' émet teur peut expliquer le cour t c i rcui t permanent qui mit fin à l ' expér ience. 

Des coupes t r ansve r sa l e s de l ' émet teur ont été effectuées dans les par t ies haute, 
moyenne et basse de l ' émet teur , afin d ' ê t re soumises aux examens suivants : 

 micrographie 
 microdure té 

 microsonde de Castaing 
 mesure du t ravai l de sor t ie sur la face émet t r i ce . 

A ce jour, seuls les résul ta ts des deux p r e m i e r s examens ont été obtenus . La figu
re 5 montre l 'aspect de la couche de W et de la zone MoW pour la par t ie supér ieure de l ' émet 
teur : importantes coalescences de porosi tés à l ' interface et nombreuses porosi tés dans la cou
che de W. Les figures 6 et 7 correspondent à une coupe médiane de l ' émet teur : les porosi tés 
semblent s ' ê t r e r assemblées aux joints de grains du W provoquant des a r rachements jusqu'à la 
zone de liaison MoW. La zone de liaison MoW (importance de l'interdiffusion) n'a pu ê t re es t i 
mée par microdure té , par suite des perturbat ions dues à ces cavi tés . 

2 . 5 . Combustible. 

Le combustible était initialement constitué de 10 to res d'UOg enfilés sur un mandrin 
en W, de d iamètre in tér ieur 3 mm et de d iamètre extér ieur 11,8 mm devant en t re r dans la gaine 
émet t r ice de d iamètre interne 12 mm. Après i r radia t ion, le combustible s 'es t totalement modi
fié (fig. 8) : dispari t ion de la par t ie centrale due à une evaporation importante de l'UOg qui est 
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venu s e c o n d e n s e r p r i n c i p a l e m e n t s u r l e s é c r a n s en Mo, p r o v o q u a n t a i n s i l e u r d é t é r i o r a t i o n p a r 

t i e l l e . La f i g u r e 9 r e p r é s e n t e la s t r u c t u r e b a s a l t i q u e de l ' U O , c a r a c t é r i s t i q u e d ' U 0 2 t r è s chauf

fé . Aux p o i n t s d e c o n t a c t UO9  M o , on o b s e r v e une z o n e c o r r e s p o n d a n t v r a i s e m b l a b l e m e n t à 

une r é a c t i o n U 0 2  Mo ( é p a i s s e u r 160 μ) . 

Au s e i n du c o m b u s t i b l e , on o b s e r v e d e s i n c l u s i o n s b l a n c h e s dé jà i d e n t i f i é e s [3] c o m 

m e é tan t d e s p r o d u i t s de f i s s i o n s o l i d e s M o , R u , C s et Z r . 

2 . 6 . C o l l e c t e u r et s c e l l e m e n t m é t a l  c é r a m i q u e . 

A c t u e l l e m e n t en c o u r s d ' e x a m e n . 

2 . 7 . 

L e s e x a m e n s s u r l e c o l l e c t e u r et s u r l e s c e l l e m e n t m é t a l  c é r a m i q u e a i n s i que l ' é t u 

de d e l ' e n s e m b l e U 0 2  Mo  W à la m i c r o s o n d e d e C a s t a i n g et l a m e s u r e du t r a v a i l d e s o r t i e 

( T . E . E . M . ) d e la s u r f a c e é m e t t r i c e p e r m e t t r o n t de c o m p l é t e r c e s e x a m e n s . 

On e s p è r e a i n s i m e t t r e en é v i d e n c e l ' i n t e r a c t i o n U 0 2  Mo et c o n n a î t r e l ' i m p o r t a n c e 

de la zone de di f fus ion Mo  W. C e t t e é t u d e p e r m e t t r a é g a l e m e n t d e r e n d r e c o m p t e d ' u n e diffu

s i o n é v e n t u e l l e , à t r a v e r s la g a i n e Mo  W , d e s p r o d u i t s de f i s s i o n ou d e l ' u r a n i u m l i b r e . 

2 . 8 . R é f é r e n c e s . 

[l] B A Z I N , M A N S A R D , MONIER·, V I G N E S O U L T , R a p p o r t L E C l / C E A à p a r a î t r e  1968 . 

I2] A L L E A U . T . ; C L E M O T , M. ; HASSON, R . , " P o s t m o r t e m e x a m i n a t i o n s of 

t h e r m i o n i c e m i t t e r s "  P a l o Al to Conf. 1967. 

k l B R A D B U R G , B . T . ; D E M A N T , J . T . ; M A R T I N , P . M . ; P O O L E , D . M . " E l e c t r o n 

p r o b e m i c r o  a n a l y s i s of i r r a d i a t e d UO2 "  J o u r n a l of N u c l e a r M a t e r i a l s , 17  1965 . 
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d ' i n t e r a c t i o n C o m b u s t i b l e UO2 

F i g . 9 - Con tac t M0-UO2 - S t r u c t u r e b a s a l t i q u e du c o m b u s t i b l e 
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DISCUSSION 

Speaker of paper C-5 : J . BLIAUX. 

ROUKLOVE (USA); What was the longest t h e r m a l shock t ime and did the 
conver ter r eve r t to room t e m p e r a t u r e ? 

BLIAUX (France) : Pendant l ' a r r ê t du r éac teu r il es t cer ta in que le conver 
t i s s e u r a dû redescendre aux a lentours de 1 6 à 20 C. Ce sont des a r r ê t s 
qui durent 4 jou r s toutes les t ro i s semaines , plus les durées de controles 
des r é s i s t ances thermiques qui sont effectués hors-fJ.ux. 

DEVIN (France) : J ' a i une question sur la durée de vie des thermocouples 
de l ' émet teur et du combustible et sur le gradient thermique m e s u r é ent re 
l ' ex té r i eu r et l ' i n t é r i eu r . 

BLIAUX: En ce qui concerne le gradient thermique on a pu m e s u r e r dès le 
début de l ' o r d r e de 450 C. En ce qui concerne l 'évolution des thermocouples , 
dans l ' expér ience 302 le thermocouple émet teur a duré a s s e z longtemps, 
mil le h e u r e s . Dans l ' expér ience 304 dès le début les deux thermocouples 
ont évolués t r è s net tement . La seule chance qu ' i l nous ait été donnée, c ' e s t 
que les deux thermocouples ont évolués pa r hasa rd para l lè lement , ce qui a 
p e r m i s de conse rve r le gradient et de faire des vérif icat ions de flux t h e r 
mique à t r a v e r s l ' émet teur pendant 200 à 300 h e u r e s . 
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LABORATORY LIFE TEST AND INPILE IRRADIATION STUDIES 
OF CYLINDRICAL THERMIONIC CONVERTERS *) 

A.Jester, F.Gross, H.Holick, R.Krapf and R.Zöller 
Brown, Boveri & Cie, AG, Mannheim 

Central Research Laboratory, 69 Heidelberg, Postfach 206 

Summary 

For the development of the ITR-project (Incore Thermionic Re
actor) a preliminary test program has been started to demon
strate life time and performance of cylindrical thermionic 
converters. 

A first generation of diodes has been tested in the Reactor 
Ispra I in cooperation with the Direct Conversion Division of 
the Ispra Research Center of Euratom. A second, more advanced 
version of diodes· has been studied in the laboratory, where 
56OO hours life time have been achieved, and in the FR 2 Reac
tor of the Karlsruhe Nuclear Research Center, with now 1250 
hours of operation. 

Typical design and operation data of the diodes are: 

emitter area : 
emitter material ! 
collector material ! 
electrode spacing 
fuel 
emitter temperature 
collector temperature 
electrical output 
efficiency 

20 cm 
molybdenum 
molybdenum 

, 0.17 mm 
! uranium dioxyde 90 $ enriched 
ì 1800°K - 1900°K 
! 900°K 
s ̂  5W/cm2 
: 10 £ 

This work was supported by the German Bundesministerium für 
wissenschaftliche Forschung. 
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Introduction 

For the development of the ITR-project Qj (Incore Thermionic 
Reactor) a preliminary test program has been started to demon
strate life time and performance of cylindrical thermionic 
converters. 

With a first type of diodes series of laboratory tests and 
two irradiation experiments in cooperation with the Direct 
Conversion Division of the Ispra Research Center of Euratom 
were performed [2, 3, 4, 5j «A lot of experience in conver
ter technology and physics was gained with this type of dio
des. Hence, a more advanced version of cylindrical diodes 
could be developed and is being tested now in laboratory and 
inpile tests. 5600 hours of operation in the laboratory and 
1250 hours in the FR 2 Reactor of the Karlsruhe Nuclear Re
search Center have been achieved. Both diodes are still opera
ting satisfactorily. Further life tests in the laboratory with 
single diodes and irradiation tests of series connected dio
des are scheduled to be started during the next few months. 

Converter design and processing 

A cross section of the first type of diodes is shown in Fi
gure 1. The waste heat at the collector is removed by heat 
conduction across a heat bridge. The collector temperature 
can be controlled by means of additional coaxial heaters; For 
more details see (_2, 3» 4, 5j · 

The above mentioned design has several disadvantages: 
To remove the waste heat from the collector to the copper 
block strain-free, to match the thermal expansion differences 
and to equalize the temperature profile along the collector 
axis, a rather complicated structure of flexible heat bridges 
was necessary. 
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The use of structure materials like copper limits brazing 
temperatures to less than 1000 C. During the processing of 
the diodes (machining, grinding etc.) it is difficult to keep 
all parts free from dirt, which makes it desirable to outgas 
them at temperatures as high as possible. Therefore the use 
of low melting materials is not very favorable. 

These considerations yielded to a new version of diodes which 
is shown in Fig. 2. The waste heat is removed from the col
lector by heat radiation from 36 radially arranged molybde
num-fins to the same number of water cooled interlocking cop
per-fins. For better heat transport the emissivity of the mo
lybdenum- and copper-fins is increased by coatings of zirkon 
powder and nickel-oxyde powder respectively. This kind of 
heat rejection by radiation allows to vary the power through
put in a wide range with only small changes in collector tem-

/ 4 peratùres because of Boltzmann s T -law. Typical corresponding data are T = 640°C at 1050 W power throughput, and _ c 
T = 748 C at 1515 W. Furter advantages of this type of heat· 
rejection are: constant temperature along the collector axis; 
no mechanical contact between collector and cooling system, 
i.e. no strains by different thermal expansions; possibility 
of cooling series connected diodes without insulating collec
tor sandwich systems. 

The emitter consists of polycrystalline molybdenum with 16 mm 2 O.D. and 40 mm length, thus giving an emitter area of 20 cm . 
Collector material is also molybdenum. Under operational con
ditions the electrode spacing is 0.17 mm. The centering of the 
emitter is accomplished at the upper end by a molybdenum tube 
which also serves as optimized emitter lead and at the lower 
end by a diaphragm free to slide in a ceramic ring. 

In case of laboratory tested diodes, 4 black body holes of 
different depth are drilled into, the emitter wall for pyro-
metrically measuring the emitter temperature profile. Nuclear 
heated diodes contain about 5-6 g uranium dioxide. 
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powder within 15 bore holes in the emitter wall, Fig. 3· The 
maximum density of the fuel in the holes is about 50 $ theo
retically possible. 

The central hole of 9 mm diameter, allows the insertion of a 
tungsten filament, which was used for electrically heating 
the emitters of both laboratory and nuclear heated diodes. In 
the latter case the tungsten filament is also successfully 
used as resistance thermocouple to measure the emitter tem
perature during irradiation. Another method to determine the 
emitter temperature with an accuracy of + 50 C is based on 
plasma physical considerations suggested by N.S. Rasor and 
described in ¡_4J . 

The development of the metal-ceramic seal was proceeding in 
several stages. The alumina E 2 from Feldmühle, which is not 
resistent against cesium attack, was replaced by the high 
purity alumina E 37 from the same company. Cesium attack was 
also responsible for the change from the molybdenum-manganese 
metalizing to the more reliable tungsten metalizing. The ce
ramic ring is brazed by means of copper-2$nickel to 0.2 mm 
thick niobium sheets. The total design of the metal-ceramic 
seal includes heat resistances combined with heat capacities 
to protect the seal against temperature shocks. 

Experience was gained, that with outgassing of the diode 
structure materials at elevated temperatures and operating 

— f i the diodes itself under clean vacuum conditions (10 torr 
or better) reproducibility of converter output data and long 
life time is achieved. The finally assembled diodes are out-
gassed in an ion getter pumped all metal vacuum system with 
the vacuum pressure never exceeding 10 torr while increasing 
the electrodes temperatures above their finally operational 
temperature. After this outgassing process, which takes seve
ral days, the diode is closed and the connection to the ce
sium reservoir is opened in a single vacuum brazing step. 
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Laboratory studies 

During the last year a total of 4 heat radiation cooled dio
des have been life tested in the laboratory. The results are 
listed up in Table I. 

Table I. 

Diod.No. T„ L?cJEmitter- Ceramic Life-Time Remarks Λ Material Seal QfJ 

1600 sintered E2 
moly. Mo-Mn 

2 

3 

4 

1600 

1600 

1600 

It 

arc cast 
moly. 
II 

E2 
Mo-Mn 

E37 
Mo-Mn 
E37 
Mo-Mn 

300 ceramic de
stroyed, emitter 
shrinkage 

300 vacuum diode, 
emitter shrink
age 

1100 leak in metali
zing 

5600* still operating 

* valid for electrodes and ceramic -seal, because of an ex
change of the cerium reservoir at 3000 h. 

Diode 1 failed after 300 hours because of a leak of the metal 
ceramic seal. Post operational examinations showed gross 
attack of the ceramic by cesium vapor. A check of the outer 
and inner emitter diameter yielded a 0.07 - 0.08 mm smaller 
value as before operation. No emitter material, however, 
could be found on the collector surface. Hence, the sinter 
molybdenum emitter obviously was shrinking during the opera
tion. Diode 2, which was operated under the same conditions 
but as a vacuum diode yielded the same shrinking effect. 

These experiments resulted in using arc cast molybdenum as 
structure material for the emitter instead of the sintered 
material and the high purity ceramic E37 instead of E2. 
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Diode 3 operated 1100 hours, producing about 100 W electri
cally without degradation, and failed after this time by loss 
of cesium through a leak in the m talizing of the ceramic 
seal. 

A leak in the diode, allowing cesium to diffuse into the 
outer vacuum container can easily be detected: The tungsten 
filament heating the emitter by electron bombardment, is 
operated in the space charge mode. Cesium atoms reaching the 
central emitter hole are getting ionized by surface ionisa
tion and trapped near the negatively charged tungsten fila
ment, causing a change in the current-voltage characteristic 
of the bombardment arrangement. 

Diode 4, which was running under the same conditions as 
Diode 3> developed a leak in the final copper brazing joint 
after 3000 hours. A new cesium reservoir was welded to the 
diode, and after a new outgassing process, operation was star
ted up again. Meanwhile 5Ô00 hours of operation for the elec
trodes and the ceramic seal have been achieved. 

With each diode to be tested, measurements of the vacuum work 
function of the emitter and of the electrical output for a 
number of emitter temperatures have been performed. All dio
des yielded nearly identical data independent of the type -of 
the molybdenum used as emitter material. The measured vacuum 
work functions range from 4,33 eV to 4,44 dependent on the 
emitter temperature. The electrical output data are shown in 
Fig. 4. The curves drawn in the figure are calculated power 
versus voltage curves. ÌThe data are taken from the envelopes 
of current-voltage characteristics with different cesium re
servoir temperatures. 
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Irradiation Studies 

Since 1966 three irradiation tests have been performed, which 
are listed in Table II. 

Table II 

Test No. Reactor Irradiation time Remarks 
QioursJ 

Ispra I 

Ispra I 

30 

100 

FR 2 Karlsruhe 1250 

leak in vacuum con
tainer 
leak in vacuum con
tainer 
still in operation 

For the irradiation test to be performed in the reactor Is
pra I two identical setups with diodes of the first genera
tion have been built. The first test and its results are de
scribed in [4J. Because of the difficulties arising with an 
ion getter pump operating in the zone of high £-flux the se
cond setup was modified. The ion getter pump was taken out 
of the zone of high f-flux by brazing it to the collector 
cooling tube at the lower end of the shielding plug. This 
arrangement showed improved performance when tested in Novem
ber 1967, Test No. 2, Table II. After 100 hrs of successful 
operation the test failed by a leak in the vacuum container 
developing during the cooling period after an external reac
tor shut down. In both irradiation tests in Ispra no defect 
on the diodes could be observed. It was learned that the 
auxiliary experimental devices, such as the vacuum container 
with its feed throughs and demountable flanges and the pum
ping system, must be very carefully designed with respect to 
heat production by the ¿"--flux in the reactor. 
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For the inpile experiments to be performed in the Karlsruhe 
Nuclear Research Center the central irradiation channel of 
the FR 2 Reactor was available. With 130 mm diam. for the va
cuum container and 200 mm diam. for the shielding plug, com
pared to 104 diam. of the Ispra irradiation channel, it was 
easier to design a relatively simple and therefore reliable 
test rig for the diodes. 

Fig. 5ashows a cross section of the vacuum container with a 
heat radiation cooled diode inside. The waste heat from the 
collector and main part of the ¿f-heat i-s removed by the col
lector watercooling circuit. The high current feed-throughs, 
which are connected to the emitter base, are cooled by a se
parate electrically insulated water circuit. The nickel tubes 
of both water cooling systems serve also as high current leads 
The vacuum container is pumped through a 1 1/2 "stainless 
steel tube by a watercooled ion getter pump (11 1/s), which 
is protected against ^-heating by a ¿f-shielding plug as can 
be seen in Fig. 5b. This device is connected to a main shiel
ding plug; its lower end can just be seen in the figure. The 
FR 2 Reactor generally operates at a constant power of 44 
thermal MW. As it is desirable to control the fission heat 
production in the emitter, the total experimental setup can 
be driven up and down within a range of 50 cm by a screw ele
vator. This arrangement allows to vary the heat production by 
a factor of ten. Riding with the emitter on the steep neutron 
flux slope results in neutron flux differences along the 
emitter axis of up to 20 i>. The neat production in the emit
ter, however, will be equalized by sublimation of uranium 
dioxide along the bore holes to give constant fuel surface 
temperature L6J « 

The emitter of the diode for Test 3 was fueled with 5,9 g 
90 i enriched uranium dioxide with a bulk density of 48 io. 
The 0/U ratio was determined to 2.003· 
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Results 

The results of Test I have been described in [4J. Out of pile 
measurements of output data with electrically heating the 
emitters of the Test 2 and Test 3 diodes are shown in Fig. 6. 
The thin lines are I-V-curveS for constant emitter tempera
tures taken with an AC-supply; the thicker ones are those 
with constant power input taken with a DC-supply. The dashed 
lines are measured efficiencies taking into account the total 
power input into the filament and the net power output at the 
cold ends of the electrodes. These output data are essential
ly higher than those obtained with unfueled laboratory type 
diodes (Fig. 4). The characteristic difference between fueled 
and unfueled diodes is the lower optimum cesium temperature 
for the fueled type^ from which one can conclude that the 
bare work function of the fueled emitters is higher. Due to 
former measurements by L.N. Grossmann [_7J , it is assumed that 
excess oxygen is diffusing through the emitter wall and buil
ding up a cesium oxide layer on the collector surface, which 
acts then as an additive source. This assumption is confirmed 
by.measurements taken during the Ispra Test 2 presented in 
Fig. 7. At constant power input and constant cesium reservoir 
temperature the emission characteristic of the emitter changed 
by varying the collector temperature, i.e. varying the addi
tive pressure. This additive effect proved to be stable whitin 
the attained operation time of 1250 hours in Test 3 in Karls
ruhe· 

Inpile Test 3 was started in March 1968 by stepwise diving 
the test rig into the reactor core until an output power of 
100 W (0.65 Volt, 160 Amps.) was achieved. The corresponding 
temperatures of emitter, collector and cesium reservoir were 
1600°C, 700°C and 350°C Following to the starting up period 
the pressure reading of the vac-ion pumpmeter dropped to less _7 than 10 torr. After 330 hours of operation the output power 
was reduced to 75 watts because of intermittent shuntings of 



 446 

the leads outside the vacuum container, probably caused by a 

thermocouple sheet touching the emitter lead. 

At the end of May 1250 hours of operation have been achieved 

with 110 KWh produced. This corresponds to a burn up of about 

7800 KWd/to. 
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Fig.1: Cross section of 
the first type of diodes 

Position during the 
outgassing process 

Final brazing joint 

Cesium Reservoir 

Cesium Heater 

Fig.2: Cross section of the 
second type of diodes 

0.6 0,4 
Output Voltage 

Fig.3: Cross 
section of the ,,. . ~ . . , . 
emitter fueled F lf: 4! Output power versus voltage curves 
with UO optimized with respect to cesium temperature 
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Pig.5a: Cross section 
of vacuum container 
with a diode inside 

Main shielding plug 

Watercooled 
ion getter pump 

y shielding plug 

Vacuum container 

Figób: Photograr.h of the irradiation 
test rig with peru of the main 
shielding plug 
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Tct=350°C 

Tc =535-650°C 

12 IP 0.β Oß Of, 
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Fig· 6: IVcurves for constant emitter temperature (thin 
lines) ;.f or constant power input (thick lines); 
curves of constant efficiency (dashed lines). 
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Fig. 7: IVcurves at constant emitter and cesium 
temperature with varying collector temperature 
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DISCUSSION 

Speaker of paper C-6: A. JESTER. 

SCHOCK (USA): In your radiation cooled diodes how do you control the col
lector t empera tu re? 

4 JESTER (Germany): We don't control it, but because of the Boltzmann Τ -
law the collector t empera tu re is a smooth function of power throughput. 
Fo r a low emi t te r t empera tu re you have a low col lector t empera tu re and 
this is also optimal for operation. 

RASOR (USA): There was a l a rge r fission product retention in the UO_ than 
would be inferred from the other resu l t s that we heard this morning. Could 
you make the comparison and if it is different do you have an explanation 
for i t? 

JESTER: As far as I r e m e m b e r this was a 1200 hour tes t and if you look at 
RANKEN's data for 1200 hours you would not expect more than 60% fission 
gas r e l ease , which was measured . 

CAMPBELL (USA): In your last slide you showed a set of I-V curves with the 
output power as a function of collector t empe ra tu r e . Was the re any way during 
the tes t that you could separa te out the effect of adjusting the collector t e m 
pe ra tu re to optimize the co l l ec to r work function for highest voltage output 
as distinguished from the possibil i ty of returning oxygen to the emi t t e r in 
the form of ces ium-oxide? Are you able to dist inguish between these two p o s 
sibil i t ies ? 

JESTER: With the second type of diodes we could not optimize the co l lec 
tor t empera tu re ; with the f irs t type we t r ied it . But these diodes were al l 
fueled so we could not distinguish these effects. I have some curves which 
show it much c l e a r e r which were taken in the labora tory . There you could 
see in the I-V curves that the saturat ion cur ren t is increased by increasing 
the col lector t empe ra tu r e . 
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THERMIONIC EMITTERS* 

F. Gross and R. Zöller 
Brown, Boveri & Cie, AG, Mannheim 

Central Research Laboratory, 69 Heidelberg, Postfach 206 

Summary 

In a previous paper QlJ two irradiation experiments with TJ02-fueled 
molybdenum emitters and the preliminary post irradiation investiga
tions were described (emitter I and IIa). In the meantime the inves
tigations were completed by evaluation of released fission gases and 
and metallographic examinations of the second emitter in the second 
experiment (emitter IIb). The results are compared to an out of pile 
laboratory test (emitter III). 

Operation conditions 

In the first test one molybdenum emitter (emitter I), filled with 
U02-powder, was irradiated for 200 hours at a temperature of 2000 K 
in an isotope loop of the reactor FR2 of the Nuclear Research Center 
Karlsruhe, showing no gross reactions between Mo and UOp. 

In the second experiment two molybdenum emitters (emitter IIa + IIb), 
filled with molybdenum-coated UOp-particles, were irradiated for 125O 
hours at 2000°K. It was expected that this fuel would give better re
sults regarding to fission gas release and temperature rise in the 
fuel. Because most of the particles were damaged and deformed after 
irradiation, for comparison a third test with the same particles and 
emitter material (emitter III) at equal conditions (125O h, 2000 K) 
was performed outside the reactor. The nuclear heat was simulated by 

* This work was supported by the German Bundesministerium für 
wissenschaftliche Forschung 
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electrically heating the test emitter by a tungsten filament, inserted 
in a central hole. The fuel was filled in an annular slot. 

By this set up similar temperature conditions as in the second reactor 
experiment were achieved, where the fuel was inserted in some bore holes 
in the emitter wall. But there exists a difference in heat production bet
ween both cases: in the reactor experiment the heat is generated in the 
inner particle region, producing a temperature gradient in the UO- from 
the center to the wall of the particles. In the laboratory experiment the 
heat is generated outside, giving rise to a radial temperature drop along 
the particle shell. In addition the temperature profile in the bore holes 
is parabolic, whereas in the annular slot it is of logarithmic kind. The 
temperature distribution in the fuel matrix cannot be calculated, because 
the thermal conductivity is not known. Heat transfer in the matrix is due 
to radiation between neighbouring particles and heat conduction along the 
touching points of the Mo-coatings. Because the number and size of the 
contact points change with time due to recristallisation processes, no 
constant thermal conductivity can be given. The emitter geometry of the 
out of pile test was calculated, so that temperatures at the inner and 
outer wall of the slot are corresponding to those at the center and at 
the boundary of the holes in the second reactor experiment. Table I shows 
the conditions under which the experiments were performed. Some deviations 
arise from the previous published data, which are due to calculations, 
performed with more exact data for Jf-heating of the emitters. It is as
sumed that ¿f-heating is proportional to the neutron flux and yields 
0»3W/g at a neutron flux of 10 n/cm sec. (in the previous paper ¡Jj , 
instead of the mean neutron flux the maximum neutron flux in the loop, 
was listed.) The emitters were run at 2000 K (+ 50 K) in all cases, 
the 0:U ratio being smaller than 2,005. The heat flux at the Mo-fuel 
interface was about 40 w/cn . 
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Table I 
Operation conditions 

Emitter Fuel Enrichement Power Time Burn-up Mean N. Flux 
Watts hours MWd/toU n/cm sec. 

I 

IIa 
IIb 

UOp-pow- 90% U-235 
dex 

< Mo-coated 
UOp-par-
ticles 

"35% U-235 

III 

36O 200 2200 0,75.10 13 

25O 1250 15OOO 2*10 

900 125O 

13 

Post irradiation investigations 

One part of the post irradiation investigations is described in the 
paper named above. For completeness the applied methods and the results 
are listed here. 

After some weeks cooling time the emitters were photographed and the 
dimensions were controlled in hot cells of the Nuclear Research Center 
Karlsruhe. 

Emitter I remained vacuum tight, the fission gas reservoir of emitter 
IIa was destroyed during dismounting the reactor thimble, so that no 
fission gas determination was possible. Emitter lib showed little 
grooves at the upper end oí xhe fission gas reservoir, probably causing 
fission gas leakage. 

Molybdenum, dressed from the emitter surfaces,and material, dressed 
from the surrounding graphite cage,were examined radiochemically and 
by 0 -spectroscopy for uranium and fission fragments. Qualitatively 
only Ta-182 and C0-6O could be detected at emitter I. Because the 
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fission yield of these fragments is very small ( <10 ), the molybde
num must have been polluted by these materials. The contamination by 
Ta was due to Ta-mantled thermocouples. At emitter Ila and lib Co-60 
and Sc-46 was detected, which also can be explained by contamination of 
the emitter material. 

By radiochemical analysis, using fluorimetrie methods,no uranium dif
fusion through the molybdenum wall of the emitter within the limit of 
the method ( < 1 ppm)could be detected. 

Microprobe analysis of a coated particle at the emitter wall, taken 
of emitter lib after irradiation, shows the same result. Figure 1 and 
2 give photographs of integrated line-scannings compared to the image 
of absorbed electrons, figure 3· Point analysis, giving here a sensi
tivity better than 0,5 i>, shows no uranium inside the Mo-coating. 

The fission gases Kr and Xe, released or retended by the UOp-fuel, were 
determined by gaschromatographic means. The limit of the method was 
given by the sensity of the äf-spectroscop for Kr-85: 
0,5 /u Ci £ 0,01 mm5 Kr. 

Table II 

Emitter I 
(released gases) 

Emitter lib 
(retended gases) 

Krypton 
Xenon 

0,6 mm' + 5 io 

3,8 mm* + 5 io 

27,5 mur + 1,8 i 

176,8 mm̂  + 0,5 % 

Rare gases 4,4 mm5 + 5 Ì° 204,3 mm5 + 0,6 io 
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Emitter Ι was pierced in a bell jar at a pressure of about 10 torr, 
the fission gas was swept out by helium and quantitatively measured. 
The results are shown in table II, giving the released or retended 
gases in mm at normal conditions. With a theoretical production rate 
of 2,6· lO^cnr for rare gases (lat,0°c) per Watt and day the release 
rate yields 5>9 $· The deviation from 100 i is due to solution and 
adsorption of gases by the fuel. 

To separate these two effects, fission gas determination of emitter lib 
was performed in a heated, vacuum tight ceramic tube. After quenching 
off the fission gas reservoir, no fission gases could be detected, be
fore and after heating the tube 4 hours at 1200 C. It was assumed that 
the channels between fuel holes and gas reservoir were jammed by dif
fused UOp. For that reason emitter lib was suspended in a gas tight 
glass envelope and dissolved in nitric acid, until the fuel holes were 
open. Sweeping helium through the solution and gaschromatographic ana
lysis of the gas mixture showed no fission gases. In a last stage a 
specimen, cut from emitter lib, was dissolved and the retended rare 
gases were determined in the above mentioned manner. The results are 
also listed in Table II, corresponding to a fission gas retention of 
61 °/o or gas release of 39 %· The free gases have probably leaked 
through the grooves at the upper part of the gas reservoir during the 
cooling time of about one year. 

The metallographic examinations of emitter I and Ila are described in 
the previous paper [jJ.In a similar manner metallographic cuts were ta
ken of emitter lib normal to the emitter axis. Figure 4 shows a fuel 
hole, filled with coated particles, after irradiation. Figure 5, 6 and 
7 show enlarged views of some cuts (enlargement 200 χ and 500 x). The 
coatings of the particles are partly destroyed, U0? has diffused and 
condensed at the wall "of the fuel holes. The Mo-coatings have recry-
stallized, the grains of different coatings and the wall have grown 
together. By formation of thermal bridges the temperature increase 
in the matrix decreased. Due to formation of large crystal grains the 
tensile strength of the coatings has decreased, probably causing the 
damage. In the fuel;bubbles and cavities can be seen, the fuel is di-



- 456 -

vided in several separated districts, figure 5· The cavities probably re-
tend most of the generated gases. The interfaces between fuel and Mo are 
sharp, no oxide phases or diffusion zones can be detected, figure 6. Some 
particles (/»* 10 i) showed neither U0? nor epoxy resin. (Epoxy resin is 
filled into the emitters before preparation and penetrates into empty 
and broken particles). This effect can be explained by removing the fuel 
during the cutting and polishing process. The generated fission gases 
cause a pressure.build-up, by which the coatings are deformed. When grin
ding particles to less than a hemisphere the loose contact between fuel 
and coating permits the fuel to fall out. 

These results are similar to those received with emitter lia. But the 
particles of the latter were more damaged, and in consequence more fuel 
has condensed at the wall of the bore-holes. This is due to different 
neutron fluxes at emitter IIa and lib. 

The metallographic examinations of emitter III were also performed in 
hot cells of the Nuclear Research Center Karlsruhe. Figure 8 gives the 
cross section of emitter III, which has ruptured during preparation. 
Figures 9 and 10 show enlargements of different sections, as given in 
figure 11, which ran at different temperatures.' At the hot zone (inner 
wall) nearly all particles are damaged, whereas at the cold zone (outer 
wall) the particles are attacked to a minor degree. The fuel has di
stilled to the outer wall. From figures 8, 9 and 10 it can be concluded, 
that the particles were damaged only under the influence of a thermal 
gradient. The Mo-coatings are sintered together and connected with the 
wall. They show large crystal grains. Oxide phases and diffusion zones 
at the Mo-UOp-interfaces cannot be detected, figure 12. The damage of 
the coated particles is probably due to a mass transport process, driving 
molybdenum from the hot side to the cold side of the slot. A diffusion 
of UOp through generated voids and grain boundaries of the coatings is 
connected with this process. 
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Conclusions 

The results of the different examinations performed with different 
emitters agree in that: 

1. no chemical reaction between Mo and UOp at the interfaces were de
tected. 

2. no diffusion of U in Mo within the limits of the different methods 
was observed. 

3· the fission gas build-up was lower than expected, caused by a high 
gas retention rate within the fuel. 

Differences of the metallographic effects arise by the special opera
tion conditions, for example different neutron fluxes at emitters IIa 
and IIb. 

The performed tests have demonstrated the compatability of the system 
UOp-Mo under reactor conditions up to a burn-up of 15·000 MWd/toU. 
For higher burn-ups, which must be obtained for operation times lon
ger than one year, the pressure build-up by fission gases must be 
avoided. This can be done either by venting or providing large fis
sion gas reservoirs. 

The used coated particles seem not to give an improvement regarding 
gas retention, compared to pure UOp $ but it must be noticed, that 
different burn-ups are compared. The Mo-coatings did not stand the 
high thermal gradient during the in pile or out pile experiments, 
but were in both cases partially destroyed by a transport process. 
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Fig. 1 Electroprobemicrograph of a 

coated particle (Uranium Mo

line, 350 χ) 
ß 

Pig. 2 Electroprobemicrograph of a 

coated particle (Molybdenum 

L .line,350 x) 

Fig. 3 Electronmicrograph of a coated 

particle (Mo and U, 350 x) 

Fig. 4 Cross section of a fuel 
hole of emitter IIb after 
irradiation (50 x) 
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Fig. 5 Interface fuelMo (Section 
of fig. 4, unetched, 200 x) 

Fig. 6 Coated particles after irra
diation, showing recrystalli
sation of Mocoatings (etched, 
200 x) 

Fig. 7 Coated particle sintered to 
the emitterwall (unetched, 
500 x) 

Fig. 8 Cross section of emitter III 

after heat treatment (4 ï) 
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Fig. 9 Damage of coatedparticles 

and distillation of U0„ by 

influence of a temperature 

gradient (cut 4401, fig.11 

4  * c2/a 70 χ 

Pig. 10 Damage of coatedparticles 

and distillation of U0„ by 

influence of a temperature 

gradient (cut 4402, fig.11 
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Fig. 11 Schematic of emitter III 

with positions of metallo

graphic cuts 

Fig. 12 Micrograph of the fuelemit

terinterface (etched, 200 x) 
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HEAT PIPE RESEARCH IN EUROPE ; 

C.A. BUSSE 
Euratom CCR, Ispra (Varese), Italy 

INTRODUCTION 

The heat pipe is a simple heat transfer device which can have an 
effective thermal conductivity á thousand times that of copper. 
This review deals with recent work on heat pipes in west european 
laboratories. Most of this work is somehow related to three 
practical questions: 

1) How much heat can be transported with a heat pipe? 
2) What is the maximum heating rate? 
3) What is the life time of a heat pipe? 

The different results will be discussed in this order. 

HEAT TRANSPORT LIMIT 

Fig.1 shows schematically a heat pipe. It consists of a vapor 
duct and a capillary structure saturated with a liquid. The heat 
is transported as latent energy in a two phase circulation: In 
the heated zone the liquid evaporates, the vapor flows along the 
heat pipe to the cooled zone where it condenses, and the condensate 
liquid returns through the capillary structure to the heated zone. 

The heat transport limit of a heat pipe is characterized by 
insufficient return flow of condensate, resulting in a dry out 
of the heating zone. This transport limit can be calculated or 
measured. 

Theory of the heat transport limit 

To calculate the transport limit the pressure balance in the 
heat pipe has to be set up first. This balance means that the 
integral of the pressure gradient along any closed path in the 
heat pipe must be zero. The pressure integral consists essentially 

*) 'Invited paper. 
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of three terms (see fig.1): They are the pressure drop in the 
vapor, the pressure drop in the liquid and the pressure diffe
rences across the curved liquid-vapor interfaces. This last term 
can easily be calculated from classical relations. What is more 
difficult to derive is the pressure drop in the liquid and in the 
vap or. 

The liquid pressure drop depends on the capillary structure. 
Fig.2 shows some standard capillary structures: 
- several layers of fine mesh screen fitted closely to the heat 
pipe wall 

- open channels in the wall 
- a screen at some distance from the heat pipe wall, leaving an 
annular space for liquid flow 

- a screen inserted in corrugated form, so that the liquid flow 
channels become triangular 

- channels in the wall covered with screen 
- and finally a design, which is a combination of a tube for 
main liquid flow (the "artery") and a screen wick 

Only the screen wick and the open channels present some difficulties 
in the calculation of the liquid pressure drop. In case of the 
screen wick, the problem is the complex structure of the wick. 
Therefore SCHMIDT (1967) has determined the pressure drop 
experimentally for a number of different screen wicks. Plotting 
a dimensionless pressure drop against the REYNOLDS number of the 
liquid, all data points fall on a single curve which corresponds 
to the general relation of BLAKE, KOZENY and ERGUN. From his dato 
SCHMIDT derived a formula for the calculation of the pressure drop 
in screen wicks (see fig.3). 

For open channels the difficulty in calculating the liquid 
pressure drop is the friction between the liquid and the vapor 
above the liquid, flowing in opposite direction. This problem 
has been analyzed by DI COLA (1968) (see fig.4). He found a linear 
relation between the liquid pressure drop and the friction pressure 
drop in the vapor. The proportionality factor in this relation is 
essentially the hydraulic diameter of the vapor channel divided 
by four times the depth of the liquid channel. This factor is 
generally large compared to one. This means that the pressure drop 
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in the liquid is generally much larger than the friction pressure 
drop in the vapor. Physically this can be understood as a sort of 
a hydraulic pressure transformation, which is due to the fact that 
the total cross section of the liquid channels is much smaller 
than the cross section of the vapor channel. 

Dl COLA'S relation between the liquid pressure drop and the vapor 
shear on the surface of the liquid has experimentally been tested 
by BAHR, BURCK and HUFSCHMIDT (1968) with water running down inclined 
rectangular channels. The vapor flow was simulated by blowing air 
over the channels in opposite direction to the water flow. For 
small flow velocities their data correspond closely to the 
theoretical relation of DI COLA. Deviations for larger flow 
velocities are provisionally explained by the authors by the 
formation of waves which they observed in the channels. 

The third main term of the pressure balance is the pressure drop 
in the vapor phase. This term is theoretically the most difficult 
one, for a number of reasons. One reason is that the vapor flow 
is not a simple tube flow with a single velocity component, but 
is accompanied by evaporation and condensation on the tube wall. 
Therefore at least two velocity components have to be dealt with. 
Another reason is that both frictional forces and inertia forces 
occur in the vapor flow, and often neither force is negligible as 
compared to the other, so that both have to be taken into account. 
And finally, turbulence is important, and often practical heat 
pipes are operated close to the region of transition between 
laminar and turbulent flow. 

While the theory of laminar vapor flow in heat pipes is sufficiently 
well advanced for most practical needs [7], little work has been 
done so far on turbulent -heat pipe flow. Recently VAN ANDEL (1968) 
has made a synthesis of the theory of laminar heat pipe flow, of 
empirical relations for turbulent tube flow and of some turbulent 
heat pipe flow data (BOHDANSKY and SCHINS, 1965). He presented 
the result in the form of a diagram of the EULER number, shown 
in fig.5. The diagram permits to read the EULER number as a 
function of the REYNOLDS number and of the heat pipe geometry. 
The pressure drop in the vapor can hence be calculated very simply 
from the EULER number'. 
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Having set up the pressure balance the heat transport limit of the 
heat pipe can be evaluated. This limit depends on the geometry 
of the capillary structure. Generally the capillary structure can 
be optimized for maximum heat transport. The result of such an 
optimization has been presented by VAN ANDEL (1968) in form of a 
useful nomogram (fig.6). It is based on the annular capillary 
structure consisting of a screen at some distance from the inner 
heat pipe wall and the (pessimistic) assumption that the liquid 
channel itself delivers the driving capillary force and not its 
screen cover made of relatively fine mesh. From the type of the 
working fluid, the operating temperature of the heat pipe, the 

*) effective length ' and the diameter of the vapor channel the 
nomogram allows to determine easily the heat transport limit of 
the heat pipe. For instance, for a heat pipe of 2 cm diameter and 
1 m effective length the heat transport limit for sodium at 800°C 
is 5 kW and for lithium at 1600°C 50 kw. 

To conclude this discussion on the theory of heat transport limit, 
some work on the startup problems of heat pipes should be mentioned. 
When the temperature in the heating zone of a heat pipe is raised 
to the design value, there occurs frequently at lower temperatures 
a relatively large temperature drop along the heat pipe. At higher 
heating zone temperatures this non-isothermal mode of operation can 
change in two ways: Either the temperature drop decreases and the 
heat pipe enters a quasi isothermal mode of operation, or the 
temperature drop stays large and a dry out of the heating zone takes 
place. One of the start-up problems resides in the uncertainty of 
which of the last two operating conditions will occur. VAN ANDEL 
(1968) has shown that this depends essentially on the heat 
extraction from the heat pipe at a certain critical temperature; 
he derived a semi-empirical formula for the maximum tolerable 
heat flow at this critical temperature. 

Finally, reference should be made to a useful critical collection 
of material data for the calculation of heat pipes (SCHINS, 1967). 

*) 
'Effective length ftihalf the length of the heating zone plus the 
length of the heat shielded zone. 
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Measurements of the heat transport limit 

Experimental work on the heat transport limit has been done by 
BOHDANSKY, STRUB and VAN ANDEL (1966), by GAMMEL and WALDMANN (1967) 
and by SCHMIDT and SEMERIA (1968). These studies concerned sodium 
and lithium heat pipes, using as capillary structure either open 
channels or screen wicks. 

In our laboratory we recently have measured a lithium heat pipe 
with channels covered by one layer of screen C8]. The results 
are shown in fig.7. The heat pipe was about 0.5 m long and had ' 2 a cross section of less than 0.5 cm . The maximum heat flow is 
plotted over the temperature of the heat pipe. The dots indicate 
the experimental values. At 1500°C the maximum heat transfer was 
about 7 kw, corresponding to a heat flow density of 15 kw/cm . 
These data confirm the theoretically expected high performance 
of lithium heat pipes. 

MAXIMUM HEATING RATE 

If the heating rate of a heat pipe exceeds a certain value, boiling 
will occur in the capillary structure and hot spots may be formed 
in the heating zone in spite of the fact that the total heat input 
is still well below the transport limit of the heat pipe. Work on 
this effect has been done at the nuclear research center of 
Karlsruhe and in the Institut für Kernenergetik of the Technische 
Hochschule Stuttgart £12]. 

At Karlsruhe, DORNER, REISS and SCHRETZMANN (1967) used in their 
experiments sodium heat pipes, having as capillary structure open 
channels. The channels were 0.2 mm large and 0.4 mm deep and 
represented only 12% of the inner surface of the heat pipe. During 
operation of the heat pipe the channels were visible as slightly 
dark stripes. The heat pipe was heated with a very short RF coil. 
Using a transient method, DORNER, REISS and SCHRETZMANN determined 
for different heat pipe temperatures the power input where over
heating just set in. Relating this power input to the surface of 
the liquid channels, they obtained the heat flux densities shown in 
fig.8. At 800°C, for example, overheating starts only at a heating 2 rate of 2 kW per cm of channel opening. 
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Boiling in a heat pipe with liquid channels was visually observed 
by BÄHR, BURCK and HUFSCHMIDT (1968) with an "inverse" heat pipe 
(fig.9), using water as working fluid. The inner wall of this heat 
pipe was a stainless steel tube with grooves on the outside, heated 
along the lower part and cooled along the upper part. The outer 
wall was formed by two concentric glass tubes between which hot 
air was vented to prevent condensation of water. The experiments 
showed that above a heating rate of 20 w/cm2 bubbles and surface 
waves are formed and liquid is sprayed out of the channels. At 
still larger heating rates large bubbles occur and the channels 
dry out. After shut down the dried out channels are only rewetted 
when their temperature approaches the saturation value. 

LIFETIME OF HEAT PIPES 

Work on this question has mainly been done at Brown Boveri at Hei
delberg, at CSF [1] and at our laboratory in collaboration with the 
Metallgesellschaft in Frankfurt [5,6,8]. We have studied heat pipes 
in the temperature ranges around 1000°C and 1600°C, aiming for a 
life time of 10.000 hours. In the 1000°C region no essential 
problem has been found so far. There is a number of very compatible 
heat pipe systems. For instance, in 1000 hour tests with Nb-1Zr/Na 
at 1100°C and Nb-1Zr/Cs at 1000°C, no corrosion of any type could 
be detected. 

The situation in the 1600°C range is more problematic. For first 
screening tests we selected 3 wall materials and 5 working fluids 
(Nb-1Zr, Ta, W and Bi, Pb, Tl, Li, Ba). The resulting 15 combina
tions were life tested as heat pipes. In these first tests only two 
systems showed promise for a 10.000 hour operation, namely W/Li and 
W/Pb. But both are brittle and little suited for practical appli
cations. All ductile heat pipes showed relatively strong corrosion. 

The principal corrosion mechanism in heat pipes involves dissolution 
of wall material in the cooling zone and transport to the heating 
zone by the circulating working fluid. This wall material disso
lution can be more or less selective. If it is not selective, the 
deposit in the heating zone has the same composition as the wall 
material. This is for instance the case in S3S-Ta/Tl heat pipes. 
One is shown in fig.10 after having been operated horizontally 
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for 2600 hours at 1600°C. This heat pipe is eroded in the cooling 
zone, and the mass deposit in the heating zone consists of tantalum. 
In this type of corrosion the heat pipe generally fails either 
because the capillaries in the heating zone got clogged or because 
the wall in the cooling zone got a leak. 

If the dissolution process however is selective, only certain 
components of the wall material of the cooling zone are dissolved 
and accumulated in the heating zone. This process can come to a 
stand-still after the working fluid has extracted the critical 
components from the cooling zone. It can however happen that the 
accumulation of these components in the heating zone leads there 
to severe wall attack. This was observed with Li heat pipes and 
Nb-1Zr or Ta as wall material. These heat pipes fail at 1500°C or 
1600°C often already after about 10 hours by wall perforation in 
the heating zone (see fig.10). We identified the critical wall 
material component in these two cases as oxygen. To inhibit this 
corrosion we tried three methods with success (see table 1). 

Table 1 : Heat pipe life test results [8J 

No. 

1 

2 

3 

wall 
material 

deoxidized 
Nb-1 Zr 
Nb-1Zr 

SGS-Ta 

filling 

Li 

Li-13Ca 

Li 

test conditions 
temperature 

°C 
1500 

1500 

1600 

time 
hr 
1000 

1000 

1000 

heating 
rate 
w/cm2 

115 

115 

170 

observations 

-

no failure; 
Zr loss 

no failure 

The first method was purification of the wall material. A heat pipe 
was built with Nb-1Zr, which was deoxidized down to an oxygen content 
below 1 ppm. This deoxidation was obtained making use of the 
corrosion process itself, which means that the heat pipe was built 
with the cooling zone material of another heat pipe which had already 
been operated, simply cutting away the defective heating zone. As a 
result this heat pipe did not fail after relatively few hours as 
before, but withstood a 1000 hour test. 

As a second method it was tried to avoid the heating zone corrosion 
by trapping the extracted oxygen in the working fluid, adding to 
the Li some Ca, whose oxyde has a very high free energy of formation. 
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Also this heat pipe withstood a 1000 hour test without failure. 
Though these tests demonstrate possibilities of corrosion 
inhibition, it seems doubtful whether Nb-1Zr can be considered as 
a construction material for long time operation at 1500°C (loss 
of Zr, large grain growth, some swelling). 

The third method was to inhibit the oxygen extraction process► 
Here a very small addition of yttrium to tantalum proved to be 
very efficient. This material, known as SGS-Ta, showed no trace 
of oxygen corrosion at the end of 1000 hour test at 1600°C. There 
was only a very slight deposit of wall material in the heating 
zone (see fig.11). This heat pipe system is the most promising 
one for long life operation at 1600°C which we have found so far. 
If one takes into account that this heat pipe has been operated 
at a heating rate of 170 w/cm2, and if one assumes that the mass 
deposit is proportional to the heating rate and the total time of 
operation, then one may hopefully extrapolate that in 10.000 hours 

p 
at a heating rate of 50 w/cm no serious clogging of the grooves 
would occur. However -it has still to be demonstrated that no other 
problems arise in a 10.000 hour operation. 
SUMMARY 

If one tries to summarize the different results in the form of a 
rather general answer to the three questions put at the beginning 
of this review, one may say: Heat pipes allow to transport large 
amounts of heat with practically no temperature drop; heat transport 

ρ 

rates up to 15 kw/cm have been measured. Heat pipes can be heated 

at high heating rates without overheating, and there seems to be a 

good chance of finding ductile heat pipe systems with a life time 

of much more than 1000 hours, even at 1600°C. 
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Fig.5; EULER number as a function of REYNOLDS number and heat 
pipe geometry (E. VAN ANDEL, 1968). lh,ls=length of heatinq zone and heat shielded zone, d=diameter of vapor channel, 
APv=pressure drop_in heating zone plus heat shielded zone, 
J =vapor density, Vy=vapor velocity averaged over the cross 
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ADVANCES IN HEAT PIPE TECHNOLOGY* 

G. M. Grover, J. E. Kemme, and E. S. Keddy 

Los Alamos Scientific Laboratory 

University of California 

Los Alamos, New Mexico 875^ 

ABSTRACT 

Recent work on materials compatability and work on maximum heat 

flux capability of heat pipes are reviewed. Experimental results on 

operational limiting factors such as sonic flow and liquid entrainment 

are given. The results of the orbital flight test of a water heat pipe 

confirm the operability of heat pipes in a zero-g environment. 

•Introduction 

Heat pipes are structures exhibiting very high thermal conductance 

through the mechanism of convection of latent heat of vaporization of a 

working fluid. Liquid return of the working fluid is accomplished by 

capillary action. Many variations in form are possible and the range of 

application is therefore very large. We are interested here in the heat 

pipe problems associated, with thermionic conversion and with the state-of-

the-art relative to this field. 

* 
Work performed■under the auspices of the U. S. Atomic Energy Commission. 
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Materials Compatability 

There are two temperature regimes of interest, the emitter range of 

lUOO" to 2000°C and the collector range of 500° to 900°C. One may con

fidently say that for the lower range of temperatures, the compatability 

problem is satisfactorily solved for a rather wide variety of material 

combinations. The alkali metals with stainless steel, nickel, niobium-

zirconium alloys and other refractory metals cover the temperature range 

adequately. As reported in reference 1, the longest test run has passed 

l6000 hours at 600°C. This heat pipe is made of nickel with potassium as 

the working fluid. Even beryllium (with potassium) is feasible where 

weight is of primary importance. A test was made in which a tube of 

beryllium was inserted between the wick and the wall of a heat pipe which 

were made of niobium-1% zirconium. With potassium as the working fluid, 

the pipe was operated at 750°C for 1200 hours. At the completion of this 

test, the beryllium was removed and compared with an untested specimen of 

this beryllium. The results of the analysis show that there was no attack 

or alloying and there was no evidence of mass transport. Recrystallization 

of the beryllium had occurred during the initial 1000°C bake out and con

siderable grain growth had occurred during the course of the test. Hardness 

tests showed the beryllium to be fully annealed. The strength of the 

material in this condition could limit its usefulness. 

The compatability problems in the emitter temperature range is more 

trying. At the lower end of the range, Busse has reported on the use of 

lithium in a previous paper in this session. 

At the other temperature extreme, vapor deposited tungsten heat pipes 

with silver as the working fluid show negligible mass transfer in one-thousand 
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hours at 1900°C. From the total mass flow, an upper limit to the solu

bility of tungsten in silver at this temperature can be set at 0.05 ppm. 

Another candidate material for high temperature operation is rhenium. 

This has been used as the container material for two heat pipes. In the 

interest of expedency, tungsten was used as the wick material. With 

indium as the working fluid, after 1000 hours at 2000°C, considerable 

interdiffusion of tungsten with the rhenium wall had occurred and mass 

transport had displaced all of the tungsten wick into the evaporator 

section (Fig. l). With silver as the working fluid, after about 300 hours, 

considerable interdiffusion of tungsten and rhenium had occurred together 

with considerable mass transport. There is some indication that the 

impurities and inclusions in the obtainable rhenium sheet stock may have 

contributed to the degradation of these high temperature heat pipes. 

Tests of rhenium as both container and wick material with silver and with 

indium are underway. 

Operational Limits of Heat Pipes 

There are a number of factors which must be considered in detail in 

the various practical applications of heat pipes. It would be desirable 

to have concise and complete parametric studies which would allow the 

selection of an optimized heat pipe for any particular application. 

Since these are unavailable, a review of the various limiting factors 

will be discussed as they are known at this time. Quantitative informa

tion is often unavailable and experimental evaluation is necessary in 

specific applications. 

Factors of importance in heat pipes certainly include the following: 

a. Capillary forces available and their optimal utilization, 

i.e., as in the use of composite wicks. 
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b. Sonic limit of vapor flow. 

c. Startup dynamics. 

d. Vapor-liquid interface effects, specifically entrainment. 

We believe the most significant step in the last year has been the 

proof of the operability of a composite wick. By definition, a composite 

wick is one in which the capillary pumping power is established by a fine 

porous structure such as a very fine mesh screen at the interface between 

the liquid and vapor flow passages. The return liquid flow occurs in a 

coarse mesh or open channel or annulus under the fine mesh cover. These 

experiments have been made in stainless steel pipes with sodium as the 

working fluid in the experimentally convenient temperature range below 

900°C. Figure 2 shows such a pipe construction where a wick of pore size 

of less than 10 microns covers a annulus of about 0.15 millimeters radial 

thickness. Figure 3 shows this pipe in operation with the liquid returning 

against a gravity head of about 10 dynes/cm . If the capillary head had 
h , 2 

been established by the channel width, only 10 dynes/cm would have been 

available and failure of the pipe would have occurred even neglecting any 

frictional flow impedance. 

The upper limit of heat transfer ultimately occurs with choked flow 

at the exit of the evaporator. Figure k shows experimental data obtained 

by Kemme for both the sodium filled and the potassium filled composite wick 

heat pipes described above. The dashed line is the sonic flow limit heat 

transfer rate as calculated from the temperature at the beginning of the 

condenser zone. Of course, with mass addition flow through the heater zone, 

the central core can go supersonic while the flow near the walls is still 

subsonic. The maximum heat flow is in fair agreement with this sonic limit. 
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The departure from the sonic limit occurred when the limit of heat removal 

for this calorimeter was reached. 

The importance of the investigation of heat pipe operation near this 

sonic limit arises from the fact that in gas-free heat pipes, the starting 

conditions usually involve the complete range of molecular flow, choked 

continuum flow and, finally, the chosen design conditions. All pipes must 

undergo startup conditions but probably few will be required to operate 

very close to the choked flow limit. A discussion of the transient modes 

of the startup of heat pipes is given in reference 2. 

When heat pipes are operated in a mode in which the pressure drop in 

the evaporator is high due to acceleration of the vapor stream, a consider

able recovery of this pressure drop is possible. The pressure recovery in 

the condenser section of the pipe described above is shown in Fig. 5. If 

the radial Reynolds number is high, i.e. > 10, the flow is stabilized and 
3 h one should recover all of the kinetic drop in the evaporator. However, 

in Kemme's experiments, although the average Reynolds number exceeded ten, 

only about 60$ of the drop was recovered. The lack of complete recovery 

may be explained by non-uniform heat removal. A failure to stabilize the 

flow results in boundary layer separation and turbulent flow. 

Another interesting limit of a heat pipe involves the interaction of 

the counterflowing vapor and liquid phases. When the vapor velocity is 

high, it is possible that entrainment of the liquid will occur. The inter

face between the liquid andvapor phase in a heat pipe is usually not 

smooth. The wick structure imposes a periodic pattern whose wave length 

is characterized in some manner by the wire size, spacing and weave. 

Because of the well-known dynamic instability of a vapor-liquid interface, 

for values of the Weber number greater than one, the theory shows that the 
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waves grow exponentially beyond the limits of the linear approximation. 

Presumably this growth results in droplets which detach from the wick and 

are entrained in the vapor flow. This increased liquid circulation rapidly 

exceeds the ability of the capillary forces to return liquid to the 

evaporator and failure occurs. Kemme's experiments show a rough correla

tion of this failure mode with center-to-center wire spacing and that a 

very fine screen suppresses entrainment. 

Orbital Flight Test 

In order to expedite the acceptance and use of heat pipes in problems 

of thermal control in space, an orbital flight test was made. These appli

cations are concerned with distribution of heat loads in space structures, 

space suits, instrument packages and electrical components. The tempera

tures are such that water is a suitable working fluid. A water heat pipe 

electrically heated at one end was put into orbit, turned on four hours 

after launch, and its temperature profile along the pipe was monitored for 

forty-five hours. Figure 6 shows the experimental assembly and its test 

position on the aft rack of the Atlas Agena rocket and Fig. 7 shows the 

data obtained. As was expected no measurable difference from the laboratory 

calibration was detected. Further details on this experiment are available 

in reference 5· Presumably higher temperature heat pipes of interest in 

thermionic conversion will be accepted for space applications without too 

much difficulty. 
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Fig. 3. Operation Against Gravity 
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Fig. 5. Pressure Recovery in a Heat Pipe 
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DISCUSSION 

Session D Review speake r s : C.A. BUSSE and G. M. GROVER. 

SCHOCK (USA): Before I ask my question I would like to compliment the 
heat pipe community on the r emarkab le p r o g r e s s that has been achieved in 
the last few y e a r s . This is a question for both speake r s . Other things being 
equal, what is the relat ive rel iabi l i ty of the different wick s t r u c t u r e s ? 

GROVER (USA): Once you have taken ca re of the compatibility problem, 
there does not seem to be a special problem of wick rel iabi l i ty. I might 
point out that the capi l lary s t ruc tu re of the annular re tu rn heat pipe was 
fabricated with 8 l ayers of sc reen swaged down. It was supported and s e a l 
ed only at the ends, sagging freely e l sewhere . It was not on center , of 
course . (As a ma t t e r of fact, one does not want it on center for best ope ra 
tion; it is bet ter to produce an a s y m m e t r i c a l channel which has a lower flow 
impedance than a symmet r i ca l channel). There was no sign of unwinding 
of the swaged sc reen or anything like th i s . 

BUSSE (Euratom): I could add that mechanical ly very stable capi l lary s t r u c 
tu res (of the a r t e r y type, or consisting of channels covered with screen) can 
be made by bonding the sc reen to the wall . We have done this in a number 
of ways, for instance by sintering or by chemical vapor deposition which is 
a very efficient method for getting a good bond. 

GROVER: In the water heat pipe that was operated in orbit the wick was 
p re s sed against the wall by swaging the wall down on the wick, and there 
was no other bonding. The heat pipe went through a complete shake tes t of 
course (the Saturn V vibrat ion spec t rum was used) . There was no change 
in the operat ion. As a ma t t e r of fact, during vibrat ion test ing of another 
heat pipe of the same kind, an improved per formance occur red . It was ope
rated at a slight incline so that the water could not wet the complete -wick, 
but the vibration filled all the pores and the heat pipe operated beautifully. 

DESTEESE (USA): I have a question for Dr . BUSSE. Do you consider some 
observed cor ros ion in the heat pipe r e su l t s from impur i t ies in the working 
fluids? 

BUSSE: At the beginning of our studies on lithium heat pipes we thought 
that impur i t ies in the working fluid might cause the cor ros ion . But careful 
purification of-the lithium and ve ry clean filling techniques did not resu l t 
in any improvement . Therefore in this case the cor ros ion was not caused 
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by i m p u r i t i e s in the work ing fluid but , a s we found out l a t e r , by the oxygen 

in the wal l m a t e r i a l . In g e n e r a l , of c o u r s e , c o r r o s i o n can be c r e a t e d by 

a suff ic ient a m o u n t of i m p u r i t i e s in the work ing f luid. 

D E S T E E S E : Can you quote the p u r i t y of the work ing f l u id s? 

BUSSE: In the s p e c i a l c a s e of l i t h ium the n o m i n a l p u r i t y w a s 99 . 9%, which 

does not say v e r y m u c h b e c a u s e n o n - m e t a l l i c i m p u r i t i e s a r e not inc luded 

in t h i s f i g u r e . We pur i f i ed th i s l i t h ium by m e l t i n g it f i r s t s e v e r a l t i m e s 

t h r o u g h a funnel in o r d e r to e l i m i n a t e the m a j o r p a r t of the oxygen, by hot 

g e t t e r i n g it then for 10 h o u r s a t 800 C with z i r c o n i u m sponge , and f inal ly 

by d i s t i l l i ng it into the hea t p i p e . I th ink tha t the a m o u n t of oxygen in t h i s 

l i t h ium w a s negl ig ib ly s m a l l c o m p a r e d to tha t in the w a l l m a t e r i a l . 

D E S T E E S E : I have one final q u e s t i o n . May I a s k , have you p e r f o r m e d p o s t -

t e s t c h e m i c a l a n a l y s e s of the work ing f lu ids? 

BUSSE: No. Only the w a l l m a t e r i a l s w e r e a n a l y z e d . 

PRUSCHEK ( G e r m a n y ) : A q u e s t i o n for D r . GROVER. S ince b e r y l l i u m i s 

a toxic m a t e r i a l , a r e t h e r e s e v e r e handl ing p r o b l e m s du r ing f a b r i c a t i o n of 

b e r y l l i u m hea t p i p e s and du r ing o p e r a t i o n ? P r e c a u t i o n would be n e c e s s a r y 

to p r e v e n t a hea t p ipe f rom b u r n - o u t du r ing t e s t s , o t h e r w i s e a c o n t a m i n a t i o n 

by the e v a p o r a t e d b e r y l l i u m migh t c a u s e p r o b l e m s . 

GROVER: It is b e r y l l i u m oxide tha t i s t ox i c , I b e l i e v e . The m e t a l can be 

hand led with su i t ab l e p r e c a u t i o n s . We did not m a k e a c o m p l e t e h e a t p ipe 

of b e r y l l i u m . What we did w a s m e r e l y t ake a c y l i n d e r of b e r y l l i u m and 

s l ip it be tween the wick and the w a l l of a Nb-1 Z r a s s e m b l y and t e s t i t a s 

a hea t p i p e . If t h e r e had been m a s s t r a n s p o r t , tha t i s , had the b e r y l l i u m 

not been c o m p a t i b l e , we would have s een that t r a n s p o r t . 

H E F F E L S (ESRO): I not iced two th ings in the p r e s e n t a t i o n s : ( l) t ha t a l l 

p ipes w e r e s t r a i g h t p i p e s and (2) tha t in a l l t e s t s the h e a t input was away 

f rom the e n d s . Now the q u e s t i o n s : 1) A r e t h e r e any p r o b l e m s if the hea t 

t r a n s f e r t a k e s p l ace at the v e r y e n d ? and 2) Would bends o r k n e e s in the 

p ipe i n t r o d u c e any p r o b l e m s ? 

GROVER: T h e r e i s no p r o b l e m with b e n d s . T h e r e i s an add i t i ona l p r e s 

s u r e d r o p and you have to t ake th i s into c o n s i d e r a t i o n . We have o p e r a t e d 

p i p e s in the shape of Ζ and they do f ine . With r e g a r d to hea t ing on the 

end: y e s , you can hea t on the end and tha t w o r k s p e r f e c t l y s a t i s f a c t o r i l y . 

H o w e v e r , the hea t r e m o v a l f rom the o the r end tha t i s a l i t t l e d i f fe ren t . 
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If there a r e any non-condensable gases in the sys tem all of the non-con
densable gases will be pushed to the condenser end of the heat pipe. If you 
a r e trying to take out heat at the end, then you might find that you have to 
take it out through a gas-f i lm and that will give you a tempe ra tu re drop. 

BUSSE: The reason why we did not heat the pipes at the very ends was 
simply that heat pipes were supported at the ends, and we did not want to 
heat the support s t ruc ture too much. 

SCHOCK: A question for Dr . GROVER. How do you make a Z-shaped bend 
in a wick? 

GROVER: In that case the per formance required was very low and the wicks 
were mere ly butted against each other from one section into another . 

HARBAUGH (USA): A question for Dr. BUSSE. In the exper iments with the 
water heat p ipes , what was the power density for the onset of nucleate 
boiling ? 

BUSSE: In the exper iments of BAHR bubble formation was observed at a 
heating ra te of about 20 W/cm . 

HARBAUGH: My second question is to Dr . GROVER. Does the working 
fluid drop below the sc reen in composite wick s t ruc tu res when the pipe is 
driven hard, and does this cause catas t rophic fa i lure? 

GROVER: Hot spots occur in the evaporator when the heat pipe is driven 
beyond the pumping power of the fine sc reen , and occasionally with ca ta 
strophic r e s u l t s . 

HARBAUGH: How a r e your heat pipes p roces sed? 

GROVER: Liquid oxygen cleaning p rocedures a r e a good s ta r t , c leanl iness 
is essent ia l , and outgassing above operating t empera tu re is des i r ab l e . 

CONTZEN (ELDO): What was the type of motion of the vehicle car ry ing the 
heat pipe during the orbi ta l t e s t ? Was the vehicle spun, attitude controlled 
or mere ly tumbled? 

GROVER: It was tumbling very , very slowly, about 1 rev . per 3 hours or 
so, or something like that. 

CONTZEN: Do you think that the spinning ra te of a satel l i te could have an 
influence on the operation of an on-board heat pipe? 

GROVER: Definitely. 
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ROUKLOVE (USA): I w a s jus t going to c o m m e n t on the n u m b e r of h o u r s tha t 

D r . GROVER quoted for the T Z M / L i hea t p ipe which was o p e r a t e d be tween 

1400 C and 1500 C. Ac tua l l y the hea t pipe fai led a f t e r 10, 526 h o u r s . 

VAN A N D E L ( E u r a t o m ) : I would a d d r e s s my q u e s t i o n to D r . GROVER. Did 

you find any o t h e r conc lu s ive proof tha t in s o m e hea t p ipes l iquid m e t a l e n -

t r a i n m e n t by the v a p o r w a s the l im i t i ng f ac to r in the hea t flow? 

GROVER: When we w e r e spec i f i ca l ly looking for l iquid e n t r a i n m e n t we had 

no o t h e r r e a d y exp lana t ion for tha t type of f a i lu re and I m u s t a d m i t tha t the 

e x a m i n a t i o n h a s been v e r y s p a r s e . I be l i eve tha t the w a t e r e x p e r i m e n t s tha t 

D r . BUSSE m e n t i o n e d could be c a r r i e d on a l i t t l e f u r t h e r and get a m u c h 

b e t t e r d e t e r m i n a t i o n of t h i s e n t r a i n m e n t . 

LOCHKAREV (USSR): What is the f ea s ib l e u p p e r l i m i t of the t h e r m a l p o w e r 

t r a n s m i t t e d by a h i g h - t e m p e r a t u r e h e a t p ipe wi th the d i a m e t e r of 1 c m ? 

GROVER: If I u n d e r s t a n d the q u e s t i o n , the m a x i m u m hea t t r a n s f e r down a 

p ipe would be g iven by the son ic l i m i t . The m a x i m u m tha t h a s been m e a s u r e d 
/ 2 o 

c o r r e s p o n d s to t h i s and is a r o u n d 15 k W / c m for s o d i u m at about 700 C. F o r 

l i t h i u m th i s sonic l i m i t a t h i g h e r t e m p e r a t u r e s would be e x t r e m e l y high and 

I don ' t know the n u m b e r s r igh t off hand . 

LOCHKAREV: What i s the l i m i t spec i f i c t h e r m a l p o w e r ( W / c m ) in the a c 

t ive p a r t of the hea t p i p e ? 

BUSSE: T h e r e a r e the da t a of DORNER, REISS and S C H R E T Z M A N N . They 

m e a s u r e d the m a x i m u m hea t ing r a t e for sod ium wi th open c h a n n e l s a s c a p i l -
2 

l a r y s t r u c t u r e and found v a l u e s up to 2 kW p e r c m of channe l open ing . With 

r e g a r d to the c o n d e n s a t i o n zone , t h e o r e t i c a l l y t h e r e a r e a l s o l i m i t s , but e x 

p e r i m e n t a l l y no w o r k h a s been d o n e . 

LOCHKAREV : Which p a r t i s m o r e c r i t i c a l in r e l a t i o n to the m a g n i t u d e of 

the spec i f i c t h e r m a l flow - the r e g i o n of c o n d e n s a t i o n o r e v a p o r a t i o n ? 

GROVER: I would be l i eve the e v a p o r a t i o n zone would be m o r e c r i t i c a l . A s 

D r . BUSSE sa id , the c o n d e n s a t i o n l i m i t s m u s t e x i s t , t hey a r e qui te h igh, 

but none of u s h a s m a d e spec i f i c e x p e r i m e n t s t o w a r d s t h i s end to d e t e r m i n e 

t h i s . 
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Abs t rac t 

Corros ion in high t empera tu re N b - l Z r / L i and T a / L i heat pipes can be 
caused by the oxygen content of the -wall m a t e r i a l . The cor ros ion m e c h a 
nism consis ts in the extract ion of oxygen from the wall m a t e r i a l in the 
cooling zone and the t r anspor t to the heating zone, where the oxygen is a c 
cumulated in a relat ively smal l region. By this enr ichment phenomenon the 
oxygen concentrat ion in the heating zone can reach values which a r e so high 
that rapid wall a t tack and penetrat ion occurs , even if the initial oxygen con
tent of the wall m a t e r i a l is as low as about 100 ppm. 

Promis ing resu l t s on cor ros ion inhibition have been obtained by using as 
wall m a t e r i a l N b - l Z r which had been deoxidized by a heat pipe p r o c e s s to 
below 1 ppm O, by adding Ca to a N b - l Z r / L i heat pipe, and by using Ta 
with a smal l content of Y (SGS-Ta). The N b - l Z r / L i heat pipes withstood 
tes t s of 1000 hours at 1500 C without fa i lure , but considerable loss 
of Zr occur red . The best resu l t was obtained with SGS-Ta /L i . After a t es t 
of 1000 hours at 1600°C with a heating ra te of 170 w / c m ^ this heat pipe was 
completely free of impuri ty cor ros ion and showed only slight solubility m a s s 
t r anspo r t . 

Heat t r ans fe r m e a s u r e m e n t s were made with a Li heat pipe about 50 cm long 
and with 0.46 cm vapor flow a r e a . The heat pipe had a composite wrick 
(grooves covered with one layer of 150 m e s h screen) and was made of Ta 
(wall) and N b - l Z r ( screen) . At 1500°C a maximum axial heat flux density 
of about 15 kw/cm^ was m e a s u r e d . 

1. Introduction 
Lithium is one of the most a t t rac t ive working fluids for heat t r ans fe r with 
heat pipes in the t empera tu re range around 1500°C. P r e s e n t - d a y heat pipe 
theory indicates that of al l e lements with a vapor p r e s s u r e of l ess than 10 a tm 
at 1600°C Li should yield the highest axial heatflow densi t ies [ l ] . In o rde r 
to check these theore t ica l expectat ions, heat t r ans fe r m e a s u r e m e n t s up to 
1500°C were made with a T a / L i heat pipe of composite wick s t ruc tu re 
(chapter 3). 

The p rac t i ca l applicabili ty of Li heat pipes depends strongly on the question 
whether mechanical ly re l iable sys t ems with long life t ime can be rea l ized . 
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Promis ing life tes t resul t s have been reported for Mo-0.8Zr-0 .5Ti-0 .03C(TZM)/Li 
(more than 9000 hours in ver t ica l operation at 1475°C to 1500°C, heating ra te 
20 w / c m 2 [ 2 j ) and for W/Li (practically no cor ros ion after 1000 hours in 
horizontal operation at 1600°C, heating ra te 70 w / c m 2 [ 3 ] ). However, W 
is very br i t t le , and also TZM becomes bri t t le after heating for some hours 
to 1600°C. Life tes ts were therefore undertaken using N b - l Z r and Ta as wall 
ma te r i a l s which remain ductile also after recrys ta l l iza t ion . Details on heat 
pipe filling and testing methods as well as resul t s of life t es t s and corros ion 
inhibition a r e reported in chapter 2. 

2. Life tes t s 

2. 1 Corros ion mechanism in N b - l Z r / L i and T a / L i heat pipes 
Ear ly heat pipe life tes ts at 1600°C with Bi, Pb, Tl, Li, Ba as working fluid 
and N b - l Z r , Ta and W as wall ma te r i a l had shown essent ia l ly two types of 
cor ros ion : (1) mass t ranspor t from the cooling zone to the heating zone, (2) lo 
cal at tack in the heating zone. While the first type was explained by the solubi
lity of the wall ma te r i a l in the working fluid, it was suspected that the second 
type is caused by impuri t ies [ 3 ] . Both N b - l Z r / L i and T a / L i heat pipes p r e 
dominantly show this second type of corros ion which rapidly leads to wall p e 
netrat ion in the heating zone (after about 1 0 to 100 hours of operation in the 
1500°C range) . Fig . 1 is a typical photograph of a T a / L i heat pipe which 
failed in this manner . 

It is well known that in N b - l Z r / L i and T a / L i liquid meta l sys tems cor ros ion 
can be caused by oxygen impuri t ies (see e. g. [ 4 ] ). We have found that f i l l
ing a N b - l Z r or a Ta heat pipe with deoxidized Li (hot get tered with Zr sponge) 
does not lead to a noticeable improvement in life t ime , that however the c o r r o 
sion is caused by the initial oxygen content of the wall ma te r i a l . The cor ros ion 
mechanism consists in the extraction of oxygen from the wall ma te r i a l in the 
cooling zone and the t ranspor t to the heating zone, where the oxygen is accu
mulated in a relatively smal l region. By this enr ichment phenomenon the oxy
gen concentration in the heating zone can reach values which a r e sufficiently 
high for rapid corros ion to occur (probably by the formation of a low melting 
O-Li-Nb r e sp . -Ta complex), even if the initial oxygen content of the wall m a -
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te r ia l is as lov: as about 100 ppm. 

Having recognized the initial oxygen content of the wall m a t e r i a l as the 
c ruc ia l impuri ty, th ree ways were t r ied for solving the cor ros ion prob lem: 
(l) deoxidation of the wall m a t e r i a l p r io r to use , (2) inhibition of the c o r r o 
sion p r o c e s s by adding strong oxygen ge t te r s to the working fluid or (3) to 
the wall m a t e r i a l . All three tes t s resul ted in a la rge improvement of the 
heat pipe life t ime, as will be d iscussed below. 

2. 2 Heat pipe filling technique 
The heat pipe filling technique used in these exper iments was basical ly a l 
ways the same . In o rde r to avoid oxygen contamination by introduction of 
the Li, a hot gettering step was general ly included in the filling p r o c e s s . 
As get ter Zr sponge with an average oxygen content of 400 ppm was used. 
The Zr quantity was chosen so that the sponge could suck up a l l the Li in 
the sys tem (wt. of Zr »30 t imes wt. of Li) . 

In fig. 2 the heat pipe with the get ter container is shown. The ent i re unit 
was made of N b - l Z r or Ta. The heat pipes themselves had a length of 
116 m m . They were made of tube of 11 m m o. d. and 8 m m i. d. , having in 
the inside wall 24 roughly square grooves of 0. 5 χ 0. 5 m m . The end plugs 
were machined so that a radia l c lea rance was left serving as capi l lary con
nection between the grooves . 

The heat pipe prepara t ion and filling procedure consisted of the following 
s teps : 

P repa ra t ion of ref rac tory meta l p a r t s : Etching in aqua regia , followed by 
a t rea tment inHF+HN03 result ing in the removal of about 0. 05 m m of wall 
m a t e r i a l (in o rde r to el iminate superficial Fe contamination which was found 
in the supplied tubes). P re -ou tgass ing for some minutes at 1650°C in a va -

-5 cuum of about 10 t o r r . Joining by e lec t ron beam (leaving open the get ter 
container) . He leak tes t . Outgassing 5 min 1650°C at 10 t o r r . Trans fe r 
under vacuum into an argon glove box. 

P repa ra t ion of Z r : Heating in high vacuum for 1 hour at 1500°C. Trans fe r 
under vacuum into the argon glove box. 
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Prepara t ion of Li : Pre -c lean ing by melting two or th ree t imes in a vacuum 
-4 -5 

of 10 to 10 t o r r through a Ni funnel with a 1 mm opening, using the 
weight of a Ni piston to push the liquid meta l through the funnel (L12O remains 
essent ia l ly in the funnel, so that a bri l l iant Li bead is obtained). Transfer 
of the Li bead under vacuum into the argon glove box. 
Fi l l ing: In the argon glove box Zr sponge and Li a r e put into the get ter con
ta iner and the lid is inser ted . After pumping down the glove box for two hours 

-5 to about 10 t p r r the lid is welded tight by electron beam. 

Gettering: The sys tem as shown in fig. 2, with the get ter container in down-
-5 ward position, is t rea ted for 10 hours in a vacuum of about 10 t o r r heating 

the get ter container to 800°C and keeping the r e s t of the sys tem roughly 100 C 
hotter in o rde r to ensure that the liquid Li is in the get ter container . After
wards (with the get ter container in upward position) the Li is disti l led over 
into the heat pipe by heating the get ter container for 10 hours to about 800°C 
and keeping the t empera tu re of the end of the heat pipe below the melting point 
of Li by means of water cooled Cu c lamps . 

Final p rocess ing: The nar row tube between heat pipe and get ter , container 
(see fig. 2) is pinched together and cut through by electron beam. The heat 
pipe is then inser ted into a quartz glass tube. After outgassing the heat pipe 
for some minutes at life tes t t empera tu re as well as the total assembly for 
10 hours at 400°C under a vacuu 
off with a propane-oxygen torch . 

_5 
10 hours at 400°C under a vacuum of 10 t o r r , the quartz container is sealed 

2. 3 Test method 

The sealed- in heat pipe ready for lifetesting is shown in fig. 3. The heat pipe 
is centered by the W pins of a Ta support . A movable Ta shield se rves to keep 
a par t of the quartz glass clean for pyromet r ic t empera tu re measuremen t du
ring the tes t . 

Fig . 4 shows a heat pipe on the life tes t stand. All t es t s were made with the 
heat pipe in horizontal position, heating with a 13 mm long RF coil. Sensitive 
automatic shut down of the RF genera tor in case of heat pipe failure was p r o 
vided by means of two photocells measur ing separate ly the light output from 
heating zone and cooling zone. The difference of thei r signals was reg is te red 
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on a mill ivolt r e c o r d e r with a max and a min contact, which shut down the 
genera to r . Simple cooling control of the RF coil was made by means of a 
blackened piece of mica . It was suspended by a wire brazed with Rose ' s 
me ta l to the RF coil . If the coil became too hot, the b raze melted and the 
mica piece dropped down between photocell and heat pipe thus re leas ing the 
shut down of the RF genera tor . 

2 .4 Life t e s t . r e su l t s and discuss ion 

Table 1 shows the resu l t s of the t e s t s . Heat pipe No. 1 was made from Nb- lZr 
which was deoxidized to below 1 ppm O by making use of the descr ibed oxygen 
t r anspor t p r o c e s s , i . e . building the heat pipe from the cooling zone m a t e r i a l 
of another Li heat pipe having a l ready been operated. F o r this purpose f i rs t 
a N b - l Z r / L i heat pipe 200 m m long was filled and operated horizontally for 
95 hours at 1500°C until a leak occur red in the heating zone. The rapid shut 
down by the photocell control sys tem prevented mos t of the Li to escape from 
the heat pipe thus permit t ing the new heat pipe to be made in a simple way: 
The quartz glass tube was opened up in an argon glove box, the defective heat 
pipe pinched together in the cooling zone and welded tight by e lec t ron beam 
after evacuating the argon. The original heating zone was then cut away with 

a saw. The heat pipe was again sealed in quartz g l a s s , after outgassing in 
-5 a vacuum of 10 t o r r for some minutes at 1500°C and heating the quartz tube 

for 10 hours to 400°C. This heat pipe withstood a 1000 hour tes t at 1500°C 
without fa i lure . After opening up, modest wall at tack in the heating zone was 
found. It may have been caused by oxygen pick up after the initial deoxida-
tion p r o c e s s and could p resumably be avoided by some improvement of the 
p rocess ing . There was however another effect which may have se r ious con
sequences : During the tes t an e lec t r ica l ly well conducting deposit ( r e s i s 
tance < 1 ohm) formed on the inside of the quartz tube; it consis ted mainly 
of Z r . 
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Table 1 : Lifetest resu l t s 

No. 

1 

2 

3 

wall 
ma te r i a l 

deoxidized 
N b - l Z r 
N b - l Z r 

SGS-Ta 

filling 

Li 

Li-13Ca 

Li 

tes t conditions 
t empera tu re 

°C 

1500 

1500 

1600 

t ime 

hr 

1000 

1000 

1000 

heating 
ra te * 

w /cm 

115 

115 

170 

observat ions 

no failure; 
Zr loss 

m 

no failure 

Heat pipe No. 2 in table 1 was filled without hot get ter ing, but adding 46 mg 
of Ca to the Li . As the boiling t empera tu re of Ca is well below that of Li, 
the Ca in heat pipe operation will probably be accumulated in the heating zone. 
There it should effectively t r ap the oxygen because CaO is among the oxides 
with the highest known free energy of formation. Also this heat pipe withstood 
1000 hours of horizontal operation at 1500 C without fai lure. It shows 
however an anomalously strong deposit on the quartz tube in the heating zone 
(Ca diffusion?). 

The last heat pipe in table 1 was bui l t from SGS-Ta, which is a r a the r oxy
gen free Ta (*" 10 ppm θ) containing a very smal l percentage of Y (whose 
oxide has a free energy of formation considerably l a rge r than that of Z r ) . 
This heat pipe was filled using the descr ibed hot gettering p r o c e s s . After 
1000 hours of operat ion at 1600 C this heat pipe did not show any wall at tack 
in the heating zone. There were only some smal l deposits presumably caused 
by the usual solubility m a s s t r anspor t from the cooling zone to the heating 
zone (see fig. 5). The complete absence of oxygen cor ros ion may be due both 
to the relat ively low oxygen content of the SGS-Ta and the action of the Y which 
seems to inhibit quite effectively the oxygen accumulation p r o c e s s . 

If one takes into account that the SGS-Ta/Li heat pipe has been operated with 
2 

a very high heating ra te (170 w / c m ), and if one a s sumes that the m a s s depo-

*) defined as the total radiated energy (outside the heating zone) divided by the 
a r ea of the heating zone. This a r ea was calculated as the surface of a cylin--
der having a d iameter equal to the inner d iameter of the heat pipe and a length 
equal to that of the RF coil. 
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sit pe r a r ea is proport ional to the heating ra te and total t ime of operation 
(i. e. , the total m a s s evaporated p e r a rea) [ 5 J , then one may hopefully 
extrapolate that in 10, 000 hours at 1600 C with a heating ra te of 50 w / c m 
no ser ious clogging of the grooves would occur . 

3. Heat t r ans fe r measu remen t s 

3. 1 Apparatus 
The maximum axial heat flow was measu red with a heat pipe of composite 
wick s t ruc ture (roughly rec tangular grooves running axially and covered with 
sc reen) . Table 2 shows the design data of the heat pipe. 

Table 2 : Heat pipe design data 

working fluid 
wall m a t e r i a l 
sc reen ma te r i a l 

d iamete r of vapor channel 
outer d iamete r 
total length 
length of heating zone 
length of cooling zone 
number of grooves 
average groove width 
average groove depth 

sc reen type 
number of sc reen l aye r s 
sc reen ape r tu re 
sc reen wire d iamete r 

Li 
Ta 

N b - l Z r 

7. 6 m m 
11.7 m m 

488 mm 
150 m m 
204 mm 

39 m m 
0.42 mm 
0.96 m m 

plain weave 
1 

0.11 m m 
0.06 mm 

The problem of fixing the sc reen tightly on top of the indentation of the heat 
pipe wall was solved by making a spot welded sc reen tube which was inser ted 
into the heat pipe; close contact between sc reen and heat pipe wall was then 
establ ished by widening the sc reen by a hammer ing method. As h a m m e r in
side the heat pipe a loose W cylinder was used which was energized by v i 
brating the heat pipe in a round h a m m e r machine . 
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The apparatus used for the heat flow measu remen t is shown in fig. 6. It 
consis ts essent ia l ly of two p a r t s : a He filled one (left side), and an evacuated 
one (right side). The heating zone and a heat shielded zone a r e in the vacuum 
par t , the cooling zone is in the He pa r t . The vacuumtight separat ion between 
the two pa r t s is made by a 0. 2 mm thick Ta diaphragm, brazed with Nb by 
e lect ron beam heating to the heat pipe, and clamped conically between a Cu 
piece and a s ta inless s teel flange. The heat pipe was heated by an RF coil 
and cooled by water a c r o s s a He gap of 0.4 mm width (cold value). The axial 
heat flow was measured by the flow ra te and the t empera tu re inc rease of the 
cooling water . The heat pipe t empera tu re was controlled by two W-5Re/W-26Re 
thermocouples under the the rma l shield and by an optical py romete r at the b e 
ginning of the shielded zone. 

The maximum axial heat flow was determined by simultaneously increasing 
the He p r e s s u r e and the power input so that the heat pipe t empera tu re remained 
essent ia l ly constant, until a hot spot appeared in the heating zone. 

3. 2 Resul ts and discussion 
The resu l t s of the axial heat t r ans fe r measu remen t s a r e shown in fig. 7. Each 
data point r ep re sen t s an individually determined heat t r ans fe r l imit . The raea-

W 2 o 
cm at 1500 C confirms 

the expected high per formance of Li heat p ipes . 

Two theore t ica l curves (dashed) have been included into fig. 7. They were ob
tained by calculating the p r e s s u r e drop in the vapor and the liquid phase from 
laminar theory [6, 7 ] , equating the p r e s s u r e s in both phases at the begin
ning of the cooling zone and assuming as maximum capi l lary p r e s s u r e Ρ the 
p r e s s u r e which would be developed by a par t ia l ly filled groove, i . e . 

Ρ = 
c 
-ibi) 

(b = width of groove, a = depth of groove, γ = surface tension of the working 
fluid). The p a r a m e t e r δ is introduced to make allowance for the fact that one 
side of the groove is not a solid wall but a screen; the maximum capi l lary 
p r e s s u r e of a s c r een -cove red par t ia l ly filled groove should therefore be some· 
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where between that of a completely open groove ( 0 = 0 ) and that of a groove 

closed by a solid wall ( δ = 1). The two cu rves in fig. 7 re fer to t hese two 

l imiting c a s e s . 

The data point at 1090°C l ies near ly a factor two above the theore t ica l v a 

lues . This seems to indicate that the maximum capi l lary p r e s s u r e depends 

on the fine pores of the s c r een cover r a the r than on the s ize of the grooves 

themse lves , this being in agreement with resu l t s of KEMME on Na heat 

pipes [ 8 ] . At higher t e m p e r a t u r e s , however, the data points in fig. 7 a r e 

c lose r to the theore t ica l cu rves . P a r t i a l des t ruct ion of sc reen and grooves 

in the heating zone may have lead to this resu l t (the heat pipe, built without 

any provision for cor ros ion inhibition, failed by wall penetrat ion in the 

heating zone shortly after the shown data points had been reg is te red ; the 

high value at 1090 C was in fact measu red right at the beginning). 

Conclusion 

The SGSTa/Li sys tem holds p romise for real izing heat pipes with a l ifetime 

of much more than 1000 hours at 1600°C and a heat t r anspo r t capability well 

in excess of 1 0 kw/cm . 
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PRESSURE BALANCE AND MAXIMUM POWER DENSITY AT THE EVAPORATION GAINED FROM 

HEAT PIPE EXPERIMENTS 

F. Reiss, K. Schretzmann 

Institut für Neutronenphysik und Reaktortechnik 

Kernforschungszentrum Karlsruhe, Germany 

From capillarylined evaporator surfaces very high 

heat flux densities can be removed. Data for the 

maximum attainable heat flux densities are derived 

from experiments preferably with sodiumfilled heat 

pipes. Hydrodynamic and gaskinetic calculations 

are in accordance with measured data. 

In the course of experiments with heat pipes we observed that 

the evaporation of fluids from capillarylined evaporator surfaces al

lows much higher heat fluxes to be removed steadily than are possible 

with known technical evaporators . We tried to measure the maximum 

possible evaporation heat flux densities and their dependence on tempera

ture. In this paper we give preliminary results at relatively low tem

perature and propose a simple model which serves to obtain the wanted 

heat flux quantities from experiments with sodiumfilled SSheat pipes 

and confirms the order of magnitude of the reduced data from gaskinetic 

consideration. 

The bulk current of the fluid may be limited by the resistance 

of the vapor duct and of the capillaries for the streaming vapor and the 

fluid, respectively. The pressure drop that may be balanced by the ca

pillary forces is relatively small. Since we wished to be independent 

of the hydrodynamic resistances as far as possible, we operated our heat 

pipes in vertical position, heating, them at the lower end. If the bulk 

current in the streaming vapor decreases linearly to zero over the conden

sor length the pressure drop may be expressed as 

Reo 

ie) Re" d Re 2
 ! / MR« 

a 

¿P s = — 3 (D 

2 d ρ Reo 

η being the dynamical viscosity, 1 the length of the heat pipe, d the in

ner diameter of the vapor duct, ρ the vapor density, λ. the dimensionless 

resistance number, Re the Reynolds number, and Reo the Reynolds' number 

at the beginning of the vapor stream. Reo may be calculated by 

Reo = 4 Q / TT d L η (2) 

o ' 
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Q being the total heat power and L the heat of vaporization of the mass 
o 

unit. 

The resistance number λ depends only on the Reynolds' number 

and the roughness of the wall. Values of λ have been measured by PRANUTL 

3) 
and NIKURADSE . With these values we calculated the integral 

Reo 

2) 

λ Re d Re / Reo (3) 

The results are shown in Fig.l. With these Ivalues the vapor drop ¿\P 

may be written by 

n2
 · 1 · I / 2 d

3
p (4) 

We note that the formula is valid for all Reynolds' numbers and for the 

case that the vapor streams partly in turbulant manner and partly in la

minar. 

To check thè formula we calculated from temperature drops ΔΤ 

measured on heat pipes " the pressure drop ΛΡ. using the well known val

ues of the equilibrium vapor pressure. The results are shown in Tab.l. 

Tnb.l. Calculated and measured pressure drops in the vapor duct of a 

sodiumfilled heat pipe 

Τ / °c 
m 

474 

422 

387 

A T / ° C 

1 

12 

73 

Q /Watt 
o 

260 

200 

152 

p / T o r r 
d 

2 . 3 2 

0 . 6 7 

0 . 2 5 

Δ Ρ . / T o r r 
d 

0 . 0 5 

0 . 2 

0 . 4 

Δ Ρ /Torr 

0 . 4 2 

0 . 9 9 

1 .85 

T means the mean temperature in degrees centigrade and p, the mean vapor 
m d 

pressure. The values of ΛΡ , are distinctly, lower than the values of AP 

calculated from the hydraulic theory. The differences between AP. and 

¿ΔΡ might come from an incompletely developed hydraulic stream caused by 

low pressure from the fact that admittance disturbancies cannot decay in 

the short tube, that the edge sheet is peeled off by condensation, or from 

the inertia of the streaming vapor. 

Further, the heat power and the heat flux in the evaporator are 

limited by gaskinetic laws. The maximum number of molecules j that may 

m 

leave the surface unit is 

m 
η ν / 4 (5) 



509 -

n is the number density of molecules and ν the mean velocity in one di
rection. The highest possible bulk flux m and the maximum evaporation 
power density q are 

m = m η ν / 4 (6) 
m 
q = m n v L / 4 (7) 

m is the mass of a molecule and L the heat of vaporization per unit mass. 
The heat flux cannot exceed the value of q neither in the phase boundary 
nor in the vapor duct. 

The value of q is a very strong function of temperature since 
the number density of the vapor depends exponentially on temperature. 
Simple consideration shows that the maximum momentum flux possible in va
porization, i.e. evaporation into vacuum, gives rise to a reaction pres
sure equal to one half of the saturation vapor pressure ρ . This reaction 
pressure can be equated to the mass flow density m times the mean veloci
ty of the mass flow v. The heat of vaporization L gives the maximum eva
poration heat flux 

q = m L = p L / 2 V (8) 

We assume that the mean velocity at evaporation into vacuum is approximate
ly the mean thermal velocity taken over equilibrium distribution function 
of the momentum component which is parallel to the direction of the mass 
flow. Fig.2 shows the result of this calculation for sodium. For the 
calculation up to 1200 C we used the values of the vapor pressure and heat 

4) of vaporization given by SCHINS . The dashed part of the curve is based 
5) on extrapolated values given by GMELIN . You see that q cannot exceed 

230 W/cm2 at 500°C but rises to 105 W/cm2 at 1000°C. 

On the heat pipe the input heat power equals the heat losses in 
stationary state. The maximum evaporator heat power Q is given by 

Q = q min ( F ^ p j = q Fm (9) 

min being the lowest value of F and F _,, F the mean evaporator surface. 
e vd e F . the vapor duct area, and F the lowest value of both areas. The maxi-vd m 

mum evaporator heat power and the heat losses increase with rising tempera
ture. But q increases by a higher power of the temperature than do the 
heat losses. The startup temperature is the temperature where the heat 
losses equal q F . We had highly concentrated input heat fluxes in most m 6) of our experiments and thus the evaporator area limited the total power, 
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In experiments, where large evaporators are used, where the 
thickness of the wall is much less than r, and where the heat pipes are 
cooled by radiation the following formula applies for isothermal mode 

7Γ r2 q > 2 7Γ r 1 £ σ T 4 (10) 

r being the inner radius of the tube, £ the emissivity, and σ the radia-
4 tion constant. We have drawn the 2 £ σ T 1/r -line on Fig.2 for 

4 £ = 0.5 and 1/r = 50. You see that the q-line intersects the 2£ σΤ 1/r-
line at about 400 C. There should be no lower startup temperatures in 
sodium-filled heat pipes with 1/r = 50 as is roughly confirmed by our ex-

7) periments and by literature . Some startup values are entered in Fig.2. 
Startup temperatures of 450 C follow from similar considerations if the so
dium-filled heat pipe is cooled only in a small area at the opposite end 

8) of the evaporator . Further, we have drawn the q-line for lithium on 
Fig.2 and a startup temperature of a lithium-filled tube measured by us. 
1/r was about 30. 

Fig.3 shows the distribution of the ratio of heat power per unit 
length to total heat power along the axis of inductively heated tubes. The 

6) values of Fig.3 are calculated and measured by two independent methods 
With a total heat power of about 3.5 kW we get a maximum heat flux of 

, 2 300 W/cm on tubes of 2 cm outer diameter. 

Our tubes had 36 grooves with a groove-to-land ratio of 1 : 8. 
Since we can see the grooves on the outer side as more or less dark stripes 
when the heat pipe runs, we are sure that sodium evaporates only out of the 
grooves. We conclude that the heat current density at the phase boundary 

2 is at least 2000 W/cm without the film boiling phenomena. Otherwise, 
o there would have been a temperature difference of about 100 C between the 

tube wall and sodium vapor. Our measured values are marked in Fig.2. Their 
order of magnitude corresponds to the gaskinetic heat flux at lower temper
tures. Fig.4 shows measured values of the burnout heat flux in pool boil-

8) ing of sodium according to BALZHIESER . Our values are two to ten times 
o higher in the temperature region above 550 C. 

In our opinion, there are two reasons for the limitation of the 
heat fluxes: At relatively low temperatures the reaction pressure ρ at 
the evaporation is comparable to the vapor pressure. If ρ is greater 
than the capillary pressure ρ = 4 σ /D - σ being the surface tension, 
D the width of the grooves - the phase boundary recedes from the edge of 
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the groove to the bottom and into regions with a higher heat-source densi
ty. One may try to increase the maximum heat flux on the evaporator by re
ducing the width of the grooves and the partition walls. But there a limit 
is given by the breaking strength of the walls. At higher temperatures 
the temperature drop in radial direction and the drop of the equilibrium 
vapor pressure in the fluid from the outside to the inner regions is so 
great that it cannot be compensated by the friction pressure drop of the 
radially streaming fluid. Bubbles originate near the bottom of the groove, 
grow up, and cause it to dry up. 

References 
(1) DORNER, S.; REISS, F.; SCHRETZMANN, K., "Experimentelle Untersuchungen 

an Natrium-gefüllten Heat Pipes". Gesellschaft für Kernforschung, Karls
ruhe, 1967, KFK 512. 

(2) PRANüTL, L., "Neuere Ergebnisse der Turbulenzforschung". Z. Vül 77 
(1933) 105. 

(3) NIKURADSE, J., "Strömungsgesetze in rauhen Rohren". Forschungsarb. Geb. 
Ingenieurwesen 361 (1933). 

(4) SCHINS, H.E.J., "Liquid Metals for Heat Pipes, Properties, Plots and 
Data Sheets". EURATOM, JNRC Ispra, 1967, EUR 3653 e. 

(5) "Gmelins Handbuch der Anorganischen Chemie, 21, Erg.band, Lieferung 2". 
Verlag Chemie, Weinheim, 1965. 

(6) REISS, F.; SCHRETZMANN, K., "üie axiale Verteilung der reduzierten Wär
meleistung auf induktiv geheizten, kreiszylindrischen Stäben". Int. Z. 
Elektrowärme 2& (1968), to be published. 

(7) KEMME, J.E., "Heat Pipe Capability Experiments". Los Alamos Scientific 
.Lab., 1966, LA-3585-MS. 

(8) BOHDANSKY, J.; STRUB.H.; VAN ANDEL, E., "Heat Transfer Measurements Us
ing a Sodium Heat Pipe Working at Low Vapor Pressure". 1966 IEEE Con
ference Record of the Thermionic Conversion Specialists Conference, 
Houston, 1966. 

(9) -BALZHIESER, R.E. et al., "investigation of Liquid Metal Boiling Heat 
Transfer". Air Force Propulsion Lab., Wright Patterson, ASB/Ohio, 1966, 
AFAPL-TR-66-85. 

(10) GROVER, G.M.; COTTER, T.P.; ERICKSON, G.F., "Structures of Very High 
Thermal Conductance". J. Appi. Phys. 35 (1964) 1990. 

(11) SEMERIA, R.; SCHMIDT, E.; "Compte Rendu des Travaux Concernant les Calo
ducs à Sodium". CEA, CEN de Grenoble, 1967, T.T. no.80. 



512 

IO
5
 Re 

F i g . l . I n t e g r a i I v s . Re 

α · own values 

♦ Semeria, Schmidt
 1

M 

■ Grover, Cotter,Enckson
 1

") 

500 1000 1500 2000 Τ 
»C 

F i g . 2 . Evaporat ion power den
s i t y v s . temp 



513 

07-O- mm-

m m 

m 20 25 30 35 ¿0 

Fig.3. Distribution of the ratio of 
heat power per unit length to 
total heat power along the axis 
of inductively heated tubes 

°° V ft-

500 

;o to' 

700 
—ί— 

eoo 
■+- Η f-
900 10001200 

Torr 

Τ 

Fig.4. Maximum heat flux of evaporation 

in heat pipes and burn-out heat 

flux in pool boiling 





D-4 

DETERMINATION THEORIQUE ET EXPERIMENTALE DE LA 
PUISSANCE THERMIQUE LIMITE TRANSFEREE PAR DES CALODUCS A SODIUM 

E. SCHMIDT et R. SEMERIA ; 

CE.A. - Service Transferts Thermiques, 
B.P. 269, Grenoble (France) 

RESUME 

Le présent rapport ayant comme but la détermination de 
la puissance thermique limite transférée par des caloducs à 
sodium comporte un modèle analytique et des résultats 
expérimentaux· La puissance thermique limite varie avec 
la géométrie du réseau capillaire, les dimensions du 
caloduc, l'angle d'inclinaison par rapport à la position 
horizontale et la température de fonctionnement· 

Dans cette étude, on s'intéresse surtout au premier 
paramètre ; le réseau capillaire était constitué de quelques 
enroulements d'un tamis métallique à maille carrée· Dans 
plusieurs caloducs de même géométrie (diamètres : 21 x 25 mm, 
longueur intérieure t 200 mm), on a fait varier le vide de 
maille entre 0,055 mm x 0,055 mm et 0,36 mm x 0,36 mm ; la 
valeur optimale pour les caloducs travaillant contre la 
pesanteur a été trouvée égale à 0,21 mm x 0,21 mm ; la 
température optimale de fonctionnement est comprise entre 
600°C et 750°C suivant l'inclinaison du caloduc. Pour des 
tamis plue fins, la perte de pression due à l'écoulement 
du liquide dans le réseau capillaire devient trop élevée ; 

* ) Cette étude a été effectuée au Coirmi ssari at » l'Energie Atomique, Service des Transferts 

Theraiques, Centre d'Etudes Nucléaires de Grenoble - FRANCE, avec la sarti ci pati on 

financière de la Direction des Recherches et Moyens d'Essais. 
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pour des tamis plus gros fonctionnant contre la pesanteur, 
l'ascension capillaire devient insuffisante· 

De plus, des essais d'amorçage ont été entrepris 
avec un caloduc à calcium· 

0. INTRODUCTION 

La puissance thermique transférée par un caloduc 
présente une limite supérieure due à l'assèchement de la 
zone de 1 *évaporateur qui subit alors une brutale 
élévation de température· Ce phénomène d'assèchement 
peut avoir deux origines différentes : 

1) Caléfaction à 1'évaporateur due à une trop grande 
densité de flux de chaleur ; 

2) Interruption de la circulation du liquide caloporteur· 

En ce qui concerne la première limitation, il ne 
semble pas que, pour des utilisations actuellement 
envisagées, la caléfaction risque de limiter les perfor
mances des caloducs· 

La deuxième limitation peut être expliquée par le 
fait que les pertes de charge dues à l'écoulement du métal 
caloporteur à l'état liquide et gazeux plus éventuellement 
la pression hydrostatique ne doivent pas dépasser la 
pression motrice capillaire. Cette condition limitant le 
fonctionnement des caloducs fait l'objet de cette 
communication. 
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1. MODELE ANALYTIQUE 

En négligeant la conduction thermique axiale dans 

l'enveloppe tubulaire, la puissance thermique transférée ¥ 

est proportionnelle au débit massique m et à la chaleur 

latente de vaporisation cô du métal caloporteur· 

La condition de fonctionnement pour un caloduc 

placé dans un champ de pesanteur .est : 

Ap
mot ̂

 Δρΐ + Δρν + W ~ Pv)«S«L«sin α 

Les différents termes peuvent être calculés de la 
manière suivante : 

Δρ : En ce qui concerne la force motrice capillaire, on 

peut supposer que, pour un tamis à maille carrée, 

les interfaces liquidevapeur sont sphériques et 

on obtient pour la pression motrice t 

Δρ . = •
2
—2 „ cos θ 

'mot RM 

où σ est la tension superficielle, R„ est le demicôté du 

carré vide du tamis et θ est l'angle de contact· Pour les 

caloducs à sodium possédant du tamis à maille carrée comme 

réseau capillaire, nous proposons d'utiliser pour cos θ 

une valeur de 0,5  0,6· Cette valeur a été déterminée 

expérimentalement et elle tient compte d'une part de 

l'angle de contact et, d'autre part, du fait que pour 

des tamis à maille carrée l'interface liquidevapeur 

n'est pas purement sphérique· 
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Δρη : En ce qui concerne la perte de pression du liquide 

le long du réseau capillaire, nous écrivons la 

relation suivante qui a été établie à partir d'un 

coefficient de frottement £~\J H^J · 

e . i t Γ 0,425 ü i . ' 3 . . . . 
1
 C

3
(10^1I)

3
 (n0,5)RM

3 P
' r + 1,32 RMC(n0,5) 

C 

0,00182 J  .
 ! 

Ρ ι I [ r + 1,32 RM C (n 0,5)]
 2 J 

Cette relation a été vérifiée expérimentalement et elle est 

valable pour un écoulement laminaire ainsi que pour un 

écoulement turbulent. 

On voit.que Δρ varie essentiellement avec C. 

C'est le rapport entre l'épaisseur totale du réseau 

capillaire et l'épaisseur de n couches du tamis. On 

appelle C le facteur de foisonnement. 

En plus, Δρ varie avec n, avec R„ et avec la 

longueur du caloduc L· 

Δρ 

Si Re < 1 500, nous utilisons pour la zone de 

1'évaporateur une solution proposée par YUAN et coll. ¿ 3_/· 

Pour le conduit de vapeur, on applique l'équation classique 

et on ajoute un terme supplémentaire (établi par SPARROW 

/~4_7) qui tient compte de l'établissement du régime 

d'écoulement ayant lieu à l'entrée du conduit de vapeur. 

Donc nous écrivons : 
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L T 
Λρτ = [ θ . , 25 . J . . J . M 2

 + ,,689^.£m]E 

+ [2.55 ï l i » m + 0,388 L 0 · « 5 . "v '4 3 ' " . m 1 · 5 6 5 ! 
L · _ ^ T c v α I 

ν r"* *·· v cv 

Dans la zone du condenseur, la condensation crée 

une certaine élévation de pression· Comme la pression dans 

la phase liquide ne peut pas être supérieure à celle dans 

la phase vapeur, on suppose que la pression est égale dans 

les deux phases à l'entrée du condenseur« Donc, on ne tient 

pas compte d'une variation de pression dans cette partie du 

caloduc £5_y. 

Si Re > 1 500, nous utilisons pour la zone de 

1'évaporateur une relation établie expérimentalement par 

ECKERT et coll. /~6_/ et pour le conduit de vapeur, nous 

appliquons l'équation classique de BLASIUS. Pour la zone 

du condenseur, nous faisons les mêmes hypothèses que pour 

le cas de l'écoulement laminaire et nous écrivons t 

Δρ  [o.2255f . \ m2] ♦ [ò.OIOT ! L 1 _ *-ίβ£ ¿m1·75] 
F
v r^ Ε ν r '

 c v 

Finalement, on peut calculer le débit massique en 

fonction des dimensions des pores du tamis caractérisées 

par RM· 

Si le caloduc fonctionne contre la gravité, 

l'asoension capillaire et les pertes de charge dans la 

phase liquide varient en sens opposé· Il existe pour la 

puissanoe thermique limite une valeur optimale qu'on 
eΛ 

obtient pour R„ « 0,009 cm. On voit que audelà d'une 
M 



- 520 

valeur limite de E„ .. . . = 0,013 cm un fonctionnement 
M limite ' 

contre la pesanteur n'est plus assuré (voir figure A)· 
Ces courbes ont été établies pour un caloduc à 

sodium, longueur totale 20 cm; longueur de la zone de 
1'évaporateur et celle du condenseur 4 cm, diamètre 
intérieur 2 cm, nombre de couches du tamis n = 3 ; C = 1 
et la température de fonctionnement t = 700°C. 

Conformément à ces calculs préliminaires, nous 
avons choisi pour nos expériences cinq tamis à différente 
maille. 

2. EXPERIENCES 

Les essais ont été effectués avec des caloducs à 
sodium en acier inoxydable ayant les dimensions suivantes : 
longueur intérieure totale 20 cm, evaporation et conden
sation sur 4 cm, diamètre intérieur 2,1 cm. Le tamis en 
acier inoxydable était plaqué contre la paroi intérieure 
par un ressort hélicoïdal en fil d'acier inoxydable. 

Le caloduc est chauffé par induction à l'aide d'un 
four à haute fréquence. Le réglage de la puissance theraique 
évacuée au condenseur était assuré par une résistance 
thermique variable constituée d'un espace annulaire entre 
le caloduc et l'échangeur à eau rempli d'un mélange de 
deux gaz à conductivité thermique très différente. Un 
bilan thermique sur l'eau nous donne la valeur de la 
puissance évacuée (voir figure n° ï). 

Nous avons fait varier dans les cinq caloducs le 
numéro du tamis et le nombre d'enroulements comme indiqué 
dans le tableau suivant : 
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Cal oduc N* 

Taris N' 

Mesh size 

Vide de maille 
2 R„ (ran x mm) 

Diamètre du f i l 
d (mm) 

Nombre de couches 
n 

1 

50 

45 

0,36 x 0,36 

0,20 

2 

2 

8G 

75 

0,21 x 0,21 

0,14 

3 

3 

120 

100 

0,141 x 0,141 

0,09 

4 

4 

150 

120 

0,125 x 0,125 

0,06 

2 

5 

300 

270 

0,055 x 0,055 

0,04 

4 

La puissance thermique limite a été déterminée en 
fonction de la température du caloduc et en fonction de 
l'angle d'inclinaison· Les cinq caloducs expérimentés 
montrent le même comportement caractéristique représenté 
sur la figure n° 2. 

Ces valeurs ont été obtenues avec un caloduc 
possédant trois couches du tamis n° 80· 

Nous pouvons constater que : 
- la puissance thermique limite W, varie nettement avec la 

température du caloduc t · Elle atteint une valeur 
c 

maximale pour une température variant entre 650°C et 
750°C selon l'angle d'inclinaison a. 

- WT varie avec a. En s'approchant de la position verticale, 
L 
l'influence de la pression hydrostatique devient de plus 
en plus grande. 
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 le démarrage d'un caloduc à sodium se produit entre 450°C 

et 480°C, à condition qu'à cette température la résistance 

thermique au condenseur soit suffisamment élevée (pour les 

caloducs refroidis à l'eau, nous avons mesuré une valeur 

limite inférieure de la résistivité thermique de 

1 « 0,35.10
3
 [cm "C/»»«])· 

 les valeurs calculées présentées en traits interrompus 

sont obtenues pour un angle de contact
 θ
 = 50° et pour 

C = 1. Le facteur C a été déterminé par une radiographie 

faite à la température ambiante permettant de mesurer 

l'épaisseur du réseau capillaire. Pour des températures 

de fonctionnement peu élevées, on trouve un bon accord 

entre les valeurs calculées et mesurées, mais on constate 

qu'il y a un écart entre les deux courbes pour des 

températures élevées. Nous pensons que cette divergence 

peut être expliquée par un mauvais contact entre 

l'enveloppe tubulaire et le réseau capillaire dû à la 

dilatation différentielle du caloduc et du tamis. 

Pour comparer les performances des caloducs étudiés, 

nous avons représenté la puissance limite maximale en 

fonction de la hauteur d'inclinaison (figure n° 3). Elle 

nous donne une idée de l'influence des propriétés 

caractéristiques de la structure capillaire (vide de 

maille, nombre d'enroulements). 

Le caloduc n° 2 équipé de trois couches du tamis 

n° 80 et le caloduc n° 3 équipé de quatre couches du tamis 

n° 120 peuvent transporter les puissances les plus 

élevées. 

Dans les différents caloducs, le nombre de couches 

varie entre 2 et 4 et le facteur de foisonnement entre 1,4 
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et 2,2, car notre système de fixation du réseau capillaire 
ne permet pas de plaquer les tamis contre la paroi d'une 
manière très rigide. 

Pour obtenir une comparaison plus précise entre les 
différents tamis utilisés, nous avons calculé, à partir de 
ces résultats expérimentaux, la puissance limite maximale 
pour n = 3 et C = 1 (voir figure n° 4). 

On voit que les caloducs possédant du tamis n° 80 
transportent les plus grandes puissances contre la gravité· 

Les caloducs avec le tamis n° 50 transportent des 
puissances thermiques encore plus élevées, mais leur 
fonctionnement est limité à 1 1 cm de dénivellation· 

3. CONCLUSION 

Les essais effectués avec cinq caloducs à sodium 
nous ont permis d'étudier leur fonctionnement et d'obtenir 
des valeurs pour la puissance thermique limite en fonction 
de la température, de l'angle d'inclinaison et des 
dimensions du réseau capillaire. 

Nous avons montré que le démarrage et le fonction
nement d'un caloduc à sodium sont possibles dans toutes 
les positions,s'ils sont équipés d'une structure capillaire 
appropriée. 

De plus, des essais d'amorçage ont été entrepris 
avec un caloduc à calcium fonctionnant normalement à 
1 300°C dans la position verticale sans réseau capillaire et 
refroidi par rayonnement· Malgré la température de fusion 
élevée du calcium (t = 850°CÌ et sa pression de vapeur 
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correspondante (p_ = 1,99 DU Hg), les essais préliminaires 

ont montré que l'amorçage était possible. L'étude détaillée 

sera publiée sous forme d'un rapport C.E.A. à paraître 

prochainement o 

Nomenclature 

g accélération de la pesanteur 

m débit massique 

n nombre de couches du tamis 

Δρ perte de pression 

r rayon du caloduc 

t température 

C facteur de foisonnement 

L longueur du caloduc 

R., demicôté du carré vide du tamis 
M 

Re nombre de Reynolds 

W puissance thermique 

θ angle de contact 

¿£ chaleur latente 

α angle d'inclinaison 

μ viscosité dynamique 

p masse volumique 

σ tension superficielle 

Indices 

C condenseur 1 liquide 

CV conduit de vapeur mot motrice 

E évaporateur ν vapeur 

L limite x axial 
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HEAT PIPE DESIGN THEORY 

E. van Andel - EURATOM CCR, Direct Conversion Division, Ispra, Italy 

Abstract 

A dimensionless approach is given for the calculation of maximum heat flow 
in heat pipes and optimization of the capillary structure. 
Parameters of twelve liquid metals in the temperature range of 600-2200 K 
are given for use in the calculations. Nomogrammes for direct evaluation of 
heat pipe performance and optimum capillary dimension are presented. 

1. Introduction 

One of the tasks of a heat pipe theory is to predict the maximum heat flow 
in terms of known parameters. This is essentially a fluid flow problem, 
which has been treated by Γ1Ί and [2~\, and experimentally confirmed by p.} 
and £LQ. A survey of relevant material constants £4^ completes the basis 
for an engineering theory. This theory is expressed in a set of dimensionless 
parameters, which is common practice in transport physics. 

2. Dimensionless Numbers 

The following groups are chosen: 

Re = —^= , the Reynolds Number, proportional to the ratio of inertial 
- d Ln to viscous forces in the vapor stream 

Hp = — - v — , the Heatpipe Number, proportional to the ratio of viscous 
¡ d Lp γ forces in the vapor and capillary forces 

Δ ρ 
ν 

Eu = ■: 3= , the Euler Number, or the effective vapor pressure drop, 

■χ ρ v expressed in number of velocity heads 

v
*
 η

λ
 p
v 

, the kinematic viscosity ratio, proportional to the ratio of v
v \ I viscous forces in liquid and vapor 

, the ratio of gravity forces and capillary forces (Bond Number) 
h_

 h , r
" y g 

h
c " y 

The values of the groups of material constants, to be used for evaluating 

these numbers, are given in figs. 1 to.4. 
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3. Pressure Balance 

———^^—^— 

1 ^ 

»*

\ , vapor 

s * 

The integrai of the pressure along any closed path must be zero. The maxinum 

capillary pressure drop acts fJlT between two points: the dry point, where 

the curvature of the meniscus reaches its maximum at burnout condition, and 

the wet point, where the meniscus is flat and excess fluid assembles. So all 

other pressure drops must be calculated along a path that crosses the neniscus 

at these two points. The result is a balance between these pressure drops: 

ΔΡ ,aΑ.χ(23) + ΔΡ. (41) + ΔΡ (41) = ΔΡ (12) 
v(a+r; £ g c (D 

and a criterium for the location of the wet point. We divide the equation 

through ΔΡ = 

respectively: 

through ΔΡ = ■*· and call the terms vapor tern, liquid tern, gravity terr 

Ρ + Ρ« + Ρ = 1 *v ^£ *g 
(?) 

These terms are now expressed'with the dir.ensionless nurbers. 

3.1 The vapor term 

From the definitions of the dinensionless numbers it is clear that the 

vapor term becomes: 

2d
 E u H

P
 R e (3) 

A vapor flow theory is needed to define Eu as a function of £„/d; £ /d; £ /d 

and Re. In the case that there is sufficient pressure rise in the vapor in 

the cooled zone to shift the wet point to the end of the shielded zone, Eu 

is not dependent on £ /d. For design purposes, Eu can be read from fig.7, 

when Re, iu/d and 1 /d are known. The graph of fig. 7contains four theories: 
n s 

(a,b,c,d) 
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a) For low Re values and long heatpipes,the theory of f_2j is plotted. It 
can be written as: 

oc + I1J. 
_ 16 H s 28 0,68 Re 
Eu = Re" β d + Τ " 29£u/d + Re ° eXP 

π 

-60 £s1 
Re d (4) 

b) For higher Re values and shorter heatpipes,Eu is formally expressed as 
~2 

Eu = f . ~ + 2 ~ (5) 
v 

as a result of a momentum balance over the vapor cylinder. For the cosine 
2 - 2 TT^ profile which is in this case established, 2 v /v = — and f has been 

measured by HiJ for Re values about 4000. For these heatpipes no sudden 
change from laminar to turbulent flow is observed \_ΐ\ . 
We assume now that the amount of turbulency in the vapor stream increases 
steadily with increasing Re, and take for f the theoretical laminar value 

-0 2 for the cosine profile, plus a turbulency term proportional with Re ' : 
2TT2 0,03 . . 

f - Re" + RJT2 (6) 

the value of 0,03 stemming from the experiments in £_3] 
c) For higher Re and very long heatpipes, the cosine profile decays in the 

2 -2 shielded zone to the Blasius profile. In this region 2v /v = 2 and for 
f is taken the value for a relative wall roughness of 1%. Here, of course, 
an abrupt change occurs from turbulent to laminar flow with decreasing Re 
value. 

d) For low Re and very long heatpipes, the acceleration term can be neglected 
and 

3.2 The liquid term 

We will impose self-priming on the capillary system, i.e. as maximum heat 
flow is considered that heat flow, with which an already existing dry spot 
will rewet itself. This means that the liquid channel itself delivers the 
capillary driving force, and not its relatively fine-meshed screen cover. 
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For a capillary system consisting of a permeable 
screen at a distance 2r from the inner wall, the 
liquid term becomes, when r << d: 

d£ £ ρ =0,375 -, H p -
r ν 

(8) 

When r is not much smaller than dt the term has 
a lower value, but this is compensated somewhat 
by the presence of spacer rods in the gap. 

For layers of packed screen,or porously sintered 
particles, the resistance can be calculated with 
the Blake-Koseny equation. This gives: 

, ,0 d£ u £ p. = 1,18 Hp — ^£ ecr * ν ν 

where r = dp . 6(l-e) 

(9) 

(9a) 

dp is the mean particle diameter. For wires or 
screen, dp is 1,5 times wire diameter. 

For Ν rectangular grooves, deep a, wide 2 b, 
and closed to the vapor steam by a permeable 
screen: 

p* = ^ 1 8 d2£r „ v£ 
—X p ~ a „b Ν ν err 

with r = a.b a+2b 
A eff ΙΛ o 1 9 2 b __ . π a . a n d _ _ - ad-2 . _ t g h ) 

π 

(10) 

(10a) 

(10b) 

the last being a form factor for laminar flow on 
rectangular channels. 

For Ν rectangular grooves, deep a, wide 2r, and 
open to the vapor stream, 

v. 
Ρ, = 1,18 d2£ 

'eif 
2 » H P ^ r Ν ν 

(11) 
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*eff 
with 

a 

. 192 r . . π a 
1
  TT i

 t g h
 2 τ 

1 + 2a \dj ν /ν 

( l i a ) 

( l i a ) is an empirical cor re la t ion , stemming from 

a comparison of vapor frictioninduced shearing 

s t r e s s and t o t a l shearing s t ress on the l iquid in 

the channel. I t explains very well the experimental 

data of [ 1 ] , 

3.3 The gravity term 

The gravity term becomes simply 

ρ = £■ (12) 
g h c 

for horizontal heatpipes, h = d. 

4. Other burnout mechanisms 

When the maximum capillary pressure is γ/r, the heat pipe equation is (2). 
j 

But the max. capillary pressure can be temporarily higher, for instance when 

an annular capillary gap is formed by very fine meshed screen, or when in 

such a structure nucleation causes burnout. In these cases (2) becomes 

Ρ + Ρ» + Ρ *v ^£ *g 
r/r' > 1 (2a) 

r' is then the effective capillary radius of the screen, or half the radius 

of the boiling nucleus. When these heatpipes develop a hot spot, the heat

flow must be lowered until Σρ becomes unity, and then the hot spot will 

vanish. 

5. The optimized heatpipe 

The heatpipe equation, for instance for an annular capillary structure, 

follows from (2), (3) and (8) 

~ Eu Hp Re + 0,375 ¿ | Hp ■£■ = 1 

r ν 

It has been shown in (5) that r can be optimized to yield the largest 

maximum heat flow. For optimum r hold: 

(13) 
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V
£ 1/2 

r β (1,13 Hp ^ áir'¿ (14) 

" v 

v 

Hp
3
 Re

2
 Eu

2
 — 4 = 1,58 (15) 

Γ
 v d 

v 

(14) has been drawn in nomogram 2. 

(15) can be made explicit in Q when a Re invariant approximation is made for 

Eu, for instance (see (5)) 

Eu = 0,04 £ + 2,5 (16) 

(16) holds for short heatpipes and Re about 4000.For 9. can be taken — 1 + £ . 

(15) becomes now: (drawn in nomogram 1) 

Q 
f i l i 0 ' 2 f d8 ) 0 ' 2 fL^3pvP£ ì ° ' 2

 í l 7 1 

W il (2,5+0,04 £/d)2J ί \ I d 

the last factor in (17) is a material constant: a kind of quality factor for 
working fluids for short heatpipes, and is drawn in fig.5. 
For very long heatpipes, for instance the kind that could be used for 
stabilizing temperature in a satellite skin, the approximation (7) is 
better. This leads also to an explicit expression for Q, with a slightly 
modified quality factor. 
Between these two limits, the calculation should be iterated. The nomogram 
1 gives the starting value of Q. With fig. 1 Re can now be calculated. 
Fig.7 gives Eu and (17), in which Eu is reinserted, gives the second value 
for Q, with the help of fig. 5. 

6. Heat pipe start up 

In the process of bringing the heatpipe up to working temperatures by 
applying heat to the heated zone, another burn out criterium is to be 
observed. In this case the pressure in the colder part is practically zero. 
Burn out occurs when the saturation pressure in the heated zone exceeds the 
maximum capillary pressure. This determines the maximum temperature to which 
the heated zone can be heated, as function of r and the working fluid type. 
This temperature can be read from fig.6. The corresponding heatflow can now 
be calculated, assuming that the vapor expands adiabatically and friction 
in vapor and liquid can be neglected (closed capillaries). The theory of 
compressible flow yields for the mass flow density 



535 

2 

[k+lj 

1 
k1 

• 

r \ 
r 2k 
lk+1 

M = XTLT · Τ7ΓΓ · 1P H P H 

'2 (18) 

For metal vapors k = 5/3, so that the sonic heat flow density 

¿SONIC = °'
73 L (

¥ H
) 1 / 2 ( 1 9 ) 

Experiments' indicate that contraction of the vapor jet and friction effects 

reduce the theoretical value to about 40%. So: 

¿START =
0
>
4 ' ί α 2 - 0 , 7 3 L . « V i / ' 2 ( 2 0 ) 

When the designer takes care that the cooled zone, is sufficiently insulated, 
at least during start-up, to reach the temperature of fig.6 with the heat-
flow of (20), then the heatpipe can usually be brought in isothermal operation, 
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a eff 
b 
d 
dp 

(cm) 
(cm) 
(cm) 
(cm) 
(cm) 
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measured depth of capillar·.· grooves 
effective depth of capillary grooves 
half-width of closed capillary grooves 
internal or vapor channel diameter 
mean particle diameter, i.e. the diameter of a sphere 
with the same volume-to-diameter ratio as all the particles 
in the bed together 

e (cm) radial thickness of packed bed capillary system 
1 -2 f (cm) Fanning friction factor f = Ύ „IT; D v 

g (cm/s ) acceleration of gravity 
h (cm.) elevation of dry point over wet point 
h (cm) rising height in capillary system 
c 1 £, (cm) effective length for friction (mostlv £ = — £ „ + £ ) 2 H S 
£ (cm) length of heated zone H 
I (cm) length of shielded zone 
s 
£ (cm) length of cooled zone 
L (ws/g) latent heat of evaporation 

2 M" (g/cm s) mass flow density 
Ν (-) number of capillair/ grooves 

2 ΔΡ (dyne/cm ) pressure drop due to vapor acceleration 
ΔΡ , ( ) " " " " " friction vf 
ΔΡ ( " ) " " " " liquid friction 
ΔΡ ( " ) " " " " gravitv 
g ΔΡ ( " ) " " " " capillaritv . c Q (w) maximum heat flow 

r (cm) effective capillary radius: ΔΡ = y/r 
• Tr 2 C -v (cm/s) mean vapor velocity: Q = — d .L.p .v 

2 2 2 v (cm /s ) mean of square of vapor velocity at wet point location 
γ (dyne/cm) surface tension 
ε (-) void fraction of packed bed 
„̂»(fc) (g/cm s) dynamic viscosity of vapor (liquid) 
y (-) isentrope exponent k = c /c 
\>v,(£) (cm Is) kinematic viscosity of vapor (liquid) 
0V(¿) (g/cm ) density of vapor (liquid) 

2 p„ (dyne/cm ) total vapor pressure in the zone 
2 D„ (g/cm ) vapor density in the heated zone 
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Fig. 7: The Euler number as a function of Reynolds 
Number and heat pipe geometry. 
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LI QUID-VAPOUR INTERACTION ANE EVAPORATION Ih HEAT PIPES 

°y 

A. 3ähr, E. Bure k, W. Huf Schmid ·. 
EURATOM, C.C.P.. -Heat Transfer Division- Ispra, Italy. 

Abstract 

For heat-pipes havir.g a structure cf open capillaries in the 
transport section the vapour flew influences the mass flow rate 
cf the liquid transported in the capillaries by the shearing at 
the liquid surface. The two-dimensional Xavier-Stokes—equation 
of the liquid flow ir, the capillaries has been solved analytical
ly by G. Di Cola ¿_ 4_/. The calculation of the friction factors 
of the fluid flow with and without gas shearing yields quantities 
in the order of 2 to 3 depending on.the capillary geometry and a 
dimensionless shear stress at the surface. In a test lcop plates 
with different capillary geometries have been studied experimental
ly with water as liquid in the open capillaries. The decrease of 
the transported water mass-flow by increasing air velocity has been 
measured and the results are compared with the analytical solution. 

In addition to these measurements the processes in the interior of 
a h«at pipe have been observed visually. An inverse heat-pipe has 
been constructed with water as heat transporting medium. It consists 
of three concentric tubes, an inner stainless steel tube with a 
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capillary system at the outer surface and two involving glass tubes. 
The water is in the gap between the steel tube and the inner glass 
tube$. The space between the two glass tubes is diffused by hot 
air to prevent condensation of water vapour at the inner glass tube. 
One part of the steel tube is heated electrically, the other cooled 
by a water flow. The investigations performed with this heat pipe 
concern: Liquid distribution along the capillaries, dry—out of the 
heated surface caused by bubble formation, asymmetrical liquid 
distribution and rewettability of the surface after dry-out. It is 
provided to continue these experiments with mercury as heat trans
porting medium. 
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Introduction 

The total power of a heat pipe with a given transport medium and 
given operation temperature is limited by the transport capacity 
of the liquid in the capillaries. Theories of Cotter [_ 1_/, 
Bohdansky et al. ¡_ 2_/ and Busse ¿_ 3_/ have not taken into account 
the influence of the gas shearing on the feed back of the liquid in 
the open capillaries at the inner surface of the heat-pipe by which 
the power will be reduced. Another limitation of the working method 
of a heat-pipe is the heat flux density which is determined by the 
evaporation process. 

Influence of Momentum-Transfer Between Vapour and Liquid on Fluid-
Flow in Open Capillaries. 

For heat pipes having a structure of open capillaries in the trans
port section the vapour flow in the tube influences the mass flew 
rate of the liquid transported in contrary direction in the capill
aries by the shearing at the liquid-vapour interface. Assuming 
laminar flow of the liquid in the capillaries of width 2 r and depth 
a (see figure 1) the stationary two-dimensional Navier-Stokes—equation 
for the velocity v. of the liquid in flow direction has been solved 
by El Cola /_ 4_/ by means of Fourier transformation for the boundary 
conditions that at the capillary walls the velocity is zero, in the 
symmetry line the velocity gradient is zero and at the free surface 
between liquid and vapour the shear stress f of the liquid is 
equal to the value of the vapour and constant. This means that the 
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gas flow is not influenced by the liquid flew in the capillaries. 
The solution yields: 

σο */\< 96 Γ ^ Ί . Oh*<lw] 

d) 
r\-o 

where: τ, - — « real friction factor of liquid flow 

■f. « « friction factor after Poiseuilles law 
'lf> 

ft, 

r-i geometry constant 

JJ = f  dimensionless shear stress at the surface, 

(Δρ IL =* liquid pressure drop per unit length of capillary; 

d « (4ar)/(a+r) «■ hydraulic diameter; u. » mean liquid velocity; 

h ' 

o and M * density and viscosity of liquid; Re » ( U[ 'Si'^f, ) / M, m 

Reynolds number of liquid flow). 

For a heat—pipe of diameter D. and Ν capillaries in a distance (s+2r) 

(fig. 1) gives: 

D=
ir^r't

fr
 '

v (2) 
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where the Reynolds number Re of the vapour f low i s def ined i n common 

manner Re « ( Wv · 5· )/jV,' a n ^ f i s the f r i c t i o n f a c t o r of vapour 
■y ' y ν 

f low (mean v e l o c i t y i?v ) which can be c a l c u l a t e d e i t h e r by the B l a s i u s 

—0. 25 
law ( ■= 0.079Re * f o r t u r b u l e n t f low) or the P o i s e u i l l e s law 

ν 

(= l6«Re ~ ' f o r l aminar f l o w ) . S u b s t i t u t i n g N  7 T D . / ( 2 T + S ) = 

ΤΓΕ./2 r ( I+u> ) wi th t o  s / 2 r g i v e s : 

D= - ^ . f y ^ (3) 

( ν and ¿j are the kinematic viscosities of vapour and liquid, 

respectively). For u>< 0.5 that means the capillary is deeper than 

wide equation (ï) can be simplified: 

imM') 
where 

 )
 3 

*i9i0 Z(i-*<f)
x
 (l-o.b21<f) 

(5) 

the friction factor ratio for D * 0 (zero gas shearing!) and which 

is constant for a given capillary geometry ( u» ). Equation (4) is 

a linear relationship between f. and D and for a given heat pipe 

only a function of the vapour Reynolds number. In figure 2 the ratios 
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(fi/fip ) 0 f°
r
 E » O calculated after equation 1 are plotted 

against l/u> «« a/r. The dotted line indicates the values calculat

ed after the simplified equation (5)· As can be seen for \/tf > 2 

equation (5) can be applied without great errors. 

The calculation of the ratios h / fLp yields quantities in the 

order of 2 to 5 for heatpipes depending on capillary geometry and 

the dimensionless shear stress E. (For a sodium heat pipe values of 

E « 100 ♦ 500 can be reached  see Appendix). These rather great 

values make it necessary to investigate the influence of momentum 

transfer between vapour and liquid because of the uncertainty of 

the assumption that at the free liquid surface the shear stress is 

constant. Furthermore has been assumed that the liquid surface is 

smooth and no wave formation by the gas shearing occurs which have 

been observed by Cohen et al. ¡_ 5_/ for a running liquid film along 

a plate with a gas—flow in contrary direction. 

In a plexiglas channel of 240 χ 85 mm cross section two plates with 

different capillary geometry (plate 1: 2 r  0.5 mm, a  1.5 mm, 

s «« 0.5 mm, Ν  120 capillaries; plate 2: 2r ■ 1 .0 mm, a  3.0 mm, 

s « 1.0 mm, Ν « 60 capillaries; L « 300 mm) have been studied 

experimentally with water as liquid and air as vapour flowing in 

contrary direction over the brass plates with the capillaries. Dif

ferent plate inclinations yieldedthe variations of the pressure 

drop Δρ of the water flow in the capillaries. The decrease of the 

transported water mass—flow by increasing air velocity has been 

investigated and the results are compared with the analytical solu

tion (4)· The shear stress fw of the gas flow has been measured 

directly by means of two Preston tubes [_ 6_/ situated next to the 
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capillaries. The readings of these tubes yielded the quantity Ό 
for the capillary plates in the test section. 

In figure 3 the experimental results in form of Ίχ/^ΐρ are 
plotted against D. For the two plates the ratio γ « l/6 and 
hence the ratio ( -ft / ftr ) at zero vapour flow is 1.23 ( 
fig. 2). With the simplified equation (4) yields: 

see 

*/*; (6) 

As can be seen in figure 3 the ratios fi/ftp follow well the 
predicted line at least for smaller plate inclinations ( Av) · 

Greater values of Δ ρ seem to give greater differences probably 
due to an increasing wave formation of the liquid surface with 
increasing air velocity ( D ) . The measurement method, however, was 
very sensitive against disturbances in plate inclination and did 
not allow high accurals especially at small values of Δρ. The 
effect of wave formation could be found out by microscopic observa
tion during the period in which air velocity has been increased 
from zero value and shall be followed up by high speed filming of 
the flow character in the capillaries. The studies are not finished 
and only preliminary results are published. For a first approxima
tion the friction factor increase due to gas shearing can be calculat
ed with equations (4) and (5)· 

Appendix: As to the quantity D a heat—pipe operating with sodium 
at 800°C (saturation pressure 450 mbar, kinematic viscosities of 
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— fl ? — f\ ? 

vapour and l i q u i d vv 78 · 10 m / s , ì> ■ 0.238*10 m / s ) and 

the geometry : E. « 17 mm; r = 0 .25 mm; a « 1 .5 mm; s =* 0 .5 mm the 

Dvalue w i l l be ( e q u a t i o n 3 ) : 

D  2 .56 f . Re 
v v 

Assuming a vapour Reynolds number of Re « 5OOO and for the fric

tion factor Blasius law (f  O.O79 . Re ~ * « 9.40ΊΟ- ) yield: 
E ■ 120 and h/fip " 2.60. For the same heat—pipe with another 

capillary structure (r  O.5 mm; a  3.0 mm; s = 1.0 mm) would give 

E  480 and hence fi/hp  6.70. 

Vapour Formation in a HeatPipe 

In a normally working heatpipe the vapour is formed only at the 

free surface between liquid and vapour space. The evaporation occurs 

without bubble formation continuously and in a rate corresponding 

to the heat transport to the liquid surface. The condition for the 

exclusive vapour formation at the free surface is that no part of 

the liquid is superheated in a degree that a bubble nucleus may be 

activated. The temperature of the liquid increases from the satura

tion value at the free surface to the value at the heated wall. The 

temperature rise depends on the heat flux, the thickness of the 

liquid layer and the thermal conductivities of the liquid and capill

ary structure. Liquid metals as common coolants for heat pipes may 

strongly be superheated before bubbles are formed and their good 

thermal conductivity relative to water or organic liquids limits the 

temperature rise in the liquid layer. In case of high heat flux 
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2 densities, however, e.g. 500 W/cm and heat pipes with wicks or 
deep oapillaries the activation temperature for the bubble nuclei 
may be reached and hence bubbles may be formed. 

The bubble formation in a heat-pipe disturbes its function in 
several manner: 

ï) The liquid sprayed in the vapour space. That part of the sprayed 
liquid not reaching the opposite wall is carried away by the 
vapour flow in direction to the cooled end of the heat-pipe and' 
lost for heat transport. The other part having received a velocity 
in vapour direction and reentering in the liquid layer slows it 
down. Furthermore the liquid distribution between different regions 
of the heat-pipe is disturbed. 

2) The continuous liquid flow is disturbed by the bubbles and surface 
waves are formed. At higher heat fluxes the number of bubbles 
increases and finally the liquid flow is interrupted. 

For direct visual observation of the vapour formation and liquid 
distribution an "inversew heat-pipe has been constructed (figure 4) 
with water as heat transporting medium. It consists of three concen
tric vertically arranged tubes, an inner stainless steel tube with a 
capillary structure at the outer surface (tube 20 mm o.d., 90 grooves 
in longitudinal direction with rectangular cross—section, each 0.4 mm 
large and 0.6 mm deep), and two involving glass tubes. The water is 
in the gap between the steel tube and the inner glass tube. To prevent 
condensation of water vapour at the inner glass tube the space between 
the two glass tubes is diffused by hot air. The lower part of the 
steel tube is heated electrically and the upper part cooled by a hot 
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water flow. The evaporation under several conditions is studied 
by means of a high speed camera. 

It could be observed: 

ï) Surface evaporation: Up to heat flux densities in the order 
of 20 W/cm only surface evaporation ocours. The vapour 
velocity being slow the surface remains completely smooth. 

2) Dry—out by lack of liquid: Increasing the heat flux density up 
to about 25 W/cm many bubbles are formed and liquid is sprayed 
against the surrounding glass wall. Surface waves originating from 
bubble producting sites propagate in the capillaries. As soon as 
the liquid losses by spraying can no further be replaced by the 
liquid raising in the capillaries from the bottom of the heat-pipe 
dry-out occurs. 

3) Ery-out by formation of big bubbles: Further sudden increase of 
the heat-flux density causes the formation of many bubbles agglo
merating to big ones. The heated wall dries out also in the 
vicinity of the unheated part of the heat pipe. The temperature 
of the wall rises rapidly. In spite of liquid abundance the heat
ed wall is not wetted due to the Leidenfrost phenomenon. 

4) Rewetting of the superheated wall: Also after shut-down of the 
heating power the wall is not rewetted before its temperature 
approaches the saturation value. The hot wall being mainly cooled 
by thermal conduction between the wetted and the dry part the 
liquid front propagates slowly covering gradually the superheated 
spot. 

x) 
Using normal t ranspor t media in hea t -p ipes ( l i qu id metals) the 
maximum heat f lux densi ty i s much higher due to the higher values 
of thermal conduct iv i ty and grea te r propensi ty to superheat ing. 
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F ¡Q. j: Denotation of capil/ary geometry. 

iti 
1.2 

1.0 

0.8 

v~—-/- approximation 
(equation 5) 

^ 

exact solution 
(equation Ί ) 

1.0 1.0 t.o 6.0 
1_=a_ 
f r 

8.0 10.0 

Fig. 2. · Ratio (ft /flp)0 of real friciion factor of laminar liquid flow 
in capillaries to that after Poiseuilles law (fip*16/Re) 
for zero gas shearing (Ds0) 



un 
Oi 

D 

Fig. 3 
Ratio fi /f¿p of real friction factor of laminar liquid flow in capillaries 

to that after Poiseuilles law (fip  16 /Re) against dimensionless shear 

stress at the surface D= (a-rw)/(μί ïrL) forf = r/a = 1/6. 
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in axial direction 

> heated part 

hot air outlet 

thermocouple- and 
pressure taps 

current connections 

coolant inlet 

Fig, y ·· Visualization heat-pipe with water as heat-transport 
medium. 
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RESULTATS PRELIMINAIRES D'UNE ETUDE SUR LES CALODUCS 
A HAUTE TEMPERATURE 

M. ARMAND e t A.M. SHROFF 
CSF - Compagnie g é n é r a l e de t é l é g r a p h i e Sans F i l , 

Groupement S c i e n t i f i q u e e t Technique 
Domaine de C o r b e v i l l e , Orsay (France) 

I n t r o d u c t i o n 

Depuis lit mise en avant par Grover e t c o l l . ' do l ' i d é e , d ' u t i l i s e r l e cnalour 

de vapor isa t ion dos f i rades pour lo t r a n s f e r t de chaleur .seas chute do température, 

los pr incipes de fouctionnonent dos caloducs ont pu ó t re dégagés, t „ n t du poin t de 

vuo théorique quo du point do vuo oxpérimo:ia»tal. 

LIottant à p r o f i t los r é s u l t a t s aixmi obtenus, nous nous sommes f ixés pour ob

j e c t i f l ' a p p l i c a t i o n de co d i s p o s i t i f au cas dos hautes températures, ot on p a r t i c u l i e r 

au chauffage dos émetteurs de convortissours thormoioniquos. On connaît los divers 

avantages do co modo do chauffage : excel lente homogénéité do l a température dos émet

t e u r s , p o s s i b i l i t é do séparer l a source do chaleur de l a diode, ce qui pout o t re 

in té rossan t dons lo cas du chauffage n u c l é a i r e . 

Do cot ob jec t i f , r é s u l t e n t l e s conditions que nous cherchons a o b t e n i r , : 

- tompératuro de fonctionnement 1 9C0° K 
2 

- puissance transportée 1 lui, avec uno densité de i 00 \T/cm recueillie au 
condenseur 

- longuour 40 cm 
- durée de vio plusieurs milliers d'heures. 

Nous donnorons ici quelques résultats théoriques obtenus pour l'optimisation du 
système capillaire, ainsi que la résistance thermique à attendre. Nous décrirons en
suite los dispositifs expérimentaux utilisés pour évaluer les performances des caloducs. 
2nfin, dans uno étudo technologique, nous décrirons les matériaux utilisés, enveloppes 
ot caloportours, los modos do réalisation ot do formation dos caloducs, ot enfin les 
essais do durée do vio. 
(1) G.;.I. Grovor, ï.P. Cotter, G.î?.~iirickson - J.Z.P."Juin T%47 p.~~1990" - ~ 
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1  Dtudo théorique 

 α) Evaluation do la résistance thormicjuo 

On pout décomposer la résistance thermique d'un caloduc on 3 partios : 

 uno partie conduction dans la paroi ot la pellicule do liquido à 1'évaporateur ot au 

condenseur, sonsiblomont indé¿>ondanto do la température do fonctionnement. 

 Uno partio evaporaticn«condonsation. Ces 2 phénomènes s'accompagnent d'uno chute de 

pression : . 

Q. J _2]J?_L Q puissance transférée 

^ S L v ' l S surface évaporatour ou condonsour 

L chaleur latente de vaporisation 

R constante dos gaz parfaits 

T température absolue 

Li masse atomique. 

Si la vapeur rosto saturante, la résistance thermique correspondante est : 

ί £ Π - RT2-
 χ/ζηΚΤ 

[Q I - s?«¿ V M 
 Une partio porte de charge dans le conduit do vapour, .ii régime do Poiscuille, la 

porto dc charge vaut : 

M r ι 4)v viscosité dc la vapeur 

densité do la vapour 

J. longuour du caloduc 

rayon du caloduc 

Si la valeur rosto ici oncoro saturante la résistance thermique correspondante vaut : 

I Q )t - π Λ" f tf C 
On a roprésenté sur la courbo figuro 1 les variations do cos 3 composantes de 

la résistanco thermique avoc la température, ainsi que lour sommo, dans lo cas d'uû 

caloduc à plomb répondant aux conditions indiquées dans l'introduction; le rayon r a 

été choisi égal h. G,7 cm. 

On voit quo pour dos toapératuros assez bassos correspondant à des pressions do 

vapeur infériouros h, 20 Torr, la résistance thormiquo dépasse 100 dogrés/kw". 
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 b) Optimisation du système capillaire mineo 

3ion que ne désirant transférer que \ lai, il paraît intéressait de connaîtra la 

géométrie optimal· dos structures capillaires, ainsi que la puissance maximale trans

férable, à différentes inclinaisons ot pour différents fluides caloportours. Un offot, 

pour éviter le risque d'assèchement de la région évaporateur, il ost souhaitable do 

faire fonctionner le caloduc à uno puissance très inférieure à sa puissance maximale. 

Pour ceci, nous considérerons d'abord le cas le plus simple à réaliser expérimen

talement d'un système capillaire formé d'uno soulo couche do canaux parallèles de 

rayon χ; lour nombre est ¡ί = — où <oC ost la porosité du système. 

Lo rayon laissé libro pour la vapour est r·  2 x. Si le caloduc ost incliné d'un 

anglo 0 avec 1'horizontale, compté positivempnt quand lo caloduc travaille contro la 

pesantour, la dépression capillaire devra vaincre, outre les portes dc charge, la 

pression hydrostatique 

Si los capillaires sont séparés du conduit do vapeur par une toile métallique do 

2. "> 
maille asses fine, la dépression capillaire est voisine de — . 2η régime laminaire, 

X 

l e débi t maximum m os t donc donné par : 

π lpvíii*>* «Ρ Τ ) Λ Χ
3
 / I I <ƒ Χ. 

avec Λ| v viscosité do la vapour 

p densité do la vapour 

"]« viscosité du liquido 

0. densité du liquido 

y tension superficielle 

g ♦ accélération do la pesanteur. Λ 

. »ί lv n ^ ^ r frîî% 

te /. _, *
 mi— TX _ — — — p '* , ι 

ï* fi, vï pô Tï fi 
ot u = 

X 
r 

L'équation doviont 

ί —5- s i - C -** φ 
Λ«. 
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L'optimisation dc A par rapport à u donno uno relation entre la pression hydrostatique 

réduite C sin 0 ot u : ¿¡3 (\+6u) 
5 9.1 ——. '— 

¿Μηφ = — _ — 

relation qui pornot do tracer la courbe (Fig. 2) donnant le rapport u optimum du rayon 

do capillaire au rayon du caloduc, en fonction dc la pression hydrostatique à vaincre. 

Nous 1'avons tracée pour le lithium, ot nous donnons figuro 4, courbe I, la puissance 

maximum transférable à chaque inclinaison. 

 c) liésoau capillaire épais 

Supposons qu'il soit possible do réaliser un réseau capillaire formé dc plusieurs 

couches de canaux superposés, avec uno épaisseur arbitraire, et cherchons sa forme 

optimale. Soit r le rayon laissé libro pour la vapeur. Le nombre dc canaux est : 

N 
Tl x

2
· 

L'équation du débit maximal sera alors : 

%ñl ¡' %, + J l L . ï Vf + P ni Μ>φ = O 

Posons : L = l^ % B = Λί_1ΐ C = -U-* 
•nY'fv Tï >'ff «> Z * 

L'optimisation dc m par rapport à r et X conduit ii l'équation suivante pour r : 

r ι r r . 
n ■ rk I

 v
 \$ _,

 3
 v /

 ¿
 /■

 v
 ï

2
 \ / £ n 

C s m 0 ( T ) +  y r 3 ( ~ )  fe = ° 

Cotto relation pcr:.iet à nouveau do tracer la courbe donnant la valeur optimale de rVr 

on fonction do l'inclinaison 0 (Fig. 3). 

Le débit optimum s'on déduit par : 

3 

ot le rayon optimum dos canaux : 

\T 
3 

2  Λ
ι
 Λ * 
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¡Tous avons représenté figure 4, courbe II, la dépendance do la puissance maximum 

transférable on fonction do l'inclinaison, poor un caloduc à lithium. 

Cn voit quo lorsque le caloduc travaille contre la pesantour, on a intérôt à 

augmenter la section du système capillaire aux dépens d,e la section du conduit do 

vapour. La figure 4 montre on outro quo lo réseau capillaire épais autorise plus 

aisément le travail contro la posantour quo lo réseau mineo. 

2  Etude experiméntalo 

 Formation dos caloducs 

En vuo d'étudier lo transfert dc chaleur, nous avons réalisé plusieurs caloducs 

on molybdène, utilisant lo plomb comme fluido caloporteur. Lo retour do liquido s'ef

fectue par gravité. 

L'o nvoloppo ost un tubo do 14 χ 16 mm ot do 40 cm do long, formé à la baso, ot 

pourvu au sommet d'un quousot do tantale. Cette onvoloppc ost chargée d'environ 20 g 

dc plomb. 

Cet onsomblo ost placé dans uno clocha L· vide, le quousot do tentalo permettant 

do raccordor l'intérieur du caloduc au vido de la cloche par un intermédiaire do kovar 

ot do vorrò, ¿μ moyen de robinets, on pout nottro lo caloduc on communication avec un 

système de remplissage do gaz rares (Fig. 5). 

Lo caloduc ost alors dégazé, d'abord sous vido, puis on presence d'une coiitrc

(2) 
pression do gaz roro. On peut ainsi lo degaser à sa température do fonctionnement . 

On scelle alors lo quousot do vorrò, puis colui do tantalo, par bombardement électroni

que. 

Los caloducs ainsi formés ont été essayés a 1 90C° K. La partie évaporateur, do 

nomo que la partio condenseur a une longueur do 5 cm. Un écran thormiquo protège le 

2 
corps sur 30 cm. Lo condenseur rayonne environ 15 '.i/cra j soit au total 375 v/atts; sa 

température ost assez homogène, sauf l'extrémité, où l'on observe uno chute d'environ 

50°. 
o 

On a adapté à ces caloducs un radiateur à ailottos, qui prélève 100 V/cm à 

1 900° II; on observe alors une chute dc température plus importante : 200° environ. 

(2) J. Bohdansky ot II.E.J. Schins, J. Phys. Chon. 71 ('.967) 2',5 
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- Essais do durée do vie 
Pour l'étude de la compatibilité enveloppe caloporteur, on a réalisé plusieurs 

caloducs dc dimensions plus potitos : 1'enveloppe est un tubo do diametro G X 10 mm, 
ot do longuour ¡00 mu. Pour les fluides lourds (thallium, plomb), lo retour s'effectue 
par gravité. Pour les fluides légers (lithium) lo retour s'effectuera par capillarité. 

Pour l'essai do durée, los caloducs sont montés on ampoule scellée, et chauffés 
2 

par bombardement électronique. On injoetc environ 200 '..:/cm pour un total do 350 »'. 
Un écran thermique protège le corps du caloduc sur 7 cm, et un radiateur adapté sur 
lo condonsour prélève environ 1CC vratts a 9CL° li. 

Actuellement, dou:: essais ont été m ones à leur tcn.-.c. Un caloduc nolybdènc-
plomb, durée 110 horros, et un caloduc tantalo-thailijm, do durée 50C honres. Dans los 
doux cas, la mort dos caloducs a été causée par uno fuite du liquide caloporteur, los 
enveloppes étant fortement rccristallisécs. On pout donc tirer une première conclusion 
do ces ossais, à savoir qu'il ost indispensable d'utiliser dos alliages, do préférence 
aux métaux purs. 

Enfin, nous avons pu réaliser plusieurs caloducs en tungstène, obtenus par dépôts 
on phase vapeur. Cotto technique nous a por:uis on particulier de réaliser dos tubes 
rainures intériourornent. 

-ooOoo-
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CHEMICAL VAPOR-DEPOSITION OF TUNGSTEN EMITTERS OF 

{110} PREFERRED CRYSTAL ORIENTATION* 

by 

R. G. Hudson, T. Tagami. and L. Yang 

Gulf General Atomic I n c . 
P.O. Box 608 , San D i e g o , C a l i f o r n i a 92112 (USA) 

ABSTRACT 

Studies have been carried out on the preferred crystal orientations 
and vacuum work functions of planar tungsten deposits formed by the 
hydrogen reduction of tungsten chloride, using the chlorination of fluoride 
tungsten chips to provide the tungsten chloride needed. Deposition condi
tions have been defined and the reproducibility of the results have been 
established for obtaining deposits of strong {110} preferred crystal 
orientation and vacuum work functions equal to U.9-5.0 eV. 

* This work is sponsored by the National Aeronautics and Space Agency under 
Contract NAS 3-850U. 
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INTRODUCTION 

In the direct conversion of thermal to electrical energy by thermionic 
means, the performance of the converter depends strongly upon the vacuum 
electron work function of the emitter surface. Emi 11er surfaces of higher 
vacuum electron work function are more desirable since they require lower 
cesium pressure for optimum converter operation and therefore the loss of 
voltage output due to plasma impedance is reduced. Because of its compati
bility with various nuclear materials at high temperature, tungsten is 
considered as one of the most promising emitter materials for fission heat 
conversion.^ ' Chemical vapor deposition, which offers the best means 
for the fabrication of complicated shapes and the control of impurity con
tents, has been used exclusively for the forming of tungsten emitters in 
thermionic converters. Most of the tungsten emitters tested up to date 
were prepared by the hydrogen reduction of WF/r, (referred hereafter as 
fluoride tungsten) which exhibit {lOO} preferred crystal orientation and 
vacuum work functions of 4.5 - 4.6 eV. Attempts have been made to raise 
the vacuum work function of fluoride tungsten by chemical or electrões) (M chemical etching. Although such etching treatments may lead to an 
increase in vacuum electron work function up to a few tenths of an electron 
volt, the gain is unstable at high temperatures (e.g. l800 C). It was 
found, however, that tungsten deposited by the hydrogen reduction of 
tungsten chloride may exhibit strong {lio} preferred crystal orientation 
and a stable vacuum work function as high as,5 eV. ' A cylindrical 
converter containing a chloride tungsten emitter of 4.8 eV vacuum work 
function and a planar converter containing a chloride tungsten emitter 
of 4.9 eV vacuum work function have both demonstrated performance 
superior to that of similar converters containing {lOO} oriented fluoride 
tungsten emitters. While the advantage of {110} oriented chloride tungsten 
emitters has been proven, the conditions under which {l-lO] oriented 
tungsten deposits can be reproducibly obtained remained obsure.. The 
purpose of this work is to explore the conditions under which [llO] oriented 
tungsten deposits can be prepared in planar form for further evaluation of 
their metallurgical and thermionic emission properties at high temperatures. 
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EXPERIMENTAL 

1. Preparation of Chloride Tungsten Deposits 
Chloride tungsten deposits have been prepared by using either WC1/-

powder or the chlorination of fluoride tungsten chips to provide the tung
sten chloride needed for the deposition process. Because of the hygroscopic 
and reactive nature of the WCL·- powder, the handling of this tungsten source 
material proved to be very inconvenient and the tungsten flux in the reac
tion mixture was found to be difficult to control. The main effort was 
therefore devoted to the use of fluoride tungsten chips as a tungsten 
source material. Figure 1 illustrates schematically the experimental 
arrangements. The deposition chamber was made of quartz and had an inner 
diameter of 3.8 centimeters. The fluoride tungsten chips for generating 
the tungsten chloride needed were contained in a quartz reservoir located 
above the deposition chamber. The reservoir contained about 300 grams of 
fluoride tungsten .chips of about 1 millimeter thickness and a few milli
meters in other dimensions. Typical chemical analysis yielded: C, 10 ppm; 
0, 12 ppm; N, 1 ppm; F, 25 ppm. To remove any surface contaminations from 
the chips used, hydrogen was directed through the reservoir at the beginning 
of each experiment for 1 hour with the chips -maintained at 900 C. After
wards the temperature of the chips was brought to the desired value, the 
hydrogen flow was directed through the annular space between the reservoir 
and the quartz jacket, and chlorine was let into the reservoir for the 
initiation of the deposition experiment. The deposit was formed on a 
molybdenum mandrel of 1.9 centimeter diameter and 0.63 centimeter height. 
The temperature of the mandrel was determined during the deposition by 
sighting an optical pyrometer into a hohlraum located at its backside. A 
pressure of 5 torr or less was maintained at the exit end of the deposition 
apparatus. At the end of each experiment, the weight of the fluoride tungsten 
chips left in the reservoir was determined, from which the weight of the 
source material used and the tungsten flux in the reaction mixture during 
the run were deduced. 

2. Determination of Preferred Crystal Orientation in the Deposit 
After the completion of the deposition, the molybdenum mandrel con- . 

taining the chloride tungsten deposit was separated from the ceramic support. 
The surface of the deposit was polished with fine emery paper and then 
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electropolished in an aqueous solution of NaOH. The nature of the pre
ferred crystal orientation and the distribution of the orientation crystal 
lattice direction with respect to the normal to the surface of the deposit 
were then determined with a Norelco X-ray pole figure machine according to 

(3) the techniques described previously. ' 

3. Determination of the Vacuum Work Function of the Deposit 
For deposits the vacuum work functions of which were to be determined, 

the chloride tungsten deposits were separated from the molybdenum mandrel 
by dissolving the latter in a mixture of HNO, and HCl. A disc of 1.5 cm 
diameter was cored out of each deposit by electrical discharge machining. 
Remnants from the coring operation were used for determining the impurity 
contents and the microstructures of the deposit. The disc was ground to 
1 millimeter thickness, polished with 1 micron diamond paste and then 
electropolished'in an aqueous solution of NaOH. After outgassing at 1850 C 
for a period of 200 hours, the vacuum work function of the disc was measured 

etei 
(7) 

at 1800 C in a vacuum emission cell used in our previous determinations of 
the vacuum work functions of thermionic emitter materials 

RESULTS AND CONCLUSIONS 
The results obtained are shown in Table 1 together with the conditions 

of deposition. In Fig. 2, the preferred orientation and the vacuum work 
function of each deposit obtained are plotted as a function of temperature 
of deposition and the mole ratio of hydrogen to tungsten in the vapor phase. 
Figure 3 and Fig. 4 show respectively the macroscopic appearance and the 
microstructures of a cross section of a [lio] oriented chloride tungsten 
deposit. Analysis of these £ll0} oriented chloride tungsten deposits 
yielded the following ranges of major impurity contents: 0, 0.5-1 ppm; N, 
< 1 ppm; C, 2-8 ppm; F, 9-17 ppm; Cl, 5-10 ppm; Al, 4-20 ppm; Fe, 10-20 ppm; 
Cu, 1-2 ppm; Mg 0.4-0.6 ppm; Si, 3-20 ppm. 

From the data shown in Table 1 and Fig. 2, the following conclusions 
can be drawn for the deposition conditions studied. 

1. Lower deposition temperature and lower H_/w mole ratio in the 
vapor phase favor the development of [lio] preferred orienta
tion in the deposit. 
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2. Higher deposition temperature and higher Hp/W mole ratio in the 
vapor phase increase the deposition efficiency and favor the 
development of random or {lOO} oriented deposits. 

3. The Cl/W atom ratio in the vapor emerging from the tungsten 
chip reservoir is usually less than 6, indicating that the 
reaction product contains significant amounts of tungsten sub-
halides. At high chlorine flow rate, the Cl/W atom ratio 
becomes higher than 6, implying that a part of the chlorine gas 
passes through the tungsten column without reacting with the 
tungsten. The Cl/W atom ratio, however, does not seem to be a 
critical factor in determining the nature of the preferred 
crystal orientation in. the deposit. 

4. The temperature of the tungsten chips is the principal con
trolling factor for the tungsten flux and thus the Cl/W ratio 
and the KU/W ratio in the gaseous reactant mixture. When the 
temperature of the tungsten chips is too low (e.g. 750 C), the 
efficiency of deposition is almost reduced to zero because of 
the low tungsten flux in the vapor surrounding the molybdenum 
mandrel¿ 

5. Chloride tungsten deposits of vacuum work functions between 4.9 
and 5.0 eV can be obtained at the following deposition conditions: 
mandrel temperature IIOO-II5O C, hydrogen flow rate l40-l6o 
c.c./min., chlorine flow rate 115-135 cc./min., and tungsten 
chip temperature 83O-875 C. The reproducibility of these results 
has been substantiated by the fact that ten chloride tungsten 
samples prepared at a mandrel temperature of 1100 C, a hydrogen 
flow rate of l40 c.c./min., a chloride flow rate of 115 c.c./min., 
and a tungsten chip temperature of 85O C, all exhibit vacuum 
work function of 4.9-5.0 eV. X-ray analyses indicate that for 
samples having vacuum work functions close to 5 eV, 90% of«··their 
< 110>axes lie within about 7. from the normal to their 
emitting surfaces, and that for samples having vacuum work 
functions close to 4.9 eV, 90% of their <110>axes lie within 
11 from the normal to their emitting surfaces. 



Table 1 

RESULTS OF CHLORIDE TUNGSTEN DEPOSITION 

Run No. 

1 

2 

3 

U 

5 

c 

7 

3 

9 

10 

11 

12 

13 

lU 

15 

16 

17 

18 

Mo Mandrel 

Temperature 

(°C) 

1350 

1150 

1250 

1150 

1150 

1200 

1150 

1200 

1220 

1100 

1050 

1100 

1100 

1100 

1100 

1100 

1100 

1100 

% Flov 

Rate* 

(c.c./min.) 

70 

70 

70 

70 

lUO 

lUO 

lUO 

100 

100 

lUO 

lUO 

200 

l6o 

160 

lUO 

ll*0 

280 

lUO 

Cla Flow 

Rate* 

(c.c./min.) 

350 

200 

200 

115 

115 

115 

115 

60 

6o 

115 

115 

115 

115 

115 

115 

135 

115 

115 

Time 

(min.) 

180 

180 

180 

255 

2Uo 

2U0 

2U0 

180 

2U0 

21*0 

2U0 

180 

180 

180 

190 

210 

72 

200 

W Chip 

Temperature 

(°C) 

850 

825 

350 

350 

830 

8U0 

350 

820 

825 

850 

375 

875 

875 

875 

850 

830 

850 

750 

W Flux 

In Vapor 

(gm/hr.) 

25.7 

19.3 

22.6 

22.6 

22.0 

2U.0 

23.8 

I6.O 

I6.7 

28.5 

31.2 

29.1* 

31.2 

31.8 

26. U 

22. U 

27.9 

U.5 

Atom Ratio 

of CI to W 

in Vapor 

12.2U 

930 

7.92 

U.56 

U.70 

•».52 

3.60 

3.36 

3.23 

3.6U 

3.32 

353 

3.32 

3.26 

393 

5.U5 

3.71 

22.7 

Mole Ratio 

of »2 to W 

in Vapor 

1.22 

I.63 

I.39 

I.39 

2.36 

2.ál 

2.19 

2.80 

2.6I 

2.19 

2.01 

3.05 

2.29 

2.25 

237 

2.79 

U.55 

13.39 

Thickness of 

Deposit on 

Top of Mo Mandrel 

(mils) 

33 

2U 

39 

31 

63 

115 

87 

53 

80 

86 

U6 

58 

60 

60 

U6 

Ul 

31 

1 

Efficiency 

of Deposition** 

21* 

23 

32 

18 

"»3 

67 

U2 

61 

66 

U2 

20 

37 

36 

35 

33 

29 

52 

o.u 

Preferred 

Crystal 

Orientât.on 

(100) 

(110) 

(110) 

Í110) 

(110) 

Random 

(110) 

Random 

( 100) 

(110) 

'110) 

(110) 

'110) 

f 110) 

(110) 

'110) 

Random 



Vacuum 

Work 

Function 

'eV) 

U.55 

U.35 

U.SO 

U.97 

U.38 

U.57 

U.92 

"♦.53 

U.52 

5.01 

U.85 

U.33 

U.3Q 

U.^7 

5.00 

U.92 

U.52 



Ol 
J 
O 

At 300 K and 1 atm. 

* Weight of tu^ããter. deposited on Mo mandrel surface X100 

Weight of tungsten intersected by Mo mandrel surface during the run 
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.(looKk.S) 

( ^ ^^A*\mX UM 
\ ι tlm M a 

Fig. 1—(li) Chloride tungsten deposition 
apparatus using chlorination of tungsten 
chips to provide tungsten source material 

Fig. 2—(u) Preferred orientation and vacuum 
work function in chloride tungsten as a 
function of deposition conditions 
The numbers in parentheses represent the 
lattice planes of preferred orientation 
and the vacuum work functions 

Fig. 3—(u) Macroscopic appearance of {lio} 
oriented chloride tungsten deposit on 
molybdenum mandrel 

Molybdenum 
Mandrel Side 

Fig. k—(u) Microstructure of a cross section 
{lio} oriented chloride tungsten deposit 



572 

REFEPvENCES 

(1) WEINBERG, Α. F. and L. YANG, "interdiffusion Between UraniumBearing 

Reactor Fuels and Refractory Metal Thermionic Emitters." Advanced 

Energy Conversion, ¿J 101 (1963)· 

(2) YANG, L., R. G. HUDSON, and F. D. CARPENTER, "Some High Temperature 

Diffusion Studies on Materials of Thermionic Interest." International 

Conference on Thermionic Electrical Power Generation, London 

(September 202U, I965). 

(3) YANG, L. and R. G. HUDSON, "Effect of Preferred Crystal Orientation 

and Surface Treatment on the Work Function of Vapor Deposited 

Tungsten." Thermionic Conversion Specialist Conference, Houston, 

Texas, pp. 3951+01+ (November 2h, 1966). 

(k) YANG, L. and R. G. HUDSON, "Evaluation of Chemically Vapor Deposited 

Tungsten as Electron Emitters for Nuclear Thermionic Application." 

Proceedings of the Conference on Chemical Vapor Deposition of 

Refractory Metals, Alloys, and Compounds. Gatlinburg, Tennessee, 

pp. 3293^8 (September 12lk, 1967). 

(5) HOLLAND, J. W. and J. KAY, "Performance of a Cylindrical Geometry 

Thermionic Converter with an Improved Work Function Tungsten Emitter." 

Thermionic Conversion Specialist Conference, Palo Alto California, 

pp. I3I5 (October 30November 1, I967). 

(6) HOWARD, R. C , L. VAN SOMEREN and L. YANG, "Preliminary Results on 

the Thermionic Performance of a VaporDeposited Tungsten Emitter 

Having {llO} Preferred Orientation/
1
 Thermionic Conversion Specialist 

Conference, Palo Alto, California, pp. 1011 (October 30November 1, 

1967)· 

(7) HUDSON, R. G. and L. YANG, "Effect of Operating Temperature on the 

Vacuum Emission Stability of Vapor Deposited Tungsten Clad UCZrC 

and UOp." Thermionic Conversion Specialist Conference, Houston, 

Texas, pp. 212221 (November 2U, 1966). 



573 

DISCUSSION 

Speaker of paper E - l : R. W. PIDD. 

SHROFF (France): Is there a critical thickness to have a stable (110) s t ruc
ture? 

PIDD (USA); I don't think we know. We have made both what we call simplex 
structures (just one layer) and duplex structures (two layers). We have laid 
about of the order of 10 mils or so of chloride tungsten oriented (110) on an or
dinary tungsten fluoride cylinder. It is very stable, but we have never pushed 
it to the limit to see how thin you could make it and maintain the work func
tion. 
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FUEL AND FISSION PRODUCT TRANSPORT THROUGH 
CHEMICALLY VAPOR-DEPOSITED FLUORIDE TUNGSTEN* 

by 
L. Yang and R. G. Hudson 

Gulf General Atomic Inc. 
P.O. Box 608, San Diego, California 92112 (USA) 

ABSTRACT 

The transport rates of fuel components from 90UC-10ZrC, UOo and W-60 
vol$ UOp cermet through chemically vapor-deposited fluoride tungsten cladding 
were determined in the temperature range 1923-2273 K, using samples of both 
planar and cylindrical configurations. From the results obtained, it is 
estimated that the total amount of uranium transported'through 1+0 mil thick 
fluoride tungsten cladding in 10,000 hours may vary from a few to 5000 mono
layers, depending upon fuel composition, fuel stoichiometry and temperature. 
The uranium transport rate of UOp through fluoride tungsten cladding at 2273°K 
is many orders of magnitude higher than that reported for powder metallurgy 
or arc-cast tungsten cladding at the same temperature, implying the importance 
of cladding structure to uranium transport rate. It is shown that the carbon 
transport through fluoride tungsten cladding will not cause a significant 
change in fuel stoichiometry at 2073 K in 10,000 hours. 

Measurements were made on the fission product recoil range and the 
diffusion constants of various fission products in fluoride tungsten. On 
the basis of the results obtained and an equation derived for the transport 
rates of primary fission products from fuels through cladding by both the 
recoil and the dissolution mechanisms, the total accumulations of various 
primary fission products outside the cladding were calculated as a function 
of time and temperature. It is shown that among the fission products studied 
the Ru isotopes constitute the major components of those diffusing through 
the cladding. Post-irradiation annealing studies substantiated this finding 

133 and showed that no significant transport of Xe through 20 mil thick 
fluoride tungsten cladding at 2073 K in 1000 hours. 

* This work is sponsored by the National Aeronautics and Space Agency under 
Contracts NAS 3-61+71 and NAS 3-850I+. 
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INTRODUCTION 

The work function of a thermionic emitter surface is sensitive to 
the presence of a fraction of a monolayer of adsorbed impurity atoms. In 
a nuclear thermionic converter, the emitter consists of a refractory metal 
cladding in close contact with nuclear fuel materials at high temperatures 
in a neutron environment. If the transport rates of fuel components and 
fission products through the cladding are rapid, they may accumulate on 
the electrode surfaces and affect the thermal and electrical performance 
of the converter. To gain an insight of the problem involved, experi
mental measurements were made on the transport rates of fuel components 
through fluoride tungsten claddings of planar emitters fueled with 
90UC-10ZrC and UOp and of cylindrical emitters fueled with 90UC-10ZrC and 
W-60 vo1% UOp cermet. In addition, the fission recoil ranges and the 
diffusion constants of various fission products in fluoride tungsten were 
determined, from which their transport rates through fluoride tungsten 
claddings were deduced and compared with results obtained from post 
irradiation annealing studies made on planar emitters fueled with 
90UC-10ZrC and U02-

EXPERIMENTAL AND ANALYTICAL METHODS 

1. Fuel Component Transport 

Fuel component transport data were obtained by using both planar 
and cylindrical samples. The planar samples" consisted of 90UC-10ZrC or 
UC£ wafers of 20 to 1+0 mil thickness of 0.250 to 0.375 inch diameter clad 
with fluoride tungsten of 20 or 1+0 mil thickness. Each sample was heated 
at a certain temperature for a given period of time in vacuum by electron 
bombarding one of its flat surfaces. The uranium diffusing through the 
other flat surface was gathered on a water-cooled stainless steel collector 
and its amount determined by dissolving the deposit in dilute HNO^, 
irradiating the solution in Gulf General Atomic's TRIGA reactor at 250 kw 

13I+ for 1 hour, and counting the activity of the I formed. In some cases, 
the carbon content in the deposit was measured by oxidizing it to COg with 
oxygen and CugO at about 1+00°C and determining the amount of CO2 formed 
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by gas chromatographic techniques. The cylindrical samples consisted of 
90UC-10ZrC and W-60 vol$ U02 cermet fueled emitters in out-of-pile cylin
drical converters which were life tested for periods from a few thousands 
to ten thousand hours. The uranium content in the deposit condensed on 
the collector surface was determined by the same radiochemical method 
described above. 

2. Fission Product Transport 

(1) Determination of fission product recoil range in fluoride 
tungsten. 

Polished surfaces (to 0000 emery paper) of vacuum annealed 
(2073°K, 50 hours) fluoride tungsten discs 0.375 inch in diameter and 
20 mil in thickness, were held in contact with a υ source and 
irradiated in Gulf General Atomic's TRIGA reactor at ambient tempera
ture at 250 kw for l/2 hour. Thin layers were removed from the 
fission product impregnated surfaces either by mechanical polishing 
or by electrolytic dissolution. The concentrations of the fission 

ll+O 103 95 95 products La , Ru and Zr -Nb in each layer were determined by 
radioactive counting techniques, and the thickness of each layer 
removed was determined by weighing. The recoil range of each of 
these fission product studied was deduced from its activity distribu
tion in each tungsten disc. 

(2) Determination of diffusion constants of fission products in 
fluoride tungsten. 

The diffusion constants of Ru105, C e , Zr95, Ba1 , I 1 5 1 and 
132 Te in fluoride tungsten were determined in the temperature range 

1873 to 2123 Κ by the diffusion couple method. Each couple con
sisted of two fluoride tungsten discs 0.375 inch in diameter and 
20 mils in thickness, each with one of. its two flat surfaces prepared 
and impregnated with fission products according to the method 
described above. The impregnated discs were diffusion bonded in a 
vacuum hot press at the planned diffusion temperature and 5OOO psi 
for 3 hours with the impregnated surfaces facing each other. The 
diffusion bonded couple was annealed in a tantalum resistance furnace 
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in vacuum at the desired temperature. After the diffusion anneal, 
the sample was mounted in plastic and sectioned by anoidic dissolu
tion in 10% NaOH solutions from one tungsten disc to the other 

103 lUl 95 lUO tungsten disc across the interface. The Ru , Ce , Zr , Ba , 
I ^ and Te ^ contents of the solutions obtained were determined 
by radiochemical techniques. The thicknesses of the tungsten layers 
dissolved were evaluated from the tungsten contents of these solu
tions. Since the initial fission product sources extend to a distance 
of only 5 to 6 microns (see the results on fission recoil range in 
tungsten below) at either side of the interface of the diffusion 
couple, the configuration of the sample can be treated as that of an 
infinite system containing an infinitely thin plane source at the 
interface, provided the diffusion-anneal time is long enough to 
produce a diffusion distance much greater than 5 to 6 microns. For 
such a system, a straight line should result if log C if plotted 
against λ , when C is the concentration of the fission product at 
a distance X cm. from the interface. The diffusion constant D (in 
o cm /sec) can be evaluated from the slope of such a straight line, 

which is equal to π^τ, where t is the diffusion time in seconds. 

(3) Calculation of fission product transport through cladding 
from fission recoil range and diffusion constant. 

(2) 
A general equation was derived for a planar fuel-clad con

figuration to relate the transport rates of primary fission products 
(i.e. fission products formed either directly by the fission of 
U or from precursors of very short half-lives) through the clad
ding as a function of time during their continuous generation in the 
fuel material by taking into account the entry of the fission products 
into the cladding by both the recoil and the dissolution mechanism. 
The assumption was made that the diffusion of fission products from 
the fuel is such that a homogeneous concentration distribution in 
the fuel is maintained at all times. The equation is shown below 
together with the nomenclature of the symbols used (Table l). 
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R(t) = R 

L n n " 

where 

R 

Γ * r ^ T F j l [ ß l ( b  a ) + * ] 8 i n 0 t n + * a n c o e a n ] 

j * ^ [ Φ »2 ♦» j g «in* V | »g ♦ ß g c°sh V | 6g  β f ] 

6 cosh V s (1>  ») + * VI Sinh VI (b " a) 

(D 

(2) 

The total accumulation of a given fission product outside the 

cladding at time equal to t„ is 

M(t )  f f
 R(t) [exp  λ (t.  t)] dt »toe/cm

2 

(3) 

(1+) Postirradiation annealing studies of fission product 

transport through fluoride tungsten cladding. 

Fluoride tungsten clad (20 mil thick) 90UC10ZrC and UOp wafers 

of 5% enrichment were irradiated in Gulf General Atomic's TRIGA 

ll+ 
reactor at ambient temperature to attain a total of 1 χ 10 fissions 

in each fuel wafer. Each irradiated sample was heated in vacuum 

at 2073°K for 1000 hours in watercooled stainless steel enclosure 

133 
connected to a liquid nitrogen cooled charcoal trap. Any Xe 

diffusing through the cladding was collected in the trap and its 

activity in the trap was counted every few hours. The condensable 

fission products diffusing through the cladding were collected on the 

surface of a watercooled stainless steel collector. The collector 

deposit was dissolved in dilute HNO, at the end of the experiment and 

the solution obtained was analyzed radiochemically for the total 

transport of various fission products through the cladding at 2073 Κ 

in 1000 hours. 
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Table 1 

NOMENCLATURE OF SYMBOLS USED IN EQUATIONS (l) AND (2) 

Symbol Definition 

α 
η 

R(t) Fission product release rate from the outer surface of cladding 
2 

at time t (atoms/cm sec) 

R Fission product release rate from the outer surface of cladding 

at steady state condition, i.e., when the rate of fission 

product injection into the cladding is balanced by the rate 

of decay plus the rate of release (atoms/cm2sec) 

Diffusion constant of fission product in fluoride tungsten 

(cm /sec) 

Distance between the outer surface of the cladding and the 

center of the fuel body·(cm) 

Distance between the fuelclad interface and the center of the 

fuel body (cm) 

(ba) Thickness of cladding (cm) 

Roots of the transcendental equation cot α = [0/ß(ba)1 α 

Ratio of fission product concentration in fuel to fission 

product concentration in clad at fuelclad interface 

2 
β Fuelclad interfacial area per unit fuel volume (cm /cc) 

λ Disintegration constant of fission product (sec ) 

t Time of diffusion (s.ec) 

o, Recoil range of fission product in fuel material (cm) 

Recoil range of fission product in tungsten cladding (cm) 

Rate of increase of fission product source concentration in 

the fuel during' the operation of the fuel element (atoms/ccsec) 

= Q  (βΑ)δ, Q, where Q = rate of generation of fission product 

atoms in unit volume of fuel = 3 χ 10 PY (Ρ = fission power 

in watts/cc and Y = fission yield), and (β/1+)δη Q = rate of 

loss of fission product atoms per unit volume of fuel due to 

fission recoil into tungsten cladding 
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Table I (Continued) 

NOMENCLATURE OF SYMBOLS USED IN EQUATIONS (l) AND (2) 

Symbol Definition 

Rate of increase of fission product concentration in tungsten 

cladding at the fuelclad interface due to fission recoil 

(atoms/ccsec) = l/2 Q(51/ôp), since the total number of atoms 

of fission product recoiled into the cladding is l/l+ (Q δ.. ) and 

this total number is distributed linearly in a zone of width 

equal to δρ in the cladding. 

RESULTS AND CONCLUSIONS 

1. Fuel Component Transport 

The results are summarized in Table 2. In Fig. 1 the uranium fluxes 

shown in Table 2 for the various fuel materials are plotted as number of 

lU 2 
monolayer (each monolayer « 5 x 10 atoms/cm ) transported through 1+0 mil 

thick fluoride tungsten cladding in 10,000 hours as a function of cladding 

temperature, assuming that the uranium transport is inversely proportional 

to cladding thickness and directly proportional to time. The results 

(3) 
obtained by Kaznoff and Sanderson on uranium transport rates from 

UOp. „κ through fluoride tungsten, powder metallurgy tungsten and arccast 

tungsten are included for comparison. 

From the results shown in Table 2 and Fig. 1, the following con

clusions can be drawn. 

(l) The uranium transport rate is affected by fuel composition and 

fuel stoichiometry. The transport rate from the oxide fuel, 

especially the cermet fuel, is less than that from the carbide 

fuel at equal temperature. For the carbide fuels studied, the 

carbon rich fuel has a lower uranium transport rate than the 

stoichiometric fuel, presumably due to the lower uranium 

activity of the carbon rich fuel. 



Table 2 

FUEL COMPONENT TRANSPORT RATES THROUGH FLUORIDE TUNGSTEN 

Sample 
No. 

1 

2 

3 

1+ 

5 

6 

7 

8 

Fuel 

U02.00l+ 

U 0 0 .90 Z r 0 .10 C 1 .02 

TT 7r C 
0.90 0.10 1.00 

W-60 v o l $ UOp 

Cladding 
Thickness 

(mil) 

20 

20 

20 

1+0 

1+0 

i+o 

1+0 

1+0 

Sample 
Conf igura t i on 

Planar 

Planar 

Planar 

Planar 

Planar 

C y l i n d r i c a l 

C y l i n d r i c a l 
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(2) At the normal emitter operating temperatures (1973-2073 K), the 
uranium transports through 1+0 mil thick fluoride tungsten 
cladding vary from about 5 to 500 monolayers in 10,000 hours 
for the various fuel materials studied. Whether such uranium 
transports would change the electrical and thermal performance 
of the electrodes in a thermionic converter depends upon the 
rate of evaporation of uranium from the emitter surface and the 
rate of diffusion of uranium into the collector bulk. These 
rates are affected by electrode temperature, nature of electrode 
material and the presence of other fuel components. One of . 
the main objectives for testing fueled converters is to map out 
the operating conditions under which the converter performance 
is least affected by such finite rates of uranium transport. 

(3) The uranium transport rate through tungsten cladding is a strong 
function of the structure of the cladding. Transport rates 
through the equiaxial grains of powder metallurgy or arc-cast 
tungsten are much lower than that through the columnar grains 
of fluoride tungsten, as pointed out previously by Kaznoff and 

(3) Sanderson. ' 

(1+) Although the carbon transport rate from the carbide fuel through 
the fluoride tungsten cladding is measurable, its effect on fuel 
stoichiometry is small. For instance, assuming the -carbide 
contains 5 wt$ carbon and has a density of 10 gm/c.c, for an 
emitter of l/2 inch diameter and 1+0 mil cladding thickness, 
only 0.0Γ7$ of the carbon content of the carbide fuel is lost 
in 10,000 hours by diffusion through the cladding. 

2. Fission Product Transport 

(l) Fission recoil ranges. 

Studies were made on a total of six samples. The average 
values for fission fragments of mass ll+0, mass 103 and mass 95 are 
5.2, 5·̂ · and 5.6 microns respectively. 
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(2) Diffusion Constants. 

Studies were carried out at 1873°, 1973°, 2023°, and 2123°K 

respectively. The variation of the diffusion constant D with 

Γ-Ql 

temperature is expressed in the form D = D exp [■=-= I, with the D 

and the Q values for the various fission products studied shown in 

Table 3. 

Table 3 

RESULTS FOR THE DIFFUSION OF FISSION 

PRODUCTS IN FLUORIDE TUNGSTEN 

I so tope 

Ru 1 0 5 

C e l U l 

Z r 9 5 

B,lk0 

, 1 3 1 

T e 1 5 2 

D 
o 

(cm2/sec) 

5.70 χ I O - 2 

1.02 χ I O - 2 

9.25 χ I O - 5 

1+.15 x i o " 1 

1+.25 χ I O - 1 

3.36 χ I O - 1 

Q 
(ca l . /mo le ) 

1+1000 

3960O 

39^00 

I+9IOO 

I+960O 

1+9U00 

The metallic fission products studied have D values higher 

than that of the non-metallic fission products studied and Ru has 

the highest D value. 

(3) Analytical evaluation of fission product transport through 

fluoride tungsten cladding. 

A computer program was devised for the evaluation of the rate 

of transport R(t) and the total accumulation M(t) outside the 

cladding as a function of time according to Equations (l) and 3), 

using the fission recoil ranges and diffusion constants given above. 

Figure 2 shows the results on M(t) values as a function of time at a 

cladding temperature of 2073 K for both the radioactive and the 

stable Ru, Zr, Ce, Ba, I and Te primary fission product isotopes, 
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2 -1+ 
assuming (b-a) = 0.1 cm, Ρ = 500 watt/cc, β = 1+ cm /cc, δ = 6 χ 10 cm. 
0 = 1 for the Ru, Ba, I and Te isotopes, and 0 = 100 for the Zr and Ce 
isotopes which form stable carbides and oxides. For the Ru isotopes, 
the calculations were extended to 1973 Κ and 1873 Κ and the results 
are shown in Fig. 3· It can be seen that Ru isotopes consitute the 
major components of fission products transported through the cladding. 
The total amount of Ru isotopes transported through the cladding in 
10,000 hours is about 1000 monolayers at 2073 K, which decreases to 
about 100 monolayers at 1973 Κ and to about a few monolayers at 
1873 K. Thus the Ru isotope transport is of the same order of 
magnitude as the uranium transport from a carbide fuel at the same 
temperature. It must be pointed out, however, that these calculations 
were made by assuming that the rates of diffusion of these fission 
products in the fuel material are not the limiting factor for the 
transport process through the cladding. In the event this is not 
true, then the observed transport should be less than that shown 
in Figs. 2 and 3· 
(1+) Post-irradiation annealing studies of fission product 

transport through fluoride tungsten cladding. 

Two samples containing U_ q 0 Zr.. .._ C, „ fuel wafers and two 
samples containing U0? - „ fuel wafers were studied at 2073 Κ for 
1000 hours, using the experimental method described above. In each 

133 case no Xe transport through the cladding was observed beyond 
the experimental detection limit (~ 10 atoms), and Ru was the 
only radioactive fission product detected on the collector surface 
in amounts corresponding to 0.03$ of the initial Ru contents of 

103 the carbide fuel and 0.18$ of the initial Ru contents of the 
103-

oxide fuel. Thus the results on Ru transport confirm the con
clusion reached in the analytical evaluation made by using the 
measured fission recoil ranges and diffusion constants. 
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DISCUSSION 

Speaker of paper E-2: R. W. PIDD. 

HOWARD (USA);. Could you desc r ibe 'the technique that was used for the 
fission product diffusion exper iments? In other words did you take meta l 
and put it against tungsten or did you spread it out or what? 

PIDD (USA); We per formed exper iments both with fuel and fission product 
transport through the cladding and used both p r e - i r r ad i a t i on annealing and 
poe t - i r rad ia t ion annealing techniques. 
In the p r e - i r r ad i a t i on annealing studies you have a piece of meta l that has 
been heated while in contact with some fuel. The fuel pa s se s into the meta l , 
allowing a measure of the fuel t r anspor t . 
In the pos t - i r r ad ia t ion annealing studies one i r r ad i a t e s meta l -c lad fuel 
•wafers and heats them. The gaseous fission products which pass through 
the cladding a r e then passed to a nuclear counter where they a r e measu red . 

HOWARD: What about the ones that never leave the surface of the meta l . 
They don't get swept by the gas . How do you count those? 

PIDD: We have a lso dipped the tungsten in acid and we have found not only how 
much was on the surface but have measured densi t ies as a function of depth 
for mil layers . 

ROUKLOVE (USA): It is known that most of the products of fission do not 
react with the ces ium. However, I think that iodine does . Did you observe 
what the effect of this reaction is ? 

PIDD: The work that I descr ibed here is simply concerned with the abso 
lute amount of transport and not with what happens in the conver ter , or 
whether it helps the conversion p roces s or h a r m s it . 
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I.  I n t r o d u c t i o n 

Los problèmes posés par la conversion thermoionique, que ce soit dqpsilc 

réalisation d'émetteurs d'électrons pour les diodes ou des conduits de cha

leur pour les caloducs ou encore des revêtements pour los liaisons métal

céramique, ont nécessité l'étude ot le développement de la technique de dépôt 

de métaux réfractairos en phase vapeur par réduction ou décomposition d'un de 

leurs halogènes. Parmi les différents métaux réfractaires connus, lo tungstène 

ot le rhénium sont ceux qui sont le plus communément utilisés comme émetteurs 

d'électrons, le niobium étant plus fréquemment employé commo métal do revête

mont. 

On a utilisé les halogénures do ces différents matériaux qu'on α réduits 

par 1'hydrogène à haute température. 

L'orientation cristalline dépond do la température, do la pression et de 

la composition du mélange gazeux utilisé. 

En plus do la pureté, c'est la compacité des dépôts obtenus qui présen

tent un grand intérôt. 

On décrit ici les dispositifs expérimentaux utilisés ainsi que les résul

tats obtenus. 

II.  Dispositifs expérimentaux 

On utilise la réaction do réduction a. chaud par 1'hydrogène soit à la 

pression atmosphérique, soit sous dépression. 

Los dispositifs expérimentaux différent suivant que l'on travaille à 

partir d'un produit gazeux, c'est lo cas de l'hexafluorure do tungstène, ou 

dons un produit solide, c'est le cas do 1'lioxrxhloruro ou de 1'oxychloruro de 

tungstèno, du trichlorurc dc rhénium ou du pontachloruro de niobium. 

A  Cas d'un produit flazoux 

La figuro 1 montre schématiquomoat los dispositifs expérimentaux réalisés, 

La figuro 2 montre un cliché photographique du dispositif expérimental réalisé 

pour les dépôts sous dépression. 
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L'hydrogène ot l'hexafluorure sont mélangés puis introduits dans la 
chambre do réaction qui consisto soit on tube en quartz, soit en une clocho 
en durai. Le substrat à recouvrir est chauffé on haute fréquence, les gaz 
produits par la réaction de réduction ainsi que l'excès dos autres gaz, sont 
évacués ot neutralises. 

Les débits sont contrôlés à l'aide dc débimètros et la pression est mesu
rée à l'aide d'un baromètre à mererro. La température du substrat est mesurée 
à l'aide soit d'un pyromètre optique, soit d'un thermocouple. 

B - Cas d'un produit solido 
C'est le cas ÙCL chlorures do tungstène, du trichloruro do rhénium ou du 

pontachloruro do niobium. 
On utilise on gros lo momo installation, mais on lui ajoute un évapora-

tour dans lequel le produit solido ost introduit par petites quantités« 
On utilise pour· le tungstène et le niobium la réaction de réduction par 

1'hydrogène et pour le rhénium la réaction do décomposition. Dens tous· los 
cas on travaille on dépression. Le dispositif utilisé ost schématisé sur la 
figuro 3. 

III. - Résultats expérimentaux 

Dépôt do tungstèno et do niobium 
Lo dépôt do tungstèno ost réalisé par réduction do Vïy, VÌC1, ou VOCI, par 

l'hydrogène; los différents parcmètres intervenant dans la vitesse do dépôt 
sont : la température, lo rapport stooehiométriquo, la pression partiolle. 

On a vu que plus la température dc dépôt était élevée et plue la vitesse 
do dépôt était grande l·. rapport stooehiométriquo ot prossiou constante. On a 
fait varier le température depuis 4CC° C jusqu'à ì 200° C. On s'aperçoit quo 
la structure du dépôt dépend fortornen-t do la température. On passe d'un dépôt 
h. grains fins à un dépôt t\ gros grains on faisant varier la température entre 
4CC ot Ì 200° C. 

Le dépôt do niobium a été effectué a pertir do la réduction par 1'hydro
gène ou lo zinc du pontachloruro de niobium. Lo domaine do température utilisé 
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est compris entre GCC et 1 2ÜC° C. Ici aussi la taille dos grains dépond de lev 

température. En dessous de G0C° C il y a hydruration du dépôt, on utilise alors 

la réduction par le zinc. 

Des essais dc dépôt par décomposition dc produits halogènes sous vido or.t 

été effoctués on vue do déposer le tungstène sur dos substrats rúactifs à l'hy

drogène La vitesse de ûé">ôt ot la structure du dépôt dépendent essentielle

ment do la pression partiolle et do la vitesse d'evaporation du composé 

halogène. 

IV.  Propriétés dos dépôts on phase vapeur 

TV.'. . Propriétés mécaniques ot physiques 

Los premiers essais dc flexion réalisés sur des éprouvettos parallélépipé

diquos ont montré que la résistance à la flexion d'un tungstène déposé on Tihase 

o 
vapeur était comprise entre CO et 100 kg/mm alors qu'une éprouvette identique 

en tungstène dépose par schoopago ost de 50 kg/mm et un tungstène fritte do 

o 
l'ordre dc 120 à 140 kg/mm . 

.ufin do mesurer la densité on a réalisé des dépôts dc tungstène dc formes 

ot d'épaisseurs variables sur substrats solubles, du cuivre par exemple. On a 

trouvé qu'elle se situait entre 90,5 et 99 fi dc la densité théorique. Ces 

chiffres sont supérieurs à ceux qu'on obtient par tous autres procédés do dé

pôt. Ceci mentre que les dépôts dc tungstène sont compacts et étonchos au vido. 

Ccpondant du fait do la fragilité l'épaisseur minimum doit être dc l'ordre do 

150/U. 

Cotto technique permet de réaliser dos pièces et des rovôienonts étonchos 

sur n'importe quoi type dc substrat. 

IV.2. Examen do la structure dos dépôts 

L'oxomon dos coupes m étallographiquos dos différents dépôts montre dais 

tous los cas uno croissance du type basaltique on général indépendante du sub

strat (Fig. 4). La taille des grains dépond do la température dc dépôt. Plus 

cotte température est élevée ot plus les grains som; gros. L'oxamon au micro

(4) 
scopo électronique par la méthode des répliques au carbono platino do Ια 
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structure dos dépôts révèle sur dos coup oc perpendiculaires à la surface une 

structure basaltique démarrant do l'interface. La croissance s'effectue perpen

diculairement à la microstructure du substrat. La figuro 5 montro los diffé

rents clichés obtenus sur le tungstène déposé sur un substrat on molybdène. Si 

on examine m aintonant la surface du dépôt, on remorque une série do petits 

trous qui débouchent a l'extérieur et dont le diamètre le plus grand est de 

l'ordre du 1 /u. (Fig. 6). 

IV.3. Etude aux rayons X dos dépôts 

 Dép_Ô1 do tungstène : L'étude a été effectuée à l'aide d'un diffracto

gropho à rayons X Siemens. Le rayonnement utilisé est la raio K Q ¿ du cuivre. 

Lo tableau 1 résume les principaux résultats obtenus sur le tungstène déposé 

soit à partir dos fluorures, soit à partir des chlorures. On observe que : 

 Dons le cas dos fluorures le plan qui app:jraît le plus fréquemment est le 

plan j100J dans un domaine do température compris ontro 500 ot SOC
0
 C. 

 On remarque aussi q uo l'amplitude dos pics j 100 / posso par un minimum 

entro 900 ot 1 000° C; le plan ) 110 ' doviont alors plus important. 

Cependant un recuit à 2 100° K modifie sensiblement ces orientations. Los 

surfaces qui présentaient les plans 1 110' ont uno structure qui los 

rapproche plus do la structure du tungstène fritte, c'ostàdire à égale 

repartition dos plans ) 100 · ot j 110 I . 

 Lo rapport Η_/ΊΠ?, influo grandomont sur l'orientation ainsi quo lo pression 
résiduelle lors du dépôt. 

- Dans le cas dos chlorures plus la température ost élevée ot plus le plan 
l 110 | apparaît. 

- Dépôt ̂ o_nij3b_ium : En co qui concerne le niobium, on observe quo l'in-
tonsité dos pics j 1C0| ot / 110(. sont presque identiques ot qu'après 
recuit sous vido à 1 500° C, l'orientation ) lOOlest prépondérante. 

- Dépjît do_rhénium : Pour les dépôts do rhénium on o toujours obtenu dos 
structuros sons orientation préférentielle. Après rocuit il y a une tendonco 
a, l'orientation mois olio resto toujours faible. 
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IV.4. Etude do Ια répartition do l'émission électronique do dépôt do tungstèno 

et dc rhénium 

Uno étude de la répartition do l'émission électronique des dépôts do 

tungstèno ot do rhénium a été effectuée. 

Lo cliché figure 7 montre l'image électronique obtenue pour dos dépôts 

do tungsteno réalisés a partir de l'hexafluorure, do 1'hoxachlorure et dc 

rhénium à partir du trichlorure. 

On remarque la bonne homogénéité dc la répartition dc l'émission élec

tronique. Le travail de sertie trouvé pour le tungstène est de 4,72 oV, ce qui 

corrospond au plan I 10CJ ce qui est on bon accord avec les résultats aux 

rayons X. De plus réconts clichés montrent pour dor échantillons réalisés à 

plus haute température l'apparition do plan / ììOj sur une grondo partie de 

la surface. 

IV.5. liodèle do travail 

Le modèle de travail le plus vraisemblable compte tonu dos différentes 

expérioncos réalisées, semble ótre le suivant : 

la réaction do réduction do 1'halogénurc por l'hydrogène α lieu dons la phase 

vapour ovoc précipitation des grains du métal à la surface du substrat. Dès 

que la température croît la nucléation s'effectue plus loin du substrat et los 

grains avant d'arriver on surface grossissent. L'épaisseur de la zone chaude a 

partir do laquollo la réaction pout avoir lieu est donnée par : 

λ 
o = 

rvC. ' 
pour un mélange x \ÍF, + (1  x) IL, } \ conductibilité thormiquo du mélange, C 

o ¿ ρ 

chaleur spécifique a pression constante, l· densité du gaz, v vitosso du mélan

ge ò 1 OCO
0
 K. Lo zone b, partir do laquelle la reaction pout avoir lieu est de 

l'ordro du centimètre. 

Lo croissanco cristalline dépendrait alors fortement do la température 

du substrat do façon analogue à 1'evaporation sur un substrat chaud. 
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C o n c l u s i o n 

Los dépôts de tungstène b, partir do la réduction do 'viF, par l'hydrogène 

dans les conditions stoechiométriquos conduisent à des structures cristallines 

on colonnes dont l'orientation à la surface dépond fortement do la température 

ot des débits gazeux et do la pression résiduelle. 

L'orientation/110/a été obtenue pour des températures comprises entre 950 

ot 1 100° C avec '..T?,. 

6 

Los dépôts à partir do VC1 par .réduction dans 1'hydrogène conduisent à 

dos cristaux do plus grondes dimensions. La vitesse do dépôt est identique a 

colle obtenue par réduction do ~.Π?, toutes choses égales par ailleurs. 

Le rhénium est obtenu par décomposition seulement; sa structure observée 

ou microscope éloctroniquo est collo du matériau forgé. 

Le niobium déposé à partir do Nb Cl conduit à un matériau denso ot de 

haute pureté dont l'orientation cristalline est / 100 ( . 

Los microperosités oxistont dans los dépôts effectués à la pression atmos

phérique, elles ont tendance à diminuer lorsqu'on travaille sous vido. 

La structure cristalline se maintient macroscopiquomont après rocuit a 

haute température, cependant que microscopiquemont cette structure vario. 
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Tableau 1 
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Deposition of Tungsten-layers 

on Molybdenum and Interdiffusion 

M.Peehs, H. Stehle 
Siemens AG., Erlangen, 

Zentrale Entwicklung und Forschung 

Günther Schar owsky S t r a s se 2 (Deutschland) 

A b s t r a c t 

Molybdenum can be coated with Tungsten by high temperature 
pyrolysis of W(CO)g. The mierostrue ture of the deposited ¥-
layers depends largely on the deposition temperature and rate. 
Porous layers on Mo, as produced by plasma spraying technique, 
can 'be densified. Properties of W-layers are described. The 
influence of the microstrueture of the "transition zone" be
tween Mo and W on interdiffusion has been investigated. Heat-
treated samples up to 1600 h and 1860 C have analysed by the 
microprobe method. An apparatus for coating thermionic emit
ters is described. 

1. Introduc tion 

In an Incore Thermionic Reactor (ITP) the fueled Mo emitter 
can be improved by applying a 200 yum thick tungsten layer on 
its e-emitting surface. The tungsten layer, which has a work
ing temperature of approx. 2000 K, must remain stable and 
practically without any change in its properties during the 2 
years operating period. The report below deals with the produc
tion and analysis of such layers. 

2. Selection of method employed 

The "Vapor plating" method has proved by far the best for de
positing tungsten layers of high quality £~ 1-5_7· VFg> ¥ C 1 6 a n d 

W(C0)g are highly suitable base compounds. The halides can be 
reduced with H_ at 600-900°C, whereas W(C0)g is decomposed pyro-
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lytically in ¥ and CO at temperature between 1100 C and 
1700 C. The process temperature of the carbonyl method 
is 70 to 100 io that of the emitter operating temperature. 
Layers deposited in this way have little tendency to struc
ture changes. Carbonyl pyrolysis is moreover a one-compound 
process, which is easy to conduct experimentally and for 
that reason was selected for the present case. 

3. Coating equipment 

Fig. 1 shows an overall view of the equipment. The parts to 
be coated are heated by high frequency induction. The actual 
reaction chamber (Fig.2) consists of two concentric glass 
tubes. The carrier gas (He) with the carbonyl (w(CO)g) enters 
the inner tube from below. According to the special shape 
of the induction coil the gas flow is split into equal sub-
flows, which are directed to the corresponding part of the 
surface. The carbonyl thus impinges uniformly on the object 
to be coated and coats it uniformly. The exhausted mixture 
emerges from the top centre opening of the inductor and is 
sucked out from between the outer and inner glass tube. The 
unexhausted carbonyl is trapped in a water-cooled baffle at 
the outlet opening of the reaction chamber. 

h. W-deposi tion 

The layers deposited on a dense, non-porous Mortarget by 
W(C0 )-:-pyrolysis have no pores and adhere very closely to 
the surface. The layers do not break away from the Molybdenum 
either during thermal cycling or machining (cutting, grind
ing, polishing). The deposition rate is between5/u/h (1800 C) 
and 30 yu/h (1200 C ) , depending on the operating temperature. 
The microstructure of the deposited layers is related to the 
deposition temperature. The average grain diameter increases 
with rising deposition temperature (Fig.3). 

Porous base layers can also be coated. Porous W-layers pro
duced by plasma spraying, for example, can be subsequently 
densified ¿_6_/. The layers then obtained contain small grain 
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sized material in the base layer, whereas the mierostrueture 
of the top layer corresponds to the deposition temperature 
(Fig.k ) . The pores of an AlpO« base, which is applied thin
ly by plasma spraying on Mo, can also be filled up with ¥ 
(Fig.5)· ¥-layers produced on UOp-Mo cermets seal off the 
open pores of the cermeti The coating thickness therefore 
needed is about kO yum ¿ 7 _ / · 

5. Properties 

Spectrograph!c surface analyses have revealed traces of Al, 
C, Ca, Fe, Mg, Mo and Si. Chemical analyses of the untreat
ed Mo reveal 200 ppm C. Analyses of coated samples have not 
resulted in any higher carbon content. During very slow depo
sition, the Mo is even decarbonized due to the Boudouard re
action which takes place between the high sample temperature 
and cold inductor. 

Gas release analyses of Mo samples coated with 200 yam ¥ 
revealed that only 13·9 vppm gas is released at temperatures 
of up to 1800 C, whereas it can be assumed that pre-degassing 
takes place at a deposition temperature of 1300 C. 

In the pertinent literature, vapor-deposited layers are de
scribed as being largely stable to recrystallization. Our ob
servations confirmed this result in the layers under conside
ration. Only the combined vaporplated/plasma-sprayed coatings 
showed slight recrystallization in the fine grain-sized zone 
after 30 hours at 1800 C. The single vapor deposited coatings 
revealed only small changes in the substructure and migrations 
of the dislocations to the grain boundaries. 

Fig. 6 shows the influence of deposition temperature on the 
surface orientation. The proportion of (.110) orientation can 
be increased by raising the deposition temperature. The favour
able deposition temperature of 1300 C furnishes predominantly 
(100) orientated surface. ¥ith slow coating and high deposition 
temperatures the ¥ grows epitaxially on the Mo. 
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6. Diffusion 

The diffusion performed is depicted in Table 1. High dif
fusion rates were found on epitaxial ¥-layers (Fig.7) in 
the form of a pronounced volume diffusion. ¥ithin a very 
short time a clear diffusion profile was measurable by a 
microprobe. Evaluation of the profiles resulted in a con-

— 8 centration-dependent diffusion coefficient between 10 -
10~ cm /s at J 750 C. The results are of the order of those 
determined by Kalinowitsch et al , / 8 _ / , but were considerably 
higher than those found by Larikow et al ¿_9_/· 

Quite better results are found by using the non-epitaxial 
transition zones. Two possibilities for disturbing the transi
tion zones were investigated: ï) Interruption of crystal 
orientation and grain size distribution at the Mo/W-interface 
(Fig.8) and 2) covering the interface with a porous layer of 
AlpO approximately 30 /u thick, of which the pores are all 
filled with ¥ (Fig.5). Both these methods force the volume 
diffusion below the sensitivity limit of the microprobe; the 
grain boundary diffusion, however, becomes so high that it is 
now clearly measurable. The grain boundary diffusion of the 
samples coated with A1 ?0 was initially less than in the case 
of samples with non-epitaxial transition zones. This advan
tage is lost, however, by increasing the annealing time at 
1860°C. At 1200 h the grain boundary diffusion of both is 
approximately the same. 

As the annealing time increases, odd points with locally 
limited volume diffusion occur. This was observed for the 
first time at ¿400 h. As the annealing time increased, the 
number of points observed increased as well. 
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DISCUSSION 

Speaker of paper E - 4 : M. PEEHS. 

SCHOCK (USA): Have you t r i ed carbonyl deposition of meta l s other than 

tungsten? 

PEEHS (Germany): No, we have not. The possibi l i t ies a r e not very grea t 

e. g. with niobium and tantalum'you have react ions with the CO which is 

produced during tlie pyrolys is of W(CO), and you develop a carb ide . The 

p rocess is very good for tungsten and we have not done other work. 

SCHOCK: Have you analyzed the carbon content of the W-deposi te? 

PEEHS: Yes, we have done th i s . We have found that we can decarbor ize 

the t a rge t by this p r o c e s s and this is due to the Boudouard-react ion which 

takes place between the hot t a rge t and the colder tube wall of the react ion 

chamber . You find the carbon on the tube ■wall. 

HOLLAND (USA): Why a r e you putting the tungsten on the molybdenum? 

PEEHS: Because we wanted to have ve ry stable l ayers for the emi t t e r s of 

the thermionic conve r t e r s . 

HOLLAND: Have you measu red the emi t t e r work function thermionical ly 

at 1800 C for extended dura t ions? 

LANGPAPE (Germany): The effective work function measu red in vacuum 

was 4. 6 eV. We did not demons t ra te the stabili ty of the work function. The 

duration of the exper iment 'was only some hour s . 

GROSS (Germany): I would like to comment on diffusion of molybdenum 

through tungsten l a y e r s . We have made measu remen t s on fluoride deposited 

tungsten on molybdenum. We found a diffusion line of molybdenum after 50 

h. at 2500 K within 2 mi l s from the tungsten-molybdenum inter face . 

PEEHS: Pe rhaps I may say that this is in relat ion to our exper iments with 

non-epitaxial t rans i t ion zones because the fluoride p roces s produces non-

epitaxial zones . 
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ABSTRACT 

Thermionic conver te r s requ i re m e t a l  t o  c e r a m i c sea ls for operating t e m 
p e r a t u r e s of about 1000°C, with an excellent compatibili ty with ces ium 
vapor . To mee t these r equ i rement s sea ls were studied utilizing the s in t e r 
ed meta l powder p r o c e s s . As ce r amic a f inegrained high density pure 
alumina was chosen and as me ta l p a r t n e r N b  l Z r . 

Fo r metal iz ing, suspensions of W powder with smal l additions of TiO_ or 
Y2O3 were t r i ed . It was found that T1O2 lead« to grain growth and consider
able weakening of the c e r a m i c , while Y2O3 i s free of this disadvantage. 
Fac to r s affecting the bond s t rength were' investigated, such as gra in size 
of the W powder, amount of the additive, mill ing t ime of the suspension, 
t empera tu re and t ime of firing, dew point of firing a tmosphe re . The opti
mum average adherence obtained with Cu2Ni brazed samples is about 
14 k g / m m ¿. 

High t empe ra tu r e brazing t e s t s with alloys based on Pd and the active m e 
tals Ti , Zr and V were made . Brazing with Pd (at 1570°C) and V30Nb5Ti 
(at 1805°C) resu l t s in an average tensi le s t rength of the m e t a l  t o  c e r a m i c 
seal of about 10 k g / m m ^ and 8 k g / m m , respect ive ly . These sea ls can be 
made both in p lanar and cyl indr ical geometry; p rob lems of wall a t tack by 
Pd can be overcome by suitable seal design. The sea ls r e s i s t to 100 t h e r 
mal cycles between 500°C and 1200°C, and they withstand a co r ros ion tes t 
of 1000 hours at 1000°C in ces ium vapor of 20 t o r r prac t ica l ly without 
attack, without loss of vacuum t ightness or change in tensi le s t rength. 

1. INTRODUCTION 

Thermionic conver te r s requ i re vacuumtight m e t a l  t o  c e r a m i c seals of high 

geometr ica l stabili ty, which a r e res i s t an t to Cs vapor at a p r e s s u r e of about 

10 t o r r . The operating t empera tu re of these sea ls is necessa r i ly higher than 

the condensation t empera tu re of ces ium at this p r e s s u r e , i . e . roughly 400 C. 
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In p rac t i ca l designs, however, the seal has a much higher t empera tu re which 
general ly l ies between the t empera tu re s of emi t t e r and col lector . As the op
t imum collector t empera tu re l ies around 700 C, and in o rde r to get some 
freedom in the design of the thermionic conver ter , a seal operating t empe
ra ture of 1000 C was aimed at for the p resen t development. 

The sealing technique chosen ut i l izes the principle of the frequently employed 
s intered meta l -powder p r o c e s s , which consis ts in applying a metalizing pow
der layer on to the ce ramic , firing this layer and joining it to the meta l p a r t 
ner by brazing. The following chapters deal with the different steps of this 
p r o c e s s . Chapter 2 contains a d iscuss ion of the arguments which lead to the 
choice of the c e r a m i c . Chapter 3 shows the resu l t s of the metalizing studies 
on this c e r amic , especial ly the dependence of the bond strength from p a r a 
m e t e r s of the metal iz ing p r o c e s s . Chapter 4 deals with the selection of the 
meta l pa r tne r . Chapter 5 contains a summary of the studies on h igh- t empera 
ture brazing of the metal ized ce ramic to the meta l pa r tne r . Chapter 6, finally, 
deals •with the p roper t i es of the obtained m e t a l - c e r a m i c a s sembl ie s ; resu l t s 
a r e reported on tensi le strength, t he rma l cycling and cesium cor ros ion . 

2. CERAMIC COMPONENT 
As ce ramic an alumina of high puri ty, low porosi ty and smal l grain size was 
chosen (E37). The p roper t i e s of this ce ramic a r e shown in table 1, in compa
r ison with a conventional alumina (E2). 
E37 was chosen for severa l r e a s o n s . F i r s t , it is known that high puri ty low 
porosi ty alumina has an excellent Cs cor ros ion res i s t ance [ 1 , 2 ] . Second, 
when brazing of c e r a m i c - m e t a l sea ls is c a r r i ed out at relat ively high t empe 
r a t u r e s , considerable s t r e s s e s on cooling can be generated due to different 
t he rma l expansion of meta l and c e r a m i c . These s t r e s s e s do not only act at 
the brazing joint itself but a lso on the underlying ce r amic l ayer . The m e c h a 
nical p rope r t i e s of the alumina a r e therefore an important factor . It is known 
that | these p roper t i e s depend on the grain size Γ 3 to 7] . The relat ionship 
between the average grain size and the compress ive strength is given in 
fig. 1, showing that a slight inc rease in grain size resu l t s in a significant 
dec rease of the compress ive s t rength. In fig. 2 the flexural s t rength of pure 
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alumina ) is plotted v e r s u s the average gra in size and t e m p e r a t u r e . It can 

be seen that when the grain size is sufficiently smal l , re lat ively high 

strengths can be obtained even at elevated t e m p e r a t u r e s . 

Table 1 : P r o p e r t i e s of alumina c e r a m i c s of different puri ty 

General p roper t i e s 

Composition 

Average grain size 

Density 

Residual porosi ty 

Leak ra te 

Mechanical p roper t i e s at 20 

Compress ive s trength 

ι F lexura l s trength 

E lec t r i ca l p roper t i e s 

Volume res is t iv i ty 

at 100°C 

at 500°C 

at 1000°C 

Dielectr ic s t rength at 20 C 

r 
g / c m 

% 

t o r r . l i t e r / s e c 

'c 

k g / m m 

k g / m m 

ohmcm 

ohmcm 

ohmcm 

k v / m m 

iLoss coefficient (tg ô ) at 20 C and 4000 megacycles 

E37 

99. 7%Aip3 

+0. 25% MgO 

~ 4 

3.99 

0 . 2 

< io"
1 2 

450 

53 

i o
1 4 

i o
1 2 

1 0 7 

30 
4 

1.10 

E 2 

97%Αΐ2θ3 
( res t s i l i 
cates) 
~ 10 

3 . 7 

7 . 2 

< i o - 1 2 

300 

30 

i o 1 3 

i o 1 1 

I O 6 

18 
-4 14. 10 

Finally; the anisotropic effect a lso advocates a f ine-grained s t ruc tu r e . 
Al O, has a hexagonal s t ruc ture and i ts t he rma l expansion depends on the 
crystal lographic orientat ion (the coefficient of expansion in the c-d i rec t ion 

) The t e r m "pure a lumina" is general ly used nowadays for A l - O , with minor 
additions of MgO. Additions of oxides to AI2O3 general ly resu l t in a d e 
c rease in the s trength, especial ly at elevated t e m p e r a t u r e s , because 
being situated at the grain boundaries they promote c rys t a l slip thereby 
contributing to plast ic flow. MgO is an exception to this rule ; it leads to 
an inc rease of the s t rength of the ce ramic by accelera t ing the s inter ing 
p rocess and inhibiting excess ive grain growth. 
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is 10-20% higher, depending on the t empera tu re range, than in a direct ion 
para l le l to the basal plane). In the event of two differently oriented gra ins 
meeting at a common grain-boundary, t he rma l s t r e s s e s a r e created when a 
change in t empera tu re occur s . These s t r e s s e s a r e direct ly proport ional to 
the contact a r e a i. e. the grain s ize . They add to the total s t ra in on the c e r a 
mic , thus leading to a dec rease in mechanical s t rength. 

The problem of producing a f ine-grained high puri ty alumina •was solved by 
reducing the sintering t ime to a minimum. In o rde r to obtain never the less 
a high density, the original ma te r i a l is f i rs t wet bal l -mil led and then s in t e r 
ed in vacuum evacuating the a i r from the pores below the sintering t e m p e r a 
tu re . Thus the pores close completely in spite of the shor t s intering t ime . 

o -5 
By sintering for 10 minutes, at 1900 C in a vacuum of 10 t o r r a product is 
manufactured with a density in excess of 99% of its theoret ica l value, a 
grain size below 10 mic rons and an average flexural s t rength of 53 k g / m m . 

Fig . 3 shows the s t ruc ture of the f ine-grained high-s t rength alumina E37, t o 
gether with a coa rse -g ra ined low-st rength alumina of same puri ty (which was 
made by means of a higher sintering t empera tu re and longer "soak" t imes) . 
There is a slight advantage of the coa r se -g ra ined alumina with r ega rd to 
light t r ansmiss ion , of which both c e r a m i c s a r e capable in the vis ible as well 
as the inf ra- red range up to a wavelength of approx. 7 m i c r o n s . F o r t h e r m 
ionic conver te r applications, however, this difference does not m a t t e r . 

3. METALIZING 
A seal operating t empera tu re of 1000 C being envisaged, only brazing alloys 
with a melting point above 1400 C were considered. This means that ra ther 
high firing t empera tu re s had to be used for meta l iz ing. With r ega rd to the 
ce ramic there is no problem, because E37 can be heated up to 1950 C with
out i r r e v e r s i b l e change in shape. Conventional metal izing p r o c e s s e s how
ever , for example the well-known Mo-Mn p r o c e s s , can not be used. Apar t 
from the brazing t empera tu re being too low, the ce ramic mus t contain at 
least 1% S1O2 for the p roces s to function sat isfactori ly, but this SÍO2 content 
would render the ce ramic susceptible to at tack by ces ium vapor . 
It has a l ready been t r ied to substi tute the S i 0 2 by the cesium res i s t en t Y2O3» 
and this Y^O^-bearing alumina has successfully been metal ized with pure 
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tungsten powder [ 8 J . The Y?^3 a a a i t i ° n r e su l t s however in a significant 
drop of the mechanica l s t rength of the ce r amic due to the crea t ion of cav i 
t ies and s t ruc tu ra l imperfections. In o rde r to avoid such unfavourable s ide -
effects on the p rope r t i e s of the c e r a m i c , metal izing p romoto r s were not 
added to the ce r amic itself but included in the metal iz ing suspension. 

Tungsten was chosen as metal iz ing m a t e r i a l . An init ial study of different 
W powders showed that the quality of the metal iz ing layer depends strongly 
on the grain size of the powder used . The best r e su l t s regarding vacuum 
tightness and bond strength were obtained with the two finest grained pow
de r s which were retained for al l further invest igat ions. 

Fig . 4 is a photograph of the finest grained W powder having an average 
grain size of 0. 05/u and a specific surface of 6. 1 m / g ). Powder m e t a l l u r 
gists a r e well aware of the fact that fine grained powders a r e m o r e difficult 
to work with than c o a r s e r grained f rac t ions . As a resu l t , it was not possible 
to obtain a continuous coating by brushing on this powder. On s inter ing, 
c racks developed in the layer so that a second layer had to be applied and 
s intered in o rde r to obtain a vacuum-t ight sea l . This difficulty was not en
countered while using a slightly c p a r s e r powder (grain size between 0. 1 and 
1 m, specific surface 3. 6 m / g ) , which gave equally good resu l t s regarding 
vacuum t ightness and bond s t rength. The metal izing suspensions -with this 
powder were p repa red by bal l -mil l ing in i soamylaceta te for 250 hou r s . It 
was seen by x - r a y diffraction that this t r ea tmen t resul ted in lat t ice s t ra in , 
thus increas ing the sintering activity of the powder. 

As metal izing promotor additions of 0. 5 to 7. 5 w/o TiO^ were used at f i r s t . 
The result ing c e r a m i c - m e t a l joints had however an average bond strength 
of less than 7 kg /mm^ which, according to pas t experience with other m e t a l -
ization p r o c e s s e s , does not give a re l iable high vacuum sea l . It was fur ther 
more noted that the bond strength dec reased with increas ing T1O2 content, 
and that tensi le t es t s samples general ly fractured in the c e r a m i c . Examina 
tion under the microscope showed that the grain size in the ce r amic f rac ture 

) In a s ses s ing the grain size from fig. 4 it should be noted that considerable 
agglomerat ion has occur red . 
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increases -with increasing TiU2Content in the metalizing suspension. This 

result was not particularly surprising as TiO_ is an active grain growth pro-

motor. In the present instance, the TiO? fraction of the metalizing layer 

diffuses along the grain boundaries into the ceramic matrix and causes the 

above mentioned grain growth. Figs. 6a and 6b are photographs of the cera

mic areas in contact with the metalized layer. A TiO£ content of 7. 5 w/o in 

the metalizing mixture together with a firing of 20 minutes at 1900 C is suf

ficient to increase the grain size by a factor 20, i. e. grain diameters above 

100 microns can be seen. This results in a drastic reduction in the mechani

cal strength (see chapter 2) accounting for the above mentioned observations 

of fractures in the ceramic and decreasing strength with increasing TiO_ 

content. 

Significantly better results were obtained when Y2O3 instead of T1O2 was 

added to the tungsten powder. In contrast with TKK, ^2^3 * s n o * a g r a i n 

g r o w t h p r o m o t o r so tha t t he s t r u c t u r e a s we l l a s the m e c h a n i c a l p r o p e r t i e s 

of the c e r a m i c r e m a i n p r a c t i c a l l y unchanged du r ing the f i r ing of the m e t a l i 

z ing l a y e r . The Υ , Ο , con ten t w a s v a r i e d b e t w e e n 0. 5 and 5 w / o . The b e s t 

r e s u l t s - bond s t r e n g t h b e t w e e n 13 and 15 k g / m m - w e r e ob ta ined for a 

Y2O3 con ten t of 2 w / o . V a l u e s of up to 18 k g / m m w e r e ob ta ined wi th 5 w / o 

Y 2 0 , , but the r e s u l t s w e r e not r e p r o d u c i b l e . (All bond s t r e n g t h s r e p o r t e d 

in t h i s c h a p t e r w e r e d e t e r m i n e d wi th C u - 2 N i b r a z e d t e n s i l e t e s t s a m p l e s a s 

shown in f ig. 11; d e t a i l s r e g a r d i n g the t e s t p r o c e d u r e a r e d e s c r i b e d in 

c h a p t e r 6). 

T a b l e 2 l i s t s t he bond s t r e n g t h s ob ta ined wi th d i f fe ren t f i r ing cond i t ions 

( t ime and t e m p e r a t u r e ) . T h e s e r e s u l t s show tha t the bond s t r e n g t h i n c r e a s e s 

c o n s i d e r a b l y wi th the f i r ing t e m p e r a t u r e . A m a x i m u m va lue •was not ob ta ined . 

The f i r ing t i m e i t se l f i s of no s ign i f i cance in the i n v e s t i g a t e d r a n g e . 

T a b l e 2 : Bond s t r e n g t h a s a funct ion of the f i r ing t e m p e r a t u r e and t i m e . 

M e t a l i z i n g : W + 2 w / o Y 2 ° 3 

F i r i n g a t m o s p h e r e : w e t N_ + 20 v / o H2 (dew poin t 18 C) 

f i r ing t e m p e r a t u r e , C 

1700 
I9OO 
1900 
2000 

f i r ing t i m e , m i n 

20 
10 
20 
10 

bond s t r e n g t h , k g / m m 

8 . 4 
1 3 . 4 
1 3 . 5 
1 5 . 7 
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In o rde r to study the effect of the mo i s tu re content of the firing a tmosphere 

on the bond s t rength, the dew point was var ied between 18 C and 35°C, 

While firing t e m p e r a t u r e and t ime w e r e kept constant. The resul t i s plotted 

in fig. 5 which shows that the bond s t rength i nc rea se s with decreas ing dew 

point. This effect may be due to pa r t i a l oxidation and evaporat ion of the 

tungsten layer with increas ing m o i s t u r e content. 

In cont ras t to TiO_containing meta l iz ing suspensions which lead to f rac tures 

ent i rely in the c e r a m i c , additions of Y?^ * r e s u l t e d in f rac tures in the m e t a l 

izing layer , the b raze as well a s the c e r a m i c . In the major i ty of c a s e s , e s 

pecially at high bond s t rengths , pa r t i a l tear ing out of a thin c e r a m i c layer 

took place; the r e s t of the f rac tured surface showed remnants of brazing m a 

t e r i a l and metal izing layer (see fig. 7). Occasionally the brazing m a t e r i a l 

penetrated through the metal iz ing layer on to the c e r a m i c surface . 

4. METAL PARTNER 

As me ta l p a r t n e r of the sea l N b  l Z r was chosen, pr incipal ly for the follow

ing r e a s o n s : 

 Melting point: sufficiently high (2500°C) 
 The rma l expansion: close to E37 (see table 3) 
 Cs r e s i s t a n c e : excellent , even to liquid Cs at 1000°C [ 9 ] 
 Workabili ty: good, can be spinned well 

Table 3 : T h e r m a l expansion of Nb, N b  l Z r and high puri ty alumina (E37) 

[ 1 0 ] * ) , [ 11 ] ·*) 

Tempera tu re range 

°C 

20 300 
20 400 
20 500 
20 600 
20 700 
20 800 
20 900 
201000 
201100 
201200 
201300 
201400 

Coefficient of average l inear t h e r m a l expansion 

i o é / ° c 

E 3 7 

6.75 
7.05 
7.34 
7.61 
7.84 
8.05 
8.23 
8.39 
8.52 
8 .7 

8 .9 
9 . 0 

N b  l Z r 
pur i ty : 99 .9% 

7.56 
7.63 
7.71 
7.78 
7.86 
7 .96 
8.04 
8.11 
8. 18 
8 . 2 

8 . 3 

8 . 4 

Nb 
pur i ty : 99. 9% 

7.28 
7.41 
7.51 
7.62 
7.73 
7.84 
7.94 
8.04 
8.13 
8 . 2 

8 . 2 

8 . 3 
ι ι ι ι ι Ι I I I ' l l I 

*) Test Method: Di la tometer ADAMEL type DHT 602. 
**) Test Method: Di la tometer LEIT Ζ type Bollenxath 
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As can be seen from table 3, a lso Nb matches relat ively well with the t h e r 
mal expansion of E37; N b - l Z r is p re fe r r ed because of i ts higher s trength 
and lower c reep ra t e s at elevated t empera tu re s [ 1 2 ] , and because the re is 
much less grain growth during the h igh- tempera ture brazing cycle than in 
pure Nb. 

5. HIGH TEMPERATURE BRAZING PROBLEMS 
Because of the envisaged seal operating t empera tu re of 1000 C and the opt i
mum firing t empera tu re of the metal izing layer between 1900 and 1950 C 
(see table 2), only brazing ma te r i a l s with a melt ing interval between 1400 C 
and 1900 C were considered. Among the p rope r t i e s , which an ideal brazing 
ma te r i a l should have, a r e the following ones: 

a) Resis tance to Cs vapor . 
b) Good wetting of N b - l Z r without ser ious at tack. 
c) Good wetting of the metalizing layer , without deter iora t ing its adherence 

to the ceramic or the mechanical p roper t i e s of the c e r a m i c . 
d) Sufficient ductility so that foils and wi res can be made . 

Condition a) excludes the use of Au [ 1 3 , 14 ] , condition b) forbids higher 
percentages of Ni, Co and Fe in the brazing ma te r i a l because al l th ree form 
low melting eutect ics with Nb (1100°C [15 ] , 1235°C [ 1 6 ] and 1372°C [15 ] , 
respect ively) . By these res t r i c t ions the short l is t of conventional brazing ma
te r i a l s in the 1400 C to 1900 C range becomes st i l l shor te r (see e . g . [17 ] ). 
Therefore new brazing alloys had to be sought. Attention was mainly directed 
towards brazing ma te r i a l s based on Pd (T = 1550 C) and the th ree active 

° m 
meta ls Ti (Τ = 1707°C), Zr (T = 1852°C) and V (T = 1917°C). 

m ' m ' m ' 
A problem of all Pd based brazing m a t e r i a l s , investigated so far, is that 
they at tack the W metalizing layer . Fig. 8 shows a W metal ized E37 disk on 
which some Pd was melted for 60 sec; the Pd has migra ted in beads a c r o s s 
the surface, taking up the W and leaving a t r ack of uncoated ceramic behind. 
It was t r ied to dec rease this at tack by alloying the Pd, especial ly with W. 
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Table 4 contains some of the alloys tes ted . They a l l a t tack the metal iz ing 
layer more or l e s s severe ly . 

There is another problem with Pd brazing m a t e r i a l s : they dissolve a r e l a 
tively large quantity of N b - l Z r . Table 4 shows some resu l t s of t e s t s where 
a b raze ring of 6 m m inner d iamete r , made of wire of 0. 5 m m d iamete r , 
was mel ted on N b - l Z r sheet . 

Table 4 : Attack of N b - l Z r sheet by braze r ings (wire of 0 0. 5 m m ) . 

brazing m a t e r i a l 

P d 

Pd-10W 
Pd-20W 
Pd-8Mo 
Pd-15W-2Ni 
Pd-15W-5Ni 
Pd-15W-2Cu-2Ni 

t empera tu re 

1570 

1570 
1700 
1630 
1620 
1620 
1670 

t ime 
s e c 

90 
180 

90 
90 
90 

180 
180 

90 

depth of pene 
trat ion, m m 

0. 12 
0.15 
0.20 
0.25 
0.20 
0. 28 
0.33 
0.33 

r e m a r k s 

par t ia l ly mel ted 

par t ia l ly mel ted 

If for example a seal geometry is chosen a s shown in fig. 9a, the Pd is in i 
tially concentrated on a smal l region of the N b - l Z r wall and, on melt ing, 
somet imes succeeds in perforat ing the wall . This problem can be overcome 
by taking ca re that the Pd in the molten state is never concentrated on a 
smal l a r e a of N b - l Z r surface . One solution is a plane sea l geometry as 
shown in fig. 9b where the Pd is placed as a thin washer (50-70 m) into the 
brazing gap. If however, a cyl indr ical geometry is des i red , the problem of 
wall a t tack can be solved by using a sea l design as shown in fig. 10. T h e r e 
the N b - l Z r wall is protected against the Pd ring by one or seve ra l thin foils 
of a m a t e r i a l , which is sufficiently res i s t an t to Pd such as W, Mo or Ta; on
ly after enter ing the brazing gap Pd gets into contact with N b - l Z r . Some t e s t s 
of this seal design were successfully made with pure Pd, using two l aye r s of 
25yu W-foil. 

In the group of h igh- tempera tu re active meta l b r aze s (Ti, V or Z r basis) 
work is s t i l l under way. The genera l impress ion so far is that these brazing 
alloys wet N b - l Z r well without excess ive at tack. But they al l r eac t with the 
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c e r a m i c , especial ly strongly if the ce ramic is not metal ized (erosion), 
reducing the mechanical s trength in this react ion zone. 

The best brazing m a t e r i a l found so far in this group is V-30Nb-5Ti (brazing 
t empera tu re 1805 C). It was derived from the minimum-melt ing-point-
composition in the V-Nb-sys tem (V-35Nb [ 16] } , Which could not be worked 
into wi res unless its ductility had been increased by a 5 w/o Ti addition. 
V-30Nb-5Ti wets N b - l Z r well without ser ious attack, but it pene t ra tes 
through the W metalizing layer . The result ing seal can be considered as 
a compromise solution between a meta l iz ing-p lus-braz ing joint and an a c 
tive meta l seal , with the metal izat ion fulfilling two functions: it enhances 
the entry of the fused alloy into the brazing gap, and it p ro tec ts the ce ramic 
against too violent at tack from the active components of the brazing alloy. 

Summing up one can say that an ideal brazing m a t e r i a l in the 1400 C to 
1900 C range has not yet been found. With regard to the l is t of p roper t i e s 
mentioned at the beginning- of this chapter , none of the tes ted brazing m a t e 
r i a l s fulfills condition c. This means that high t empera tu re brazing will not 
resu l t in the high seal s t rengths as obtained with Cu-2Ni brazing. However, 
the tes t resu l t s repor ted in the following chapter show that even with p resen t 
non-ideal high t empera tu re brazing m a t e r i a l s seals of r a the r good quality 
can be made . 

6. PROPERTIES OF HIGH TEMPERATURE METAL-TO-CERAMIC SEALS 
The t e s t s reported here concern vacuum t ightness , tensi le s trength, the rmal 
cycling and cesium cor ros ion of meta l -ce ramic a s sembl i e s , made from W 
metal ized E37 and N b - l Z r by brazing with Pd or V-30Nb-5Ti. The t e r m 
"vacuumtight" will mean that the helium leakra te at room tempera tu re is 
sma l l e r than 10 t ö r r . l t r / s e c . 

Tensi le s t rength measu remen t s were made with m e t a l - c e r a m i c a s sembl ie s 
as shown in fig. 11 in an exploded view. The tes t p ieces were inser ted in a 
ZWICK tensi le tes t machine together with a cardan suspension which en
sured that the samples were subjected only to tensi le s t r e s s (fig. 12). 
Batches of 6 samples were used. The tes t resu l t s a r e shown in table 5, con-
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taining of each batch the average tens i le s t rength a s well as the highest and 

lowest va lue . 

Table 5 : Tensi le s t rength of differently brazed E 3 7 / N b  l Z r a s sembl i e s 

(at room t e m p e r a t u r e ) . 

Metalizing: W + 2 w/o Y2°3» fired 20 min at 1950°C in wet 

N , + 15 v / o H , (dew point 20 C). All brazing done in high v a 
» 5  6 

cuum (10 to 10 t o r r ) . 

b raze washe r 

Cu2Ni, 
60/u thick 

Ρ 
60 ΛΙ thick 

V30Nb5Ti 
80yuthick 

brazing 
conditions 

180 sec , 1150°C 
Mo furnace 

90 sec , 1570°C 
Mo furnace 

20 sec , 1570°C 
Mo furnace 

60 sec , 1805°C 
Ta furnace 

number of 
vacuum tight 
samples 

5 of 6 

6 of 6 

5 of 6 

3 of 6 

tensi le s t rength of 
vacuumtight samples 

kg /mm^ 

average 

14.3 

9 . 6 

highest 

15.6 

11.0 

10.0 j 13.6 

1 
8.4 | 8 .6 

¡ 

1 

lowest 

12. 6 

8 . 3 

6 . 8 

8 . 1 

As s tandard for compar ison , the table begins with a batch of Cu2Ni brazed 

samples showing an ave rage tens i le s t rength of 14. 3 k g / m m ; the rupture 

of a l l 5 samples occur red completely in the c e r a m i c . The table shows the 

data of two batches of Pd brazed samples with different brazing t i m e s . 

Bo'h batches have an average tensi le s t rength of about 10 k g / m m , but the 

bat :h with the sho r t e r brazing t ime shows a l a r g e r scat ter ing of the va lues . 

All Pd b razed samples ruptured between ce r amic and metal izing layer , 

leaving a clean and undamaged c e r a m i c surface; only at the edges smal l c e 

ramic p ieces were broken off. 

In the las t line of table 5 a r e the r e su l t s of a batch of V30Nb5Ti brazed 

samples which have a tensi le s t rength somewhat above 8 k g / m m . In con

t ra »t with Pdb raz ing , these samples ruptured in the c e r a m i c , close ( ~ 0. 5 

mm) to the b raze , indicating the weakening of the c e r a m i c by the action of 

the act ive components of the brazing al loy. 
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Thermal cycling t e s t s between 500 C and 1200 C were made in a high v a 
cuum Mo furnace. The t e m p e r a t u r e - t i m e - d i a g r a m of one cycle is shown 
in fig. 13. The heating speed was about 50 C/min, the cooling speed var ied 
between 200 C/min and about 4 C/min . In table 6 a r e the resu l t s of the t es t . 
The last column shows that al l samples withstood 100 cycles without fai lure. 

Table 6 : Resis tance to t he rma l cycling between 500 C and 1200 C. 
Metalizing: same as in table 5. 

seal design 

plane (fig. 9b) 

cyl indrical 

(fig. 9 a) 

brazing 

Pd 
foil 60/u thick 
20 sec7at 1570°C 

V-30Nb-5Ti 
wire 0. 8 m m ρ 
30 sec at 1805°C 

number of 
vacuumtight 
samples 
after brazing 

10 of 10 

11 of 14 

number 
of 

cycles 

100 

100 

number of 
vacuumtight 
samples af
t e r cycling 

10 of 10 

8 of 8 

Comparing the third columns of table 5 and 6 it can be seen that in the case 
of V-30Nb-5Ti brazing with a wire (cylindrical geometry) resu l t s in a much 
higher percentage of vacuumtight samples than brazing with a washer (plane 
geometry) . This may be due to diffusion p r i o r to melting leading to a change 
of the composition of the washer and result ing in incomplete liquefying and 
insufficient flowing at the brazing t e m p e r a t u r e . In case of a b raze wi re , 
this danger is evidently much sma l l e r because of the sma l l e r contact a r e a s 
and the l a rge r dis tances involved. 

All components of the present ly descr ibed seal and some complete m e t a l -
ce ramic assembl ies were subjected under r a the r clean conditions to a c o r 
rosion tes t of 1000 hours at 1000 + 10 C in ces ium vapor at about 20 t o r r (ce
sium r e s e r v o i r t empera tu re of 400 + 5 C). The apparatus is shown in fig. 14. 
The cor ros ion vesse l was a welded N b - l Z r container . After loading the con
ta iner with the samples and outgassing it at about 1000 C for 10 hours in a 
vacuum of 10 t o r r , ces ium (99. 9) was introduced under argon (UPPA); 

-5 
after pumping down to 10 t o r r for 6 hours at room t empera tu re , the con
ta iner was sealed by electron beam. The 1000 hour tes t was performed p ia -



- 625 

cing the container (wrapped in Zr-foil) under dynamic high vacuum inside 
a s intered quartz tube which was surrounded by a tubular furnace. An a p 
pendix of the tes t ve s se l reached out of the heated zone and was adjusted so 
that i ts coldest par t , serving as ces ium r e s e r v o i r , had a t empe ra tu r e of 
400 C. Tempera tu re s were m e a s u r e d with seve ra l thermocouples attached 
to the tes t ve s se l . 

Table 7 shows some resu l t s of the cor ros ion t e s t . There is p rac t ica l ly no 
cor ros ion of the re f rac tory meta l s (Nb, N b - l Z r , W, Ta) and of the 
V-20Nb-5Ti b raze , and only slight co r ros ion of the P d - and P t - b r a z e s . The 
tes t confirmed the excellent Cs co r ros ion res i s t ance of E37 [ 1 ] . 

Six meta l ce ramic tensi le tes t a s s e m b l i e s as shown in fig. 11, of which 3 
had been brazed with Pd and 3 with V-30Nb-5Ti ,were a lso included into the 
cor ros ion tes t ve s se l . The metal izing in this case was of the ear ly 
W + 5 w/o T1O2 type. All samples were st i l l vacuumtight after the tes t and, 
within the usual range of sca t ter ing, had the same tensi le s t rength as samples 
of the same batch which were not subjected to the co r ros ion tes t . 

E a r l i e r work had shown that the chemical ine r tness of pure AI2O3 is a func
tion of its grain s ize . It was therefore in teres t ing to see whether the gra in 
size a lso had an influence on Cs cor ros ion . F o r this purpose samples of 
E37 with normal and increased gra in size were incorporated into the above 
tes t . No change in the surface of these samples could be detected under the 
optical mic roscope at magnifications up to lOOOx. F u r t h e r examination with 
an e lec t ron microscope at l a r g e r magnifications revealed smal l etch pi ts 
having a d iamete r of about 0. 5/u and a depth of about 0. 1 ,u (fig. 15). The ob
servat ions with the e lec t ron mic roscope indicated that the surface of the fine 
grained s t ruc tu re was l e s s attacked than that of the coa r se one. Even for a 
single sample , as the fine grained one shown in fig. 15, the pitting at tack 
can be seen to depend on the size of the individual g r a in s . However, one 
may state with confidence that the above effects will not influence the phys i 
cal p rope r t i e s of the ce ramic body. 



626 

Table 7: Corros ion during 1000 hours at 1000 C in cesium vapor 

(cesium r e s e r v o i r t empera tu re 400 C) ¡.18 j 

ma te r i a l 

N b  l Z r 

W 

Ta 

V20Nb5Ti 

P d 

P t 

BeO ( > 9 9 . 5 

A 1 2 ° 3 
(99. 7 A 1 2 0 3 

+ 0. 25 MgO) 

Z r 0 2 

(97 stab. ) 

Z r 0 2 

(93.7 Z r 0 2 

+ 5 CaO+Hf) 

M g O . A l 2 0 3 

MgO 

MgO (99) 

origin 
(type) 

Heraeus 

Plansee 

Heraeus 

Metal lgesel l 
schaft 

Degussa 

Degussa 

) CGEC 

Feldmühle 
(E37) 

Degussa 
(Zr 23) 

Bed in er Qiarz 
schmelze 
(ihermalZrO^ 

Degussa 
(Sp 23) 

Berijner Quarz 
schmelze 
(Ihermal ZrO^ 

Koppers 

— — — — — ■ 

density 

/ 3 
g / c m 

2 . 8 5 
2.95 

3.99 

5 .4 

4 . 5 
5.1 

3 . 3 

3 . 3 
3.4 

3 . 0 

sample 
weight 

g 

7.0702 

1.6969 

13.3227 

2.9766 

1.4050 

0. 1879 

8.8703 

10.8926 

13.2949 

10. 2109 

8.4837 

9.0953 

7.0992 

weight 

total 

mg 

+ 1.4 

+ 0.2 

+ 0.4 

+ 0.7 

 14.2 

+ 7.2 

 0.8 

 2.5 

+ 26.2 

 7.6 

+ 45 .5 

36 .7 

change 

pe r 

surface 

m g / c m 2 

+0.08 

+0.02 

+0.01 

+0.05 

 4 . 6 

+3. 6 

0 .04 

 0 . 14 

+1.4 

 0 . 5 

+ 2. 6 

 2 . 6 

comments 

no change 
in appea r 
ance (bright 
surface) 

bright, weak 
grain etching 

rough surface 
grain etching 

formation of 
large grains, 
grain etching 

slightly d i s 
coloured at 
edges 

slightly grey 

grey 

slightly grey 

grey, p a r 
tially m e t a 
lized 

black, d i s 
integrated 

black and 
grey s ta ins ; 
sample porous 
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CONCLUSIONS 

Meta l  t o  ce ramic sea l s for high t e m p e r a t u r e applications having high 

s trengtn and good r e s i s t a n c e agains t Cs co r ros ion and t h e r m a l cycling can 

be made between the alumina E37 and N b  l Z r by a s in tered meta l powder 

p r o c e s s . The best adherence of the metal iz ing l aye r is obtained using a 

suspension of submicron W powder with 2 w /o Y2O3 * n i soamylace ta te , ball 

mil led for 250 hours , brushed on to the ce r amic and fired for 10 to 20 min 

between 1900°C and 1950°C in an a tmosphere of wet N 2 + 15 v / o H 2 (dew 

point 20°C). High t empe ra tu r e brazing can be made with Pd (at 1570°C) and 

V30Nb5Ti (at 1805°C), both in p lanar and cyl indr ical geomet ry . P r o b l e m s 

of wall a t tack with Pd can be overcome by suitable sea l designi 
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m e t a l i z i n g v e r s u s dew poin t of f i r ing a t 
m o s p h e r e (f i r ing of 10 m i n a t 1900°C in 
N 2 + 20 v / o Hg) 
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a: no TiO b: 7. 5 w/o TiO. 

F ig . 6: Grain growth promoted by TiO addition to the metalizing suspen
sion (firing of 20 min at 1900 C) 

Aiy\n\ 

Fig. 7: Ce ramic me ta l f racture 
(view of N b  l Z r surface) 

F i ifiî 8: Wmetal ized E37 after expo
sure to liquid Pd for 60 sec 
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ALUMINA (E 37) 
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Fig. 11: Components of 
tensile test sample 

Fig. 13 : Thermal cycle 

Fig. 12: Sample inserted 
in tensile test machine 

^ ^r-SINTERED QUARTZ TUBE 

VACUUM 

FURNACE—' *-TEST VESSEL Cs RESERVOIR-

Fig. 14: Cesium corrosion test apparatus 

Fig. 15: Surface of E37 after 1000 hours at 1000 C in cesium vapor of 
20 torr. 
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DISCUSSION 

Speaker of paper E - 5 : E . A. DÖRRE. 

BUGL (Euratom): What was the sintering t empera tu re and vacuum p r e s 
sure to obtain the fine grain size of the Al O c e r a m i c s ? 

DÖRRE (Germany): The sintering t empera tu re was about 1900 C and the 
vacuum p r e s s u r e was about 10 T o r r . 

BUGL: Did you consider the possibi l i ty of obtaining this s t ruc ture a lso by 
means of isosta t ic hot p re s s ing? 

DÖRRE: Yes, we did, but i sos ta t ic hot p ress ing is a very expensive p r o 
cess with res t r i c t ions in size and shape of the pa r t s produced. The ce ramic 
m a t e r i a l E 37, here descr ibed, however, is a regular commerc ia l high 
puri ty, high density alumina quality, used for many other applications with 
no res t r i c t ions in size or in shape. 

SCHOCK (USA): How was the metal l izing applied? 

DÖRRE: By brushing. 

SCHOCK: What is the liquid medium? 

DÖRRE: The liquid medium is i soamylace ta te . . 

SCHOCK: Did the Pd attack the meta l during brazing, or during subsequent 
tes t ing? 

DÖRRE: During brazing. 

SCHOCK: What was the time and t empera tu re of the brazing p r o c e s s ? 

DÖRRE: They a r e dependent on the brazing alloy and a r e descr ibed in d e 
tail in the paper . 

HARBAUGH: What was the brazing alloy used in the 1000°C, 1000 h t e s t ? 

DÖRRE: The brazing ma te r i a l s in this case were copper-nickel , palladium 
and an active alloy consisting of niobium, vanadium, t i tanium. 

HARBAUGH: Was any change in the alloy observed by cross -sec t ion ing the 
sea l? 

DÖRRE: We did not observe any change. 
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I  I N T R O D U C Τ I 0 li 

La technologie des convertisseurs thenao ioni quos ainsi que collo dos capsulos 

d'irradiation nécessite l'emploi de r.atériaux ot do scellements, isolantmétal, 

fonctionnant à dee températures allant jusqu'à 1 500° K, résistant à la corro

sion par le césium, aux radiations, tout en restant otanches au vide. 

Le présont article concerne les scellements isolantmétal utilisant soit la 

technique de la metallisation préalable, soit la brasure directe. 

Cn prosontera quelques types de réalisation. 

II  TECIIHIO.TJE ÏÏ2S SCBLLUHnS 

II. 1. Scellements directs 

On entend par scellement direct la liaison directo entro 1'alumino et le 

métal à l'aide d'une brasuro. Dans certains cas pour favoriser le scollomont 

on utilise un agent do liaison : do l'hydrure do titane par oxeraple. Le métal 

est en général rocouvort do cuivro ou do nickel afin d'améliorer la mouillabi

lité do la brasure ou d'éviter la corrosion fissurante Le tableau 1 donne les 

différentes possibilités do liaison. 

II.2. Sccllomonts après metallisation de la céramique 

Il existe plusieurs typos do metallisation, qui ont un point commun, ils 

possedont au moins un matériau refractaire do base. 

On pout metalliser do différentes manieres : 

 por sérigraphie, 

 au pistolet, 

 au pinceau, 

 au trempé, 

 par schoopago au pistolet a plasma, 

 par evaporation, 

 por dépôt en phase vapeur d'un composé halogène. 

Dans tous les cas il est nécessaire de chauffer à haute temperature la 

céramiquo badigeonnée pour obtenir une bonne liaison entre le métal déposé 

ot la base. 
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Lo tableau 2 donno los différents typos do metallisations associés aux 

alumines. En général les suspensions utilisées pour los dépôts au pinceau, au 

pistolet, au trempé oti par sérigraphie diffèrent entro elles par leur viscosité. 

Lo liant organique composant la suspension lo plus communément utilisée ost α 

baso d'acétate do butylo, do collodion et d'oxalate d'ethyle. Los épaisseurs do 

dépôts varient entre 10 et 20 ,u pour le dimolybdato do lithium, 20 ot 60 Ai pour 

la metallisation au molybdène titano ot sont do l'ordre d'une centaine dc mi

crons pour les metallisations au tungstèno ou au niobium. On notera qu'après 

frittage, les metallisations subissent un retrait dc l'ordro do 50 #, α l'excep

tion de colles réalisées par plias o vapeur. 

Los brasuros utilisées ainsi que les métaux auxquels sont raccordées los 

céramiques sont classés dans le tableau 3. 0 n peut, pour amélioror lo mouil

lage dc la brasure, dans certains cas utilisor des dépôts de cuivro ou dc 

nickel sur le métal do liaison. De la môme manière on ompôchc la brasure do 

pénétror dons la metallisation par un rovôtomont protecteur. 

III  R E S U L T A T S 

111.1. Essais do traction 

Dans Ίο cas dos scollomcnts avec metallisation au molybdèno titane et 
brasure au nickel or ot au nickel cuivre or la résistance α la traction sur 

uno éprouvotto de forme cylindrique est compriso entro 2 et 4 kg/ma" . Dons 

lo cas dos scellements directs la résistance à la traction est do l'ordre de 

3 kg/mm" pour 1'outoctiquo ¿gCu. On a pour la brasure nickel titane des 

vamours identiques. 

111.2. Essai do duréo sous 1'offot do la corrosion sous tension 

 a) Corrosion à l'air : Aucuno corrosion apparente incompatible avec l'étan

chéité a été décoléo dans los doux types do scellements, a l'oxcoption des 

sccllomonts au niobium tantalo fonctionnant à 700° C. En particulier les scel

lomonts directs à 1'outoctiquo argentcuivre ont duré plus do 2 000 houros 

a 400° C. Los sccllomonts par metallisation dure brasés au nickel or cuivro, 
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α l'or cuivro ot au cuivre métal ont dépassé 2 000 heures sans présenter do 

fuite. 

 b) Corrosion au césium : Los sccllomonts comportant des brasures contonant 

dos métaux nobles sont fortement corrodés. Seuls les scollemonts ou CuXi ou au 

nickel titano résistont à la corrosion au césium (plus de 6 000 heures de durée 

a 700° C). Il faut aussi signalor quo soulos los alumines très puros résistent 

a Ια corrosion par le césium ainsi que les metallisations no contonant pas de 

silicium ou dc for· 

 o) Corrosion a UP^ on phaso vapour : Les scollomont3 alumine, a 1'outoctiquo 

argent cuivre sur inox ou titano ont résisté plus dc 20 000 h h la température 

do 80° C onviron. 

 d) Corrosion par lo sodium liquide : Los scollemonts alumine brasés à 

l'argont cuivro sur l'inox rovotu d'un revôtomont éloctrolytique protoctour de 

cuivre nickel'n'ont pas présonté do furto après plusieurs centaines d'heures 

da fonctionnement. 

 o) Effot dos radiations : Les scollemonts du titane nickel, ainsi quo ceux 

a 1'outoctiquo CuAg ont résisté plus do 2 000 h sous flux do neutrons. 

r V  C O N C L U S I O N 

Los scellements avec ou sans metallisation préalable présentent un grand 

intorôt pour la réalisation d'oncointos étonchos. Les brasures no contenant 

pas do métaux noblos sont utilisables pour la réalisation do convertisseurs 

thormoioniquos au césium. La tonuo aux radiations ne semble pas être un problè

me dans lo cas dos scellements 4a titene ou à l'eutectique argent cuivre. 
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Tableau 1 

Scollemonts d i r e c t s 

« 

¿ilumino 

Alucer 99 

Wesgo 

Coors 

SItK 

Lucalox 

Saphir 

Spinel 

Sintox 

I Brasure 

L 

I Ag Cu 

Ag Cu Pd 

1 Ti Ni 

1 Ctüvre nickel 

I V 

| 

Llctal dc 
l i a i s o n 

Titane massif | 
Kovar + hydrurei 

de t i t a n e | 

Inox + hydrure . 
de t i t a n e ■ 

Cuivre + hydrurd 
de t i t a n e | 

Niobium 

Tantale I 

ITiobium ¡ 

| 

e f 
brasure 

730» C 

810° C 

942° C 

1050° C 

1850° C 

L 

J  

 _ | _ 

Θ t ' , 
f onct  j 

600° C I 

I 

700° C ¡ 

15000 c j 

T a b l e a u 2 

I I " * " I I I 

', , , . .' , . , . , , . . . ¡ iode do J θ° C I 
! Alumine ! L e t a l l i s a t x o n ! a¿j?H ! f r i t t c é e ¡ 

i t t ! ι 
\ 94 # J ¡.¡olybdène  t i t a n e ¡ Sérigraphie J 1500· C j 
\ ¡ ' P i s t o l e t J , 
¡ J j Pinceau ! , 

i ¡ i Trempe , j 

!  ! ' ! ! 
J 97/« ¡ Uolybdène  t i t a n e '. " ! J 

1 1 1 + . _ l 

! _, ! ι · ! 
j 99 5* , Uolybdate de l i thium , Pinceau . 1700° C , 
, j Tungstène ¡ Pinceau | 1800° C J 
J , Niobium ¡ Phase vapeur , 1800° C ¡ 

• · · · ■ 
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T a b l e a u 3 

1 Céramiques 

j Alucer 99 

1 Ve s go 

1 Coors 

| S Ρ K 

! Lucalox 

! Saphir 

1 Spinel 

¡ 3intox 

Ι Brasure 

L J 

' Ag Cu 

1 Ili Au 

1 Ni Au Cu 

, Au Cu 

Cu iii 

i Pd Co 

1 Pi 

j Hb V 

Liétal de 
liaison 

J 

Titane 

Kovar 

Cuivre 

Kovar 

Cuivre 

Kovar 

Cuivro 

Lolybdène 

Kovar 

Cuivre 

ITickcl 

Niobium 

Kovar 

Niobium 

11 

II 

ö
f ! 

brasure 

_ . J 

700 

950 

910 

ICI? 

1100 

1250 

1550 

1810 

β | 

fonctionnement | 

500 | 

II 

II I 

700 

700 

100C 

1200 

I 1500 

μ 
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MULTI-FOIL THERMAL INSULATION 

USING OXIDE PARTICLE LAYER SEPARATION 

by 

John B. Dunlay 
Thermo Elec t ron Corporat ion 

85 F i r s t Avenue 
Waltham, Massachuse t t s 02154 

ABSTRACT 

Current work is descr ibed on the development of mult i -foi l 

t he rma l insulation using oxide par t i c le layer separa t ion . The insulation 

consis ts of thin me ta l foils coated with high-pur i ty re f rac to ry oxides. 

The me ta l foils act as t he rma l radiat ion shie lds , and the oxide coating 

prevents d i rec t m e t a l - t o - m e t a l contact between adjacent foils. 

The hea t - t r ans fe r cha r ac t e r i s t i c s of the insulation a r e d i scussed 

as a function of the heat source t e m p e r a t u r e and the oxide par t i c le s ize . 

Cyl indr ica l - to-p lanar edge configurations a r e descr ibed , and m e a s u r e d 

edge heat los ses a r e p resen ted . 

The work descr ibed in this paper was sponsored by the United 

States Atomic Energy Commiss ion under Contract No. AT(30-1 )-3634. 

INSULATION DESCRIPTION 

Multi-foil t he rma l insulation cons is t s of thin me ta l foils coated 

with oxide pa r t i c l e s . The foils a r e closely spaced and act as radiat ion 

shields . Heat t r ans fe r through the insulation is p r i m a r i l y by radiat ion. 

The oxide par t i c les form a thin, discontinuous coating on each foil. The 

smal l coverage of the pa r t i c l e s , plus the interface contact r e s i s t a n c e s , 

r esu l t s in min imum solid-conduction heat t r ans fe r . To el iminate 

gaseous conduction the insulation m u s t be operated in a vacuum 

environment. 
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An i n s u l a t i o n a s s e m b l y is f a b r i c a t e d u s ing b a s i c s e c t i o n s of 

c y l i n d r i c a l and p l a n a r fo i l s . T h e s e con f igu ra t i ons a r e i l l u s t r a t e d in 

F i g u r e 1. The c y l i n d r i c a l s e c t i o n is f o r m e d by s p i r a l l y w r a p p i n g a 

cont inuous length of foil . The p l a n a r or end s e c t i o n s c o n s i s t of s t a c k e d 

foil d i s k s . The foil t h i c k n e s s is t y p i c a l l y 0 . 0 0 0 5 inch , and the oxide 

p a r t i c l e s a r e a p p r o x i m a t e l y 0. 0005 inch in d i a m e t e r . A t h i c k n e s s of 

0. 001 inch is t h e r e f o r e r e q u i r e d for each foil l a y e r in the i n s u l a t i o n 

a s s e m b l y . 

The oxide p a r t i c l e s a r e app l i ed to the foi ls in the s p r a y r i g 

shown in F i g u r e 2. R e p r o d u c i b i l i t y of the s p r a y cond i t ions is a c h i e v e d 

by m e a n s of a m o t o r - d r i v e n c o n v e y o r b e l t and r e e l . The oxide p a r t i c l e s 

a r e m i x e d wi th a b i n d e r for the s p r a y i n g o p e r a t i o n . Af te r f a b r i c a t i o n 

of the p l a n a r and c y l i n d r i c a l s e c t i o n s , the c o m p l e t e i n s u l a t i o n a s s e m b l y 

is f i r ed in v a c u u m to r e m o v e the b i n d e r and ou tgas the i n s u l a t i o n . 

R e f r a c t o r y m e t a l foils w e r e i n v e s t i g a t e d for h i g h - t e m p e r a t u r e 

a p p l i c a t i o n s up to 1900°C. W, W(2 5%)Re, T a , and Mo foi ls w e r e 

t e s t e d in c o m b i n a t i o n wi th ThO and Y O . No g r o s s c h e m i c a l r e a c t i o n 

b e t w e e n the foil and the oxide w a s o b s e r v e d in any of the fo i l -ox ide 

c o m b i n a t i o n s . V a r y i n g d e g r e e s of bonding o c c u r r e d , h o w e v e r , b e t w e e n 

the foi ls and o x i d e s , and th i s bonding s t r o n g l y af fec ts the conduct ion 

h e a t - t r a n s f e r componen t t h r o u g h the i n s u l a t i o n . Ta and Mo in c o m b i n a 

t ion wi th both t h o r i a and Y „ 0 „ w e r e found s a t i s f a c t o r y for ex tended 
2 3 y 

o p e r a t i o n a t t e m p e r a t u r e s up to 1600° C. E x c e s s i v e bonding o c c u r s 

above 1600°C. C o m b i n a t i o n s of W and W(2 5%)Re wi th ThO and Y ? 0 

a r e s a t i s f a c t o r y at o p e r a t i n g t e m p e r a t u r e s of 1700° C. S o m e bonding 

o c c u r s at 1900°C, h o w e v e r , a f t e r 2000 h o u r s . In g e n e r a l , ThO_ a p p e a r s 

to be m o r e r e s i s t a n t to bonding wi th the r e f r a c t o r y m e t a l s t han does 
ΥΛ· 

Two d i f fe ren t foil m a t e r i a l s m a y be. u s e d for the i n s u l a t i o n of 

hea t s o u r c e s o p e r a t i n g a t t e m p e r a t u r e s above 1600°C. W or W(2 5%)Re 
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is used for the insulation foils operat ing above 1600°C As the t e m p e r a 

tu re is reduced through the insulat ion, the foils can be changed to Ta or 

Mo. The use of Ta or Mo is general ly des i rab le where possible from 

fabrication and avai labi l i ty cons idera t ions . 

Pt , Ni, Cu, and Al a r e being invest igated in combination with 

Al O and Z rO for l ow- t empera tu r e appl ica t ions . Bonding studies 

indicate that Z rO is consis tent ly super io r to Al O . After 500-hour 

t e s t s , the max imum operat ing t e m p e r a t u r e s for Z r O -coated foils a r e : 

Pt - 1000°C, Ni - 1000°C, Cu - 600°C, and Al - 500°C. 

THERMAL PERFORMANCE 

Tes t s w e r e pe r fo rmed to invest igate the effects of oxide par t i c le 

s ize on the hea t - t r ans f e r c h a r a c t e r i s t i c s of the insulat ion. These t e s t s 

w e r e c a r r i e d out in a planar t e s t a s sembly . The insulat ion samples 

a r e located between a ca lo r ime te r and an e l ec t r i ca l hea te r block which 

forms the h igh - t empera tu r e heat source . The c a l o r i m e t e r m e a s u r e s 

the heat flowing from the heat source through the insulat ion sample to 

the c a l o r i m e t e r . 

The r e su l t s of these t e s t s a r e p re sen ted in F igure 3. Only smal l 

changes in heat flux a r e observed for ave rage pa r t i c l e s i zes varying 

from 1 to 25 m i c r o n s . The insensi t iv i ty of the r e su l t s applies over 

the en t i re range of source t e m p e r a t u r e s invest igated (800°C to 17 50°C). 

These tes t data w e r e obtained using Mo - ThO_ insulat ion s ample s . 
Cu 

Recent data obtained for other r e f r a c t o r y - m e t a l foils in combination 

with ThO indicate very s i m i l a r values of heat flux a s a function of 

source t e m p e r a t u r e . Thus the curve shown on F igure 3 is genera l ly 

r ep re sen ta t ive of the r e f r a c t o r y - m e t a l foil insulat ion pe r fo rmance . 

Included in F igure 3 a r e the r e su l t s of l ow- t empera tu r e t e s t s using 

N i - Z r O _ insulat ion. These l o w - t e m p e r a t u r e data a r e consis tent with 
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the h igh- t empera tu re data and indicate that radiat ion is the dominant 

hea t - t r ans fe r mechan i sm in the insulation, even at source t e m p e r a t u r e s 

as low as 200°C. 

The average the rmal conductivity of the insulation is shown in 

F igure 4. These values of the rmal conductivity apply for sink t e m p e r a 

tu res of approximately 30°C, an insulation thickness of 0. 002 5 cm per 

foil l ayer , and a source t e m p e r a t u r e as indicated in the figure. The 

magnitude of the average t he rma l conductivity is in the 10 w a t t s / c m - 0 C 

range and i nc rea se s with increas ing source t e m p e r a t u r e . 

EDGE EFFECTS 

In a complete mult i - foi l insulation a s sembly , discontinuit ies 

occur in the foil l aye r s at the edge of the planar and cyl indrical sect ions . 

These discontinuit ies can es tabl ish additional radiat ion and conduction 

hea t - t r ans fe r paths through the insulation. Since heat t r ans fe r d i rect ly 

through the insulat ion is very smal l , the heat l o s se s through the edge 

can r e p r e s e n t a significant fraction of the total heat loss from a com

pletely insulated heat source . 

Three configurations have been tes ted to invest igate edge heat 

l o s s e s . These configurations a r e i l lus t ra ted in Figure 5. The overlap 

and taper configurations have proven to be very effective and a r e r e l a 

t ively easy to fabr icate . Heat l o s se s through each of the edge configura

tions a r e shown in F igure 6. The taper configuration exhibits the 

lowest heat l o s s , with a value of 0. 2 5 w a t t / c m of edge for a source 

t e m p e r a t u r e of 1700°C. 

SUMMARY 

The mult i - foi l t h e r m a l insulation concept using oxide par t ic le 

separa t ion of the foils was proven to be very effective in reducing heat 

l o s se s from h igh - t empera tu re heat s o u r c e s . Recent t e s t s show that 
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the effectiveness of the insulation extends over a wide t empe ra tu r e 

range (200°C to 1700 rC). Radiation is the p r i m a r y hea t - t r ans fe r 

mechan ism through the insulation. The radiat ion hea t - t r ans fe r char 

ac t e r i s t i c s plus the close foil spacing achieved by the use of oxide 

par t ic le separat ion resu l t in very low values of t he rma l conductivity. 

Where heat loss or insulation thickness is a dominant design p a r a m e t e r , 

this insulation, concept offers the potential of significant improvement 

in sys tem efficiency. 
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DISCUSSION 

Speaker of paper E - 7 : J . B . DUNLAY. 

GROSS (Germany): How is the stabili ty of the l ayers with r ega rd to t ime? 

DUNLAY (USA): The m a t e r i a l t e m p e r a t u r e s that I mentioned -were based on 
compatibili ty t e s t s , where -we run m a t e r i a l s together , typically for a tes t 
period of 2, 000 hour s . And thè condition which es tabl i shes the maximum 
t empera tu re that you can run at is where the two m a t e r i a l s s t a r t to bond 
together to form the rma l conduction pa ths . 

GROSS: When did this happen? At about 2, 000 h o u r s ? 

DUNLAY: We made the tes t and if bonding occurs at the tes t t empe ra tu r e 
then we say that is too hot. Then -we go to a lower t empera tu re and evaluate 
at that much lower t e m p e r a t u r e . 

RIA BIKO V (USSR): Does the t he rma l r e s i s t ance of s imi la r mul t i - l aye r s y s 
t ems change after a s e r i e s of t he rma l shocks? 

DUNLAY; We have tes ted under vibrat ion type conditions and we do not see 
any change in the rma l .pe r fo rmance . These a r e vibrat ion conditions -which 
a r e s imi la r to launch conditions for space vehic les . 
Also with t he rma l shocks we do not see any difference. We can build a 
device, heat it up, and cool it down many t imes and see no difference in 
the rmal per formance . 

RASOR (USA): Do you have any new data on the load bearing abi l i t ies of 

the multifoil? 

DUNLAY: We a re making more load bearing m e a s u r e m e n t s now. I do not 
have any of the data with m e . Typically the insulation is r e s t r i c t ed to fa i r 
ly light loads in o rde r to maintain its low value of t he rma l conductivity. 

GUSKOV (USSR): Would you indicate the specific e lec t r i ca l r e s i s t ance of 
the l ayers ? 

DUN,LAY: We have not measu red the e lec t r i ca l r e s i s t ance . 

SHROFF (France) : Do you s in ter the oxide l ayers or a r e they used as d e 
posi ted? 

DUNLAY: We do not s in ter them, they a r e used as deposited. 

SHROFF: Do you observe fai lures where the powder goes away when the 
sys tem is heated up? 
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DUNLAY: No, we have not observed this type of phenomenon. 

SHROFF: Have you made compar isons with the metal l ic spacing of l a y e r s ? 

DUNLAY: When we f irst s ta r ted looking at insulation we looked at d imples , 
for example. We found that the oxide type separat ion works much bet ter 
than the d imples . 

SHjRQFF: In our pa r t i cu la r case we did not find much difference between a 
very loose metal l ic spacing and the powder insulation between foils, for 
short per iods of t ime . 
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A Special Technique for Manufacturing 
Insu la t ing Col lec tor Mult i layer Tubes 

M.Peehs, H.Schörner, H.Stehle 
SIEMENS AG., 852 Erlangen (Germany) 
Zentra le Entwicklung und Forschung 

Abstract 

The paper describes development work for the manufacturing 
of multilayer tubes of low thermal resistivity (¿T<1 C cm / 
Watt) and high electric insulation properties. For deposi
ting the insulating ceramic layers (AlpO,) on the outside 
of the inner Nb-collector'tube plasma-spraying in an inert-
gas atmosphere is used. Details of spraying technique to 
obtain ceramic layers of high density are described. To in
crease the thermal contact conductance between the ceramic 
layer and the Nb-surface metallic interlayers are employed. 
The outer Nb-tube is stretchformed onto the correspondingly 
prepared inner tube. The process may be improved by the 
application of a moving induction coil, producing a narrow 
hot zone. The highest thermal conductance is obtained by 
spraying a metal braze onto the AlpO,, which melts during 
stretchforming in the hot zone. The physical properties of 
previously attained multilayers are described. 

1. Introduction and problem presented 
In designing the ITR plant (incore thermionic reactor)," the 
collector system used consists of two concentric Nb tubes 
which are electrically isolated from each other by an AlpO, 
layer. This system must be capable of functioning for 
approximately 2 years with outside contact to the Na coolant 
and inside contact to 4 Torr Cs vapor in the converter gap. 
The operating temperature is 700°C. 
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The specific temperature difference between the inner and 
outer tube wall must not exceed 1 C cm W~ ; the breakdown 
voltage should exceed 100 V at 700°C. 
Besides, the process described here for manufacturing sand
wich tubes, the following ones are known to the authors. 
a) Brazing of ceramic tubes ¿~1_7 
In this process, a ceramic tube which is metallized on the 
cylindrical surfaces is brazed in between two concentric 
metal tubes. The gap caused by the clearance is closed by 
external pressure on the metal tube. 
b) Pressing with interference fit £~2_J 

In this case a ceramic tube which is metallized with 
copper on the outside is pressed into a Nb-tube; the cera
mic tube is ground out to the desired ceramic layer thick
ness and copperplated again on the inside. A second metal 
tube is also pressed into the prepared metal ceramic 
assembly. The entire assembly is then subjected to dif
fusion bonding treatment at 1000°C. 
The American TEECO Company also manufactures triple-
layer sandwiches (metal-ceramic-metal) by a process which 
is not known to the authors. 

The disadvantages of the mentioned methods are the limited 
finished length and the oxide layer thickness of 0.5 to 
0.7 mm, which to all intents and purposes cannot be 
decreased. As shown in Fig. 1, this suggests that specific 
temperature differences must be anticipated, which are 
already at the upper limit for the present reactor design. 
The object of the work described below was to develop a 
method which is capable to manufacture multilayer tubes 
with very thin AlpQ^-layers and principally unlimited 
length. 
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2. Manufacturing principle 

The manufacturing method consists of two basic steps: 
a) Applying the ceramic layer on the outside of the inner 
Nb tube by using the plasma spraying technique. 
b) Continuous zone-by-zone stretchforming of the outer 
tube onto the inner metal-ceramic assembly. 

For plasma spraying Siemens equipment is employed. The 
work is performed in an inert gas chamber, since Nb can
not be heated in air without detrimental changes to its 
properties. Difficulties must be expected too in spraying 
AlpO, in air ¿f~3_7- For continuous zone-by-zone stretch-
forming, the outer tube is first slid over the inner me
tal ceramic assembly and then elongated at a suitably 
selected constant stretching rate. Deformation then 
occurs in a narrowly limited circular zone which is pro
gressively heated to between 700 and 1000°C. The diameter 
contraction resulting from longitudinal stretching causes 
progressive zone-by-zone shrinking. Work is again per
formed in a vacuum chamber to prevent oxidation and gas 
absorption. Fig. 2 shows the principle of the stretch-
forming equipment. 

3. Development work 

Simple triple layer systems show a high specific temperature 
difference of 3 to 4.5°C cm2W"1 at 700 to 800°C. Experi
ments have shown that this is primarily due to the poor 
thermal contact between the metal and AlpO, and secondly 
to the porosity of the ceramic. 
To completely melt the kernels of the AlpO, powder which is 
used for plasma spraying, a power of 12 kW is used when the 
sieve range of the powder is - 270 mesh +15 microns. This 
only can be reached with N« as working gas. But an Nb ni
tride layer then forms, which decomposes on cooling and 
leads to poor thermal contact since it produces a gap on 
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the interface Alp0,-Nb. To prevent this effect, a thin Cu 
layer is first sprayed on with pure Ar as working gas. A 
Ni80/Cr20 layer (melting point H40°C) is then applied with 
an admixture of Np to the Ar which still just prevents any 
significant coppernitride formation and allows to reach a 
sufficient high power density in the plasma. The Cu base 
layer melts briefly and thus wets the Nb as well as the 
NiCr. AlpO,, with Np as a working gas, can now be applied 
to the NiCr without damaging secondary effects; the NiCr 
layer partly melts in this case and reveals relatively 
good wetting behaviour in contact with AlpO,. The AlpO, 
droplets occurring also melt somewhat into the metal layer. 
Due to the relatively good wettability, NiCr and then again 
Cu are applied to the AlpO,. In zone-by-zone stretchforming 
at high temperatures, the Cu liquifies, ingresses into the 
pores of the NiCr layers, and brazes simultaneously with 
the outer Nb tube. This stage in the process enables excel
lent thermal contact to be established between the indivi
dual layers (Fig. 3) while at the same time avoiding ni
tride formation. The overall thickness of the CuNiCr-Al20,-NiCr 
-Cu layers is 0.2 to 0.3 mm. The AlpO, comprises 0.15 to 
0.2 mm of this. 
To prevent porosity of the AlpO,, only the section of the 
plasma jet which contains properly melted AlpO, droplets 
can be used. The partially melted AlpO, particles in the 
outer zone of the plasma jet are screened off by a gate. The 
AlpO, droplets thus hit the target almost perpenticularly 
that the formation of pores through shadow effects are 
largely eliminated. Layers sprayed in this way reveal 
excellent structure (Fie. 4). 

4. Properties 
The tubes manufactured by the multilayer method enabled 
values for the specific temperature difference of 0.7 to 
Λ 9 1 
1 C cm W~ to be attained with high confidence. Measurements 
of the electrical properties were made at ambient temperature 
and at the designed operating temperature. The samples were 
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heated by high frequency induction at p< 10 Torr to 
approximately 650°C. There was no flashover in the oold 
state at an applied voltage of 400 7. During heating up, 
the relationship between resistance and temperature was 
determined as shown in Fig. 5. After attaining the final 
temperature, outgassing of the plasma sprayed layers enabled 
an increase in the electrical resistance as a function of 
annealing time as shown in Fig. 6. 
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DISCUSSION 

Speaker of paper E - 8 : M. PEEHS. 

CAMPBELL (USA): What was the life t ime of your exper iments which you 
indicated on the las t slide ? 

PEEHS (Germany): We have t imes up to two weeks and we have no changes 
in e lec t r i ca l r e s i s t ance with an applied voltage of 100 Volts DC. We have not 
made life t ime t es t s in heat t r ans fe r , but we have given shocks on the s y s 
tem and have found no influence. 

CAMPBELL: At what t empera tu re did your two weeks tes t run? 

PEEHS: At 700°C. 

DAVIS (USA): Am I c o r r e c t in presuming that in fig. 6 this t empe ra tu r e is 
approximately 650 C at the t = 0 point? Is this totally outgassed? 

PEEHS: This i s totally outgassed. To obtain bet ter sandwiches we now have 
an outgassing p r o c e s s before zone-by-zone shrinking in a good vacuum and 
I believe that values for these a r e much bet ter than these given in the paper . 

RIA BIKO V (USSR): How grea t is the t empera tu re drop At on your mu l t i 
layer sys t em? And how does Δ T depend on the t h e r m a l flux supplied to the 
inner l a y e r ? 

PEEHS: We made our m e a s u r e m e n t s at heat fluxes up to 1 kW/cm and we 
have then measu red corresponding t empe ra tu r e drops to de te rmine the heat 
conductivity values which a r e given in the paper . The Δ T d e c r e a s e s when 
the rma l flow i n c r e a s e s . 

SCHOCK (USA): Why mus t one use nitrogen r a the r than an ine r t -gas for the 
p lasma sp ray? 

PEEHS: Only with the ni trogen working gas can we me l t the alumina powder 
through, so that the individual drople ts a r e p roper ly mel ted. With argon we 
did not have as high an energy density in the p lasma jet and so could not 
mel t the alumina completely. In o rde r to have a good s t ruc tu re to the a lumi 
na coating, we must mel t up the powder completely. 

DAVIS: I 'm st i l l a l i t t le confused about F ig . 5 and 6. At 700°C in F ig . 5, 
for example, there was some spread between the 1. 5 and 100 Volt curves ; 
then on F ig . 6, where the r e s i s t ance is a function of outgassing t ime , the 
0-point seems to be off. Which curve is c o r r e c t ? 
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PEEHS: These measu remen t s refer to different spec imens . 

DAVIS: And there is that much spread from one t r i - l a y e r construction to 
another? 

PEEHS: These values have spread to begin with. We hope that with this p r o 
cess of outgassing at beginning of the str inging, these values become bet ter . 

SCHOCK: Have you observed any react ion between the copper and the nio
bium ? 

PEEHS: Yes, when we hold the copper for 1 h perhaps at about 1000 C we 
found some diffusion zones, but the brazing p rocess is finished in some 20 
sec and in this case we have not found diffusion zones . 

SCHOCK: What operational t empera tu re for 10, 000 hours you think this 
would be safe for? 

PEEHS: For 700°C. 
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The problem of efficient thermoemission converters construc
tion is closely connected with the development of electroinsu-
lating materials. 

The following demands are made of electroinsulating ma
terials: 

- reliable electroinsulation; 
- vacuum tightness; 
- high thermomechanical strength; 
- corrosion and radiation resistance. 
Insulating material and technological procedure of insu

lating details fabrication are chosen according to these requ
irements. In the technological aspect at present it is possible 
to distinguish two main trends of works on electroinsulation 
fabrication for thermoemission converters: 
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a) creation of electroinsulating coating by spraying me
thod; 

b) fabrication of electroinsulating details. 
The investigations carried out by the authors reveal that 

trend (b) provides: 
- creation of electroinsulation with elevated complex of 

physical and mechanical properties, high electric and corrosion 
properties; 

- comprehensive checking-up and thorough defectoscopy of 
fabricated electroinsulation details. 

In this report some results of works on electroinsulating 
details fabrication of the following materials are presented: 

a) oxide ceramics on the base of BeO and A10_ of higher 
purity; 

b) homogeneous cermets on the base of BeO, ALO- and high-
melt ing metals; 

c) multilayer cermet systems on the base of BeO, AlpO-
and high-melting metals; 

BeO and AlpO-, are known to have a complex of properties 
answering the principal requirements put to insulation materi
als for thermoemission converters. BeO and AlpO,, have high in
sulating properties maintained under operating conditions of 
thermoemission converters, satisfactory corrosion resistance 
in cesium vapours, high strength at operating temperatures of 
thermoemission converters. BeO has high thermal conductivity 
and resistance. BeO and A1?0? are technologically similar to 
each other. Taking into account these well known properties the 
above oxides were chosen both for creation of purely ceramic 
electroinsulating materials and for fabrication of electroinsu
lation of cermet systems, the insulating properties of which 
are performed by ceramic base of BeO and AlpO-. 

Cermet systems are considered as perspective high-tempe
rature insulating materials possessing higher thermomechanical 
properties, increased elasticity and thermal conductivity as 
compared to ceramics, which facilitate the problem of agreement 
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of thermal expansion coefficients when constructing vacuum-tight 
joints of electroinsulation with constructional metallic mate
rials. 

Cermet electroinsulating systems may be as follows: 
a) Cermets on the base of BeO, AlpO- with high-temperatu

re metal content up to 45 wt. % homogeneously distributed in a 
ceramic matrix may be used for electroinsulating details fabri
cation· The cermets with higher metal content may be used for 
three-layer isolation where the isolating layers are made of 
cermet with metal content up to 45$ and the external layers, 
connected with metallic constructional materials are of cermet 
enriched with metal. 

b) Multilayer cermet systems, where purely ceramic isola
ting layers of BeO, Al-O«, 100 mc thick, alternate with metal
lic or cermet layers made of homogeneous cermets of the same 
thickness. Multilayer cermet systems can be made in such a man
ner that provides the gradual transition from a thin isolating 
leayer to a pure metallic one through cermet layers of diffe
rent metal content. 

When making electroinsulating details of BeO and A1_0-
and cermets on their base, BeO and A1-0- powders of higher pu
rity (BeO - the total quantity of impurities is 0.1 wt.%,Al-0_-
5.10 wt.#) were used. To obtain the details of maximum strength 
and density the powders of high dispersity were used: BeO with 

ρ 
particle size of 1 - 5 mc (specific surface - 2.85 m /g), AlpO--
1 - 5 mc (specific surface 2.6 m /g), Mo - with average partic-

p 
le size of 2.8 mc (specific surface - 0.35 m /g), Nb with ave-

ρ 
rage particle size of 5.6 mc (specific surface - 1.24 m /g). 

The charge composition in wt. and vol.% and the index of 
experimental masses for homogeneous compositions are presented 
in Table I. 

When fabricating cermet systems the homogeneous distri
bution of metal additions in BeO and AlpO- was achieved by wet 
grinding of charges in planetary mills lined with the same me
tal as metallic component. Ethyl spirit was used as a medium 
for grinding. Additional grinding of components took place du-
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ring the grinding operation. The fabrication of cermet test 

samples was made according to technological operating conditi

ons developed for BeO and Alo0o. Sintered samples characteris

tics are presented in Table II. 

The complex of investigations carried out includes: 

a) The investigation of electroinsulating properties. 

b) The investigation of physical and mechanical properti

es. 

c) The investigation of corrosion resistance. 

ELECTΠ0INSULATING PROPERTIES INVESTIGATION 

Insulating properties of ceramic and cermet materials 

used in thermoemission converters are of utmost importance. In 

this report the data on specific volume resistance of some ma

terials on BeO, AlpO base, measured in vacuum and in cesium va

pours are presented. For the investigation of insulating pro

perties the camples of BeO, BeO + Mo (23 and 47 wt.iö), AlpO + 

Mo (30 vrt.%) were used. 

The characteristics of the samples are presented in Ta

ble II. The measurements were carried out on tubular samples 

with screen electrodes by voltmeterampermeter method. Mo coa

ting 3  5 mc thick made by vacuum spraying were used as mea

suring electrodes. Mo coating was sufficiently porous and did 

net prevent from cesium penetration into samples. Before the 

measurements the samples were annealed in vacuum at 1000 C. 

during 2  4 hours. For determination of contact resistance 

effect upon the measurement results, the voltagecurrent cha

racteristics were measured. These characteristics showed that 

the contact effect may be neglected. 

INSULATING MATERIALS CONDUCTIVITY IN VACUUM 

The measurements were carried out in dynamic vacuum 10 

mm Hg within temperature range 200  1500°C. The measurement 
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results are given in Fig. 1. On the curve of BeO conductivity 
logarithm dependence inverse temperature there may bo seen three 
sections of different slope angles. These sections evidently 
correspond to three conductivity ranges: impurity, transient 
and true ones. Introduction of 23 wt.% Mo into BeO increses 
its conductivity by about an order of magnitude at the tempera
ture up to 700 C and by 1.5 - 2 orders at the temperature above 
700 C. Mo content increase up to 47$ results in a slight conduc
tivity increase as compared to BeO with 23 wt.'$ of Mo. AlpO., + 
Mo (30 wt.#)cermet provides the conductivity value within, the 
range between BeO and Beo + Mo cermets. 

THE RESISTANCE OF BERILLIUM OXIDE IN CESIUM VAPOURS 

When studying insulating properties of BeO in Cs vapours 
a special working section was used. Cesium vapours were fed 
from the thermostat into the inner cavity of a tubular sample; 
there was vacuum outside the sample. High voltage electrode 
was outside the sample and the measuring one - within it. The 
measurements were performed within the temperature range 500 -
800 C. Cesium vapours pressure varied within 10" - 7 mm Hg. 
The time of exposure at every point ( "t and rl̂  ) was 4 hours 
and more. The specific volume resistance of BeO in Cs vapours 
(Fig. 2) is by 3 - 4 orders lower than in vacuum. The Cs vapour 
pressure increase from 10 to 7 mm Hg at constant temperature 
reduces the resistance within an order. During the time of sam
ple exposure for 20 hours at 800°C and Cs pressure of 7 mm Hg 
the resistance did not change. The decrease of BeO resistance 
in Cs is evidently related with its penetration into pores and 
with effective thickness decrease. Besides,Cs may serve as a 
donor impurity increasing electronic conductivity. 

PHYSICAL AND MECHANICAL PROPERTIES 
HEAT EXPANSION 

Heat expansion of BeO was measured on tubular samples 
along the axis by optical method, and that of cermets - on cy-
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lindrical samples ( CL 8  10 mm, 16 mm long) on the quartz dy

namometer in vacuum. The values of BeO average linear heat ex

pansion coefficient as a function of temperature are presented 

in Table III. The spread of separate data does not exceed +0.4. 

10" I/degree from the average value of heat expansion coeffi

cient. 

Temperature dependence of cermet linear expansion coeffi

cient is presented by curves in Fig. 3 and 4. The data obtained 

confirm that thermal expansion of the cermets studied to be deter

mined by the properties and quantitative ratio of the components. 

The character of thermal, expansion temperature dependence of the 

cermets of the compositions studied is very similar to the tempe

rature dependence of ceramic base thermal expansion. 

MECHANICAL PROPERTIES 

The strength of'electroinsulating materials at different 

tests was characterized by maximum stresses under which the 

failure took place. The stresses were calculated by general 

formulas for an elastic body. Tensile tests of BeO were carried 

out on tubular samples at the room temperature. The ultimate 
ρ 

tensile strength varied from 8 to .15 kg/mm (fór the samples 

with density of 2.83  2.96 g/cm ). The tensile strength is 

sifnificantly effected not only by the grain density and size, 

but also by the uniformity of grain distribution over the sam

ple cross section. A number of the samples tested revealed low 

density value because of the presence of a thin surface coarse

grain layer in spite of the high density value (?.94 s/oirf') 

and fine gr^in in the bulk of the sample (18  20 mm). 

Compression tests of BeO and cermet samples were carried 

out on tubular samples 1.5 d high with ends fixed by plastic 

gaskets. The results obtained from BeO tests are presented in 

Fig. 5. Sample strength and data spread decrease with tempera» 

ture use. Compression strength results for cermet samples are 

presented in Table IV. 
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From the data of Table IV it follows that BeO- and AlpO--
based cermets with Mo addition have high compression strength 
value. The increase of cermet strength is apparently caused by 
fine-grain structure of ceramic base which results from intro
duction of Mo restricting BeO and AlpO- grain growth. These da
ta agree well with the results of microstructural analysis of the 
samples investigated and also with the data of the works flj 
and [2} . 

The results of bending strength tests for tubular, plate 
and circular samples of BeO are presented in Fig. 6. Tubular and 
plate samples were tested according to the scheme of 4-point 
loading. The chart of bending moments at circular sample test 
was similar to the chart of 4-point loading. For all the cases 
the maximum tensile stress calculated by formulas for an elas
tic body was taken as the rupture stress. The results of the 
bending tests reveal an interestig feature of BeO, i.e. strength
ening with temperature rise, which becomes apparent to a various 
degree on different samples. The material strengthening effect 
and maximum strength are achieved on tubular samples at higher 
temperatures than on plate and circular samples. 

It is possible that the observed strengthening is connec
ted with the stress redistribution,which in its turn, depends on 
the stress gradient value over the sample material grain. 

Bending tests of cermet samples at room temperature were 
carried out on circular samples with a slit cut. The results 
of the tests are presented in Table IV. 

THERMAL CONDUCTION 

The results of thermal conduction investigation for cer
met samples are shown in Figs. 3, 4. The character of tempera
ture dependence of cermet thermal conduction coicides with the 
temperature dependence of ceramic base heat conduction. As it 
was to be expected the effect of heat conduction increase is 
appreciably manifested for AlpO--based cermets. The introduc-
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tion of 30 wt.% Mo into A1?0- increases heat conduction coef
ficient by 70% as compared to pure AlpO-. For BeO-based cermets 
the heat conduction increase is less significant. 

MICROSTRUCTURE 

According to the type of their microstructure, the homo
geneous cermets being studied refer to the materials with con
tinuous oxide frame. Metallic phase is in the form of separate 
isolated inclusions. That is why the main cermet properties are 
determined by ceramic phase properties. This is confirmed by 

X - ray crystal analysis. For all the cermet systems of the 
compositions investigated there is noted fine-crystal structure 
of oxide phase. With metal content increase there may be obser
ved the decrease of the grain size of oxide frame. Metal is in 
the form of grains of average 6 mc size. Among the great bulk 
of grains of rounded form there may be met some 5 - 10$ of ne
edle - shaped grains 15 mc long. 

Microstructure of homogeneous and multilayer cermets is 
presented in Fig. 7. Microstructure of the multilayer cermet 
confirms the absence of sharp boundaries of transient layers 
from a purely ceramic layer to a pure metallic one through the 
intermediate cermet layers of various metal content. 

CORROSION PROPERTIES 

The tests of compatibility of BeO, A1-0^ samples and of 
the cermets on the base of these oxides with 30 and 40 wt.% of 
Mo with C s vapours revealed good corrosion resistance of the 
samples. The tests were carried out at 700°C during 1000 hours. 
The appearance of samples did not change after the tests. The 
weight changes of some samples are within possible errors of 
weighing. Metallographic studies of ceramic amd cermet samples 
did not reveal any interaction of the materials tested with Cs 
vapours. The absence of interaction is confirmed by X- ray 
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crystal analysis. 

CONCLUSIONS 

1. Ceramic materials of BeO and A1?0- pure oxides have a 
complex of properties meeting the main requirements put to elec
troinsulation of thermoemission converters. 

2. EeO-, Al 0--based cermet materials with addition of 
30 - 40 wt.# high-melting materials in form of homogeneous and 
multilayer systems possessing high electroinsulating and impro
ved mechanical properties may be considered as perspective ma
terials for using as electroinsulation for thermoemission con
verters. 
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On the Effect of Barium on Converter Materials 
by R. Henne 

Deutsche Versuchsanstalt für Luft- und Kaumfahrt e.V. 
Institut für Energiewandlung und Elektrische Antriebe 
Stuttgart-Vaihingen, Allmandstr. 124 

Abstract.: 
In a converter the addition of a second metal vapor to' the ce
sium like barium vapor is expected to lead to smaller transport 
losses and therefore to a higher efficiency. As a further con
sequence the distance between the converter electrodes may be 
enlarged. On the other hand barium requires higher temperatures 
of the converter parts. Because of this and the chemical acti
vity of the barium vapor increased corrosion of the materials 
is encountered. Different samples of materials, intended to be 
applied in our Ba-Cs-converter, have been tested at converter 
conditions. One series of experiments was aimed to show the 
compatibility of metals and ceramics in a barium atmosphere 
at high temperatures. ïn a second type of experiments the elec
trical conductivity of different ceramics, especially pure 
alumina was measured and the rate of attack by the barium vapor 
was observed. Thereby, temperature, residual gas and barium 
pressure were the parameters. 
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Introduction: 
In order to diminish the transport losses in a cesium thermio
nic converter it was recently proposed to add a second metal 
vapor with a more electropositive character to the cesium 
vapor like barium, strontium or another alkaline earth metal. 
Here the cesium 'provides the ions for space charge neutrali
zation, whereas the alkaline earth - we will restrict our work 
first to barium - is intended to modify the electrode work 
function. This principle of operation requires rather high 
temperatures of the converter parts. Because of this high 
temperature and the chemical activity of the barium vapor in
creased corrosion of the materials may be expected. Technolo
gical and engineering problems will be raised. There exists a 
considerable difference of opinion and experience in the use 
of alumina as an insulator in a Ba-Cs-converter. Some experi
ments indicated that the alumina, exposed to the vapor for a 
few hours, was covered with an electrically conducting layer. 
The conditions at which conducting layers build up or at which 
corrosion of the ceramic is possible were studied in our 
laboratory, likewise the suitability of several materials. In 
order to know the behaviour of the materials at converter con
ditions we had to simulate these in the test vessel. As a 
first step in our efforts we tested only the compatibility of 
the materials with barium vapor, at later times we will re
peat the analysis at mixed vapors of Ba and Cs. 
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Experimental arrangement; 
The reason for a series of experiments was the necessity, that 
the different converter materials, metals and ceramics, have 
to be compatible at the high temperatures, because they are in 
contact with a common atmosphere consisting of barium and 
cesium and also of vapors evaporated from the hot materials. 
Thus it is obvious, that there are interactions between the 
different parts of the converters. Therefore, several samples 
of oxide ceramics were tested in one vessel together with 
metals which we consider for use in our Ba-Cs-converter (fig.1). 
The samples are lined up on a pin in the barium vapor. To seal 
the stainless steel vessel a flat nickel ring was pressed bet
ween two edges. Thermocouples check the temperature which can 
be independently controlled from outside of the test vessel. 
In order to maintain a constant low residual gas pressure in 
the test vessel inspite of outgassing of the parts and in order 
to exclude the influence of these gases a Vaclon pump had to 
operate continuously. The inevitable loss of barium by this 
operation was permissible because of an oversize barium reser
voir and because of the large proportion between the liquid 
barium surface and the pump-out orifice (60:1). The same con
ditions were also in the second experimental arrangement we 
see in fig. 2. 
A comparison of the free energies of formation of alumina and 
barium oxide - we see the characteristics in fig. 3 J.S.Elliot: 
"Thermochemistry for Steelmaking" - leads to the assumption, 
that barium will reduce the alumina to aluminium and that the 
insulating property of the ceramic will be destroyed. To see 



- 674 -

the time dependence and the temperature effect on the surface 
we designed a second insert for the test vessel (fig.2), with 
which it was possible to measure continuously the electrical 
conductivity of the alumina at converter conditions during the 
time of heat up, of high temperature operation and cooling 
down. Two tantalum wires were squeezed in slits on two opposite 
points of the ceramic ring. Feedthroughs allow measurements 
from outside the vessel. 

Test proceedings and conditions: 
At room temperature a roughing and a diffusion pump lower the 

-4-pressure in the test vessel under 10 torr; then a Vaclon 
pump continues the procedure. A long time of outgassing at 
about 400 °C follows before the desired test conditions are 
slowly approached avoiding an excess of the residual gas 
pressure above 5.10" ' torr. At the extreme case the samples 
had to stay 100 hours at 1000 °C at a barium pressure of about 
5 torr. These may be considered the upper limits of the conver
ter operation conditions, with the exception of the test dura
tion, which in an actual converter may amount to many thousand 
hours. 

Choice of the materials : 
The conditions that the materials have to be useful at high 
temperature and in cesium atmosphere limit the choice severely. 
Therefore we choose for the hot electrodes refractory metals 
like W, Mo, Nb and Ta as test samples, and for the colder parts 
erf the converter, samples of Ni, OFHC-Cu, stainless steel and 
"Vacon 70". - The coefficients of expansion of the refractory 
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metals and "Vacon 70", a Fe-Ni-Co alloy, are similar. - The 
usefulness of sapphire as windows for pyroraetric temperature 
measurements was also of interest, but the main question was, 
which of the tested ceramics like extremely pure alumina, 
yttria, zirconia and MgO.AlpO, spinel would have the best 
features for use in Ba-Cs-converters. 

Results: 
Results of the integrated test with the different samples: 
After opening of the vessel all parts were covered with a 
white, powdery layer, consisting of compounds of the condensed 
barium like barium oxide, barium hydroxide and barium carbo
nate which originates in contact with air. The surface beneath 
the powdery layer was more less attacked depending on the kind 
of contact with the barium. 
Out of all "low temperature materials" stainless steel and 
Vacon 70 showed no or nearly no trace of attack. On the con
trary nickel and OFHC-copper, useful in the Cs-converter, were 
very severely corroded. Ba and Cu have an eutectic mixture at 
550 °C with 50 % Ba. Ni, at test temperature, has the high 
solubility of 20 % in the liquid Ba. The rate of attack on 
both materials is therefore a function of the barium pressure 
and depends on the kind of contact - with the liquid or vapo
rous barium. At points'" where even at high temperature a conden
sation of barium was possible, large parts of Ni and Cu dis-? 
appeared. On these parts which had only contact with the barium 
vapor, the attack was restricted to the surface, but it was so 
severe as to exclude both metals for Ba-Cs-converters. 
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The refractory metals tungsten and molybdenum had no remarkable 
alteration of the surface after the corrosion test. In compari
son with these tantalum and niobium were tarnished and slightly 
corroded, tantalum wires showed crystal textures and even di
solved parts. The use of Ta and Nb is not to be commended for 
long duration, especially at points where a condensation of 
barium may be possible. 
Some remarks about the sapphire, an extremely pure monocrystal 
alumina are in order. Its use as a window -is not promising be
cause of the slight attack of the surface - smooth before, 
milky after the test - which influences the temperature, 
measurement with a pyrometer. 
Beneath the powdery barium compounds, which can be dissolved 
with water, darker surfaces of the ceramics appear. Depending 
on the composition of the ceramic, the kind of contact and the 
test conditions a more or less pronounced, not easily removable 
surface layer was noted. In some cases small, metallic and 
electrically conducting spots or crystals were found. Some 
possible reasons will be explained later with the description 
of the alumina. MgO.AlpO,-spine11 showed a strong layer ad
vancing from the outside to the inside with a relative sharp 
boundary. It possibly is an intermetallic phase between Ba and 
Al or Mg, formed by reduction of the ceramic by the Ba and 
stored up in the lattice of the spinel. A considerable altera
tion of the electrical and mechanical features could not be 
noted. Alterations of zirconiumoxide containing 3 % admixtures 
(binding materials) were evident. The original yellow ceramic 
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was bright black throughout. The specific electrica]resis
tance decreased irreversibly. Resistance values in the range 
of 1 to 100 Ohms were found between points 1 cm apart. There
fore this ceramic is not recommended as an insulator. 
The best results were obtained with yttrium oxide. The attack 
and the alterations were very slight. Unfortunately this 
ceramic is not so easy to obtain as pure alumina, which 
showed also good properties at particular conditions. Our · 
efforts were directed especially towards the study of the 
behaviour of pure alumina. It is obvious that Ba-pressure and 
sample temperature would be of importance to the ceramic 
alteration, but our experiments showed that the residual gas 
pressure and its composition have the most effect on this. If 
provisions are taken to keep this pressure very low, the 
attack by the barium was only slight and no lasting conducting 
layer appeared as we see in fig. 4. - The white clouds are 
barium compounds. - At this conditions we observed with the 
arrangement shown in fig. 3f that the electrical conductivity 
of the alumina sample was reproducibly low and a function of 
barium condensation on the ceramic, i.e. only a function of 
barium pressure and sample temperature. As an example: 
At 850 C sample temperature and at a barium pressure of 10" 
Torr we could measure at the surface of the pure alumina sample 
between two points 1 cm apart a electrical resistivity of 
about 500 Ώ. . If the Vaclon pump after several hours of out
gassing was switched off, i.e. if the residual gas pressure 
was permitted to rise, we could observe soon an irreversible 
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increase of the conductivity. The ceramic showed a metallic 
surface, which was even resistant at air access as we see in 
fig. 5 and 6. The process is not yet entirely understood, but 
we found by X-ray examination that this conducting layer con
sists mainly of compounds of Ba and Al with different con
centrations. In one case it was Al^Ba, an indication that at 
insufficient vacuum conditions the reduction of the alumina 
is intensified. At the same conditions we found with the in
tegrated test some spots of molybdenum on the alumina. This 
can be explained by an oxidation cyelic process. Such an 
occurrence was observed at similar conditions with cesium. 
Supposedly, existing oxygen with Mo forms MoO,, which melts 
at about 860 °C and which has at test temperatures a consi
derable vapor pressure. It decomposes in contact with liquid 
barium in metallic molybdenum - building up a resistant con
ducting layer - as well as free oxygen, which is able to con
tinue the destruction of the refractory metal. At favorable 
conditions - low residual gas pressure - no similar appearance 
could be noticed. 

Conclusions : 

The results of the tests showed, that the corrosion and the 
formation of conducting layers depends decisively on the 
quantity and the composition of the residual gas pressure. 
Under the following conditions, that 

1.) there will be no difference between the behaviour 
of the materials in contact with barium alone and a 
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mixture of barium and cesium and 

2.) that we have clean vacuum conditions and 
3·) if the temperature of the ceramic is high enough 

to avoid condensation of barium oh the alumina, 
we suppose, based on our experience, that pure alumina seems 
to be useful as insulator in a Ba-Cs-converter for several 
thousand hours. As electrode material we recommend W and Mo, 
and with certain restrictions Nb and Ta, and for the colder 
parts of the converter Vacon 70 and stainless-steel. 
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DISCUSSION 

Speaker of paper E-10 : R. HENNE. 

GUSKOV (USSR); Did you observe an influence of the bar ium vapor on the 
Al O- and on the contact points with the me ta l ? 

HENNE (Germany): Because of the high sample t empera tu re we were able 
to keep the bar ium condensation on the A1_0_ ve ry low. Therefore , the re 
was only a weak at tack on the surface by the bar ium; but it was important 
enough to exclude the use of sapphire windows-in a ba r ium-ces ium conver 
t e r . The surface was dull after the tes t . We found no reduction of the a lu
mina to aluminium by the bar ium and no lasting metal l ic conducting layer , 
at favorable conditions, i . e . at very low res idual gas p r e s s u r e . At tes t 
conditions (850 C sample t empera tu re and a ba r ium p r e s s u r e of 10 Tor r ) 
we measu red a res is t iv i ty of about 500 Ohms between two points 1 cm apar t , 
but at cold conditions this res i s t iv i ty rose to 50, 000 Ohms, the same value 
we had before the t e s t . If we lowered the sample t empe ra tu r e and allowed 
the bar ium to build up a liquid phase on the sample , the e lec t r i ca l conducti
vity increased , and so did the at tack. 

GUSKOV: Did you observe an influence of bar ium on the solder which con
nects the meta l with the ce ramic or on the seal , if there is no so lde r? 

HENNE; Until now we have not tes ted solderö or seals in a bar ium a t m o s 
phe re . In the second s e r i e s of t e s t s -we used only feed-throughs with a 
pal ladium-nickel solder between N b l Z r and the alumina. At the boundary 
of the solder we found a smal l hole in the alumina but the joint remained 
gastight . 
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Thermal Contact Resistance in Cylindrical Elements in 
Thermionic Energy Converters 

by 
Tu. I. Danilov, V. K. Koshkin, T. V. Mikhailova, Yu. S. 

Mikheev, 5. A. Orlin 
(Moscow Aircraft Institute, Moscow, USSR) 

At present various types of thermionic converters 
are being studied. Most reactor-converters have cylindrical 
thermionic elements. In such reactor-converters there is 
usually the problem of contact between the cylindrical 
surfaces of individual parts. When there is radiai flow 
through the contacting surfaces, thermal contact resistance 
arises. This happens when heat is transferred from the 
heat-emitting core to the cathode casing and amon¿ various 
elements of the anode pack, in which case the temperature 
difference reaches tens to hundreds of degrees. Since 
the electricity-generating elements are assembled at room 
temperature but operate at high temperatures (up to 15OU-

o 
2000 K), it becomes clear that the contacting elements must 
be designed in such a way that the temperature difference 
under operating conditions would be small and stable. 

To solve this problem it may not be necessary to 
achieve uniformity of temperature drop with respect to the 
length of the element. On the contrary, it is entirely 
possible that by regulating the temperature drop in the 
contact area one can maintain the optimal operating condi
tions of thermionic converters, taking into annount the non-
uniformity of heat evolution with respect to the length of 
the reactor. Therefore the problem of temperature drop due 
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to contact is of great importance in the design of the 

reactor. 

In this work a theoretical analysis and numerical 

calculations are made of the thertnomechanical problem of 

contacting cylindrical surfaces. The analysis is based on 

the experimental studies by the authors concerning the 

thermal contact resustance of various high temperature 

materials (both ceramic and metallic) of plane geometry 

at various temperatures and pressures in the contact area. 

Determination of Temperature Drop 

TK and Pressure P^ at the Place 

of Contact under Steady 

Thermal Conditions 

Let us consider the cylindrical contact pair (Fig.l). 

The terras are defined as follows; 

d, , dp  diameters of the inner and outer c.vlxnuers respective

ly; 

ÖO  clearance or tightness at O C; 

çk,\Ckt linear expansion coefficients; 

Ε, , Ep  modulus of elasticity; 

P· Pi" Poisson coefficients 

^'i't" thermal conductivity coefficients 

q  heat flux per 1 m length (kcal/mhr) 

tw  temperature of the inner surface of the inner cylinder. 
W
l 

When the heat flux at a given value of q* passes through 

tne contact area between cylindrical surfaces, selfregulation 

of the fit takes place. This selfregulation is due, on one 

hand, to a decrease in the clearance and an increase in 
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tightness upon the increase in temperature difference Δ tg 

and, on the other, to a sharp decrease in the thermal contact 

resistance upon the increase in pressure en the contacting 

surfaces. The values for At% and p~ are determined from 

the plot of two dependences (Fig.2); 

1. the dependence of thermal clearance or tightness 

on temperature difference Δ t~ (graph Δ ) ; 

2. the dependence of the thermal contact resistance 

Rtr on clearance or tightness 0 (graph B) . Both dependences 

are plotted in the (At K,0 ) coordinates as follows. 

The dependences of the clearance or tightness on the 

temperature difference of contacting surfaces Δ t„ (graph á) 

are linear: 

^Síi+dnoc] 

(D 

The position of dependence A on the graph can be 

varied within a wide interval by selecting materials having 

different d , and. d ρ a s w
«ll

 a s
 different initial fit 

(P Q values. 

The temperature drop in the contact area, t^, waich 

is defined by the thermal resistance of the clearance or 

the contact area depending on (f (curves B in Fig,2) is deter
rà 

mined as follows. In the presence of clearance (0 ), 

thermal resistance is defined by the thermal conductivity 

of the medium }\ ~ which fills the gap and by radiant heat 

exchange. In the region of low clearance values tne 
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rad ia t ion effect i s small and the temperature drop becomes 

amost l i n e a r : 

Zonae \j (2 ) 

In the case of media having different thermal conductivities, 
curves A nave a common point „m, wiiose position is deter
mined by the thicKness of the equivalent clearance of the 
gap which depends on the microgeometry of the surfaces. 
Upon an increase in clearance, the role of radiation 
increases and the dependencies Δ t„ · f(o ) deviate from 
linearity, asymptotically approaching the constant value 
t„ in vacuo which depends only on the radiation coeffi

cients of the surfaces C, and Cp. The value of Δt^ in 
vacuo can be very high. The portions of curves Β correspond
ing to the region of clearance can be constructed on the 
basis of experimental data or approximate calculation. 
The portions of curves Β corresponding to the region of 
tightness (+<f ) are constructed on the basis of experimental 
sata on the dependence of thermal contact resistance on 
the stress in the contact area, the data being obtained 
for plane contacting surfaces ί- ♦*■/ 

For replotting the Β curves in (At^O) coordinates 

are used the following equation: 

4tK=
ä5noc'

ß
« (3) 

and the relation between the contact pressure P~ and the 

tightness 0 based on the theory of elasticity» ' 
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Pr (ö/dnoc) 
jÆll\!Éi 

-fi tø -ftf) f (Ό 

The Pjr»f(cT) dependence is also linear, if in the first 
approximation the temperature effect on the thermophy6ical 
characteristics of materials (λ4, E, d,/U ) is disregarded. 

In some cases such a simplification is permissible 
in solving practical problems. When necessary one can 
obtain more precise relations by «sing reference data on 
the dependence of thermophysical parameters on temperature]P* J 

0 

The dependences of,, Β for various media filling the 
gap are shown schematically in Fig.2, together with thermal 
expansion characteristics of contacting cylinders (straight 
lines A). Apparently one should try to obtain a solution 
in the region of pressures close to the permissible maxima 
according to the strength of the materials by the correct 
selection of materials and the fit((f d), In the process 
Δ tK will remain as small as posible·, 

Experimental Data on Thermal 
Contact Resistance 

In Fig.3 are shown some experimental relations des
cribing the contact thermal resistance of the following 
pairs: Steel type lKhlöNlOT+ BeOj Steel type lKhl8N10T+AlpO,; 
Ho + A190X as the function of the load on the contacting 
surfaces at a constant average temperature in the contact area 
RK · f (P¿) at tK · Const. 

Based on a statistical treatment of the data *nd an 
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analysis of the experimental results, a semiempirical 

equation is derived for the determination of the thermal 

contact resistance: 

n .. 2.(hcb, + h**) , Sä 

^
K
" \W ¿MOW«)" (5) 

where, hep, ( ΠΦ*  average height of aicroirregulatiries 

of contacting surfaces; 

λc  thermal conductivity of the medium; 

y  relative thickness of the medium filling 

2 
the gap; 

Κ  coefficient compensating for the undula

tion of the surface Κ ■ 1.4 

d  diameter of the contact ares/ 

Λ M — reduced thermal conductivity coefficient 

of the contacting surfaces: 

V = ¿AM« A M¿ 

AM * + λ Mä. 

A  coefficient compensating for the real 

geometry of the contacting surfaces; 

PK  specific load on the contacting surfaces 

(ƒ α - strength limit of the softer material; 
η - exponent, η - f(PK) (Fig.4). 

In Fig.5 are shown the resulte of the numerical 
analysis of a contacting cylindrical pair which can be 
used in designing the anode pack of a thermionic converter, 

To simplify calculations the averaged thermophysical 
characteristics of the inner cylinder (under actual condi-
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tions, a multi-layer cylinder) are used. The cylinder 
is considered monolithic with an outer surface made of 
AloO,. The material of the outer tube and its fit 0 ~ 
are varied. 

It was assumed that: d, « 18 mm, d-»22.4 mm, dp«23«2 mm, 
E-L« 1.97.106kg/cm2, ρ 1'0.3ί c* χ - 14.8.10~6deg~\ 
λ =15.2 kcal/m·hr, q* = 85OO kcal/m-hr, tu »775· 

1 
The thermophysical data on the materials of which 

the outer wall is made (̂ f 12> Ρ 2'^ 2^ a r e t a k e n f r o m 

the handbooks of ChirkinP-'and Tumanovf 'taking into account 
their dependences on temperature. 

From graphs (Fig.5) it can be seen that in the case 
ol outer tube made of lKhl8N10T steel (d 2»18) in the 
range of sliding fit (0 Q = 0 - 40 microm, graph A-l, A-2, 
A-3) very large temperature drops t„ are obtained in 

o vacuo (up to 200 Κ and higher) at very low contact pressures 
Pj£, whereas with argon as the medium the size of the gap 
is of the oraer 10- 30 microm also at a high Δ tK. For 
the outer tube made of molybdenum (A-4, A-5, A-6) and niobrium 

(A-7, A-8), much better contacting conditions 
with tightness can be obtained, which results in a contact 
pressure up to 80 - 90 kg/cm and considerably lower temper
ature drop, i L , at the place of contact. 

Below are given the results of a numerical analysis of 
contacting, wnich can be used in designing the cathodie 
pack of a thermionic converter (Fig.6). The calculation 
of the thermal expansion of inner rods made of uranium 
oxide was based on the averaged mass temperature te„. 

3Y 
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o 

I t was assumed t h a t d r « 18 mm, d 0 = 19 mm, t . . = 1 7 0 0 0 , 
1 ¿

 1 

volumetric heat evolution q «16*10 kcal/m^h , for uranium 

oxide > τ» 3.5 kcal/mhr.deg, o( ,  910
6
deg"*

1
, Εχ = 10

6
kg/cm

2
, 

y , »0.3, for the outer tube made of molybdenum 

^ 2 » 10^ kcal/m •hr.deg, o( 2  5.5«10
6
deg"

1
, ¿ 2  2.5»10

6
kg/cm

2
, 

JU2" °·
5
* 

The magnitude of the thermal contact resistance for 

uranium oxide and molybdenum was calculated according to 

the abovedescribed semiempirical equation. Results of 

the calculation are shown in Fig.7· 

From graphs (Fig.7) it can be seen that by proper 

selection of the fit,o0, one can obtain the most favorable 

conditions for contact with minimal Δ t„ and permissiDle 

pressures, PK, with respect to strength requirements, at 

the place of contact. 

Influence of Reactor Radiation 

In conxidering the performance of the electricitygenerating 

element in the reactor it is necessary to take into account 

the effect of nuclear radiation on the thermomechanics per

taining to contact thermal resistance. The action of 

neutrons and fission fragments affects the physicomechanical 

properties of the construction materials, leading to the 

swelling of the materials, decrease in heat conductivity 

coefficient, changes in diffusion characteristics, and in 

particular it affects the creep threshold. In the case 

of lowpower reactors, where the burnup of the 

fission material is much less than 1%, these effects can 

be disregarded. To a lesser degree the radiation effects 
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would appear in anode pack elements; in tnis case neutrons 
are the only radiation source.. With the Durn-up efficiency 
up to 1% and higher, the substance, for example, uranium 
dioxide, undergoing fission inside the cathode pack becomes 
s i-gnificantly changed in dimension, a fact which must be 
taken into account. Thus based on the experimental data 
of Zaimovsky, et.al. |- J it was determined that a \f0 burn-up 
of the fission matter results in a linear increase in 
dimensions by approximately 0.33%· For the above-cited 
example, this linear increase would lead to an additional 
increase in the diameter by 50/1/ '. The deformation of the 
cathode casing would exceed the strength limit. However, 
owing to high-temperature and radiational relaxation 
of stresses in the cathode and the gradual increase in dimen
sion, it can be expected that the cathode casing will 
increase in dimension without being destroyed. This con
clusion must be verified by special experiments. According 
to available experimental data, of much greater dnager is 
the case where the temperature inside the heat-emitting 
element reaches the melting point of the core. Then 
radiation swelling increases 5-7 times, and the destruction 
of the cathode is possible. 

Conclusions 
1. The proposed procedure for the analysis of the 

conditions of contact between cylindrical surfaces makes 
it possible to determine the thermal resistance and pressure 
in the contact area. 
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2. The analysis of some versions of construction 
design of thermionic converter elements makes it possible 
to select such construction parameters that would provide 
minimal contact resistance under operating conditions with 
guaranteed tightness within the limits of the strength 
of the material. 

3. Results show that in the design of elements it is 
necessary to take into account the radiation swelling of 
the cores of thermionic converters. 
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DISCUSSION 

No speaker of paper E - l l . 

BEARD (USA); In your conclusion No. 2 in paper E - l l you mentioned that 
it is possible to select some construction p a r a m e t e r s that would provide 
minimal contact res i s tance under operating conditions. I believe you a re 
talking about contact res i s tance between the fuel and the emi t te r clad or 
the cathode as you call it. Is that c o r r e c t ? 

KARETNIKOV (USSR): In the given case we performed exper iments , but 
only the rmal ones. How the e lec t r ica l insulation behaves was not studied. 
But this problem was studied separa te ly . One can find a condition when 
the e lec t r i ca l insulation is maintained. 
We speak, f i rs t of al l and basical ly of the the rmal res i s tance of the anode 
assembly . But we have the same the rmal picture between the emi t te r and 
the fuel. This problem is also considered in a shor te r form. 

BEARD: What do you do in the construction to provide for the swelling of 
the fuel, to maintain a minimal contact r es i s t ance and prevent swelling of 
the clad? 

KARETNIKOV: When the burn-up of the fuel is not very great , with elee-, 
t r i ca l powers 5, 10, 20, 100 kW, the mechanical expansion of the fuel is 
not important and can be fully compensated for by the plast ici ty of the e -
mi t te r . It is assumed that the gas fragments must be withdrawn either into 
a separa te volume or out of the hea t - emi t t e r element. 
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UTILISATION DES ALLIAGES DE TITANE EN CONVERSION THERMO-IONIQUE 

M. CLEMOT, J . P . DURAND, S .E .P . Centre d'Etudes Nucléaires de Saclay 
L. SEGURENS, S.R.N.A. Centre d'Etudes Nucléaires de Saclay 

E.R. JOSSO, Société Métallurgique d'Imphy. 

I. Introduction. 

Afin d'améliorer la fiabilité des convertisseurs thermo-ioniques nucléaires, le Ser
vice d'Electronique Physique a développé le concept d'une structure entièrement métallique dans 
lequel " l ' isolement" électrique émetteur-collecteur est assuré par un tube d'alliage à grande 
résistivité [l] (fig. 1). 

Cette nouvelle structure impose que l'alliage ait : 

1 - la résistivité électrique la plus élevée possible à la température de fonctionne
ment (600 °C à 800 °C), 

2 - une capacité de déformation relativement importante pour réalisation de tubes 
étanches de faible épaisseur (0,2 à 0,3 mm), 

3 - une inertie chimique vis à vis des vapeurs de césium, 
4 - une aptitude à la soudure par bombardement électronique 
5 - une faible section de capture neutronique. 

Les cri tères 1 - 3 - 4 - 5 ont conduit à choisir le titane comme matériau de base. 

Soixante alliages de titane furent élaborés en collaboration avec la Société Imphy-
Kuhlmann. On indique les valeurs de résistivité et les propriétés mécaniques entre 20 °C et 
1 000 °C. Les premiers essais d'obtention de tubes à parois minces sont également présentés. 

II. Processus expérimental. 

La phase exploratoire de l'étude s'est effectuée sur "boutons" de 35 à 45 grammes 
afin de connaître au point de vue résistivité, forgeabilité et résistance mécanique le plus grand 
nombre possible d'alliages. 

E]^or^ijpnjies_boutons : 

Ils sont élaborés au four à arc à électrode non consommable, sous pression partielle 
d'argon. Chaque bouton a subi jusqu'à 10 fusions successives. Le tableau 1 donne l 'analyse des 
matières premières utilisées. 
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Métal 

Ti tane 

Aluminium 

Zi rconium 

Molybdène 

Vanadium 

Niobium 

Référence 

Ugine 

Péchiney 

Krol l 

Van Arkel l 

Kuhlmann 

V214 brut 

VL2BE 

B E 

°2 





870 

20 

310 

1400 

1400 

< 50 

N 2 

322 

63 

42 



27 

260 

422 

105 

C 

380 

LO 

250 

140 

120 

490 

900 

270 

F e 

Τ 

Τ 

Τ 

40 

73 

700 

3000 

20 

Si 

Τ 

Τ 

τ 

< 1 0 

46 

1200 

220 

80 

T a 















500 

W 















■¿LOO 

Ni 









35 

<30 





C r 











c l 00 

<100 



A l 





< 2 0 



60 

35 

< 2 0 



C u 









6 







T : traces 

Tableau 1  Analyse des matières premières utilisées. 

 chiffres en p. p. m. 

Forg_e£g_e : 

Les boutons sont introduits dans une gaine en acier réfractaire fermée sous argon par 
soudure. Puis après chauffage au four, les échantillons sont écrasés en un seul coup de pilon. 
La gaine est alors retirée et l'échantillon est examiné. Après forgeage, les échantillons sont clas
sés suivant l'importance des criques et des fissurations. 

bnvesJjj[aUons^_mej5_ures_: 

Dans chaque échantillon forgé, des barrettes sont prélevées pour les essais suivants : 

 mesure de la résistivité à 20 °C et à chaud (jusqu'à 800  1 000 °C). 

 détermination sur microéprouvettes des caractéristiques mécaniques de traction à 
20 °C et à chaud, 

 contrôle micrographique. 
 Dans certains cas : étude du comportement aux vapeurs de césium. 

Pour certains échantillons, les mesures de dureté et de résistivité à 20 °C sont effec
tuées aux divers états suivants : 

 état brut de forgeage, 
 état A : forgé, recuit sous vide 1 h à 900 °C, refroidissement four, 
 état B : forgé, recuit sous vide 1 h à 900 °C, trempé huile, 
 état C : forgé, recuit sous vide 1 h à 900 °C, trempé huile puis recuit sous vide 

6 heures à 500 °C, refroidissement four. 
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III. Alliages binaires de titane : Ti + x (x = Zr , Si, Sn, Gd, Ce, Al). 

Les alliages binaires étudiés figurent dans le tableau 2, on indique leur résistivité 
à 20 °C et leur dureté Vickers. En plus des éléments Zr , Si, Sn et Al, quelques alliages avec 
les t e r res r a res Gd et Ce ont été étudiés, afin de perturber le réseau cristallin du titane et aug
menter la résistivité de l 'alliage. L'yttrium a également été retenu à cause de sa résistivité 
élevée : p = 58 μ.η. cm à 295 °K. 

Au point de vue résistivité électrique les alliages TiΑΙ présentent le plus grand inté
rêt . La résistivité des alliages augmente t rès sensiblement avec la teneur en Al, qui par ailleurs 
est la cause d'une diminution importante de l'aptitude au forgeage. La forgeabilité des alliages 
binaires est satisfaisante jusqu'à 6 % d'aluminium. Ceci est confirmé par les micrographies 
n° 2, 3, 4, 5, 6, 7 qui mettent en évidence la structure de l 'alliage. 

Alliages 

Ti 

Ti 10 Zr 

Ti 90 Zr 

Ti 1 Si 

Ti 8,5 Si 

Ti 4 Sn 

Ti 6 Sn 

Ti 8 Sn 

Ti 1 Gd 

Ti 3 Gd 

Ti 1 Y 

Ti 2 Y 

Ti 1 Ce 

Ti 2 Ce 

Ti 2 Al 

Ti 4 Al 

Ti 6 Al 

Ti 8 Al 

Ti 10 Al 

Ti 12 Al 

Ti 15 Al 

Ti 17 Al 

Ti 20 Al 

Résistivité à 20 °C 

brut forgeage 

55 

75 

76 

78 

83 

78 

82 

115 

56 

59 

55 

53 

58 

58 

110 

138 

162 

175 

195 





224 

234 

Etat A 



76 

77 
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109 

138 

161 

174 

184 





192 

( μ . ri . cm 

Etat Β 



72 

76 























I l l 

139 

162 

176 

196 





224 

) 

Etat C 





























108 

137 

162 

174 

192 





213 



Dureté Vickers 

VPN 

















225 

231 

185 

162 

244 

216 

278 

227 

334 

348 

338 

349 

341 

324 

327 

Tableau 2  Alliages binaires de titane, résistivité à 20 °C. 
Dureté Vickers, 

(les pourcentages sont indiqués en poids). 
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Les alliages contenant plus de 6 % d'aluminium présentent un aspect pigmentaire qui 
laisse présumer l'existence de phases parasites sous forme de spherules ou de bâtonnets. Ces 
phases peuvent être des carbures, nitrures ou xydes dus à la présence d'impuretés intersticielles. 
Leur étude systématique n'a pas été abordée. 

IV. Alliages ternaires TiAl + y (y = V, Zr , Mo, Nb, Y, C, Sn, Ge, Si). 

Alliages 

Ti 6 A12V 

TÌ6A14V 

TÌ6A16V 

TÌ8A11V 

TÌ8A12V 

TÌ8A14V 

TÌ12A14V 

T i  8 A l  4 Z r 

T i  8 A l  8 Z r 

T i 8Al 10Zr 

T i 12Al 4Zr 

T i 12Al 8Zr 

Ti 7Al4Mo 

T18AIIM0 

Ti8Al2Mo 

Ti8Al4Mo 

TÌ12AL4MO 

Ti8Al2Nb 

Ti8Al3Nb 

Ti8Al4Nb 

Ti12Al4Nb 

Dure té 

Vickers 

348 

348 

348 

339 

348 

348 

402 

348 

353 

395 

378 

394 

368 

365 

374 

348 

422 

348 

336 

348 

348 

Résis t iv i té 

20 °C (μ.η. cm) 

160 

169 

161 

188 

189 

181 

170 

177 

189 

188 



196 

176 

172 

179 

173 



182 

183 

186 



Alliages 

TÌ6A10, 5Sn 

T i  6 A l  l S n 

Ti6Al2Sn 

Ti6Al4Sn 

Ti6Al6Sn 

Ti6Al8Sn 

Ti6A10,25C 

Ti6A10,5C 

TÌ6A11C 

TÌ6A12C 

T i 6Al 0 ,5Ge 

T i  6 A l  l G e 

Ti 6Al2Ge 

T i 6Al 0 ,5S i 

Ti8A10,25Y 

Ti8A10,5Y 

TÌ8A11Y 

Dureté 

Vickers 

374 

376 

340 

336 

327 

385 

367 

406 

396 

406 

342 

329 

355 

365 

335 

287 

339 

Résis t iv i té 

20°C (μ.n. cm) 

167 

168 

159 

174 

190 

196 

165 

173 

188 



171 

168 

168 

168 

170 

183 

185 

Tableau 3  Alliages ternairesde titane, résistivité à 20 °C 
Dureté Vickers. 

Les alliages binaires TiAl présentant un grand intérêt au point de vue résistivité, 
l'élaboration d'alliages ternaires a pour but de trouver l'additif capable d'améliorer la résistivité 
et la forgeabilité des alliages t rès chargés en aluminium. 

Le tableau 3 indique les alliages ternaires élaborés ainsi que leur résistivité à 20 °C 
et leur dureté Vickers. 

Sur un même échantillonna variation de la résistivité mesurée à 20 °C correspondant 
aux états bruts de forgeage, A, B, C est inférieure à 5 % (ordre de grandeur de l ' e r reur expéri
mentale),on n'indique donc que la valeur de résistivité correspondant à l'état brut de forgeage. 

Le tableau 4 indique, pour les alliages les plus intéressants, les propriétés mécaniques 
à 20 °C, 600 °C et 800 °C. 
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Alliages 

Alliages binai res 

T i  6A1 
T i  8A1 
T i  4Sn 
T i  6Sn 
T i  8Sn 

Alliages ternai res 

T i  6A1 2V 
T i  6A1 4V 
T i  8A1 2V 
T i  8A1 4V 

T i  8A1 4Zr 

T i  8A1 8Zr 
T i  8A1 lOZr 

T i  8A1 lMo 
T i  8A1 2Mo 
T i  8A1 4Mo 
T i  7A1 4Mo 

T i  8A1 3Nb 

T i  8A1 0.2 5Y 
T i  8A1 0, 5Y 
T i  8A1 ÌY 

T i  6A1 0,25C 
T i  6Al 0.5C 
T i  6A1 1C 
T i  6A1 2C 

T i  6A1 0, 5Sn 

T i  6A1 lSn 
T i  6A1 2Sn 
T i  6A1 4Sn 
T i  6A1 6Sn 
T i  6A1 8Sn 

T i  6A1 0,5Ge 
T i  6A1 IGe 
T i  6A1 2Ge 

T i  6A1 0, 5Si 

à t empéra tu re ambiante 

E 0,2 

kg/ 
mm 2 

83,5 

50 

51 

56 

85,8 
89,6 
91,2 
87,4 

_. 

102,9 
92,3 

90,1 
95,7 
92,8 

100,1 

91 

82 

80 

85 

107,9 
108 

107 



98 

96 

96 

82 

84 



84 

87 

91 

97 

R 

kg/ 
mm^ 

90,5 

59 

60 

65 

94,2 

101,5 
104,9 
107,1 

97 

114,3 
103 

100,3 
106,5 
100,2 
108,7 

101,8 

89 

85 

88 

114 

111 

107 

49 

110 

102 

102 

86 

90 

91 

89 

93 

97 

104,9 

A % 

14 

19 

17 

20 

16 

10,4 
17 

10,1 

5,6 

14,5 
5 ,7 

10,4 
8 , 7 

12,7 
10 

16,7 

14 

9 

1,4 

8 , 8 

1,4 

0 , 2 



9 

10 

14 

16 

8 



10 

16 

16 

16 

Σ » 

42,1 

44 

36 

52 

41,4 
36,7 
42,7 
50,8 

27,5 
29,8 
13,7 

35,8 
30,5 
35,8 
34,9 

37,1 

20 

40 

6 , 8 

22 

3 , 9 





14 



40 

49 





32 

32 

40 

38,8 

à 600 °C 

E 0,2 

kg/„ 
m m ¿ 

37,6 

13 

16 

19 

55,9 

66,5 

62,2 

50 

49 

52 

44,2 

48 

48 

54 

40 

37 

38 

39 

46 

61 

36 

39 

44 

R 

kg/2 

mm 

46,5 

18 

20 

23 

62,1 

77,2 

70,2 

60 

60 

60 

57,5 
61 

57 

62 

54 

51 

49 

50 

57 

73 

48 

49 

56 

sous vide 

A % 

14 

18 

24 

41 

20,3 

18,5 

13,7 

17 

15 

1 ,5 

16,4 
11 

28 

1 

18 

16 

20 

16 

14 

13 

22 

20 

18 

V 

55 



67 

74 

67,6 

57 

68,5 

37 

35 

4 , 4 

49,4 
40 

4 



70 

51 

45 

53 

21 

24 

54 

29 

56 

à 800 °C sous vide 

E 0,2 

kg/ 
mm 

9,8 

3 

3 , 5 

4 , 8 

14,6 

16,5 

16,9 

12 

11 

11 

7 

10 

11 

11 

10 

8 

11 

13 

15 

18 

9 

10 

29 

R 

kg/ 
mm'2 

11,2 

3 , 4 

4 , 3 

5 , 5 

17,5 

19,4 

20,3 

13 

12 

14 

8 , 2 

12 

13 

13 

11 

9 

13 

14 

17 

23 

9 

11 

33 

A % 

130 

49 

59 

42 

89 

100 

47 

75 

54 

46 

100 

73 

142 

90 

>106 
> 73 

89 

100 

70 

71 

>104 

> 95 
50 

Σ * 

99 

94 

99 

99 

99 

99 

99 

65 

60 

46 

99 
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n. r . 
n. r . 
99 

99 

25 

99 

n . r . 
n . r . 
59 

Tableau 4  Propriétés mécaniques des alliages de Titane, 

n . r . = éprouvette non rompue. 
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V. Alliages quaternaires. 

Cette étude exploratoire s'est poursuivie sur les alliages TÌ6A1 2V, TÌ6A1 4V, 
Ti 8A1 8Zr, Ti 8A1 2Mo, et Ti 7A1 4Mo par l'addition de 0,25 % C et 0, 5 % Si. Cette addition 
n'a pas apporté de modification sensible de résistivité électrique à 20 °C. Par contre, la dureté 
a subi une augmentation de 5 à 10 %. 

VI. Propriétés électriques et mécaniques des alliages de titane en fonction de la température. 

R ési£ti_vité_électrique_ : 

La résistivité électrique de 34 alliages a été mesurée entre 20 °C et 1 000 °C (figures 
8, 9, 10, 11, 12, 13). La résistivité maximum est obtenue entre 500 °C et 750 °C, température 
de fonctionnement de l'alliage dans le convertisseur thermoionique. Des résistivités de l 'ordre 
de 200 μ.η. cm sont obtenues pour l'alliage binaire TÌ6A1 (courbe 5) et pour les alliages ternaires 
Ti6Al8Sn (courbe 30), Ti6Al4Sn (courbe 28) et TÌ8A11Y (courbe 24). 

Des valeurs supérieures à 200 μ.η. cm sont obtenues pour les alliages binaires TiAl 
contenant plus de 6 % d'aluminium (courbes 4, 5, 6) ainsi que pour les alliages possédant une te
neur en carbone supérieure à 1 % (courbes 7 et 18). Mais ces alliages sont difficilement for
geables (alliages Ti Al avec teneur en Al supérieure à 6 %) et se révèlent extrêmement fragiles 
à cause de leur dureté élevée (alliages à forte teneur en C). 

Propj"^t é^_méc^juques_ : 

Les figures 14 et 15 indiquent les valeurs des caractéristiques mécaniques : 

 résistance à la traction 

 limite élastique 
 allongement 
 striction, 

mesurées entre 600 °C et 800 °C (température de fonctionnement dans les convertisseurs thermo
ioniques) pour les alliages TÌ6A1 et TÌ7A1 4 Mo. 

VII. Tenue des alliages de titane aux vapeurs de césium. 

Des échantiUons Ti7Al4Mo, TÌ6A1, Ti8Al8Zr, TÌ8A12V, Ti4Sn, Ti8Sn ont 
été soumis à l'action des vapeurs de césium sous une pression de 10 torr à la température de 
800 °C. Des examens micrographiques et analyses effectués après 150 et 600 heures d'exposition 
ont révélé une parfaite résistance de ces alliages à la corrosion par le césium. 

VIII. Fabrication des éléments tubulaires. 

Afin d'être utilisables dans une structure thermoionique, les tubes d'alliages doivent 
avoir une épaisseur de l 'ordre de 0,2 mm à 0,3 mm. Les premiers essais de filage ont donc eu 
pour but d'approcher au mieux ces dimensions afin de limiter les opérations d'usinage. Les 2 cr i 
tères de qualité visés dans cette première phase furent d'obtenir pour l'alliage Ti 7A1 4Mo par 
filage, un tube de mince paroi avec géométrie correcte. Compte tenu du schéma de fabrication 
disponible, les conditions technologiques de gainage et de filage sont consignées dans le tableau 5. 

Des tubes de dimensions 18,8 x 21 ont été obtenus (fig. 16). Ces tubes présentent des 
ondulations transversales dues vraisemblablement à une inhomogénéité du matériau de base. 
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Gainage 

Outil

lages 

P ré 
chauf
fage 

Chauf
fage 

p filière 

p aiguille 

Mode 

Durée 

Mode 

Tempé
rature 

Lubri
fication 

Rapport filage 
So/Si 

Pression filage 
(contrainte axiale) 

Vitesse filage 

Résistance plas
tique à la dé
formation 

m m 

m m 

mn 

°C 

P 

hbar 

m / s 

hbar 

Acier 
doux 

XC lOf 

27,4 

18,6 

s/argon 

975 

MoS 

graphite 

13,03 

73 



30,25 

Inox 

18/8 

27,4 

18,6 

bains 
sels 

1 050 

MoS 

graphite 

13,03 

86 

1,9 

35,70 

Inox 16 NCD 13 

27,4 

18,6 

s/argon 

30 

bains 
sels 

1 050 

MoS2 

graphite 

13,03 

52 

1,45 

2.1,6 

27,4 

18,6 

27,4 

18,6 

27,4 

18,6 

s/argon s/argon ¡/argon 

30 

bains 
sels 

1 050 

MoS 
ó 

graphite 

13,03 

52 

1,8 

21,6 

30 

bains 
sels 

1 100 

MoS 

graphite 

13,03 

56,5 

1,07 

23,4 

30 

bains 
sels 

1 100 

MoS 

jraphite 

13,03 

65 

2 

27,3 

Inox 30 NCD 16 

27,4 

18,6 

s/argon 

30 

bains · 
sels 

1 050 

MoS2 

graphite 

13,03 

68 

1,7 

28,20 

27,4 

18,6 

s/argon 

30 

bains 
sels 

1 100 

MoS 
y\ 

graphite 

13,03 

62 

1,65 

26 

Tableau 5  Conditions de filage et gainage. 

IX. Conclusion. 

En ce qui concerne leur application aux convertisseurs thermoioniques, les alliages 
TiAl que nous avons étudié montrent une limite supérieure de 200 μ.η. cm pour la résistivité 
électrique. Cette valeur semble ne pas pouvoir être dépassée aisément si l'on désire conserver 
à l'alliage des possibilités de transformation métallurgiques. Des convertisseurs thermoioni
ques ont été réalisés avec des tubes obtenus par un filage à chaud suivi d'une passe de rectification 
interneexterne. 

Actuellement des recherches sont poursuivies dans la voie des alliages titaneétain, 
avec contrôle de la teneur en oxygène. 

Références. 

[l] M. CLEMOT, D. BORDE, Liaison métallique résistante à l'usage des convertisseurs 
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Fig . 14 
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DISCUSSION 

No speaker of paper E-12 . 

SCHOCK (USA): What is the t he rma l expansion coefficient of these a l loys? 
How do they compare with Al 0_ , with which they a r e in contact? 

DEVIN (France) : There is no significant change in expansion coefficient 
due to the aluminium content of the t i tanium alloy, so you can use the ex
pansion coefficient of t i tanium. 

DAVIS (USA): Have any brazing investigations been made? 

DEVIN: They were intended to be welded by e lec t ron beam welding. B r a 
zing seems to be quite difficult because t i tanium and copper a r e an eutectic 
at r a the r low t e m p e r a t u r e s . 
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A low swelling, oxide fueled thermionic emitter 
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Zentrale Entwicklung und Forschung 

Abstract 

Two possibilities may be considered, to overcome the prob
lems arising from fission gas induced swelling: Either the 
use of fission gas retaining material, which compensates the 
pressure in gas bubbles by surface tension, or the ventila
tion of the gaseous fission products. 

An attempt to solve the problem by the first idea can be 
made by employing a cermet containing uranium dioxide of very 
fine grained particle size. In this case the magnitude of 
swelling depends on whether the recoiled fission products 
diffuse back the uranium dioxide sites or form new pores 

The second method of venting the gaseous fission products 
could bo tried by using coated particles. The dimensions of 
kernel and coating then have to be selected so that a high 
fraction of fission products escape from the particle by re-
ceoiling and diffusion. Out-pile investigations, however, 
have shown that molybdenum coatings of adequate thickness are 
not stable at converter temperatures. Another way is to use 
sintered uranium dioxide pins. The design of the emitter must 
take into consideration the problems connected with fission 
gas venting and with uranium dioxide migration due to thermal 
gradients in the emitter. 
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A specially adapted capsule for irradiation tests with 
vented fuel is described and the design problems out
lined. The irradiation time can be shorted by observing 
special conditions. 

1. Introduction 

The concept of the Incore Thermionic Reactor necessitates 
that the fuel ¿ 1 _ / meets special requirements. A burn-up 
of nearly 27 000 MWd/tU must be attainable at an operating 
temperature of approximately 2000 K and a power density of 
approximately kO W/gU without the emitter being deformed by 
swelling caused by gaseous or solid fission products. The 
fuel and molybdenum - which is used as structural material -
must also be compatible. Uranium dioxide is the best-known 
fuel, the properties of which suggest that it is capable of 
meeting the requirements. The possibilities of using uranium 
dioxide as a fuel in a thermionic emitter are therefore dis
cussed below. 

2. Uranium dioxide-molybdenum-cermets 

The creep rate of the molybdenum at 2000 K is relatively 
high ¿ 2 , 10_/. The usual 'uranium dioxide-molybdenum cermets 
are therefore not suitable for the burn-up foreseen in the 
present application since an impermissibly high swelling 
effect due to internal fission gas pressure would result ¿ 2 _ / . 
High-temperature experiments have moreover shown that a given 
uranium dioxide distribution in a cermet does not remain 
stable for long periods. We may expect the surface tension 
to compensate for the fission gas pressure adequately, how
ever, if the uranium dioxide particles with a grain size 
4CO.5 yum can be incorporated in a stable configuration. 

The fission gas atoms produced during the burn-up are primary 
distributed uniformly in the lattice by the recoiling effect. 
Since the uranium dioxide particles form ideal condensation 
nuclei for fission gas atoms, however, the fission gases may 
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be expected to be trapped at the uranium dioxide. Whether 
a homogeneous bubble formation also occurs depends large
ly on the resulting concentration of the fission gas atoms 
in the molybdenum matrix /_ 3-h_/; this in turn is related 
to the diffusion coefficient of the fission gases in molyb
denum, which is up to now unknown. It is difficult to esti
mate theoretically the swelling effect caused by additional 
heterogeneous bubble formation at lattice defects, since 
little can be predicted about crystal imperfections of the 
suggested cermet. 

The gas bubble distribution may be disturbed by the growth 
of a few bubbles in such a way that the surface tensions can 
no longer compensate the fission gas pressure due to the in
creasing bubble radius. Because of the foregoing facts, in-
pile testing must be used to decide if this version is feasible, 

One possibility for manufacturing the cermets described above 
was lined out by NUKEM /_ 6_/. A fine uranium dbxide-molybdenum 
mixture can be manufactured by chemically decomposing uranium-
paramolybdat and subsequently reducing the molybdenum dioxide 
in Hp; this material can then be processed further by press
ing and sintering. 

3. Coated Particles 

The emitter design requires approximately 30 vol$ uranium 
dioxide. Fig. 1 shows the coating thickness as a function of 
the "uranium dioxide kernel" diameter. With a uranium dioxide 
diameter of 200 Aim, the coating thickness is 10 /urn, so that 
the greater part of the fission gas remains primarily in the 
uranium dioxide. Biersack predicts two periods of the fission 
gas release: the initial release period and the following 
steady-state release period ¿J__/. Calculating the swelling 
effect results that this particles swell after the initial 
release period, which lasts about 100 h. But with a kernel 
diameter of 20 Aim-with a corresponding molybdenum coating 
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thickness of 3 Aim  the major part of the fission gas 

is recoiled into the coating material. If the fission gas 

diffusion coefficient is large enough for suppressing the 

homogeneous bubble formation, the fission gases will diffuse 

primarily to the outer surface and will be released there. 

We investigated various types of coated particles to de

termine whether molybdenum coatings of 3 Aim thickness re

main stable on uranium dioxide at temperatures around 2000 K (_ 9_7 

Since particles of the proposed dimensions were not available, 

larger particles with 3 and 5 Μ τη thick coatings were used. 

The originally smooth surface was roughened already after a 

short period of annealing at 2000 Κ in a vacuum. This was 

determined by hot stage microscopy and also by metallographic 

examination after annealing. The roughening of the surface 

was accompanied by the particles sintering into a fritter. 

Annealing experiments lasting up to 239 hours caused the sur

faces to roughen so heavily that some of the coatings were 

perforated. Figs. 2 and 3 illustrate particles in their ini

tial state and after annealing. Activation analyses of the 

evaporated substance resulted in more than 99 $ molybdenum. 

Similar effects have also been observed by other authors after 

inpile experiments ¿ 8 _ / · 

Since a coated particle fuel for a reactor with a predominant

ly thermal neutron spectrum necessitates the use of molyb

denum for the metallic coating, the employment of metal coat

ed uranium dioxide particles does not appear very promising 

to us. 

h. Solid Uranium Dioxide 

Fig. h shows a uranium dioxide fueled molybdenum emitter 

with fission gas ventilating. The electronemitting surface 

is coated with a 200 Aim thick tungsten layer; this reduces 

metal evaporation from the emitter surface and permits favour

able converter data to be obtained. The uranium dioxide is in 

bore holes which are interconnected with a system of fission

gas ventilating channels to prevent a buildup of the fission 

pressure. 
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In order to avoid swelling of the emitter due to fission 
gas pressure it is important to keep open the venting 
system. According to Biersack f ^ l j , approximately 90 $ 
of the fission gases generated can be expected to be re
leased when the operating temperature of the fuel is some
what over 2000°K. 

The emitter contains the uranium dioxide in form of little 
sintered pins with a low smeared density. During operation 
the uranium dioxide relocates due to well known effects, . 
forming axial voids. The surface of the upper annular space 
will be coated with uranium dioxide too. Since the inner 
uranium dioxide surface forms in the equilibrium state 
isotherms, the channels of all fuel holes converge in the 
annular space. 

In order to ensure that the uranium dioxide does not block 
the inlet of the fission gas venting capillary tube, the 
nozzle temperature must always be kept higher than that of 
the isothermal uranium dioxide surface. For this purpose, 
the top of the nozzle is surrounded by a canned annular fuel 
pellet, not participating in the evaporation equilibrium. 
The heat produced by this extra fuel creates the required 
temperature drop. To minimize uranium dioxide vapour losses 
through the fission gas tube, its inside diameter tapers 
down towards the fuel chamber. 

It may be expected that at 2000 K, the radially relocation 
of the uranium dioxide will be completed after 500 h at the 
latest. However, it is believed that axial temperature gra
dients need much larger times for being smoothed by fuel 
relocation. Additional fuel is therefore provided in the area 
above the upper annular space in order to compensate for the 
thermal losses at the support and of the emitter. 

It is in principle impossible to avoid swelling of the uranium 
dioxide due to solid fission products and due to fission gas 
trapped in pores which consist in dynamic equilibrium in the 
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uranium dioxide. Because the creep rate of uranium dio
xide at 2000 K in the range of low stresses is higher 
than that of molybdenum ¿ 2 _ / , the uranium dioxide creeps 
into the inner voidage with little deformation of the 
emitter. 

5. In-pile testing of the emitter 

The proposed alternatives for the emitter and the various 
fuels should be tested by in-pile experiments, the object 
of which is to evaluate the feasibility of the emitter 
design, the fuel relocation and the fission gas venting 
system in long time experiments at thermionic operating 
temperature (2000 K ) . 

Measurable swelling effects of the emitter, if any, are 
only expected to occur close to the end of the lifetime. 
This is due to the fact that the molybdenum creep rate is 
strongly stress dependent (C** G ) and that the stress re
sponsible for the swelling of the emitter is built up pro
portionally with irradiation time. 

The emitters are operated at double heat rating to shorten 
the in-pile time for the given target burn up. The tempera
ture-dependent creep rate of the molybdenum is therefore 
doubled by raising the temperature by 45 C . This strong 
temperature dependence of creep rates necessitates that the 
emitter temperature in the reactor must be measured as 
accurately as possible and carefully controlled. 

An irradiation capsule with the following characteristics 
was thus developed: 

a) Two vented emitters can be irradiated simultaneously. 
The pressure in the fission gas collecting system and 
emitter does not exceed 150 Torr. 
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b) The heat is dissipated from the emitter surface 
(100 W/cm at 1750 C) via a helium-filled gas gap 
(helium pressure 100 Torr, gap width 0.6 m m ) . 

c) The emitters are suspended in such a way that no ex
ternal stresses are exerted and swelling deformation 
caused by irradiation can proceed unimpeded. 

d) The emitters are each instrumented with 2 WRe tungsten-
rhenium thermo-couples. 

e) The emitter temperature is kept constant by additional 
electrical heating compensating any changes in the 
emitter heat rating caused by changing nuclear heat 
production. 

A first long time in-pile experiment is to start this year in 
FR 2 and will last 9 months, so that a burn-up condition equi
valent to 18 months operating time of the thermionic reactor 
will be attained. 
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DISCUSSION 

Speaker of paper E-14: M. PEEHS. 

HAUSNER (Euratom): You mentioned that it is necessa ry to have a UO -
par t ic le size of approximately 0. 5/u in o rder to retain fission ga se s . Is it 
possible to keep this dimension after densification or after a hea t . t r ea t 
ment at high t e m p e r a t u r e s ? 

PEEHS (Germany): Since this is one of the great p rob lems , 1 have men
tioned in thé paper that we have found by annealing ce rme t s that UO d i s 
tribution is not stable at conver ter t empera tu re and much work must be 
done to fix the UO? at the uranium distr ibution. 
Concerning the vented UO -emi t t e r with MO--pe l le t s , I want to make a 
r e m a r k . The problem which we have is to vent fission gas at a hot hole 
and not to have a cold hole in the emi t te r , for we must have little distance 
between the active emi t te r lengths. 

SCHOCK (USA): Are you saying that it is ea s i e r or ha rde r to have a hot 
vent hole ra ther than a cold vent hole? And why? 

PEEHS: I believe the hot vent hole is not so easy, for UO can migra te 
through and come to the venting sys tem and may perhaps block the venting 
sys tem. That is a difficulty we have. 
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THERMAL RESISTANCE OF MULTILAYER CYLINDRICAL 
ELEMENTS IN TBE THERMIONIC CONVERTERS 

E.S.A. Arkin, S.F. Kukushkin, 
H.A. Murinson, B.C. Ogloblin, 
P.Z. Cherepanov, V.S. Chekhovich. 

The Aeademy of Sciences, 
Moscow, the USSR. 

Thermal converter operation and performances depend on 
temperatures and stresses arising in the elements. The influ
ence of various factors on the temperatures and stresses in 
the main elements of the thermionic converter (collector and 
emitter multilayer cylindrical elements) is considered below. 

As the heat flux passes through the multilayer cylindri
cal elements during the operation, the temperature gradient 
between the inner and outer layers appears, which depends on 
the heat flux value and the sum of layer material and layer 
contact thermal resistances. 

Thermal resistance of the contact depends on the mecha
nical properties and fineness of machining of the contacting 
surfaces and contact forces. 
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These forces aro influenced by the initial clearance or 
tightness values and the layer temperature strains. 

Under high operation temperatures and extensive life-time 
the creep strains in certain layers can reduce contact forces 
and increase thermal resistance. 

In the devices, where numerous start-ups take place, the 
difference between residual strains can cause the lamination 
of the system; that will be followed by the appearance of ad
ditional contact surfaces and consequently by the growth of 
thermal resistance. 

To provide the required stable thermal resistance and to 
prevent the cylindrical elements lamination under the thermal 
cycling, it is necessary to choose properly the layer materi
als, their thicknesses, fineness of contacting surfaces machi
ning and the Initial clearance or tightness values. 

The influence of various factors on the thermal resistan
ce of the multilayer cylindrical elements and on its stability 
during the operation can be described by the system of equa
tions, including: 
the temperature strain equation; 
the thermal conductivity equation considering the thermal re
sistance of the layers and their contacts; 
creep equation. 

As an example a concept of composite collector system is 
considered.(see flg.1). The Inner cylinder tube (collector) 
with an insulating layer on the outside and a special coating 
for reduction of the contact thermal resistance, is inserted 
in the outer tube (casing) securing an initial clearance or 
tightness. The heat flux, passing from the collector to the 
oasing, is taken off by the coolant. 

In this case the equation system is as follows 
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where 

oC is the linear expansion factor of the layer material; 

Τ is the temperature on the layer surface; 

E is the modulus of elasticity of the layer material; 

ρ are the specific forces, acting upon the layer sur

face; 

μ. is Poisson's ratio of the layer material; 

$ is the initial clearance (tightness) value; £=*^^ 

(ji is the heat flux value through the collector inner 

surface; 

l¿¿} is the heat transfer factor between the oasing and 

the coolant; 

'λ is the thermal conductivity factor of the layer ma

terial; 

} \ is the thermal conductivity factor of the special 
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coating material; 
X w is the thermal conductivity factor of the media 

between the contact surfaces (assumed to be ̂ vv3 

-ο 5·10"5 K, c a l „„ ) . -*2»5 Ί υ m«hour»
ü
C
 ;
 ' 

V\ is the average value of the contact surface rough

ness; 

<56 is the minimum value of the ultimate strength of 

contact surface materials (special coating and 

casing); 

α,6,10 are the empirical factors, characterizing the ma

terial creep rate under the variable temperature 

and stress; 

t is time. 

The investigation is carried out on the following assump

tions . 

1. The collector system with uniform heat supply is in

finitely long; 

2. No thermal resistance between the insulation and collec

tor and between the insulation and special coating exists 

during the operation. 

The main initial data. 

1. The initial coolant and layers temperature T M = 20°C. 

2. The operational coolant temperature T = 600°C. 

3. Xi = 10 mm t "V

"^ = 0,8 mm ,7,,^= 0,4 mm 

4· The collector and casing material is the stainless 

steel. 

5. The contact surfaces are in vacuum. 

The characteristic charts of thermal resistance and con

tact stress plotted against the various parameters are shown 

in fig.2  6. In fig.2  5 the characteristic curves of ther

mal resistance (HR) and contact stress (P^) in the 
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cylindrical elements of the collector system under conside

ration are plotted against the initial clearance (tightness) 

under the following conditions: 

Fig. 2. The contact surfaces are of stainless steel and ni

ckel, the fineness machining is of^>v7 andv9th 

c > c e l 
c las se s , heat f lux fy = g ' l O ^ . h o u r » 

the insulation thermal conductivity factor 

x
d
= 1

»° m.hourüo ' 

Fig. 5. The contact surface materials are 

stainless steel  nickel, 

stainless steel  copper, 

stainless steel  aluminium, the fineness of machin

ing is of the*7th class, Cj,,  2 » 1 0 ^ . ° ^ ^ 

\ τ » k cal 

Fig. 4* The contact surface materials are stainless steel 

and nickel, the fineness of machining is of the 

v7th class. Heat flux values are 2·105, 4105 and 

c ΛΓ\5 * oal . \ _ ι η fe
 o a l 

610^—2ESur )
 λά 1 »° m-h-Wfi " 

Fig . 5. The contact surface materials are s ta in le s s s t ee l 
and nickel , and the fineness of machining i s of 
therfth c l a s s . 
The insulat ion thermal resistance K¿=iin3* values 

Ή 
are 

0¡ 4,510* ¡ 9104 ( Υ ^ ° ) , 

In fig. 6 the thermal resistance of the system and con

tact stresses are plotted against the time of operation un

der the various initial contact forces. The contact surface 

materials are stainless steel  nickel and stainless steel 

aluminium, the fineness of machining is of thevSth class, 
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o.4r%5 k,cal _ * rt k cal 

Under the assumed initial data the tangential stresses 

in the casing and collector are related to the contact 

stresses as follows 

6" Ξ *òOP̂  

and under the allowable stresses 

C<5*lH4&and fej^O^ _ 

the contact stress value P* can be as high as Ι\ = ̂5οτζ 

which considerably exceeds the value Pj = 2 Qm2~ » corres

ponding to the operational conditions with the stabilized 

thermal resistance. 

The analysis of obtained data for the design under con

sideration permits to draw the conclusions, valid for ra

ther wide variety of multilayer cylindrical elements, operat

ing under the hightemperature conditions. 

1. Thermal resistance stability of cylindrical, multi

layer collector or emitter system during the operation is 

determined by the layer strain rate. The layer stresses de

termining the creep strain safe value, are a few times less 

than those determining the construction strength. 

2. The improvement of machining fineness of the contact 

surfaces, lowering of the separate layers thermal resistan» 

ce, and especially using of more plastic and heat conduc

tive materials in contact results in the lowering of thermal 

resistance. At the same time it is necessary to choose the 

value of initial clearance (tightness) between the layers 

properly in order to provide for the performance stability. 

3. In such thermionic converters where the limitations 

of material thickness and of thermal resistance are requir

ed, it is necessary to use for interlayer contact the ma

terials of high plasticity including liquid metals and 

gases. 
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DISCUSSION 

No speaker of paper E -15 . 

ROUKLOVE (USA): In your r e m a r k s 2 and 3 and in your conclusion, when 
you say that you somet imes need to use a c learance and if I unders tand p r o 
per ly even some gases for the insulation in o rde r to adapt the cooling s y s 
t e m s , is it only in case of labora tory tes t s or is it a lso during the operation 
of the devices ? 

KARETNIKOV (USSR): P e r m i t me to give a clarif icat ion. The paper E - l l 
and the paper E-15 a re devoted to one subject, and this paper concerns the 
p rac t i ca l real izat ion of thermionic conve r t e r s . We consider that in a rea l 
construct ion the anode or collector must be separa ted from the heat t r ans fe r 
agent which takes the lieat from the anode, and he re -we a r e considering dif
ferent var ian ts of the implementat ion of this contact e i t h e r with c learance 
or with a gap. 

If the external pipe cooled by a meta l is put on the anode with a c l ea rance , 
the t empera tu re drop in the contact may be ra the r smal l in the o rde r of 
20, 30, 50 , but in o rde r to ensure this c learance one must e i ther make a 
hot fitting in the beginning, or compute the mutual t he rma l tensions of the 
external jacket and the inner anode assembly with the insula tor . This p r o 
blem is not easi ly resolved and in the papers E - l l and E-15 this problem 
is analyzed in al l the possible range of c lea rances and gaps . It is shown 
that, if there is no c lea rance , but a gap, and the gap is not filled with' gas , 
(that i s , there is a vacuum gap) then the t empera tu re drops can be very 
l a rge , 200, 300 C. If we want to c o n s t r u c t a space assembly , then such a 
t empera tu re drop will cause a considerable inc rease of the dimensions of 
the rad ia tor . This is undes i rab le . Therefore one must fill the gap with a 
good thermal-conduct ing gas , and keep the gap smal l . It would be bet ter , 
if one could fill the gap with a liquid meta l . In this case the difficulties a r e 
in sealing the ends of the channel. Finally, a simple conclusion: if it were 
possible to make a continuous connection of the anode, the insulation and 
the external jacket, and to overcome the problem of the foliation of the 
assembly during the the rma l pulsat ions and the rma l shocks, this would be 
the best solution. This approach turns out to be the most in te res t ing . It 
allows one to obtain minimal los ses due to the t empera tu re drop . 

ROUKLOVE: Did you per form some t e s t s , and in this case what m a t e r i a l s or 
gasmixtures did you use? 
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KARETNIKOV: We examined pure gases , argon and helium. We did not con
sider gas mix tu re s . F o r ma te r i a l s we examined aluminum oxide and be ry l 
lium oxide in contact with var ious me ta l s : molybdenum, niobium, hea t - r e s i s t an t 
s teels and some al loys. 

GYFTOPOULOS (USA): Could you please discuss briefly the type of conver
te r design you a r e descr ib ing? 

KARETNIKOV: We consider a cyl indrical thermionic channel: The fuel, the 
emi t te r , the gap, the col lector . The collector is separa ted from the cooled 
jacket by an insulator of which I have a l ready spoken. We a re now speaking 
of the gap or c learance i. e. of the contac t - thermal res i s t ance at this point. 

SCHOCK (USA): Is the Al O, insulator applied to the outside of the collector 
as a coating? 

KARETNIKOV: The A l 2 Oo layer is applied by p lasma coating and is t h e r e 
fore firmly connected to the col lector . The external jacket is connected to 
the anode by different methods. 

SCHOCK: If you have stacked diodes within one fuel element , then there a r e 
axial gaps between the joining co l lec tors . Do you coat those too? 

KARETNIKOV: The coating is between the fuel and the emi t te r . 

SCHOCK: Have you considered the danger that c racks in the Al O will be 
filled with liquid meta l , shorting the collector to the sheath? 

KARETNIKOV: Here we consider a scheme consisting of one element over 
the ent i re length of the r eac to r . 
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1. INTRODUCTION 

Nuclear fuel elements consisting of ceramic spherical 
particles coated with pyrolytic carbon are applied with success 
in high temperature reactors {_ 1 " 5J . The same concept was 
proposed here as a fuel for thermionic converters. It is known 
that the usual UC based fuel shows swelling phenomena after some 
time of irradiation at temperatures above 1400*C. Irradiation tests 
made in several laboratories confirm that the coating can withstand 
the high pressure of fission gases so that the swelling is avoided. 

Application of coated particles to the thermionic converters 
involves a workiag temperature several hundred degrees higher than 
in conventional high temperature reactors but the priaclpal 
difference lies in the refractory metal sheath necessary to provide 
a good emitter surface. 

2. SAMPLE FABRICATION 

The samples consisted of a thick refractory metal tube 
filled with coated UC. fuel particles (in a few cases uncoated UO. 
and UN fuel particles were used). To try to prevent interreaction 
of the carbon coated particles on the can, as well as to improve 
the thermal conductivity>different filler materials were used. 

After vibrocompaction of particles and filler material, the 
tubes were closed by a cap which was sealed by means of an electron-
beam weld (6). 
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3. CHOICE OF FILLING MATERIAL 

The different filling materials tested were chosen amongst 
the most thermodynamically stable compounds having a melting point 
above 2200*C. They also were selected so that any reaction occurring 
with the four refractory metals would give products with melting points 
well above 2O0O*C (7 - 8). The final selection was ZrC, SiC, TaC, CeS, 
Zr-Si., AlN. 6 5 

4. COMPATIBILITY 

A programme was set up to investigate the four refractory 
metals Mo, W, Nb and W as canning materials, allied with a variety 
of filling materials with high melting points (above 2200eC) and 
high formation energies. All the tests were done in a vacuum furnace 

-4 -5 the working pressure being between 10 and 10 mm of Hg. 

4.1. Study of zirconium carbide as a filling material 
4.1.1. Molybdenum behaviour 

Two molybdenum cans were filled, one with ZrC and pyro-
carbon coated particles, the other with ZrC alone, and 
then treated for ten hours at 2000*C. Fig. 1 and 2 show 
the difference of the carbon diffusion into the can wall 
in both cases. With ZrC alone, the penetration was 85 μm ; 
when pyrocarbon coated particles were included, the 
penetration was 240 pm. Other qualities of ZrC do not change 
the reaction with molybdenum, but the quality of the 
pyrocarbon coating has been found to be a very important 
factor on the carburization rate of the can. 

A heat treatment was also carried out at 1800°C, which was more 
representative for thermionic emitters. The aspect of the 
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reaction baad remained the same ; after ten hours its 
thickness was approximatively 100 p.m. If a square root 
of the time law is applied, after one year, the reaction 
thickness would be of the order of 3 mm. 

X-ray diffractloa of the inner side of the Mo can, shown 
in Fig. 1, detected the presence of Mo, Mo C and ZrC. 
It caa thus be explained that the molybdenum carburisatlon 
was due to the formation of a carbon deficient ZrC ; the 
homogeneity raage of ZrC is iadeed very large. 

The sample showa la Fig. 2 was analysed by electron micro-
probe analysis. The dark phase la the reactloa band is 
molybdenum metal aad the light phase is Mo C ; the molybdenum 
plates are probably produced by precipitation on cooling 
from a high temperature solid solution. The Mo C penetrates into 

the molybdenum grain boundaries. 

4.1.2. Tungsten behaviour 
The compatibility tests were carried out at 2000* and 1800*C. 
Results of the 2000*C test are showa in Fig. 3 ; the mean 
thickness of the reaction zone was 250 \im and the layer was 
very similar to the one with molybdenum. The concentration 
gradient of tungsten platelets in the W C is more typical 
of a re-precipitation of tungsten from a high temperature 
solid solution containing a concentration gradient. Micrographic 
analysis of the coated particles after the test showed nearly 
complete dissolution of the outer layer of the coating. 

The results of the compatibility test at 1800*C for ten hours 
were similar ; the mean thickness of the penetration band was 

40 μ». Applyiag agaia a square root of the time law, a 
penetration thickness of 1 mm could be expected after one year. 
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The appearance of the carbide layer was somewhat 
different from the one found after the 2000'C test ; 
there were no tungsten platelets in W2C ; the solubility 
of tungsten in W2C is significantly higher at 2000*C 
than at 1800*C. 

4.1.3. Niobium behaviour 
The compatibility tests were run for 200 to 1000 hours 
at 1700*C. Dissolution of the pyrocarbon coating in ZrC 
was evident after 200 h and nearly complete after 500 h. 
There was no carbide layer on the inside of the can but 
the carbon diffusion proceeds along grain boundaries 
throughout the whole thickness of the can. 

4.1.4. Tantalum behaviour 
Tantalum behaves la a manner similar to niobium. However, 
a reaction layer could be seea on the inside of the tantalum 
capsule (Fig. 4), but the carboa diffusion proceeds also 
aloag grain boundaries aad the whole thickness of the caa 
was passed through. 

4.2. Study of silicon carbide as a filling material 
Silicoa carbide caa be very easily applied as a secoad 

coatiag on pyrocarbon coated particles and is perfectly compatible 
with graphite and pyrocarbon : some tests have shown that duplex SIC -
PyC coated particles can withstaad a heat treatment at 2200*C for 
several hours without damage. 

The four refractory metals Mo, Nb, Ta and W respectively 
were placed la coatact with pyrocarbon coated particles and SIC filling 
material. Only tungsten withstood a ten hour test at 2000*C. Fig· 5 
shows the diffusion zone, identified micrographically as W_C ; its 
thickness was 760 μ-rn. The molybdenum capsule produced a liquid phase 
shortly after reaching 2000eC. Niobium and tantalum were very strongly 
attacked after four hours at 2000*C. ; carburizatioa proceeded through
out the wall mainly aloag the graia bouadaries. 
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4.3. Study of cerium sulfide as a filling material 
A molybdenum capsule was filled with CeS plus pyrocarbon 

coated particles and heat treated for 10 h at 2000°C. The failure 
was not complete but the reactioa proceeded to such an extent that 
the whole thickness of the caa was peaetrated. In the same time, 
the pyrocarbon coatlag was severely attacked,and for this reasoa 
the other refractory metals were aot tested. 

4.4· Study of zirconium silicide as a filling material 
Zirconium silicide was prepared by melting pure zirconium 

and silicon metals la a non consumable electrode arc furnace. 
Metallographlcally, at least two phases were detected and the product 
obtained was thus a mixture of two or more of the following compounds : 
Zr,Sl e i ZrSi (decomp. 2095*0, Z r .S i . (decomp. 2225eC) or Zr c Si , 

0 5 3 ¿- 5 3 
(decomp. 22lO*C) (7 - 8 ) 

When treated for 10 h at 2000*C, most of the pyrocarbon 
coated particles dissolved completely ia the surrounding silicide. 
Molybdenum forms a eutectic with the filler. The capsule melted after 
6 min at 2000*C. The reactions with tantalum for 10 h^and with tungsten 
for 4 h at 2000*C were severe. 

4.5. Study of tantalum carbide as a filling material 
4.5.1. Molybdenum behaviour 

A very strong reaction was detected with the typical Mo c 
formatlon. This behaviour can be attributed to the preseace 
of pyrocarbon coated particles because the metallographic 
inspection of the capsule showed that the carburatioa depth 
was a function of proximity of the coated particles to the 
capsule. 

4.5.2. Tungsten behaviour 
A reactioa was also found with the tungsten caa after 10 h 
at 2000*C. A typical carbide formatloa was observed. 



737 

Fig. 6 shows the influence of the proximity of a particle 
oa the carbide peaetratioa thickaess in the can. Tungsten 
platelets were found in the W.C. The mean thickness of the 
layer wan 175 yn. 

4.6. Study of aluminium nitride as a filling material 
4.6.1. Behaviour of niobium aad taatalum 

In teste at 2000'C, where AlN alone was in contact with 
niobium or tantalum, complete melting occurred by 
formatioa of a eutectic. Ia aa other test, where pyrocarbon 
coated particles were preseat as well in the caa, complete 
melting did not happen. However the niobium can was 
completely penetrated aad the taatalum can strongly attacked. 
The abseace of meltiag could be explained by a slightly lower 
temperature reached la the latter tests ; The precisioa oa the 
temperature measuremeat with the optical pyrometer readiag 
was certainly not better thaa + 50*C at 2000°C. The eutectic 
formation can thus be fixed very aear to 2000*C. 

4.6.2. Behaviour of molybdenum 
No diffusion could be observed microscopically ia molybdenum 
when it had beea in contact with AlN alone for 10 h at 2000'C. 
Only small graia boundary precipitates and an irregular graia 
growth, not unexpected for molybdenum at that temperature, 
could be detected. 

When pyrocarboa coated particles were added to the AlN powder, 
only a thin irregular reaction band on the inside of the 
canvas aoticed after 10 h at 2000*C (Fig. 7). The X-ray 
diffraction analysis showed that the phases present in this 
capsule after heat treatment were Mo, Mo.C ; AlN, UC- aad C. 
A thia reactioa band on the external layer of the pyrocarbon 
could also be observed. 
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From the two preceding experiments, it could be 
concluded that AlN was compatible with molybdenum 
at 2000#C but the preseace of carboa in the capsule 
should be avoided. After these tests UN and UO. were 
suggested as possible fuels. Uranium nitride was used 

aa asruncoated ground powder ; it was mixed with aluminium 
nitride powder and filled directly into a molybdenum caa. 
There was no visible influence of the uranium nitride 
on the compatibility at 2000*C. The same test was 
performed with U0?, and agaia ao influence of this 
material was found. Fig. 8 shows a typical aspect of 
molybdenum after being in contact with AlN at 2000*C for 
10 h ; the irregular grain growth and the grain boundary 
precipitate caa be observed. The few patches of white 
phase ia the iaside of the graia are probably the graia 
boundary predpitate left over by boundary movement. 

4.6.3. Tungsten behaviour 
The same series of tests were carried out with tungsten 
aad the same general behaviour was observed. If AlN powder 
was tested alone, no reactioa was visible, and the grain size 
remained small after 10 hrs at 2000*C. 

If pyrocarbon coated particles were added to the AlN powder, 
oaly very local carbide formation could be observed ; this 
occurred probably oaly when a particle was ia the immediate 
viciaity of the caa (Fig. 9). A very small quantity of a 
second phase was precipitated mainly along the grain boun
daries, but hardly more than ia the case of tungsten aad 
filler alone, heat treated la the same conditions. Some of 
the coated particles were very slightly attacked duriag the 
test. The aluminium nitride did not stop completely the carbon 
diffusion from the particle coating, and, after a long time, 
the tungsten would also probably be carburlsed. 
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Compared to the behaviour of tungsten in contact with 
AlN aloae, the additioa of UN or U0_ powder did aot 
change the micrographie aspect of the caa after 10 h 
heat treatment at 2000*C· Fig. 10 shows the result of 
the test with UN aad AlN mixed powders aad is typical 
of the aspect of tungsten after these tests. 

5. CONCLUSIONS 

a) All compatibility tests betweea pyrocarbon coated particles 
aad refractory metals have showa that the caa will not with-
stand one year at 1800*C without uadue carburlzatlon occunlng 

b) Taatalum aad zirconium carbides aloae are compatible with 
tuagstea aad molybdenum ; this compatibility is destroyed in 
the presence of pyrocarboa 

c) The use of oxide or aitride fuels could probably solve the 
compatibility problems. Some other problems may arise and the 
tests carried out la this study are aot sufficient to ascertain 
this statement. 
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F i g . 1 Deta i l of a Mo can f i l l ed 
w i t h ZrC powder o n l y , a f t e r 

10 hours at 2000 ° C. ( χ 250 ) 

Λ < 

F i g . 2 D e t a i l of a Mo can f i l l e d 
w i t h Z r C and py roca rbon - coated 

p a r t i c l e s a f te r 10 hours at 

2 0 0 0 ° C. I χ 250 ) 
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F i g - 3 ( T 3 O ) D e t a i l o f a W c a p s u l e 

f i l l e d w i t h Z r C p o w d e r a n d 

P y C - c o a t e d u r a n i u m c a r b i d e 

p a r t i c l e s a f t e r a heat t r e a t m e n t 

of t e n h o u r s at 2 0 0 0 ° C ( m e a n 

t h i c k n e s s of r e a c t i o n r i n g : 2 5 0 y u m . 

( x 29 ) 

F i g . 4 D e t a i l of a Ta c a p s u l e f i l l e d 

w i t h Z r C p o w d e r a n d P y C - c o a t e d 

u r a n i u m c a r b i d e p a r t i c l e s a f t e r a 
h e a t t r e a t m e n t o f 10 h at 2 0 0 0 ° C . ( χ 250 ) 
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F i g . 5 De ta i l of a tungsten can f i l l ed 
w i t h SiC powder and P y C - c o a t e d 

pa r t i c l es a f t e r ten hours at 2000 C, 

showing the contact zone between 

W meta l and the reac t ion band ( χ 75 ) 

F ig . 6 Deta i l of a W can f i l l e d wi th TaC 
powder and PyC - coated u ran ium 
ca rb i de pa r t i c l es a f te r ten hours 
at 2000 C , showing the in f luence of 
the p rox im i t y of a par t ic le . ( χ 75 ) 
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Fig. 7 Detai l of a molybdenum can filled 
wi th A l N powder and pyrocarbon - coated 
part icles after ten hours at 2 0 0 0 ° C . ( x 2 9 ) 

F ig . θ Micrograph of a molybdenum can f i l led 
w i th A l N and UO2 powder after ten 
hours at 2000 ° C , showing grain 
boundary precipi tates. ( χ 250 ) 
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F i g . 9 Micrograph of the tungsten capsule 
containing A l N and P y C - c o a t e d 

heat t rea ted during ten 
o _ 

the 

pa rt i cies 
hours at 2000 " C , showing 
carb ide format ion . I χ 2 5 0 ) 

Fig · 10 Detai l of a W can f i l led w i th 

AlN powder and uncoated UN 

powder a f t e r ten hours at 

2000 ° C . 1 x 2 9 ) 
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DISCUSSION 

No speaker of paper E - 1 6 . 

BUGL (Euratom): How has the uraniumni t r ide been fabr icated? 

VANGEEL (Belgium): The uraniumni t r ide was made by nitrat ing uran ium 
powder. 

BUGL: Did you observe free uran ium in your uranium ni t r ide? 

VANGEEL: We did not analyze it for this purpose , because it was only at 
the end of the study that we did some exper iments with the n i t r ide . 

BUGL: In your paper you came to the conclusion that the use of oxide or 
ni t r ide fuel could solve the compatibil i ty p rob l ems . 
As it concerns the oxide I ag ree to a ce r ta in extentjwith r e spec t to the n i 
t r ide I would like to make the l imitat ion "as long as you have s to ichiometr ic 
UN" This i s , however, as one sees from the phase d iagram which has been 
published a few yea r s ago by A. BAUER and myself, r a the r difficult to ob
tain. 
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ETUDE DE SOUDURE PAR DIFFUSION DU MOLYBDENE. 

G. FUSTIE, B. JACQUIN 
Société BOCUZE, LES ECHETS, France. 

M. CLEMOT, J . P . DURAND, 
Service d'Electronique Physique, Centre d'Etudes Nucléaires de Saclay 

91 Gif-sur-Yvette (France) 

Introduction. 

Les moyens classiques de soudure des métaux réfractaires nécessitent ou bien la fusion 
locale (bombardement électronique) qui entraîne une recristallisation et une fragilisation impor
tante, ou bien la présence d'un matériau intermédiaire (brasure) qui nécessite une succession 
d'opérations délicates et limite nécessairement la température d'utilisation et les propriétés 
mécaniques de l 'ensemble. 

Le Service d'Electronique Physique du Commissariat à l 'Energie Atomique avec le con
cours de la Société BOCUZE a développé une étude de soudure par diffusion qui évite ces incon
vénients car elle s'effectue sans intermédiaire à une température inférieure à celle de fusion 
des matériaux de base. Elle présente en outre l'avantage de conduire à des zones de jonction 
de grandes dimensions. Dans le présent art icle, on donne les premiers résultats obtenus pour 
la réalisation de jonctions molybdène-molybdène. 

Ensemble expérimental. 

I - Ap£areillage. (fig. 1) 

II comprend : 
-5 

I - une enceinte à vide (pression inférieure à 10 T) ; 
2 - un r e s i s t o r en tungstène en hélice ; 
3 - un vérin hydraulique avec passage étanche du piston à t ravers l'enceinte à vide. 
La mesure de la température se fait soit par pyrométrie optique soit par thermocouple 

tungstène-rhénium 5-26 %. 

La température maximum de fonctionnement est de l 'ordre de 1 800 °C. 

La force appliquée par le vérin est réglable de 0 à 1 000 Newtons. 

II - Les_éprouvettes_. (fig. 2) 

La forme et les dimensions ont été choisies de façon à pouvoir : 

1 - t rai ter plusieurs échantillons ensemble ; 
2 - faire des essais de traction sur les jonctions sans réusinage ; 
3 - faire des tests d'étanchéité ; 
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4 - mesurer la température de l'échantillon en cours d'expérimentation (trou de ther
mocouple). 

III - P£9iie£sus_eií:T¿fj:'Ín3£nt2.1i 

Les éprouvettes sont empilées par deux ou t ro is , et sont tenues en position par l'applica
tion d'une légère pression. L'ensemble est mis sous vide. On procède alors à "l 'accrochage 
de diffusion" sous pression à chaud. 

Les échantillons subissent ensuite un recuit de diffusion dans un four sous vide annexe. 

Paramètres de l'étude. 

Les principaux paramètres de l'étude sont : 

1 - l'état de surface de l'échantillon - ceci comprend à la fois l'aspect chimique (présence 
d'oxyde, gaz occlus) et l'aspect mécanique (rugosité, planéité) ; 

2 - la température de "l 'accrochage" ; 
3 - la durée de mise sous pression en température ; 
4 - la pression appliquée ; 
5 - la température de recuit de diffusion ; 
6 - la durée du recuit. 

Examens. 

Sur le matériau de base, ils portent sur : 

1 - l'analyse chimique - dosage des impuretés ; 
2 - la détermination de la structure micrographique ; 
3 - la mesure de la rugosité et de la planéité des surfaces à souder ; 
4 - la détermination de la charge de rupture à froid . 

Sur les pièces d'essai assemblées, ils portent sur : 

1 - la mesure de l'étanchéité ; 
2 - l'examen de la structure micrographique de la liaison éventuelle ; 
3 - la mesure de la résistance à la rupture ; 
4 - après arrachement, examens des surfaces de rupture dans le cas où celle-ci se pro

duit au niveau de la zone de jonction (cas général). 

Essais effectués. 

I -J^^tériai^de^base^ 

Tous les échantillons ont été prélevés dans des barres de molybdène BOCUZE préparé 
par frittage. 

L'analyse chimique du produit fini donne : 

Elé
ments 

Teneur 
en 

p . p . m . 

Mn 

4 

Cu 

8 

F e 

62 

Ni 

21 

Co W 

4 < 1 0 0 

B 

0 

°2 

65 

H 2 

2 

N 2 

42 

C Si0 2 A1203 

70 75 37 

CaO 

28 

Pb 

2 
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L'examen micrographique montre des grains uniformes dans toute la masse du matériau, 
ils présentent une forme allongée parallèle à l 'axe de martelage (figure nc 3). 

2 
A 20 °C la résistance à la rupture est de 45 Kg/mm . 

II  I ^ ^ £ ^ ^ J ^ ^ a ^ £ é ^ r a t i ^ j i e _ s u r f a c e _ 

Dans ces essais , les paramètres de pressags ont été figés aux valeurs suivantes : 

 Nettoyage chimique : dégraissage  rinçage  séchage ; 

 Température de pressage 1 600 °C 
 Durée 1 h. „ 
 Pression 

A) Facteur mécanique. 

330 Kg/ cm . 

Les divers préparations d'échantillons sont résumées sur le tableau cidessous. 

Nature 

* 
Pièce tournée rodée " m a r b r e " (1) 

Pièce tournée polie "diamant" (2) 

Pièce tournée rodée "alumine" (3) 

Pièce tournée 

Pièce tournée et rectifiée 

Rugosité 

^ 10 μ 

^ 0 , 5 μ 

< 1 à 2 μ 

^ 20 μ 

< 1 μ 

Planéité 

t rès bonne 

mauvaise:surface a r 
rondie 
bonne 

bonne 



n° figure 

5 

6 

7 

4 

Les examens micrographiques montrent que les acrochages sont sensiblement identiques, 
exception faite pour les pièces rodeas diamant où l 'arrondi de la surface empêche toute jonction 
autre que sur la ligne de contact. 

La figure 8 est une micrographie au grossissement 76, correspondant à l 'accrochage 
réalisé avec des pièces brutes de tour. 

En conclusion, la planéité semble indispensable, la rugosité tant qu'elle reste faible 
(inférieure à 10 μ) influence peu la liaison. 

( 1). Les pièces sont rodées face contre face avec de la poudre de carbure de silicium, 
ce qui explique la t rès bonne planéité. 

(2) Les pièces sont polies l'une après l 'autre avec des poudres de diamant de différentes 
granulométries. 

(3) Même technique que le polissage marbre mais avec de l'alumine en suspension 
aqueuse. 

B  Facteur chimique. 

On a étudié l'influence des traitement chimiques de surface suivants 
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1  El iminat ion des t r a c e s d'oxydation pa r at taque chimique. 

2  T ra i t emen t the rmique (800°C)en a tmosphè re r éduc t r i c e (H ). 

3  Dégazage à chaud sous vide des sur faces à souder avant mi se en contact . 

Les opérat ions 1 et 3 n'ont pas eu d'influence sens ib le s u r la soudure ; l 'opéra t ion 2 

semble ê t r e néfaste et nu i re à la c r o i s s a n c e u l t é r i eu re des gra ins de molybdène l o r s des opé

ra t ions de r ecu i t . E l les n'ont pas été maintenues pour les e s s a i s su ivants . 

III  T e m p é r a t u r e de l ' a cc rochage . 

Les e s s a i s de soudure ont été faits aux t e m p é r a t u r e s suivantes : 1 300 °C  1 400 °C 

1 500 CC et 1 600 °C pendant une heure sous une p r e s s ion de 330 Kg/ c m 2 . 

Audessous de 1 400 °C, l es l ia isons sont dans l ' ensemble mauva i se s , (fig. 9 et 10) ; 

on commence à obse rve r des bons r é su l t a t s à 1 500 °C (fig. 11). A l 600 CC (fig. 14) l ' a c c r o 

chage est excellent avec dispar i t ion p resque complète des poros i t é s qui r e s t a i en t s u r la ligne 

de jonction dans l es cas p récéden t s . 

IV  Influence de la durée du p r e s s a g e . 

Les e s s a i s ont por té en t re 1 heure et 4 h e u r e s , à une t e m p é r a t u r e donnée, elle est p r a 

t iquement sans effet. 

V  Influence du recui t de diffusion. 

Sur les s t r u c t u r e s acc rochées à b a s s e t e m p é r a t u r e ( < 1 500 °C),un recu i t à t e m p é r a t u r e 

élevée (1 800 °C) durant 4 heures de façon à p e r m e t t r e un léger g r o s s i s s e m e n t des gra ins a m é 

l i o r e l e s r é su l t a t s (figure n° 12 et 13) , sans pour cela fa i re d i s p a r a î t r e complètement les po ro 

s i t é s , quel le que soit la du rée du recui t . 

Sur les soudures effectuées à 1 600 °C, le recui t se t radui t pa r un g r o s s i s s e m e n t des 

g ra ins de jonction, et pa r sui te à une homogénéisat ion du ma té r i au ; la l igne de jonction a lo r s 

d i spara î t complètement (fig. n° 14 et 15). 

VI Les e s s a i s de t r ac t ion . 

Sur les échanti l lons t r a i t é s à 1 600 °C, dont l es mic rograph ies sont exce l len tes , les e s 

sa i s de t rac t ion donnent des profils d ' a r r a c h e m e n t avec des rugos i tés s u p é r i e u r e s à 100 μ 

(fig. n° 16 et 17). 

L ' absence de ro tu le dans la t r a n s m i s s i o n de la p r e s s i o n s u r l es échantil lons ne p e r m e t 

pas de c o r r i g e r les défauts de p a r a l l é l i s m e du montage . La p r e s s i o n n ' e s t pas uniforme su r 

la to ta l i té de la surface à souder , c ' e s t pourquoi l es e s s a i s de t rac t ion n'ont pas donné pour 

l ' ins tant les r é su l t a t s que l 'on pouvait e scompte r  vu la quali té micrographique des l ia isons 

obtenues . 

Conclus ions . 

Au cours de ce t te étude, on a r é a l i s é pour l ' ins tant cinquante e s s a i s . Vu le grand nombre 

de p a r a m è t r e s , on ne peut encore donner de conclusions f o r m e l l e s . Cependant i l semble dé 

finit ivement établi que : 

1  la planéi té des échanti l lons est indispensable ; 

2  la rugos i té peut v a r i e r sans grande incidence su r la quali té des jonct ions; 
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3 - la température minimale d'accrochage se situe à 1 600 "C, quelle que soit la durée 
de la tenue sous pression ; 

4 - Un recuit de diffusion à plus haute température (1 800 °C) est nécessaire pour homo
généiser la jonction. 

Bibliographie. 

[1] DANNESSAA.T. 
"Diffusion'bonding beryllium molybdenum and tungsten." Metal Progress . 

[2] NEALE E . , ORROK, 
"Application of diffusion bonding1 metal progress , June 66. 

[3] ''Investigation of diffusion bar r ie r s for refractory me ta l s " 
Technical documentary report NR-ASD(TDR 62-432) 

[4] BONNIN P . 
"Etude bibliographique sur les procédés de jonction par diffusion" 
Bibliographie CEA n° 44. 



- 754 

<vww<V^x\^r 

Surface 
de travail 

Tube de 
guidage 

«nraf pE 4 Trou de 
pompage et 
passage de 
thermocouple 

SURFACE DE CONTACT: 63,6mm* 

Fig . 1 - Dispositif expér imental F i g . 2 - Eprouvet tes 

F i g . 3 - Aspect micrographique du 
molybdène uti l isé 
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Fig. 8 - Pièce tournée, Τ = 1600°C, 

t = 1 heure, Ρ = 330kg/ c m^ 
Fig. 9 - Pièce rodée "marbre", T = 1300°C 

t = 1 heure, P = 330kg/cm 

Fig. 10- Pièce rodée "marbre" 

T =1400°C, t = 1 heure, 

P = 330 kg/cm
2 

Fig. 11 - Pièce rodée " marbre" 

T = 1500°C, t = 1 heure, 

P = 330 kg/ am2 
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Fig. 12 - Pièce polie Αΐ2θ 3 , 
Τ = 1400°C, t = 1 heure 
Ρ = 330 k g / c m 

."-'•'.Jfâsí-. 

. · . · ·· 
Fig. 14 - Liaison effectuée avec pièce 

rôdée"marbre", T = l600oC, 
t = 1 heure , P =330kg/ cm 2 

Fig . 13 - Pièce polie A1 2 0 3 (T =1400ÓC, 
t = 1 heure , P=330kg/ cm2 + 
4 heures recuit 1800°C) 

Fig . 15 - Liaison avec pièce rodée "marbre" 
T = 1600°C, t = 1 heure , P=330kg/ 
om 2 = 4 heures recuit 1800°C 
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F i g . 16 Surfaces a p r è s a r r a c h e m e n t . (P ièce polie " m a r b r e " , T = 1600°C , 
t = 1 heu re , P = 330 k g / c m 2 ) 
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F i g . 17  Prof i l des su r faces a p r è s a r r a c h e m e n t (P ièce polie " m a r b r e " , T  1600°C, 
t = 1 heu re , P = 330 k g / d m 2 ) 
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DISCUSSION 

Speaker of paper E 17 : Β. JACQUIN. 

SCHOCK (USA): Your p r e s s u r e would be applied mechanically, not by i s o 

static gas , do I unders tand that co r r ec t l y? 

JACQUIN (France) : Oui, la p r e s s ion es t appliquée mécaniquement . La 

p res s ion ρ η β υ η ^ ^ μ β se r t uniquement à act ionner le vé r in . 

SCHOCK: I wonder whether you could clarify how you propose to uti l ize this 

method in the application of the diode. 

JACQUIN: Nous ne fabriquons pas de diodes, nous faisons s implement des 

e s sa i s pour savoir si pa r la suite dans la diode il s e r a possible d 'u t i l i se r ce 

p rocédé . Pour la fabrication des diodes on u t i l i se ra cer ta inement un au t re 

dispositif. Pour le moment il s 'agit de dé t e rmine r les p a r a m è t r e s de bonne 

soudure pa r diffusion. 

BUSSE (Euratom): I think the a im of the study was to avoid the e m b r i t t l e 

ment by recrys ta l l iza t ion , during welding. Did you t e s t how far you avoided 

embr i t t lement by your method? I unders tand your t e m p e r a t u r e s a r e r a the r 

high. 

JACQUIN: Oui, la t empéra tu re était élevée mais le g r o s s i s s e m e n t des 

gra ins es t cer ta inement net tement infér ieur à celui observé lo rs d'une 

soudure pa r bombardement électronique, puisqu ' i l n 'y a pas de fusion du 

ma té r i au de base . 

BUSSE: Did you consider going to lower t e m p e r a t u r e s and higher p r e s s u r e s , 

so that you can avoid this grain growth? 

JACQUIN: Non, pas pour le moment , pa rce que t rop peu d ' e s s a i s ont été 

r é a l i s é s . Avec une p res s ion comme celle indiquée (330 kg /cm ) et à des 

t e m p é r a t u r e s infér ieures à 1600 C il n ' e s t pas possible d 'obtenir un bon 

accrochage de diffusion. 

CAMPBELL (USA): What m a t e r i a l was your r a m made of? What effect had 

the mechanica l p r e s s u r e on the pa r t s of the r a m ? 

JACQUIN: Le vér in l u i même est en ac i e r . Il es t équippé, en bout, d'un 

poussoi r en molybdène qui appuie sur des p ièces en alumine qui servent 

d ' isolant the rmique . Le vé r in lu i même est dans une zone froide. 

ROUKLOVE (USA): What precaut ion did you take that the p r e s s u r e would 
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be equally distr ibuted along al l the surface of the pa r t ? 

JACQUIN: Tout s implement , un bon usinage de p ièces , un bon montage du 
dispositif expér imenta l , ma i s il a été prouvé qu' i l n 'étai t pas poss ible , 
sans emploi d'une rotule, de pouvoir appliquer, d'une maniè re uniforme, la 
p ress ion sur les p ièces . 
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INVESTIGATION OP DIFFUSION INTERACTION AND 
STRUCTURAL STABILITY OP CATHODE MATERIAL 

V.N.Bykov, L.V.Pavlinov, ïu.A.Gorban, M.I.Zakharova, 
A.A.Korolev, V.A.Malykh, I.P.Mukhin, A.I.Nakonechnikov, 
B.A.Nevzorov, A.V.Frolov, A.S.Shatalin 

When selecting material of cathode assembly of nuclear energy 
thermionic converter, one must take into account the chemical 
interaction processes of contacting materials which occur at 
operational temperature teI500°C)including cesium vapours, 
evaporation and mass transfer through gaseous phase, creep, 
structural changes and others which can result in undesirable 
changes of the complex of physical-mechanic al characteristics and 
the construction as a whole· At that, the material selection is 
limited by the requirement of necessary nuclear properties and 
thermionic characteristics. Those requirements are satisfied to 
a considerable extent with molybdenum, tungsten and uranium dioxide, 
used as cathode and fission composition shells, respectively· 
In present report the results are given describing the investiga
tions of diffusive interaction and uranium dioxide and cesium 
compatibility with refractory metals, high molibdenum strength in 
cesium vapours, evaporation and uranium dioxide composition 
changes and structural changes of monocrystal samples of molybde
num and tungsten cathodes by annealing. 
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I.Evaporation and Changing the Uranium Dioxide 

Composition 

Examination of uranium dioxide evaporation was carried out 

by the differentiation of Knudsen*s method. The assembly gave 

the possibility to cover 30 targets in series with uranium dioxide 

without ~ 10 mm Hg vacuum unhermeticity· The condensate 

amount was measured by natural uranium o<activity. Original 

powdery uranium dioxide consisted of the following components 

(weight % ) : U86.79; 012.76; HpO0.357; Pe, Mn, Al and others

the rest. The oxygen content corresponds to the UÛ£ 2o formula· 

Roentgenograph^ analysis shows only the presence of strongly 

broadened UOp phase lines with the lattice parameter a=5|460 A 

which corresponds to the UOp QQ formula. 

After 5 hours holding at 460°C U^OQ phase lines appeared 

at the roentgenograms. The result of changing uranium dioxide 

with the temperature are shown in Fig.I. When increasing the 

temperature, UJDQ is enriched with oxygen while UOp loses it 

approaching a stoichiometic composition at 2I70°C. The U ^ 0 Q + T 

phase presents till about II20°C (it is shown by the arrow in 

Pig.I). Fig.I illustrates also changing the ratio 0/U with the 

temperature for the condensate formed and stoichiometric uranium 

dioxide, places into the chamber without contact with the base 

sample (curves 2 and 3, respectively). As the paper I shows 

vapour pressure above uranium dioxide depends on oxygen excess· 

For stoichiometric uranium dioxide the dependence of vapour 

elasticity on the temperature in the range of I6002300°C is 

described by the following equation: 

lß
p
mm =  £2£8 + 12,183, 

° mm n¡\ ' 

which corresponds to heat of evaporation: 

ΔΗ Τ = 147500 ±500 ¿ai
mo 1 

2.Structural Changing the Monocristal Samples of 

Molybdenum and Tungsten Cathodes by annealing 

By means of methods of microscopy and Xray analysis 
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there was carried out the investigation of dislocated structure 
and structural imperfection distribution in molybdenum and 
tungsten depending on the method of obtaining monocrystals and 
those imperfections behaviour during the monocrystal cathodes 
annealing under a vacuum of (5*I0~'?mm Hg)for 500 hours in the 
temperature range of 1400-2000°C. 

There was shown that the degree of perfection and the character 
of the monocrystal dislocated structure depend essentially on 
the method of their obtaining. One can observe nonuniform 
placing of dislocations in molybdenum which was obtained from the 
gaseous phase and by the method of electronic beam melting: 
aggregates forming dislocated grids on the planes {lio} and 
aggregates forming dislocated "sockets" around micropores on the 
planes {lOO}, respectively· 

Monocrystals obtained by the method of zone electronic beam 
melting are the most perfective: (angles of disorientations 
between subgrains do not exceed 20"), dislocations are uniformly 
placed in the field of subgrains; the sample rotation during the 
melting promoted the formation of the most uniform dislocated 
structure without subgrained boundaries with dislocation density 
~ 9-IO5 cm"2. 

Such a difference in original sample structures effects 
futher dislocation behaviour at annealing· 

In that case when dislocations placed as aggregates one can 
observe the redistribution of dislocations results in increasing 
the disorientation angles between original subgrains from 30 " -2 
to I°-4° and the fragmentation of original subgrains to 
smaller ones [2]· 

Voltages of monocrystal cathode shells and thermocycling 
promote more intensive fragmentation and increasing the disorienta
tion angle of substructure grains· Hence, mechanical and emissive 
properties are respectively changed. Monocrystal samples of molybde
num and tungsten formed by the method of zonal electron beam 
melting for the inuform dislocation distribution have the most 
stable structure during annealing. 
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3 »Uranium Dioxide Interaction With Refractory 
Metals 

The interaction of uranium dioxide having the U0 2 2 0 
composition with molybdenum was investigated for 1000 hours at 
the temperature of I500°C and for 100 hours at 1.600, 1,700; 
1,800; 1,900 and 2,000°C. The interaction of uranium dioxide 
having U02 0 Q, U02 JQ and U02 2 Q compositions and the composition 
of UOp j 0 +40 weight%W with tungsten was investigated for 930 and 
800 hours at the temperatures of 1700° and I850°C, respectively. 
In present work there were used molibdenum and tungsten the puri
ty of which was equal to 99,98%. The samples were enclosed into 
hermetic and open molybdenum containers. After isothermal 
annealing under the conditions above there were conducted 
metalographical, roentgenostructural, roentgenospectral and 
radiometric analyses of molybdenum and tungsten samples. Those 
results pointed out the absence of interaction with new oxide 
phases which agree with the results of thermodynamic calculations 
and experimental data [3,4] . Uranium dioxide loses oxygen 
excess at high temperature annealing and its composition 
approaches stoichiometry. That is confirmed by the measurement of 
the uranium dioxide crystal lattice parameter and by the 
"swelling" of hermetic molybdenum containers during annealing 
at I850°C. 

The radiometric analysis helped to detect uranium diffusion 
into molybden depth penetration of which was equal 300 f\ for 
1000 hours at I5OO0. So, there were conducted systematical investi
gations of uranium diffusion into molibdenum and tungsten from the 
uranium dioxide and thin uranium layer covered the samples by a 
dispersion in vacuum. To investigate uranium diffusion from 
dioxide there were used uranium dioxide in the form of fine-
-dispersive powder enriched to 36% with U-235 isotop, and molyb
denum and tungsten samples having form of rectangulars of 
7x10x15 mm anealed beforehand for 100 hours at 2000°C. Those 
samples pressurised to the uranium dioxide powder in molybdenum 
containers under the pressure of 4000 kg/cm» The containers 
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were welded by electronicbeam welding and were annealed at 

the températures of I6002000°C in a vacuum furnace. After anneal

ing pianoparallel layers were taken down the sample surface 

and integral oCactivity was measured. The diffusion coefficient 

was calculated using the equation of Pick
1
s second law for 

the case of a constant concentration at a surface: 

io 

where I  is the integral sample activity after taking down 

a thickness layer; 

Ie is the integral sample activity at X= 0; 

er^Z  is the probability integral, Ζ = ζ VIH , 

D  is the diffusion coefficient; 

't  is the duration of diffusive annealing. 

The temperature dependence of the diffusion coefficient is 

given in plots as E^D versus I/T. That dependence can be 

analytically described by the expressions: for molybdenum 

D = 7.60 I0"
5
exp(76400/RT) cm

2
/wee*' and for tungsten 

D = 0.34 IO"
5
 exp(60000/RT) cm

2
/sec. 

Uranium diffusion data from dioxide into molybdenum are in 

good agreement with the result for the urani um diffusion from 

a thin layer [5]· The plot in Pig*2 shows that the difference bet

ween uranium diffusion coefficients from dioxide and momentary 

source into molybdenum is withing the range of experimental 

errors. The temperature dependence equation of the uranium 

diffusion coefficient into molybdenum for the momentary source 

has the same form as eq.(K) 

4,Cesium Diffusion into Molybdenum 

The investigation of cesium diffusion into molybdenum was 

carried out using radioactive cesium isotope CsI34 at plane 

polycrystal samples and monocrystals in the direction of (III). 

Polycrystal hotforged samples were tested both in unannealed and 

annealed forms for 100 hours at 1200° and I600°C· 

A diffusive saturation of samples with cesium was carried 
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Out from a vapour phase in hermetic molybdenum containers 
containing except samples chloride of cesium-134 isotope and 
the diluent that is nonradioactive cesium chloride. 

A cesium distribution was determined by the method of taking 
down layers and measuring their thickness both weighing and 
direct measuring using an optical longmeter with the accuracy 
of Iyu., 

Integral β -activity of the sample was measured by a 
scintillation method and a concentrated curve c ** j(x) 
was drawn accounting the radiation absorption correction of 
sample material. 

The diffusion coefficient was obtained by the method of 
a standard curve using the equation for a constant concentra
tion at a boundary. Diffusion coefficient experimental values 
are given in coordinates BaD ^ in Fig.3. The temperature 
dependence of the diffusion coefficient for monocrystal and 
polycrystal unannealed samples is discribed by the following 
equations: 

for monocrystal D = 8.52 I0~^exp(-39800/RT) cm2/sec 
for polycrystal D = 3 I0~IIexp(-I5500/RT) cm2/sec 

Diffusion coefficients for polycrystal molybdenum 
thermo-treated at 1200° and I600°C have intermediate values at a 
considerable spread. 

Data obtained points out a considerable diffusion contribu
tion of structure defects to a general diffusive cesium flow in 
polycrystal molybdenum. Material annealing at 1200° and I600°C 
decreases the diffusion coefficient· A typical concentration 
curve is given in Fig.4. For all the temperatures and all the 
sample types an excess cesium concentration at a molybdenum surface 
is shown compared with that following from a standard curve. For 
unannealed samples anomal large cesium concentrations after 
taking down the layers are typical which corresponding to 
predicted decreasing the cesium concentration by 15-20 times. 

The first fact must be probably explained by physical processes 
at a sample surface and the second one confirms a considerable 
effect of structure defects on the cesium diffusion in molybdenum· 
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Autoradiography of samples saturated with cesium in all 
cases fixes cesium aggregates in the form of point and linear 
objects, located either along grain boundaries or in grainbodies 
directly. Nowhere cesium penetration was observed along interface 
planes between grains as along the plane of a final thickness· 

The results obtained point out that a preliminary high 
temperature treatment of molybdenum articles intended for the 
operation in cesium vapours can be useful for decreasing a cesium 
content in material that must correspondingly improve its 
characteristics of long-time strength and plasticity· 

5» Molybdenum Long-Time Strength in Cesium 
Vapours 

The long-time strength investigation of molybdenum with small 
additions of titanium (0*4%) and zirconium (0,2%) was conducted 
in vacuum of I0~^mm Hg and in cesium vapours under the pressure 
of 4-8 mm Hg at the temperature of I600°C. 

The alloy results are given in plots in logarithmic coordi
nates of stress and time before failure (Fig.5)· The dependence 
coordinates of stress and time before failure can be expressed 
by the following equations: 

(for vacuum) &J<3 = 0,248 6^T+ 0,833 
(for cesium vapours) 2g<¿ =-o,263cofT+ 0.7ÔA-

The results show a somewhat decreasing the alloy rupture 
strength when investigating in cesium vapours. Increasing the 
time before failure, one can increase a relative decreasing of 
the alloy rupture strength when investigating in cesium vapours· 

Maximum creep rate was observed for samples investigated 
in cesium vapours and here a relative deformation during short 
periods of investigations (below 50 hours) has the greatest 
importance. Increasing the test interval before failure results 
in decreasing the sample elongation (Pig.6)· Metallographical 
and X-ray analyses did not reveal the corrosive effect of cesium 
vapours on stressed alloy. Cesium traces were detected in the 
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alloy surface layer with spectral analysis. Molybdenum holding 
in cesium vapours for unstressed state does not practically 
change its mechanical properties. 

Conclusions 
1. High temperature annealing of uranium dioxide with oxygen 
excess (U02 2 Q ) results in the oxygen excess loss and 
approaching the stoichiometry composition (U02 Q 0 ) · 
2. Anealing of monocrystal molybdenum samples and tungsten 
at temperatures exceeding the recrystallization temperature results 
in appearing the substructure and grain fragmentation which are 
explained by the dislocation redistribution. Mechanical and 
emissive properties are changed by that. 
3· At the temperatures till 2000°C uranium dioxide does not 
interact with molybdenum and tungsten forming new oxide phases. 
However when contacting uranium dioxide with molybdenum and 
tungsten the peplacing uranium diffusion within a solid 
solution takes place at the temperature above 1500°C· 
4. The investigations conducted point out the cesium diffusion 
from a gaseous phase to molybdenum. A cesium concentration on 
the surface and a diffusion depth depend on molybdenum structural 
state· 
5· Rupture strength and a relative molybdenum elongation (the 
alloy with 0·4 Ti and 0·2% Zr) at the temperature of I600°C in 
cesium vapours (4-8 mm Hg) are less than in vacuum. Molybdenum 
holding in cesium vapours for unstressed state does not practically 
change its mechanical properties. 
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alojem. 

Pig. 4. Cesium distribution in molybdenum 
holding in CsCl vapours for 72 hours, 1200% 
I) Monocrystal molybdenum;2) Polycrystal 
molybdenum annealed at 1600 C; 3) Polycrys
tal molybdenum annealed at I200°C; 4)Poly-
crystal unannealed molybdenum. 

Fig. 5. Molybdenum long-strength in vacuum and in 
cesium vapours at 1600°C. 
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Fig. 6. Dependence of molybdenum 
plasticity change in vacuum and 
in cesium vapours at 1600°C. 
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Abstract : 

Cermet electrodes for a low Temperature range (Bap-CaQ ^cWOg-W) 
and for higher operating temperatures (UOp-Mo) were manufac
tured with reproducible properties. The following parameters 
proved to have an influence on the work function : the opera
ting temperature and the operating time, the gas at the sur
face of the emittér and its partial pressure, the combination 
of the emitter material and the addition of small portions of 
further metals. On the assumption that the degree of coverage 
of the surface is a measure for the emission current all the 
temperature functions of the work function of the two systems 
can be explained by a model. 
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The efficient operation of thermionic generators demands that 
the material of the emitter fulfills certain requirements, 
which can be met to a large degree by the use of a combination 
of ceramic and metallic components, i.e. by cermet electrodes. 
Such requirements are, for example, high electrical conducti
vity, low rate of evaporisation, insensibility against ion 
attack and contamination by gases, mechanical and chemical 
stability. 

With aspect to the geometrical structure one can classify 
electrodes as coated electrodes, capillary- and matrix elec
trodes. Regarding the chemical composition one differentiates 
between oxide, sulfide, nitride, carbide and boride electrodes. 
Neglecting the influence of the metallic phase for a moment, 
the composition of the ceramic phase determines the properties 
of the electrode. For example, if the Ba-concentration in the 
compounds barium strontium tungstate and barium calcium tung-
state falls below a certain limit a strong increase of the 
work function takes place (fig. 1). The presence of calcium 
in such an electrode increases its life without changing the 
other properties L1, 2, 3» 4 J . Therefore we tried to pre
pare barium calcium tungstate with a barium content of at 
least 20 at-% for use at lower temperatures. On the other hand 
the use of fission heat in thermionic emitters results in 
higher operating temperatures (U02). The powder characteristics, 
the conditions for mixing and densification have been studied 
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in order to manufacture cermet electrodes with reproducible 
properties. The desired samples (Ba2CaQ ,-,-WOg-W, 
BapCaQ ccWOg+Al+W and U02-Mo) could be produced from these 
electrode materials. For comparison of the different electrodes 
the effective work functions were measured in high vacuum 
with a planar geometrie. 

After the initial heating of the combination (supporting and 
the emitter material) relatively high emission currents were 
measured. At the end of several hours ( > 24 h) operating 
time the current density reached a steady state and the 
emission properties of the electrodes did not change further 
during the test time (50 - 400 h). All data reported here 
were therefore obtained with emitters that had operated for 
a longer period ( > 50 h). 

The following parameters proved to have an influence on the 
work function: 

operating temperature and operating time, 
the gas at the surface of the emitter and its partial pressure, 
the combination of the emitter material and 
the addition of small portions of further metals. 

The temperature dependence of the work function showed a 
minimum at a certain critical temperature which varied with 
the material. Fig. 2 shows such functions for three different 
samples. 

Inert gases (Ar, He) did not alter the work function. At 
small partial pressures (10""-> torr) the measurements were 



- 776 -

carried out in the presence of the gases. At higher partial 
this 

pressures (30 torr) effect could only be detected by measure
ments in vacuum before and after introducing the gas. On the 
other side the addition of small portions of air increased 
the work function of all the emitters at least up to the cri
tical temperature. With increasing partial pressure of air 
the minimum shifted to higher temperatures. Its absolute value 
was also higher (figs. 3 and 4). In the case of UOp-Mo even a 
partial pressure of 2.10"*° torr air was not sufficient to 
shift the minimum of the work function. 
The combination of the emitter materials proved to be another 
important parameter. With increasing fraction of the metallic 
component higher work functions were measured and the minimum 
moved to higher temperatures (figs. 5 and 6). A probable ex
planation of the variation of the temperature minimum as well 
as the temperature dependance of the work function of the 
BapCan ccWO^-W cermet electrodes lies in the change of the 
emitter material after a long heating time (300 h). The trace 
of BaWO^ ( < 0,5 Vol-%) originally found by X-ray methods in
creased with increasing temperature and time. This confirmed 
the analogy with pure barium tungsate and its expected re
actions [ 5] · 

Ba2CaW06 »- BaWO^ + BaO + CaO 
BaO 5 ^ Ba + 0; CaO-^ Ca + 0 

These very slow reactions continually supply material to form 
a thin film at the surface of the emitter. The thickness and 
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homogenity of the film seems to be dependent on the follow
ing parameters supply of alkaline earth metal oxides or their 
components, their transport and distribution over the surface 
and finally evaporation £ 6 J. In Pig. 7 each of these para
meters is shown as a function of the electrode temperature. 
In the first region the restricting parameter is supply of 
material. The particles that come to the surface have enough 
time to spread over the surface before they evaporate. With 
increasing temperature the coverage increases until the sur
face is fully covered. Evaporation is the restricting para
meter in this zone II up to the temperature where the para
meters diffusion and evaporation intersect. From this point 
onwards the supplied particles do not have sufficient time to 
spread over the entire surface before they evaporate (zone III). 
If we now decrease the supply parameter (1—*- 1' in fig. 7)» 
the zone II will be more and more restricted till it finally 
disappears. Further reduction of the supply will shift the 
temperature with a relative high coverage - the border of 
zone I' and III * - to higher temperatures and reduce the amount 
of coverage. On the assumption that the degree of coverage of 
the surface is a measure of the emission current L 7» 8, 9» 10J, 
all the temperature functions of the work function of the 
system can be explained by this model. 

For example the addition of small portions of aluminium to 
the Ba2CaQ „WO^-W cermet electrodes increased the parameter 
supply to the surface. With increasing fractions of aluminium 
the minimum of the work function shifted to lower temperatures 
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and to lower values of that function (fig. 8). 

The trend of the work function of the Al-rich electrode 
(6 Vol-% Al) indicates that the zone II of the model may be 
reached. 
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DISCUSSION 

Speaker of paper E19 : D. SCHMIDT. 

GROSS (Germany): What were the vacuum conditions under which the work 

function measu remen t s were per fo rmed? As I see in F ig . 2, you have a 

r a the r high t empera tu re coefficient of the work function. 

SCHMIDT (Germany): On Fig . 2 the work functions were measu red at 
7 

3 x 1 0 T o r r . 

GROSS: Our measu remen t s showed that the work functions depend r a the r 

strongly on the influence of oxygen. You mus t have a vacuum bet ter than 
9 8 

10 to 10 T o r r in o rde r to get good work function m e a s u r e m e n t s . 
—8 —9 

SCHMIDT: We also made our f i rs t m e a s u r e m e n t s at 1 χ 1 0 and 5 x 1 0 

T o r r . But considering that the vacuum condition in a conver te r cannot be 

maintained at these ex t reme va lues , we made the measu remen t s repor ted 

7 

he re at p r e s s u r e s of approximately 10 T o r r . In o rde r to see that the con

ditions do not a l t e r , we operate the e lec t rodes for a long t ime , that is to 

say at leas t for 50 hours at the same conditions. After every change of 

e i ther t empera tu re or pa r t i a l p r e s s u r e of a i r it took about one hour t i l l 

we again got steady conditions of the emiss ion cu r ren t . I think this ag ree s 

with your m e a s u r e m e n t s . 

SCHOCK (USA): Did you check the emi t t e r s for composit ional changes af

t e r the t e s t ? 

SCHMIDT: We did m e a s u r e the changes of the composition by X ray s tu

d ies . Let me take the example of ba r iúmca lc ium tungs ta t e . After a t e s t 

ing t ime of 300 to 400 hours we noticed an inc rease of the amount of bas ic 

bar iumtungs ta te BaWO .. Out of this react ion that may lead to BaO and CaO 

we can see that the composition of the combination will a l t e r ve ry slowly. 

In the beginning we had BaWO with a percentage of about 0. 5% and after 

400 hours operating t ime we had about 3%. 

GROSS: What is the activation t ime of the cathode? 

SCHMIDT: If you take as activation t ime that t ime until we obtain constancy 

of the cu r ren t under DC cur ren t condition, I would say it is at l eas t 24 

hours . Mostly we waited up to 100 hours before we s ta r ted the m e a s u r e 

men t s . We noticed the same effect with the evaporation ra te which was not 

repor ted h e r e . The evaporation was higher at the f i rs t 20 hours and d e 
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creased up to 100 hour s . It remained steady from 200 hours on. 

RASOR (USA): Have you considered the adverse effect that the evaporation 
of the emi t te r , however slight, might have on the work function of the col
l ec to r? 

SCHMIDT: All e lectrode ma te r i a l s will evaporate slightly. Up to now we 
a r e only concerned with specific effects of the emi t te r ma te r i a l . We t h e r e 
fore measu red all work functions of the e lect rodes at high vacuum and did 
not use them yet in a conver te r . 
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P.O. Box 608, San Diego, California 92112 (USA) 

CESIUM SORPTION IN MATERIALS FOR THERMIONIC CONVERTERS* 

M. K. Yates and G. 0. Fitzpatrick 

ABSTRACT 

Materials for sorption reservoirs in thermionic converters were characterized as 
to their purity and BET surface area. Five samples were selected and loaded with 
cesium over a range of 600-1000°C sample temperature, O.I-3O torr cesium vapor pres
sure, and 0-1000 mg Cs/gram sample cesium loading. In addition, the cesium loadings 
of five porous tungsten samples were measured at 800 C and 10 torr cesium vapor 
pressure. Cesium sorption in the AI2O0, tungsten and carbon samples tested depended 
primarily on adsorption and were in general agreement with their BET surface areas. 
The cesium loadings in a W-10 w/o Ta sample were approximately 100 times that expected 
from surface area considerations, but these results were shown to be at least partly 
due to cesium sorption in the tantalum. The cesium sorption in the graphite samples 
tested depended primarily upon compound formation and were in good agreement with 
earlier work. 

INTRODUCTION 
Materials for sorption type cesium reservoirs were investigated for use in 

thermionic converters. Earlier work had identified three interesting groups of mate
rials: porous metals,(1) high surface area carbons or charcoals,^'3) and graphite.(^"9) 
A fourth group, porous alumina was added, primarily because certain types are known to 
be compatible with cesium and the refractory metals normally found in thermionic con
verters.'-^) The work included surveying for candidate materials and characterization 
of these materials. Out of ̂ 5 samples, 6 samples of porous tungsten, 2 samples of 
graphite, and 1 sample each of carbon and alumina were chosen for further characterization 
with respect to their cesium loading and pressure-temperature response. 

* This work is sponsored by the U. S. Atomic Energy Commission under Contract No. 
ΑΤ(θ4-3)-ΐ67> Project Agreement No. Ik. 
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EXPERIMENTAL APPARATUS AND PROCEDURE 
The apparatus for measuring the pressure-temperature loading char-. 

acteristics consisted of an isothermal sample oven, a liquid cesium 
reservoir which provided the required cesium and established the cesium 
pressure over the sample, and a gamma ray counting system to monitor the 
cesium loading (Csl3^) in the sample. The design of the apparatus is 
shown in Figure 1, the sample oven is shown in Figure 2. The counting 
system was calibrated with a cesium standard that was irradiated along 
with the cesium metal. Temperature accuracy was considered to be i2 C. 

The P-T curve used for the cesium was that recommended by Nottingham 
and Breitwieser'̂ -1·' as that giving the best fit to the experimental vapor 
pressure data. 

Chemical cleaning was used to remove contaminants introduced during 
sample preparation, but high vacuum outgassing at temperatures around 
1200°C was relied upon for the final preparation prior to cesium loading. 

SAMPLE SELECTION 
The first five sample materials tested were chosen from those listed 

in Table I on the basis of superior purity, high surface area, sintering 
stability, and/or structural characteristics. The five samples selected 
and the reasons (in order of importance) are listed below: 

GROUP 
Porous Tungsten 
Carbon 

Graphite 
--Isotropic 
--Anisotropic 
Alumina 

COMPARATIVE SUMMARY 

SAMPLE SELECTED 
EOS W-10 Ta 
Pure Carbon FC-50 

CARB-I-TEX 700 

Gulf General Atomic Sample 
ALSIMAG 548 

BASIS FOR SELECTION 
Sintering Stability (12) 
High Surface Area, High 
Purity, Structural 
Characteristics 
Minimum Surface Area, 
Structural Characteristics 
Structural Characteristics 
High Surface Area, High 
Purity 

Table 2 compares the cesium loadings of the samples tested at 800 C and 10 
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TAUE I. SAMFLE CHARACTERIZATVON' 

DESCRIPTION OF MATERIAL 

Coors AD995 (L3ü)

WESGO ALjOO

WESGO AL1009

Sllk City SC99P

Technlcal Ceramics #1002

Amerlcan Lava ALSIHAG 548 

99.Θ* 

Brush 15

BruBh 9— 

Brush 35

99*
99*
99*

CARBON S. CHARCOAL 

Carborundum Carbon Felt, 

felt—; 

Carborundum Carbon Fiber 

CY2F, fiber

97.8*

995*
Gulf General Atomic B204

Gulf Cenerai Atomic #60

Speer Carbon #37

Speer Carbon HP5

Speer Carbon HP10

Wltco Carbon #337,Oranular 995*

Callfornla Carbon Activated 

Charcoal, Granular 

Pittsburgh Activated Carbon, 

Granular 

Pittsburgh Activated Carbon, 

Granular 

Pittsburgh Activated Carbon, 
Granular 

Pure Carbon FC14

Pure Carbon FC50

Pure Carbon FC22

999*
99.7*
95* — 

General E l e c t r i c , foamed 

pyro ly t l c 

Union Carbide EGCR
Speer 370L— 
Speer 34996
Speer IO50

Carborundum Graphite F e l t 99.0*— 

Carborundum GSGY230 
Graphite Yarn 99·97*

Carborundum CARBITEX 700 

Speer KPO10 
Graphite Flake,Pitch Binder 
Pyrolyt lc Graphite, OCA, 

annealed at 3000°c/ l5 min. 

POROUS TUNGSTEN 

BOS F7A, Pure W

EOS 7102, Pure W

BOS 6269, W10
 v

/ o Ta

BOS 5253, Pure W
EOS 7103, W2

 w
/ o Β ang.pwdrr

ASTROMET 2107, Pure W 
A8TR0MET 105, Pure V ang.pvdr.
B08 Misc. P ieces 

P h i l l i p s , Pure W ang.pvdr. 

Ubi.olïï 
κ/αη3 

?. 0" 

THEOR. 

2.49 62.7

 8 2 , 
80. 
 6 1 . 

• 5

.5 

.5— 

i 9 0 

.85

 7 x 1 0  2 

 1 . 4 4 

 1 . 1 2 

 2 . 0 8 

14.6 76

■•rf.Area 

0 . 2 Ì . 0 5 

<0 . l · 
■•».2
<t>.2

0.8

IO5O.N

IO5O.N

IO50.H

■6.8

MK 
IMPURITIES pom 

Cn Ti 

100 400

 2 0 0 
 8 0 1 0 0 

200
nooo 
5Ì000 
 1 0 0 0 

Mg 

Mg Na Sr 

loo·—20—'—100—'—ι*—J 800'—100—'—. 

1 * =1* 200

=1* =Ί*—1-100-

20-

8 0 0 — 4 o o — ω ο -

-80 

Ί * 1000 6 0 0 — 1 0 0 - -m 

•3^7.— 
600.Μ— 

. 3 9 -

0 . 5 -

0.8-

■^035 

- 1 2 . 9 6 -
- 1 4 . 2 0 -
- 1 2 . 8 2 - - 6 7 . 0 -

0.41 a f ter 12O0°C Bakeout 
0 . 7 6 a f t e r 1200°C Bakeout 

-.0Ί2 
-.01±.01 
-.05 

- 6 0 -
8OO-

- 1 0 0 0 -
200- 20 60 - - 8 0 -

-ND-
-ND-

-8OO itO 200 HOOO 40-
-20 200 
-20—1000 

- 4 0 -

- < - 5 

- < - 5 

PORE 
DENSITY 
xlo6/cm2 

IMPURITIES ppm 
HOTTEST 

TIME 
SINTER 

TIME Na Fe Mo Rb 

2 . 
2 .9 
2 .2 
3-9 

2 h r . 

1 hr . 
1 h r . 
1 h r . 

.5 hr . 

I900 or 2000 

2000°C 
2100°C 
2000°C 
1800°C 

19 

91 

30 
30 40 

3 20 
200 200 70 
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torr cesium pressure, a typical operating point. ■ As shown, the cesium 

loadings per square meter of surface area of the carbon, alumina, and at 

least three of the six tungsten samples are between 1.12.0 mg Cs/m2. 

These quantities correspond roughly to 12 monolayers based on a cesium 

crosssectional area of 28(A)^. Therefore, the cesium sorption in these 

cases is primarily one of adsorption. However, the cesium loadings of the 

graphite, W10
 w
/o Ta, and EOS W samples suggest another mechanism. The 

mechanism in graphite was assumed to be compound formation as discussed 

in references k9. The mechanism in the W10 Ta sample was shown to be 

partly due to the presence of tantalum and is discussed more fully later. 

The reasons for the high loadings of the EOS W sample have not been deter

mined. The test durations are also listed in Table 2. No significant 

changes in the cesium loading characteristics of any of the materials 

tested were observed over the duration of the tests, which lasted from 

25OI2OO hours. However, the carbon and both of the graphite samples 

were broken up during testing. The maximum loadings achieved in these 

three samples were approximately lg Cs/g. 

Carbon Sample, Pure Carbon FC50 

Isotherms for the carbon sample are shown in Figure 3· No significant 

hysteresis was observed except that lower loadings were observed on the 

first sorption curve than were later seen. These first results were 

probably due to the replacement of sorbed gases by cesium on the high 

surface area carbon. The Freundlich isotherm equation^
 1
3i produced a 

satisfactory fit to the data. Lines of constant loading (isosteres) 

versus l/T are plotted in Figure k. These curves give the pressure

temperature relationship which would exist in a small volume thermionic 

cell. 

The isosteric heat of adsorption was calculated from the relationship: 

_ Δ (jn p) 

*
 =
 
R
 Δ (l/Tf 

Where R is the gas constant, I.987 cal/deg mole 

ρ is the pressure in torr 

T is the sample temperature in degrees K 
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The variation of q with respect to loading is shown in Figure 5· q 

is essentially constant at approximately 33 Kcal/mole until the loading 

exceeds approximately 500 mg Cs/g carbon and then begins decreasing. This 

break in the curve is thought to occur near the formation of the first 

monolayer. 

Graphite Samples, CARBITEX 700 and Annealed Pyrolytic Graphite 

Isotherms for the graphite samples are shown in Figures 6 and 7· 

Also plotted in the figures is the 700 C isotherm based on Salzano and 

Aronson's work on the cesiumgraphite lamellar compounds. (7) 

For the CARBITEX sample, Figure 6, there was a knee in the curve 

on the 700°C isotherm where the transition from CSC2I1 to CsC^g should 

occur. However, as the'cesium vapor pressure was increased the loading 

did not increase to the expected CSC^Q level but instead rose uniformly 

with the cesium pressure. 

Isotherms for the pyrolytic graphite sample, Figure "J, show several 

well defined plateaus, particularly those corresponding to the transitions 

between CogCs—CgliCs and C2liCsC2£)Cs. In both samples, the loadings in

volved were generally less than expected from Salzano and Aronson's workΛ'/ 

Figure 8 is a ClausiusClapeyron Plot of all the graphite data. There 

is good agreement between this experiment and the previous work, particularly 

in the two highest loading transitions studied. 

W10 Ta and Tungsten Samples 

Isotherms at 600, 800, and 1Ó00°C are shown in Figure 9. The three 

isotherms show hysteresis effects and don't appear consistent. 

The cesium loadings that were obtained were approximately 100 times 

higher than those expected from the measured BET surface area. Two 

possible explanations for the observed loading were considered. First, 

some type of chemical reaction could be involved, perhaps with the 

tantalum in the sample. Microprobe analysis of the W10 Ta sample was 
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done after the test in cesium (final loading approximately 1 mg Cs/g) and 
proved that areas of high cesium concentration correlated directly with 
areas of high tantalum concentration. In addition, presence of a fourth 
constituent (possibly oxygen) in the areas of high cesium concentration 
was indicated, since the fractional parts of W,.Ta, and Cs added up to 
only approximately 75 atom per cent of the total. 

The possibility that capillary condensation had been occurring was 
also considered, particularly since a loading of 7 mg Cs/g W corresponded 
to enough cesium to fill 60$> of the sample's pore volume. 

In an attempt at reproducing the W-10 Ta result, five tungsten sam
ples were selected and then loaded with cesium at 800 C and 10 torr. Then 
points were taken at 30 torr at 600°, 1000p, and 600 C in order to load 
and unload the samples. When the conditions of the first data point were 
repeated, no hysteresis was observed. Therefore, the oven was cooled down, 
retaining the cesium in the samples. The samples were then removed from 
their oven and counted separately. The cesium contents of these samples 
have been listed in Table 2. 

The highest loading observed in mg Cs/g on the five samples was less 
than one tenth that of the W-10 Ta piece. Since the pore structures were 
roughly the same in all samples, it is improbable that the capillary con
densation mechanism can be made to account for the high loadings. The 
last three samples all held about the same amount of cesium per square 
meter of surface area, an amount which is about equivalent to a monolayer 
coverage. 
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TABLE 2 

COMPARISON OF CESIUM LOADING ALL SAMPLES TESTED 

DURATION 
OF TEST 

SAMPLE (hr ) 

Pure Carbon 
FC50 Ì450 

Carborundum 
CARBITEX 700 
Graphi te 1000 

P y r o l y t i c 
Graphi te 5OO 

EOS W10 Ta 1200 

EOS W Misc. 
p e s . 

EOS W 5253 

P h i l l i p s W 
angula r pwdr. 
100 

Astromet, W 105 

TRW, W 

ALSIMAG 5ir8, 
AI2O3 25O 

AlpO^ Sample  American 

PORE 
DIA 

 

_ _ 

— 

2.79 

 

3.hk 

3N 

5N 

2N 

— 

BET 
Surface Area 

m2 /g 

3V7. 

O.39 

0 .8 

O.O23 

< 0.02 

< 0 . 3 

O.O5 

0.042 

0.035 

0 .2 

Lava ALSIMAG 5^8 

CESIUM LOADING 
@800°C,10 t o r r 

mg Cs/g 

505. 

1+00. 

¡J20. 

2 . 1 

0 .17 

0 .12 

O.O62 

O.O54 

O.O38 

0 Λ 

CESIUM LOADING 
@800°C,10 t o n 

mg Cs/ar 

1.75 

1002. 

525. 

9 1 . 

<9 

> 0 Λ 

1.2 

1.3 

1.1 

2 .0 

Isotherms for the alumina sample are shown in Figure 10. The scatter 

in the data is primarily due to the low count rate from the sample. The 

highest loading attained, approximately 1 mg Cs/g, corresponds to approxi

mately 2.5 mg/cnP of alumina. Based on the measured BET surface area of 

0.2 M /gram and a cesium crosssectional area of 28(A) , one monolayer 

coverage amounts to approximately 0.2 mg Cs/g alumina. Actual loadings 

greater than five times this amount were, achieved. 
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CONCLUSIONS 

Although all of the materials tested appear useful in thermionic 

converters, advantages and disadvantages exist for each. The low load

ing samples, alumina and tungsten, are compatible with the other mate

rials in a thermionic cell and dimensionally stable, However, the stability 

of their surface area has yet to be demonstrated for times of interest for 

thermionic diodes (500010,000 hours). 

The high loading carbons and graphites have yet to be proven to be 

compatible with thermionic cells and are not dimensionally stable at the 

loadings to which they were subjected in this study. In addition, the 

sintering stability of the high surface area carbons has to be 

demonstrated. 

The choice of which material would make the best reservoir depends 

to a large extent upon what amount of cesium is expected to be lost during 

cell operation. Work on this subject has been published^^' and has 

found that total cesium losses to tungsten, molybdenum, tantalum, niobium 

and AlgOo in two of the three cells studied were less than 20 [iß. Those 

two cells were operated for 7558 and ΙΟ,ίτΟό hours. On the basis of these 
low magnitude cesium losses, all of the materials tested appear attractive. 
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DISCUSSION 

Speaker of the paper E-20 : J . W. HOLLAND. 

DAVIS (USA): For stability analysis it would be quite interest ing to know 
what the kinetics of the absorption and desorption a r e , that i s , the p r e s 
sure response t imewise to a change in the r e s e r v o i r t empe ra tu r e . Did you 
get any indication o f tha t? Was it relat ively fast, or relat ively slow? 

HOLLAND' (USA): Most of these samples other than that tungsten-tantal ium 
a re fast. They were so fast that you could not t r ack them because of the 
thermal iner t ia of the system that you a r e measur ing . But tungs ten- tanta
lium generally took on the o rde r of hours to come to complete equi l ibr ium. 
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SUR LES APPLICATIONS, AUX ETUDES DES EMETTEURS THERMO-IONIQUES, 
D'UN NOUVEAU REACTIF DU MOLYBDENE. 

R. HASSON 
Département de Physico-Chimie, Service d'Etude des Barr ières et de l'Hexafluorure 

d'Uranium, Centre d'Etudes Nucléaires de Saclay 
91 Gif-sur-Yvette (France) 

Résumé -

Après avoir mis au point un réactif micrographique colorant les grains de molybdène 
en relation avec leur orientation cristalline, nous avons pu observer et mettre en évidence les 
propriétés physiques et métallurgiques des orientations du métal. 

Appliqué aux études de soudure et de diffusion des métaux réfractaires, ce réactif 
a mis en évidence la grande réactivité des grains présentant l'orientation cristalline (100). 

I. Introduction. 

Les études micrographiques des convertisseurs thermo-ioniques, nous ont conduit à 
la mise au point d'un réactif colorant les grains de molybdène en fonction de leur orientation 
cristalline [ l ] , dont nous résumons la composition : 

Fe Cl 3* : 40 à 60 ce 
H Cl à 22° B e : 25 ce 
CnHcOH à 95° : 75 ce. 

¿ b 

Les conditions d'utilisation de ce bain sont les suivantes : 

- température ambiante, 
- durée d'immersion : 2 à 3 minutes, 
- rinçage à l'eau courante. 

Les colorations obtenues sont : 

- plan (100) - jaune d'or 
- plan (110) - bleu foncé 
- plan (111) - bleu foncé à violine 
- plan (111) + 2° - bleu foncé à violine 
- plan (112) - bleu clair à bleu t rès clair 
- plan (116) - jaune d'or 

Utilisé au début uniquement pour révéler le molybdène et identifier les orientations 
cristallines des grains de ce métal, ce réactif micrographique a ensuite été appliqué à l'étude 
métallographique du molybdène pur et des assemblages de ce métal avec d'autres métaux ré 
fractaires. 

* solution à 1 300 g de Fe C13 par l i tre - densité 1,26. 
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II. Applications du réactif. 

a) yentW^jiüon_cWmique. 

Ce réactif, ne colorant que le molybdène pur, permet de localiser rapidement cet 
élément dans les assemblages complexes et de révéler les inclusions de composés (fig. 1) ou de 
métaux (fig. 2) étrangers, et aussi les revêtements (fig. 3). 

b ) Jnfh;ifn.çe_Î^_U.9rAÇni^!;i0i?_F.rÌ?.ì?LMHìe_ ÍLHílASE ̂ £?i^i^tfA.P^£\3H?s_?Î_5iÎ?iiïï^clu e s 
au Jttolvbd ¿ne. 

L'orientation cristalline étant révélée par une simple immersion dans le réactif mi
crographique, il devient aisé de déterminer les propriétés du molybdène en fonction des orienta
tions cristall ines. 

Nous avons pu ainsi observer la croissance exagérée des grains présentant une orien
tation (100) de couleur jaune d'or, et (110) de couleur bleu foncé (fig. 4). 

Les grains présentant le plan (100) ont des propriétés nettement différentes de celles 
des autres grains. On met en effet en évidence l'aptitude de cette orientation à donner des grains 
immenses au cours des traitements thermiques (fig. 5). 

On constate aussi qu'aux frontières de ces grains particuliers les liaisons obtenues 
soit par soudage (fig. 6 et 7), soit par diffusion intermétallique (fig. 8) sont beaucoup plus inti
mes. 

On note également, à leur surface, une densité de porosités plus élevée. 
Enfin, on a observé, lors d'examens de convertisseurs thermo-ioniques après fonction

nement, que seule cette orientation cristalline présentait des ségrégations de grains. 
Signalons enfin, pour conclure, que les porosités semblent accélérer nettement la vi

tesse de diffusion intermétallique. 
Cette caractéristique a été mise en évidence sur un émetteur thermo-ionique molyb

dène-tungstène (fig. 9). 
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Fig . 1 - ( χ 800 ) - Composés en 
inclusions dans le molybdène. 

F ig . 2 - ( x 4 6 0 ) - m é t a l ( tungstène ) 
en inclusion dans le molybdène. 

F ig . 3 - ( x 14 ) - revêtement de 
rhénium ( en blanc ) sur du molybdène. 

F i g . 4 - ( x 76 ) - c ro i s sance exagérée 
des gra ins ( 100 ) et (110) . 



Fig . 5 - ( χ 76 ) - monocr is ta l de 
molybdène obtenu par un maintien 
de 3 heures à 1750° C. 

- 1 
CT 

co 

Fig . 6 ( χ 76 ) - jonction molybdène-
t i t ane . 



■ ·> 

F i g . 7 ( χ 76 )  jonction molybdène
tan ta le . 

F i g . 8 ( χ 90 )  diffusion in termétal 
lique molybdène  rhén ium. 



Fig . 9 ( χ 460 )  migrat ion dans le 
molybdène d'une porosi té du r e v ê t e 
ment de tungstène. 
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THEORY OF THERMIONIC CONVERTER OPERATION 
WITH APPLICATIONS TO THERMIONIC REACTOR ANALYSIS 

D. R. Wilkins, C. D. Sawyer, P. R. Hill 
General Electric Company, Pleasanton, California 

United States of America 

ABSTRACT 

Fundamental principles of molecular chemistry, statistical mechanics, 
and plasma physics are used to derive theoretical output current and efficiency 
characterist ics of vapor thermionic converters. The results are obtained in 
terms of basic physical parameters which describe the converter electrodes 
and interelectrode gas and are in good agreement with corresponding experi
mental measurements for a broad range of converter operating conditions. 

The theoretical formalism is employed to study the thermal and electrical 
performance characterist ics of a nuclear thermionic fuel element. It is shown 
that, with realistic axial fission profiles, fuel void fractions, and temperature 
limits, over-all fuel element efficiencies in the vicinity of 12 to 14% can be 
achieved. 

INTRODUCTION 

A theoretical description of thermionic converter operation is important in developing 
thermionic power plants. In particular, accurate converter theory greatly facilitates the design, 
testing, and evaluation of prototype converters, and is fundamental in analytical studies which 
lead to an optimum power plant design. 

An analytical description of the thermionic converter which adequately fulfills these needs 
must incorporate three key features: (1) be formulated in te rms of basic data which characterizes 
the converter materials and operating conditions; (2) be applicable to the entire domain of 
practical thermionic converter operation; (3) yield results which are in agreement with ex
perimental data. 

The development of a useful analytic description of thermionic converter performance 
requires that due consideration be given to both electrode surface and interelectrode volume 
phenomena and to Schottky effects which occur at the electrode surface - interelectrode volume 
interfaces. Phenomena in each area have been separately considered in previous theoretical 

(1 2) studies, many of which are cited in the li terature. v ' ' These studies have served to isolate and 
to clarify many of the individual physical processes which are significant in thermionic converter 
operation. No attempt has been made, however, to combine and extend the previous analyses to 
provide a unified, practical theoretical description of· thermionic converter operation. 

In this study, a unified theoretical description of thermionic converter performance 
characterist ics is developed, programmed for digital computer studies, and the theoretical 
results compared with appropriate experimental data. Significant features of the analysis a re 
that it: (a) simultaneously accounts for the influence of surface and volume phenomena and 
Schottky effects on converter operation, (b) contains no restr ict ions concerning the "mode" of 
converter operation, (c) deals with the plasma sheath polarities self-consistently, (d) applies to 
converters with elevated collector temperatures, (e) provides for the determination of converter 
efficiency, and (f) is not restr icted to Cs converters. Theoretical output current characterist ics 
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are obtained for a W emitter, Mo collector converter and exhibit good agreement with correspond

ing experimental characterist ics for a broad range of emitter and Cs reservoir temperatures, 

and interelectrode spacings. 

As an illustrative practical application, the theoretical formalism is employed to optimize 

the thermal and electrical performance characterist ics of a nuclear thermionic fuel element 

(TFE). The influences of different design constraints on the optimized performance character

istics are discussed. 

THERMIONIC CONVERTER THEORY 

VOLUME PHYSICS 

The neutral interelectrode plasma in a thermionic converter may be analyzed by using a 
(3) 

previously derived set of transport differential equations. v Since plasma electron temperatures 
(4) 

are nearly uniform, v these equations may be written in the wellknown approximate form: 

(dJe/dx) = (dJ/dx) = e(^n/3 rn
3) (1) 

J e = eMe [0e(dn/dx) + nE]; J i = e M i [^(dn/dx)  nE] (2) 

where J , μ , and θ are the current density, mobility, and temperature (in electron volts) for 

the electrons {a =e) and ions (ot = i), respectively; η is the charged particle density; E is the 

electric field; v is the ionization frequency; and β is the threebody recombination coefficient. 

The source te rms in Eq. (1) describe a multistage volume ionizationrecombination process. 

The recombination coefficient for Cs is assumed to have a form similar to that for hydrogen, * ' 

since both atoms have a valence of unity and similar binding energies for the higher excited states. 

The ionization frequency v is computed from the recombination coefficient β to satisfy certain 
1 (2) 

thermodynamic equilibrium requirements. 

The electron and ion mobilities in Eq. (2) are computed by using relations previously 
(3) 

developed for threecomponent plasmas. v ' Both charged particle and charged particle  neutral 

particle collisions are accounted for in the electron and ion mobilities. The former collisional 

processes are represented by a Coulomb interaction potential, while the latter are described 

in terms of effective hard sphere cross sections. The plasma electron temperature, which is 

assumed to uniform, must satisfy the energy balance equation 

^el^eO = J V P( J Ì1 J Ì0> V i <3> 

where çu is the electron kinetic energy flux; V p is the voltage drop across the interelectrode 

plasma, and the subscripts "0" and " 1 " are used to denote a quantity evaluated at the emitter and 

collector edges of the plasma, respectively. 

Equations (1) and (2) are integrated to yield, in terms of Jacobi elliptic functions, the 
(2) 

charged particle density and electrostatic potential distributions in the interelectrode plasma. v ' 

The integration constants which ar ise and the electron kinetic energy fluxes α 0 and α , a re 

evaluated from sheath analyses as discussed in the following paragraphs. 
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The electrostatic sheaths at the plasma-electrode interfaces are analyzed by writing electron 
and ion current and electron kinetic energy flux balances across the sheaths; i. e . , between each 
electrode and the adjacent edge of the interelectrode plasma. The exact form of these balances 
for a given sheath depends upon its polarity, which is referred to here as accelerating or retarding 
if the sheath accelerates or retards , respectively, an electron traveling toward the collector. 
Electron and ion current and electron kinetic energy flux balances are given in Table 1 for 
accelerating and retarding emitter and collector sheaths. In this table, J M and I M are the 
electron and ion emission current densities, respectively, for the emitter (M=E) and collector 
(M=C); VM a re the sheath voltage drops at the emitter (M=E) and collector (M=C) edges of the 
plasma; and J and I are the electron and ion random current densities, respectively, in the 
interelectrode plasma. Note that the sheath voltage drops are treated as negative and positive 
for accelerating and retarding sheaths, respectively. The equations presented in Table 1 contain 
terms, derived from first order transport theory, to account for the non-Maxwellian, anisotropy 
of the plasma electron and ion distribution functions. These te rms become appreciable if the 
net particle currents near the sheaths are comparable to the corresponding random currents. 

The electron and ion emission current densities from the emitter and collector (Table 1) 
are governed by surface phenomena and Schottky effects. The theoretical determination of these 
quantities is discussed in the following two sections. 

SURFACE PHYSICS 

The field-free, electron work function ^ of a substrate metal (M) partially coated by an 
adsórbate film depends upon the substrate and adsórbate properties, the substrate temperature 
T M , and the adsórbate reservoir temperature T R . In other words, for a specified substrate 
and adsórbate: (L·. = (L·* (TM , T R ) . The theoretical prediction of this relation for thermionic 
emitters (M=E) and collectors (M=C) is the objective of thermionic converter surface physics 
studies. 

TABLE 1. Emitter and Collector Sheath Analyses 

ACCELERATING EMITTER SHEATH 
(VE ^ 0) 

L J e 0 - J E ( J . n - l / Z J e r O e x p i V ^ / O ' r0 'e0 E ' " e ' 

2. J i 0 = I E e x p ( V E / 0 E ) - ( I r O - l / 2 J i O ) 

3· q, eO 2 J
E ( 0 E - Ö e > + J e o ( 2 0 e - V E > 

RETARDING EMITTER SHEATH (VE> 0) 

ACCELERATING COLLECTOR SHEATH 
(VC ; 0) 

1. J e l = ( J r l + 1/2 J e l ) - J c exp (V c / f l c ) 

2. J n = ( I r l + l / 2 J n ) e x p (VC /0C) - I c 

3 · «lei = 2 J r l < V 0 C > + J e l ^ e + 9C> 

RETARDING COLLECTOR SHEATH (V c >0) 

1. J e 0 = J E exp (-VE/flE) - ( J r 0 - l / 2 J e 0 ) 

2· Jio = V ( W 1 / 2 J i o > e x P ( - V 0
E ) 

3. q 

ί· J e l = ( J r l + 1 / 2 J e l } e x p ( - V C / ö e } " J C 

2. J u = ( I r l + 1/2 J u ) - I c exp (-VC /0C) 

3. q e l = 2 J c ( e e - f l c ) + J e l ( 2 9 e + V c ) 

Notes 

1. Electron Current Balance 2. Ion Current Balance 3. Electron Kinetic Energy Flux Balance 

le0 2 J r o ( 0 E - ö e ) + J e o ( 0 E + fle> 
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(7) In this analysis, the recently developed Steiner-Gyftopoulos formalismv is employed to 
determine the field-free, emitter and collector work functions. This formalism is an extension 
of earl ier work*· ' and is based upon principles of molecular chemistry and statistical mechanics; 
it yields the relation o». = ςν. (Τ. . . TR) once a set of parameters which characterize the substrate 
and adsórbate are specified. 

SCHOTTKY EFFECTS 

The fieldfree work functions do not always prevail at the emitter and collector electrodes 

in a thermionic converter. In particular, if the emitter sheath is accelerating or the collector 

sheath is retarding, the electric field at the corresponding electrode surface depresses the 

effective electrode work function as shown in Fig. 1. 

The effective lowering of an electrode work function by an imposed electric field (Fig. 1) 

was first analyzed by Schottky who obtained 

^M " ^ M " φΜ ^[e/ (4rr€ 0 ) ]E M (4) 

where o» » and p' are the fieldfree and effective work functions of electrode M. respectively, 

e is the electronic charge, e Q is the vacuum permittivity, and E , , is the magnitude of the 

electric field existing at the surface of electrode M. 

Hanseir ' employed Eq. (4) to demonstrate the importance of Schottky effects in therm

ionic converters. The analyses were performed for limited domains of converter operation, and 

they cannot readily be extended to apply to the broad range of converter operating conditions 

under present consideration. Therefore, an alternate approach to the analysis of Schottky 

effects in thermionic converters is utilized here. Significant features of the present analysis 

are that it is mathematically simple, and yet can be expected to yield reasonably accurate 

results for the entire range of converter operating conditions of practical interest. 

In applying Eq. (4) to the present problem, some uncertainty exists concerning the electric 

field, E M , since the exact potential distribution within the electrostatic sheath is unknown. 

Generally, the sheath voltage drop occurs within several plasma electron Debye lengths of the 

electrode. Hence, it is reasonable to expect that the electric field at the electrode surface can 

be accurately approximated by 

EM = k s ! VM I ' / L M ( 5 ) 

where L^. is the electron Debye length at the edge of the plasma adjacent to the sheath; and 

k is a dimensionless constant of order unity. 

Equations (4) and (5) are used in this analysis to describe the Schottky reduction of the 

emitter work function caused by an accelerating emitter sheath, and of the collector work 

function caused by a retarding collector sheath. The fieldfree work functions o™ (M=E, C) 

are computed from surface physics considerations; Eq. (4) and (5) then yield the effective work 

functions ©'M (M=E, C). When the emitter sheath is retarding or the collector sheath is accel

erating, no Schottky correction is applied to the corresponding electrode work function; i. e. , 
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Once the effective work function ø ' M is determined, emission current densities of electrons 

and ions from a thermionic converter electrode M (M=E, C) follow directly from the Richardson 

and SahaLangmuir equations, respectively. In particular: 

J M = A T M exp Η ν θ
Μ ) ; ÖM = k T

M / e (β) 

I M
 = epg(2umge ΘΜ)~1/2 (1/2) exp Η ν Γ φ ' Μ ) / θ Μ ] (7) 

where A is the Richardson constant and m is the mass of the adsórbate atoms. Equation (7) is 

an approximate form of the SahaLangmuir equation which is valid provided the surface ionization 

probability is small compared to unity. This condition is always fulfilled for practical thermionic 

converter operating conditions. 

THERMIONIC CONVERTER PERFORMANCE 

The thermionic converter output voltage V for a specified output current density J is obtained 

by summing the voltage drops between the emitter and collector Fermi levels. Thus, 

V = ΨΈ + VE - V P + VC - * C · (8) 
The several terms in this relation follow directly from the preceding analyses. 

The intrinsic efficiency η. of a thermionic converter is defined as the efficiency in the 
absence of electrode, lead, and structural support losses. This efficiency is independent of 
detailed converter design considerations and is given by 

77i = P/(Q e + Qi + Q r + Qg) (9) 

where Ρ = JV is the output power density; and Q , Q., Q , and Q are the heat fluxes removed 
G i r g 

from the emitter by electrons, ions, radiation, and gas conduction, respectively. The first 
three heat fluxes are given by 

% = J e O ^ E + V E ) + 1e0 (10) 

Qi = " J i 0 ^ E + V E > + J i 0 V i (ID 

% = σ <eE T E - eC TC> d 2 ) 

where σ is the Stefan-Boltzmann constant, and eE and e^ are effective emissivities. An 
expression for the interelectrode gas conduction term Q for Cs has been given by Kitrilakis, 
et a l . v ' Note that Eq. (9) is readily modified to compute device efficiencies for specific con
verter designs by including terms to account for electrode, lead, and structural support losses. 

COMPARISON OF THEORY WITH EXPERIMENT 

NUMERICAL CALCULATIONS 

A digital computer code has been written which incorporates the volume physics, surface 
physics, and Schottky effect analyses described here. The code input includes the physical 
parameters which characterize the converter electrodes and interelectrode gas and the converter 
operating conditions. With this input, the code obtains iterative solutions of the equations which 
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describe the surface and volume phenomena. In these computations, self-consistent sheath 
polarities are determined for each set of converter operating conditions; Schottky corrections 
are applied to the electrode work functions if appropriate. The code returns the converter output 
current and efficiency characteristics and other operating parameters of practical interest. 

EXPERIMENTAL DATA 

The experimental data chosen for comparison is a set of output current characteristics 
(2) obtained by TECOv ' for a thermionic converter with a heat-treated W emitter and polycrystalline 

Mo collector. The characteristics encompass a broad range of converter operating conditions 
and are divided into three groups to exhibit the effects of independent variations in emitter tem
perature, Cs reservoir temperature , and interelectrode spacing (Fig. 2). 

THEORETICAL INPUT PARAMETERS 

The input parameters used to compute output current characteristics for comparison with 
(2) the experimental data are presented elsewhere. v It is shown that the values employed for the 

key parameters are in satisfactory agreement with the available, but sometimes limited and 
inapplicable, independent data. 

THEORETICAL RESULTS 

The theoretical output current characteristics in Figure 2 are computed for the indicated 
operating conditions by using the techniques and data reported here. The results are in 
excellent qualitative and good quantitative agreement with corresponding experimental measure
ments for the entire range of converter operating conditions. Even better agreement could be 
anticipated, however, with slight adjustments of certain input parameters. 

Note that both the computed and measured output current characteristics in Fig. 2 exhibit 
an abrupt r ise in the output current density as the output voltage is decreased and the converter 
enters the ignited mode of operation. The theory of this transition from the extinguished to the 
ignited mode has not been previously presented. 

Another significant feature of the theoretical results in Fig. 2 is the nonsaturation of certain 
output current characterist ics at low output voltage; e. g. , curve 4 of Fig. 2a. The significant 
increase in the output current density as the output voltage is decreased is due to Schottky effects 
and ion currents at the emitter surface. 

THERMIONIC FUEL ELEMENT ANALYSIS 

In this section the theoretical formalism is employed in an investigation of the thermal and 
electrical performance characterist ics of a nuclear TFE. The influence of fuel center and 
emitter temperature constraints on the performance of the fuel element is shown. 

FUEL ELEMENT DESCRIPTION 

A nuclear TFE is shown in Fig. 3; it consists of N series-connected cells contained within 
an insulated sheath tube and serviced by a single cesium reservoir . Each cell is loaded with an 
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identical volume fraction of UO, fuel, and receives a fraction f (1 ^ n ^ N) of the total TFE 
thermal power. In general, the f 's a re unequal because of the nonuniformities in the axial 
fission profile. The fuel element is cooled externally be a liquid metal coolant. 

COMPUTATIONAL PROCEDURE 

The operating state of a multiceli TFE is completely defined by specifying the thermal power, 
axial power distribution, electrical current, cesium reservoir temperature, coolant inlet tem
perature, and over-all coolant temperature r i se . Figure 4 shows the logical structure of a 
digital computer program which employs this information to yield a cell-by-cell and over-all 
description of the TFE electrical and thermal performance characterist ics. This program 
incorporates the thermionic converter analysis as a subroutine. Other major subroutines 
describe heat transfer within the fuel-emitter body, through the t r i - layer collector-insulator-
sheath structure, and from the TFE sheath to the liquid metal coolant. 

TFE PERFORMANCE CHARACTERISTICS 

A 12-cell TFE with a coolant inlet temperature of 800°Kand over-all coolant temperature 
rise of 100°K is discussed. The axial fission profile, which is typical for a small, fast spectrum, 
thermionic reactor, is shown in Table 2. Note that this profile exhibits a peak-to-minimum 
fission ratio of 1. 2 to 1. 0. 

TABLE 2. Axial Fission Profile 

Cell, n Fractional Power, in Cell, n Fractional Power, f 

1 
2 
3 
4 
5 
6 

0.08020 
0.07434 
0.07933 
0.08502 
0.08899 
0.09099 

7 
8 
9 
10 
11 
12 

0.09071 
0.08858 
0.08463 
0.07945 
0.07490 
0.08288 

A summary of the performance characterist ics of the 12-cell fuel element for a thermal 
input power P t , of 14. 9 kWt is given in Fig. 5. Shown versus electrical current density a re : 
(a) the optimum cesium reservoir , Τ f , (b) the cesium optimized electrical power, Ρ 

ΓΠ3Χ 

(c) the highest prevailing emitter temperature, Τ , and (d) the highest prevailing central fuel 
cavity temperature, T* . The latter quantity is shown for several fuel void fractions, V. Note 
that the maximum electrical output which can be achieved for the 14. 9 kWt thermal input is 
2. 24 kWe; which corresponds to an over-all TFE efficiency of 15%. 

The influence of design constraints on the fuel and emitter temperatures is readily deduced 
from Fig. 5. Suppose, for example, that the cell emitter temperatures are to be operated 
below 2073°K. This temperature res t r ic t s the permissible output current densities to values in 

o 
excess of 10. 6 A/cm . The maximum electrical output consistent with this constraint is 
2. 02 kWe which corresponds to a TFE efficiency of 13. 5%. For a specified fuel void fraction, 
constraints on the central fuel cavity temperature may be applied in a like manner. 

Plots of the type shown in Fig. 5 have been computed for other TFE thermal power levels. 
For each thermal power, an optimum electrical output exists for a given set of design constraints. 
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Figure 6 shows the fully optimized TFE electrical output versus thermal input for different design 
limitations on the emitter and central fuel cavity temperatures. In Fig. 6 Curve 1 represents 
an upper limit which is achieved in the absence of temperature limitations. Curves 2 through 5 
reflect the influence of both a 2073°K emitter temperature limit and a 2850°K central fuel cavity 
temperature limit on the results for different fuel void fractions. Note that when such temperature 
limits are imposed the electrical output does not increase monotonically with thermal input. 

The results shown in Fig. 6 indicate that, with realistic axial fission profiles, fuel void 
fractions, and temperature limitations, TFE efficiencies in the vicinity of 12 to 14% can be 
achieved. The determinations of over-all thermionic reactor efficiencies require further 
optimizations involving fuel loading fractions and radial fission distributions, and is beyond the 
scope of this paper. Results of the type presented in Fig. 6, however, are important in such 
determinations. 

SUMMARY AND CONCLUSIONS 

A unified theoretical description of thermionic converter performance characterist ics is 
presented. The analysis simultaneously accounts for the influence of surface phenomena, volume 
phenomena, and Schottky effects on converter operation; and yields theoretical output current 
characteristics which are in good agreement with experiment data for a very broad range of 
converter operating conditions. The analysis has practical applications for converter physics 
studies, converter performance evaluations, and thermionic power plant design. 

The electrical and thermal performance characterist ics of a 12-cell nuclear thermionic fuel 
element are described. It is shown that, with realistic axial fission profiles, fuel void fractions, 
and fuel and emitter temperature limitations, TFE efficiencies in the 12 to 14% range can be 
realized. 
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DISCUSSION 

Speaker of paper F - l : P . HILL. 

MUSA (Rumania): F i r s t question: In the diffusion equation you have a s sumed 
that the e lec t ron mobility is independent on x. The diffusion coefficient for 
e lec t rons depends on mean free path and e lec t ron t e m p e r a t u r e both of which 
depend di rect ly on x. 
Second question: Why in equation 5 have you assumed the constant k to be 

5 

about one. What physical meaning supports this assumpt ion? This constant 
must be higher than 1, maybe about 10 or m o r e . 
HILL (USA): I would f i rs t like to explain that the f i rs t port ion of this work 
r ep re sen t s the work of Dr . WILKINS of our organisat ion and I am not fully 
qualified to ajiswer to full pa r t i cu l a r s the questions that you have asked. I 
will however say a few words about what I do know about that . 
F i r s t , we have taken a heur i s t i c view of thi s calculat ion. We have asked ou r 
selves the question, how well with this theory can we predic t exper imental ly 
measu red curves , r ega rd l e s s of theore t ica l inadequacies in the equat ions. 
We have found that in simulating existing sets of exper imenta l data we a r e 
able to do quite well and we have done this at this t ime for m o r e than one 
set of exper imenta l thermionic m e a s u r e m e n t s . At this t ime we a r e unfortu
nately not able to predic t thermionic conver te r behaviour. The theore t ica l 
demands of predicting per formance a r e considerably g r e a t e r . More a t t en
tion to p la sma-phys ics and especial ly to the physics of the surfaces would 
be required to predic t pe r fo rmance . In the p lasma physics model the r e a 
son for the selection of the constant e lec t ron t empera tu re ,and al l of the 
things that theoret ical ly resul t from that selection, was made p r i m a r i l y from 
the point of view of obtaining an analytic solution to the equations. 
In the selection of the p a r a m e t e r k for the Schottky-effect, we recognized 
the fact that the value of unity is somewhat a r b i t r a r y and as a ma t t e r of fact 
we have some evidence of our own that this is not always the p rope r s e l e c 
tion. It does, never the less , for the conver te r data that we have analyzed to 
date (the high p r e s s u r e regime) seem to r ep resen t a good choice from a 
purely heur i s t ic sense . 

WARNER (USA): Do you include the possibi l i ty of an emi t t e r double sheath? 

HILL : At the p resen t t ime, no. We a re investigating that effect at this t ime , 
however. We do not know what influence that would have on the model . 
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LOCHKAREV (USSR): In the paper it is assumed that the effective work func
tion of the cathode is re lated to the e lec t r ic field at the cathode according to 
theory of the normal Schottky-effect. In view of the fact that the comparison 
of the exper imenta l data with monocrystal l ine cathodes gave a good c o r r e s 
pondence with the theory, can one consider that for the monocrystal l ine 
cathodes the influence of the anomalous Schottky-effect, and hence also the 
patch-effect is i r r e l evan t? 

GYFTOPOULOS (USA): F i r s t , let me clarify that the repor ted work was not 
for a monocrys ta l . It was for a polycrystal l ine surface . Second, no Schottky-
effects re lated to surface-patches were taken into account. Third, the Schott
ky-effect we a r e talking about is that introduced by the p lasma sheaths . 
Four th , there was one condition that was imposed in a l l the calculat ions, 
namely that the minimum*number <5f input p a r a m e t e r s would be used to d e s 
cr ibe a la rge amount of data . 

RASOR (USA): A more detailed and r igorous analysis of the Schottky-effect 
in thermionic conver te rs has been published recent ly by L. K. HANSEN 
(J. Appi. P h y s . , 38, 4345 (1967)). 

Dr . HANSEN is p resen t at the meet ing. I suggest you d iscuss this question 

with him. 
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COMPARISON OF METHODS FOR CALCULATING RADIATIVE HEAT TRANSFER * 

A. Schock and M.J. Abbate 
Republic Aviation Division of Fairchild Hiller Corporation 

Farmingdale, New York 

Abstract 

Various approximations for calculating radiative heat transfer between 
parallel surfaces are evaluated. This is done by applying the approximations 
based on total emissivities to a special case of known spectral emiss ivities, for 
which exact heat transfer calculations are possible. Comparison of results 
indicates that the best approximation is obtained by basing the emissivity of the 
receiving surface primarily on the temperature of the emitter. A specific model 
is shown to give excellent agreement over a very wide range of values. 

Accurate computation of radiative heat transfer in thermionic converters 
is of great importance for predicting the conversion efficiency and the open-
circuit temperature r i se . 

The diffuse radiation heat transfer rate from a plane emitter E to a 
parallel collector C is given by 

3 = ƒ C 3 6 ( λ ) - Sc ( λ ) ] ο λ , (1) 
o 

where q( λ) d(\), the radiant energy flux in the wavelength interval λ to λ + d\, 
leaving each surface is given by the sum of the emitted and reflected radiation: 

qc(\)d\ = eE(X.yE)e^wLrf)-l + [1 - Μ λ ' ^ ) 3 3ο<λ**λ, (2) 

gc(X^ = e c ( X , r c ) ^ ^ g p i + [ l - € c ( X , r c ) ] g E ( X ) d X . (3) 

Here h and h are Planck's and Boltzmann's constants, c is the speed of light, and 
e(\,D denotes the hemispheric emissivity at wavelength λ and surface temperature 
T. Solving Eqs. (2) and (3) for gE(\) and qc (λ) and inserting the results in Eq. (1), 
we obtain 
* Work supported by U. S. Atomic Energy Commission, 
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ι  ι  ι 
dX 

2 . W ¿ {[«Prøi] [P^>i] }Γ^ ) + ε ^  ι ] 
(4) 

It is now convenient to let e denote an effective emissivity, defined by 

ε =  ΓΪ ^ — (5) 

O 

Combining Eqs. (4) and (5) and integrating, we obtain the usual expression 

q = σε (2? - £ 4 ), (6) 

where σ is the Stephan-Boltzmann constant defined by 

σ = 2 π 5 ^ 4 / 1 5 σ
2 ^ 3 . (7) 

Equations (5) and (6) permit accurate computation of radiative heat transfer when 
experimental measurements of emissivity versus temperature and wavelength are 
available for both surfaces. For most surfaces, however, the only available data 
are not the spectral emissivity e(X, I) but the total emissivity e(T), defined by 

- 1 _ 5 

[fexp (hc/XkT)-l~\. λ" e(\,I)d\ 

e(T) = ^ ï (8) 
co —■

ƒ Texp (?io/UT)-l] λ"5 d\ 
o 

In such cases, it is customary to approximate the effective emissivity in terms of 
the total emissivities of the two surfaces, using an expression of the form 

ε = [ e E m + e c ( D - l Γ* <9) 

The crucial question, to which this paper addresses itself, is what temperatures to 
use in the agrúmente of Eq. (9). In general, the options considered include the use 
of the emitter temperature Tz, the collector temperature Tc and the geometric 
mean temperature 

TG=(TCTC)^, (1°) 
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in various combinations. To determine which recipe yields the most accurate 

approximation of the actual heat transfer, we shall examine a special case 

(tungsten emitter and collector) for which sufficient measurements of spectral 

emissivity are available* ' to permit exact calculations. As shown by Figure 1, 

the spectral emissivity of tungsten is essentially a linear function of temperature, 

so that 

e (X,T)=a(X) + b(\)T. (11) 

Figure 2 presents a plot of the coefficients a and & as a function of λ. 

To ensure complete consistency between the exact and the approximate 

calculations, the above set of emissivity data was used throughout. For the 

exact calculations the effective emissivity was computed from Eq. (5), while 

for the approximate calculations the total emissivities of the emitter and collector 

(presented in Figure 3) were computed from Eq. (8). It should be pointed out that 

the integration range in Eqs. (5) and (8) had to be truncated, because of the lack of 

experimental data below 0.25 and above 10. 0 microns. However, the range covered 

included all but a small fraction of the radiant energy, since the Planck weighting 

function drops off rapidly at small and large wavelengths. Moreover, since the 

integration ranges in the numerator and denominator of Eqs. (5) and (8) are 

equally truncated, the resultant e r ror in their ratio should be negligible. 

Effective emissivities using four different approximations were computed 

for comparison with the exact solution: 

ëEC = {[εε^Έ)]" 1 + ίε,ίΤ^Τ1-!}:1 (12a) 

τζ ={[eE(rE)]-1+[e c(T e)]-1 -1}7 (12b) 

ε„ = [UciT^T1 +Cec(^r -IV1 (12c) 

*EGC= CCce(re)]-x + [ec i re ) ] " 1 - !}" 1 ^ - (Tc/TcfT1 

-{[eE(TG)]_1 +[e c(T c)]-1- l}"1 KTc/Tcf-lT1· (I2d) 

The last of these had been recommended by a recent study* ' devoted to the same 
question as the present paper. That study had been based on a theoretical model 
rather than experimental data to describe the dependence of emissivity on 
wavelength. 
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The results of the present study, illustrated by Figure 4, showed that over the 

temperature range of interest in thermionic converters (850 < T~ < 1150°K, 

1700 <TZ< 2400°K) the third approximation ( *?.E, Eq. 12c) gives by far the best 

agreement with the exact solution (Eq. 5). Thus, while Reference 2 is correct in 

stating that the relatively crude approximation £EC gives values that are 1015% 

lower than e"EQc, the present results indicate that ~E3C is still 1015% below the 

actual value of the effective emissivity, and that a much better approximation is 

provided by model ëE E . 

In conclusion, a plausible qualitative argument can be offered for basing the 

receiver emissivity primarily on the emitter temperature: Spectral emissivity 

depends rather strongly on wavelength, but only weakly on temperature: in fact, 

as shown by Figure 1 ¿he direction of the latter dependence reverses with wave

length. The principal reason why the total emissivity of a surface varies with 

temperature is the latter 's effect on the spectral distribution. Therefore, the 

total emissivities used in calculating the heat transfer should be based not on the 

temperature of the surface, but rather on that temperature which best characterizes 

the spectral distribution of the predominant radiation reflected between the electrodes. 

Because of the fourthpower dependence, the dominant radiation in a thermionic con

verter is clearly that which originally emanated from the emitter. It is therefore 

nor surprising that basing both emissivities on the emitter temperature yields the 

better approximation. 

A still better approximation can be obtained by giving predominant, but not 

sole, weight to the temperature of the radiation source, with much lighter weight 

given to the temperature of the receiver. To determine the best way of doing this, 

exact heat transfer calculations were carried out over a very wide range of 

emitter and collector temperatures. Examination of the results indicated that they 

could be quite well approximated by the purely pragmatic equation: 

r T\ Τ4. η 
q aUz(Tz) + ec(.8Tc+.2Tc)l e E ( . 2 r E + . 8 T c ) + e c ( T c )  l J ' (13> 
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The computed results are presented in Table I. For each set of emitter and 
collector temperatures, the three numbers shown are respectively the exact 
heat flux (Eq. 4), the approximate heat flux (Eq. 13), and the percent e r ro r . 
As can be seen, this approximation exhibits remarkably good agreement over 
a thousand-fold variation in heat flux. 

Emitter Temperature, ·Κ 

3000 2800 260C 2400 220C 2000 1800 1600 1400 1200 1000 800 
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8 0 0 
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Fig. 1: Spectral Emissivity 
of Tungsten 

Fig. 2: CurveFit Constants c(\)and ft(>.) 
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METHODS OF CALCULATION AND OPTIMIZATION 
OF THERMIONIC ELEOTROGENERATING ELEMENTS 

I.S.Mosevitsky 

I.V.KURCHATOV INSTITUTE OF ATOMIC ENERGY, Moscow, USSR 

INTRODUCTION 

The electrogenerating element (EGE)is an individual ther
mionic converter in the general circuit of the direct conversi
on installation. There are different non-uniformities in EGE 
(temperature, potential)which impair characteristics tf the ele
ment and therefore methods both for test and variant calculati
ons and for optimization of EGE have to he developed. Th» cal
culation methods are defined by formulation of the problem and 
accuracy requized and vary from simplified calculations and. esti
mations to general numeric solution of the problem depending on 
different stages of the development of the installation. 

In the present paper the EGE model with one-dimensional 
linear geometry is considered, for example EGE with the cathode 
as a thin wall cylindrical sheath without azimuthal non-unifor
mity. The EGE may be swithed into the general circuit with one 
or both its ende.The approximate analytic methods of calcula
tion and optimization (in linearized approebh) and one of the 
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possible mumerical methods for the digital computer are discus

sed in the present paper. 

2. BASICAL EQUATIONS AND SIMILARITY CRITERIA. 

In the EGE scheme under consideration let us assume the 

thermal flow delivered to the cathode q .φ (χ); <¿>(,o)=1 to be 

given and not depending on cathode temperature distribution. 

Since variations in anode temperature around its optimal value 

alters weakly on the converters characteristics,let us consider 

the anode temperature given and constant in length ad well as 

cesium vapour pressure. Under these assumptions the cathode 

temperature distribution T(x) is to be the solution of Eq.(1). 

where 3.3
=<
1Γ

+<
1β

+(
1+ ^

s
 the thermal flow from the cathode surface 

due to radiation (<}=£6(Τ-ύ*) ),"electron cooling"(.fcj&J-ffcQ 
Vfo&hyfá&hffl) a n d thermal2conductivity of interelectrode medium 
(<3 -oc(T-t^) )and ̂ / ^ / J ^ W is ΐ η β ohmical heat output in the ca
thode. V, ί* and k are length and thickness of the cathode and 
the ratio of commutation length to its thickness, respectively. 
Coefficients λ , ƒ , λκ , j>K , ψ t oí , £ andΛ are in general ca

se functions of T(x). The boundary conditions define heat flow 

from the cathode over the commutation (x1) and over a certain 

gapfixing component (retainer)with effective thermal conducti

vity Λ on the component with temperature t^and t .It is assumed 

that through all the length of EGE there are no local heat lea

kages. The commutation is considered to be "small'^ince it is 

not necessary to calculate it as a system with destributed 

parameters. 

Distribution of potential U(x),which is equal to the dif

ference of cathode and anode potentials (fig.1),is found from 

the equation 

The parameter^ is determined by the scheme of switching of the 

X) QAnd^ denote parameter values at x=o and x=l; and. denote 

commutation and anode parameters 
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element i$to the outer circuit: at one and twoway schemes<$*0 

and«2$=i ,respectively. 

The element current 3p (per a perimeter unit)and input vol

tage lT ¿ire ' * '
ξ,Μ 

1*1%1 , /u.ßjw*+ M)(£jJopV4* 
To close the equation set (1)(2)the relation between cu

rrent density j(x) at any point of the element and other para

meters has to be shown· The simplest assumption, which is used 

in the present paper, is to consider j depending on other para

meters at the same point along the EGE length, particularly« on 

Τ and UU Such a additivity principle is likely to be valid eno

ugh for operating conditions (by temperature, current and cesium 

vapour pressure) of most of EGE, but limits of its using have 

to be refined. When this principle is disturbed over a small 

range, corrections on this "disturbance" can be introduced acco

rding to the relations presented below. 

The dependence ó(U;T), which most offen is obtained experi

mentally, may be presented as a set of curves 3(T) =const; in 

the same coordinates jT another set of curves may be built, 

since at given tA and Pcs» q^sgCT^T^t^+jíuiD.yCTHoCÍT)* 

*(TtA)=qe(u;T)=q_(j*T). After connecting points with similar Å S s 

specific power W=j«u one obtains a unified electrical and ther

mal characteristic of the elementary converter, which will ba 

calle jT diagram (figure 2)· The region of the most advantage

ous operating of such a converter will be limited at the top by 

the line of maximum specific powers max/XJ and at the bottom 

by the line of maximum efficiencies max [fa]· 

In this form the problem of EGE calculation is solved by 

numerical methods, dependence of coefficients on cathoáe tempo

ratures was assumed to be linear and the characteristic j(H*T) 

was introduced as a twodimensional table. 

The analytical solutions of the problem may be obtained 

after some simplifications. If the coefficients Â  py etc.mentio

ned above are assumed to be constant Eqs«(1)(2) may be written 

«s follow. ±$.Qt(*iT)-iitf*)-*f[fo»#'r]! 
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These equations contain a relative coordínateos X=£<iand six coa— 

«.plexes: ~ i!. X-A'- JV.^; M»të; Α*(&·ί; F*£& 
They determine similarity of electrogenerating elements in geo
metrical size and thermal and electrical properties of materi
als. Output characteristics-mean curren^ density j in EGE and 
voltage-i/.· . r4·/* . F >* 7 

and distribution of parameters T(x) etc. are determined by va
lues of these complexes, dependences Q (uiT}A(tyT)<p(J)and EGE ope
rating conditions which (at given t., t and t,.) will 1Λ deter
mined by q and XL·. This way of setting of the operating condi
tions "binds" local parameters to a certain region of j-T diag
ram and makes it possible to obtainsimpler solution while set
ting of lf(instead of U ) leads to mop» difficulties in solving 
the problem .A point in j-T diagram corresponding to tt=H and 
qa=q_ let us call the EGE operation point (OP). 

The next stage of problem simplification is linearization 
of dependences q_(U;T) and d(U;T) around a certain point — 
linearization center (LC)with parameters U *, j*, qs*i T*. 
In test calculations it is convenient to make coincident LC 
with OP· The set of curves J(Tl usually has good linearity. 
For ignited-mode conditions typical dependences j(T) are line
ar enough on the ascending part of the characteristics. The 
linearized equations and boundary conditions written in the fofm 

«g- θ-ι^(ν-ι)-φΦ(*Η]; fål-wfål*-^ 

contain dimensionless variables Q()d= ΊΜ=Ϊ! . U(X)= ^é» } 1(^1 L* ' 
0 7 ~ to * ' LL· »j 

Q s η&} Q^X^/i and constants being similarity criteria. So

me of them determine relations which are the most specific ones 

for the problem under consideration. These are: p\ \* 

L is equal to the ratio of the cathode length to the characte

ristic lengtn
 yi

QJkS(^õ'), * where the"longitudinal thermal 
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resistance" J^f is equal to tho "transverse thermal 
4 

resistance" ■ AEJ · The criteria M and M,. are equal to the 

ratio of the "longitudinal«thermal resistance" to tho thermal 

Κ ί. 
resistance of the commutation -r- or retainer ¿r . since on tho 

χ length the greatest drop of the cathode temperature will 

take place due to heat leakage at the cathode ends, these cri

teria characterize the ratio of this fall to temporature drop 

on the commutation or retainer and in the simplest case are equ

2 
al to it. The complex HL is the ratio of electrical resistivi
ty of EGE electrodes to the load resistance of the ideal EGS 

(having \·$=λΗ=.γΛ*Λ=0 ) of the same length, whose OP coincides 
ρ 

with LCjthus HL determines the relative contribution of the 
electrode resistance losses. Other criteria * 

determine the similarity of the linearized jT diagrams» 

3. ANALYTICAL METHODS OF APPROXIMATE CALCULATIONS 

AND ESTIMATIONS· 

Taking into account both coefficient errors and those due 

to linearization, it is advantageous to use approximate soluti

ons of Eq.7 and 8 since the precision solution involves diffi

culties in the examination of the problem· For this purpose we 

shall use a simplified calculation model of EGE(adiabatic model) 

that has no heat leakage over the cathode, equations (4,7)turn 

to algebraic onesi^^JJsft^+Â .
2
^The values of θ^9 1^ f i ^ 

and Q^ parameters of such a model coincide with parametors at 

the operation point. Represent Eqs·(7*8) in the following from 

^-e-e^.W; $-OC'(U-V.)-H[I^(*)]; (9) 

Let us ffssume Fe(x) and Fy(x) to be nonexplicit functions of 

the coordinate, and 0Í to be a positive constant.At F# =]^ »0 and 

oC = //̂  solutions of the first approximation of â(x) and ll(x), 

not taking into account mutual influence of θ and U and possib

le nonuniformiPty of heat supply, will be obtained· For the 

adiabatic model t 

<¥v= 0ο^Λ^)φβ)ν^ FtM'&Q¿«K4i *■"(***). 
As from the physical point of view Fji%) ̂ 'f*= C^tøand 

2) Index denotes parameters for EGE adiabatic model· 
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F (7=τ?they may be considered as disturbances defined by factors 

not considered in the equations for exampe by interrelation 

between θ and U etc. Since nonexp]»icit functions enter into 

the equations linearly, thé solution may be represented as 

Θ(*)*ΔΘ(Λ) f U(X)+áU(X) f where the first items are solutions of 

the first or adiabatic approximation, and the seco.no. are solu

tions of equations ^¡=Δθ+ξ(Χ) i fjz« <Kòli  Ηξ,(χ) wittL DOundary 

conditions $#*■*«; fâ).*»*. tìl.O¡ fíffl*A(fft . 

The Laplace transformation makes it possible to obtain soluti

on of these equations at arbitrary form of Fg(X)and Fy(Xj functions, 

which may be even ¿functions. This method of nonexplicit 

functions allows to estimate influence of any disturbances 

which may be represented as disturbances of heat flow or current 

density. Let us estimate the temperature drop at the cathode 

ends by the first approtimation. For sufficiently "long" EGE 

conditions at one end do not influence practically on the tem

perature distribution near the other end; in this case 

This solution and those considered below may be used at ¿>5~τ 

since in this case the maximum relative error 0(x) will be 

*%Sr2%> .For the given Έθ (χ) the solution Δ Θ(Χ) is 
¿Øtø=£Jft(t/.e*p[lxrl]<irJ>,é J>, ¿Γ; 

Here the first item"showa indiredt influence F θ (χ) on tempera

ture shift, and two others influence of boundary conditions 

changed due to F β (x)^O. For practical estimations in the caso 

of sufficiently smooth and weakly varied function F 0 (x) 

If for large values of L exponents are substituted by dfuno

In the second approximation the temperature distribution has 

where θ (χ) takes into account influenae of potential and heat 

supply change according to the adiabatic model. 

Solutions of the equations for the potefitials 
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have to be calculated at c(l
s //̂ .¿-¿i \ assuming initial approxi

mation to be adiabatic; and for the second apOOXimation 

The current âdensity distribution is defined asi(X/=2A(<y*A/fky 

Assuming ¿Jfx¡*F(X) *°^à<p()()sO 0Ile can· obtain conditions limiting 
the range of permissible solutions with positive values of cur
rent density over the whole length of EGE, i.e. the conditions 
under which l(o)*Q,l(L)*0 * ¿ ^ â0A ±~ Q~ r ί ί ϋ ^ j 

Wo^T'^ ' H? U^ ch*L+4A X' 
V 

At the linear variation of heat supply utøjs oQCtyf the distributi

on of current increase over the length will be 

The average value of the current density over the EGE 

length is expressed by the value of the current density in OP 

(1^ ) and a number of coefficients: 

These coefficients take into account the total uniformity of 

current (ψ) and each of them takes into account the influence 

of different factorspotential variations due to ohmic losses 

(fe^, connestion of the element (fø)* edge current fall(fte 

and ty. ) and nonuniformity of heat supply ( h. ). They are exp

Wit'' W^UÂ^L'^tt1*»/ L ''Φ U**** ΤΓΊ· For the linear heat supply j e i J . ^ A . j 
The input voltage is defined in accordance with Eq.6: 
v4* ί -W-^^ î  t.'£W**· frigia. 

Por Ο!** «d/***, H  μ ^ tm-i-tälhsB} Wk " 
The obtained solutions of linearized problem take into 

account main interrelations and mutual dependences of the para

meters. In a number of cases £. and 2V may be considered as cons

tant values with further, if required, refinement· Then the out

put characteristics of electrogenerating elements for approxi

mate calculations may be represented as the simpliest dependen

ces on L and U0 . 
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J'lA' **Μ*Κ· o) 
whoreJhsX.ffafA~4A)i¡* + ~ 7 is ΐ1ιβ ̂ onoalized specific resistance 
of EGE jg - i.J is the total normalized resistance: 

The values of £ andj? may be found not only from the expres
sions given above but also from the results of more precision 
calculations by Bq.(9) 

4. APPROXIMATE METHODS OF EGE OPTIMIZATION. 
Problems of EGE optimization may be quite different in 

their definition. The most typical are the following: 
1) Determination of matched electrical load, or voltage opti
mization; 2) Optimization of geometrical size of EGE; 
3) Optimization of operating conditions by P^ and T m a x ( ^ £, ) 
In these problems the mean specific power Η£=̂ .·ΐ/' or total 
power Wp »Xtf or efficiency of the element are maximized. 
The second problem includes the first one, i.e. the conditi
on of load matching; for both of them the j-T diagram is assu
med to be given. 

Consider the first problem and some kinds of problems of 
the second type, that will be solved on assumption that output 
characteristics can be represented in the form of (9)· Since 
usually it is T m a x or α that are given, let us linearize 
the real current-voltage characteristic^#L»or^#Åaein the 
region of the optimum expected:^ = hfir ¿j i χ̂ re / and E are 

density of the shortcircuit current and electromotive force 

of this linearized characteristic. 

To solve the first problem let us find the optimal para

meters maximizing W at^given geometrical sizes of EGE from 

the condition l£=jr^M""0· 

They may be represented in the following form: 

V *j ; UoÏJTfi i ¿Γ TuT' S^JCtr^J^ 
The complex?»JL.k determines the slope of the current

voltage characteristic and takes into account the nonunifor

mity of current density by the coefficient^.j?=£?$ . It is 

interesting to note that in "One suggestions presenred the 
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resistance of electrodes and commutation does not alter the 

optimal value of the outpu*voltage, which is equal to the 

optimal voltage of the ideal EGE, but only decreases the 

value of the current due to of the shift of iL into the region 

of larger values. The maximized^, equal to WgsW*.^ where 

K*7'¿'^ is ̂
β
 maximum specific power according to the li

nearized characteristic, s^éLT^""
 i s tiie

 coefficient of po

wer loss due to "not»ideal" EGE. Since the least variable 

value at differontJ{UJ is E, it is convenient to represent 

dependence of WT on other parameters in the form 

β*. ?» 

B
l
 ~4(i+*M (10) 

As one of the problems of the second type let us consider 

the problem of definition of the optimal commutation (i.e. 

parameter E) for obtaining max [w^] at a constant length of 

EGE and given temperature Te<t · The condition fkr=0 leads to 

k'í?Hj¡T~í since both?» andJLdepend on K. If solutions of 

linearized problem and corresponding expredsion f org. » r°*ft.^L. 

is used the optimal value of the parameter Κ is defined from 

In this case it is assumed that the value's h A directly en

tering into this expression may be given beforehand. After 

having calculated Jlpk can find the value ¡¿u and improve k, gy 

«and then JL* ; such an iteration is usually quite sufficient. 

Then^, U¿ f J> J. and W™
11
 optimized over K and Ύ are calculated. 

In order to find the maximum of the total power W = J -f 
r ρ ρ 

let us transform Eq.(10) into 
*£_ , *> - S 

This dependence is shown in Fig.3· When only 1 changes parame
ters!!! ? and^will change in accordance with the motion of 

ë* * r Ι* ο Λ 

the point in a straight line which is at the angle γ to the JL

axis and crosses it at the point A=JLf>*. ¡ £ ¡¿ 

The maximum £ is reached at the point of cantact of this 

line with the line A =const; the condition ^¿[ "¡&)Λβ give 

f elations for optimal values : j£ « Jetât/'\ 2p JL° =Ί · 



 830 

Thus if values, defjjgi ng *f are given, the optimal length of the 
D°f* f ε

 s
 L'i o'F* 

elemente »γzijJ^Sj'v · Since c does not depend on K, the 

values 1°^ and K
0
^ may be determined in succession with itera

tion improvement of values I? and £y · 

As for optimization of operating conditions of EGE it 

should be noted only that if ¿jT diagram has the form shown in 

Fig»2, the optimum power value Ρ has to be such that OP on 
•ft ' c s 

the line U*IL were on the ascending slope a little tc the left 

from the maximum j. If it is on the maxi mum or to the right 

from it the pressure of cesium vapour should be increased. 

5. NUMERIC CALCULATIONS OF EGE. 

For the numeric solution of the set of equations (1),(2) 

they, together with boundary conditions, are represented in the 

form of difference algebraic equations, which may be written 

as follows /t#7i ; ?»{?!,...Ç/...Zi,j ; ?=/£,. K i  Î.J. 

Here L»i;2;... fo is the number of the equation; ¿f is the vector 

of computer variables which differ from the real variables 

Ífyük¡»yi"V*}sfeH;..?tíi~%K}ísl the scale o f
^;j $ is "t

11
« vec

tor of error of the set of equations (if 2 is the root of the 

sot of equations components of S are zero).Such a system is 

solved by the numeric method [1] proposed for investigation of 

a set of equations of the most general kind by means of succe

ssive calculation of the increase of dependent variables: 

ÃÍ*[b]ÃX[%]·&" here [Ώ] and [?J are the matrixes whose ele
ments are partial derivatives calculated numerically. The vec
tor of the increase of independent variables4/ » as well as di
vision of variables in dependent ones H, and independent ones x, 
is given depending on the type of the problem, for example, 
¿t»û at searching of the root orâ>»hWJ at searching of the 
extremum Wy ( Oy is the i-tk line of the matrix f Ό] which is 
the vector-gradient; h is the step). 

Bor searching of the r0ot three or four iteration are 
usually required. Divergency takes place in few cases when the 
characteristic j(U,T) has a sharp winding, and values of para
meters in a nide vary around it, or when at a sufficiently lar
go number of nodes ( £/0 ) the initial vector is given very 
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rough· 

The optimization problems are usually solved with an 

automatic selection of h depending on the ψ angle of revoluti

on of the vectorgradient. If is assumed thath*2 atif<fø/ΐ:2δΛγ>ψ; 
ψ.ζεαο'; y>zlSï$Û· On each gradient step searching of the root 

may be performed with a required precision. The selection of 

scales is of importance as it allows to deform the variable 

space in such a way that "ravines" on the surface of V, elimina

te and the level surfaces approaches the pseudosphere. Ih Fig.4 

the simplest case of searching max[W] in Κ and VL is displayed; 

it can be seen that due to a "ravine" on the variable Κ at 

scales equal to 1, the solution found differs sharply from 

the real optimum which is found to a sufficient degree of 

accuracy using the automatic selection of scales. 

LITERATURE 
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THERMIONIC CONVERTER ELECTRICAL CHARACTERISTICS 
WITH MATRIX CIRCUIT CONNECTIONS 

Gutshin G.I·, Kolmakov A.P., Pereslavtsev E.B., 
Pupko V.Ya., Subbotin V.I·, Chernukhina G.M., 

Yur'ev Yu.S· 
The Instituto of Physics and Power Engineering, 

Obninsk, USSR 

I·Introduction 

A practical application of thermionic converters (TC), 
operating together with nuclear reactors as electrical energy 
sources, nocossitates the investigation of such system 
behaviours for different operational stages, reaction to different 
load changes, behaviour in the case of beginning different circuit 
failures· 

Principle and constructive limits putting to power and 
output voltage of one thermionic converter require to connect 
them in series-parallel circuits «Creation of large matrix 
circuits raises a problem to determine optimal commutation and 
to find out methods of increasing system reliability consisting 
of relative unreliable assemblies· In matrix circuits of TC 
connections in the caso of failure element accident the role of 
that element performs adjacent TC parallel to it· 

The present paper deals with the investigation of thermionic 
converter electrical characteristics with matrix circuit connec-
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tions for different operational conditions in the presence of 
electrical failure of one or some elements taking into account 
modelling of real voltage-current characteristics. 

At the same time it should be useful to consider current 
cartograma for matrix branches to evaluate the ranges of possible 
failure spreading. 

Model investigations are supplemented with calculations and 
theoretical considerations of dependences for output characteristics 
of such systems under deviating converter parameters from nominal. 

2.Method and Equipment 

For matrixes amount to hundred and more elements the using 
of computers becomes problematical particularly for those cases 
where more accurate considerations of voltage-current characteristice 
are demanded. The using of analog technique in that case does not 
arise principle difficulties and gives acceptable accuracy· Usually 
practical interest have matrix circuit connections of thermionic 
converters in the form of a plane network considered in Γ 2,2 J or 
a volume network formed by rolling up a plane surface as 
"a cylinder" or circuits commutatod as "a star" (Fig.I) considered 
in a given report. As a base of a generator matrix circuit there 
was taken R-network of USM-I analog computer permitting to carry 
out connections and investigations pointed above· The most accurate 
consideration of practical voltage-current characteristics of TC 

formed the general difficulty of modelling. The character of 
a real voltage-current dependence is explained by a converter 
construction and depends on cathode and anode operational tempera
tures, cesium vapour pressure and other factors. Thus by modelling 
the circuit it is desirable to have a number of electrical genera
tors possessing definite voltage-current characteristics. 
Typical voltage-current dependences for different operational TC 

ranges and the circuits modelling them are given in Fig,2. In d,e 
circuits putting diode valves in operation gave the possibility to 
get fractures of linear characteristics. Putting nonlinear 
Varistors into and their corresponding locations (b,c circuits) 
permitted to obtain more smooth fractures of characteristics. 
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For the sources modelling TC operation must be separated, they 
are supplied from separate windings of a general feeding trans
formator. It permit to increase the accuracy of relative measure
ments. Electrical resistances of cathode, anode and commutâtional 
arrangement between TC were modelled by resistors taking into 
account a corresponding modelling coefficient. Integral voltage-
-current characteristics of system (Fig.3) were obtained by 
changing the load resistance from open circuit regime to short 
circuit regime at different resistances of /zL commutation. 

3«Determination of Integral Characteristics of 
Generator Matrix Circuit in Different Failure Regimes 
Three types of failures were possible: broken circuit (Be), 

short circuit of converter electrodes one to another (Se), short 
circuit of electrodes to support structure which is partly equi
valent to puncture of anode electroisolation, and their possible 
combinations. The possibility of one or other failure depends 
on TC construction, technology of manufacture and operational condi
tions. 

The carried out investigations of voltage-current characterise' 
tics for circuits under different emergency conditions allow to 
determine the value of generator output power losses at local 
failures against commutation resistance (see Fig.4). With an assumed 
probability of the failures of every kind the value of optimum 
commutation resistance (R ) may be obtained from Fig,4· For equally 
probable local failure the optimum commutation value is determined 
by intersection of the curves for broken circuit and short circuit· 
Fig· 4 shows the optimum commutation value for an "elongated" 
matrix to be some more than the internal resistance value for corn-
mutated converters· In Fig.5 the relative power of matrix system 
is plotted against the number of failures under optimum loading 
conditions· The dependence of ftsl0 on the failure number allows 
to find the probability of this relation at the end of life time 
to be not less than some given value. This probability is determined 
from binomial function distribution for spurious failure combina-
tions flj , P„K*V)« f C cYïCi ™· * * * - » · 

Kso 
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R and fi> - the probability of the I8^ and 2*^ event, 
respectively. 

ff)i and m 2 - the number of the I — and 2== events, respectively, 
taking place during some fixed period of time. 

Then BC and SC events are assumed to be independent· 
Such treatment of results allows to obtain quantitative 

estimation of thermionic converter reliability, if the reliability 
implies the probability of its power at the end of life time being 
not less than some given designed power· In Fig.6 the matrix 
system reliability of a TC is presented as a function of relative 
power for three reliability values of separate TC-s:0.9tO»95»0.99· 

The reliability of star-connection converter scheme (Fig.I) 
must be higher theoretically, because current redistributions at 
a separate element failure are distributed uniformly ever a 
larger number of neighbour cells· However, in practice the 
reliability calculation (at optimum R ^ carried out foe a star 
connection didn't differ much from the analogous one for a 
cyclinder connection. Just so the general character of power losses 
dependences on commutation eesistance at local failures proved to 
be substantially the same both for the converters with the refined 
trend of sroltage-current characteristic and for the idealized: 
converters with linear characteristic. 

4. Current Diagrams and Failure Spreading Range 

In case of a broken circuit the lack of converter cathode 
cooling by electron emission considerably increases the cathode 
temperature. There is also some change of operating conditions in 
adjacent TC-s. In the case of short circuit failures the defect 
connerter becomes a load if the comutation resistances are not 
large. The most serious and therefore intolerable type of failure is 
simultaneous shorting to the structure of two or more elements. 
Depending on their arrangement the system may lose practically all 
its useful net power cutting off many franches of the connected 
unfallured converters. Fig,4 illustrates current change in a 
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f allured branch as a function of
 e
/£¿/i 

Current value may vary depending on f allured converter position. 

This shape of curve results in considerable reverse currents at 

k*/din ^s 0,7 that may cause futher TC failure . Fig.7 shows 

the distribution of currents over matrix commutations at BC. In 

this figure the current transformation may be seen as a function 

of commutation resistance· 

In Figs. 8 and 9 the diagrams of distribution of relative 

currents in commutations and parallel branches of matrix system at 

BC and two failures of a SC type in one of the branches. In these 

diagrams some critical relative current value in matrix branches 

is noted. If the current of less than critical value passes through 

the TC then that converter is considered to be under emergency 

conditions. Therefore this critical value defines the range of 

failure spreading· 

5· Perturbation Theory Application 

To study the influence of small deviations of thermionic 

converter parameters upon the generator output characteristics 

the device of conjugate functions and perturbation theory was 

used, it is widely worked put in [3·4\/· For this purpose a 

reactorconverter discrete twodimentional nmmatrix (Fig.I) 

consisted of elementary thermionic converters with characteristics 

fy*; w ; #\>; w (<é^
n
> <¿j

¿n
) 

was transformed into electric generating cylindrical cell with 

corresponding continuous parameters: 

ε (Μ) ι zìi J), ft (t, f k Ruft.*) 
The differential equation of potential distribution is: 

Here, potential U , open circuit voltage £ and conductances 

61 éf 6a refer to mean thermionic converter parameters: 

The I — foundary condition following from the problem 

symmetry is a usual condition of the joining of solutions of U 

'function and its derivative on both sideg from on arbitrary cell 
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crosssection along the generating line: 

U(},f) U(}^2wk)i k*l,2,5... (2) 

The second boundary condition is derived from the potential 

constancy at J~o and }i , i.e. on the reactorconverter 

leads, and the constancy of an external load regime ^ . 

ul}*o r Uo = <*η*+ Ul?*i ' U, « c*"** 

Potential equation (I) with the boundary conditions (2) 

and (3) is lightly integrated at parameter constancy 

In case if parameters (j Οψ,%, £ are the given functions 

of coordinates J, ψ the solution of (I) with the boundary 

conditions (2) and (3) may be obtained only by numerical methods 

or electric modelling (see above). 

Let
1
s write down formally the equation which is conjugated 

with EQ fi) ~ .w s 

¿7
(
ïiïj)+**?"*$*/~

ω6
«"  (5) 

It is possible to shown that the left parts of equation (I) 

and (5) are really conjugated of the boundary conditions analagous 

to (2) and (3) take place for the conjugated potential : 

S«:£/(;■%%I d* £βε %K]fJ* (i) 
and then £ (f^o) r E(j^l)^o 

One notes that taking ¿ffO J ffcl) O under boundary 

condition, we obtain two 0 shaped sources in the right 

equation part:  q a ¿Y?=/J  S(jso) (8) 

Applying the conjugivity condition one may obtain 

0 0 Où 

After ordinary operations of the perturbation theory we get 

the connection of the variation functional J with the 
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perturbations of the paramers of the thermionic converter linkage 

matrix circuit ¿ , / 

o3.£j ¡(P V PU)M? ¿j foie, % Mj , 

+d)U %%- # w  V ^ %* '^ ■
 (I0) 

o o ¿¿y
 f

 ° ° 

t o fi 

U  denotes the solution of Eq.(I) at its parameter perturbation: 

Depending on a mode, i.e. physical essence of the functional 

¿7 (we are intrested in) conjugated equation (5) must be 

solved with respective right part *° (?, }',<f, v') 

If, for instance, we choose Ρ in the form: 

 β » ff?s /)  S(f. θ) *h*n P=C£ } W *» OI (XI) 

In this case J means the potential difference of the 

thermionic generator (or load), and Δ J is the variation of 

this potential difference proportional to the variation of 

current and the output power· From formula (10) we obtain in 
et 

the I ~ approximation, using (4) and (II), a relative variation 

of Α ξ, Δ ¿j, ufø in presence of small defects in single TC 

7  -& h (r) * é¡ ¿ (r, H)  -éi (7'H) ™ 
Fig·IO shows "functions of danger" /í,/¿,/^ depending on the 

coordinate of "defect module" j ' and it follows that the 

puncture of anode electric isolation, for example, are the most 

dangerous at the ends of series assembly (curve 5)· It must be 

noted that while lowering electric resistance of the whole anode 

isolation we obtain from perturbation theory formula (10) the 

following ratio: ¿J co
z
 \ ¿ 

which may be directly derived from the solution of "nonperturba

tion" problem (4). 
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Conclusions 

1. For determining the electric characteristics of matrix circuits 
of TC connection the electric modelling method proposed is 
obvious and operative. 
2. Power losses after local failures (proken circuit and short 
circuit) may be lowered if one uses an optimum commutation in 
any of the thermionic conveter connection circuit considered 
(planar, "cylinder", "star"). The change of the operating condi
tions of the neighbouring thermionic converters is in this case 
neglegible. 
3. The reliability of the thermionic reactor-comverter may be 
essentially raised by using the optimum commutation in matrix, more 
reliable thermionic converters and reserve ones. 
4. The study of the differential equation of potentials by the 
perturbation theory method revealed the possibility to plot the 
defect "functions of danger", us the defect thermionic converter 
location. 
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Fig.I· Matrix Circuits of TC Connection 
a)"cylindrical" b) "star" 
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Fig#2· VA-Dependence and their 
Modelling Circuits 
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1. Regime without failures 2. Short Circuit TC 3· Shorting of thru TC in single "nranch 4. Shorting of two TC to support structure 

1. Regime without failures 
2. Broken circuit 3. Two breaking in a single "branch" 4· Two breaking in a single "branch" plus three breaking in the other "branches" 

5 10 15 2Ό 25 U 
Fig.3· Integral Characteristics of Matrix System 

in Different Failure Regimes 
2 ¿>N% 
j 0 f  T r ¿ ^ ~Ζλ 1 ^ ^ \ a· Power losses because of 

broken circuit 
b. Power losses because of 

short circuit 
c· Current of broken 

Re circuit 
fto d. Current of short 
¿Γ circuit 

Fig.4. Commutation resistance VS power 
losses and relative current changing in 
failure cell. 
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Fig.8. Diagram of relative 
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of Failure "BC" 

ΠΖί ÌW^\ ggnpra 
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THEORETICAL STUDY OF TRANSIENT THERMAL CONDITIONS 
DURING THE START-UP OF A THERMIONIC CONVERTER 

E.S.A. Arkin, A.N. Luppov, 
H.A. Murinson, B.G. Ogloblin, 
P.Z. Cherepanov. 

The Academy of Sciences, 
Moscow, the USSR. 

Among the various thermionic converter designs those 
ones, consisting of coaxial cylindrical electrodes, (the 
cathode being an inside cylinder) are the most applicable. 
The clearance between the cathode and the anode is to be 
done sufficiently small in order to get good performance. 
Besides the technological limitations the different thermal 
expansion of oathode and anode prevents from obtaining the 
small clearance. 

During the start-up period the cathode and anode tem
peratures grow up disproportionately. Then due to thermal 
expansion the clearance reduction and even its disappearan
ce can take place. As there are spacing insulators in this 
clearance preventing the electrode contact, it is obvious 
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that such expansion may be a possible reason of converter 
failure. 

The increase of the designed clearance size to provide 
for the heating process makes the converter performance 
worse. In addition the cathode gets then excessive freedom 
of displacement inside the anode, which also leads to unde
sirable effects. 

Besides the above mentioned considerations it is inte
resting to determine the cathode longitudinal expansion in 
relation to the anode. In case of a long thermionic conver
ter these relative expansions may be considerable and pose 
additional requirements to cathode - anode connection and 
commutation elements. 

Thus for working out the converter design it is neces
sary to know the cathode and the anode temperatures during 
heating process. Then the problem of longitudinal expansions 
can be solved by a constructive way, and for solving the ra
dial expansions problem it is most convenient to choose a 
proper law of thermal energy source capacity variation. It-
is obvious that thanks to the slow enough heating the consi
derable decrease of the difference between the cathode and 
the anode expansions can be get. However the thermionic con
verter heating time is often limited. This necessitates to 
choose such source capacity variation law, that provides for 
the converter heating in a given time and minimum reduction 
of interelectrode clearance. 

The objective of the present study is the determination 
of the cathode and the anode temperatures during their heat
ing under the different laws of heat source capacity growth. 

Mathematical representation of the problem and the solu
tion procedure. 

The temperature distribution along the radius only is 
considered. Heat escape in axial direction is neglected. 
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It is assumed for simplicity that the heating proceeds with 

no gas in the interelectrode space, i.e., the heat transfer 

from cathode to anode is by radiation only and the electro

nic cooling and heat transfer by thermal conductivity are ne

glected. 

Mathematical representation of the problem gives the 

following differential equations. 

^)t ι ©ζ I
 C
 r ^ / * C , t 4 > tt!.U,h:4j HJ 

under the initial conditions 

Ttfr.O) sT^t.O) »TA(t,OÌ =Ttì 

The first equation describes the temperature field in 

the fuel element, the second one  in the cathode and the 

third one  in the anode assembly (with the average thermo

physical parameters). The boundary conditions are: 

1L\ - 0 M 

where 9(t) is the coolant temperature
1
 ' 

X¿ the layer thermal conductivity factor, 

1 ) The temperature Ott) is given or determined by solving 
the problem, external in respect to considered one. 
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<5"  Stephan  Bolzman constant, 

fc  the thermal emissivity factor 

oí  the heat transfer factor 

Instead of perfect heat contact condition (5) it is pos

sible to consider heat transfer through the clearance. When 

studying the experimental devices with electric heater the 

heat flow is given instead of the equation (1) and boundary 

conditions (5). For more detailed studying of the heating 

process it is possible to consider the equation (3) in each 

layer of the anode assembly separately, making the boundary 

conditions on the layer contacts similar, for example, to the 

conditions (5). 

The most suitable solutions of this problem are the net 

procedure, connected with changing differential equations 

for finitedifference ones, and the presentation of the solu

tion as a series of cylindrical functions. Here the second 

procedure is used. 

By introducing some unknown time functions as a heat 

flow values on the layer boundaries it is possible to subdi

vide this problem into three boundary problems of the form 

Τί-,0) -T. ■  >^jR; = 4W) ■  > ^ l r Vittj . 

Here Aj_(t)  are known functions and <4>¿(0 and Y¿(f) 

introduced unknown time functions. 

The solution of each such problem is as follows: 

^(νΟ = £^(τ)Ζ(/^ί <<5) 



 849 

where 2.(u^x) τ are the natural functions of SturmLiouville's 

problem, corresponding to the problem (8). These functions 

are the linear oombinations of Bessel functions of the I 

and II type. Multiplying the equations (8) b y ^ « ¿ ^ end in

tegrating in the internal [RÍJ^HI » we derive the exp

ressions for 0^(0 as functions of ip¿({);y¿({)and their integ

rals. To determine the introduced unknown functions, it is 

necessary to use the boundary conditions (4)  (7). We ob

tain the integral equation system for IP¿,V¿ . One of the

se equations is nonlinear. To solve the system the time 

pitch is chosen, and within each Interval the functions 

i{?¿ ah ti "ψί a r e assumed to be linear. Thus within each pitch 
we get the algebraic system, which is solved by means of 
Newton' s method. Having determined i£t Ctht/ N^ the tempera
ture distribution in each layer is found from the formula 
(9). 

Results. 

in fig. 1 it is shown as an example the typical cathode 
and anode temperature curves plotted against time under the 
constant heat source capacity, coolant temperature being de
termined from joint solution of the problem (1) - (7) and 
the equations for the coolant circuit. 

Cathode heating consists of two basic stages. The first 
one is quick heating up to nearly nominal temperature 

at low anode temperature. The second one is 
the slow temperature rise up to its nominal value due to 
anode temperature growth. 

The characteristic parts of the anode temperature cur
ve are: 
a) OA - the heating delay because of low value of heat flow 
from the cathode ( Q . ~ T S ).This part on the curve is 
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ueteraiined by the rate of cathode temperature rise. 

b) AB  the anode temperature growth when the coolant is cold. 

The duration of this period depends on thermal inertia of the 

ooolant circuit. For the lowinertia circuits the duration of 

this period is small. But in those devices, where the coolant 

practically is not heated and the operational anode temperatu

res are attained due to low thermal conductivity of the anode 

assembly, the interval AB is the end of their heating. 

c) BC  the anode temperature rise up to nomi nal value when 

coolant circuit is heated through. 

As it was already noted, the interelectrode space reduc

tion can be slowed down by decrease of the source capacity 

growth rate. In fig. 2 is shown the relationship between the 

relative value of the space maximum reduction under the same 

conditions and total time i.p of the converter heating, 

from time t^ of capacity growth to nominal value. It is 

assumed, that 

( ^HOM ±< i*i4 

ι 

The anode heating time t« to 95# of the nominal value 

is assumed to be the total heating time,.and the heating time 

at UÌLl)~ìlòMOHlÌ>0(see fig. 1 ) is assumed to be the unit of time. 

It is seen that the desire to reduce the cathode and the 

anode expansion difference leads to quick growth of the con

verter heating time. Choosing more complicated law of capa

city growth as compared with linear law it is possible to get 

more favourable relation between these values. However if it 

is not possible to prolong the start up period, the differen

ce between the cathode and the anode thermal expansions re

mains to be considerable and is to be allowed for in the 

design. 
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Conclusions. 

i. The difference between the cathode and the anode tempe« 
ratures during the start up may be considerably higher than 
under the normal operational conditions. The designed value 
of the clearance between the spacing insulators and one of 
the electrodes is to be chosen on account of the supposed 
start up conditions. 

2. In case of the limited heating time it is reasonable 
to minimize the cathode and the anode expansion difference 
by proper choice of the law of energy source capacity varia
tion. 
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FAILURE MODELS AND RELIABILITY ANALYSIS OF THERM
IONIC CONVERTER COMPONENT PARTS 

Diákov B.B. 
A,F. Ioffe Physical Technical Institute , Leningrad, 

Academy of Sciences of the USSR 

Abstract 

The failure model intended for reliability evaluation 
which is considerea in this work postulates connection be
tween physical nature of failures and mathematical calcula
tion methods· Failures are treated as a result of accumulat
ing irreversible changes in a structure of an investigated 
material i.e· as so-called irreversible defects (point , lin
ear or volume defects). 

Random character of defect distribution in the volume 
or at the surface of material testifies to f*z.o6a6¿£¿st¿c 

nature of failures. 
Finite relationships describing probability of damage 

are obtained for thermionic converter component parts char
acterized by failure criteria which may be expressed by max
imum permissible concentration of defects belonging to one 
or several types. 

Problem or reliability or certain component materials 
under mechanical load is treated separately. 
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failure model accounting for quantity or accumulating 
defects may be extended to the case of simultaneous action 
of several failure mechanisms. 

Introduction 

Thermionic network reliability is connected usually 
with simple failure modes of thermionic module: short and 
open circuits and so-called failure propagation /l/. The mo
dule failure is a random event with respect to both location 
in the network and time and its reliability is a function of 
time: R. = iZ (t). 

Simultaneously reliability is determined by the degra
dation processes of device materials and fundamental proper
ties of cathode , anode , fuel , envelope with vacuum tight 
seals , isolation and others. 

With this attitude the model "short circuit-open circuit" 
has the operationable significance only just as the failures 
occur due to natural laws of material changes. 

The formalism describing these processes and establish
ing a direct connection with conventional probability para
meters is presented below as mathematical model to use the 
knowledge of physical processes in component parts of therm
ionic converter with purpose of the reliability evaluation. 

Presentation of Failure Model 

First introduce basic terms and notations. Let any com-



 855 

ponent part of thermionic converter be called a physical 

system of volume V under stress H. Let H be unique and con

stant for simplicity. 

The failure will result from irreversible change 

accumulation in system and minimal value of this change will 

be called "defect" ( point, linear, surface or volume Δ V). 

The defect concentration or their total number defined 

by one variable X is a basic parameter to determine the 

failure. Its maximal value: Xma^ V/AV and failure limit: 

^lim^lim^ Λιβχ) · 

Then in absence of other processes and consequently of 

defects of other type from elementary considerations the 

probability of single defect formation per unit time is 

equal to ^X/Cjf 

For sufficiently small time interval */£ it cann't arise 

.other than one defect with probability Qdt. 

The failure is complex random esent involving a summa

tion of the defects (its number or concentration) up to 

lim
 a n a nav

^
n
S the probability for time interval cLt\ 

as a conditional probability. 

The values of P^(t) are obtained from the equations of 

the next type: 

'c¿.£ = i&ty-rt*)·. 
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(3) 

with initial data: 

'1 for ¿ = 0 

J [θ for e = 1,2,3,...3Xlim1 

For example , if û =const, the system (3) has well

known solution 

n & - ψ<*>(-&· 
(4) 

Substituting (4) in the formula (2) we have 

In practice the reliability value R. is evaluated as a 

ratio of number of operationable devices to total number of 

device under test: 

R.C&)  <  η ί τ (&) 
where iV .. denotes the number of failures , iV and otk 7 o 

otk te^-nS great enough for reliable value of <Q . 
Since the number of failures for oLt is equal to 

"~ - K L* · «p(r)>#®)l· (7> 
o 

the value of £ being obtained from (6) . 
In this form the failure model oversimplifies the na

tural processes of failure and so it demands several improve-
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ments. In particilar the number of possible defect realiza
tions in volume -X ,„ is limited by initial condition 

max " 
X ( -t = 0 ) = O . For different volume zones of physical system 
this number can be different , hence , valueJ^max in (1) , 
too. It is necessary to divide total V into Λ. zones each hav
ing the volume 8VK ( * =1,2, ... , Ό great enough in compa
rison with ΔΥ . Every zone has its proper characteristic 
value of ΧηαΎ. , Λ 1im tX (zf=o). The value of dCQ is determined 
from (2) as shown above with these constants. 

The probability of component part failure is determined 
as in ¡2/ , by approximate relation 

oCQ « ¿ c¿Q* (8) 

<\Z 
if 2 1 (<¿QKr « Τ* ; 

which is realized first of all for system with high reliabili

ty. Real physical systems may not possess similar work condi

tions for all zones SVH . This additional nonuniformity can

not be described by a set of parameters X mftT i ^ ^ and 

)( (¿a
ö) and must be taken in account by substitution of new 

functions ~4 a*
1
*
3
· Λ (O into (1) and also other external 

cet 

stress parameters varying from zone , as temperature Τ and 

mechanical load & etc. 

The clear example of real physical system division on 

zones mentioned above is appointment of regions near interfaces 

or system boundaries. For removing the restriction introduced 
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above: /■/ = const , we approximate the variations of H by 

suitable function of time having the steps as H changes at 

moment Τ . The values of % obtained after each step will be 

considered as tne initial data for determining of failure 

probability cLQat subsequent steps. 

Failure Model Development 

Failure model is complicated if the defects have not 

similar influence on system state. Let evaluate this nonuni

formity by different values of damage y inserted by each 

defect in parameter A determining the system state and wrice 

it as a distribution function of/(yj with density function 

f(, W ) and generalized function 5T (S) , where b  auxiliary 

parameter. 

At moment t total damage Y depends on number ( or 

concentrations of arising defects ̂  ("¿) , every defect hav

ing its value of damage <V rrom f (. U ). 

Under such conditions 1 has also certain distribution 

function cr ( χ ) at moment t described by generalized func

tion Π (̂ r(S)) ) if the probability of defect arising at £ 

has generalized function JT(6) /3/. 

If , for example , we have the defect number distribu

tion in form of (4) , having the producing function 

and variable y is described by Gaussian distribution 



 859 

with mean ¿7 and variation e
2
 , the producing function 

of total damage distribution at t is equal 

Substituting in (13) β for S where ρ is auxiliary 

parameter we obtain none other than Laplace transform of un

known function W ( ι ): 

o 

which can be served for its determination. 

Instead of Laplace inversion necessary approach to the 

function W(Y) may be obtained by its moment computation. 

For our example we have the first moment: rVf ■= yq~£ 

and the second one: ilf¿ — (ffttf) + ft( Çf'rgf) whence the 

distribution function of total damage of parameter J\ has the 

mean: Y  yqt and the variation: 0¿  C9^
¿
CÍ * + &). 

In any case after this model the failure probability 

for time interval <=Lt can be expressed as 

" y Forja* 
where Κ,.  total damage limit determined from parameter 

c7 . Expression (11) is obtained taking in consideration 

the fact that for time intervalc^itmay be arised single de

fect (with probability oobt ) or none ( with probability 

1  ooLt). Reliability evaluation is performed after expres

sions (6) and (7). 
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Discussion of Failure Model Application to 

Thermionic Converter Component Parts 

Theoretically to use the failure model exposed in pre

vious sections for thermionic converter component parts is 

possible if the natural terms analogous to the defects intro

duced above can be found. For practical study of reliability 

it is necessary to obtain information on physical processes 

in form of ^X= and X (¿) , as in principal relation (1). 

Consider with this attitude several converter component parts. 

If one adopts as a defect of material the microfissures 

arising in it under stress , accumulation of which leads to 

cracks formation and body destruction then described model 

is suitable for any converter element under mechanical load· 

For example , taking X as a crack length with critical 

value for certain material 

Λ** = ¿«, -LO- 9Sí.J 
where L denotes the thickness , 'S  stress and ̂   strength 

limit , J  elementary defect , we obtain the crack growth 

rate ( withput corrosion) /4/: 

where ^ is constant and A¿ Boltzman constant. 

If a pore having minimal volume Δ\Γ is considered as a 

defect then porosity of vacuum seal material can be taken for 

a variable X changed under chemical reaction of seal mate

rial or'its admixtures with active medium ( for esample Cs ). 
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c/ y 

In this case ^=~ will be rate of chemical reaction lead

OLt 

ing to pore formation. 

The cathode thickness diminution because of material 

evaporation can be described by the model the cathode being 

divided into two zones: superficial and internal. The evapo

ration rate is expressed as linear measure as in ¡3¡: 

where Q0 and ΔΦ denotes the cathode material constants. If 

cathode life is improved by superficial film of other mate

rial the film reliability is evaluated. In particular , for 

the disperse cathode the defect formation rate is equal to the 

differences between the rate of evaporation of film atoms and 

their migration rate. As a result the disperse substance supp

ly is diminished , i.e. (J^,,  X ) in terms of the model. 

17
 * max 

Another example is a converter electrical isolation resis

tivity of which is inverse to change carrier concentration. 

The latter is considered as a variable JC . The degradation 

rate is determined more often by diffusion of metal surround

ing the isolation layer: 

Conclusion 

The difference between the failure model for reliability 

analysis considered above and reliability evaluation by statis
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tic testing consists in obtaining of necessary information. 

Statistic tests provide us with the information consisting 

either in the form of number of failure devices A/_tk , sub

stituted in (6) , or as a set of lifetimes of tested devices 

up to the test end. The model considered above provides us 

with the information consisting in experimental functions 

TT and X (t) . 

When statistical tests are being carried out it is essen

tial to provide for all tested devices.the equal work con

ditions whereas in failure model presented here variations 

of these conditions signify only the change of initial data 

for X · The natural processes being approximated as above 
κ~ Ar 

these variations are described by the set of Xm »^lim* 

x* c*3) . 
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DISCUSSION 

Speaker of papers F -10 : B. DIAKOV. 

HOWARD (USA): The speaker said that mos t of the fai lures observed were 
sho r t s . What were the causes of these sho r t s ? 

DIAKOV (USSR): The conver te r s r e f e r r ed to were labora tory conve r t e r s , 
not in-pile conve r t e r s . The shor ts were between emi t t e r and col lec tor . 

DAVIS (USA): In addition to e lec t rode shor ts -within a conver te r , have you 
also considered the effects in the rel iabi l i ty analys is of shor ts of the con
v e r t e r to ground, to the liquid meta l cooling c i rcu i t ? 

DIAKOV: In our calculations the fai lures due to shor ts were for many r e a 
sons . The shor ts concerned not only the e lec t rodes , but a l so , as you have 
just mentioned, the liquid meta l coolant c i rcu i t . Since we did get these r e 
sults in the labora tory , we can expect the same to occur in actual p r ac t i c e . 
Pa r t i cu la r ly , one can expect leaks after a long per iod of t ime . 

DAVIS: Would it not be so that the effect of an in ternal short and the effect 
of a short to the liquid meta l cooling circui t would have totally different 
effects to the power degradation of the sys tem. It i s not c lea r from the pa 
p e r that these could real ly be t rea ted s imi la r ly . Would not an independent 
type of analysis be neces sa ry for these two types of sho r t s ? 

DIAKOV: The rel iabil i ty analys is r equ i re s considerat ion of al l important 
probabi l i t ies . Fo r these ana lyses to be m o r e complete , m o r e comprehens ive , 
we must take into account al l poss ib i l i t ies of fa i lure . 

SCHOCK (USA): I am intrigued by your s ta tement that in your labora tory 
work you have observed sho r t - c i r cu i t fa i lures far more frequently than 
open-c i rcui t fa i lures . This differs from the exper ience of other l abora to 
r i e s , and the infrequency of open-c i rcu i t s suggests that you must have some 
very rel iable joining techniques. Could you tell us what methods you employ 
for joining meta l s to meta l s and to c e r a m i c s ? Do you use brazing or e l e c 
t ron-beam welding? Also, could you tel l us something about the typical 
duration of your labora tory t e s t s , and the configuration, s ize , and e lec t rode 
spacing of the diodes which experienced sho r t - c i r cu i t fa i lure? 

DIAKOV: The detai ls of our rel iabi l i ty analysis a r e based on theore t ica l 
or r a the r mathemat ica l cons idera t ions . In cer ta in exper iments we did have 
cer ta in fa i lu res . However, we can evaluate the r ea l probabil i ty of meeting 
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these fai lures in the reac tor only once we have tested a large number of 
diodes. But we have not studied enough exper imental c a s e s . As you know 
the number will have to be very la rge , to be s tat is t ical ly valid, severa l 
hundreds of samples for example. We a re now trying to per form a sufficient 
number of exper iments ; we have not made that number yet. 
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ANALYSIS AND OPTIMIZATION OF "FULL-LENGTH" DIODES* 
by 

Alfred Schock 
Republic Aviation Division of Fairchild Hiller Corporation 

Farmingdale, L . I . , New York 

Abstract 

A method of analyzing the axial variation of the heat generation 
rate, temperature, voltage, current density and emitter heat flux ina 
thermionic converter is described. The method is particularly useful 
for the case of "long" diodes, each extending over the full length of the 
reactor core. For a given diode geometry and fuel distribution, the 
analysis combines a nuclear solution of the axial fission density pro
file with the iterative solution of four differential equations represent
ing the thermal, electrical, and thermionic interactions within the 
diode. The digital computer program developed to solve these 
equations can also perform a design optimization with respect to lead 
resistance, load voltage, and emitter thickness, for a specified maxi
mum emitter temperature. Typical results are presented, and the 
use of this analysis for predicting the diode operating characteristics 
is illustrated. 

Introduction 

A thermionic reactor design study* ' currently under way is based on the 
concept of using long, cylindrical diodes, each extending over the full length of 
the reactor core. In such a design, accurate knowledge of the diode's axial 
voltage and temperature profiles is vital, since the optimum converter length 
represents a compromise between minimum neutron leakage and minimum ohmic 
loss. 

Earlier ohmic loss calculations have usually assumed a uniform emitter 
current density, an assumption that is clearly inaccurate since the existence of 
significant voltage variation must necessarily lead to a redistribution of the diode 
current. Similarly, thermionic system studies have frequently treated each 
diode as isothermal, even though the rather substantial emitter lead heat loss 
must result in correspondingly large temperature gradients near the end(s) of 

Work supported by U. S. Atomic Energy Commission. 
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the emitter. With an axially uniform heat generation rate, this effect can be shown 
to lead to appreciable temperature non-uniformities, extending over a significant 
fraction of the total emitter length. The resultant penalty in diode power is impor
tant not only in the full-length design discussed above, but also in the shorter 
diodes used in conventional designs. In the case of full-length diodes, however, 
it is possible to compensate for the emitter 's end losses and improve its temper
ature uniformity, by using a combination of axial reflectors and fuel zoning to 
produce a skewed fission profile. Thus, a detailed axial analysis is particularly 
important in full-length diodes. 

Such an analysis must provide close coupling between the various nuclear, 
electrical, thermal, and thermionic equations because of their mutual inter
dependence, particularly the effect of local diode voltage and emitter temperature 
on current density and electron cooling. In the present study, the relationship 
between these variables was obtained from an extensive set of thermionic perform
ance data that had been generated by the recently developed* ' SIMCON computer 
code. These data extend over a wide range of emitter temperatures (1700 to 
2400°K), collector temperatures (850 to 1150°K), and cesium reservoir temperatures 
(550 to 690°K). A specialized "thermionic correlation" subroutine TICORR, capable 
of performing multi-dimensional interpolations, was employed to compute the local 
current density and emitter heat flux. 

Analysis 

Within each diode, a complete thermal and electrical analysis should really 
be three-dimensional (or two-dimensional in the case of axisymmetric converters). 
However, since the axial dimension of a full-length diode is much larger than the 
transverse dimensions, and since current flow is primarily in the axial direction, 
we shall simplify the problem by treating it as one-dimensional. 

The first step of the analysis is to compute the axial fission density profile 
ƒ (z) for the assumed fuel distribution. This is done by means of the ANISN* ' 
one-dimensional, multi-group, multi-zone neutron transport code, with t rans
verse leakage represented by appropriate buckling terms. Beyond the actual 
core, additional zones are included to provide a realistic representation of axial 
refleciors and various diode components (e .g. , power leads, seals, coolant 
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plenums). The computed fission density f(z) is normalized to unity at ζ = 0, 
the reactor midplane. 

To carry out the thermal and electrical analysis of the fuel-emitter 
structure, it is convenient to employ four simultaneous first-order differential 
equations, describing the variation of the axial heat flow rate Q and current JE , 
the emitter temperature τ and the local diode voltage V. The axial heat flow 
Q in the fuel-emitter assembly varies because of heat generated by fissions, heat 
lost at the emitter surface r = rz, and ohmic heating: 

dQidz=ArQof(2) - 2 nrEgE(K,2l + ΙξΐΑζο\ . (1) 

Here, ΑΨ and ^E respectively denote the cross-sectional areas of the fuel and 
emitter, Q"¿ is the volumetric heat generation rate in the fuel at the reactor 

midplane (z= 0), q E represents the emitter heat flux at the local voltage V and 

temperature τ, and σ'Ε is the effective electrical conductivity of the emitter. 

The latter includes not only the actual conductivity of the emitter, but also the 

possible contribution of a conductive fuel. Moreover, in the case of the external

fuel design* 'where the fuel surrounds the emitter, the outer sheath may also 

contribute to conduction if an electrical path exists between sheath and emitter. 

Thus, the effective emitter conductivity σ' is defined in its most general form 

by: 

Αζσ\ = Αζσζ +Arcr + Α3σ*. (2) 

Since we shall strive for an isothermal emitter, the effect of temperature on 

conductivity wiU be ignored within the diode. 

Next, the axial current JE in the fuelemitter assembly varies because of 

electrons leaving the emitter surface. Thus 

dlz /d¿r = 2nrE«7(K,5), (3) 

where J is the thermionic current density at the local diode voltage V and emitter 

temperature 7Λ The axial variation of τ is defined by the usual conduction equation, 

dTidz= ~Q/A*K¡, (4) 
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where the definition of the effective thermal conductivity ^ , in its most general 

form, is analogous to Eq. (2): 

AZK¡ = AZKZ +AfK? +ASK3. (5) 

Finally, to derive the fourth differential equation, we note that the local diode 

voltage ν is the difference between the emitter and coUector voltages, 

V = Vz  Vz . (6) 

These are related to the corresponding currents by Ohm's law : 

dVz/dz =  Ie/A p\ . (7) 

dVc/dz =  IciAcac. (8) 

We must now differentiate between two types of diode connections. If the emitter 

lead is connected to one end of the diode and the collector lead to the opposite end, 

the currents j E and j c flow in the same direction, and their sum equals the diode 

current JD: 

It + JC = JD . (9a) 

In that case the diode voltage variation, obtained by combining Eqs. (6). (7), (8), 

and (9a), is given by: 

dVldz =  Iz/Azo¡ +CT D  Iz)iAcoc. (10a) 

If, on the other hand, the emitter and collector leads are connected to the same end 

of the diode, then the currents JE and j c are of opposite direction and equal 

magnitude : 

I e + Jc = 0. (9b) 

In that case, combining Eqs. (6), (7), (8) and (9b) yields: 

dV/dz' [WEaE')_1 +C4 ca c)1 ] JE . (10b) 

The present study assumes the use of doubleended diodes, with a set of emitter 

and collector leads at each end of the converter. This arrangement minimizes 

ohmic losses, since such a converter is electrically equivalent to two singleended 

diodes of half the length. Equation (10b) therefore constitutes our fourth differential 

equation. 
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Boundary Conditions 

The system of Eqs. (1), (3), (4), and (10b) requires a total of four boundary 

conditions. Because of symmetry about the reactor midplane, we conclude that 

the axial heat flow Q and current JE are each zero at ζ  0. To define the other 

two boundary conditions, we must first relate the net diode voltage V0 to the heat 

flow Qx , current J χ, voltage yx , and emitter temperature 7\ at ζ  ζ χ. the 

junction of the emitter and the emitter lead. 

In general, the lead may have a nonuniform crosssectional area AL C?)> 

and its cold junction operates at the collector temperature Tz ■ Moreover, since 

Τχ and Tt differ considerably, the temperature dependence of its electrical and 

thermal conductivities should not be ignored. For an emitter lead passing a 

current j : , the temperature and heat flow gradients (neglecting radiation) are 

given by 

dT/dz =  QÍAkK¿i) , (11) 

and 

dQldz=I?lA^l(i). (12) 

The emitter lead conductivities K\_ and σ .„ are assumed to obey the Wiedemann

Franz law, 

/TL/cL= k(rr hl e f T, (13) 

where h is Boltzmann's constant and e the electronic charge. Dividing Eq. (12) 

by (11) and combining the result with (13), we obtain the separable equation, 

dQ/dT =k^rilJeY (TÌQ). (14) 

Since the emitter lead neither consumes nor produces energy, it must satisfy 

the energy balance 

l i ^ +Q1=I1\i +Qc> (15> 

where Qc is the heat flow from lead to collector. 

Integrating Eq. (14) from T = ΤΎ , Q = Ç ι to τ = Τζ, Q = Qc and solving for 

the net diode voltage, we obtain: 

V0 =Vx [ G ^ / i i P + ^kie)3 (If  7 C
2 ) ] * (16) 
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FinaUy, the emitter lead resistance fìL must, of course, obey Ohm's law: 

Jii'^ - P D ) / 2 i (17) 

Equations (16) and (17) constitute the required third and fourth boundary conditions. 
Thus, for a diode of given geometry and fission density profile ƒ tø), the operating 
point is completely defined, at least in principle, by specifying the central heat 
generation rate Q"¿ , lead resistance jfL, and a single parameter to characterize 
the load, such as the voltage vD , current j 1 , or resistance vt ΙΐΎ ■ In practice, 

however, solutions can only be found for a limited range of parameters, because 

of the limited extent of the available SIMCON* ' data, needed by the TICORR sub

routine to compute the emitter current density J(V,I) in Eq. (3) and the emitter 

heat flux qz(V,T) in Eq. (1). 

Computer Program 

In the course of the present study, a digital computer program TET(thermal, 

electrical, thermionic) was developed for solving the set of four differential 

equations. Since two of the required boundary conditions apply to the reactor mid

plane ( ζ  0) and the other two to the emitterlead junction (ζ = ζΎ), a two-level 
trial and er ror procedure must be employed; e. g. , by guessing at the midplane 
voltage V0 and emitter temperature τ0 ■ Each trial requires numerical integration 

of the four equations, with the use of TICORR for thermionic data interpolation at 

each mesh point. The trials are repeated until boundary conditions 3 and 4 are satisfied. 

In actual practice, rather than specify toe heat generation rate Q™ and solve 

for the central emitter temperature T0 by trial and error , it was found more 

efficient to solve for Q™ after first specifying τ0 (which is usually, though not 

always, the maximum emitter temperature). 

In addition to finding solutions for specified values of the emitter temperature 

T0, lead resistance ÆL, and load voltage VD , the ΤΕΤ program also provides the 

option of optimizing the leads and load, i . e . , finding the values of fa and vD which 

maximize the net diode power ft = 2χχ vD. Moreover, if desired ΤΕΤ can also 

determine the optimum value of the emitter crosssectional area Az , ie. the 

value which maximizes the diode's volumetric power density, 

P;'= I,Vj(nrf +Az)zx. (18) 
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Finally, the TET program also solves for the net conversion efficiency, 

η = I^iArQÕ' f f{2)d2 

o 

Results and Conclusions 

(19) 

A large number of ΤΕΤ optimizations were carried out, covering a range 

of emitter diameters (1.25 to 2.5 cm), diode lengths (20 to 25 cm), and fuel 

distributions (flat and zoned). The problems generally postulated a maximum 

emitter temperature of 2073°K, a collector temperature of 1000°K, a reservoir 

temperature of 630°K, and a 0. 025cm electrode spacing. 

We have assumed tungsten emitters and sheaths, with bulk UO„ fuel wafers 

(normal to the diode axis), separated by tungsten fins occupying from 15 to 50% of 

the fuel chamber volume. These fins serve to reduce the maximum fuel temper

ature, and their thickness can be varied to adjust the axial fission density profile. 

The fuel chamber itself was generally assumed to occupy 40% of the total core 

volume. Actually, the results are virtually independent of this assumption, since 

UO« has no electrical conductivity and very little thermal conductivity. In the case 

of a conductive cermet fuel, however, the fuel volume fraction would be an 

important parameter. 

Design Optimization 

The emitter lead resistance was 

found to have a very broad optimum. As 

illustrated by Figure 1, the lead re s i s 

tance can be varied over a surprisingly 

wide range without incurring excessive 

performance penalties. This is fortunate, 

since it permits structural and mechanical 

considerations to influence the lead design. 

The high currents generated in full

length diodes favor the use of very thick 

leads. 

Fig. 1: Effect of Lead Resistance 
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Fig. 2: Effect of Diode Voltage 

The net diode power was found to 

be a far more sensitive function of the 

diode voltage y0 , as illustrated by 

Figure 2 (for optimized lead resistance). 

It was found that the optimum load volt

age is essentially independent of the 

emitter's diameter, length, or cross

sectional area; it does depend on cesium 

pressure and maximum emitter temper

ature. 
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Fig. 3. Effect of Emitter Thickness 
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The effect of varying the emitter 's 

crosssectional area is ilustrated by 

Figure 3, for optimized lead and load con

ditions. The figure also illustrates the 

weak effect of coUector temperature, with 

1000°K giving the best results. The emitter 

thickness was consistently found to optimize 

at rather low values, in spite of the fact 

that these correspond to high ohmic losses. 

However, the optimum is seen to be quite 

broad, permitting the choice of thicker 

emitters to reduce ohmic losses and en

hance the diode's structural integrity. 

Thus, the use of a 0.25 cmthick emitter 

only results in a relatively small penalty 

in net power density. 
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Figure 4 shows the effect of emitter diameter and length on the diode's net 
volumetric power density, with optimized lead resistance, load voltage., and 
emitter thickness. Over the range investigated, the power density increases 
monotonically with decreasing emitter diameter, which should therefore be 
sized at the lowest value consistent with the requirement for structural integrity 
and dimensional stability. 

Fig. 4:Effect of Emitter Diameter 
and Length 
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THICKNESS (cm) 

Similarly, the volumetric diode 
power density can be increased by r e 
ducing the diode length, because of 
reduced ohmic loss. However, this 
length reduction increases the axial 
neutron leakage, and therefore raises 
the fuel volume required to maintain 
criticality. Thus, while there is no 
optimum length from the viewpoint of 
diode power density, there is an optimum 
with respect to the reactor power density. 
Extensive design calculations*1 * revealed 
this to be about 20 to 25 cm, over a very 
wide range of reactor power levels. 
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Finally, Figures 5 and 6 display detailed axial solutions for two identical 
diodes, to illustrate the effect of fuel zoning. Figure 5 assumes a uniform fuel, 
with U02 occupying 85% of the fuel chamber volume. In the second case, as shown 
by Figure 6, the fuel is divided into 12 axial zones, with an average UO content 
in the fuel chamber of 66% (varying from 50% in the center to 85% near the ends). 
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Both cases assume the same axial reflectors, including seals, power leads, 
coolant plenum, and 10 cm of BeO. The resultant fission density profiles, as 
computed by ANISN, * ' are shown in Figures 5 and 6. The remaining curves 
(showing the axial variation of emitter temperature, current density, voltage, 
and power density) are self-explanatory. The principal data about the two cases 
are summarized in Table I. 

25 
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10 

Fig. 5: Axial Profiles 
with Uniform Fuel 
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Fig. 6: Axial Profiles 
with Zoned Fuel 

z/z. 

As can be seen, a flat fuel distribution leads to a highly non-uniform 
temperature profile, primarily because of heat losses to the emitter leads. 
Since converter performance is very sensitive to emitter temperature, the 
last 20% of the diode is relatively ineffective. 

It should be noted that this problem also applies to conventional, short 
diodes. It can be shown that the heat lost to the emitter leads (expressed as a 
fraction of total heat generation) and the extent of the resultant temperature 
depression (expressed as a fraction of total diode length) are essentially the 
same for short and long diodes. In the latter case, however, considerable 
improvement can be achieved by axial fuel zoning. 
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The particular zoning illustrated in Figure 6 is not necessarily optimum; 
other calculations have shown that almost the same improvement can be achieved 
using just three coarse zones. Note, however, that the goal should be to produce 
a skewed rather than a flat fission profile, to compensate for heat losses at the 
ends of the diode. With such a fission profile it is seen that the emitter temper
ature can be maintained near its maximum value over a much larger fraction of 
the total diode length. 

As shown by the overall performance summary in Table I, the use of fuel 
zoning raises the optimum diode voltage from 0.531 to 0.601 volt, the net diode 
power from 930 to 1154 watts, and the net conversion efficiency from 12. 7 to 
13.9%. However, it must be kept in mind that this improvement is only achieved 
at the price of lowering the UO„ volume fraction in the fuel chamber from 85% to 
66%. Thus, axial fuel zoning makes it possible to achieve a given reactor power 
output with fewer diodes, but with each diode having a larger fuel chamber. 
Consequently, the overall effect of zoning on critical core size must be determined 
for each specific case, and cannot be predicted a priori . 

TABLE I: Effect of Fuel Zoning on Diode Performance 

Figure 5 Figure 6 
UOa Volume Fraction in Fuel Chamber 

Minimum 
Average 

Fission Density (Relative to Midplane) 
Maximum 
Minimum 
Average 

Diode Design 
Length 
Emitter Diameter 
Emitter Thickness 
Collector Thickness 
Optimum Lead Resistance 

Temperatures 
Central Emitter Temperature 
Maximum Emitter Temperature 
Collector Temperature 
Reservoir Temperature 

Voltages 
Optimum Diode Voltage 
Lead Voltage Drop 
Electrode Voltage 

Thermal Performance 
Heat Generation Per Unit Length at Midplane 
Total Heat Generation 
Emitter Lead Heat Loss (each end) 

Electrical Output 
Diode Current (each end) 
Diode Power 
Diode Power Density 
Net Emitter Power Density (Average) 

Net Conversion Efficiency 

0.85 
0.85 
0.85 

1.000 
0.771 
0.904 

20.32 
1.85 
0.25 
0.42 
0.049 

2073 
2073 
1000 
630 

0.531 
0.043 
0.574 

398 
7320 
442 

877 
930 
10.52 
7.90 

12.7 

0.85 
0.50 
0.66 

1.502 
0.999 
1.220 

20.32 
1.85 
0.25 
0.42 
0.047 

2073 
2077 
1000 
630 

0.601 
0.045 
0.646 

334 
8300 

528 

960 
1154 
13.05 

9.79 
13.9 

cm 
cm 
cm 
cm 
mO 

•K 
•K 
TC 

volt 
volt 
volt 

watt/cm 
watt 
watt 

amp. 
watt 
watt'cm3 

watt /cm3 

% ' 
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Diode Characteristics 

Thus far our discussion has dealt with the use of the present analysis to 
optimize the diode dimensions and choose the best operating point. However, 
the same analytical program (without the optimization options) can also be used 
to determine the current-voltage characteristics for a diode of fixed design. 
Figure 7 presents such a set of characteristics, for the same diode design repre
sented in Figure 6. The solid curves are for constant thermal power of the 
reactor, while the dashed lines are for constant maximum emitter temperature. 
The thermal power is expressed in relative terms, where unity represents the 
heat generation rate (8300 watts per diode) given in Table I. 

Fig.7:I-V Characteristics 
at Constant Heat Input 

1800 
The curves shown in Figure 7 are 

of practical value not only for designing 
the reactor and its control system, but 
also for assessing the electrical effect 
of open-circuit failures on total reactor 
power. To minimize the effect of open-
circuits (including loss of cesium) it is 
desirable to connect diodes in parallel 
groups, before connecting these groups 
in series. In that way, when a particular 
diode is open-circuited its group-partners 
can make up the current deficit, although 
at the penalty of operating at a lower 
(possibly even negative) output voltage. 

4 6 β 
DIODE VOLTAGE . VD 

O 12 

The significant fact illustrated by Figure 7 is that this voltage penalty is much 
greater in the case of constant thermal power input than would be predicted from the 
constant temperature diode characteristics usually shown. This is so because 
raising the diode current results in increased electron cooling; at constant heat 
input this lowers the emitter temperature. 



877 

For example, for the design point depicted in Figure 6 and represented by 
point ρ in Figure 7, increasing the diode current by 45% above its design value 
lowers the maximum emitter temperature by 215°K and reduces the output voltage to 
zero. It appears questionable whether very substantial current increases beyond this 
point could be achieved, because of the rapidly decreasing emitter temperature. 
Since any reliability analysis must contemplate the occurrence of more than one 
open-circuited diode per parallel group, this places a lower limit on the number 
of diodes per group to ensure continued system operation in spite of such multiple 
failures. A detailed discussion of this point is beyond the scope of the present 
paper. 

Finally, it was found that under 
certain conditions the ΤΕΤ equations and 
boundary conditions may be satisfied by 
more than one axial solution. This con
dition arises because the emitter current 
density and heat flux can actually diminish 
at higher temperatures, as a result of 
cesium desorption. The phenomenon is 
illustrated by Figure 8 for the same diode 
design, heat input, and fission profile 
represented by Figure 6, but with a 620°K 
cesium reservoir and a 0.535-volt load. 
The axial variation of temperature, volt
age, and current density for the high and 
low cesium coverage solutions is repre
sented in Figure 8 by the dashed and solid 
curves, respectively. Comparison of the 
two solutions shows that Case Π has a 
260°K higher maximum emitter temper
ature, and a 16% lower output current. 

Fig. 8: Example of Dual Solutions 
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CASE II : LOW CESIUM COVERAGE 
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This co-existence of more than one possible operating point is similar to a 
phenomenon in the case of isothermal, isopotential diodes. By analogy, we infer 
that still a third solution of the ΤΕΤ equations exists, but at extremely high temper
atures, beyond the range of the SIMCON data. A detailed discussion of this 
phenomenon, which can have considerable practical significance, is presented in 
another paper. * ' 
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DISCUSSION 

Speaker of paper F - 1 2 : A. SCHOCK. 

G US KO V (USSR): How does the cu r r en t density va ry through the conve r t e r? 
Do you have any data concerning the fuel e lement? 

SCHOCK (USA): I believe that in my paper the re were some ve ry specific 
cha rac t e r i s t i c s with r ega rd to fuel dis tr ibut ion, fission density distr ibut ion, 
c u r r e n t s , vol tages , t e m p e r a t u r e s . I 'm re fe r r ing specifically to Table 1 and 
to F ig . 5 and 6 corresponding to Table 1. 

GUSKOV: But was the re a drop in the value of the density of the c u r r e n t ? 

SCHOCK: If you would look at F ig . 6, one of the curves is marked cur ren t 
density (Amps, p e r sq. cm. ) and it is plotted against axial posit ion, the left 
side being the center of our double-ended diode and the right side being the 
joint for the emi t t e r - l ead . I could add one comment . Of course our analys is 
was ca r r i ed out for external ly fueled conver te r s as descr ibed in the paper 
B-6 . We had actually a modification of the same computer p r o g r a m for 
full-length internal ly fueled conver te r s which, if I understood cor rec t ly in 
the sess ion of Tuesday-afternoon, is a design-concept , some of the Soviet-
inves t igators a re pursuing. 

Our analysis of internally fueled full-length conver te r s shows that this con
cept is not too promis ing in the sense that e i ther you must go to quite short 
lengths to keep ohmic losses, down or you must provide such thick e m i t t e r s 
and col lec tors that the fuel volume fraction in the r eac to r is necessa r i ly quite 
l imited, which would rrake it difficult to achieve cr i t ica l i ty . I would apprec ia te 
hearing any comments from any one of the Soviet-delegation, who would have 
information to this problem. 

RIABIKOV (USSR): F i r s t question. Did you take into considerat ion the d e 
c r e a s e of the output c h a r a c t e r i s t i c s under the influence of the p roper m a g n e 
tic field, which can be considerable for "long" e lements . 

Second question. Did you examine the interact ion of the p lasma with the m a g 
netic field of the cur ren t passing through the e lec t rodes , -which can cause a 
considerable gradient or so-cal led magnetic p r e s s u r e s along the gap and a 
de ter iora t ion of the output p a r a m e t e r s of the e lement? 

SCHOCK: I think I understood the f i rs t question bet ter than the second. As 
far as magnetic field effects a r e concerned and their influence on cu r ren t 
t r ansmiss ion , it happens that I did a fair amount of work on this subject a 
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few yea r s ago. I think you a r e probably famil iar with some of the theore t i 

cal papers that were published in the Journal of Applied Phys ics , but you 

may not be aware that there was a paper on the exper imenta l resu l t s of 

magnetic field effects published in the International Journal of Advanced 

Energy Conversion. This was in 1963. The genera l conclusions were that 

magnetic field effects a r e important at low ces ium p r e s s u r e and diminish as 

you go up in cesium p r e s s u r e where the mean free path gets shor te r . At 

around 300 C cesium r e s e r v o i r t empera tu re the effect is a lmost negligible. 

You would need real ly enormous fields, I don't r eca l l the p rec i se numbers , 

to have any noticeable effect. I might point out incidentally that in our d e 

sign there is no accumulative field effect, in other words each conver ter 

sees the magnetic field generated by its own cur ren t , but outside the diode 

the magnetic field is zero and therefore you don't buildup accumulative mag

netic fields from all the other diodes. As far as the second par t of your 

question is concerned, I don't have an answer . Of course , you know in any 

theore t ica l calculation you can only get out what you put in, and since we 

have not put in any cor rec t ion t e r m for the type of effect you refer to, we 

can not see it . As far as exper imenta l measu remen t s a r e concerned, ■ there 

we only see the g ross macroscopic effects, not what is going on inside the 

p lasma . The actual var iat ion in the magnetic field is zero at the center of 

our conver ter and reaches a maximum near the t e r m i n a l s . 

RIABIKOV: Why is there an optimum thickness for the cathode, par t icu lar ly 

in F ig . 3 ? In the analys is , what concurrent effects enable you to de termine 

this opt imum? 

SCHOCK: We a re talking about an in core thermionic r eac to r . Therefore , 

the axial conver te r s (other than the fuel) a r e a diluent in the r eac to r . The 

g rea t e r the diode volume, the g rea t e r the fuel needed to achieve cr i t ical i ty 

and produce a cer ta in power. The l a rge r the r eac to r gets , the heavier it 

gets , and the heavier the neutron shield gets . These a r e the controlling 

fac tors . We a re trying to maximize the net e lec t r i ca l power output per unit 

conver te r volume. 
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COMMENTS ON PLASMA THEORIES FOR CESIUM DIODES : 

George N. Hatsopoulos 
Thermo Elec t ron Corporat ion 

85 F i r s t Avenue 
Waltham, Massachuse t t s 02154 

INTRODUCTION 

In the past few y e a r s , r e s e a r c h and development act ivi t ies in 

thermionic energy convers ion in the world have concentra ted on 

"high p r e s s u r e " ces ium diodes. The qualification "high p r e s s u r e " 

has not been formal ly defined but it has come to mean that the product 

of the ces ium p r e s s u r e t imes the in te re lec t rode spacing is m o r e or 

l e s s g rea t e r than 10 m i l - t o r r . Under t h i s condition , it is general ly 

accepted that e lec t rons exper ience seve ra l col l is ions as they move 

from emi t te r to col lector . 

The p r e sen t paper a t tempts to make a pa r t i a l a s s e s s m e n t of the 

cu r r en t s tate of the knowledge about the e lect ron t r anspo r t phenomena 

involved in high p r e s s u r e ces ium diodes. The analyses that have been 

repor ted in the l i t e r a tu re about these diodes involve a l a rge number of 

assumpt ions . The p resen t paper de sc r ibe s and a t tempts to evaluate 

the mos t common of these assumpt ions . 

THE REFERENCE SET OF ASSUMPTIONS 

In mos t analyses of high p r e s s u r e ces ium diodes, the following 

assumpt ions concerning the boundar ies of the in te re lec t rode space 

a r e made . 

a. The in te re lec t rode gap-width d is much smal le r than 

any of the dimensions of the e lec t rode surfaces . 

b. The emi t te r t e m p e r a t u r e T „ and the col lector t empe ra tu r e 

* Invited Paper 
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Τ a re uniform over the respec t ive e lectrode surfaces . 

c. The emit ter work function and the col lector work function 

a re uniform over the respect ive electrode surfaces . 

d. The emi t te r and collector work functions a re solely 

functions of the ces ium p r e s s u r e and the t empera tu re 

of the corresponding electrode surface. 

The validity of these assumptions is of g rea t importance when 

comparing the r e su l t s of a theory with exper imental data. If these 

assumptions a r e not satisfied, many d iscrepancies between theory 

and exper iment may a r i s e . In the present paper, the above assumptions 

a r e taken for granted and the discussion is r e s t r i c t ed to the t r anspor t 

phenomena that take place once the boundary conditions of the in te r 

electrode space a r e fixed. 

In what follows, a re ference set of assumptions concerning the 

t r anspor t phenomena in the in te re lec t rode space is given. A discussion 

of these assumptions is presented in the next section. 

I. General Assumptions 

1. The conditions in the in tere lec t rode space, e .g . 

par t ic le dens i t ies , par t ic le t e m p e r a t u r e s , e lec t ros ta t ic potential , 

and fluxes, a r e solely a function of the distance χ from the 

emi t te r surface; in other words , the problem is one-dimensional . 

2. The in tere lec t rode space may be separa ted into three regions : 

an emit ter sheath region, a p lasma region, and a collector 

sheath region. 
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II. Assumptions Concerning the Sheaths 

3. The width of the sheaths in the x-di rec t ion is 

negligible. 

4. The sheaths, a r e col l i s ionless . 

5. The e lec t ros ta t ic potential in the sheaths va r i e s 

monotonically with x. 

III. Assumptions Concerning the P l a s m a 

III a. On the na ture of the thermodynamic state in the p lasma: 

6. The p lasma cons is t s of a mix ture of th ree spec ies : 

neut ra l a toms , ions, and e lec t rons . 

7. The neut ra l a toms , the ions and the e lec t rons in the 

p lasma each pos se s s a quas i - s ta t i c (near equil ibrium) dis t r ibu

tion corresponding to t e m p e r a t u r e s Τ , T., and Τ and 
cL ' 1 6 

to densi t ies η , η. and η , respect ively . 
et ι e 

8. Each of the species in the p lasma is a perfect gas . 

ΙΠ b. On the re la t ions between thermodynamic p rope r t i e s : 

9. The p lasma is neut ra l at each point, that is 

η = η . = η e ι 

10. The atom t empera tu re equals the ion t empera tu re , 

namely, 

Τ = T. a ι 

11. The t e m p e r a t u r e s of the a toms and the ions a r e independ

ent of x, namely 

Τ = T. = const, a ι 
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12. The electron t empera tu re va r i e s with x, namely 

Τ = Τ (χ) e e 

IV. On the Transpor t Equations 

13. The l inear ized BoUzmann equation applies to a l l par t ic le 

t r anspor t p r o c e s s e s in the plasma. 

V. On the Values of the Transpor t Coefficients 

14. The coefficients of the t empera tu re gradients in al l 

par t ic le t r anspor t equations a r e zero. This means that all 

the rmoelec t r i c effects in the p lasma a r e neglected. 

15. The coefficient of the e lectron t empera tu re gradient in 

the energy equation, namely the the rmal conductivity of the 

e lec t rons , is assumed finite and different than ze ro . 

VI. On the Ionization P r o c e s s 

16. The ra te of ionization (reaction ra te ) is given by the 

relat ion 

d Je 0 3 . . . 
= β η - α η (1) d χ 

•where J is the electron cu r ren t density, and the coefficients 

α and β a r e functions of both η and Τ , namely 

α = α (η, Τ ) and β = β (η, Τ ). e e 

17. . The ra te equation (1) yields the Saha equation as n 

approaches its equil ibrium value at t empera tu re Τ 

This assumption means that 

r \3/z 

R / / 2π m k Τ \ 
l im ρ /α = ' e e \ 

ο e xP 
η - » η 2 

equ. ', h 

fy. 
! 1 
\ k Τ 
\ e 

\ 

1 

/ 
/ 
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where m is the e lectronic m a s s , k is the Boltzmann constant, e 
h is P lanck ' s constant, and V. is the ionization potential 

energy. 

18. Radiation in the p lasma is trapped. 

DISCUSSION OF THE ASSUMPTIONS 

I. Genera l Assumptions 
1. The possibi l i ty that the d ischarge in a high p r e s s u r e ces ium 

diode may not be one-dimensional in cha rac t e r was advanced 
1 2 3 

in I963 ' with re fe rence to the work of E. O. Johnson 

on the bal l -of- f i re mode. Subsequently, visual observat ions 

by Rasor indicated that indeed in some pa r t s of I-V curves of 
4 a ces ium diode the d ischarge is th ree -d imens iona l in cha rac t e r . 5, 6 Other expe r imen te r s ' have also observed such a behavior. 

For conditions of cu r r en t density and ces ium p r e s s u r e that 

a r e important to thermionic energy conversion, however, the 

discharge i s , to within a good approximation, one-dimensional 

in cha rac te r . 

2. Fo r the discussion of assumption 2, consider the definitions 

of a sheath and a p lasma. The genera l definition of a sheath 

is the region of an ionized gas in which space charge effects a r e 

important . In this region, therefore , the e lec t ros ta t ic potential 

va r i e s rapidly with dis tance as r equ i red by the Poisson equation. 

The genera l definition of a p l a sma i s the region of an ionized 

gas in which approximate charge neutra l i ty p reva i l s . Again, 

because of the sensit ivi ty of the second der ivat ive of the e l e c t r o 

static potential on net charge , as requ i red by the Poisson equation, 

and the difference in mobi l i t ies of the charged spec ies , near 

neutra l i ty in the p la sma does not mean that the e lec t ros ta t ic 

potential is uniform; it just means it va r i e s l ess abruptly in 
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the p lasma than in the sheath. 

If one l imi ts the definitions of the sheaths and the p lasma 

to those given above, it is always c o r r e c t to state that the 

in te re lec t rode space may be divided into three regions : 

two sheaths and a p lasma. If, however, one is to qualify 

further the descr ipt ion of the sheaths by assuming they a re 

col l is ionless and that of the p lasma by assuming that the 

pa r t i c l e s in the p lasma possess quas i - s ta t ic distr ibutions 

of energy, as is done in assumpt ions 4 and 7, the division 

of the in te re lec t rode space in three such regions may not 

always be valid. 

The range of validity of assumpt ions 4 and 7 will be d iscussed 

la ter . Here we shall r e s t r i c t ourse lves to discussing the 

problems associa ted with the matching of a sheath to a p lasma. 

At the boundary between a sheath and a p lasma, the following 

conditions mus t be satisfied: (a) continuity of par t ic le fluxes, 

(b) continuity of energy fluxes, (c) continuity of e lec t ros ta t ic 

potential , (d) continuity of momentum fluxes, and (e) continuity 

of entropy fluxes. If the sheath is col l i s ionless , the energy 

distr ibution of pa r t i c l e s in it will be summations of half-

Maxwellian dis t r ibut ions. If the p lasma is quas i - s t a t i c , the 

energy distr ibution of par t ic les in it will be quasi Maxwellian. 

Under these conditions, it is only possible to satisfy three of 
7 the five continuity re la t ions . All authors satisfy the f i r s t th ree 

and fail to satisfy the remaining two. To justify this , one mus t 

make the following assumption: there is a region between the 

sheath and the p lasma, -which may be called t ransi t ion region, 

which is sufficiently wide to allow coll is ions for momentum 
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exchange and the production of entropy, but sufficiently 

na r row so that no appreciable ionization takes place in it 

and the e lec t ros ta t ic potential in it is uniform. Such an 

assumption is of doubtful validity. 

To allow for momentum exchange and entropy production 

the t rans i t ion region mus t have a width of at leas t one 

mean- f ree path and is probably wider than that. Moreover , 

the potential distr ibution in it probably v a r i e s much m o r e 

than in the p lasma due to the highly non-equi l ibr ium nature 

of the energy distr ibution of the contained pa r t i c l e s . It 

appea r s , therefore , that in many c a s e s of p rac t i ca l impor tance , 

it may be n e c e s s a r y to take into account t ransi t ion regions 

in analysing high p r e s s u r e ces ium diodes. 

II. Assumptions Concerning the Sheaths 

Assumptions 3, 4, and 5 a r e int imately re la ted and will 

be d iscussed concurrent ly . 

Most authors a s sume that the width of the sheath is neg

ligible. This assumption is usually based on the hypothesis 

that the sheath width is equal to the Debye length given by the 

re la t ion 

(2) 

This quantity is indeed ve ry smal l in mos t ca ses and genera l ly 

much smal le r than the mean free path. Thus the sheaths may 

be a s sumed col l i s ionless . 
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Study of exper imental data led Rasor to advance the theory 
4 that a double sheath forms near the emit ter under some conditions. 

He te rmed this mode of operation the obstructed mode. Hansen 

and Warner claim that under some conditions they were unable to 
g 

find solutions to their t r anspor t equations unless they postulated 

the existence of a double sheath at the emi t te r . On the other hand, 
9 

Wilkins who used s imi lar t r anspor t equations, maintains that these 

equations always pos se s s solutions with simple sheaths which vary 

monotonically with distance. Fo r this reason , Wilkins concludes 

that it is not n e c e s s a r y to introduce an obstructed mode for the 

in terpreta t ion of cur rent -vol tage cha rac t e r i s t i c s . 

The p resen t author ag rees with Wilkins in that the t r anspor t 

equations always admit solutions with simple sheaths. He also ag rees 

with Hansen and Warner in that a double sheath may exist at the 

emi t te r under some conditions. A double sheath may also exist at 

the collector . The questions as to -when a double sheath exists and 

when it does not may be answered only through a space charge analysis 

of the sheaths. 

In genera l , a n e a r - z e r o width of the sheath would lead to the 

conclusion that the potential distr ibution in it would be monotonie 

and would rule out the possibi l i ty of a double sheath. A simple 

approximation of the space charge equation applied to a sheath having 

a width equal to the Debye length also ru les out the possibil i ty of 

a double sheath for ca ses for which it is c la imed that a double sheath 

exis t s . There i s , however, no reason to a s sume that the p lasma 

extends up to within a Debye length from the emit ter surface. In fact, 

the p lasma probably begins one or m o r e mean- f ree paths beyond 

the surface. If now one were to a s sume that the emit ter sheath extends 

over one or two mean- f ree paths , it is m o r e likely for a solution of 

the Poisson equation to indicate a double sheath. 
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The question st i l l r e m a i n s as to how can the potential dis t r ibut ion 

in a sheath va ry beyond a Debye length. The answer l ies in the fact 

that the Debye length i s computed for equi l ibr ium conditions not 

prevail ing in a thermionic diode. To i l lus t ra te the point, consider 

a p lasma at t empe ra tu r e Τ in equil ibrium with a surface at 

t empera tu re Τ as shown in Fig. 1. 
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Figure 1. 

Let é be the potential of the p lasma and 'Û the potential just 

outside the surface. (An analys is of this equi l ibr ium may be found 

in Ref. 10. ) At any position χ in the sheath the potential l/) will be 

g rea t e r than ¡h . Equi l ibr ium, therefore , r e q u i r e s that the e lect ron 

density at χ be sma l l e r than that at the p lasma and the ion density 

l a rge r than that at the p lasma. The resul t ing space charge causes 

the potential distr ibution to bend sharply upward as requ i red by the 

Poisson equation. Fu r the r r i s e of the potential at a point c loser to 

the surface will cause even sha rpe r i nc r ea se of the slope of the potential 

distr ibution. The net effect of all this is that r e g a r d l e s s of the 
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difference between ι]) and l/J the thickness of the sheath 
o s 

cannot exceed the Debye length. 
Suppose now the emission from the surface exceeded the 

cur ren t from the p lasma as it does in a thermionic diode. Then 

the positive space charge at any point χ in the sheath will be l ess than 

that at equil ibrium causing the potential distr ibution to be less 

steep. In fact, for sufficient e lectron emiss ion, the sheath may 

acquire a negative space charge at some point, in which case a 

double sheath would form. Anyway, the effect of the non-equi l ibr ium 

emission from the surface would be the widening of the sheath. 

We conclude, therefore , that the Debye length is not a proper 

m e a s u r e of sheath width in a ces ium diode. 

An exact sheath width calculation may be done by means of 

a space charge analysis and by neglecting col l is ions. Such an analys is , 

however, may re su l t in a width which is g rea t e r than a mean- f ree 

path and may r a i s e questions about the assumption of a col l is ionless 

sheath. 

An instruct ive discussion of sheaths is given in Ref. 11. 

III. Assumptions Concerning the P l a s m a 

III a. On the nature of the thermodynamic s tates in the p lasma: 

Assumption 6 may be improved by adding excited a toms to 
12 the analys is . This has been done in the l i t e r a t u r e . Except, however, 

13 for the effect of excited a toms on the ionization r a t e , excited a toms 

seem to be unimportant in the e lect ron t r anspor t r a t e s . 

Assumption 7 (quasi-equil ibrium) is a key assumption in mos t 
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analyses of high p r e s s u r e ces ium diodes. It has been commonly 

a s sumed that the c r i t e r ion for i ts validity is the value of the 

product Ρ d. Specifically, it is genera l ly accepted that assumpt ion 7 

is valid if 

Ρ d > 10 m i l - t o r r . cs 

Such a c r i t e r ion is not quite valid over a wide range of conditions. 

The product Ρ d is a m e a s u r e of the number of col l is ions that 
c cs 

the var ious pa r t i c l e s exper ience p e r unit of t ime in the in te re lec t rode 

space. On the other hand, the depar tu re from the equi l ibr ium 

distr ibut ion that pa r t i c l e s a s s u m e in a steady state r a t e p r o c e s s , 

such as that occurr ing in a diode, depends both on the number of 

col l is ions per unit of t ime as well as the r a t e of the p r o c e s s as 

m e a s u r e d by both par t i c le fluxes and energy fluxes. F o r example, 

as the fluxes d e c r e a s e and approach ze ro , the energy dis t r ibut ion of 

pa r t i c l e s will approach the equi l ibr ium dis t r ibut ion r e g a r d l e s s of how 

few coll is ions take place per unit of t ime. A be t te r c r i t e r ion on the 
Ρ Η 

validity of assumpt ion 7 is the ra t io c s , where S denotes the 
S 

ra t e of entropy production in the p r o c e s s . 

Never the less , probe ' and spect rographic m e a s u r e m e n t s 
17 18 as well as compar ison of theory ' with exper iments indicate that 

assumpt ion 7 is fair ly good for mos t operating conditions of 

p rac t i ca l impor tance . 

Assumption 8 is probably the mos t valid assumpt ion made in 

thermionic conversion. This i s so because of the ve ry low density 

of the gases considered. 
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III b. On the re la t ions between thermodynamic p rope r t i e s : 

1 9 Assumptions 9 through 11 have been d iscussed in the l i t e ra tu re 

and appear to be reasonable for mos t conditions of operation. 

As for assumption 12, it has been frequently proposed in 

simplified analyses of the high p r e s s u r e ces ium diode to a s sume a 

uniform electron t empera tu re . Computer solutions ' of the 

p lasma t ranspor t equations, however, have shown that e lectron 

t empera tu re va r i e s significantly with x. Moreover , since the ioniza

tion ra te of ces ium depends exponentially with t empera tu re , an 

art i f icial imposit ion of a constant electron t empera tu re will 

d ramat ica l ly d is tor t the descr ipt ion of the phenomena that take place 

in a plasma. Never the less , some simplified analyses that use a 

uniform· electron tempera ture .have successfully descr ibed exper i 

menta l I-V curves . This paradox will be d iscussed in a later section. 

IV. On the Transpor t Equations 

Assumptions 7 and 8 insure the applicabili ty of the l inear ized 

Boltzmann equation to a ces ium diode plasma. These t r anspor t 

equations have also been confirmed by means of thermodynamic 

a rguments in Ref. 22. 

V. On the Values of the Transpor t Coefficients 

Thermoelec t r i c effects a r e definitely p resen t in a ces ium 

plasma but their overal l contribution is probably l ess than 0. 1 volt. 

On the other hand, there is so much uncertainty about the 

analysis of high p r e s s u r e ces ium diodes concerning the values of 

the t r anspor t coefficients that probably no theory is accura te to within 
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0. 1 volt. The rmoe lec t r i c effects may, therefore , be justifiably 

neglected from the t r anspor t equations, in accordance with 

assumption 14. Thermoe lec t r i c effects in a p lasma a r e d iscussed 

in Refs. 23 and 24. 

21 It has been shown by Lieb and Bornhors t that e lectronic 

conductivity affects significantly the e lect ron t empera tu re distr ibution 

in a p lasma, and through it the r a t e of ionization. Assumption 15 

i s , therefore , important . 

VI. On the Ionization P r o c e s s 

Much discussion has been p resen ted in the l i t e ra tu re about 

the ionization mechan i sms that p reva i l in a ces ium diode. This subject 

is too involved to be reviewed h e r e . The following simple comment , 

however , may be helpful in a s se s s ing the situation. 

There is exper imenta l evidence that indicates that at leas t 

pa r t of the p lasma is near Saha equil ibrium corresponding to the 

e lect ron t empera tu re . This means that it is impor tant in any analysis 

of the p lasma to take into account both a mul t i - s t age ionization p r o c e s s 

and a recombinat ion p r o c e s s . Only then would the resul t ing ionization 

equation be in the l imit consis tent with thermodynamic equil ibrium. 

Such an equation mus t have the form of Eq. (1) and satisfy Eq. (2). 
13 N o r c r o s s and Stone have der ived such an equation. It has been 

25 used by Hansen and Warner in their numer ica l calculation of 
9 c h a r a c t e r i s t i c s of the high p r e s s u r e diode. Wilkins , Lieb and 

21 17 12 
Bornhors t , Baksht et a l and Sonin al l use s imi la r equations 

in their numer ica l calculat ions . In addition, they al l a s s u m e total 

trapping of the emit ted radiat ion. The range of validity for this 

las t assumption has not yet been establ ished. 
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It is at p resen t near ly impossible to form a judgment about 

which of the equations proposed and which satisfy conditions (1) and 

(2) a r e m o r e applicable to ces ium diodes. Analysis of exper imental 

data obtained under p rac t ica l conditions of operation of the diodes 

will continue to involve so many as sumpt ions that no accura te 

quantitative conclusion will probably r e su l t for some t ime. A m o r e 

fruitful approach will probably be further analytical work, of the 

type per formed by N o r c r o s s and Stone, using techniques developed 

in chemical kinet ics . 

SIMPLIFIED TRANSPORT THEORIES 

Several simplified t r anspor t theor ies have been proposed and 

have successful ly .corre la ted exper imenta l data. Since the simplified 

assumptions used in these theor ies vary significantly from one to the 

other, it appears surpr is ing that they al l seem to be consis tent with 

experiment . 

The explanation of this apparent paradox probably l ies in the 

facts that: (1) the values of the Saha equation and the t r anspor t 

coefficients a r e sufficiently uncer ta in that by their p roper adjustment 

one can easi ly compensate for e r r o r s introduced by the simplifying 

assumption; (2) the exper imenta l r e su l t s used a r e many t imes valid 

over a small range of p a r a m e t e r s ; and (3) integral exper imental data 

such as I-V curves , a re not sensi t ive to the detai ls of the t r anspor t 
v. 2 6 

phenomena. 
If one cons iders that in addition to the uncer ta int ies ·about the 

ra te equations and the t ranspor t coefficients, there a r e significant 

uncer ta in t ies about the e lectrode work functions corresponding to a 

par t i cu la r exper imental I-V curve , it does not appear sound to base 

the proof of the validity of a simplifying assumption on the ability of the 
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theory to co r r e l a t e a pa r t i cu la r exper iment . Instead, it is m o r e 

dependable to compare the r e su l t s of a simplified theory utilizing a given 

simplified assumpt ion to those of a theory as identical as poss ible 

to the f i rs t but not utilizing the simplified assumption. If the two 

theor ies ag ree , the assumption is justif iable. If not, the simplified 

theory is not justifiable even though it m a y co r r e l a t e data be t ter 

than the m o r e complex theory. 
21 An example of this p r o c e s s is the work of Lieb and Bornhors t 

on electronic t h e r m a l conductivity. 

CONCLUDING REMARKS 

The assumption regarding the quas i - s ta t i c na ture of the 

par t ic le distr ibution functions in a ces ium diode is the bas i s of al l 

analyses advanced so far. This assumption appears to be sound for 

the conditions of operat ion of ces ium diodes encountered p resen t ly 

in p rac t i ce . Bet ter emi t te r m a t e r i a l s , however, have steadily led in 

the pas t to lower ces ium p r e s s u r e r equ i r emen t s for obtaining a given 

emi t te r work function. It is poss ib le , therefore , that in the future 

it might be advantageous to opera te some diodes at such low p r e s s u r e s 

that the qua s i -equi l ibr ium assumption is no longer valid. Analysis 

of such diodes would requ i re a complete r e s t r u c t u r e of the cu r r en t 

theor ies . 
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Abs t rac t 

The i n v e r s e cu r r en t of the ignited mode diode has been shown exper imenta l ly to be a l inea r 
1 2) function of spacing .' This effect has a lso been der ived from a s implif ied t h e o r e t i c a l d e s -

1-3) cription of the ignited mode diode, which is intended to be appropr i a t e for v e r y wide space 

diodes. In the p resen t paper it i s pointed out that although some of the assumpt ions of th i s 

derivat ion a r e just if ied, the der iva t ion i s s t i l l inadequate . The effect of spacing on the ignited 

mode is der ived using c u r r e n t t heo re t i c a l desc r ip t ions of the n a r r o w space diode. It i s found 

that the assumpt ion of a double sheath at the e m i t t e r allows the der iva t ion of an effect s i m i l a r 

to that obse rved exper imenta l ly . 
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Introduction 

If the i n v e r s e cur ren t for the ignited mode diode is plotted (for pa r t i cu la r voltages) as a func

tion of spacing, one obtains l inear plots with a single point of in te r sec t ion . This effect was dis

e o 

4) 

1 2) 
covered by R a s o r . ' An example of R a s o r ' s data i s shown in F i g u r e 1. The data appear to be 

well co r r e l a t ed by the express ion 

(1) V r i t A ( l + BpJ} « p (
e

^ 

where J is the diode cu r r en t , ρ the cesium p r e s s u r e , d the diode spacing and V the 

output vol tage. The quant i t ies J R , Τ , A and Β a r e cons tants . In a simplified derivat ion 

of eq. (1) Rasor assoc ia ted the f i rs t two of these with the e lec t ron Richardson emiss ion at the 

emi t t e r and the e lec t ron t e m p e r a t u r e in the p lasma, r espec t ive ly . 

In the p resen t paper the effect of spacing on diode cu r ren t i s der ived using cur ren t t heo re t i ca l 

descr ip t ion of the na r row space diode ( 5/\a< Q Κ ZS Xa > where Xe i s the e lec t ron mean free 

path). However, before the d iscuss ion is spec ia l ized to the case of the n a r r o w space diode, the 

m o r e gene ra l r e s u l t s of the der ivat ion a r e used to evaluate some of the assumpt ions for R a s o r s 

der ivat ion, above, for the ve ry wide space ( Q >\00/\Q ) diode. 

T ranspo r t Equations 

We a s s u m e that the pa r t i c le t r a n s p o r t in the ignited mode p l a sma can be desc r ibed adequately 

4) 
by the equations 

Ε + />β*(ΓβΓρ) = n J V  k j e i
2
 (2) 

Jie '
 Γ

 d *
 e dx 

where I g and l p a r e the e lec t ron and ion fluxes, Ùa and Up the e lec t ron and ion mobi l i 

t i e s , Τ and Τ the e lec t ron and ion t e m p e r a t u r e s , η the p l a sma densi ty, V the p l a sma 

e ρ 
potential , and p the p l a sma re s i s t iv i ty due to e lec t ron ion in t e rac t ions . The l a t t e r i s given 

p=(,S*lo'Te ¿η. Ao .η. cm. ,^ 

where Τ is given in degrees Kelvin and l\ i s the o r d e r of 10 . Some of the approx ima

tions involved in equations (2) and (3) a r e d i scussed in r e fe rence 4) . It should be mentioned 

in addition, however , that we a r e assuming quas i neu t r a l i t y and a r e ignoring t e m p e r a t u r e gra 

dients . The l a t t e r assumption is not too difficult to r emove , but is convenient to re ta in to 

a s s i s t in br inging out ce r ta in qual i tat ive fea tures of the spacing effect. 
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Diode With Unipolar Sheaths 

For the boundary conditions, we assume a positive sheath at the collector, but consider two 

possibilities at the emitter, a positive single sheath and a double sheath. We consider the single 

sheath first. The potential distribution in this case is shown qualitatively in Figure 2 . From 

this figure we see that the diode voltage drop, V , is given by 

V J = V E  V C + V P (5) 

We assume the boundary conditions for such a potential distribution to be given by 

ieCx^o) = Qo « »er\£Je e x p Z ^ / Λ l̂ (*«<J) = fei = "¿jfe exp /~eV£ λ 

where ~lrL is the electron emission from the emitter, ν and ν the average electron c e ρ 

and ion velocities and η and η . , the plasma densities near the emitter and collector. We 

have neglected ion emission and will assume the sheaths to be of negligible thickness. 

If eq. ( 2 ) is integrated for the plasma drop, V , we obtain 

ev 

(6a, b) 

(7a, b) 

|£_A/3iW¿0 + J. ΓΑ JK 
Efe W ' *Ë DeJo n 

P s J"^ f l = CcnS*. 

where we have used ü t = ¿i*> klø. a n ^ 

e 

(8) 

0) 

Eqs. (6a, b) and (8) can then be substituted into eq. (5) to give 

fe, Te,
 r

 ( TT.
 A

T f e OeJo m J 

We have used the relation 

Ιβί~Ιβ6 " I p i " 'po ~ ' H 

which follows from eq. (9). Using eq. (10) we can calculate the inverse diode current 
( T^e/ f l , ) due to variation of diode voltage, due to electron-ion interaction, and due 

to electron and ion collisions with neutrals. These three effects are contained respectively 
in the three te rms of the exponent. Special cases of eq. (10) are now considered. 

Wide Space Diode 

An adequate derivation of the spacing effect for the very wide space diode has not yet been 
developed. One of the main difficulties in obtaining such a derivation is the difficulty of ob-

(10) 

(ID 
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taining an express ion for the p l a sma density dis tr ibut ion, so the last t e r m in the exponent of 

eq. (10) can be evaluated. 

1 2 ) 3) 

In the der ivat ion for th is case by Raso r ,' and that by Wilkins and Gyftopoulos which is ve ry 

s i m i l a r to that by Rasor , the assumption is made that the p lasma is not a net sou rce of ioniza

tion ( v*·Pe * V" Po ™ O )· This assumpt ion, used with the pa r t i c l e t r an spo r t equat ions, in 

fers a l inear density dis t r ibut ion for the p lasma . And it i s easy to show that such a d i s t r i bu 

tion used in eq. (10) leads essent ia l ly to Raso r ' s r e su l t . However, such a der ivat ion is not 

ve ry satisfying, in two r e s p e c t s . F i r s t , the z e r o  s o u r c e assumption should not be valid in 

the e m i t t e r region of the p l a sma . Also, in the case of negligible net sou rce , one would expect 

the p lasma density dis tr ibut ion to be de te rmined m o r e by the local balance of ionization and 

recombinat ion than by the t r a n s p o r t equat ions. It should be added, however, that n e a r l inea r 

d is t r ibut ions in the p l a sma column have been obse rved exper imenta l ly . 

Rasor and Wilkins also a s s u m e zero e l ec t r i c field in the p l a s m a . However, th is assumpt ion 

7) 

was not e s sen t i a l for t he i r r e su l t . Significant fields occur in the p l a sma , but the net poten

t ia l a c r o s s the p l a sma is sma l l , as can be shown using eq. (8). It i s only the l a t t e r quantity 

which is used in the der ivat ion. Final ly , Raso r neglec ts e l ec t ron ion in t e rac t ions . One might 

be concerned about this assumpt ion consider ing the impor t ance of t he se in te rac t ions to the 
8Ì 

t r a n s p o r t p r o c e s s e s . However, from eq. (10) it is evident that the approximat ion yû = 0 

is r easonab le . In fact, if we drop the last t e r m of the exponent in eq. (10) and plot the r e su l t 

we obtain a figure ve ry much like F i g u r e 1 , but with spacings a factor of 20  30 too l a rge . 

Nar row Space Diode With Unipolar Sheaths 

Although a genera l express ion for the p l a sma density dis t r ibut ion has not been obtained for 

the very wide space diode, such expres s ions have been proposed for the na r row space diode. 

Thus , we now evaluate the spacing effect for this case . Following the concepts cu r ren t ly p ro 

posed for descr ib ing the na r row space diode we a s s u m e that recombinat ion can be ignored 

and a s s u m e that the ionization coefficient, 0( , is constant through the diode. P a r t i c l e 

conservat ion is then given by 

o[e = d j p = <Κ Λα r\ (12) 

where Yia i s the neu t ra l atom densi ty. Calculated va lues for (¡X. have been sugges ted by 
a g) 10) 

N o r c r o s s and Stone and by Moizhes , Baksht and Melikiya 

Adding eqs . (2) and (3) and using eq. (12) we obtain 
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where 

(13) 

(14) 

so that the plasma density has the distribution 

n= C, Cos(*x+ C*.) (is) 

Also, in adding eq. (2) and eq. (3) we find that ion current in the diode is zero at χ = xQ 

where 

e r
 /¿e 

Thus from eqs. (12), (15) and (16) we have 

P
PO  « «ï f °

höt
*

 =
 

<K
^

c
'Γ ££

 s,n c
¡ t l 

Γ 2 J
° * UcTe+Tp)/íeC^ J 

These equations can be combined with eqs. (7a, b) to give 

*_¿ tan tø = V . .  7^ . /J. + ^\ 

(16) 

(17) 

(18) 

* i ( JJL\ i¿ 

We are only considering the collision dominated plasma, so we have 

Yd „ IT  6 
ζ ζ 

where 

J.  J (Jjk\ 3d >> | 

(19) 

(20) 

(21) 

The electron temperature is given by a solution of eqs. (14), (20) and (21). Since é 

is small electron temperature is almost independent of spacing and position on the IV

curve. 

By eliminating c. , in eqs. (17) and (7a) we obtain 

where (\=? 

feeyKp 

* *K%+TrJ*t)f\R) 
(22) 

. Since we have 

2. 

(23) 
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where 

(24) 

The condition that the plasma density is everywhere positive gives us 

2. < R < &> (25) 

Thus, eq. (24) will be a reasonable approximation. Using eqs. (2), (3), and (15) we also 

find 

/!· ^ /TÇ£T P \ (R | ) " (26) 

c,Dey ν T e ; 

We can now evaluate the last term in the exponent of eq. (10). Using eqs. (15), (20), (21), 

(23), (24) and (26) we find 

T>«J«
 h

 CO.* [ ta«(ftf) , 
(27) 

Here we have used the approximation ' e ^ l e o ■ Therefore, eq. (10) becomes 

«̂ + Q> s I + exp L e %VÙ + /wVd] . f i / * i \ y /,Rl V 
kTe ns] ί^ν^Λλρΐ^ϋ:). 

(28) 

The parameter R can be obtained from energy balance considerations. If we neglect r a 
diation losses and diffusion of excited atoms to the electrodes, the energy balance for the 
diode becomes 

Ve2.kT6-Te) + eQ|V<i- Γ„ (eVE4eV; + 2kTe
>)4erp l\/p= o (29) 

where Τ is the emitter temperature and V. the ionization potential for cesium. The last 
term of eq. (29) is negligible. Also, for the cases of interest we have V . » V and 
V en V 

d ~ E 
Thus, we can write 

[„ _ Vg/re)· alfa-T,) -reVd 

or, by using eq. (11) 

leo eV¿ + * k l ¿ - ^/ρ€;^(Τβ'Ύ.) 

(30) 

(31) 

Using eqs. (15), (7a, b) and (11) we also obtain 
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R
 l +

i & A'
 ,32) 

Thus, R i s given by eqs . (31) and (32). In many fea tures the above model for the na r row 

12) 
space diode is s i m i l a r to the descr ip t ion p re sen t ed by Stakhanov and Kasikov 

Two examples of eq. (28) a r e plotted in F i g u r e 3 . (In th i s and subsequent plots we use 

kTe/_ 2,3ev* ^f/=.\Oe.V \ KSB/' = . IS"5" eV and ß=0 ) It i s immedia t e ly evident 

from this f igure that the p red ic ted spacing effect for the above model i s not l ike that ob 

s e r v e d exper imenta l ly (for example F i g u r e 1 ) except in the region &/n Gi \ . The 

" turn back" in the plots for constant V is a s soc ia t ed with a negat ive r e s i s t a n c e p red ic ted 

for the IV cu rve . The or igin for the l a t t e r can be seen . in eq. (32). We always have 

I > O > t hus , as diode c u r r e n t d e c r e a s e s ( " ^ e / p i n c r e a s e s ) the t e r m eV 

must i n c r e a s e to ba lance the eip ' Z.K. ΟΙς—Tg) t e r m . Phys ica l ly th is m e a n s that a 

l a r g e r diode vol tage drop is needed to o v e r c o m e the energy l o s s e s a s soc i a t ed with e l ec t rons 

which a r e emi t ted into the p l a sma , and heated up before leaving the p l a s m a . 

T h e r e a r e m o r e efficient ways for the d i scha rge to o p e r a t e at low c u r r e n t s . One way would 

be for the d i scha rge to cons t r i c t . In fact, whenever negat ive r e s i s t a n c e has been obse rved 
13) exper imenta l ly t h e r e has been an a s soc i a t ed d i scha rge cons t r ic t ion . This sugges t s that 

cons t r ic t ion is min imiz ing l o s s e s that would occu r without th is m e c h a n i s m . We will not con

s ide r the effect of cons t r ic t ion on the spacing effect, but will now examine another p o s s i b i 

lity for low cu r r en t opera t ion , the poss ib i l i ty of a double sheath at the e m i t t e r . 

Nar row Space Diode With An E m i t t e r Double Sheath 

Whether or not an e m i t t e r double sheath ex is t s in a t h e r m i o n i c diode i s s t i l l an open ques t ion . 

It was a s sumed to exist in many ea r l y diode t h e o r i e s , and recen t ly it has been found to be 
14) consis tent with compute r solut ions of diode equations . However, the poss ib i l i ty of ion 
15) t rapping in such a sheath puts the concept in quest ion . Since the above n a r r o w space diode 

theory, without a double sheath , i s at v a r i a n c e with exper iment in the low c u r r e n t regipn. i t 

i s of i n t e r e s t to cons ider th i s poss ib i l i ty . 

The potential d is t r ibut ion for th i s case i s shown qual i ta t ively in F i g u r e 4 . Most of the p r e 

vious r e s u l t s s t i l l apply. F o r example , in e q s . (10) and (29), V m u s t be r ep l aced by V 

\ii-V.-Vc + V r - V e - V D - V B (33) 
and Τ/ς, mus t be i n t e r p r e t e d as the e lec t ron emis s ion over the double sheath b a r r i e r . 
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Ve = V e*p ( eVB\ ( 3 4 > 
V kTe' 

where T/^ is now the Richardson emission. Thus, we write eqs. (28), (30) and (31) as 

Γ., rel
 r I feTe Γ feTe J L* t ^ V 4X f i  f ^ R )J (35) 

(36) 

(37) 

G° eV¿ + z.kTe^;2.fe.CTeTc) / e 

An additional boundary condition is required to specify the double sheath. For simplicity we 

neglect ion emission from the emitter, electron backscatter from the plasma and ion t rap

ping. The double sheath condition then becomes the Langmuir relation 

Ιί '-ίΗ1! - ι (38) 
I i 4 i w ι 

This may also be written 

R.rf kJ5p = *(\+&)± W (39) 
r c e ΛΡ ι Tc Ρα ν ν* Ι λρ ι τ« . 

'Eqs. (35), (36), (37) and (39) can be solved for " Ύ ρ , V and R as functions of S c7^Ap 
Such a solution is shown in Figure 5 . For various V , V is then obtained from eq. (33) 
and Λ / Ρ obtained from eq. (34). Some plots of the latter quantity are shown in 
Figure 6 . It is interesting that with the assumption of a double sheath we now obtain a 
spacing effect like that obserbed experimentally. We also find, however, that there is a 
maximum current for the existence of the double sheath. Thus there appears to be a region 
in the I-V curve from the knee down to about 1/2 to 1/3 the Richardson emission that is 
not interpreted by either of the above models. The transition between the two models, how
ever, requires more careful attention to some of the approximations we have used. This 
transition region is particularly sensitive to extra plasma losses and to changes in the Lang
muir relation. A study of this transition has not been carried out yet. 

The author would like to express appreciation to Professor G. Ecker for helpful discussion. 
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Fig. 1: Spacing Effect Observed 
by Rasor 

Fig. 3: Spacing Effect Expected 
with Unipolar Sheaths 

Fig. 2: Potential Distribution 
with Unipolar Sheaths 

I I I I I I i I I I 

X to to to 100 

Fig. 4: Potential Distribution with 
Emitter Double Sheath 

r.r 

* 

Fig. 5: Solutions for Double 
Sheath Case 

Fig. 6: Spacing Effect Expected 
with Emitter Double Sheath 
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DISCUSSION 

Speaker of paper G - l : L. K. HANSEN. 

MUSA (Rumania); F i r s t question: Dr . HANSEN'S equations for ion production 
assume d i rec t ionization. How is this justified? It is not known exactly how 
the ions a r e produced, s tepwise, by molecular ions and so on. 
Second question: What is the double sheath 's th ickness? 

HANSEN (Euratom): I a s sume a uniform coefficient for ion-generat ion. This 
does not say that the ionization p rocess i s assumed to be s ingle-s tepped, it 
does not say that it is assumed to be mul t i -s tepped. In fact in the work of 
NORCROSS and STONE where a mul t i - s tage p roces s of ionization is cons i 
dered, it is evident that one can use an approximate effective ionization coef
ficient like I have assumed h e r e . 

Concerning the second question, the thickness of the double sheath: With the 
densi t ies that we have in the ignited mode and the spacings we a r e working 
with, I don't think this thickness will be very important . As far as these ca l 
culations a r e concerned it was assumed to be of negligible th ickness . 





G-2 

THEORY OF THE LQW-VQLTAGE ARG IN THE CESIUM 
THERMIONIC CONVERTER 

Sonin E.B.., Institute of semiconductors, Academy of 
science^of USSR, Leningrad. 

The current-voltage characteristics (the I-V curves), 
the electron temperatures T, the electron densities N 
and the plasma potentials jp were determined in the cesium 
thermionic converter operating in the ignited mode. The 
transport equations with volume ion production were com-
putered, the following processes "being taken into account: 
the elastic and inelastic electron-atom collisions, the 
ionization "by electron impact and the three body recombi
nation, the radiation and the diffusion of excited atoms 
to the electrodes, the electron-ion collisions. 

The transport equations with volume ion production 
were used for the cesium low-voltage arc "by Moizhes B.Ya. , 

Γ Ή 
Baksht F.G. and Melikiya M.G. u "" Ttiey neglected the radia
tion and the diffusion of excited levels and proposed a 
multistage process for ion production. 

It was assumed that the high excited levels down to 
the level 73 inclusive are in Saha equilibrium with free 

î'~~\ 
electrons. But i t was shown in author* s article "-^ t hat 
this assumption is valid only for much higher levels 
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(above VIS) and overestimate the value of ion production 

rCsee References f3 ,4j too). This value is low enough for 

the low excited levels up to level 7¿> inclusive to be in 

equilibrium with the ground state provided the radiation 

and diffusion of excited levels neglected. The collisios 

of electrons with atoms at these levels made the electron 

energy distribution to be Maxwellian even if the elect

ronelectron collisions are rare. Therefore large devia

tions from Maxwellian distribution received in Reference" 

for the case of rare electronelectron collisions can not 

take place in cesium plasma. 

A numerical solution of the moment equations for the 

electron distribution function in author's article [5] 

showed that deviations from Maxwellian distribution take 

place near the electrodes, but they are not essential for 

determining plasma potentials j , densities N and tempe

ratures Τ in conditions under consideration (pd='itorr χ 

χ mm where ρ is the pressure, d is the interelectrode 

spacing). Therefore Maxwellian electron energy distribu

tion is assumed in this report. Equation» to be solved we

re obtained from more general moment equations [S}· It 

needs to computer nonlinear differential equation£with 

nonlinear boundary conditions on the emitter and the 

collector. Used numerical methods were reported before. * 

If radiative deexcitation from the first excited 

level is essential, the space derivatives of the ion cur

rent I., of electron current I and of the electron kine

tic energy flux F are given by: ■» 

*·£·ί ft ■«·**ƒ£-β)/ "> 
é^.-Tdï-F

 d
-L<-ÙÙ..F (2) 

A c  J « Α * *» Λ ς « _ , Í K T , ¡ ¿ 
where Q, is the cross-section of ionization J , v =£ jj-tn/ 
is the mean electron velocity, NQ and N̂  are the densiti
es of atoms at the ground level 6S and the first excited 
levels 6P. E- is the ionization potential, E,. is the 

' ion » 
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O c 

first excitation potential, Λ/, = ̂  N* ea
=>

ö
 ( " "¡^J 

 Boltznriann equilibrium density at the first excited le

vel, g0 and ĝj are the statistical weights of the ground 

and first excited level, /V r S Ζ (2ZJ21¿sJ)*¿. 

Saha equilibrium density of free electrons, t^ is the de

excitation time at the first excited level 6P. 

The last two terms in Equation (2) are energy losses 

in inelastic electronatom collissios. They vanish if the 

ionization and the radiation are neglected. 

The density N,. is given by the particle balance equ

ation for the first excited level. 

O N.N„v=Q /ViVv+%- + s # (?) 
o* » e ^io ' t ' "e 7* Q, ax, 

where c , and Q,,, are the crosssectios for the electron 
impact transitions 6S*6P and 6P»6S, averaged over Max

i til· 

we Hi an electron energy distribution. The term js ¿j¿£ was 
omitted in Eouation (3) because Q^,N N V»¿ fp [2j . If the 

jw ο ι o e c eue 

term J? is omitted too ( 2^* ©o ) , the density N^ is 

ecual to equilibrium density N. and Equation (1 ) is ide

ntical to the equation for r · 5̂ Ν in Reference
1, J

. Per

formed there calculations of the crosssection Q, includes 

all the transition between about fifty excited levels. 

The obtained dependence of Q upon the temperature T can be 

approximated by the formula: 

where AO,003.10 cm and¿ = 2,98ev. 

The consideration of the radiation absorbtion and 

the diffusion of excited atoms requires much more complex 

equations than Equations (1)(3), but these processes we

re taken into account aproximatively substituting time *Ci 

instead of deexcitation time t^s 

Jr + Jd 
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where Jf¿= ¿¡ 'Yfe t£ is the flux of excited atoms to the em

itter, N|e is the density N^ near the emitter, ν is the 

mean velocity of atoms, J_ is the summary photon flux to 

the emitter and the collector if the absorbtion being ne

glected, J is the same flux if the absorbtion being tak

en into account. 

It was assumed that N^=N^,gexp( 2£), where χ is the 

distance from the emitter, and length L was determined 

after calculating of space distributions of the density 

ÍN,,. Then ν/χ Jj,0 are given by: 

where d is the interelectrode spacing, A is the wavelength 

k is the absorbtion coefficient in the center of line, &V 

is the linewidth, S is the reflection coefficient of elec

trode surfaces. 

Equation (ß) was derived before £7j for the uniform 

plasma (L»oo). 

The value of Δ\) is determined by resonance broadening 

[8] . 

The value 7̂  given by Equations (5)(7) was averaged 

over two subleveis 6Py and 6P S/f . For the case d=0.5mm 

calculations gave L=Q.1mm and 2Z4Q. 

3 solving transport equations the mean free path of 

ions and of electrons (L and L ) were assumed to be inde

pendent upon an energy and to be equal. 

/ J— I i 

where & . is the electronion collision crosssection for 
β o 

the e lec t ron energy ¿ = Àc7", G". and £ ^ aJC'e the ionatom 

and electronatom c o l l i s i o n c r o s s  s e c t i o n s . They were a s 

sumed to be eoualGt =7.10 cm and 6u =3 .5 .10 ' cm as 

in Reference (_9j . 
The boundary conditions in References (jíj and [.4 J 
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assumed the accelerating field for the emission electrons 

near the emitter. One can evaluate the field E near the 
ρ 

emitter by means of formula for E in Talaat*s article 

fioj . It was shown in Reference (Híj that the value E* 

can become negotive when the potential drop in the emit

ter sheath decreasing. It means that the accelerating fi

eld can not exist and a doublesheath appear near the 

emitter, i.e. the emitter sheath is divided into two re

gions: with retarding (near the emitter) and accelera

ting field for emission electrons. This is an obstructed 

mode. In this case it is useful to introduce a socalled 

virtual emitter. The surface of this emitter is the boun

dary surface between two regions of the emitter sheath, 

Where the potential have the maximum value. The work fun

ction Y of the virtual emitter is the work fuction JCε 

of the real emitter plus the height of retarding barrier, 

»i/hich is equal to the potential difference between surfa

ces of the real and the virtual emitter. The boundary 

conditions for accelerating field are invalid in the ob

structed mode, but they become valid if to reolace the 

work function J(g by the work f unction JC^ * Χ Y is de

termined so that the condition E =0 was fulfiled near vir

tual emitter which is the point of maximum potential. 

Below are reported only the results for the very we

ak surface ionization, i.e. if J L < M (the electron

rich emission). Here M is the plasma chemical potential 

determined for the emitter temperature T e . The cases/</f 

and^g>Af were studied in^Reference *· ■* by using the_ 

simplified model of the ignited mode. Similar models were 

used in References' * and « *. IfjT£ >M the extingui

shed and ignited regions of the theoretical IV curve we

re regions of one continuous curve with a positive slope 

in agreemint with experiment. But if^f
 <
/
Vl
 the extingui

shed and ignited regions were disjoined by the band of 

forbidden currents. This was interpreted as a cause of 

current jumps on the experimental IV curves. The bounda
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ry point between regions of the positive and negative slo

pe was compared with the experimental point of extinction. 

It was the case XE^ivt
 in which above simplified model ap

peared to be not quite content. The more rigorous calcula

tions reported here have shown that the region of negative 

slope appear on IV curves in the ignited mode only if loso 

ses of the energy of electrons, related with the radiation 

and the diffusion of excited atoms, (we shall refer them 

as radiation losses) are taken into account. These losses 

are more essential for the lower currents. 

Theoretical IV curves are presented in Figi. for 

various electron emission currents Ie. Solid lines siiow 

IV curves if assuming an accelerating field near the re

al emitter. They are valid only above points where Ξ^=0. 

These points are the dotted line V. If assuming the vir

tual emitter (the obstructed mode) theoretical points are 

on the curve V for any emission current I . This assump

tion is valid until JQE < X y . Therefore tne IV curves 

coincide with solid lines until £>Q and with tue dotted 

line V until J(ε <XV . The points where E=J and XE
=^XV 

are break points on theoretical IV curves. Arrows in 

Fig 't snow tae IV curves for I _=9,1;^a and I = 0,66 ̂ , 

The region of the line V below the point C have a 

negative slope. It was assumed tne point C for I =9 »1/ZTi 
C« Surft 

and the point d for IÄ =0,66 =* to correspond with expect c/n* 
rimental extinction points. In these points a transverse 

Piil 

contractation of the arc was observed
L J

 . The theoreti

cal IV curves for I»c=9,1—;, and I =0,66 £. are in ac

cfc
 T

 cm* et c/n* 

cordance with the IV curves with two break points (po

ints b and c) observed at large I e e and with the IV 

curves with one break point (point d), observed at small 

I.e. Thus reported calculation have confirm proposed in 
Γ'ι 1 1 

Referenceu J a n i n t e r p r e t a t i o n of regions between two 

break point for large I e £ as an obstructed region with a 

doublesheath near the emi t t e r . 
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The curve V was obtained using the formula for E 

fron Reference * · . This formula is approximative and 

overestimate the value E. Therefore it may be that for 

Xee«Q,66 —z the point where E =0 is below the point g in 

the region of a negative slope of the solid line. Then 

ei.1 

the extinction point is the point g where EX) and ^/°° 

Regions of negative slope on solid lines as on the dotted 

line V are caused by radiative losses which are inessen

tial for large currents. The IV curve for ΙβΕ=9,1 ¿^5 

have a positive slope down to point a where the potential 

drop in the emitter sheath is equal to zero. The IV cur

ves in Fig.2 were obtained for constant JCe . The Schfctt

ky effect, reducing the work function J^e at large vol

tages, was considered in Reference' * . There it was shown 

that regions of negative slop appear on theoretical IV 

fiurves at large voltages owing to the Schottky effect. 

This leads to jump increase of the current and the satur

ation do not take place at large voltages. 

Theoretical and experimental dependences of the in

ternal voltage V,¡ upon currentj'at the first break point 

( the point b for I e E »9,1 ¿^*. and the point d for I = 

0,66 ~ j ) in Fig.1) are shown in Fig.2. An internal vol

tage V,, is equal to ouptup voltage V plus the contact po

tential JC£ J(c ( Jtc is the collector work function). 

Experimental values V,, were obtained by A.M.Martsinovsky 

and V.G.Iotiev (unpublished) for various emitter tempera

tures Τ β in accordance to the Stype dependence ;T upon 
ΓΛΛΙ 

Tg
1
·
 J
 similar to the dependence Ie£ upon T £ . Theory and 

experiment demonstrate a slow increase of V,j when T £ 

decreasing. The increase of V,. at small currents is rela

ted with the radiation losses and increase of V,, at large 

currents is caused by the recombination and the electron

ion collisions. 

The theoretical IV curves are curves with two break 

point if the current J is more than the current j at 
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the point g; ( .**β.2) . This current i s equal 1;Lat Τ » 

 150α°Ε and 2 ,15 ¿ £ i at T £ » 9QQ°K. 

The Corresponding experimental va lues are ~ 3 ,5  ^ at 

T E « 1670°K. and <*· 8 ¿A, at T e * 115Q°K. 

Theoret ica l space d i s t r i b u t i o n of p o t e n t i a l s )Pt 

d e n s i t i e s ï and e l e c t r o n t empe ra tu r e s Τ were compared 
Γ14Ί with that obtained by probe measurements L J . An example 

of this comparison is shown in Fig.3. 
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Fig.1. Theoretical IV curves for various 

electron emission currents I P . 
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ρ = 1 torr, d = Q.5 mm, Te = 1500 K, 

Tc = 700°K, _/c= 1.7ev. 
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Fig.2. Theoretical and experimental dependences 

of internal, potential V,( upon current ¿j Λ at the 

first break point, ρ = 1 torr, d = 0.5 mm. 

Experimental points for IY curves with one break 

point: 1  the right side of curve ¿^ Í ("τ") 

( small T E ). 

Experimental points for IV curves with two 

break points: 2  the right side of curve ¿4~$(T¿) 

3  the left side of curve ¿j » ϊ(ψ) ^lar^e Te )· 
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THE VOLTAGE DROP OF THE IGNITED MODE AS A 
FUNCTION OF CURRENT DENSITY 
by B. Saggau, H. Strecker 

(Insbitut für Gasentladungstechnik und 
Photoelektronik, Universität' Stuttgart, 

Breitscheidstrasse 2 (Germany) 

Abstract 

Experiments on low voltage arcs (ignited mode) of a Cesium 
diode have shown, that the plasma voltage drop U ^ is not on
ly a function of j)ressure - spacing product pd (Johnson 1955» 
Rasor 1964/65), but also a function of current density ¿y·. 

1. The ignited mode needs a minimum value of j-p in order to 
sustain itself. 

2. Û pn is at e minimum at an exactly defined height of j^. 
Our measurements^ carried-out at a-Cs-diode with plane geo
metry, show that the behavior of the low voltage arc corre
sponds to Hehl's Law of a glow discharge, at which the 
covered cathode surface due to the discharge is proportional 
to the discharge current, remaining j™ = const, a consequence 
of Point 2. 
In determinating the covered cathode surface by photos of the 
arcs, it was found, that the current is carried by two plasma 
parts: A bright plasma zone in the center and a relatively 
dark zone surrounding the bright center with a constant 
thickness. 

Introduction 
1)2) Visual observations ' ' of the plasma of the ignited mode in 

Cs-vapor have shown, that, with increasing converter current 
the bright plasma expands transversely - beginning with a 
small "ball of Fire" - to cover more of the emitter area F̂ ,. 
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When the emitter area is entirely covered, the output voltage 
of a converter decreases, i. e. the plasma voltage drop U„R 
rises with increasing current. A relatively simple theoretical 

5)4) model for the ignited mode J J implies no current dependency 
on UJXD· But it is experimentally evident that 1. the ignited 
mode must have a minimum value of j p (current density) in 
order to sustain itself, otherwise the arc Jumps into the so-
called "anode glow mode"; and that 2. at a defined value of 
j U is at a minimum. 

Experiment 
The experimental device used was a Cs-diode with plane geo
metry. The Molybdenum emitter was indirectly heated and its 2 surface FE was 1.77 cm . 
I-U-characteristics were taken from the Cs-diode for different 
values of pressure-spacing product pd. 
Fig. 1 shows a typical I-U-curve at pd = 0,058 Torr.cm given 
in a semilogarithmic plot. At constant emitter temperatures, 
the Boltzmann line gives the values of the total emitter work 
function as a function of j^. The total emitter work function 
is the sum of the real emitter work function plus the negative 
emitter sheath barrier. In the region of the ignited mode we 
found a highly constant output voltage between 0.23 and 2.5 A. 
When, at the same time, we measure the area of the 'emitter, 
which is covered by the arc plasma, we note that here the 
current density is constant too. This behavior corresponds to 
Hehl's Law of a glow discharge, at which the covered cathode 
surface extends with increasing discharge current; remaining 
a current density JE = const. 
The covered area of the emitter was determined by photos of 
the arc. By evaluating these photos we discover that the con
verter current is carried by two plasma parts: 
1. A current zone in the center of the arc, where the current 
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density is constant, and where the plasma is bright, and 

2. a current zone surrounding this region, where the plasma 

i«s relatively dark and where the values of current density 

are smaller than in the inner part.. 

Fig. 2 shows the converter current I as a function of the 

covered area F,™ of the emitter ("core" plus "shell"). Whilst 

the area of the bright "core" is won from the photos, the 

area of the dark "shell" having a constant thickness is so 

normed that F,™ is then equal to FE when the voltage drop U ^ 

begins to rise. In the range of 0.7 "£ F·*™ < 1.77 cm the curve 

is a straight line, what means a constant current density in 
ρ 

the "core" of j = 2.1 Acm" . (F^ > FE does not mean that 

here the plasma area .is larger than the geometric emitter 

surface, but that the thickness of the "shell" becomes smaller). 

Therefore, the straight line in the area range given above 

demonstrates that U ™ is constant as long as the current 

density of the proper arc  without the dark surrounding zone 

 is constant, i. e. as long as the emitter surface is not 

entirely covered by the total arc plasma. 

From Fig. 1 and Fig. 2 we get U^™ as a function of current 

density JE, as given in Fig. 3· Ujrn, "the voltage drop without 

the negative emitter sheath barrier, has a minimum at j E = 

2.1 A/cm . This value is approximately that of the Richardson 

emission of the emitter. (The exact Richardson emission den

sity, taken from Scurves, is not available due to a unclean

ness of the emitter surface). 

Comparison with theory 

At first we tried to compute U,™ . „ and j' with the same equa
r
 NB m m

 u
n ^ 

tions used for Hehl's Law of the glow discharge by substituting 

the secondary emission coefficient ï = 0.1 by y = y— = 492. 

But the calculated values are in great disagreement with the 

experimental results. 
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5) 
Recently Hansen and Warner^

y
 presented computer solutions for 

the ignited mode. Especially they gave results for varying 

current densities. At these solutions the entire voltage 

drop (Ûo + negative emitter sheath barrier) is a monotonously 

increasing function of the increasing ¿v,. But U,™ itself has 

a minimum value at a current density smaller than the Richard

son emission. 

Most recently, Djuzhev et al. ' have also investigated the 

current density dependence of the ignited mode. They found 

also a region of the UIcharacteristic where the current 

density is constant. They conclude that the increase of the 

voltage drop at small current densities is related to the 

radiation losses, and the increase at high current densities 

is caused by recombination and electronion collision losses. 

In conclusion we want to point out that the Hehl'law, which 

is found for the low voltage arc, is related directly to the 

appearance of a minimum voltage for a defined current density. 
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Fig. 3. Voltage drop UNBof the ignited mode-without emitter 

sheath barrier-as a function of current density (Exper, 
converter with plane geometry) 
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DISCUSSION 

Speaker of paper G-4: B. SAGGAU. 

RASOR (USA): I believe it is important to recognize that in this region of 
the cha rac t e r i s t i c s , i. e. in the bal l -of-f i re region, the behaviour of the 
v o l t a m p e r e curve is very strongly dependent on the rat io of the spacings 
to the d iamete r of the e l ec t rodes . The p roces s here presumably is domi
nated by ion and other losses from the edges of the d ischarge to the outside 
walls of the chamber . Since your resu l t s descr ibe devices in which such 
effects a r e of dominant impor tance , you cer tainly should qualify these r e 
sults by specifying the rat io of the spacing to the d iamete r in your device. 

SAGGAU (Germany): That is t rue for the region of high cur ren t when the 
p lasma is fully extended over that e lectrode a r e a . But in the range of low 
current I think the spacing is smal l enough that the boundary of the walls 
has no effect on th is , that i s , that the r is ing of the voltage at low cur ren t 
densi t ies is not affected by spacing. 

RASOR: What was the e lectrode spacing and d iameter in your device? 

SAGGAU: The spacing was .2 m m . The d iamete r of the e lec t rodes was 1. 5 
cm. 

RASOR: There indeed is a significant a r ea at the edge of the p lasma through 
which ions can be lost , re lat ive to the e lectrode a r e a . 

SAGGAU: Yes, but we have a g rea t range where the voltage drop is constant 
and so have no effect on the boundary of the e lec t rodes . 

DJUZHEV (USSR): I want to make a brief communication. We a r e studying 
the physical p roce s se s occurr ing on different ranges of the vo l t - ampere 
cha rac t e r i s t i c . It was discovered that: 
1. On the vo l t - ampere cha rac te r i s t i c there exis ts a ve r t i ca l range in which 
the cur ren t in the conver ter i nc r ea se s along with the cathode surface in
volved in the d i scharge . Here , as probe and spec t ra l measu remen t s have 
shown, the p a r a m e t e r s of the p lasma inside the discharge filament remain 
unchanged, and at the cathode a monotonie dis tr ibut ion of the potential is 
rea l ized. 

2. The probe measu remen t s have shown that with large cathode emiss ion 
cu r ren t s (j > 10 A / c m ) the existence of a double layer at the cathode is 
possible (the so-cal led v i r tua l cathode) for a monocrysta l l ine surface, or 
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the existence of a strong anomalous Schottky-effect for polycrystal l ine 
sur faces . This differs somewhat from the s ta tements made in Dr . HANSEN'S 
paper . 
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THEORETICAL CONSIDERATIONS OF THE IGNITED MODE* 

C. Warner 
Atomics International 

A Division of North American Rockwell Corporation 
Canoga Park, California 

Abstract 

A theory of the ignited mode is developed in terms of five differen
tial equations corresponding to ion and electron particle transport, elec
tron energy transport, and continuity of ion flux and electron energy flux. 
This system of equations with boundary conditions has been solved on an 
analog computer. The multistage ionization calculations of Norcross and 
Stone have been used. Electron-ion collisions are included in the manner 

2 developed by Nighan . The analog solutions yield spatial profiles of the 
five dependent variables: plasma density, electron temperature, ion flux, 
electron energy flux, and electrostatic potential. The sheath potentials 
are also obtained. Typical solutions are given and general conclusions 
stated. Comparison with experiment is good at small spacings. Difficul
ties at wider spacings are discussed. 

Introduction 

In the past, the transport equations for the thermionic energy conver
ter have been solved under various simplifying assumptions such as vanish
ing plasma electric field, vanishing electron temperature gradient, neglig
ible ion-electron collisions, existence of local thermodynamic equilibrium, 
and one- and two-step ionization mechanisms. These models have been useful 
in a qualitative way and have done much to develop a general understanding 
of thermionic diodes. More recently, numerical or computer solutions have 
been obtained without the preceding assumptions. An early example of such 3 
an approach is the work of Moizhes, Baksht and Melikiya who represent the 
dependent functions as polynominals in the distance. By the method of 
moments, they obtain a set of simultaneous transcendental equations which 
are solved numerically. We have used a different approach, solving the 

* This work was sponsored by the Office of Naval Research 
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differential equations on an analog computer. Lieb and Bornhorst have 
7 8 

done similar work with a digital computer. Nighan ' has developed trans
port equations which take account of experimental results for the electron-
atom cross section and also include electron-ion scattering. Nigham has 

g used these equations and the experimental data of Reichelt and Kruer for 
the spatially varying plasma density and electron temperature to obtain the 
spatially varying ion flux, electrostatic plasma potential, electron ener
gy flux and net ionization rate. 

The present paper will describe first the transport equations and 
boundary conditions employed; some typical results will be presented and 
some general conclusions obtained. Secondly, our results will be compared 
with the experimental data of Kitrilakis et al (used by Rasor in his 
London Paper ). The agreement with experiment is fairly good at close-
spacings. Further difficulties at wide spacings will be discussed in an 

g attempt to continue Nighan's analysis of the Reichelt-Kruer data across 
the ion production region to the emitter. 

Transport Equations and Boundary Conditions 

The plasma will be described by five first order equations for the 
five quantities : the plasma density n(x) ; the plasma potential V(x); the 
electron temperature Τ (χ); the electron total energy flux 0. (x); and the 
ion flux Γ (χ). The electron flux Γ is assumed spatially constant, but 
could easily be added as a variable. 

The first two equations are obtained from the electron and ion trans
port equations, neglecting thermal diffusion 

dn 
dx 

dV 
dx 

Τ e 
- Τ + τ 

e ρ 

Τ e 
Τ + Τ * e ρ 

Γ Τ Γ 
e + Ρ Ρ D Τ D e e p 

Τ 
_Ε 
ne 

Γ Γ e _ρ_ 
D D 

e Ρ 

(D 

(2) 

where Τ is the ion temperature; D and D , the electron and ion diffusion Ρ e ρ' 
coefficients. The importance of electron-ion collisions has been shown by 

2 Nighan who presented graphically effective transport coefficients which 
include this effect and an energy dependent electron-atom cross section, 
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a l l consistent with experimental data . We approximated his o r ig ina l r e 

su l t s as 

D*"1 = D_ 1 n" 1 = 0.15 x 10" 2 0 + 0.53 x ΙΟ" 1 8 n n" 1 (3) 
e g g 

where n is the gas density. This approximation neglects a weak electron 

temperature dependence, and was used in the section, "Typical Results and 

General Conclusions". A slight modification was used to approximate 
7 

Nighan's more recent results . 

D*"
1
 = (0.158 χ IO"

20
 + 26.9 x IO"

20
 *) ψ^ θ') 
"g e 

This modification was used in the last section, "Comparison with Experiment." 

o 

We have not used Nighan's ion transport equation which includes ionelec

tron collisions. 

The third equation is the transport equation for the electron total 

energy flux, y 

s r ■ s å r
 r

e<
2kT

e  *
v
>  % <« 

e 

The fourth equation i s tha t of continuity of ion flux, Γ 

dT 

^ = f (n , Te) = Snng  orn"5
 (5) 

The net ionization rate f(η, Τ ) has been taken from the multistage ioni

zation results of Norcross and Stone. Our approximation to or(n, Τ ) and 

S(n, Τ ) are given in Reference 4. 

An alternative ionization theory has been given by Moizhes, Baksht, 
3 

and Melikiya . A means of including the nonMaxwellian electron distri
bution function of Moizhes, et al within the calculation of Norcross and 

12 
Stone has been described but was not used in the present calculations. 
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The final equation represents continuity of total energy flux 

dQ 
^ = - eV±f(n, Te) . (6) 

The assumption that energy losses due to radiation, elastic collisions and 
diffusion of excited atoms are negligible, is open to question. The anal-
ysis of Nighan shows the importance of radiation losses and elastic 
losses at wide spacings. We shall avoid these regions in our analysis. 

The boundary conditions on the electron flux are 

re = Γ η exP ( T ^ J <7) V- - Γ- exP ί "W* l= Γ~ <8> 

where ν is the Richardeon flux; Γ the electron random flux; V_. and V„ the 
iL r t. L 

emitter and collector sheath drops; the subscripts 0 and 1 denoting the 
emitter and collector edges of the plasma. 

The boundary conditions on the ion flux are 

Γ_£θ _ V E (9) í k = „, !P_ do) 
2 " 4 2 "l 4 

Finally, V(0) = 0. These boundary conditions must be modified for a 

double sheath at the emitter or a negative collector sheath. The modified 

double sheath equations resulting from a solution of Poisson's equation 

with electrons and ions from both emitter and plasma are given in Reference 

4. Trapped ions were not included, but can be important according to 

12 
Bednarz and Davis . Trapped ions are expected to affect our results only 

at very low currents. 

Summarizing, there are five first order equations for the five un

knowns; n, V, Γ , Τ and Q . The seven boundary conditions take account 

' ' ' p' e e 

of the two additional unknowns, V„ and V, For the calculations, the 

above equations were expressed in dimensionless form with the variables 
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ί*-: 
where T^, is the emitter temperature and L, the diode spacing. 

hi 

Typical Results and General Conclusions 
5 12 Many calculations ' have been made under the following conditions : 

v_ = 10 amps/cm2 = 6.24 x 10 9 cm^-sec"1; T_ = 1800K = 0.155 ev; λ = 
-L p 7 

2.87 x l O cm; Τ (ave)/T£ = 0.75 with the associated values v E = 2.63x10' cm-sec"1; n_ = 9.49 x 1 0 1 2 cm"3; η = 2.9 x 10 l 6; σ = 1200 A2; and Τ = TS g P ' c s 
592Κ. The value for Τ assumes an average gas temperature of 1300K and 
constant gas pressure throughout the system. Work function vs T/T plots 

CS 
indicate that the emitter has a bare work function φ — 4.4 ev correspond
ing to molybdenum. Some typical results will now be given. 

The plasma density profile for various currents i' are shown in 
Figure 1 for a spacing of L = 0.01 cm = 3.94 mils. The emitter double 
sheath starts at about Γ = 0.53. The profiles in this region are not 
shown, but decrease only slightly below the Γ = 0.55 curve. The plasma 
density thus varies strongly with current above the knee of the volt-ampere 
curve and slowly below it. The ion current varies approximately in propor
tion to dn/dx according to equation (l) and the net ion production rate as 2 2 the second derivative d n/dx . Examination of Figure 1 shows that the net 
ionization is appreciable only on the emitter side of the plasma, even at 
the small pd =- (3.9) (3.94) = 15.4 mil-torr. 

An example of Γ (χ) and the net ionization rate f(χ) are shown in 
Figure 2. The ionization region is very small. The maximum of the ion 
production curve was found to occur at χ = 0.013 mm for 0.004 cm < L <0.020 
cm. If extrapolation were possible to wide spacings (e.g., L = 0.1 cm), 
the region of net ion production and the maximum in the plasma density 
would be unobservable experimentally (contrary to experiment). Further 
difficulties with widespaced solutions will be discussed later. The 
electron temperature z~ varies appreciably across the diode as seen in 
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Figure 3 for L = 0.01 cm. If the Saha density is calculated from theee 
electron temperatures and the gas density η , it is seen that very strong 
departures from LTE occur over almost all the space. An example is given 
in Figure 4 at Γ = .7 and L = 0.01 cm. The steady state density is that 
predicted by Norcross and Stone with no diffusion losses. The plasma po
tential ζ« for L = 0.01 cm is shown in Figure 5 for various Γ. The elec
tric field is retarding over most of the interelectrode space at these 

g 
close spacings. At wider spacings, Nighan's analysis shows the electric 
field to be accelerating as it must certainly be for very wide spacings 
of a conventional arc. The motive diagrams at L = 0.01 cm are shown in 
Figure 6 as a function of current Γ. The emitter sheath drop varies strong 
with current, until the double sheath sets in. The volt-ampere curves are 
shown in Figure 7 where Δΐ| = T| + z„(l) - Tl - Δ0, Δ0 being the double 
sheath barrier. The points in Figure 7 (and also Figure 8) are calculated 
points. The output voltage V is thus 0_ - 0 — ΔΤ) kT̂ ,. At the knee of 
the curve, the maintenance voltage is 0.42 volts. This voltage is reason
able in contrast to results from models with one- or two-step ionization. 
Finally, Figure 8 shows the electron temperature ζ,,(ο) as a function of 
spacing for fixed current. The curve is reminiscent of the Paschen curve 
and perhaps similar in explanation. More results can be found in our pre
vious work. Experimental checks on n(x), T(x) and V(x) are not available 
at close spacings. At large spacings, the analog program (based on a 
shooting method) is unstable and there are indications of more fundamental 
difficulties. 
Comparison With Experiment 

To obtain a check with experiment, we have chosen the TEEC0 V-I data 
used by Rasor at the London conference. We used the following input 

2 L 
parameters: ν = 20 amps/cm ; T„ = 1800K; λ = 3.82 χ 10 cm. Since we 

Ρ 1A ? use σ = 1200 A^ this λ -value implies η = 2.18 χ 10 cm , which is P P g 
actually about 20$ too high to be consistent with ρ =2.25 torr. This 

vS 
discrepancy is not expected to affect our results appreciably since we 
choose v rather than calculate it. The diffusion constant of equation (3 ) 
is used in our calculations. The quantities ζ,(o) and z„(o) are guessed 
for fixed Γ until the collector boundary conditions are satisfied. This 
procedure leads to the accumulation of data for various spacings L. The 
data was then plotted to obtain results for L = 3, 4, 6, 8 and 10 mils. 
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The resulting volt-ampere curves are shown in Figure 9. The experimental 
results are shown in Figure 10. The dashed lines in Figure 9 are extrapo
lations. The transition point (knee of I-V curve) was determined from the 
calculations but that portion of the curve below the transition was drawn 
to roughly parallel the experimental data. A comparison of Figure 9 and 
10 shows that the agreement is better than qualitative. The theoretical 
maintenance voltages are about 0.1 volts too large, where we use Rasor's 
estimate of the collector work function, 0 = 1.9v. The variation of the 

* c 
curves with L differs quantitatively. Thus, in Figure 11 the theoretical 
current Γ at short circuit decreases more rapidly with spacing than in the 
experimental case. The discrepancy between theory and experiment appears 
to be increasing with spacing. A Rasor l/Γ vs L plot for the V = O.Ov and 
V = 0.15 ν yielded straight lines which were consistent with an inter
section at 1/Γ = 1 and L = -2.3 mils. Contrary to Rasor's theory, the quan
tity T| - z9 varied rapidly with spacing for fixed Γ, "as the double sheath 
transition point was approached. The emitter sheath is similarly varying 
rapidly in this region as seen in Figure 12. It is thus very difficult 
to extrapolate TL at the transition point. The electron temperatures z_(o) 
and z„(l) are shown in Figure 13. The z«(l) values all lie close to one 
curve independent of Γ. The z~(o) values depend on both Γ and L. In con
clusion, the close spacing results appear in fair agreement with experi
ment, although better agreement appears necessary if useful predictions 
are to be made. 

In order to investigate wide-spaced solutions and take advantage of 9 the Reichelt-Kruer data , we have tried to obtain solutions in the near 
electrode or ionization region. We use the data for ρ = 1.95 torr, L = 

2 ~ 2.0 mm and Γ = 4 amps/cm (Γ = .4 assumed). Nighan's analysis just enters 
this region from the plasma side. Since including the electron temper
ature gradient in equation (4) led to difficulties, we took the electron 
temperature to be constant, as indicated experimentally. We obtain solu
tions with the experimental values of η and dn/dx at χ = 0.4 mm by inte
grating backward to the emitter for various Τ . We found the following 
difficulties. The solution, which satisfied the emitter boundary condi
tion (9) had ζχ(ο) = 1.4 and z~ (o) = 1.52 (n (o) a 1.4 χ IO"2 cm"3; 
Τ — 2630K) and thus implied an unphysically small emitter sheath drop, 
.24 volts. While the theoretical n(x) is below the experimental values, 
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the electron temperature is close to the experimental Τ =* 2480K. A second 
solution was found with z.(o) = 12 and z~(o) = 1.49 (n(0) =" 1.2 χ 10 cm 
and Τ ="* 2560K) which fit the n(x) data. This solution did not satisfy 
equation (9) since the backwards integration yielded ζς(θ) = -2.2 f -24. 
These difficulties are being further studied. 
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SHORT-CIRCUIT CURRENT IN SPACING ELECTRON TEMPERATURES vs SPACING 
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DISCUSSION 

Speaker of paper G-5: Ch. WARNER. 

HATSOPOULOS (USA): I 'm a little bothered by the fact that we keep using 
the same data to prove the var ious theor i e s . In par t i cu la r , the data that 
a r e presented here a r e a l ready 2. 5 yea r s old. But there is a t remendous 
wealth of newer data. Not all of it is so well behaved as that pa r t i cu la r set 
of data used at the London Conference, but we have a need to extend our 
analysis and compare it with the data that is not so well behaved. I would 
like to make a point that the WILKINS-analysis is compared with some of 
the TEECO-data , and WARNER and HANSEN use some other set of TEECO-
data, and the data a r e taken in different regions . Fo r example, the beha
viour changes somewhat when you go to higher t empe ra tu r e s where you have 
considerable ion-emiss ion from the emi t t e r . The data changes when you 
have some operating conditions at the conver ter where it appears that the re 
may be some non-equil ibrium si tuat ions. I 'm not posing that as a c r i t i c i sm 
because we do need to find where some of the theor ies apply, to be su re , but 
I 'm posing it as a caution that we should rea l ize that there a r e regions of 
important data where at least we don't have a complete definite answer . 

WARNER (USA): I would like to ask, where a r e all these data? 

HATSOPOULOS: A few samples of these data a r e included in the paper A - l . 
These data were taken from a much broader l ib ra ry of data, which was p r in t 
ed on Jet Propuls ion L a b - r e p o r t s . You used the resu l t s of NIGHAN on the 
ion-e lec t ron sca t t e r ing . This indicates that for the equations you use , this has 
a substant ia l effect. Judging from what HANSEN just said, he believes that 
this may not have a la rge effect and I wonder if you could comment on that. 

WARNER: I have not had a chance to compare my resu l t s with HANSEN^. 
Also I am not so sure how important the e lec t ron- ion coll isions a r e in my 
calculat ions. I never took them out of my calculations to check it in that 
fashion. 

HANSEN (Euratom): In the work I repor ted I mentioned that the e lec t ron- ion 
collisions were not important for this one par t i cu la r effect, the linear depen
dence of inverse current on spacing. I did not mean to imply that it is not 
important if you consider it from some other aspect of the volt-ampere 
curve, for example the diode internal voltage drop. 
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ON LOW-VOLTAGE ARC IN CESIUM VAPOR 

I.P. Stakhanov, I.I. Kasikov 

Institute of Physics and Power 
Engineering 

Obninsk, USSR 

I N T R O D U C T I O N 

It is the purpose of this paper to obtain with the help 
of rather a simple model the main qualitative characteristics 
of low voltage arc charge in cesium vapor. 

As it is generally known [1] , [2] , at low temperatures 
and at rather high pressure the ignition is followed by a re
gion of negative resistance on volt-ampere characteristic and 
by hesteresys (Pig» 1). At high temperatures these phenomena 
disappear and the arc ignition is followed only by the charac
teristic change (Pig. 2). The potential qualitative characte
ristic within the interelectrode space is given in Pig. 3. 
For the low voltage arc the large potential drop is characteris
tic in Langmuir's cathode layer and also the anode potential 
drop retarding the electrons leaving the plasma. The potential 
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change in the interelectrode space is comparatively small and 
non-monotonous with the maximum approximately in the middle of 
the interelectrode space [31 , [4l · 

The electron temperature in the interelectrode space chan
ge rather little decreasing to the cathode by 500°K. Later on 
we shall assume the electron temperature constant and equal to 
some mean temperature Te . Strictly speaking slight tempera
ture changes lead to highly sufficient ionization rate change 
within the interelectrode space which appear maximum near by 
the cathode. However,these changes do not influence sufficient
ly volt-ampere characteristics. In this connection we shall as
sume that the ionization rate is defined by the equation 

q,=dn (>,) 
where 0, - the ion quantity appearing in the unit of volume 
per time unit; ri - the plasma density; d- - the ionization 
coefficient determined at the temperature T e 

2. ENERGY BALANCE 

Let us assume the Fermi level in the cathode the begin
ning of the potential count. Then the energy carried by the 
emission electrons into the plasma is equal to 

l(w'+ ψ) 
where j0 - the emission current density; W - the cathode 
work function; Τ - the cathode temperature in energy units; 

G - the electron charge. 
The energy carried by the electrons out of the plasma 

into the cathode is 

So we obtain the cathode differential energy flow 
ι <,*.,' 2TeN , nT e-T 4 £ = Μ / + τ ^ ) - 1 2 - ν - C2) 
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As the anode does not emit the electrons the energy dif
ferential flow from the plasma near by the enode will be 

A t " - ( 3 + j ) ( W ' - 4 V + ^ ) (3) 
where j - the electron current increase owing to the ioniza
tion; A V - the potential drop in the plasma (including the 
layers near by the electrode). 

The energy balance for electron gas in the interelectrode 
space will be 

Δ£ =Δ£ + b (4) 
where S - energy losses in the interelectrode space. Since 
elastic electron-atom collisions do not result in energy change, 
the value S is determined by nonelastic collisions only. The 
value of S will be given by 

S-S' + S" (5) 
where b - the losses due to the ionization; b - other losses 
caused by radiation output and diffusion of excited atoms: 

s'-jQ (6) 
where Q. - energy losses during the ionization event. 

ΰ=Ει + φ = E.L-W+E (7) 
where E. - the ionization potential in volts; φ - the elect
ron gas potential; £ ~ potential drop near by the cathode. 
Substitution of Equations (2), (3), (5) * (7) in (4) (Equation 
of energy balance) yields 

1ÄV = 2^1+J(E.IAV + E' + ̂ ) + S " (β) 

3. ELECTRON TEMPERATURE 

Neglecting temperature gradients of electrons and ions 

we obtain for electron and ion current the following equations 

1 'eö^+eli.r.^ (9) 
J
e e fly

 e
 dx ^ ' 

1«-β1\ώ -ell·«*? (io) 
L L αχ L αχ 
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where î) . ; U ■  diffusivity and mobility coefficients for 
e,i e,L 

electrons and ions; n the plasma density. 

Owing to the volume ionization 

ά\ 
Since one can consider that the volume ionization does not in
fluence the electron current value, it follows that 

3e*const = 3 
From Equations (9) - (11) we obtain 

where 
H = D ^ + ^ ) 03) 

where T\ - the ion temperature taken constant while obtaining 
Equation (12). 

Neglecting the surface ionization in comparison with the 
volume one and considering that near by electrode barriers let 
the ions from the plasma to the electrodes freely we obtain the 
boundary conditions: on the cathode ( x = 0 ) 

on the anode ( X = L ) 

JL * e ̂  dì IxL Ue
J2na^ (15) 

where ¿r, =■ J—J : the values near the cathode are marked with 

one stroke, with two  near the anode. 

Using (1) we write the solution of Equation (12) as 
„ n"n'c0SyL 

Π =R COSyx h sinyL Siftyx (16) 

where , 

ϊ'ΐξ 07) 
L- the interelectrode space. 
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Using Equation (16) we obtain from Equations (14), (15) 

i in*|^+Hi!fu)<
r f

^=o os) 
As n+n'=0 do not satisfy the requirement of positive density 

one must adopt that 
+. eosyL , J ~E> V n 
D y ■.

 fl
 ,—t IrV. 9


5
— =0 (19) 

oo 9m y L 2 » SinyL ^
 ; 

It is worth considering that Equations (14), (15) regarding 

Equation (16) present the system of linear algebraic equations 

relative to η and η . Equation (19) causes zero determinant of 

this system and may be presented as follows: 

The same result one can obtain from the condition of ion 
L, 

balance: ρ 

in'a + inV. = d ndx (21) 

in which (16) is necessary to be used while calculating the in

tegral in the righthand part. 

As A r  Τ 4 » i ( P. the ion free path length), 
4t>a « Pi

 x
i ^ N ^ 

the average value.of the first root of (20) has the form: 

yL*(!*£) (22) 

Equation (22) can be used for determination of electron tempe

rature ( Τ ) which appears to be independent upon current. 

Since y depends on temperature exponentially it results that 

Te decreases logarithmically with increasing L and pressure. 

These results are confirmed with the experimental data \3] >[4]. 

It should be mentioned that in reality electron temperature Te 

rises when current increases. However, this increase occurs ve

ry slowly. According to [3] when current increases from 2 to 10 

a/cm
2
 temperature rises only by 200° from 2600°K to 2800°K 

( τ'  1565°K, ρ = 2 mm Hg). The same conclusion about the weak 

dependence of electron temperature upon current was drawn by 

Rasor \5) · 
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4. ENERGY LOSSES CALCULATION 

Considering the fact that the potential drop in the volu

me is small one may assume that E Δν—t where E  ρο
κ τ 

tential drop at the anode (Fig. 3). The magnitude E —(1^2.)^ 
τ 

Since E. ̂ > f the expression for energy losses in Equa

tion (8) can be written in the form: 

j(E.+C2^3)|)+s" (23) 

X 

Further S is not considered, assuming that the ionization 

losses prevail. Thus the problem reduces to determination of 

the dependency of j on electron current ( j ) and voltage. 

Note that 

j =!(„'+„")<* e ( 2 θ 

From (14), (16) and (19) it follows that: 

using (22) we obtain from (25) 

For determination of n. and n. we use the boundary con

ditions for electron current 

13 =4n'^e exp(^r) (27) 

II 

ln"cree = Jexp(^r ) (28) 

Multiplying member by member (27) and (28) and using (26) 

we obtain: ¡, ^ 

n i = Qo~
J
)
J
^ë" yj (29) 
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η = —t£_ye 1^_ (30) 

je  :m+e%p(^)] 
where neglecting the potential drop we assume 

E'E'WV 

Taking into account (29), (30) and (24) the ionization 

losses will be written in the form: 

stvJ 3d^ü±jgjl (31) 
3.3[i + exp(âuí)] 

'e 

where 

E,+4 £ 
δ=2^ ILXI 

e 

5. VOLTAMPERE CHARACTERISTICS 

Note that in (31) the coefficient £ « 1 because 

u ~~ V M »So when the denominator of (31) differs from zero 

the ionization losses in Equation (8) can be neglected. As a 

result we obtain 

J A Y = const (32) 

where γ _π.' 

const = 2\H ( 
Equation (32) represents a branch of a voltampere cha

racteristic with negative resistance. Since £ « i , the ioni

zation losses ( S ) will be significant only in the case when 

the denominator of (31) is close to zero, i.e. at 

J
 i+expÉaÖT) (33) 

'e 

Formula (33) may be considered as an approximate volt

ampere characteristic at large ionization losses. It corresponds 

to the normal branch of a positive resistance voltampere cha

racteristic. 
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II 

In general case using (8) ana (33) and neglecting S we 

get the following quadratic equation for the voltampere cha

racteristics¿ 

'«■> ,,1^_Γι (34) 

where 

+ I[¿ü+e*
u
)<rAin+T=0 

A 1 i 
e A V

 τ
 3
 τ?

 Te_T
' 

'e 

The dependency I on ΔΙ/ , obtained from the solution of 

this equation at different values of £ » is given in Fig. 4. 

At £ ^ 0 the point of turning on the characteristic can be 

found from the condition that the discriminant of Equation (34) 

equals to zero. At ε = 0 two solutions of Equation (34) coin

cide correspondingly with (32) and (33) (see dashline in Fig.4). 

These curves cross at the point 3 = 0.7830 eûV = 1.27Te 

At high temperatures the ignition occurs under the con

ditions of sufficient overcompensation when the current in the 

predischarge condition can be compared to 30 in value. If the 

magnitude of this current surpasses the value of the current 

at the point of turning of the voltampere characteristics the 

branch with negative resistance vanishes (compare Fig. 2). The 

voltampere characteristics given in Fig. 4 have the saturation 

as the emission current was assumed constant in the calculation. 

As a matter of fact, with the increase of cathode drop the emis

sion current increases (Schottky effect). 

The consideration of this phenomenon leads to the volt

ampere characteristics shown in Fig. 5. 
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R E F E R E N C E S 

1 CTaxaHOB Μ.Π,, IlameHKo Β . Π , , TVCBKOB ΰ . Κ · , JleóeaeB Μ.Α. 

"GoCTOHHHe ΗΟΟΛβΑΟΒβΗΗΗ φΗ3ΗΗβΟΚΗΧ IipOUeCCOB Β ΤβρΜ03ΜΗΟΟΗΟΗ

ΗΗΧ npeoópa30BaTe.JiHx 3HeprHH
M

 AoKJiajn Ha Ι MexayHapoÄHyD K O H 

φβρβΗΙΙΗΟ ΠΟ TepMOSMHCCHOHHOMy npeOÖpa30BaHHD 3ΗβρΓΗΚ ÆOHAOH 

2 Γ·Α.Λο»βΒ H Λρ. "MccjieÄOBaHHe BOJUBTawnepHux xapaKTepHCTHK 

TepMOBMHCOHOHHUx npeoÖpa30BaTejieii" ΙΊΦ 35 I I / I 9 6 5 / 2054 

3 r . A J t ø x e B Η a p . "3oHÄOBfaie HccneÄOBaHHfl njia3Mbi Β τβρΜΟθΜΗΟΟίΐΟΗ-

Hhix npeoópa30BaTejiHx c BHCOKHM ΛαΒΛβΗΗβΜ napoB ue3HH" ΙΤΦ 

36 4 /I966/ 679 

4 r.AJtoaeB H Λρ· "3oHÄ03ue HccJieÄOBaHHH iuia3MH Β ΤΟΡΜΟΘΜΗΟΟΗΟΗ

Hux npeoÓpa30BaTejiHx c BUCOKHM ΛβΒΛβΗΗβΜ napoB I|e3HH" ΙΤΦ 

36 9 / I 9 6 6 / 1685 

5 N.S. Rasor. Conf. Thermoionic Electr ica l Power Generation 

London (1965). 
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χ 

2,0 -

f,0 

0 
0,5 1,0 f,5 Vi M 

Fig. 1. Arc ignition at low 
cathode temperatures ( ρ = 
2 mm Hg, Τ' = 1710°K). 

0,5 1,0 1,5 V(6; 
Fig. 2. Arc ignition at high 
cathode temperatures ( ρ = 
2 mm Hg, T*= 176θ°Κ). 

-φ 

Fig. 3. Schematic potential distribution in 
the interelectrode space 
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Fig. 4. Volt-ampere characteristics of lov; 
voltage arc calculated according to (34)for 
different £ : curve 1 £=0; curve 2 £=0.02; 
curve 3 £= 0.04; curve 4 £= 0.10. 

lieu 
3.0 

2,0 
l,0 
0 

0 0,5 V(6) 

Fig. 5· Volt-ampere characteristics calculated 
with consideration of Schottky effect. 





G9 

TWO TYPES OF POTENTIAL DISTRIBUTION IN COLLISIONLESS 

MODE OF THERMIONIC CONVERTER OPERATION IN THE PRESENCE 

OF A TRANSVERSE MAGNETIC FIELD 

A.Ender 

A.F. loffe Physical Technical Institute, Academy of 

Sciences of the USSR , Leningrad , USSR 

In the collisionless mode of thermionic converter oper

ation considerable losses resulting from magnetic field 

effect are observed. 

This phenomenon was investigated in detail by A.Shock 

(see J.Appi.Phys. ¿1 ,1960, 1978). In the paper mentioned 

it was assumed that the potential distribution across a gap 

is given beforehand and corresponds to constancy of the elec

tric field. 

Now , in a general case the potential distribution 

between any point in an interelectrode gap and the cathode 

may belong to two types: Type A , when the number of elec

trons , reaching the point in question , doesn't depend on 

distribution pattern , and Type Β , when such a dependence 

exists. We obtained intermediate ( relative to Types A and 

B) distribution of potential for arbitrary coordinates of 

point considered on the potential plot and arbitrary magnetic 

field. 

Obtaining general solution of the selfconsistent 
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task in the presence of magnetic field presents great diffi
culties. Nevertheless, for the majority of conditions observ
ed in a converter operating in the collisionless mode this 
task as we managed to prove may be completely solved. 

In the collisionless mode of thermionic converter 
operation plasma is generated on a cathode , electrons being 
supplied by thermionic emission and ions-by surface ioniza
tion. In /3/ it is shown that the electrode sheaths which are 
present during the operation of the converter in a transverse 
magnetic field can influence to a considerable extent its 
current-voltage characteristics. In particular , it is shown 
that in the presence of the electron retarding anode sheath, 
i.e. the plasma potential exceeds the anode potential, the 
current passing through the converter doesn't depend on the 
plasma potential and is determined by that of the anode. Note 
that the number of electrons reaching the anode , doesn't de
pend on the electron pre-history , i.e. it remains the same 
for a whole group of potential distributions. 

Examples of such distributions equivalent for the 
passing current (see /3/) are shown in Fig. 1; the cathode 
is talen for the origin of coordinates , z-axis is directed 
to the anode , y-axis coincides with the direction of the mag
netic field and the potential axis - Φ is directed downward. 

If there exists an electron accelerating sheath at 
the anode , in the presence of a magnetic field in the con-
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verter the current passing through the converter doesn't de

pend on the anode potential and it is determined by the plas

ma potential on the boundary of the anode region. 

Consequently , there exist such potential distribu

tions at which the current passing through the converter es

sentially depends on the distribution pattern. 

One may ask , what is the shape of the potential dis

tribution intermediate between the two types of those describ

ed above. Such a question is valid not only for the anode but 

also for any point z placed in the interelectrode gap. Indeed 

the potential distribution between the point considered and 

the cathode may belong to one of the two types, namely: the 

potential distribution of the Atype , when the number of 

emitted electrons reaching the chosen point is determined only 

by the strength of the magnetic field and by the potential 

difference between this point and the cathode; the potential 

distribution of the Btype which diffères from the Atype in 

that the number of electrons reaching the point in question 

strongly depemds on the pattern of the potential distribution 

between the point and the cathode. 

Let us find now the potential distribution Φ (ζ) in

termediate between A and Btypes provided that the point 

considered is placed on the anode. Let's suppose that we have 

a potential distribution Ψ (ζ) which can be approximated by 

a certain number of segments with constant electric field 

strength. Accordingly $ we'll denote the dividing points as 

0,1,2 ... n, kth point having coordinates ( Znf Ψκ ) and 
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nth point being placed on the anode. 

The electron velocity at each point of division will 

be defined in terms of velocity in the immediate vicinity of 

the cathode (see /3/). For the point 1 we have 

Here Vxo, Va», Vx», Vz, are components of the electron velocity 

at the zero point and the first point , respectively , *Pt 

 eH 

is the potential of the point 1 , CO — y ^  . The point will 

be reached by the electrons the velocities of which at the 

cathode belong to the region S<¿/ 
Vio  («>Z<) +Ζυοζ,Υχ, + ~ΤΡΓ >° 

If the electron has reached the point 1 , its velocity 

at this point may be taken for an initial velocity when iL 

moves towards the point 2 and consequently we can define the 

electron velocity at the point 2 in terms of its velocity at 

the point 1 » 

■Vi* Y¿rffazu*2rtz*,z.)V¿,♦^ρτ(ΨιΦ,) 

Yxz = Ytt-U)(ii'b) (3) 

Using (1) , one can define the electron velocity at the point 

in terms of its velocity at the cathode 

Vii Ytutii^LvirY*.  4*%*· (4) 

V*.  VL  toi,. 

Hence it follows that the point 2 will be reached by those 

electrons passing through the point 1 , the velocities of 

which belong to the region S¿.Z 
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Y¿ - <»*l +
Zoü2

*v*·
+
 ^?r >o 

(5) 

Similarly , for the kth point we may define 3 ¿ κ 

Y¿ -ωζϊ+ϊωΖκΥ***2^ >0 (β) 
This region has the following meaning: if the electron 

has passed all the preceding points of division , including 
k-1 , and if its velocity at the cathode belongs to S>CK , it 
will reach the k-th point. 

Evidently , if each preceding region contains each suc
ceeding region , i.e. the condition 

-£2„<=.Q„.,<--.Qn-zc...<=jQ:i<:.^, (?) 

is satisfied , the number of electrons emitted from the cath
ode getting in a certain point of division , doesn't depend 
on the electron prehistory , i.e. the potential distribution 
is of A-type for all the points in the interelectrode gap. If 
the condition (7) is satisfied , the current passing through 
the converter will be determined only by the region -be/?: 

Vz! - (»>D)\ 2 to&V,. >i±cpc>0 (8) 

Here J)^ 2η is t û e
 distance between the cathode and the anode, 

^PCL ~ Φα is the anode potential. The current will depend only 

on the anode potential even in case when a less stringent 

condition 

S?n <= QU) (9) 

is satisfied for all the values of z. 
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It can be shown that the above expression implies the 

following inequalities 

2u>2 ^ ΖωΡ Ζ marc * o>a>£> 

The first of these inequalities is fulfilled automatically 

and the second one when it becomes an equality, determines 

the needed potential distribution Φ (2) ,i.e. the bounder 

distribution intermediate between numerous potential distribu

tions of the A and B types relative to the anode 

<P(z) = <PcLy +fá(£)] en) 

Γ . ω
1
 m¿>

l
 A χ/±) _ / ζ γ Ι^ 

~ Ζ e (Pd '
 0i

#J -(¿'Ζ ¿> 

If Η is measured in oersteds , D  in mm and Çk. in volt 

we'll get Ò  ' " ^ for dimensionless parameter. 

Fig. 2 represents the relationship τ C è) at Φα. =0.9 ν 

and for three values of 0 : o  0.1 ( Η * J)  iOoe* Μ η ); 

Ö *{(H*£> = J$o<L* MM) . S = /Ο (H* P = /ÛÛce*r1*) . 

Thus , if at a given anode potential and at constant 

strength of an external magnetic field condition Φ(ί)^- Φ (?) 

is satisfied , the current passing through the anode doesn't 
depend on the potential distribution 

In an overeompensated mode of the thermionic converter 
the potential distribution belongs to the A-type either for 
all the points in an interelectrode gap ( at small anode po
tential values , φΛ < φ^ ) or for the majority of points in 
an interelectrode gap with the exception of a narrow anode 
sheath ( at large values of anode potential Φα. ̂ * Φ/> ). 
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In the first case the current passing through the con
verter is determined by the anode potential , in f;he second 
case it is determined by the plasma potential at the boundary 
of the anode sheath. Therefore , in order to get current-vol
tage characteristics of the converter in a transverse magnet
ic field one should calculate the potential of a point placed 
at the anode sheath boundary. 

For a potential distribution of the A-type electron 
concentration at any point may be determined in a general 
form from the concentration of emitted electrons in the im
mediate vicinity of a cathode (only the electrons emitted from 
the cathode are taken into account). Magnetic field practic
ally doesn't influence ions , hence , their concentration de
pends only on potential of the chosen point. 

The plasma potential may be calculated on the basis 
of the plasma neutrality condition for any region except nar
row sheaths near electrodes. In particular 9 it may be cal
culated for the anode region boundary. 

After the calculations mentioned above the current 
passing through the converter is determined by means of re
latively simple expressions. 

Current-voltage characteristics have been drawn for 
several values of the magnetic field strength and several 
values of overcompensation ratio jf , the latter being 
equal to the ratio of ion and electron concentrations at the 
cathode. In Fig. 3 current-voltage characteristics of the 
converter are presented corresponding to constant magnetic 
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field strength ( S 2) and to several values of the overcom

pensation ratio. Here S  — ^. ,7 
(ZroK I )"■ 

The distinguishing feature of currentvolatge character

istics in a magnetic field when collisionless plasma is pre

sent in the interelectrode gap is the dependence of satura

tion current on the magnetic field strength. 

On the basis of a great number of calculated current

voltage characteristics the dependence of saturated current 

on the magnetic field strength at different values of the 

overcompensation ratio was obtained ( Fig. 4). 

Owing to strong dependence of the curves obtained on 

this parameter we may experimentally determine ion flow from 

the cathode surface directly in a working mode of the therm

ionic converter. 
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ΐψ 
Examples of different potential distributions which are 
characterized by the same value of current in the pre
sence of a magnetic field. 
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r
' ! 

ι 
Potential distribution ÇP (¿) intermediate between po

tential distributions of the A and Btypes for three 

values of the parameter υ . 

( d = 0,1; H x D = 10 oersteds χ mm 

0 = 1 ; Η χ D = 33 oersteds χ mm 

Õ = 10 ; Η χ D = 100 oersteds χ mm ) 

and ^ = 0.9 V 
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Fig. 5 
Theoretically computed currentvoltage characteristics 

of the ideal collisionless thermionic converter placed in 

a transverse magnetic field ¡Í = 2 , at different values 
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0,5 1 {5 2 2,5 3 3.5 k 4¿ S 

Dependence of dimensionless saturation current ( -=— ) 
in a magnetic field on S at various values of y 

I - emission current from the cathode o 
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EFFECT OF CESIUM PRESSURE ON THERMIONIC STABILITY* 

A.Schock 
Republic Aviation Division of Fairchild Hiller Corporation 

Farmingdale, New York 

Abstract 

It is shown that under certain conditions of heat input, reservoir 
temperature, and load voltage or resistance a thermionic converter 
can equilibrate at two radically different operating points, corresponding 
to conditions of high and low cesium coverage. Moreover, abrupt t ran
sitions between these operating regimes, accompained by a temperature 
rise of hundreds of degrees, can occur whenever the critical heat gen
eration rate for a given reservoir temperature is exceeded. To pro
vide adequate safety margin against such an occurrence, thermionic 
systems must be operated at relatively high cesium pressures, even 
though this may cause some performance degradation. 

It is customary for thermionic system designers to choose the optimum 
operating point by maximizing some figure of merit, such as power density, effi
ciency, or power per unit weight. The present paper seeks to demonstrate that 
the choice of operating parameters, particularly the cesium reservoir temperature, 
must also take account of a factor we shall refer to as "thermionic stability. " In 
fact, under certain conditions this factor muât dominate over other considerations 
in order to achieve a stable system and avoid excessive temperature excursions. 

In practical applications, thermionic converters typically operate under 
conditions of constant voltage or constant load resistance. Under these conditions 
relatively small perturbations of load or heat input can lead to extensive desorption of 
cesium, with a consequent large rise in emitter temperature. We designate this 
phenomenon as "thermionic burnout" because of its similarity to burnout in boil
ing heat transfer. This condition had been postulated by the author in an earlier 
paper^ ' on the basis of purely qualitative arguments. The recent development of 
the SIMCON code^ ' for the theoretical extrapolation of thermionic performance 
data over a very wide range of temperatures has made it possible to demonstrate 
this effect on a quantitative basis. 

* Work supported by U. S. Atomic Energy Commission 
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To clarify the subsequent discussion, let us first examine typical curves of 
current density versus emitter temperature, as illustrated by Figure 1. AU data 
are for a tungsten emitter (with a 4.75-ev bare work function) and a 1000°K -
molybdenum collector, separatedbya 0. 025-cm gap. The bottom curve represents 
the saturated emission of the bare tungsten emitter. The other curves are for a 
fixed converter potential of 0.6 volt, and represent constant cesium reservoir 
temperatures of 600, 610, 620, and 630°K, respectively. 

Fig. 1: Effect of Temperature 
on Current Density 

2200 2400 2600 
EMITTER TEMPERATURECK) 

For emitter temperatures up to 
2400°K, the curves were produced by 
a s p e c i a l "thermionic correlation" 
(TICORR) computer code. The pro
gram operates on a large array of 
SlMCON-generated' ' current-voltage 
heat flux data, covering a wide range 
of emitter temperatures (1700-2400°K), 
coUector temperatures ( 850-1150°K), 
and reservoir temperatures (55 0-6 90°K). 
TICORR performs multi-dimensional 
interpolations, and automatically pro
duces a wide variety of cross-plots, 
not only of the above six parameters 
but also of power density, efficiency 
and specific load conductance. 

Construction of the curves above 2400°K was based on the fact that each curve 
must asymptotically approach the "bare emitter" curve at sufficiently high temper
atures. Since the subsequent discussion is primarily concerned with the qualitative 
nature of the effect, it is sufficient to draw smooth transitions between the TICORR 
plots and the "bare emitter" curve, as illustrated by the dashed curves in Figure 1. 

Each of the constant cesium pressure curves passes through a maximum and 
a minumum. As in the case of Langmuir S-curves, this comes about because 
cesium desorption increases the emitter work function at higher temperatures. 
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Figure 2 presents a plot of emitter 
temperature versus heat flux, correspond
ing to the data shown in Figure 1. The left
most curve represents the emitter heat flux 
due to radiation and cesium conduction. 
(Actually, cesium conduction varies with 
reservoir temperature, but this variation 
is generally small compared with the total 
heat flux.) The curve marked "bare emitter" 
contains the additional heat flux due to 
saturation-current electron cooling from 
the uncesiated tungsten surface. As can 
be seen, at very high temperatures this 
makes a quite appreciable contribution. 

Fig. 2. Variation of Temperature 
with Heat Flux 

3200r 

120 160 
EM I HER HEAT FLUX, W/cm2 

Finally, the constant cesium pressure curves contain the electron cooling 
heat flux corresponding to the current densities depicted in Figure 1. Each curve 
again passes through a maximum and a minimum. As would be expected, the 
temperature at which the maximum heat flux occurs increases with cesium press 
ure, as does the magnitude of the maximum heat flux. 

Before proceeding to the principal subject of this paper, it should be noted 
that Figure 2 provides a very graphic illustration of the open-circuit temperature 
r ise , which results from loss of electron cooling. The curves reveal that there is 
a rather substantial difference between a literal open-circuit, i . e . a complete 
break in the diode-to-load circuit, and the much more likely nominal "open-circuit'; 
i . e . loss of cesium due to a small leak (as long as sufficient cesium remains for 
space charge neutralization, -10" torr) . This can be seen by comparing the "bare 
emitter" and the "radiation and conduction" curves in Figure 2. 

The distinction, however, is somewhat academic, since the curves show that 
both a literal and a nominal "open-circuit" would lead to an excessively high tem
perature r ise . This demonstrates the importance of designing the fuel-emitter 
configuration to provide an alternative cooling mechanism in the event of this type 
of failure. 
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To appreciate the significance of the curve shapes shown in Figure 2, let us ex

îine a single such curve, as illustrated in Figure 3. Only this time the abscissa 

ould be interpreted not as the emitter heat flux, but as the heat generation rate per 

dt emitter area. As can be seen, for any heat generation rate between points A and 

the various SIMCON equations ^ ' a re satisfied at three distinct emitter temperatures, 

«responding to high, medium, and low cesium coverage. However, only two of these 

jpresent stable operating conditions, since the middle point will be shown to be inher

ltly unstable. At which of the two outer points the converter operates must depend on 

s previous history. 

Fig. 3: Effect of Varying 
Heat Generation Rate 

Consider a converter starting from 

equilibrium at point 1, whose heat gener

ation rate is increased in a series of small 

steps, with sufficient time intervals be

tween steps to aUow the system to equili

brate. Each increase in heat generation 

produces a small increase in emitter tem

perature, until point D (the cesium de

sorption point) is approached. Any further 

increase in heat generation, however small 

leads to a condition in which the generated 

heat exceeds the heat leaving the emitter, 

resulting in a steady temperature r ise. As 

the emitter temperature r ises, its heat 

loss rate (which follows the dashed portion 

of the curve) diminishes. This further in

creases the lack of equilibrium, causing 

the temperature rise to accelerate. 

Clearly, the temperature will continue to go up until point 2 on the lowcesiumcoverage 

branch of the curve is reached, where equilibrium is reestablished. Any further in

crease in heat generation will cause the operating point to follow the upper branch in a 

normal fashion. 

Conversely, when the heat generation rate is decreased from point 2, the oper

ating point will follow the upper branch until point A (the cesium adsorption point) is 

reached. Any further decrease in heat generation will cause an abrupt drop in temper

ature, until equilibrium is reestablished at point 3 on the highcesiumcoverage 

branch of the curve. Thus, the overall cycle is seen to exhibit a hysteresis effect, 

completely bypassing the middle (negative slope) branch of the curve. 
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Although it might be possible, by some transient maneuver, to bring the con
verter to equilibrium at some point on the middle branch of the curve, such equil
ibrium would be inherently unstable, since even a slight perturbation of the heat 
generation rate ( or load resistance) would drive the converter to either the upper 
or lower branch of the curve. 

The principal significance of the phenomena discussed above is that they 
introduce an additional constraint in choosing the converter operating point. 
For example, with a maximum emitter temperature of 2000°K and a 0. 6 volt load, 
Figure 2 shows that it is not practical to employ reservoir temperatures at or 
below 610°K, even though such temperatures may yield the highest conversion 
efficiencies. 

Fig. 4: T-q Variation at Constant 
Load Resistance 

Even a reservoir temperature of 620°K would provide scant margin for safety, 
since the diode operating point could be shifted to the high temperature (3000°K) 
branch of the curve by a minor increase in heat generation rate (e.g. , from 87 to 
93 watt/cm3). Such small deviations, either 
spatial or temporal, would be very difficult 
to avoid in a thermionic reactor. It there
fore appears that to operate at 2000°K with 
a fixed 0. 6-volt load one should employ a 
reservoir temperature of 630°K or more. In 
that case the "burnout" condition, i . e . , the 
cesium desorption point, is not reached until 
the heat generation rate increases from 89 to 
116 watt/cm3 .providing a comfortable 30% 
safety margin. 

The precise numbers in the above dis
cussion would vary somewhat for different 
load voltages, or for a fixed-resistance 
rather than fixed-voltage load. However, 
the general principles discussed above would 
still apply. This is illustrated by Figure 4 
for a constant load conductance of 30 mho per 
cm2 of emitter. 
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Finally, it is of interest to examine the dynamic behavior of a thermionic 
reactor passing through the cesium desorption point. To do so, we make use of 
a specialized digital transient analysis code developed at Republic Aviation. The code 
combines a zero-dimensional nuclear analysis using six delayed neutron groups with 
a2-dimensional(rz) thermal analys is of a single thermionic fuel element. The program 
uses the TICORR code to compute the instantaneous emitter heat flux. It permits step 
changes in reactivity, separate fuel and emitter temperature feedback coefficients, 
and ramp insertion of scram rods with programed time dealy. 

The code automatically produces plots of heat generation and heat loss rates 
per unit emitter area; also of reactivity, emitter temperature and maximum fuel 
temperature. Such computer-produced plots are shown in Figures 5 and 6. Both 
figures portray the behavior of an open-loop reactor following a 2-cent reactivity 
step change, and are based on the identical converter geometry (the details of which 
are not important for the present discussion). The reactivity feedback coefficients 
were taken to be +0. 001 φ /°K for the fuel and -0. 020 φ l°K for the emitter, with a 
1-microsecond prompt neutron lifetime. Both figures assume a constant collector 
temperature of 1000°K, and initial equilibrium at an emitter temperature of 2000°K. 
(The difference between the heat generation and loss rates during the transient has 
been shaded in both figures, to bring out the net heat surplus or deficit. ) 

The principal difference between the figures is the postulated cesium reservoir 
temperature, which is 630°K in Figure 5 and 620°K in Figure 6. In the former case, 
it is seen that, as the result of the 2-cent reactivity step, the heat gain and loss rates 
slowly rise from 88 to 113 watt/cm2 , where a new thermal and nuclear equilibrium 
is established. During this process,which occurs over a period of several minutes, 
the emitter temperature rises by approximately 95°K, without any temperature over
shoot. Note that the new emitter temperature is still below the cesium desorption 
point for a 630°K reservoir. 

By contrast, consider the effect of the same reactivity perturbation in the 
case of a 620°K reservoir temperature, shown in Figure 6. As before, the stepped 
up reactivity produces a prompt jump in heat generation; this causes a gradual rise 
in temperature, which in turn lowers the reactivity and raises the heat loss rate. 
However, after 1. 5 minutes the cesium desorption point D is passed, and the sub
sequent loss in cesium coverage causes a sharp drop in the emitter cooling rate. 
This continues until point A is passed at t=3. 4 minutes, when the heat loss starts 
to rise again. 
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Fig. 5: Effect of 2-Cent Step with 630°K Reservoir 
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Meanwhile, because of the large heat surplus, the emitter and fuel temperatures 
have risen by hundreds of degrees. As a result of the emitter feedback coefficient, 
the reactivity drops sharply (passing through the criticality point at t = 1. 9 minutes), 
leading to a decrease in the heat generation rate. Eventually, at t = 3.7 minutes, 
the heat gain and loss rates cross, the emitter and maximum fuel temperatures 
peak at 2534 and 2650°K respectively, and the reactivity bottoms at -7 . 98 cents. 

The subsequent heat deficit causes the temperature to dimmish slowly until, at 
t = 4.1 minutes, the cesium adsorption point A is passed again. After this, the in
creased cesium coverage produces a sharp increase in the heat loss rate, with a 
corresponding drop in temperature. 

At t = 5.1 minutes point D is passed, and the heat loss rate drops abruptly, 
until it crosses the rising heat production curve at t=5. 5 minutes, at which point 
the emitter temperature reaches a low point of 192 0°K and the reactivity peaks at 
+3. 5 cents. Although Figure 6 is cut off at 8 minutes, extended computations have 
shown that the cycle essentially repeats indefinitely. Within the assumptions of the 
particular problem, there is no damping mechanism and the system would never 
reach equilibrium. 

In a sense, the results presented are somewhat reassuring, since they show 
that the various changes occur quite slowly, allowing ample time for the control 
system to react. This relative sluggishness arises from the high heat capacity 
of the fuel-emitter assembly. It may therefore be argued that the problem is not 
really of practical interest, since the type of transients described above would be 
prevented by the control system. The argument is flawed for two reasons : Even 
if it is feasible to do so, it is not very desirable to operate a basically unstable 
system, where the control system must be constantly active to prevent small per
turbations from causing large temperature excursions. 

Moreover, even if it were practical to avoid the above type of transients for the 
reactor as a whole, this still would leave the problem of undetected "burn-out" in 
individual converters. That would be a danger if the design operating point were close 
to the cesium desorption point, since some variation among converters is unavoidable. 
The transient studies therefore confirm the desirability of operating at a higher cesium 
pressure, i . e . , 630°K in the present instance, to provide a reasonable margin of safety. 
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ON THE THEORY OF ELECTRODE LAYER OF PIASMA [1] 

I.P. Stakhanov, P.P. Scherhinin 

Institute of Physics and Power 
Engineering 
Obninsk, USSR 

j. Within Langmeur's cathode layer at the arc regime 
there is a drop of the potential which retards the electrons 
leaving the plasma. The value of this cathode drop E is well 
above the heat energy both of ions ( Τ ) and electrons ( Te ), 
Because of this the electron distribution function near by 
the cathode is very close to the Maxwellian distribution 
except the high energy region E ̂ E o where the electron func
tion is perturbed by the cathode. The ions leaving the plasma 
are not retarted by Langmeur's layer and, thereby, the ion 
function may differ from the Maxwellian one essentially. The 
relaxation of the ion function to the equilibrium function 
must be over the distances of an order of a free path length. 
We shall assume that the free path length is well above the 
width of Lanameur's layer " α ". 
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2. In case of the plasma ionisation low rate in the re

gion close to the cathode the ionatom collisions will pre

vail. Therefore the atom distribution function may be consi

dered rather accurately equal to the Maxwellian function 

(with the temperature Τ ). Then a kinetic equation for the 

ion function can be written as the following: 

where υ  the velocity along % axis, 

Π = duj&x) 
(?) 

(3) 

χ the relaxation time of the ion function which we as

sume independent on the velocity. 

So in (1) it has been assumed that the atoms of the 

plasma are like a reservoir absorbing ion energy and impulse. 

As it has been said above the electron function is ve

ry close to the equilibrium one; then electron density and 

the electric field in the plasma are bound with the barame

ter formula. From this it follows that in the quasineutrali

ty region next equation is available: 

c _
 T

e ι iin 

ß > — T Ï Ï H 7
 w 

In the case of the arc the surface ionisation on the 

cathode can be neglected when comparing with the volumetric 

one. Then the ion flow into the plasma may be put equal to 

zero, namely 

jM)=0 ,ν^0 (5) 



 981 

3. If the elctric field is not taken into account then 

the equations (1), (2) are simply one linear integrodiffe

rential equation with an unknown function f (υ',χ) · Making 

Fourier's transformation in the halfspace χ ̂ 0 and using 

the boundary condition (Eq. (5)) one can reduce Eqs. (1),(2) 

to a singular integral equation: 

where 

λΜ1 + ÏS 
di 

2. 

e 

tu 
(7) 

j(u)=J(u,0) 

«g.c, 
o 

= ίϊτ 
VIA 

Moreover, it is proved that the distribution function 
of the ions going out of the plasma -f-(U) is bound with Ν(κ) 
(Fourier's transformation of the ion density) with the follow
ing equation: 2 

jM-^nr-Nfø (8) 
Equation (6) can be reduced to the Rieman-Hilbert pro

blem the solution of which gives: 

where 2 

X(H0-*.xp[J&(±A«y^-4) ™ 
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The functions j(u) and X(u) are plotted in Fig. 1. 

For the ion flow ( i ) the next equation is received: 

η(0)σ 

whereëf=,/°T the velocity along X axis, n(0) the ion den

sity at the boundary. 

Calculating some momenta of the distribution function 

(9) one finds mean ion energy corresponding to X velocity 
Τ 

component equal to 0.7Τ at the boundary instead of k in 

the case of the equilibrium distribution. The mean energy 

carried out of the plasma by an ion is equal to 2.27 Τ . Let 

us notice here that for U>i the function (9) is well appro

ximated by the function 

}(U) 

2 

^/in(0)(ü+l)e"
ü 

il ii 

The momenta of this function are close to those of func

tion (9) with the precision more than 0.5$. 

4. The electric field influence is possible to be taken 

into account by replacing in the nonlinear term of Eq. (1) 

the function Ην,*) by its equilibrium expression nÇ . Then 

Eq. (1) can be reduced to the liner one and solved by the 

method described previously. In this approach the electric 

field does not influence the ion function at the boundary. 

Because of this Eqs. (9), (11) do not change. However, the 

electric field changes the space behavior of the ion function. 

The latter can be obtained by replacement in Eq. (8) the func

tion P(U) DU t Ke function 

" T , 
j ^ + f n(0)|(u) 

It results in: 

ι Τ 

(12) 
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where ξ = ^ τ . The function riz(|) is shown in Fig. 2. 

The electric field can be calculated from Eqs. (4), (12). 

The space potential distribution is plotted in Fig. 3· The 

potential drop at the distances of about the free path length 

( νοτ ) near by the cathode is equal to Τρ approximately 

(Fig. 3). At the large distances (the diffusion region) from 

the cathode the potential drop is more than Te . If ^0τ — 

10~
3
 cm (ions of Cs), Te = 0.2eV , ^ ^{ at the dis

tances of | A 0.5 * 1 the electric field intensity is about 

100 v/cm. 

From Eq. (12) one obtains for an extrapolation length 

L : 

L1.ÍH6 + 41? vT Τ 03) 

Of course, the account of the electric field described 

above is a very approximate one. However it proved possible 

to indicate the correction upper limit caused by the elect

ric field. Obviously,it may be found if Eq. (1) is solved 

with assuming the electric field space constant and equal to 

τ 
the field near by the cathode. This gives for £ =Ί "the next 
results: _ 

n(0) V r— , r-
< : V2.il '1.0 ' 'J ¿r 

the mean energy of an ion < 1.26 Τ , the mean energy car

ried out by an ion from the plasma < 2.46T. 

5. Let us consider now the behavior of the electron 

function in the region of high energies E ^ E 0 «We assume 

that the free pathPenothPfor the electronelectron collisions 

is more considerable than the free path length ï for the 

electronatom ones. The elastic electronatom collisions ta

ken into account, it is enough to study the one—velocity case, 

Then the kinetic equation for the electron function is: 
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tytOVp (14) 

where x=Lu,  the coordinate orthogonal to an electrode, 

ji the angle cosine between external normal to the plas» 

ma boundary and the velocity of an electron. 

For the electrons with E ̂ E ^ ^ T g in the quasineu

trality region the electric field can be neglected. But Lang

meur's layer electric field may be taken into consideration 

in the form of the boundary condition as: 

where M0 = ^/^ · Namely, the electrons with E Ji < E0 are 

reflected back into the plasma. 

Equation (14) together with the boundary condition (15) 

can be reduced to the. singular integral equation of the form: 

, r ctttftt) , f dttí(t) 

-f i o 
t+ ) i + (16) 

where * i ±
 +

P 
f(¡i)=f(f>fi),· ja ^ 0 , ( 1 7 ) 

6. It can be shown that the angular distribution func

tion of the particles leaving the plasma is readily the iso

tropical one if the angular distribution function of the par

ticle going into the plasma is the same. In this sense the 

angular distribution problem is not interesting (if the max

wellization process is enough slow: Ζ ̂  < ). Therefore let 

us consider the case of not emitting electrode ( Cl (ƒ0 — 0 )· 
In the right hand side of Eq. (16) there is the nonsingular 
integral term. Owing to this the formal solution of the Rie-
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mann-Hilbert problem corresponding to Eq. (16) leads to the 

f the se 
r dij ω 
(^+jM)YC-t) C18) 

Fredholm's integral equation of the second kind: 

jp-i^jH-^j 
where -f (ƒ0 is the function 4 (ƒ0 with the unit zero momen
tum. The solution of this equation is shown with different 
values of jx0 in Fig. 4 (dots). If IL(o = D the found solu
tion coincides with the known solution of the Miln's problem. 
As it is seen in Fig. 4 the exact solution of Eq. (16) is 
enough well approximated by the straight lines (with accuracy 
more than 2.5$). 

7o Finally, let us consider the electron flow through 
the potential barrier E 0 assuming the Maxwellian velocity 
distribution for the electrons and approximating their angu
lar distribution by the following formula (see Fig. 4): 

tw a · <+),*Ρ d« 
o 

It is proved that between the flow of the electrons 
and their density p. a-t the boundary there exists the rela
tion: 

J 
— -IS 

UeT'X(%) = ¡ u e V (20) 

where ue — /γ^ · The function Χ (Ό is plotted in 
Fig. 5. For t= 0 X(0)= 2.33; but for t » 1 X ( O = i + 
+ ^ ~ jrx · Tne extrapolation length has been calculated for 
the electrons X(u0) (See FiS· 6)· 

R E F E R E N C E 

Μ Μ.Π. CTaxaHOB. ΛΤΦ 37 I I (1967) 2067 
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Fig . 5 . 

Fig . 6, 
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CALORIMETRIC MEASUREMENTS WITH A HEAT PIPE 
THERMIONIC CONVERTER 

J. Bohdansky and E. van Andel 
Eura tom CCR, Direct Conversion Group, I spra (Varese) , Italy 

Abs t rac t 

A planar diode has been constructed with a co l lec tor - and a guard ring 
heat pipe. In this construction the cen t ra l collector tube is surrounded 
by an annular shaped guard ring heat pipe. Both pipes a r e operated at 
equal t empera tu re (established by an iner t gas layer of equal p r e s s u r e ) to 
avoid any losses of heat energy from the cen t ra l tube. The generated heat 
energy at the col lector is measured by the heat flow through the col lector 
pipe with an accuracy of about 2%. 

The spacing between the Re emi t t e r and the Nb col lector is var iable be 
tween 0. 05 mm and 1 mm. Emi t t e r t empera tu re and C s- tempe ra tu re a r e 
controlled by e lect ronic means (better than 0. 5%). 

Measurements have been performed at 1800 K emi t t e r t empera tu re and 
different spacings (0. 05 mm, 0. 2 mm and 1 mm) and col lector t e m p e r a 
tu res (900°K, 1000°K, 1100°K). These exper iments allow an exper imenta l 
definition of generated e lec t r ica l power density and of the e lect rode e lect rode 
efficiency. Both values a r e important for p rac t i ca l conver te r design. 

The most significant resul t of the measu remen t s is the behavior of the 
heat production at the col lector as a function of cell cu r ren t . At low co l lec 
tor t empera tu re (900 K) the well known l inear relat ion between cell cu r r en t 
and heat production ex is t s . At high col lector t empera tu re (1100 K) the heat 
production is considerably reduced for cell cu r ren t s up to 10 A / c m . T h e r e 
fore, the highest e lectrode efficiencies (14%) have been measured at those 
col lector t empera tu re s (1100 K). The maximum power density has been 
measu red at lower collector t empera tu re (1000 K) in accordance with other 
data, r e fe r red to in l i t e r a tu re . 
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Introduction 

E lec t r i ca l power generat ion and heat generation at the collector of a t h e r m 
ionic conver ter a r e the most important values for the application of these 
devices . Measured data of both quantities a r e needed for prac t ica l cel l d e 
sign as well as for a physical interpretat ion of d ischarge and electrode 
surface conditions. E lec t r i ca l power generat ion is measured usually in test 
diodes with a guard ring collector to re la te this quantity direct ly to the e l ec 
trode sys tem. 

Measured values of heat production at the collector also should be related 
to the e lectrode system in o rder to use this data in p rac t ica l cell design. 
Unfortunately, only few measu remen t s exist where this quantity has been 
investigated [ l , 2 ] . In most of these exper iments diodes with guard ring 
s t ruc ture were used. The col lector lead was constructed as a the rmal 
bridge and the heat generation of the collector was measured by the heat 
flow a c r o s s this br idge. Uncontrolled side losses of heat energy and the not 
very well known behavior of the rmal conductivity of the lead ma te r i a l l imited 
the accuracy of such m e a s u r e m e n t s . 

In this paper a cell construction is descr ibed, where e lec t r ica l power gene- · 
rat ion and heat generation can be measured with sufficient accuracy . In this 
construction the collector is cooled by a heat pipe and the heat flow through 
the pipe is defined ca lo r imet r i ca l ly . Radiation and conduction losses from 
the pipe to the guard ring a r e pract ical ly avoided. 

This kind of devices a lso allows a d i rec t measurement of the electrode effi
ciency, which is normally calculated making some assumptions about i r r e 
vers ib le losses [3 J . 

Cell construction 

The cell construction is given in fig. 1. A Re-emi t t e r is joined (by hot 
press ing) to a smal l Ta-heat pipe (working fluid Ag) to establ ish constant 
t empera tu re a c r o s s the emi t te r surface. The emi t t e r -co l l ec to r spacing can 
be adjusted by three m i c r o m e t e r screws between 0. 05 mm and 1 mm. 
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The collector guard ring construction consis ts of two heat pipes whereby 
the cent ra l collector tube is surrounded by an annular shaped guard ring 
heat pipe. Both tubes a r e operated with an inert gas layer of equal p r e s s u r e 
I 4 J . Therefore , the t empera tu re in both pipes is equal and independent of 

al l d i scharge p a r a m e t e r s . The vapor -gas t rans i t ion zone has been kept in 
the shielded par t (see fig. 1 dotted line) for al l repor ted m e a s u r e m e n t s in 
o rde r to avoid also radiation losses to the guard ring heat pipe. Both pipes 
a r e cooled at the upper end by water cooled copper cones . The heat flow 
through the col lector tube is measu red with an accuracy of 2% by the usual 
technique in heat pipe r e s e a r c h [ 5 J . 

E m i t t e r - and Cs - t empera tu re a r e controlled by electronic means (s tabi l i 
zation bet ter than 0. 5% during a run). 

Measurements 

Generated e lec t r i ca l power and heat energy produced at the col lector have 
been measured at 1800 K 
tor and C s-'tempe r a t u r e . 
been measured at 1800 K emi t t e r t empera tu re but different spacing, co l l ec -

In a separa te run heat t r ans fe r has been measu red a lso at open c i rcui t con
ditions to m e a s u r e the radiation losses of the col lector sys tem as well as 
to prove the rel iabil i ty of the col lector heat pipe construct ion. A typical 
resul t of the la t te r m e a s u r e m e n t s is given in fig. 3. Heat generat ion at the 
col lector is indicated as a function of C s - r e s e r v o i r t e m p e r a t u r e . The expect
ed relat ion for the heat flow through the cell has been found [3 ] with r e a 
sonable values for the effective emiss iv i ty of the e lec t rode sys tem ( e' =0. 15) 
and the the rma l conductivity of the Cs-vapor ( λ = 6. 7 · 10 W/cm K). 

A typical resu l t for power and heat generat ion is given in fig. 2. Both v a 
lues a r e measured as a function of cell cu r ren t and re la ted to unit e lec t rode 
a r e a . The measured power generat ion shows the typical and well known b e 
havior with two maxima in the ignited and unignited d ischarge mode. 

Two reg imes of operation a r e a lso indicated by the heat generat ion at the 
col lector . A sudden change in power generat ion occurs at the ignition point 
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due to a change in s u r f a c e p o t e n t i a l and a r c r a d i a t i o n . Unexpec ted is the 

b e h a v i o r of hea t g e n e r a t i o n in the igni ted r e g i m e . A v e r y weak i n c r e a s e of 
. 2 hea t e n e r g y in the c u r r e n t i n t e r v a l up to 10 A / c m h a s been m e a s u r e d . T h i s 

i n c r e a s e d e p e n d s on c o l l e c t o r t e m p e r a t u r e ind ica ted in fig. 6. M e a s u r e d 

da ta at fixed spac ing and C s - t e m p e r a t u r e a r e p lo t ted in t h i s f i g u r e . At low 

c o l l e c t o r t e m p e r a t u r e (900 K) the expec t ed l i n e a r r e l a t i o n was found be tween 

hea t p r o d u c t i o n and ce l l c u r r e n t . H o w e v e r , at high c o l l e c t o r t e m p e r a t u r e a 

s ign i f ican t dev ia t ion f rom th i s r e l a t i o n h a s been m e a s u r e d leading to a r e 

duced hea t p r o d u c t i o n . T h e r e f o r e , the e l e c t r o d e eff ic iency i s h i g h e r a t high 

c o l l e c t o r t e m p e r a t u r e a s ind ica ted in fig. 4 in sp i t e of the r e d u c e d p o w e r 

g e n e r a t i o n . T h i s quan t i ty , which m a y be defined by 

_e (1) 
Tl W + W 

e c 

(W e l e c t r i c a l p o w e r g e n e r a t i o n p e r unit a r e a 

W hea t g e n e r a t i o n a t the c o l l e c t o r p e r unit a r e a ) 

can be m e a s u r e d in such a d e v i c e . 

M e a s u r e d da ta of p o w e r d e n s i t y and eff ic iency a r e p lo t ted for d i f fe ren t s p a 

c ings in fig. 5. 

The h ighes t e l e c t r o d e eff ic iency has been m e a s u r e d at a spac ing of 0. 2 m m . 

The r e d u c t i o n in eff ic iency a t a c l o s e r spac ing (0. 05 m m ) can be exp la ined 

by the h i g h e r heat conduct ion th rough the C s - v a p o r . 

D i s c u s s i o n 

The m e a s u r e d data p r e s e n t e d in the foregoing sec t ion should show the p o s s i 

bil i ty to m e a s u r e a l s o heat p r o d u c t i o n and e l e c t r o d e eff ic iency with the d e s 

c r i b e d hea t p ipe c o n v e r t e r . The knowledge of t h e s e q u a n t i t i e s in add i t ion to 

the p o w e r g e n e r a t i o n for d i f ferent e l e c t r o d e s y s t e m s may give a b e t t e r b a s i s 

for p r a c t i c a l c o n v e r t e r d e s i g n . T h i s is of s p e c i a l i m p o r t a n c e for the c o n s t r u c 

tion of i so tope fueled t h e r m i o n i c c o n v e r t e r s , w h e r e the eff ic iency is of e x 

t r e m e i m p o r t a n c e . The d i s c u s s e d b e h a v i o r of the hea t p r o d u c t i o n a t the c o l l e c · 

t o r should be c o n s i d e r e d a s a p r e l i m i n a r y r e s u l t . M o r e da ta at d i f fe ren t e m i t -
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t e r t empera tu re s and for different e lectrode ma te r i a l s a re needed to learn 
whether this effect is of importance also for other d ischarge conditions or 
not. Moreover , a conver ter analysis should be based on more data than 
those repor ted h e r e . Never the less , the reported resul ts indicate the im
portance of those measu remen t s also for a theoret ical interpretat ion of 
the conversion p r o c e s s . 
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DISCUSSION 

Speaker of paper H-2: J. BOHDANSKY. 

SAGGAU (Germany): Do you believe that you can m e a s u r e quantitatively 
the radiation from the p lasma by this method? 

BOHDANSKY (Euratom): Three effects occur at the ignition point. One is 
of course the change in radiation of the p lasma . The second is a change 
in the p lasma sheaths . And third , the conductivity of the p lasma may 
change. Therefore , it is difficult to say how much the radiation change 
contributes to the change in heat flow. The sensit ivity of the ca lo r ime te r 
of course is sufficient to m e a s u r e the change in the radiat ion. 
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THE CHARACTERISTICS OP THERMIONIC 

CONVERTERS PILLED WITH VAPOUR MIXTURE 

V · D. Bondar enkö, Yu · Κ · Guskov 

Institute of Physics and Power Engineering, Obninsk, 

USSR 

The interest in studies of mixtures to cesium effect upon 

thermionic converter characteristics is caused first of all by 

the attempt to raise the cesium metal film cathode electron 

emission in the cathode hightemperature range under optimum 

cesium vapour pressure. 

Another important cause drawing attention to these investi

gations is the possibility of fission fragment buildup in the 

interelectrode spacing during converter operation within nuclear 

reactor. 

As it was been shown in [l,2j to obtain the output characte

ristics of optimum converter performance at the given cathode 

temperature it is necessary that the cathode work function (f)and 

the cesium vapour pressure satisfy the definite conditions. 

Under operating conditions without volume ionization eesium 

vapour optimum pressure (Pop) is determined by the relationship 

M ßp -fahrt-*
 (I) 

•n' 

where / is the cathode temperature in energy dependent units, 

o, is the scattering crosssection for electrons on 

cesium atoms; L is the interelectrode spacing; 

Ce is the electron mean free path; V is the factor 
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averaging the temperature over the interelectrode 

spacing which varies usually within 12. 

The cathode work function must then satisfy the condition: 

?*S + it"(h+êke*) <2) 

where M is the plasma chemical potential near the cathode. 

The second term in the right part of the inequality (2) is 

equal to about 0.5 Τ under cesium vapour optimum pressure. 

It follows from (2) that in the cathode temperature region 

of about 2000 K, the interelectrode spacing ^ 0.5 mm and the 

cesium vapour optimum pressure the cathode work function will 

be equal to ν 3 ev. 

In arc mode the optimum pressure is determined by the 

condition 0 ] : L „ rø _£Q 

Ce 

Choosing the emitter work function in an arc mode one must consi

der the necessary values of output current potentials and the 

converter efficiency as the most signficant. 

It isl known from¡h,3} that due to low cesium evaporation heat 

from the main refractory metal surface (Nb, Mo, W,Re, Ir and 

others) one cannot provide the optimum conditions in the 

converter with«0,5 mm spacing and at cathode temperature 2000 K. 

Basing on the estimates for this purpose one needs the material 

with "6 ev work function. 

We shall dwell on the use of different additions to cesium 

vapours to raise the electron emission of the converter cathode. 
st 

There are two trends in the question. The I — one is the use of 

electric positive additions with great absorption energy on a 

refractory metal surface to obtain the necessary work function 

of the cathode at high temperatures [β]. And secondly, the 

introduction of electric negative elements into the interelectrode 

spacing increase the absorption capability of the cathode base 

to cesium L7»8j. 

In Pig. I it is shown the work function of W] in the vapours 

of the most active electron positive elements Cs, Ba, Sr, Ca, Mg, 
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Th depending on the ratio of the cathode temperature and the 

filler thermostat one(T' f il) calculated from the data |_9Ι^ · 

As it is seen from the figure, with these elements one may 

obtain the necessary cathode work function However, Ca as well 

as Cs may be used at cathode high temperature only under great 

vapour pressures. The same is referred to Sr at the cathode 

temperature above 2000°K. While using Th as the addition to cesium 

one need high temperatures of the anode and the thermostat with 

thorium due to low vapour pressure. 

Besides, while using the additions out of vapour phase for 

the cathode activation one must take into consideration their 

influence upon the anode work function [Ψ") . The absorption 

energy of the given additions is higher than that of cesium, 

and from Fig. I the minimum work function in these elements 

vapours is in the range of 23 ev. Therefore, the anode work 

function will be determined by the introduced addition as 

according to [l4j cesium slightly influences upon the base work 

function at about IOOO°K and the base work function of 23 ev. 

Great anode work function will lead to essential decrease 

of the output voltage and converter power. 

That is why apparently barium serves as the most suitable 

addition to cesium for thermionic converters. 

The use of barium as an addition reveals the possibility 

(see Pig.2) to use actually all the known refractory metals as 

cathodes. The curves of Pig.2 are plotted from the data [l3,I5J · 

Fig.3 shows the influence according to J7»I6J of electric 

negative elements of fluorine and oxygen upon Mo and W 

absorption properties. In présense of fluorine and oxygen Cs 

absorption energy on Mo and W substantially raises. In this case 

Mo becomes equivalent by its absorption properties to Ir having 

the work function 5·5 ev and tu ngsten  to the material with 

the work function «̂ »6 ev in presence of oxygen. 

The introduction of the additions to cesium will lead not 

only to the change of the cathode and anode work function, but 

also to the increase of the interelectrode spacing diffusion 

resistance, to the change of concentration of plasma and its 

separate components, especially when using electric negative 
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elements which form low mobile negative ions. 
Let us consider the influence of additions upon the 

transport processes and plasma generation in the converter in 
diffusion approximation without volume ionization. 

For this purpose the transport equation system for three-
-component plasma [l7j must be added with the equations for new 
components and solved then with the boundary conditions taking 
into account the generation and leakage of all plasma components. 

Then we shall &ave the following system of transport 
equations Je =~3)eV rie + tteUeVY 

%z=-<Z)u v nu - mu Ui/v Ϋ W 
JL3=-£>isVrlL3+rlL3 U¿3VY 

where J3) vi U ~~ *s
 ̂ ^

e
 current, the diffusion factor, 

concentration and mobility of separate plasma 

components, respectively; 

/ is the plasma potential, indexes € and L 

are referred to electrons and ions, respectively, 

and indexes 1.2 and 3  to cesium, electric 

positive and electric negative additions. 

In this case we suppose that the generation of all charged 

plasma components takes place on the cathode. 

The boundary conditions on the cathode and aiode are written 

down for under compensating conditions (Δ Ψ *■> 0) since under 

these conditions the converter output charactericts are optimum 

and close to thermodynamic equilibrium [2,3J· Besides, we shall 

consider the region of currents close to saturation current, i.e. 

when the nearanode potential barrier is positive f f >QJ 

and the converter had the maximum output voltage. Then for the 

case of electric positive addition it will be: 
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For the case of electric negative addition 

&r±o ZeftniWfø 

yaiíe&)t»M¿¥ 

where ¿t^Jt ere Richardson and SahaLangmuir currents when the 

surface ionization are either positive or negative, V  is ¿he 

velocity of separate plasma components and " indexes are 

referred to the values near the cathode and anode, respectively. 

While solving equations (4·) we shall assume that the 

temperature of all the plasma components is constant over the 

spacing and equal to the cathode temperature. 

From equations (4) for the case of electric positive addition 

we shall obtain with a good approximation the following expression 

for the saturation current \Jfjt ~Jji0) 

In quasi vacuum regime (ßt ^ L·) we shall have 

y's tt/2««**«' ( I 0 ) 

where H?~] dfaf' is the plasma equilibrium concentration near 
" "t VL, ι I& y Ύ ' 

the cathode for cesium; tt^J-rPfr*- is the plasma equilibrium 
concentration near the cathode for the addition. 

Thus, the addition introduction led to the growth of the 
near-cathode plasma concentration. 

Equation (9) gives the dependence of the converter current 
on cesium vapour and the addition pressure. 

In general case equation (9) has no absolute maxi mum relative 
to cesium and addition pressure. From (9) it is possible to find 
the relative maximum for one component pressure when there is 
fixed value of the other component pressure. 
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From (9) we obtain the following expression for cesium 

vapour optimum pressure depending on the addition pressure: 

Ρr^PÍZ2ee(V¿'Vu} l*ÌnLT (ii) 
ι-cs ι* L G ¿

e
 T> J 3jL6; 

Substituting (II) into (9) we get the expression for the conver

ter saturation current at the cesium optimum pressure and the 

arbitrary pressure : 7  f̂ ĝ  / \ 

y V3i(T.*T'icr, e 'jr. Ί 
whereby» ]/e IÙL£-J ÛJf^ » N© is the density of electron 
states. 

As it is seen from (12) the introduction of the additi
on to cesium may cause either maximum current; Recrease or 

its increase. Here the criterion is ratio *—^=— , the 
filter efficiency, which is proportional to the probability 
relation of the atom ionization to the electron scattering 
probability on it. 

If the addition efficiency is lower than the cesium ef
ficiency, then the converter current will be decreased but the 
cesium optimum pressure increase. Vice versus, if the additi
on efficiency is higher than cesium one, the maximum current 
will raise but the cesium optimum pressure fall. 

Figures 4 and 3 give the dependences of the saturation 
current for Cs + Ba system on the cathode temperature at dif
ferent cesium and barium vapour pressures for the converters 
with Mo and W cathodes. In the same pictures there are depen
dences of the saturation current for purely cesium converter. 

It is seen from the curves obtained that the saturation 
current dependences on «r at different pressure ratios of 
cesium and barium vapours are close to straight lines with a 
slope somewhat lower than -j* . Figure 4 shows the cathode 
work function does not actually depend on cesium vapour pres-

o 
sure (see the cathode temperature region > IIOO K). 

Figure 6 shows the dependences of the saturation current 
on the cesium vapour pressure at the cathode constant tempera-
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ture. In these experiments the barium vapour pressure was 

chosen optimum so that the cathode work function was equal to 

plasma chemical potential. In the same picture there given 

calculated values of the saturation current for the purely 

cesium converter, the cathode work function satisfies the 

condition (2). 

As it is seen from the relationships given in the regions 

of small cesium vapour pressures, the barium addition leads to 

some converter current increase, as follows from (l0/ 

As the cesium pressure increases the barium contribution.; 

to the converter current decreases, and in the region of the 

cesium vapour optimum pressure barium serves only for provi

ding the necessary cathode work function. 

The fact that barium introduction into the converter 

does not cause the converter current decrease at the optimum 

cesium pressure, reveals that the barium efficiency <¿JF 

is close to the cesium efficiency. 

For the case of electric negative addition we obtain 

solving equation system (4) with the boundary conditions (7) 

and (8) the following dependence of the saturation current of 

negative charges of the converter ( Cf¿% ~0 ) on the cesium 

and the addition pressures 

¿SJi 

¿JÏ4 
iaVo Li Vt. 

(13) 

where fti* f¡j*+ Hj^fåfå; + ̂ £ ' is the plasma equilib

rium concentration near the cathode. For quasivacuum regime 

(β »L) we obtain 

X o 
***·"ΜΓ "* Vu (i4) 

As it is seen from (13) and (14) the electric negative 

addition introduction leads also to some increase of the plas

ma concentration near the cathode. However, due to occurence 

of the second terms in the right part of equations (13) and 
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(14) it does not lead to the converter raise but vice versus 
to its fall. In this case the S-shaped curve with the addition 
will be displaced relative to the S-shaped curve of the pure
ly cesium converter in the range of lower currents. 

As the pressure of the electric negative addition grows 
the converter current will fall. Fig. 7 shows two S-shaped 
curves for the cesium converter with Mo cathode in the inter

electrode spacing of which one introduced iodine vapours through 
the anode.To determine the range of equilibrium regime ( Ϋ<0 ) 
the emission currents were taken from this device under an 
arc mode and hence its work function was estimated. The same 
figure shows the dependence of the saturation current and Ri
chardson current for purely cesium converter at cesium pressu
re of I torr. 

As it is clear from Fig. 7 the dependence of the satura
tion current on the cathode temperature in presence of iodine 
is of S-shape. However, the equilibrium part of the saturation 
current is displaced in the range of lower currents. Then the 
converter current decreased by I - 2 orders. 

The equilibrium parts of S-shape curves with iodine ad
dition are close to the line with the slope of about 3.3 ev. 
The increase of cesium pressure at constant flow of iodine 
atoms influences slightly on S-shaped curve of the saturation 
current and the emission current from the cathode. 

Thus, the iodine introduction led to the cathode emis
sion current decrease, to very essential decrease of the con
verter saturation current under equilibrium and arc modes. 

At low iodine additions (~IO~* torr) one observes slight 
increase of the converter parameters under an arc mode. 

Solving the equation system (4) with the boundary condi
tions ( 5 - 8 ) one may obtain the equation of the converter 
voltage-current characteristic in presence of additions. Then 
one obtains too complex expressions. Analysing them we see 
that the converter work function under equilibrium conditions 
decreases as because of near-cathode concentration growth as 
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well as because of the growth of diffusion resistance spacing. 

This decrease of the work function is low and may be compensa

ted by the anode work function decrease, especially when in

troducing electric negative additions. 
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Fig.I. Work function W in vapours of Cs, Ba, Sr, Ca, Mg, Th. 

zo 2.5 jo τ*/τ*. 

Fig.2. Work function Ta, Mo, W, Ra, Jfr in barium vapour. 
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Fig.6. Dependence of the saturation current of the converter 

filled with Ba and Cs on cesium vapour pressure. 

» 

S 

m*. 

ΔΙ. Ut-un** 

Ôï 3fr of qt ιο> 07 

τ* 
06 Οβ 
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UNIGNITED MODE CONVERTER DIAGNOSTICS WITH REGARD TO EMITTER 

WORK FUNCTION PATCHES 

E. Wolf, R. Mayer and M. Schindler 

Institut für Kernenergetik der Universität Stuttgart (Germany) 

Abstract 

From measured electron saturation currents in the electron rich unignited 

mode electroncesium momentum transfer cross sections are calculated. The 

measurements were performed on a cylindrical cesiumconverter with Taemitter 

and stainless steel collector. 

Particle transport is described in the diffusion approximation. In the 

momentum transfer collision integrals the velocity dependence of the scatte

ring cross sections reported in the literature is taken into account.'For 

electroncesium collisions this yields an electron temperature dependent 

correction factor for the diffusion constant definition, because of the com

plicated Ramsauerlike structure of the scattering cross section. 

Improved ion boundary conditions are used in the fewcollision case. 

The computed cross sections show a systematic dependence on the emitter 

and reservoir temperatures which, in part, is explained by emitter patch 

effect. 

List of Symbols 

ΑRichardson constant; bmobility; dplasma length; Εelectric field: g

relative velocity charged particleatom; Iionization potential; jparticle 

current density; mparticle mass; ηparticle density; Qmomentum transfer 

cross section; Vuemitter sheath potential; vparticle velocity; |J,aCsarrival 

rate on the emitter; φψemitter work function. Indices: aatom; Ccollector; 

Εemitter; ee]ectron;iion; Rfrom Richardson equation (φκ), Reservoir (TR); 

SLfrom SahaLangmuir equation; 1,2emitter, collector edge of the plasma. 

Experimental Apparatus 

The measurements of unignited mode currentvoltage characteristics were 

performed on a cylindrical Csconverter (Fig.l) with polycristalline Ta

emitter and stainless steel collector (spacing 0,36 mm (hot)). A large emitter 

area of 10 cm^ was chosen in order to diminish the influence of leakage 

currents and field inhomogeneities at the converter edges on the converter 

performance. The emitter is heated by a coaxial radiator along its entire 

axis. The heater consists of a graphite tube with a concentric tantalum re

turn wire for magnetic field compensation of the heater's current. With this 

kind of heating and with heat dams on the emitter body a constant emitter 

temperature (¿ 10 °K) is achieved along the active emitter surface. The emit

ter temperature is measured pyrometrically in a radial blackbody hole which 

is visual through a heated sapphire window and a radial collector bore. Collec

tor and reservoir temperatures are held constant within  0,75 °K respectively. 

The currentvoltage characteristics were dynamically measured by means of 

a 50cpssweepgenerator and a sampling system. A typical set of unignited 

mode characteristics is shown in Fig.2. Similar measurements were performed 

with TE=1300 °K to I8OO °K TR=498 °K to 648 °K and Tc=670 °Κλ. Several runs 

with the same parameters gave a good consistency of the measuring values. 

Parts of this work were supported by the Bundesministerium für wissenschaft

licht Forschung of the Federal Republic Germany. 
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Theory 

The diffusion approximation of the Boltzmann equation is used for elec

tron and ion transport in the plasma: 

J e = . D e d f l . . b e n E | j ¡ = _ D . £ Í a + b i n E (1> 

If the diffusion constants D are def inied as \v/3, where ν = 1¡ 8 kT/frm', the 
particle mean free paths Λ in the Csgas are related to the momentum transfer 

cross sections Q(g) (g is arbitrarily chosen as reference velocity) by the 

equation 

x = j * ^ ; ^ r e *=(,♦£ μ1/! and p. Igm (2) 
Λ
 %o(g) v ™J v/ g g 7 Q 

are derived from the momentum transfer collision integrals in the diffusion 

approximation. 

For a Maxwellian distribution of the charged particle and neutral atom 

velocities the average F of an arbitrary function F(g) is 

"■àk^mf i^H^my" (3) 

c¿= 1 for electroncesium collisions; oC = /2" for ionneutral collisions with 

equal masses and temperatures, β may be calculated if the shape of Q(g) is 

known. For a velocity dependence Q(g) = Q(g") g*V g
y
 one has 

^-ΜτΫΜΨί' W 
For electron-cesium collisions Q(g) has a rather complicated Ramsauer-like 
structure '-Λ In this case β is electron temperature dependent (Fig.4). 

In the continuity conditions of the particle currents at the boundaries 
between the plasma and the collision-free electrode sheaths the 1st order 
transport approximation is used^'5. Contrary to the Oth order approximation 
(random current) in these boundary conditions the linear anisotropy of the 
velocity distribution is considered, consistent with the diffusion approxi
mation in the plasma. 

The electron temperature is assumed to be constant in the plasma Te=Tß. 
For the ion temperature Ti=Ta=(TjH-Tç)/2 is used in the plasma equations (1). 
In the few-collision case the effective ion temperature T-Q in the ion boun
dary condition for an electron rich emitter sheath, is determined by the 
equation 

iSL=kv;,exp (- ?9% ^/4n.y.(E)exp[-^]exp [~Wdg ; (5) 
with 

x»/«pft$iEï "Hh i¡-o 
and the assumption n(£)=n-j_ over 2 to 3 ion mean free paths from the emitter. 

The right hand side of eq (5) sums up all the ions at their corresponding 
temperatures coming from the plasma to the emitter. In the transmission proba
bility exp(-J£d/\ ) the mean free path of Cs-atoms \ a (0^=110 A hard sphere) 
instead of \i is used because of the large charge exchange cross section. For 
a linear temperature drop between emitter (TE) and collector (TQ) one obtains 
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with the meanvalue theorem: 

VV^V
T
J' (6) 

where in the interesting range 1< d/\a< 10 ifvaries between 0,3 and 1, and is 

weakly dependent on V"E,TE and Tc (Fig.5). 

The electron saturation current density for a converter with electron 

rich emitter sheath is . „ _ /. \lTs"T'i 

, ^ M E [qu4Æ4JF m 
J
e.sat" ,π—ο /τ ^ ι \ / Õ — 7 τ — τ ι


»

 ( 7 ) 

l |( l+ai]k.jdL\Í2*3okAV 
IV í31fc>J\ ¿3TE+TC λ J 

Similar expressions were derived earlier from Bohdansky and Langpape
0
, Warner 

and Hansen^ Maev et al.', Wilkins and Gyftopoulos . The differences between 

the models mainly concerning the boundary conditions (0th and 1st order), the 

definition of the diffusion constants and the assumptions about the particle 

temperatures may cause discrepancies of a factor 2 in the numerical results. 

Results and Discussion 

The momentum transfer cross sections Qe(ge) calculated from saturation 

current measurements of converter Ta4 show a systematic dependence upon the 

emitter and reservoir temperatures (Fig.6). From published^*4 experimental 

and theoretical electroncesium cross sections a decrease of the cross section 

to a Ramsauer minimum with increasing electron temperature is indicated for 

the temperature range in Fig.6. There is a rather good agreement between the 

high reservoir temperature values and the extrapolated momentum transfer cross 

sections given in Ref.3, In the following an attempt is made to explain the 

splitting and the shape of the curves at different reservoir temperatures. 

According to Ref.3, electronion scatterings cause an increase of the cross 

section with increasing degree of ionization. In Fig. 6 for TE=1436 °K the de

gree of ionization at the emitter edge of the plasma ni/na is decreasing from 

4105 at TR=513 °K to 6.10
_b
 at TR=648 OR, but Qe(ge) is increasing. At the 

collector edge n2/na is about 0,5 ηχ/na and 0,02 ni/na respectively. There

fore, we may assign a secondary role to the degree of ionization effect. 

Kundsen law instead of ideal gas law for calculation of the Csdensity na 

in the converter at low Cspressure may also be shown to give a contrary effect. 

The cross sections in Fig.6 were calculated assuming a uniform emitter 

work function distribution (<J>SL<|>R)· From a patchy emitter surface elec

trons are chiefly emitted from the low work function patches, while ioniza

tion particularly takes place at the high work function patches. Therefore, 

in eq. (7) we have ((J>SL¿I2 kTE) 

(8) ÏÏV· r¥kp K)
ex

ê$ 
where the "patch factor" exp( ( <j)SL Φ Η ) / 2 Κ Γ Ε ) , (* 1), depends on the patch di

stribution and the emitter temperature. The patch distribution function f(f) 

is influenced by the Cscoverage; additionally space charge fields and patch 

fields" will disturb the patch distribution function in a complicated way. 

In the case of independent patches (patch fields and space charge fields 

negligible) 4>R and φ S L are easily calculated °'
n
 from the equations' 



 1014 

12 13 E o E 

Haas and XuanPhuc et al. ̂  have shown for Csfree surfaces, that for the 

calculation of the electron emission current at different emitter tempera

tures the measured patch distributions may be substituted in a good approxi

mation by Gaussian functions. In Fig.7 the temperature dependence of the patch 

factor is shown, calculated from Gaussian distributions at different half 

widths and from measurements for which the assumption of independent patches 

holds. For refractory metals in Csatmosphere the mean value of the work func

tion distribution depends on Tg and Tpj. With the theory of Rasor and Warner 

for Cscovered surfaces we may expect approximately constant widths of the 

patch distribution if TE/TR is in the linear range of the φ (TE/TR)plots, i.e. 

the patch factor should have the same emitter temperature dependence as the 

Gaussian patch factors at constant half width for all reservoir temperatures. 

For the patch distribution measurements of Ref. 15 of a vapor deposited elec

tropolished Resurface at various TE/TR by means of electron beam scanning 

method the agreement is reasonably good (Fig.7)· 

It is also possible to obtain zhe patch factors more directly by calcu
lating φsL

 anc
* Φ R f rom ion and electron emission current measurements of 

the same emitterl6,!7. The patch factors calculated from Breitwieser's 

measurements^" (110Wemitter) have strong reservoir temperature dependence 

(Fig.7)J although all TE/TR are in the linear range of the RasorWarnerρlots. 

The magnitude and the shape of the curves cannot be explained by a Gaussian

like patch distribution. If the modified SahaLangmuir equation (9b) holds, 

there must be spots of high work functions between φρ and the substrate work 

function O)Q, where a large part of the ions are produced. These spots could 
have even sizes much below the resolution of the electron beam scanning 

techniques. 

From unignited mode saturation current measurements the patch factors can 

be calculated for given momentum transfer cross sections (eqs. (2,7,8)). Be

cause of the complicated electric fields near the emitter surface and the 

poor knowledge of adequate cross sections the results are only qualitative. 

Patch factors are calculated from the Ta4 saturation current measurements 

(Fig.8) using the "asymptotic" cross sections at Tp=648 °K shown in Fig.6. 

These patch factors have reservoir temperature and emitter temperature de

pendences similar to the data calculated from Breitwieser's measurements in 

Fig.7 and could be explained by the above mentioned arguments. This implies 

in Fig.6, that at low emitter and reservoir temperatures the momentum trans

fer cross sections computed from the unignited mode measurements with the 

assumption φττ= <J>SL a r e considerably distorted by the emitter patch effect. 

For the ion saturation current and ion rich emitter sheath a similar for

mula as eq. (7) can be derived. From ion current measurements of Houston 

(thoriated Wemitter) patch factors are calculated using hard sphere collision 

model (ß=9ff/32 in eq. (2)) (Fig.9). A good fit to the Gaussian patch fac

tors is obtained with Q,± ~ 800 A
2
 (b1=0,08 cm

2
/Volt sec at T.¡=1240 °K, nor

malized to na=2,69*10Í9 Csatoms/cm3). 

Acknowledgement 

The assistence of E. Maier in the construction and operation of the experi

mental apparatus and of R. Rühle and his programmer group in preparing the 

computer programs, is gratefully acknowledged. The authors wish to thank to 

Dr. L.K. Hansen for a fruitful discussion. 



1015 -

References 

(1) MAIER, E., Institut für Kernenergetik der Universität Stuttgart, 
Diplomarbeit 5-47d (I967). 

(2) STONE, P.M., REITZ, J.R., Phys. Rev. I3I, 2101, (I963). 
(3) NIGHAN, W.L., Therm. Conv. Spec. Conf., San Diego, Oct. I965, p. 84. 
(4) WARNER, C ; HANSEN, L.K., J. Appi. Phys. 38, 491 (I967). 
(5) INGOLD, J.H., Therm. Conv. Spec. Conf., Houston, Nov. I966, p. 306. 
(6) BOHDANSKY, J.; LANGPAPE, R., 6th Conf. on Ionization Phenomena in 

Gases, Paris, I963, TV, P. 543-
(7) MAEV, S.A.; STAKHANOV, I.P.; GUSKOV, Yu.K.; ZYUKOV, V.l.; PASHCHENKO, 

V.P., Soviet Phys.-Tech. Phys. 12, 778 (1967/68). 
BONDARENKO, I.I., et al., Geneva Conf. Sept. 1964, P/317-

(8) WILKINS, D.R.; GYFTOPOULOS, E.P., J. Appi. Phys. 38, 12 (I967). 
(9) HANSEN, L.K., J. Appi. Phys. 37, 4498 (I966). 
(10) HERRING, C ; NICHOLS, M.H., Rev. Mod. Phys. 21̂ , 185 (1949)-
(11) KAMINSKY, M., Physikalische Verhandlungen I962, Heft 1/2, Seite 60. 
(12) HAAS, G.A., THOMAS, R.E., J. Appi. Phys. 3_4, 3457, (1963)· 
(13) XUAN-PHUC, N.; HUTZLER, B.; ALLEAU, T., Int. Conf. on Therm. Elect. 

Pwr. Gen., London, Sept. 1965· 
(14) RASOR, N.S.; WARNER, C , J. Appi. Phys. 35. 2589, (1964). 
(15) VAN SOMEREN, L. ; LIEB, D.; MISKOLCZY, G.; KITRILAKIS, S.S., J. Adv. 

Energy Conv. 7, 201, (1968). 
(16) BREITWIESER, R., Therm. Conv. Spec. Conf., Galtlinburg, Oct. 1963, 

P. 17. 
(17) BREITWIESER, R.; RUSH, W., Therm. Conv. Spec. Conf., San Diego, 

Oct. 1965, p. 218. 
(18) HOUSTON, J.M., 24th Phys. Elect. Conf., MIT, March 1964, p. 211. 



1016 

Collector Heater Collector 

Metalto

Seal 

Wcter Cooling Tube 

Vfe Vacuum 

jPump und 

Cesium 

/Reservoir 

Fig.l. 

Experimental 

Converter Ta4 

1.0 

Õ °·
5 

®\ 

® \ 

φ ^ ~ . 

( ^ ^ φ 

\ © 
\ Φ 

\ Φ 

\ ® 

■%=1329K 

TE=1383'K 

TE=K36K 

TE=W89'K 

TE=15UK 

TC = 670*K 

TR=573'K 

0.5 Q5 1.0 1.5 2.0 

Voltage [Vj 

Fig 
the 

2. Typical Characteristics in 

Unignited Mode (Converter Ta4) 

1.5 

1.0 

Maxwell particle;Q(q) (xl/o 

0,5 C$j) from Stone »Reite 

Q l̂g ) horn Nighan 

1300 1400 1500 1600 1700 1800 1900 2000 

Electron TemperaturePtf 

Fig.4 . β for Electron 
Cesium Coll isions, eq.(2) 

I
3 

1,6 

1,4 

1.2 

1,0 

0,8 

0,6 

0,4 

0,2 

0 

j/^~^\. Maxwtil  Boltzmann 

1 
s 

r 

« i 
a 

2 

distribution 

« \ 

5 
p

a
ri

 

E \ 

J
 X 

 Í  3  2  1 0 1 2 3 * 5 6 7 8 

Fig .3 . ß(v), eq.(4) 

1,0 
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DISCUSSION 

Speaker of paper H-4: E. WOLF. 

GUSKOV (USSR): Did you take into account when determining these sca t 
tering cross-sect ionsof the e lect rons and the a toms , the additional sca t 
tering by plasma fluctuations and how would you differentiate one from the 
o ther? 

WOLF (Germany): We considered the emi t t e r patch effect as an attempt 
to explain the fact that the c ros s sections calculated from our saturat ion 
cur ren t measuremen t s a r e apparently p ressure -dependent . We assumed 
that the patches a r e independent, that the patch fields can be neglected, 
and that the emi t te r sheath is homogeneous and has no fluctuations. 

RASOR (USA): There may be a misunderstanding he r e . Dr. GUSKOV, I 
believe, is asking about the scat ter ing by fluctuations in the p lasma, and 
not about the fluctuation of the field at the surface due to pa tches . T h e r e 
fore, I believe, the answer to the question is that Mr . WOLF is operating 
always under e l ec t ron- r i ch conditions, under-compensated. 
And under these conditions the e lect rons a r e not injected into the p lasma 
through an accelerat ing sheath. The emitted e lect rons therefore a r e nearly 
in equil ibrium with the p lasma e lec t rons , so there is no highly non-equi l i 
brium elect ron beam disturbing the p lasma to cause significant fluctuations. 
I believe that is the answer to the question. 

WOLF: Yes. 
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SOME PECULIARITIES OF I-V CURVES OF THE THERMIONIC 
CONVERTERS IN CESIUM VAPOR AT THE PRESSURE 10~2 - 5 TORR 

Boraenko V.L.,Drobjazko S.V. ,Drob;jazko L.A. ,Knizhnikov V.JM. 
I.V.Kurchatov Atomic Energy Institute,Moscow,USSH 

ABSTRACT 

I-V curves of the thermionic converters in the regimes 
of the quasi-saturation and of the deep acceleration are 
considered. In these regimes the plasma density was measured 
by the single langmuir probe. Influence of the normal and 
the anomal Schottky effects to the emission from the patch 
emitter, and conditions of the existence of the space charge 
barrier is discussed. 
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INTRODUCTION 

The power output and the efficiency of the thermionic 

converters are strongly influenced by the emissivity of the 

cathode. 

The measurements of the emissivity of the different 

cathodes in the presence of cesium vapour. ("S" curves) were 

made for the low cesium vapour pressure (̂  10"*̂  Torr) only. 

For these pressures the electrical field at the emitter 

reached the value of the order 10 10^ ν /cm and the fields 

of patches disappeared. The volume ionisation did not 

occur in these cases ¿I|2,3>J · 

When cesium vapour pressure is increased, the volume 

ionisation and the dense plasma are developed. In this case 

the electrical field at the emitter depends upon properties 

of the plasma. 

Currents ir the power quadrant and in the short circuit 

are not likely to be the emission currents, becouse satu

ration of the currents is not reached (4,5t6J · 

In the present paper attempt was made to analyze the 

reasons of the deviation of the currents In the power quad

rant from ti,:; smission currents, when temperature of the 

emitter and cesium vapour pressure were ranged in the typical 

region for thermionic converters. 

APPAR/^'S AND EXPERIMENTAL TECHNIQUE 

A crosssection of the experimental device with 3^ nun 

diameter planeparallel electrodes is shown at the Fig.I. 

The lateral surf aces of the electrodes are covered by
 Α
1ρ0χ 

to remove the false discharge. Such coverage allowed to 

operate at the sufficiently high external voltage up to iCv 

whereas the emission's area remained constant. The spacing 

was ranged within 0,II5 « , The location of the electrodes 

was determined by the optic cathetmeter through the sapphir 



- 1021 -

window. The electrodes were heated by the electron beams, 
and temperature of the emitter was varied from 7°0 to I7Q0°C. 
The Optical pyrometer used for taking a measurement. 

An oil-free vacuum of the order 5.10""' Torr in metallic 
container with temperature about 400°C was produced by 
sorption pump. I-V curves were measured in pulse regime, so 
that the emitter temperature did not change within the im
pulse. Single Langmuir probe with guard ring to remove the 
false current was used to measure the plasma density and the 
temperature of the electrons. 

EXPERIMENTAL RESULTS 

Typical I-V curves with Mo emitters in the various regimes 
shown at the Fig.2. It is seen that the complete saturation 
of the converter current exist when temperature of the emitter 
low TT¡,=800-I000°C. Growth of the current behind knee I-V curve 
presents when temperature increase. Current is 1,5-2 times 
increase, when voltage raise to 5-7v. It is seen from Fig.35, 
that with low temperature the current of the saturation 
remained constant, when the interelectrode space changed. 

At Fig4 the regimes in which the plasma density was 
measured is noted by point at the I-V curves. The plasma 
density near emitter for each point of the I-V curve is plot
ted at Fig 4 also. 

The plasma density near emitter and the temperature of 
the electrons which were measured by the several authors (4,7»83 
are tabulated in the Table I. 

DISCUSSION 
It is affirmed [4,5»6j that complete saturation of the 

converter current in the regimes of the quasisaturation and 
of the deep acceleration should be failed due to three causes: 
I) electron back emission from plasma is being reduced due to 
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emitter sheath height increasing, 2) increasing ion current, 

generated by the electrons, accelerated on the growing 

emitter sheath, 3 ) the emitter work function is reduced via 

the normal and the anomal Schottky effects. 

The first suggestion should be essential when emitter 

sheath is low. It is evident that this effect should be 

low in the regimes of the short circuit and with external 

voltage. 

It is seen from the Table I, that ion current is 1—20% 

from total converter current. In the paper [δ] it is demon

strated that plasma density near emitter varies directly 

proportional to converter current. It is seen from Fig,4 

that, when the converter current has reached the saturation, 

plasma density varies slightly. Therefore neither the first 

no the second mechanisms are not capable to explique the 

growth of current in the regime of deep acceleration"· let 

us consider the influence of the normal and the anomal 

Schottky effects to the growth of current. In the Hansen's 

paper [9] there is the solution of the Poisson Is equation at 

the emitter sheath of the termionic converter, 

The field at the emitter with the assumption, that the 

plasma field at the beginning of the sheath is zero, is 

■
!
-7.eiov:

/s
[^(^f

!
(i^

T
i)-^y-^4 

All notations i s such as in the Hansen's case. 

Electr ical f ie ld a t the emitter i s zero, if 

( I ) 

( 2 ) 

In th i s case 

M\'/2 
a- ¿ & 

Η η ¡My/2 ir^ju 
jQmcã J ρ [mj (,/2c/f5) w 
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If the emission from the cathode is higher than I^y 

the space charge barrier (virtual cathode) develops in the 

front of the emitter. This double sheath limits the current 

from the emitter down to ̂ τηρτ 

In this case as well as in the case of the vacuum diode 

the current from emitter is independent on the emissivity of 

the cathode. But this case differs from the vacuum diode one 

by the fact that the increasing of the sheath potential can 

not increase the current higher than I|^m 

Jam 'Jp im) (4) 

Transition from the regime with space charge barrier to 

the regime with accelerating field with variation of the 

plasma density occurs very roughly because the derivative of 

the current with respect to plasma density is infinite in 

the point where the electric field at the emitter is zero, and 

emission current at the knee of the curves 1 ver3ua η more 

than Io. 

At the Fig.5 current from emitter is plotted versus the 

plasma density for parameters Io=I, 10,100 A/cm with Vs=Iv, 

TE=0t1ii9 ev Te =0,25 ev, ?cà=I Torr. 

Straight line (ABC) corresponds to the case of space 

sharge barrier and at the parts of the curves AAf BB and CC 

the current enhancement due to normal Schottky effect is 

shown. Current enhancement due to ion current is shown by 

dotted lines. 

At the Fig.6 the current from Mo emitter is plotted 

versus plasma density the cesium vapour pressure being l Terr. 

Emission currents were taken from the paper f2J . 

From these figures it is seen that current enhancement 

due to normal Schottky effect is not over than 7°%» when 

15 —3 

the plasma density is 10 'cm . 

From Table I it is seen that maximum value o± tho pia ma 

density near emittor is never exceeded 4.10 cm '. 
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In the case when the surface of the emitter compose of 

patch with different work function and the size of the patches 

considerably more than Debay length, the patches with dif

ferent work function is possible to consideras independent 

£Τθ7 # 1Q this case the full current from such emitter will 

equal to the sum of the currents from different patches. 

In the our experiments size of patches was of the order 

of 20 (A , If the plasma density was higher than 10 2cm~^, 

the Debay length was considerably less than size of patches. 

The difference of work function of different patties is 

small, when the coverage of emitter by cesium atpms is high* 

Such surface is near uniform when ^]J/TTÄ <2,6 [II] . When the 

plasma density near such emitter is sufficient in order to 

remove the space charge barrier, the growth of the emission 

current can be caused by the normal Schottky effect only. 

In our experiments when plasma density changed slightly, 

Fig.4 the complete saturation of the converter current was 

reached Fig.2 However, when the lateral surfaces of the 

electrodes arenot cover, current suturation is absent even in 

the case in which the guard sereens are used. 

When the temperature of the emitter increased T™/TTJ<2, 6, 

the difference of the work function of different patches 

might become 0,5Iv fllj . In this case the plasma density 

is not sufficient in order to compensate the space Charge 

barrier near patch with low work function. 

It is seen from Fig.5 that small increasing of the plasma 

density caused the large enhancement
of t ù e

 emission current. 

In this case the complete saturation is not reached Fig.2 o 

In order to receive the total emission current it is 

necessary to increase the plasma density near emitter consi

derably. It is likely that the increasing of the voltage is 

no enough in order to increase the plasma density near emitter. 
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CONCLUSIONS 

1. If the coverage of the emitter by cesium atoms is 
high the complete saturation of the converter current obtained. 
When the coverage is decreased the saturation of the current 
is not took place. 

2. Ion current is less than 20% from converter current 
and can not explain the growth of the current in the regimes 
of the quasi-saturation and of the deep acceleration 

3· The growth of the current due to the normal Schottky 
effect is not exceede 7&%> when the plasma density increase 
up to 10 ̂ cm" . 

4» With the low coverage that fact, that the current 
saturation is not reach, is explain by the plasma density near 
emitter is unsufficiently in order to compensate emission from 
patches with low work function. 
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TABLE I 

Pc rV V J ηΡ Tet ν 4 
Μ [voe/j rátf Í^3J ^ ^ Authors 

I 

I 

2 

3 

0,7 

0,7 

0,7 

0,7 

I 

I 

2 

2 

2 

IO"1 

IO"1 

IO"1 

IO"1 

1730 0,2 

1730 +0,7 

1730 0,42 

1730 0 ,1 

II50 +0,7 

II50 +0,8 

II50 +1 

II50 +1,2 

1405 +0,6 

1405 +0,9 

1685 0,24 

1685 +0,05 

1685 +0,24 

1573 +0,3 

1573 +Ι,ϋ 

1373 +1 

II73 +2 

4 

8,5 
4 

4 

M 
2,8 

4,7 

5,7 

6,3 

13,8 

1,3 
3,6 

5,1 

0,8 

I 

I 
2 

2.IO1 4 2600 
4.IO1 4 2800 

IO14 2300 

I ,5 . I0 I 42400 

8.IO12 

1,2.IO13 

5. I0 1 3 

7.IO13 

3,7.IO I32400 
I ,8 . I0 I 42600 

I,8.IO I 32300 

6,4.I0 I 32400 

3,7.IO I32300 

I . IO 1 3 

3,5.1o 1 3 

3 . I0 1 3 

5 . I0 1 3 

0,2 

0,2 

0,1 
0,15 

2,3.10" 

1,7.10" 
4.10-2 

5.IO"2 

2,3.10' 

3,4.10" 
5,5.10" 

7,1.10" 
7,6.10" 

5.IO"2 

0,14 

0,12 

0,2 

•2 

•2 

-2 

■2 

-2 

-2 

-2 

2.IO"2 

4.IO"2 

5.IO"3 

5.IO"3 

IO ' 3 

1,7.IO"3 

7.ΠΓ 3 

IO"2 

3.IO"3 

IO"2 

IO-3 

3.IO"3 

5.IO"3 

IO"2 

3,5.IO"2 

3.IO"2 

5.IO"2 

W.H. Reichen 

at a l [7] . 

£·. κ.. Ko syrev 

at a l [δ] 

G.A.Dyuzhev 

at a l . [4] 

Results of 

authors of 

t h i s paper. 
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^ 

Fig.I. Experimental device 
I - the Container, 
2,3 - the flanges 
4 - the electrodes, 
5 - the mechanism of the 
displacement, 
6 - the insulator, 
7 - the guard ring at 
the insulator, 
8 - the heaters, 
9 - the cesium reservuar, 
10,1" - the surfaces and screen, 
which coVer by AlgO,· 
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EXPERIMENTAL VERIFICATION ON THE RASOR PHENOMENOLOGIGAL 
THEORY OF THE ARC MODE REGIME OF A CESIUM THERMIONIC 

CONVERTER. 

F.V.Kondratiev, G.V.Sinyutin. 

I.V.KURCHATOV INSTITUTE OF ATOMIC ENERGY, Moscow, USSR. 

A sufficiently strict theory of the arc mode regime for 
a cesium thermionic converter was proposed by B.Moizhes et 
al, f Τ] · One of the important conclusions of this theory 
is the fact that under the arc mode regime, ions are genera
ted mostly near the cathode while in the other area of the 
interelectrode spacing, the generation function rapidly 
decreases with respect to the coordinate· Main disadvantage 
of the theory is associated with the complicated equations which 
are difficult to solve even by electron computers. 

Arc mode regime theory of a thermionic converter develo
ped by I.Stakhanov [2] assumes that ionization should occur 
within the entire thermionic converter volume, the ionization 
rate being proportional to the charge density while the ioniza
tion coefficient being independent of the plasma density. 
In later works [3>4] it was, however, shown that the ionization 
rate in the gap would rather rapidly drop as the distance from 
the cathode surface increases. The area of volume ionization 
is evaluated as an area of the width (10-15)λ t where λ is 
the free path length of electron scattering by cesium atoms. 
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The phenomenological theory of the arc mode regime 
suggested by N.Rasor f 5J can be considered as another case 
compared with [ 2 J . Tuis theory assumes that space ionization 
should occur within a narrow region of the cathode potential 

drop, and the charge transfer should be of a purely diffusion 
character within the rest interelectrode space, Here, the 
character of the boundary conditions is similar to that of [1, 
2 ] . 

According to this theory the current-voltage characteris
tic can be written as 

i 

-4-(Y-r+Vj X C1) 

where Λ a Y *7Lc '* '* °-' . . I -pgz , 
y , y are the cathode and anode work functions; Τ , , Τ 
are the electron temperature near the cathode and anode, V 
the anode potential drop; p-is the cesium vapour pressure; 
J„is the saturation current (the cathode emission current ε 
with the effective work functionƒ); J,V are the converter 
current and voltage (since under the working conditions V < 0, 
in Eq.(1), V implies -V). 

Eq.(1) must describe the current-voltage characteristic 
within the range of the converter working voltages from 0 to 
a certain value V' which practically coincides with V ,0 
With further increase, the V > V' characteristic breaks down, 
and the current should drop exponentially due to apperance of 
a double electric layer neat the cathode 

JMsJ(v')e~jnr 

(2) 
J ( V ) satisfying Eq.(1). 

The present paper deals with the comparison of experimental 
output characteristics of the converter with the calculated 
ones. The measurements were performed with flat electrode 2 converters. The dimensions of the cathodes were 2,5 cm , 
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they .vere made of different materials: tantalum and molybdenum 
were obtained by means of the powder metallurgy technique, and 
molybdenum and tungsten by vacuum fusion. The arc mode regimes 
were investigated for various cathode temperatures, cesium 
vapour pressures and electrode gaps for: 

tk=1400° - 1800°C, 
tcs= 220° - 380°C (p=0,17-12 mm Hg), 
S" =0,1 - 2 mm. 

Analysis of a family of the current-voltage characteristics 
taken for various S" for fixed electrode temperatures and cesium 
vapour pressures allow determination of the constants J , A, D, 
and Τ . in Eq.(1), and thus we were able to plot a theoretical 
current-voltage characteristic. The possibility of such a 
treatment was shown in the papers [6,7j β 

Using this method all the experimental data on the arc mode 
regime were treated· 

Fig.1 a gives an illustration of one of the arc mode regimes 
(t,=1600°C, t =700°C, t,=3200C) where the solid lines show the 
measured current-voltage characteristics of a converter with the 
cathode made of vacuum fused tungsten. The characteristics were 
taken for various electrode gaps, and the output power correspon
ding to these values was 

W=JK ( 5 ) 

Dashed lines show the values calculated by Eq. (1)· 
The effect of the double-layers potential near' the cathode 

calculated by Eq.(2) is shown by chain-dotted lines in the same 
plot (here V . represents V')· 

Comparison of the characteristics shows that Eq.(1) is 
valid for greater values of V, than it was predicted by the theory, 
and the shape of the current-voltage characteristics indicates 
that there should not appear a double electric layers near the 
cathode · According to our" data, this note can be applied to 
those regimes at which the cesium vapour pressures are near 
optimum. At the same time in a number of cases the characteristics 
could be described by total Eqs. (1) and (2)· 

For example,Fig.2 pres'ents the measured and calculated 
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currentvoltage characteristics and output powers of a converter 

having the cathode made of vacuum fused molybdenum for tv=1600°C, 
o o 

ts|700 C, and tcs=300 C. The cesium pressure for this regime 

is lower than optimum, and one can see an area in the characte

ristics which shows the presence of the double layer potential. 

The same areas were present in the characteristics taken 

at pressures which were sufficiently higher than the optimum 

ones. 

The data presented in Fig«2 are also of interest due to 

the fact that they allow evaluation of the width of the space 

ionization region. According to the theory of Ref. [ 5] this 

region is assumed to be very narrow. In practice, however, it 

has the finite dimensions of (1015)λ [3,4Je 

When £ =0.1 mm and 0<>25 mm the calculated values of ■£ were 

~ 1.5 and — 4 respectively. The developed arc mode regime was 

not realized, and the characteristics observed greatly differ 

from those predicted by the theory. For £"2 0.5 mm the ratio — ? 10, 

a developed arc ¡node regime will be realized in a converter, and 

the experimental characteristics become close to the calculated 

ones. 

FÌ5.I b shows the converter currents and powers as a function 

of the interelectrode spacing. It is seen, that under a developed 

arc mode regime the dependence J (£) is in fact described by a 

fractionlinear function of Eq.(1). Hence one can arrive at a 

practically important conclusion that the output power slightly 

depends on the gap in the range of small values of 5" (when the 

cesium vapour pressure are fixed). The optimum voltage of the 

converter can be found from the condition 

iï = 0 
¡v ■ w 

which is equivalent to the equation e ì(ui)j where «= ¡j£ 

t =. f\ I pcY+ D ) · For the maximum power one obtains the 

expession 

w = J Iv01  -φ) 
mai. S l Opt £ ' ■ 
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If experimental and calculated values of W „ are plotted on 
max * 

the coordinate axes then in the cases of their coincidence the 
points corresponding to each regime should lie on the angle 
bisector between the axes. For all other regimes (exept those 
when due to the smallness of pS one observed increase in the 
current with the gap) the values W were obtained using Eq. 
(5)· The greatest relative difference between the experimental and 
calculated values of power was observed for t, =1400°C for large 
ρ — 10 mm Hg and S>1mm. In other cases the difference between 
W™!L° and W®*^ was smaller than 10 per cent, their best agreement 
being within the halfwidth of the curve W___ (trt_). Fig·3 shows 

Ilici A O S 
such a comparison made for four cathode materials (the points 
are taken within a half width of the curve W_e__ (t__)). 

IZLCLJC O S 

The theory allows the cathode potential drop and the cross 
section of electron scattering by cesium atoms to be determined 
from the experimental data for different regimes within -.•14 2 <5l=( 0.1- 1 ) . 10 cm which are in agreement with other 
experimental data cited in literature. 

The total data allow a conclusion about experimental 
evidence of the Rasor theory for the above range of the cesium 
vapour pressures, and about the possibility of describing the 
most interesting region of a current-voltage characteristic in 
Eq.(1). 

ADDITION 
It is known from the experimental data that under an arc 

mode regime, the dependence of currents and powers of a cesium 
converter upon the anode temperature ta has its maximum when 

O r,rsrS>, 
~ OUI I 

a 
Probe measurements carried out with a low voltage cesium 

arc in a converter with the molybdenum electrodes [ 8] made with 
the aim of elucidation of the phenomenon mechanism proved that 
there appeared a potential barrier neat the anode. The barrier 
slows down electrons leaving interelectrode plasma 
towards the anode, however, it does not prevent the anode emission 
electrons. As the anode temperature increases the charge concentra
tion also increases, and the plasma electron temperature becomes 
higher. These effects should result in the current growth. 
Decrease in the current with further rise in the anode temperature 

t_« 600° - 700°C (for example,[7] )· a 
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could be attributed to increasing of the anode emission 
current· 

In our experiments, the cathode was made of molybdenum, 
and the anode was made of nickel. 

A balance condition for the anode current can be written 
as efc 

j.J^e"'4 -J, 
4 Sa. » 

(6) 
where J,„ is the current of the anode emission, Λ , Vm are 
the concentration and thermal velocity of the electrons near 
the anode« 

Since with the increaee in the anode temperature n«., ̂ arVl^ 
and Tea also increase, the current J should correspondingly 
increase· According to calculations carried out using the data 
of Ref. [9J the emission current J__ from the nickel anode is 

Sol 
not great for the temperature range under investigation. 
Therefore, in forming the maximum in the curves J (te) an 
important part should be played by the dependence of the 
anode potential drop Va on t_. 

A great number of current-voltage characteristics taken 
under regimes when the application of the Rasor theory was 
valid, were treated by the methods of Ref. [5] · Fig.4 
presents short circuit current J^ , and maximum output 
power W ^ ^ as a function of the anode temperature observed 
experimentally. 

The magnitude of the anode barrier (in terms of the elect
ron temperature) can be found from the equation 

ix / V (7) 

where ƒ(*)= - — - * Me -'J, >= ^ , ¿«grfD* ^ f ^ 

Since all the values appearing in the expression for β can 

be determined directly from an analysis of the current

voltage characteristics, the parameter ρ is a known constant 

for each regime. The values of ^¡r determined from Eq.(7) 

are also in the plots of.Fig.4 together with calculated errors 
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As is seen from the plots when the anode temperature 
varies the value of Q=¿ goes through the minimum at the point 

Klee* 

which is close to the optimum anode temperature· Here, as follows 
from Eq.(6) the magnitude of the current in this temperature 
range should pass through the maximum· This is in good agreement 
with the experimental data· 

Since the electron temperature near the anode slightly 
increases with the anode temperature the shape of the dependence £j£r (t ) should mainly depend on the character of the vatiation 

KTttL a in the anode potential drop V0 with the increase in t_. 
Appearance of apprecible anode emission current J can 

cause a shift in the optimum anode temperature towards lower 
values of t compared with the position of the curve minimum 

f£ < v· 
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IONIZATION STATE Off CESIUM THERMIONIC 
CONVERTER PLASMA 

Kosyrev F.K.,· Kosyreva a.P., Lunev E.I. 

I.V.Kurchatov Atomic Energy Institute 
Moscow, USSR 

One of the main unsolved problems in the investigation 
of arc conditions for the work of thermionic ccrrverter is 
the consideration, of physical processes occuring in the 
interelectrode space plasma. The most important problem 
consists in the way for realization and support of the ioni
zation in a volume with Te * Tg 

In :-. number of available works (for instance ^1,2,2,4 
the authors take certain ionization mechanisms in the con
verter space. It is known that ion generation in Cs is 
caused by step ionization through 6P state. Atom excitation 
from the basic state to 6Ρ one is due to fast electrons 
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with the energies higher than the first excitation po

tential. These are either the electrons accelerated at the 

cathode fall [ ï] , or fast electrons of "the tail" of 

Maxwell distribution Γ
2
»3,4] . Depending on the relation 

between the processes causing population and devastation 

of Cs atom energetic levels one can observe in plasma both 

the presence of ionization equilibrium (electron density 

is associated with Saha equation electron temperature) and 

the deviation from it. Ionization equilibrium disturbance 

may be caused by the following reasons: I) nonMaxwellian 

function of electrons distribution; 2) radiation (especially 

a resonance one) going beyond the boundaries of the system; 

3) particle diffusion to the walls. Apparently, in a real 

thermionic converter a deviation from ionization equilibrium 

can exist, which is associated with any of abovementioned 

reasons. Ionization equilibrium in a thermionic converter 

is usually observed either at high electron densities [5] 

or at rather large distances [6] . One can judge on the 

presence of ionization equilibrium in plasma by Saha equat

ion validity, which can be controlled by a simultaneous 

measurements of temperature and electron concentration. In 

such a case the electron "temperatures" measured by various 

optical methods, should coincide. When ionization equilib

rium disturbs, electron "temperatures" measured by various 

optical methods and quite different by their values, can 

give a valuable information on the space ionization state. 

Most full information on plasma ionization state one can 

obtain while measuring the absolute populations values in 

a wide range of excitation energies. Unfortunately, as it 

is known, such measurements for the case of cesium plasma 

were carried out under the discharge tube condition £"7j β 

In the present work an attempt was made to realize such 

measurements under the conditions of a termionic converter 

with a narrow space. 



- 1043 -

Experimental apparatus 

The experiments were carried out at the apparatus con
sisting of a plane-parallel diode with a changeable space 
(0-5mm) and 3O mm electrode diameter'(fig.I). Temperature 
in the cesium reservoir was changing up to T=400°C. Cathode 
maximum temperature T~20QQ°C, anode temperature was changing 
within 400-9ÛO°C. Small ohmic losses at the anode terminal 
(R~I0 ohm) and a set of shunts from 5.IO"-7 to 2 ohm allowed 
to obtain volt-amper characteristics in a converter condition 
directly under the loading without application of any addi
tional feeding sources. In order to take characteristics 
under a non-energetic quadrant a possibility is provided for 
switching on an additional feeding source into the scheme. 
Optical measurements of plasma, measurements of cathode 
temperature and of the interelectrode distance vaiue were 
performed through 4 sapphire windows soldered into removable 
flanges. Cathode temperature was measured by an optical 
pyrometer on a cavity radiation in the cathode body, modelling 
"black body" while the gap value was measured by an optical 
cathetometer. 

To avoid any contamination, the sapphire windows were 
closed with metallic screens during the process of the 
cathode degassing and during the intervals between the mea
surements. The apparatus is fully dismountable, the available 
metallic gaskets provide a long work under the temperature 
up to 500°C. 

For optical measurements of plasma parameters a grating 
o 

spectrograph with linear dispersion of 5»5 A/mm and with 
photoregistration, as well as a prism spectrograph with 
photoelectrical registration, were used. 

These devices provide the accomplishment of rather wide 
spectroscopic investigation of the converter plasma. 
Application of one-lens optical system and a narrow dia
phragm allowed to obtain rather a great depth in the image 
sharpness. 
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Measurements of spectral lines and recombination 
continuum absolute intensities, of spectral lines profiles, 
and of reversal tmperatures for diffusion series lines were 
performed. During absolute and relative measurements the 
calibration was made by means of a standard band lamp. 
During photographic registrations the calibrated spectrum 
of the standard lamp and the observed discharge spectrum 
were being photographed on the same film. Photographing of 
plasma spectra and standard lamp radiation was performed 
at several expositions. SchwarzschieId constant was neglected. 
During calculations the values of recombination cross-
sections obtained in ["7] were used, while for the calcula
tions of transition possibilities the data of £8] were used. 
If the interelectrode space was not fullfilled with plasma, 
the discharge diameter was measured on the photographs taken 
by a narrow-band filter for the wavelength 456o A. 

Experimental results 

Plasma parameters measurements were made in wide range 
of cathode temperatures and cesium pressures under the 
converter conditions and with applied voltage. Originally, 
plasma parameters behaviour was studied in a diode with 
electrodes heated to the same temperatures. The form of L-v 
characteristics and a visual picture of discharge develop
ment in these conditions are in accord with the description 
given in the work f4j. Fig.3 I-V characteristics in a 
discharge region, as well as the electron density behaviour 
near the cathode at different discharge currents. At the 
current-voltage characteristic one can clearly see the region 
of discharge development ( voltage are 
nearly constant), plasma occupying only a part of the 
cathode area. When current is above IO-Ija the voltage are 
sharply increasing with the discharge current. Electron 
density near the cathode (curve 2, fig.3).behaves analogous 
to the voltage: in the regime of discharge broadening the 
electron concentration remains practically constant. It is 
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important to emphasize that the full electron number 

(i.e. Ne.S I/cm, where S cm is the arc crosssection 

near the cathode) in the whole region of the discharge 

current changes is continuously increasing (curve 3, fig.3). 

Electron density behaviour in plasma distanted from the 

cathode is analogous. 

Fig.4 presents the curves of electron temperature 

distributions across the interelectrode gap, measured by 

means of various methods. Temperature of the diffusion 

series lines reversal 9IÛ/D6P (Tp) and electron tempera

ture were measured on relative intensity of recombination 

continuum Τ Electron density was measured, and ionization 

temperature
 T
saha

 w a s c
°l

cula
"
te<i

 *
0 0
·
 A s
 ** ̂

s s e e n f r o m
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given curves, electron temperatures measured by two inde

pendent methods, are in a practical accord with that cal

culated from Saha equation in the whole space, except the 

region near the cathode. Plasma parameters behaviour near 

the cathode maíces us to suppose the anomaly in population 

value of excited cesium levels. To study the atoms distri

bution by the excited states, the measurements of absolute 

values of cesium levels populations in the space center at 

two interelectrode gap values were performed. The first 

dvalue is equal to the distance at which a deviation in 

'temperatures''' values (fig.4) can be observed. Besides 

that, the given value at the pressure p=I mm Hg nearly 

corresponds to the optimal value on pd 4 . If the space 

value d=3 mm, one can wittingly expect the ionization 

equilibrium to be valid in the space center ¡β] · 

Measurement results are given on fig.5· Ώιβ curves are 
built on the results of measurements of absolute intensities 
of forbidden transitions (5-6) D- 68 (points with excitation 
energies 1,8 and 2,8 ev) and absolute measurements of sharp 
series lines (9-14) S-6P. In addition the data were obtained 
on absolute intensity of recombination 6P-continuum 
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(take in cansideration the superpostion of 5D-continuum) 
and on broadening of the fundamental series lines. The curve 
I obtained in the converter regime (U =-0,Iv··), while the 
curve 2 - under the applied voltage +0,8 v. As it was expected, 
when the interelectrode gap value is 3 mm, the points lie 
down on the stright line with an inclination corresponding 
to the temperature measured on the recombination continuum 
relative intensity. Saba equation is observed to be preci
ously valid. For d=0,4 mm an essential deviation from the 
linear behaviour of levels population as well as from Saha 
equation (curve 2) is observed. In the whole excitation 
energy range the curve 2 lies lower than the corresponding 
Boltzmann curve (a-a). Curve inclination at low excitation 
energies corresponds to the electron temperature measured 
on the recombination continuum. 

Discussion of the results 

Electron distribution is in equilibrium with all bound 
and free energetic states in plasma, i.e. it strongly obeys 
to Saha and Boltzmann equations with the same temperature, 
it the detailed equilibrium of all shock and radiation 
processes take place. In such a case the distribution of 
electrons and heavy particles by their velocities is a 
maxwellian one. Radiation escape from plasma, disturbance 
of temperature components equalty, particles diffusion cause 
the deviation from the equilibrium. But, if the probabi
lities for shock processes prevails over the effective probab
ilities for radiation processes and diffusion role is un
essential, then the distribution on exitation levels will be 
close to an equilibrium distribution with temperature of that 
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component of the plasma, which determine the shock pro
cesses frequency. So, if in this case the majority of col
lisions occurs with electrons participation, then the 
distribution on levels will be close to that equilibrium 
with electron temperature. This problem is thoroughly con
sidered in the works ["9,10,11] # Estimations show that in 
the investigated regimes (d=0,4 mm, Ne=2.I0 ̂  I/cm^) 
radiation escape cannot cause a visible deviation from 
equilibrium distribution. On the other hand, only one of the 
rest two factors to be able to disturb equilibrium distri
bution, is studied in detail; namely - the particlejdif
fusion upon the walls £lOfIl] . These show that essential 
electrons and ion escape from the considered volume cause 
the deviation from upper levels equilibrium population 
(on the contrary, radiation escape influences mainly on 
the lower levels population). Estimations show that for 
the case given on fig.5 curve 2, the diffusion may give 
an essential deviation from equilibrium distribution. 
Really, as one can see from the given experimental data, 
if the space is 0,4 mm, then an essential deviation of 
lg Ni/Gi value behaviour from the linear law is observed. 
Apparently, the authors of [12] ran into analogous pheno
mena during Τ measurements by the lines relative intensity. 
When using this method the relative inrensity is usually 
measured at those lines which correspond to the transitions 
from upper levels. For our case "Te" determined by this 
method, correlates with the ine luna ti on of the stright 
line b-b. This seems to givje an extremely understated re
sult, having no likeness with the real electron tempera
ture. (By the way, "the temperature" determined on the 
relative intensity of those lines which correspond to the 
transitions from rather low levels, gives a precious Tg 
value [7] . This result is Confirmed in our work too). 
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Returning to fig.5, we note that neither electrons 
and ions diffusion, nor radiation escape can explain the 
lowered population of our levels as compared to the 
Boltzmann one. It remains to suppose that this effect is 
caused by nonmaxwellian distribution function. In an 
unequilibrium plasma the electron-electron collisions are 
responsible for the equilibrium distribution establishment 
while electron interactions with ions and atoms cause its 
disturbance. The presence of a significant electron flow 
along the atomic energy levels in a discrete spectrum, as 
well as in a continuous spectrum, may cause electron 
distribution function deviation from an equilibrium one, 
especially, if electron energy is higher than the first 
excitation potential. On the other hand, the estimations 
shown that under the curve 2, fig.5 conditions the length 
of maxwellian distribution establisment for the electrons 
with energy higher than 1f4ev [̂ 3j is more than the space 
magnitude. Inside the space the equilibrium electrons 
distribution can establish for much lower energies 

It is necessary to emphasize in conclusion that the 
anomaly of the levels population leads to some difficulties 
in ions generation, i.e. to the "ion price" increase. 

It is possible that Vd increase during pd parameter 
decrease is associated with a sharp growth of levels 
populations deviation from equilibrium ones. 

In conclusion the authors express their gratitude to 
G.A.Kasabov for fruitful discussions. 
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Fig.I. Experimental diode. 
I. Emitter. 2. Cesium reservoir. 3· Insulator. 
4. Collector heater. 5· Vacuum pump of heater 
volume. 6. Emitter heater. 7· Sapphire windows. 
8. Vacuum pump of divice. 9·Cooling gas. 10.Vacuum 
pump of collector volume. 

Fig.2. Sketch of optical measurements. 
I. Grating spectrograph. 2.Screens. 3· Cathotometer. 
4. Prism spectrograph. 5»Fyrometer. 6.Emitter of the 
diode. 7. Standard band lamp. 
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F i g . 3 . Electron densi ty near the emi t t e r . 

TE=TC=H60°K PCS=0,7 mm Hg. Materials of Emitter and 

Collector are molibdenum.d=2,15 mm. 

I . Voltagecurrent c h a r a c t e r i s t i c . 2 .Electron densi ty 

(Ne I/cm*). 3 . Ful l e lec t ron number (Ne.S I/cm). 

F ig .4 . Curves of e lec t ron "temperatures" d i s t r i b u t i o n 

across t he in t e re l ec t rode gap. 

Te=Tc=II60°K Pcs=0,7 mm Hg d=2,l5 mm J=20a. 
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ρ Λ S-ia^ 

F i g . 5 . Absolute v a l u e s of cesium l e v e l s p o p u l a t i o n i n t h e 
c e n t e r of i n t e r e l e c t r o d e s p a c e . 
TE=I440°K TC=970°K j=2 a/cm P c s = I , 0 mm Hg. 

1. d = 3 mm Ne=2 . I0 1 4 I /cm5 T e = 0 , 2 3 ev 
2 . d = 0,4 mm Ne=2 . I0 1 3 I /cm 3 Τ =0,22 ev . 
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DISCUSSION 

Speaker of papers H-5 , H-6, H-7: D. V. KARETNIKOV·. 

WARNER (USA): Have the deviations from a Maxwellian dis tr ibut ion shown 
in F ig . 5 of H-7 been explained theoret ica l ly? 

KARETNIKOV (USSR): The theory of. the thermionic diode where the p l a s 
ma is in a state of equil ibrium was repor ted on las t year at the Vienna^ 
Conference, There we showed that in that case those laws did apply, the 
ones d iscussed in this repor t today. The result ing deviation of the popula
tions of the lower levels from the Boltzmann-law is a new resu l t which has 
not yet been given a theore t ica l explanation. The deviation of the popula
tion of the upper levels from Boltzmann has been pre t ty well considered 
in theore t ica l work by RA VIOLA, SORINA and other Soviet phys ic i s t s . 

SCHOCK (USA): How did you introduce axial var ia t ion in the heating ra te 
in your long diode t e s t ? Did you use multiple h e a t e r s ? 

KARETNIKOV: Our emi t t e r had been made fairly thick, so that we could 
d i s rega rd the l inear t empera tu re d rops . Our experience showed that, when 
the t empera tu re profile was changed on the hea ter , there was in p rac t ice 
no change in the cur ren t flow. 

SCHOCK: Is your tes t designed to simulate a non-uniform axial fission p r o 
file in the r e a c t o r ? 

KARETNIKOV: We had two different h e a t e r s . There were different profiles 
of heat emiss ion, in one case there was a 50 drop and in the other , about 
a 200 . We noticed a considerable difference with regard to the instability 
depending on whether our hea ter was m o r e homogeneous or with a t e m p e r a 
ture drop along the emi t te r of about 200 C. 
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ON THE DEVELOPMENT OF A LOW VOLTAGE ARC IN 
A THERMIONIC DIODE WITH EXTENDED ELECTRODES 

Derbilov V.l., Karetnikov D.V., 
Kosyreva N.P., Nastojashchy A.F. , 
Turundajevsky V.B. 

I.V.Kurchatov Institute of Atomic Energy, Moscow, USSR 

INTRODUCTION 

Real conditions of thermionic converter exploatation 
can differ to. a great extent from ideal ones. The differences 
are connected, in particular, with following factors: 

i) Temperature changes along the working parts both of 
the emitter and the collector due to heat source inhomogenity 
and thermal losses on the different apparatus components· 

ii) Voltage drops along the emitter and the collector 
due to their electrical resistance. 

iii) Gap changes in different parts of the converter 
owing to mechanical inaccuracies and deformation during the 
work. 

iiii) The detail maintaining the gap value, providing 
they are used. 
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iiiii) Different constructive features. The effect of 
these factors can be seen most clear in the converters with 
extended or lengtly electrodes. The effect of any difference 
or their combination sust influence in the first place the 
distributions both the current and plasma density in the 
converter. 

In the present work some experiments on the studies of 
only one source of "nonideality" (the others being removed) 
are reported. (Itshould be noted, that the same experimental 
device may be used in complex measurements too), ^JCL fact 
development of a low voltage are in cesium vapor in the ther
mionic diode with lengthy electrodes in the presence of the 
temperature variation along the emitter was investigated. The 
curves of plasma and current densities distribution along 
the diode are presented. In particular, the stable striation 
of the discharge was found is thought to have an ionization 
instability origin. The theory of instability is suggested. 

EXPERIMENTAL APPARATUS 

The sketch of the experimental diode is given on the fig.I» 
The thick cross-shaped molibdenum tube had four plane areas 
(1,4 χ 10 cm), one of which was used as the emitter, and 
others were covered with the heat screens. The coaxial elect
rical heater was put into the tube. The heater cavity was 
continuously pumped out during the experiments. The main 
heating took place in the thin plasma sprayed tungsten film, 
isolated from niobium current leading tube by alumina. The 
profile of the heating (and, hence, the emitter temperature) 
was ensured by profiling the thickness of the tungsten film. 
The temperature on the most heated part of the emitter was 
varied in the experiments from 900 to I500°C. Two emitter 
temperature profiles were used: I) "Isotermal" with the total 
temperature drop on the whole emitter length ΔΤ4 50°0, the 
temperature from left to right side on fig.I being increased; 
2) nonisothermal, with ΔΤ >200°C and decreasing the tempera
ture to right side. 
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The temperature distribution along the emitter was 
controlled through one of the six sapphir windows by precision 
optical pyrometer, using blackbody cavities. 

The thick molibdenum bar, having two current leads on the 
both sides, was used as the collector. In the current density 
distribution measurements the collector pictured on fig.I was 
used, It consisted of the plasma sprayed molibdenum film I mm 
thick, which was isolated by alumina layer from molibdenum 
base. This collector had 2 current and II potentiometrical 
leads, which were apart I cm one from another. The nonworking 
parts of the collector surfaces were covered by alumina. The 
cathetometer controlled value of the interelectrode gap d 
could be changed during the experiments. 

In experiments visual observation of the are was carried 
out; the photograps of the discharge in typical regimes were 
taken with polarisable filter; the current-voltage curve, plasma 
and current density distributions along the diode were measured. 
The I-V curves was point by point measured, the emitter tempe
rature being constant. The plasma density was measured, using 
absolute intensity of the radiation of 6P - recombination 
continuum ( X=482oA). The image of the discharge gap was 
formed with objectiv and dann by electrically driven rotary 
mirror the successive parts of the image were directed to the 
entrance slit of the momochromator. The other movable slit 
was placed in front of and perpendicular to the first one. This 
slit 0,1 mm width allowed to measure the radiation from the 
different parts across the gap. Most measurements were carried 
out at the distance from the emitter, nearly equal to 0,5 gap 
value. In display the results the constant electron temperature 
(0,2 ev) in any part of the discharge was assumed [ï] · 

In current density distribution measurements the well 
known equation (see, for example [2] ) was used 

i(x) e- 1- ±ïï ( I ) w h e r e 
^ } ík dx«-
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b - diode width, 
r - electrical resistance per unit length, which was equal in 
our case to the collector resistance between the adjacent po-
tentiometrical leads. 

Measuring step-by-step the potential difference per unit 
collector length dU/dx and differentiating the results once, 
we obtain in accordance to eq.(I) the current density distri
bution. The value r was calibrated before the run. 

RESULTS 
The I-V curves of lengthy electrodes diode (fig.2) are 

rather like to ones of the isothermal diodes with a small 
electrode dimensions. The visual picture of arc ignition and 
development on the early growth stages is also similar to 
one described before [31 · There are, however, many differences 
in details. For example, even at a large temperature drop 
alond the emitter ( kT>200°C) the spot of "ball-of-f ire" 
initiation depended both on the cesium vapor pressure and on 
the magnitude of emitter temperature. At high temperatures 
(I400-I500°C) and low vapor pressures (Tcs=255°C-) the arc 
was ignited near the "cold" end of the emitter. If the pressure 
increased, the spot of ignition was passed to more hot end. 
For the isothermal emitter ( ΔΤ 4 5°°C) there was not some 
regular correlation between the spot of "ball-of-f ire'!) 
ignition and diode parameters. The further stages of discharge 
development revealed as was known in the "ball-of-fire" 
germination to the electrodes with further spreading along 
the gap. However sometimes, for example, at high temperatures 
and high cesium vapor pressures the ball-of-fire ) mainained 
its form and dimensions when the current increased, but near 
it the new plasma cloud appeared and spreaded along the gap. 

It should be noted some important features of discharge 
development, which may be seen at the curves of longitudial 
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plasma density distribution (fig.3). Firstly, there was 

irregular stationär plasma striât ing, which it seems not to 

bind with patch effect .The plasma layers ( strata ) arranged 

perpendicularly to the electrodes and had the typical dimen

sions of some millimeters. The striating took place prac

tically in all regimes, if the aro was well developed. The 

modulation depth at some cases raised up to 2030%. we suppose, 

that this striating was the final result of ionization 

instability development, the nature of which will be discus

sed in the next chapter. Secondly, at some cases (fig.3c, for 

instance) parallel with the lowscale strata there was 

the largescale striating too. This b^g strata had the 

dimensions pf the order of some cantimeters, the density 

modulation being up to 50%. At the present time we cannot 

propose the complete model of this phenomemon. It seems to 

take place, if the Richardson emission current at the middle 

of emitter is larger, than that at the ends. For example, 

in diode with £kT«50°C the discharge was attached to the 

left side of the diode at the low cesium vapor pressure 

(T up to 280°C), but it was attached to the right side at 

more high pressures. 

Along the nonisothermal diode there was strong nomini fora 

current density distribution (fig.4), which is in a good 

accordance with plasma density distribution (fig.5). It may 

be seen, that the most part of the total current concentrated 

roughly on one half of diode area, if ΔΤ was equal to 

200°C. 

DISCUSSION. MODEL OF IONIZATION INSTABILITY 

The reasons of ionization striating may be as follows. 

In the stationär state the magnitude of plasma density and 

its distribution in the interelectrode gap depend on the 

ionisation (and recombination) sources and ion losses due to 

the diffusion to the electrodes. Suppose, that the parameters 
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of stationary state are known. In order to investigate the 
stability of this state we must consider the plasma density 
time-variation given by equation: 

tUcM^nodK^SCu-.n) (2)ί w h e r e 

D - coefficient of ambipolar diffusion, 
S (y,η) - the rate of ion generation. 
The chosen co-ordinate system is showed fig.6. We shall 
consider two-dimensional case, supposing the plasma in a 
Ζ - direction to be uniform. Averaging (2) in limits from 
y=0 to y=d and using the ordinary boundary conditions for 
the plasma density, one obtain s 

<ñ>=(S(^,n)>l5üi[n(o) + n ( d ^ D ^ (3) 

where U;  average ion theiî a" velosity; the angular 

brackets signify the result of averaging. The right hand 

terms have an simple physical sense: 

¿α;ή(ο) , ¿¿"Ointe/) _ ion losses at the 

electrodes Î)ν
2
 Π  the losses owing to diffusion 

in χ  direction. 

The instability will take place, if the right side of 

(3) more than 0. 

For small density perturbations 0Π , ü¿ co e1 

Suppose, that the plasma density distribution in y 

direction remain quasistationar one (the dimension of strata 

kd « I ). When SnCy) 00 n(u) and 

and hence the criterium of instability growth is 

¿ = Í ^ A > < (5) 

dG~n
 7 1 ν > 

It should ve noted that the result obtained previously 

in the work [7] corresponds to the case of at*> 1. 
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The nature of instability is, therefore connected with the 

mechanism of ionization. The value otin (4)may depend on 

wave vector <¿ «ACk) , if on take in account, that the 

current fluctuation in the external curcuit S3 = f S ¡d* 

must result in change of the arc voltage.
 s 

May be two limiting cases: 

1. The big strata , <L«A . The instability result 

in a Camping of the whole discharge in a new regime, the 

total current being change too. This instability take place 

only if the differential resistance of the discharge S"U/S3<0. 

2. lowscale strata, kL>>A . Consequently, $3**»0 

The appearing of instability depends strongly on the ioni

sation mechanism, but only slowly on the external curcuit 

parameters. 

It may be showed, that the arc with ionization equilib

rium [4Ì is stable. Instability may take place in a dischar

ges, where the ionization is maintained by the stream of 

fast electrons [5,6 ] · 

The instability with the change of full current, are 

possible, if the temperature of slow electrons, which deter

mine the potential distribution, Τ >2Te . The smallscale 

strata in "the absence of volume ionization may take place 

already by Τ > Te. The volume recombination make the discharge 

more stable and the instability bondary heaves to higher T. 

The nature of this instability connected essentially with 

the emitter neighbourhood (fig.6)¿ The increasing of plasma 

density in a some region result in increasing the cathode 

voltage drop there. This, in one's turn must, according to 

\6~] result in a exponential ionization growth. The development 

of instability in the case, when^irtual cathode take place, 

must be the same. In our experiments there was the inter

mediate case between the ionization equilibrium arc [4] and 

the discharge with beam fast electons [5J . The length of 
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electron energy relaxation was estimated to be Cg =» 0,5-̂  0,5 d 
Using the fast electron discharge model,it may estimate the 
low-scale strata dimension, which depend only slowly on the 
discharge conditions: 

^ _ j2!il*ÊE 
j (6), where 

ot - heat conductivity due to electrons 
j - current density. 
The estimation using formula (6) give the results, whieh 
accord with the experiments. 

The modulation depth is determined by increment and must 
only slowly depend on current (if \ » < ^ and the ionisation 
mechanism is not changed). For a more complete comparison 
between the theory and experiments, the further detailed in
vestigation is necessary, which must include the measurements 
of electron temperature and electrode voltage drops· This 
experiments is now in progress. 

CONCLUSION 

The preliminary results of investigation of arc discharge 
development in cesium non-onedimensional thermionic diode 
with lengthy electrodes and with longitudtal emitter tempera
ture variation are reported. 

In particular, the phenomena of large - and low-scale 
plasma striating were observed. The me cha ni sm of low-scale 
striating, which seems to have an ionization origin is dis
cussed in detail. The existence of these phenomena call in 
question the possibility of such diodes calculation on the 
basis of one-dimensional models. 
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Fig.3. Plasma density distribution along the diode at 

different discharge currents: 

a) Isothermal emitter AT=255o°C, TCs=330°C, 

d=0,45mm. 

b) Isothermal emitter &T=50°C, \ =l200°C,á=0,45mm 

c) Nonisothermal emitter AT=II0°C, TC=FI00O°C, 

d «= 0,45 mm. 
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Fig.5. Current density, plasma density and emitter 

temperature distributions along the diode (non-

isothermal emitter). 

Te max=l300°C,Toá 600°C,Tcs=330
O
C,d=0,83mnu 
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Fig.6. Diagram of the potential energy of electrons 
in a gap. 
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"beam
11
 of the relatively fast particles. It is supposed that 

the main part of electrons passes to the anode without scatte

ring. Nevertheless, rare collisions of these electrons essentia

lly affect the processes in plasmai 

I Inelastic collisions with atoms secure the ion genera

tion necessary to support the discarge· 

II Rare collisions of the fast electrons with plasma 

particles result in the electron capture in an electrostatic 

trap. 

As a matter of fact, trapped electrons don't take part in 

the currentearring process. However, they play the definite 

role in the potential distribution in the &ap, since their 

density usually exceeds the beam density. The slow particles 

at the potential wells bottom make the major part of these 

electrons· 

Since the Coulomb scattering cross section rapidly 

increases with the energy decrease, the average free path of 

these electrons can be even less than the gap. Inelastic 

collissions of these electrons with atoms can play an essential 

role in transitions between highly excited states of atoms 

during the stepbystep ionisation. 

In the present paper intending to understand the main 

features of the phenomenon, we did not tend to the accurate 

mathematical description and in some cases used the simplified 

physical models. 

1. THE ELECTRON DISTRIBUTION FUNCTION. 

The fast electrons in the Knudsen arc plasma can be 

devided into two groups» the beam electrons and the electrons 

trapped by the potential well as a result of elastic collisions 

The beam electrons distribution in the case of absence 

of the anode emission and reflection from electrodes has been 

obtained in the paper [2] by solving Vlasov equation It gives» 

I-J.2ÏL ¿τ. 8=—*-φ £*Α̂ *-γ> ( €
^°\Λ) 

f
i~ 2 χ ι* e

 ,
 c

 χ Ψ,
 Λ

' Λ.
 ψ

 \ *χ>ο r
 J 

where: ψ the potential, Jethe emission current density, 
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fethe cathode temperature. The rest denotations are commonly used* 

The distribution of fast electrons, trapped as a result 

of rare elastic collisions, has been obtained in the paper Γ3] 

by solving the approximated kinetic equation which describes 

the balance between these and the beam electrons during the 

collisiond: £ . 

In the deduction of equation (2) it was assumed that the 

potential well had a rectangular shape, and that the elastic 

collisions took place more often than Coulomb collisions. We 

shall use the expeession (2) assuming here and further that 

the well potential change is small relatively to its depth. 

There is a gap04Ç<rfin the impulse space between the fields 

occupied by trapped and untrapped electrons· In this gap the 

electrons are practically absent. And really, according to the 

condition l » a (1 is the length of electron's free path), the 

electrons which fall after the collision into this gap, 

immediately go to the electrodes. The edges of this gap will 

be somehow smeared because of Coulomb collisions. 

A mechanism leading to the filling of the potential well 

by slow electrons is provided by inelastic collisions of fast 

electrons with the atoms, and also by short distance Coulomb 

collisions, when the electrons lose considerable energy during 

a singlo collisions process. In the case of plasma high 

densities and small ifj, the electron beam diffusion through the 

energetic gap due to the long distance Coulomb collisions may 

play a certain role. 

Further we shall consider the particle capture as a 

certain source of electrons of intensity q(x,Ô, v ) . 

The problem of mathematical investigation becomes 

essentially simplified with the fact that the collisions 

between the slowest electrons take place more often than with 

the beam electrons· Because of that the distribution of these 

particles making the major part of the slow electrons will be 

close to the Maxwell distribution· The electron distribution 

in the upper part of the well where the collisions are rare, 
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considerable differs from Maxwell distribution as a result of 

the existancee of the sources and the parttical exit fro«, the 

well; it must be found from the solution of kinetic equation. 

According to foregoing the Coulomb integral of the colli

sions in kinetic equation can be simplified because one can 

assume that field particles are distributed by Maxwellian fun 

ction.To describe the elastic collisions with neutral atoms we 

shall use the Lorentz model. Using the variables £ and Θ atcc^s·^ 

(0< θ 4 %) and designating the distribution functions of partie

elee with νχ>Ρ as f
+
 and with νχ<0 as f" we put down the kinetic 

equation in the following form: . 

Hi 

2(6 ¿X 2(6+</>)
 d

* *θ 2(ε+ψ)ά& \' *6 ' 

2 (*-£ϊ)ή *»£+a[f*-î r*/)«4 

+ ', r : . t = Ane'L I  Gn« 
\/2m(6 + r)

 7 

where η i s the densi ty of the slow e lec t rons ,Τ i s t h e i r tempe 

rature assumed t o be constant along the gap, n„ i s the atom 
GL 

density, Ò is the crosssection of elastic scattering.For the 

trappingelectrons in the upper part of the potential well we can 

can approximately take: CrtøsrY&f+̂ fcff,) where ψ is a certain average 

rage depth of the well, since for these electrons the variation of 

of θ during their motion, due to the relatively small change of y> 

is not large, in this approximation t and θ are the invariants 

of the movement.Allowing for the fact that for the electrons 

near the well edge 15>a is valid,we shall took for the solution 

of the equation in the form: 

Then, as it is well known Γ4] , f± ^°' depends only on the 

invariantes £ and θ and can be found by averaging the kinetic 

equation over Xcoordinate. Further we shall expand f±^
0
^ by 

Legandret polynoms: 

4*= 4oM ± 4.%)C«B+Î4*(*)(3O**B-±)+." ( 5 ) 
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After substituting the expansion (7) into the averaged kinetic 

equation it appears that f^(S ) = Oj and as a result of the 

condition 1 ¿c lcalsow f2( & ) *<f0( £ )» (where {c is the 

Coulomb free path).Solving the equation for the spherically 

symmetric part of the distribution function fo, and equalling 

the flux of particais flowing out from the well to the source 

integral efficiency, we obtain» 

„, 2
 T

 4 * (6) 
where ? - \4ËÈL— v -o¿r 

J V2m(€+<f) >
 V

"~ * ) 7
 a. 

fr <tfx 
(?) 

(x^, x 2  are the turning points) 

Taking into account the smallness of f (ιρα) and that in the 

case of large S f tends to the Maxwellian distribution 

function we find: . 
-f* e'

 ε 

τ iV*jí~-«£t/ 
-<Λ» -ipm

 r l
~* ι (8) 

where VÎ. is the potential maximum, ji = η («ft.)  is the 

maximum density of plasma. 

The source of the particle capture into the well due to 

the Coulomb collisions qk(x,€) between the fast and slow 

electrons is calculated neglecting the thermal part in the 

velocities (T,Tfc<icy> ) 

W' φ^ί***** %$]: ΨΗ= f] i ni X>C? 
O ovi *<0 ζο,) 

( SP -is the fast electrons / density of the beam electrons) 
The second term includes the possible exit of the electrons 
from the well if they got the energy exceeding the magnitude 
of anode barrier. 

The flow of particles into the well due to the inelastic 
collisions is egual to: 

q>= -f, + -U ; i,* =Ο,Ι,Λ . (10) 
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where ¿ and ¿"are the cross-sections of excitation and 
extinction, respectively; n . - is the number of the atoms on 
the level i; <£t·* - is their transition energy between the 
levels i and k. 

The slow particles energy balance in the well consists 
of influx Q+ or loss cf of the energy due to the capture (or 
exit) of particles; loss the energy on the exitation (extincti
on) of the atoms and heating due to the Coulomb interactions 
with the fast electrons d^/cLh 

\ {£ + Q-Q-t(^-*)-*(*-*)}****' 
o " (11) 

where K-is the density of particles flux out from the weei. 
Above it was taken into account that when resonance 

radiation was trapped (see the following section) the energy 
losses of slow electrons are equal to the producr of -che ioni
zation velocity g and the potential of atoms ionization from 
the second level, from which the excitation by slow electrons 
becomes dominating. 

Using the expression for the velocity of energy losses 
by the "test" particle due to its scattering on the "field" 
particles having Maxwell distibution with the temperature T, 
and taking into account the energy distribution function 
for the fast electrons we obtain: 

( ¿e - is the ratio of the fast electorns total density to 
the density of electrons in the beam). 

2. THE VELOCITY OF IONIZATION IN PLASMA 

We shall now consider the arc discharge in cesium vapour. 
The mpJT> mechanism of the ion generation in such an arc is 
the step-by-step ionization of atoms. Populations densities of 
excited states are determined by the atom excitation and 
extincition due to the electron impacts and optical transitions· 
The process is described by the sistem of chained equations of 
the following type: 
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(»,,κ = 0,1,2,... S , e ) (13) 

Indices O j£ K; m^ S concern to the bound electrons; index 

e to the continuous spectrum so that η is the free electrons 

density; ¿Km are the probablities of atoms excitation (k< m) 

or extintion (k > m) by electron impact with the transition 

from the state k into the state m, averaged with distribution 

function of free electrons; a,^  are the probablities of the 

optical transitions with the absorption (k <■ m) or radiation 

(k J> m) of photon with the energy £Km . For excitations with 

the considerable energy variation £*« > ψ y«, , only the colli

sions with the fast electrons are essential; and at the same 

time all the free electrons can equalli take part in the 

extinction processes. 

The probablities of optical transitions of and of the 

transitions due to electron impact are proportional to the 

oscillator strengths for the given transition 4ta*· 

The Table 1 shown the oscillator strengths for some cesium 

atom transitions calculated in the paper (6J · However the data 

for the transitions 7 Ρ  5 D (with the main quantum number 

change to two) in this paper probably are too large. For this 

transitions we shall use the results obtained in the more 

recent work f7j · 

As the Table shows, the transitions from the level 5 D 

to the upper one can be neglected, because this path for the 

electrons is closed. Though the impact transition crosssecti

ons between the levels 6P  6S and 6P  7S are comparable in 

magnitude, but the transitions by the excitations are provoked 

only by the fast electrons while extinctinn is carried out 

by all the electrons. Therefore the levels 6S  6P  5D may 

be assumed to be closely bound. 

Generally speaking, for the level 7S it is necessery to 

take into account both the transitions to the levels 6P and 

to levels of large energy  7P. As to the level 7P, for the 

of calculation simpliness we shall assume it to be in equili

x) 

brium with the continuous spectrum
 J. 
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Thus we pass to some threelevel model of Cs atom. The po
(I) ( 

pulation densities n
v
 /»,n(

v
 of the states 6P, 7S in this model 

are equal to: 

n
«Jto ■*■ Oio

 9
 'h (j3, +J23) + <*zi + Qa* 

(0) (òì 

where nK J
 and n

v
 'are population densities of the states 6S, 7P. 

Hence the rate of ionization (recombination) can be determined 
in the following way: 

£ = (V* + β« ; Ή°}- (n^ 4 α^)ηίζ)
 (I5) 

The formulas derived allow further simplifications.The estima
tes show that in the cases we are interested in, optical 
transitions a^2, a2^ , *arl k* 1^· 7 probable compared to 
impact transitions. As to the optical transitions aQ1, its 
corresponding line is highly reabsorbed, so that the effective 
life time of the 6P state is mainly defined by electron 12 a impacts at the desity n_ > 10 o í . 

Concrete calculations have been carried out using the 

Born approximation which gives the cross sections larged at 

about three times compared to experimental ones £9J · The 

averaging of transitions probablities has been carried for 

the transitions 6S  6P and 6P  7S by the fast electrons 

distribution function, and for the rest transitions by all 

the free electrons. As a result we have t 

9'■$&*>[*.-<>-£<?·***] 
«CZËSP (17) 

I S*a Γ J _ isa . T. A strtM\ Ί 
« , ;'['-<Έ-η(ί-%*ΐΣ)ε -, 

- „ - Σ&η +2k/f+ &-\] 
where l¿  the average velocity of electron, Ne  is the 
density of free electrons levels. 
__ 

' In the case of high rate of ionization in the upper levels 
the deviations from the equilibrium distribution may arise 
Γ81 . which are related to exponential fall of the po 

pulation density with the increase of the level energies, 
The consideration of this fact can be carried out within 
the limits of the model discussed. 
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3. THE DISTRIBUTION OF POTENTIAL AND PLASMA 

DENSITY IN THE INTERELECTRODE SPACING. 

To describe the distribution of plasma density we use 

the ambipolar diffusion equations 

á**ê +9(*jn)=0 (J>AC7>*)ÍÇ ) (IS) 

with the boundary conditions at the plasma edges s 

W >
 d

*'χ*«-ο ' (19) 

where D  is the ambipolar diffusion coefficient, m.is the 

mass of ion, 1±-ί3 the length of ion1s free path. Let's assume 
the coefficient ¿Γ to be equal to }£· 

The ambipolar diffusion equation's applicability follows 

from the Boltzmann distribution of slow electrons which 

determine the density of plasma . 

*=*>*,* τ ( 2 0 ) 

Solwing the equation (18) together with boundary conditions 

(19), substituting the ionization rate from the formula (17) 

and taking into account (20), we obtain the expessions for 

the plasma density and if^t 

± [ dV = A ± , _* (21) 

,> vtriT7 2 / £ f T T & (φ+ι) (22) 
Further substituting the obtained value of n m into the formula 

(8) we obtain the equation relating ψ m and <fs\. 

Now it*s left to consider the distribution of potential 

in the cathodeside region. Two cases are possible» 

i) The field near the cathode is positive ¥·Γ> 0 and the total 

emission current flows through the diode; iö φ,ί-C 0, the current 
is limited by so called virtual cathode. Solving Poisson equa
tion in the range of o é x ̂  1¿ and matching this solution with 
the solution for the plasma region we find the field *f¿ for the 
first case and the cathode side jump value and the virtual 
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cathode potential Λ<for the second case» 

i) Ú = \/ijcen(c)(iji) (\/(ψ* + τΛ)τΛ _ Te ) 
(23) 

(24) 

where ß>=2Je/h(o)Veis the ratio, of the slow electrons
1
 density 

to the ions density on the boundary between the plasma and 

the cathode; jsis the current of Richardson's emission from 

the cathode. 

Preliminary calculations were made to find how inert gas 

additions influence on processes occuring in the Knudsen arc. 

The distribution potential in the arc at Ψ**< 0 in the region 

χ ? O doesn* t depend on the currant. It is shown in fig.I; 

the voltamper characteristics of thermionic converters are 

given by V (j«) = Δ / + Δ* Cié)  ψα , 

where &X is contact difference potential· 

Insertion of inert gas additions into the gap results in 

I) increasing of the absolute value of plasma density and that 

of plasma distribution over the gap; 2) changing of potential 

distribution; 3)decreasing of arc burning voltage, as shown in 

fig.1. At a^(3  5)1± the voltage decrease is 4 ^ 1  2) Te. 

This result becomes obvious if one uses expressions (21) 

and (22) of plasma density as well as eq.(8) which after subs

tituting sources (9) has the following form: 

^(£7) e τ , ™ *Jj «β«ν« (25) 
**

 L
 y Vm ν« 

where ψ is the mean value of potential in plasma . 

The inert gas favour retention of ions in the volume and 

thus lead to increasing of plasma density what, in its turn, 

is to increase the anode barrier, according to eq.(25)# The 

absolute values of arc burning potential are sensitive to cross 

section values (ionization etc.), which may be given only with 

a certain, degree of accuracy. 
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The calculations show, that the Knudsen arc in mixture 
of inert gases with cesium vapour may be of interest from the 
point of its application in thermionic converters. In this 
case providing of necessary electron emission from the cathode 
becomes the most important problem· 

CONCLUSIONS. 

The theory of the Knudsen arcs is discussed where elect
ron processes are discribed on the base of a kinetic approach 
and an ion motion on the base of a hydrodinamic model. 
The theory can be applied to the discharges in the mixture 
of inert gases with cceium vapour. 
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APPENDIX I. 

Table oí' oscillator strenghts for Gs atom ¿6) . 

Transi t ion 

6PI/26SI/2 

6P3/26SI/2 

5D3/26PI/2 

5D3/26P3/2 

5D5/26P3/2 

7SI/26PI/2 

7SI/26P3/2 

1 

Ιίαη ; 

0.594 
0.814 
Ü.251 

0.021 

0.204 

0o28 

0.171 

Transi t ion 

7SI/26SI/2 

7P3/26SI/2 

7PI/25D3/2 

7P3/25D3/2 

7P3/25D5/2 

7PI/27SI/2 

7P3/27SI/2 

fkm 

2.84·10"^ 

1o74.10~¿ 

1.2.10"^ [7] 

2 .4 .10" 5 Γ71 

1,44.10"* [7] 

0,556 

1.115 

a χ 

** 

Ψ, vf 

a) £■ ̂  o. 5£ ¿>) t: = Q.Za 

Fig.I. Potential distribution in interelectrode space: 

a) in pure secium vapour; b) in mixture of cesium with inert 

gases. %.  >?50°k, n^ = S>lo'4*¿*, a  2. to' 
-2 

Cra 
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CURRENT OSCILLATIONS AND ELECTROMAGNETIC RADIATION 
IN LOW-PRESSURE THERMAL-EMISSION CONVERTERS* 

I . G . G v e r d t s i t e l i , V.Ya.Karakhanov, R.Ya.Kucherov, Z.A.Oganezov, 
V.K.Tskhakaya. 

Physical-Technical Institute, State Committee on Utilization 
of Atomic Energy, Sukhumi (USSR) 

Current oscillations in the circuits of cesium thermal-
emission converters have been experimentally investigated in 
a number of papers· It has been shown that there were two 
regions of the device parameters where the oscillations have 
been observed /1,2/ in the case of low pressures (p<5.10 
torr) of cesium vapours and the cathode temperature of T v£ 
1800 K ; and in the case of higher pressures of 5 10~<p<0,6 
torr and the cathode temperature of 1100 + 1600°K· The osci
llation frequency in low-pressure region is 10 + 10 c.p.s., 
the oscillation period being of the order of the time of 
flight across the interelectrode gap L by cesium ions· It 
has been found that Τ is proportional to L and increases with 
the applied voltage growth /3»4/· The oscillation amplitude 
reaches 50% of the constant constituent of the current and 
some cases the current appears to be completely modulated/3/· 

Initially it has been thought that the oscillations took 
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place only in the case of the potential negative jump at the 
cathode and were related to the oscillations of ions or ion 
clusters trapped in the potential well/1,3/· On the basis of 
the current-voltage characteristics analysis the paper /5/ 
has shown that the oscillations have been mainly observed in 
such modes when there was no potential well for ions the osci
llations always leading to the decrease of the current constant 
constituent· 

The oscillation theory based on the analysis of the plasma 
interaction with the beam of electrons accelerated in the catho
de sheath has been developed in the paper /6/. However, the 
formula obtained in the small amplitude approximation can not 
explain a number of experimentally observed trends which are, 
no doubt, of nonlinear type· The paper /7/ gives the oscilla
tion theory based on the beam instability onset near the catho
de and the propagation of damping longitudinal ionic-sound wa
ves towards the anode· Apparently this theory correctly treats 
the processes observed at relatively low cathode temperatures 
and high pressures (1«»L) of cesium vapours, but it fails in 
the case of processes taking place in a collision-free plasma. 

Recently there appeared the papers /8,9/ which give the 
modellings of diode operation instable modes using the high
speed computer. The potential distributions obtained »being 
consequent in time, show that the current oscillations arise 
as a result of electron lock-up by the potential barrier. In 
order to treat the computer-obtained results the authors con
sider "temporary states of the direct current" which are sta
tionary for electrons but instable for ions. According to the 
authors, these states are more probable than completely stati
onary ones calculated in the papers /10-Î-12/· Transitions into 
these states and their development during the ion motions result 
in the generation of the barrier limiting the electron current. 

The paper /4/ gives some experimental data which agree with 
the results obtained in a computed model. 

The present paper gives the experimental investigation 
results on the oscillation period dependence on the diode main 
parameters in pure cesium and the mixture of cesium with inert 
gases - argon and xenon. An empiric formula has been obtained 
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for the oscillation period dependence on the gap and voltage; 

the h.f .electromagnetic radiation has been measured.The results 

are in accordance with the computed model data. 

The Experimental Apparatus.The measurements have been carri

ed out in the glass diode with plategeometry electrodes.The 

tantalum cathode of the diameter of 15mm has been heated by elec

tron bombardment.The interelectrode gap has been regulated from 

0 to 5*™ by the transfer ine onanism »The cathode temperature has 

been measured by tungstenrhenium thermocouple and sustained 
o 

with the accuracy of±2 C of the electron stabilization circuit. 

A hightemperature rectifier allowed to perform dosed fillings 

of inert gases (argon and xenon)during the diode operation.The 

measurement technigues for direct and alternating constituents 

of ion and electron current are described in the paper /5/· 

The electron and ion saturation currents I$¿and Ishave 

been defined by direct measuring the currents flowing through 

the diode on the electron and ion plateaus of the currentvol

tage characteristics (+^50 aad 10 volts,respectively).If to 

neglect the possible influence of Shottki effects hence we can 

determine the compensation parameter</'j /^.The oscillation shape 

and freguency have been recorded by the oscillograph and the 

spectrum analiser.The electromagnetic radiation has been accep

ted by a dipole or horntype antennas and recorded by the mea
12 

suring receivers of sensitivity of 10 wt in the range of 

freguencies: 400 + 4000 MS. At the receivers'exit fchere was an 

envelope of the s.h.f· radiation which after preliminary enhan

cement became directed onto the controllelectrode of the osci

llograph electronimage tube cathode.This gave us the oppor

tunity to obtain the time momenti in the form of lightspot on 

the oscillograph traces of oscillations when the s.h.f«radia

tion of freguency,corresponding to the receiver adjust,aent was 

recorded· 

The Current Oscillations in Cesium.The detailed investiga

tions og the oscillation period dependence on the interelect

rode space L and the applied voltage V have been performed under 

the conditions analogous to the experiments carried out in the 

work /4/ (Tv= 2130°K,I = 6,710~
2
A L=0,5f5;nm and Debye spacing 

,Λ  1,4 10 mm) with three values of the compensation parameter: 

où = 0,3;0,5;5· Fig.1 and 2 give the depedence of Ton the gap size 
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and the anode voilage for </L = 0,3 an<L¿r0,5 . The line 

dependence <C (L) has been earlier noted by a number of authors· 

The slope angle of straight lines <£ (L) reduces with the vol

tage growth. If we assume that the ion mean velocity v. slightly 

depend on V and corresponds to the cathode temperature , then 

the slope decrease can be related to the reduction of the plasma

occupied region by the value of Δ according to Burger model/9/· 

The dependence Δ on.the voltage calculated from the data of 

Fig. 2 is given in Fig.3· It appears that in the case of fixed 

voltage the ratio γ does not depend on L. In Fig.3, the dotted 

line corresponds.to the values of  "  against the voltage. For 

comparison , Fig.3a gives the values of Τ ̂  , obtained as a 

result of Burger's numerical calculations /4/ in the form of ver

tical segments at V =4,8,12 and 16 volts for ion energies 

from 1 to 5 kT. In the case of large <¿ (e¿>3) the oscillation 

frequencies in the range of 0,5 * V <■ 10 volts do not depend on 

the voltage (Fig.3c). In order to find the type of the dependence 

of Δ on the voltage the dependences of Δ on (VVo) and 

( V V0 ) are distinguished in the case of ^ = 0,3· V0 is the 

voltage at which Δ turns into zero. In the case considered 

V = 1,8 volts. From this figure it is evident that there are 

two regions for which the dependence Δ on V  V0 is various. 

Δ-Β,ΜίΓ-ν.)*« at γ< 2,2 volts (/] ) 
Δ ^e>2L(VVe)

4/'í at y >, 2,2 volts 

where the coefficients β^Ο,Ι and ß2t=0,25 Β coeffi

cients at oC < 0,5 slightly depend on cL . Hence for the oscilla

tion period in the case of Ji < 1 we can obtain the following 

empiric formula: 

u
 ^ ~~ at V £ 2,2 volts 

(2) 

g. ¿ftBi(VV.)»I at V> 2,2 volts 

Table 1 gives the comparison of °C values obtained in the ex

periments by Guttler and Burger /4/ with the computed values ob

tained using Eq.(2). From the Table it is clear that using Eq.(2) 

we obtain good agreement with experimental values of the oscilla

tion period· 

Investigations of voltage and gap regions of oscillations have 
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shown that there were instable oscillations of noise type in 

the case of 0,4<LiO,7ffii|and there were no oscillations in the 

case of L<0,4mux. Above L~0,7^ the oscillations become regular. 

The voltageregion oscillations appear at V=2,2 volts in. 

the region of 2,2 ν< V< 1,8volts they are of the noisetype. 

The oscillations dissapear with the voltage growth at V s 

150 v.A typical view of the oscillation spectrum is shown in Fig5 

Current Oscillations in the CesiumInert Gas fixture.The ex

periments have been carried out on oscillations in the medium 

filled by the fixture of cesium and so.;ie inert gas (argon, or xe

non)· As a result of Ra.usauer effect these gases  intensely 

scattering the ions do not affect the electron component of the 

plasia (i.e. l>>L»«i. )up to the pressures of the order of 10 torr« 
tí J. 

The leasureiuent results are given in Fig.6. 

The oscillations have been observed up to the pressures of 

3 torr in argon and 1,5 torr in xenon. The oscillation period 

has insreased with the gas pressure growth,however,..¡.ore slowly 

than it can be assu :ed from the insrease of the ion uotion time 

towards the anode.With the argon pressure growth,the reduction of 

the sum of the current constant constituent and the amplitude 

value of the alternating constituent has been observed too/Fig7/ 

Since at 1 >>L and the potential is nowhere in the diode this 

e ·* 

su,.; must not varry /.3/,it can be assumed that there appeared 

the potential barrier retarding electrons in the diode.The for

mation of such a barrier near the anode can be untersjrood if 

co cake into account theft emperat ure decrease from the cathode 

to the anode related to the filling gas thermal conductivity. 

Such a distribution of the temperabure leads to the ion density 

increase near the anode and this,in turn,leads to the potential 

decrease from the cathode to the anode (at sufficiently high 

potentials of the anode when the ion current towards the anode 

is negligible) and can result in the barrier for electrons 

at the anode· The electron reflection by this barrier prevents 

the current oscillation development. 

The Diode Electromagnetic Radiation.Together with the current 

oscillations the electromagnetic s,hef· radiation has been measu

red· At«£>3 nearly continuous srectru. of the radiation of inten
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—12 —10 sity 10 - 10 wt has been found over the frequency range of 
500 - 3000 Mc/s. However, the time-sweeping of the s.h.f. radia
tion envelope has shown that the radiation continuous spectrum 
was related to the oscillations of plasma parameters in the dio
de. Fig«8 shows typical oscillograph traces of the current in
cluding the s.h.f, radiation envelope(light spot) supplied from 
the receiver (The receiver transmission band being 5Mc/s). On 
readjusting the receiver the spot moves on the oscillograph trace 
in accordance with the radiation frequency variation in various 
phases of the current oscillations. 

If we presume that the plasma electromagnetic radiation is 
related to the nonlinear interactions of longitudinal Langmuir 
and relatively low-frequency ionic-sound waves , then from the 
radiation frequency we can roughly estimate the plasma average 
density variation during the oscillating cycle development»The 
results of such estimates are shown in Fig<>9 · 

The electron density change nearly by an order of magnitude 
indicates the fact that the current oscillations are accompanied 
with large-amplitude oscillations of the plasma potential, re
sulting in the considerable decrease of the electron beam den
sity because of its acceleration· 
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TABLE 1 

The Comparison of Experimental Values of *C 
with ca lcu la ted ones using the equation ( 2 ) . 

L cm V v o l t s V+(V ) ^ c a l c . <£exp. notes 
jfcsec. /ttsec« 

0 ,1 0 
2 
5 

1,8 
3,8 
6,8 

1,65 
1,45 
1,2 

1,75 
1,4 
1,15 

oi =0,3 

0,3 

0,8 

1,2 

0 
2 
5 
1 
2 
5 
1 
2 
5 

1,8 
3,8 6,8 
2,8 
3,8 
6,8 
2,8 
3,8 
6,8 

4,95 
4,35 3,6 
12,4 
11,6 
9,5 
18,6 
17,5 
14,3 

5 
4,3 
3,65 
10 
9 6 
15,3 
14 
12,5 

oó=0,5 

exper· 
/4/ 
exper· 
/4/ 

Note: Jn the experiment /4/ the value of oC is not indicated 
* (at which the measurements have been carried out); there
fore , in the course of calculations, the values of B,. 
and B 2 coefficients, obtained in our experiment are used. 
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Fig.1.  The oscillation period dependence.on the voltage and 

the interelectrode gap tor où =0,5. 
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Fig.2. - The oscillation period dependence on the voltage and 
the interelectrode gap for<¿ =0,3 (.λ =1,4 10 mm,Tj = 

2130°K); (the dotted line corresponds to the time of 

flight of an ion over the gap L with an average velo

city equal to the cathode temperature). 
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LOW-VOLTAGE ARC IN THE CESIUM-BARIUM 
MIXTURE 

I . G . G v e r d t s i t e l i , R . Y a . K u c h e r o v , G . I • T k e s h e l a s h v i l i , 
V.K.Tskhakaya. 

Physical-Technical Insti t ute, St ate Committee on 
Utilization of Atomic Energy, Sukhumi (USSR) 

It has been shown in the paper /1/ that the thermal emissi
on converter filling by the cesium-barium mixture allows us to 
essentially improve its characteristics in the surface ioniza
tion regime thanks to the separation of the cathode work func
tion decrease (barium) and the space charge neutralization (ce
sium) functions· 

In the present paper the experimental investigations of the 
converter filled by the cesium-barium mixture in the arc mode 
are described. 

The experimental apparatus is represented by a plate-paral
lel diode with the controllable size of the interelectrode gap, 
and separate containers for cesium and barium»Metallic barium 
is placed into the containei* directly connected with a high-
temperature operating chamber where the electrodes are situat
ed^ thermostat filled with liquid cesium is connected with 
this cha.iber by a capillar. 
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The emitter is made of tungsten with the predominating ori
entation of the face /110/,and the collector - of polycrystal 
molibdenum.In order to prevent parasitic discharges out of the 
interelectrode space,the electrodes are surrounded by the ce-
ramical isolation. 

The stabilization system allowed us to sustain the cathode 
and the cesium and barium containers temperature during the 
experiment with the accuracy of 2-3 .The current-voltage cha
racteristics have been recorded by means of the two-coordinate 
potentiometer. 

Fig.1 shows the emission current dependence in the bending 
point of the arc current-voltage characteristics upon the ca
thode reverse temperature for pure cesium and the cesium-ba
rium mixture.According to the. paper /2/ this dependence re
flects the shape of S-type curves.The curve maximum in the ca
se of the cesium-barium mixture is displaced in the direction 
of much higher temperatures and corresponds by an order of 
magnitude to the high-valuëd current. 

Hence it is evident that the optimum modes for the cesium-
o 

barium arc lies izi the cathode temperature range of 1 $00-2200 K, 
In the case of lower temperatures the contact potential diffe
rence between the anode and the cathode decreases to such a le
vel that the external source of e.ra.f. is necessary to sustain 
the discharge burning. 

Fig.2 shows the current-voltage characteristics taken at 
the emitter temperature of 2100°K and various pressures of ce
si uru and barium.A low-voltage arc is observed at the filling 
gas pressures above 10~3torr,At the pressures of the order of 
IO-2 torr the characteristics pass into the negative voltage 
region.The pressure increase is accompanied with the growth of 
short-circuiting currents and the minimum discharge current. 
At the cesium pressures of the order of 10 torr the transiti
on into the discharge mode is performed continuously at the 
voltages of o,7 - 0,8 volts. 

The given current voltage characteristics have been ob
tained in the case of the interelectrode gap of 0.7 mm.How-
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_2 
ever the discharge parameters up to 5r10 torr do not actually 

change with the interelectrode gap increase from 0,6 to 2mm.At 

L*
i
0.5nmi the shortcircuiting current fall and the arc ignition 

and extinction potential growth are observed./See fig.3,4/. 

Similar results have been'obtained in the apparatus with 

the cylindric geometry of electrodes. 

Thus in the converters filled by the cesiumbarium mixture 

the discharge is observed at the filling gas pressures lower 

by an order of magnitude than in the case of pure cesium·In 

this discharge much higher current densities can be reached 

and the discharge is slightly sensitive to the interelectrode 

gap variation. 

REFERENCES 

[l\ John Psarouthakis, Thermionic Energy Conversion with mixed 

Vapors. 

International Conference on Thermoionic Electrical Power 

Generation. London, september, 1965· 

{2] r.A.ADieB H ÄP. ΙΤΦ XXXy . II (1965) 2054 
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LOW-VOLTAGE KNUDSEN ARC IN THE CESIUM-INERT GAS 
MIXTURE. 

I .G.Gverdtsiteli ,V .Ya.Kar akhanoVjR .Ya.Kucherov, 
G.I.Tkeshelashvili,V,P.Tsiberev,V.K.Tskhakaya. 

Physical-Technical Institute,State Committee on 
Utilization of Atomic Energy, Sukhumi (USSR) 

A low-voltage arc in cesium vapours is the most promising 
prospect for their practical use in the thermal-emission con
verters.The ions necessary to compensate the space charge form 
as a result of step-by-step ionization of cesium by plasma 
electrons heated by passing of the potential cathode-side jump. 
The arc is observed in the gap between the hot cathode and re
latively cold anode under the conditions when the mean length 
of the particle free path 1 is much less than the interelec
trode space L.The arc-burning at small cesium pressures is 
prevented by the fast escape of forming ions and excited atoms 
towards the electrodes;this results in the ion density decrea-
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se in size and the potential jump fall to the magnitude which 
is no more sufficient to supply the energy necessary to excite 
cesium atoms to fae electrons. 

The escape velocity of ions and excited atoms to the elec
trodes may be essentially reduced by filling the discharge gap 
by the cesium-inert gas vapour mixture.As a result of the 
great difference between cross sections of icn and electron 
scattering by the inert gas atoms ( -gr- ~ 1Q ) we can form 
a medium which is practically transparent for electrons but 
highly scatters cesium ions 'i€*7L;ll*~*'l') .The ions necessary to 
compensate the space charge can be formed either as a result 
of surface ionization on the cathode,or by rare inelastic col
lisions of electrons with cesium atoms.In the last case a Knud
sen arc arises in the interelectrode gap./ I /. 

In the experiments carried out the discharge gap between 
the plate-parallel electrodes has been filled by the cesium -
argon mixture.Both electrodes have been made of tungsten.The 
gap between electrodes can be varied from 0 to 4mm.A cpecial 
care was taken to avoid the parasitic discharge formation out
side the interelectrode gap. 

Fig.I shows the current-voltage characteristics correspon
ding to the cathode temperature of 2050°K,the anode temperatu

ra 
re-900°K,the cesium vapour partial pressure of 10 torr and 
the interelectrode gap of 0.7mm.On increasing the interelec
trode gap to 4mm the current-voltage characteristics do not 
actually change.The argon addition results in the essential de
crease of the voltage at which the arc burns and in the mode 
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when the ion volume generation is absent it leads to a marked 
rise in current.Similar curves have been obtained on changing 

-4 -I the cesium vapour partial pressures from 10 to 10 torr.At 
higher pressures of cesium (I torr) the discharge current-vol
tage characteristics in the cesium-argon mixture and in pure 
cesium arc nearly same. 

Fig.2 gives the dependences of the arc ignition and ex
tinction potentials upon the argon pressure for the cesium va-
pour partial pressures of 10 ̂ torr. 

The analysis of the current-voltage characteristics shows 
that in such experiments the Knudsen arc has been really ob
served.In contrast to the ordinary low-voltage cesium arc,the 
current is carried here by relatively fast electrons accelera
ted on entering the plasma to the energy of "'lev.Since the Cou
lomb scattering cross-section rapidly falls with the energy, 
the condition le > L can be kept at sufficiently high value 
of the current density.The collector barrier does not prevent 
the current pass and its height is defined only by the ballan-
ce of trapped electrons. 

The plasma investigations in the Knudsen arc have been 
carried out by taking probe characteristics and measuring the 
the electromagnetic radiation. 

T-shaped cylindrical probe with the diameter of 0.15mm,has 
been introduced into the apparatus through the anode of plate-
parallel diode with molibdenum electrodes.The stabilization 
system allowed us to compare probe characteristics of the pure 
cesium plasma with that of cesium-inert gas (xenon) mixture 
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plasma at fixed diode parameters.In order to avoid the probe 
overheating the measurements have been performed in the follow
ing range of the cathode temperatures:800-I500°K.To support the 
discharge burning it is necessary to apply an external voltage 
to the anode. 

However,the main physical trends were the same as in the 
operating mode. 

The analysis of the probe characteristics ionic branch al
lows us to build energetical diagrams for electrons.l''ig.3 gi
ves the comparison of such diagrams at same currents flowing 
through the diode filled by pure cesium and cesium-xenon mix
ture.The xenon addition lends t© the decrease of the cathode-
side potential jump and the external anode voltage by 0,4-0,8 
volts. 

The plasma density defined from the probe characteristics 
exceeds the fast electron density more than by an order of ma
gnitude .The trapped electron temperature in the potential well 
was 7000-10000°. 

At the cesium pressures of the order of 10 torr the probe 
measurements display a beam of fast electrons at the cathode 
which relaxes as it moves towards the anode.Simultaneously we 
fix fairly intense electromagnetic radiation of the diode.At 
the cesium pressures above 10 torr we failed to obtain the 
fast electron beam on the basis of the probe characteristic ana
lysis.The electromagnetic radiation intensity considerably re
laxes under such conditions. 

The beam fast relaxation may be related to the beam insta
bility in the plasma. 
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DISCUSSION 

Speaker of papers H-9, H-10, H - l l a n d H - 1 2 : R. Ja . KUCHEROV. 

HATSOPOULOS (USA): In connection with your data with the iner t gases 
and your question about the possible influence of oxygen in the data, I 
would like to make the following comments . 
In paper H-16 we repor t some extensive exper iments that we conducted 
with Xenon, Krypton and Argon. In the beginning of a severa l months period, 
we were observing an enhancement of the performance c h a r a c t e r i s t i c s , a l 
though we took great ca re in having pure gases . Actually what happens is 
that one pa r t in 1 0 of oxygen will produce an enhancement in these c h a r a c 
t e r i s t i c s . We had to go to quite an elaborate refluxing sys tem to clean the 
gases in cesium vapor to el iminate all oxygen, and, after we did this and 
after we took the data, we found that the enhancement had completely d i s 
appeared and that any addition of an iner t gas just contributed to the diffu
sion losses of e lec t rons in the conver te r . 

KUCHEROV (USSR): We too were very worr ied about the influence of oxygen. 
It was for this reason that I only took a few data points from our t e s t s , since 
we did have some where we thought we d id not have the oxygen influence. 
Later on it was always p resen t so we degassed and we worked with pure 
argon again. With argon we did not see an inc rease in cur ren t . We consider 
that this demons t ra tes that the oxygen was a lmost ent i rely absent t he r e . 
Then in H-16 you spoke about adiabatic c h a r a c t e r i s t i c s . Of course if we 
inc rease the cesium p r e s s u r e , we inc rease the cur ren t and get bet ter r e 
sults with fairly high p r e s s u r e , but the tes t I mentioned only worked with 
very low voltages and the resu l t s d iscussed were with the same p r e s s u r e . 
The cur rent was low and I wonder whether we should or should not c rea te 
a Knudsen-arc . Otherwise, I don't see how we a r e to obtain the a r c which 
will be required. 

HATSOPOULOS: I agree with your comments . As a ma t t e r of fact at very 
low cesium p r e s s u r e s we might have observed a beneficial effect, but it 
was in such a low cesium p r e s s u r e that it was not of very prac t ica l impor 
tance. There is one point of a caution I want to point out. That i s , when 
dealing with an iner t gas , it is very difficult to es t imate the p r e s s u r e of 
cesium in the conver ter due to diffusion, Soret-effects , and other effects 
of this kind. F o r this reason we dealt with cesium optimized envelopes 
which presumably a r e independent of the ces ium level of p r e s s u r e and that 
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is how we made compar i sons . When we t r ied to make comparisons in a con
stant cesium p r e s s u r e , we found grea t d iscrepancies because of the diffi
culties associa ted with reproducing the same cesium p r e s s u r e in the p r e 
sence of an iner t gas . 

KUCHEROV: I agree with you. We too had some difficulties. We had to make 
a very short tube for the cesium r e s e r v o i r . It was fairly wide we thought, 
and we ca r r i ed out a number of t es t s before we got a change and we think 
that the ces ium p r e s s u r e remained constant during that period. 
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INVESTIGATIONS ON NOBLE GAS CONVERTERS 

H. Albrecht, Β. Saggau, Η. Strecker *) 

(Institut für Gasentladungstechnik und 

Photoelektronik, Universität Stuttgart, 

Breitscheidstrasse ¿ (Germany) 

Abstract 

The ability of an auxiliary discharge to compensate the nega

tive space charge with an optimum efficiency is investigated 

by some experiments. The use of an auxiliary cathode permits 

that the "quality" of the auxiliary discharge power can be 

varied, so that either an auxiliary discharge with high 

voltage drop and low current or another one with low voltage 

drop and high current can be maintained. 

The output current divided by the auxiliary power was measured 

as a function of auxiliary discharge power and its "quality". 

In a second part of the paper the method of the auxiliary dis

charge for space charge compensation is compared with the con

verter operation in the ignited mode in Cesium vapor, and con

ditions were found where either the one or the other mode can 

be more advantageous. 

Introduction 

The present work deals with the modes of two different kinds 
1)2) 

of plasma: The auxiliary discharge mode ' ' and the low 

voltage arc mode. 

In order to test the applicability in thermionic noble gas 

converters, the ability of an auxiliary discharge to compen

sate the negative space charge with an optimum efficiency is 

investigated by some experiments. 

1. Auxiliary Discharge in Noble Gas 

Operation with an auxiliary discharge has to meet two require
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ments: First the negative space charge has to be compensated, 
on the other hand the plasma between the electrodes has to be 
well conducting, that means its electrical resistance must be 
kept at low values because losse's in the interelectrode space 
mean a lower output voltage. 
For the testing of the effectiveness of an auxiliary discharge 
in noble gas the experimental tube (Fig. 3), was filled with 
Xenon having a pressure in the range from 0.1 to 0.6 Torr. 
The emitter consists of an indirectly heated cylindrical Mo
lybdenum tube which was covered by a 1 mm Tungsten coating 
impregnated with Ba-Ca-aluminate by Philips Metalonics, Mount 2 Vernon, N.Ï. The emitter has an area of 23 cm and its current 
density is about 10 A/cm at temperatures of appr. 1450°K. 
The collector is made of stainless steel. 
Two Tungsten wires of 0.3 mm diameter, mounted in the middle 
of the emitter-collector spacing, that is 0.4 cm, were used 
as auxiliary cathodes. The electron emission of the wires 
could be varied by direct heating. 
As a result of measurements at a constant output voltage the 
emitter current density as a fuction of the auxiliary power 
(Fig. 1).is obtained. 
During these measurements, first the auxiliary voltage was 
kept at a constant value of 40 V while the auxiliary current 
was varied. At very low emitter current densities, the curve 
( - - ) is nearly proportional to the auxiliary discharge 
current, yet then bends aside and rises only little at current 
densities of > 0.5 A/cm when the auxiliary current is raised. 
It seems as if the saturation emission of the main emitter 
were reached. 
Quite a similar behavior is shown by the diagram at which 
the auxiliary discharge current is kept constant at a value 
of 20 mA and the power consumed in the auxiliary discharge 
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is varied by means of the auxiliary voltage. 
As a result, the effectiveness of auxiliary discharge for 
space charge compensation only depends on the power consumed 
in the auxiliary discharge; above the ionization potential it 
is obviously of no importance whether the voltage is increased 
at constant auxiliary current or vice versa the current at 
constant auxiliary voltage. Apparently, .an auxiliary 'discharge 
with high voltage drop and low current is not more effective 
in plasma generation than one with low voltage drop and high 
current. 
No essential raise in the emitter current density is achieved 
when the same auxiliary power is bisected on two auxiliary 
emitters - even if by this .geometric conditions are possibly 
improved. 
When we look at the ratio of the output current to the auxi
liary power necessary to obtain this space charge compensation, 
we find that the function ( ) I/Ne,w = f (Νβ„ ) has a 

aux aux 
maximum at low current densities and drops down when the current 
density increases. The optimum ratio of emission current to 
auxiliary power is obtained at emitter current densities be-2 low 0.3 A/cm and no reasonable output power can be reached. 
There remains a negative emitter sheath that is hard to re
move by increasing the auxiliary power. On principle, the re
action can be attributed to two features: Either the ion den
sity is not proportional to the power of the discharge or -
if so - the positive ions cannot get near the emitter. Probe 
investigations at which the ion saturation current of the 
probe was measured as a function of the power put into the 
discharge show the similar "saturation characteristic" like 
the curves in Fig. 1. 
This result permits to conclude that the first assumption is 
correct, i. e. that already the ion density does not increase 
proportionally with the discharge power and that by this the 
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current density for higher auxiliary powers only rises slowly 
when the auxiliary density is raised. 
Obviously the balance for high particle densities becomes 
more and more disadvantageous. 

2. Comparison of the Auxiliary Discharge with the Ignited Mode 
Both, the auxiliary discharge and the low voltage arc need a 
fraction of electric output power of a converter. If we spend 
about 10 % of output power to maintain an auxiliary discharge, 
we obtain an emitter current density of scarcely more than 2 "=s 0.5 A/cm as found above. The ignited mode of a Cesium 
plasma has a voltage drop of 0.4 - 0.6 V in the minimum of p.d 
(ρ = vapor pressure, d = emitter-collector spacing). This 
value is nearly irrespective of current density, so that high 
emitter current densities can be realized. 
Considering the aspects following from the experimental re
sults, we can now compare the two modes of space charge com
pensation under the following assumptions: 
a) We only consider low temperature converters having emitter 

temperatures up to 1600 K. 
b) We postulate, that an optimum emitter can be realized for 

each emitter temperature (for each emitter temperature, to 
the optimum efficiency an optimum emitter work function is 
assigned to, which can be regulated by Cs-vapor pressure). 

c) For the calculation of losses of thermal radiation, we lay 
down an emissivity of e = 0.3· The emitter lead is opti
mized as far as thermal and electrical conduction is con
cerned. 

The maximum converter efficiency as a function of the re
maining variable, i. e. collector work function 0Q is given 
by Fig. 2. 
The curve representing the auxiliary discharge mode intersects 
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the range of the ignited mode in two domains: 
In the upper domain, the converter efficiency with the ignited 
mode is more advantageous, and in the lower one, the efficiency 
is more disadvantageous than this one of a converter operated 
with an auxiliary discharge mode. 
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DISCUSSION 

No speaker of paper H-13. 

M r s . BACAL (Rumania): What, in the opinion of the authors , is the expla
nation of the fact that the 'collector cur ren t and also the ion density does 
not inc rease proportionally with the auxil iary discharge cu r r en t s ? 

SAGGAU (Germany): The insufficient space charge compensation at high 
auxil iary discharge cur ren t s is an important point. It is a question of ei ther 
the ion diffusion to the emi t te r sheath is not proport ional to the produced 
ion density or the produced ion density itself is not proport ional to the 
auxil iary power. Probe measuremen t s have shown that the la t ter is the 
case because of more essent ia l ion losses at higher ion dens i t ies . 

M r s . BACAL: Well, I wanted to comment on why at some auxil iary d i s 
charge current , these losses should inc rease and further why there is not 
a proportionali ty of the electron cur rent to the collector with auxil iary d i s 
charge cur ren t . Perhaps at some cr i t i ca l value of the auxil iary discharge 
cur ren t there may occur a t ransi t ion from an e lec t ron- r i ch potential d i s 
tribution in the diode to an ion-r ich one, which should inc rease the ion 
losses to the e lec t rodes . I think that this should be verified by exper iments . 
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LOW-VOLTAGE CESIUM ARC IN THERMIONIC CONVERTER WITH 

EXTENDED CATHODE SURFACE 

M.B· Barabash , E . P . B u s i g i n , V.G. G r i g o r y a n t s , 

I . P . Yavor 

A.F. I o f f e P h y s i c a l T e c h n i c a l I n s t i t u t e , 

Academy of S c i e n c e s , Leningrad , USSR 

A b s t r a c t 

To study possible mechanism of current enhancement 
from excess cathode area two series of experiments were per
formed. The first one was carried out on two similar devices 
with different cathode surfaces: a smooth one and a slotted 
surface. Measurements data carried out on these two devices 
were compared at equal total currents passing through diodes. 

Electron concentration and temperature distribution 
across interelectrode space as well as across the slots were 
determined spectroscopically. Relationship between these 
values showed that current enhancement in the device with ex
tended surface cathode was due to increase of total emission 
current drawn on the cathode. 

To study contributions of different surface regions 
of a separate cathode cavity in emission process were conduct

ed the second series of experiments on a device with electrod
es simulating a cathode with rectangular slots. Depth of plas
ma penetration into the cavity was measured spectroscopically 
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and visually (by means of optical cathetometer) as a func
tion of pressure , current passing through the device and ca
vity width. It was found that current enhancement when appli
ed voltage increased was due at first to the depth increas
ing of plasma penetration (h) into the cavity. 

Introduction 

A number of published works [1-3/ testify to the fact 
that cathode surface extension is one of possible methods 
for increasing of thermionic converter effectiveness. In 
spite of certain contradictions in the results obtained data 
analysis shows that current gain is not proportional to geo
metric increase of cathode surface in collisional modes of 
thermionic converter operation at large extension coefficients. 

To study some qualitative and quantitative relation
ships of this process in arc mode operation two series of ex
periments were carried out on the models of thermionic con
verters with smooth and extended cathode surface and on a 
rectangular slot model. 

Experimental method 

Experiments were performed on evacuated and sealed-
off glass devices. To compare characteristics of extended 
and smoth cathodes measurements were made on two devices of 
similar design having different molybdenum cathodes. One of 
the cathodes had a smooth and polished surface , another 
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had an extended surface. Extension of surface was obtained 
by the use of narrow rectangular slots , which are shown 
schematically in Fig, 1. Extension coefficients , i.e. ra
tio of total working cathode surface to Corresponding sur
face before extension , was equal to 5· 

Arrangement of electrodes in the device simulating a 
single slot of extended surface cathode is shown in Fig,2. 
Heaters (3) and cathode plate surfaces (2) facing them were 
shielded by sapphire screens (4) which decreased current to 
anode drawn from these surfaces. One of cathode plates was 
movable. Replacement of this plate relative to fixed plate 
allowed to vary cathode cavity width within 0 - 2·5 mm. 

Each device was equipped with two sapphire windows in 
opposite walls of a cylindrical glass envelope. 

Temperature measurements were carried out using optical 
pyrometer. Indirect heating scheme employed in the experiment
al devices allowed to maintain working cathode temperatures 
amounting to 1600°K. Cesium vapour pressure varied within 

0 

0,1 - 1.0 Torr· Spectrometer having linear dispersion 3 A/mm 
was used for spectral measurements· During measurements ra
diation flows from plasma layers whose width didn't exceed 
0·1 mm were recorded· Electron concentration was determined 
from Stark-broadening of nF-5j) lines , electron temperature 
was determined from the shape of cesium 6P-recombination con
tinuum [4-5] 
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Results and Discussion 

Comparative estimation of emission properties of extend
ed cathode can be made on the basis of current-voltage per
formances , shown in Fig. 3· Dotted line represents current 
density level corresponding to total current equal to 1 am
pere. In the case of extended surface cathode this level is 
attained at a lower voltage value (voltage is by 0.2 ν less 
than the value for the smooth cathode). Under similar condi
tions and at equal currents electron concentration and tem
perature distributions essentially coincide. Therefore it 
may be assumed that density of current drawn from frontal re
gions of extended cathode fins is equal to current density 

| drawn from the smooth cathode. In this case density of 
current /„ drawn from frontal area of slots (S = S -S ) is: J* t <! s ° p 

l· where ί -total current from extended cathode , o0 - frontal 
area of the cathode , Sp- frontal area of the extended cath
ode fins. This expression is used to obtain curve 3 in Fig. 
3 . It may be seen that ratio of current drawn from the slot 
to total inner surface of the slot proves to be less than 
current density of the smooth cathode. It means that inner 
surfaces of the extended cathode slots must markedly contri
bute to its emission. It is clearly confirmed by experiments 
which permitted to observe plasma penetration into the slots. 
Electron concentration distributions are given in Fig.4; they 
were measured both in the interelectrode space and in the 
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slots for two values of current. 
Qualitative conclusion about greater emissivity of ex

tended cathode in arc mode of operation can be derived from 
comparing ratios of total anode current and back electron 
current from plasma to the cathode in two devices having 
smooth and extended cathodes. Since plasma parameter distri
butions are similar in both devices random electron currents 
in corresponding interelectrode regions are similar too. The
refore , in these two devices potential drop in plasma and 
retarding anode sheath values , equal to 

are the same. Both anodes have"equal work functions due to 
equivalence of their heat regimes. Hence , extended cathode 
sheath value must be less by 0·2 ν than the value for smooth 
cathode which means that the back current from plasma to ex
tended cathode exceed that to smooth cathode. At equal total 
currents passing through two devices it results in larger 
emission currents of extended surface cathode . If one in
troduces effective thermionic emission constants for extend
ed cathode , analysis of potential distribution and I-V plots 
for smooth and extended cathodes shows that emission current 
gain of extended surface cathode corresponds to increased 
Richardson*s constant A , work function remaining unchanged. 

Contribution of different surface regions inside a 
single cathode cavity to emission process was investigated 
on the rectangular slot model. Current dependence on cathode 
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cavity width is shown ir. Fig. 5 for two fixed anode potenti
als. These curves can be used for calculating current densi
ties as functions of cavity width assuming that current cor
responding to zero width is determined by insufficient shield
ing of non-working areas of cathode plates. This background 
current doesn't depend on cavity width at constant voltage. 
Therefore , density of current drawn from the cavity is 

x^izM (3) 
* » 

where i. - total current to the anode , Ίζ - background cur
rent , C -cathode plate width. Curves , calculated with the 
use of this expression , are shown in Fig.6. When cavity 
width is eaual to width of extended cathode slot (σ =0,07 mm), 
calculated current density agrees within 25% with the results 
of measurements on extended surface cathode. Consequently , 
increasing cavity width results in increase of cavity current 
while decreasing its density. On the basis of Fig.6 we can 
evaluate maxi mum current gain brought about by the use of 
cathode surface extension under given conditions. It is evid
ent , that extended cathode current can exceed current from 
smooth cathode not more than by 3-4 times , even in case of 
very thin walls between adjasent slots. 

Main contribution to electron emission is provided 
by those regions of cathode plate inner surface , which are 
in the most intimate contact with luminous plasma. Hence, 
dimensions of these regions are determined by depth of plas
ma penetration π into the cavity. Dependencies of π from 
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anode current value are shown in Fig.7· At large currents 

these dependencies tend to saturate. Average density of cur

rent from surfaces being in contact with plasma approximately 

corresponds to density of current , obtained from smooth cath

ode under similar conditions· Evidently , current increase 

i. * comparing to current from smooth cathode must occur at n>2*. 

As may be seen from Fig· 7 t these conditions can be satis

fied more easily at lower cesium vapour densities. Process of 

plasma "extrusion" from the cavity at decreasing cavity widths 

is clearly illustrated by curves of Fig· 8 , representing 
o 

6354A line intensity as function of cavity width. 

Resuming , we may state , that increase of current from 

extended cathode in arc modes of operation is due to plasma 

penetration into the slots and to increase of total surface 

area contributing to electron emission. 
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Fig.2. Schematic Diagram of Device with Cavity Type Cathode 
1-anode , 2 -cathode plates , 3-üeaters, 4—sapphire 
screens , 5-potential leads. 
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Kig.3. Comparison of I-V Performances between the Extended 
Cathode Device (1) and the Smooth Cathode Device (2); 
(3) -Current Density from Eq. 1. 
PCi = 0.5 Torr , Tc= 1360°K , d = 2.0 mm 
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Fig.5. Anode Current as a Function of Cavity Width 

1 U=0.7 v, 2 U=1.0 v, FCs=0.5 Torr; 

3 U=0.7 v, 1 U=1.0 ν , PCs=0.15 Torr; 

T„=1360°K 

Fig.6. Current Density as a Function of Cavity Width , PCs= 

•0.5 Torr , Tc= 1360°K , 0=0.7 v, 1cavity , 2smooth 

cathode , U=1.0 ν , 3cavity , 4—smooth cathode, 
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F i g . 7 . Plasma Depth Penet ra t ion as a Function of Anode Curr

e n t . Tc= 1360°K, δ" =0.3 mm; 1-PCs=0.5 Torr , 

2  0 î ? T o r r , 3  ° · 1 5 Torr , 40.05 Torr 
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7 X mm. 

F i g . θ . Line In t ens i t y Dis t r ibu t ions as a Function of c
a v i t y 

Width. Tc= 1360°K , PC s=0.5 Torr, U=0.7 v . 

16" =2.25 mm(i=1.0 a ) , 21.bmm(i=0.u¿a), 

3  1.0 mm(i=0.76 a) , 4  0.5 mm ( i=0 .7 a) 

5 0.25 mm(i=0.62 a ) , 6 0.05 mm(i=0.46a) 
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ABSTRACT 

The effect of argon, krypton and xenon on vo l t - ampere c h a r a c 

t e r i s t i c s was invest igated in a thermionic conver te r . A consis tent 

dec rea se in per formance was observed as the i ne r t -gas p r e s s u r e 

was inc reased in the range of 0 to 200 t o r r . This data contradic ts 

the r e su l t s of other s tudies , in which a substant ia l improvement in 

per formance was repor ted when iner t gases were introduced into 

conve r t e r s . The improvement in per formance repor ted by others was 

probably caused by oxygen contamination in the iner t gas . 

EXPERIMENTAL APPARATUS 

In this work special precaut ions w e r e taken in o rder to min imize 

oxygen contamination in the iner t gas . Oxygen impur i t i e s , even at a 

level of 1 pa r t per mil l ion, can apprec iably change the emi t te r work 

function and therefore the emiss ion c h a r a c t e r i s t i c s . The conver te r 

used in the exper iments is descr ibed in Reference 1. It is equipped 

with a re-fluxing ces ium r e s e r v o i r which allows the introduction of 

iner t gases into the diode during operat ion. The gas injection sys tem 

is shown in Figure 1. The valves and fittings a r e all me ta l and a r e 

bakable up to 600°K. The p r e s s u r e was m e a s u r e d with an accuracy 

of ±0. 2 t o r r by the expansion of a meta l capsule . A hot ces ium t r ap 

* 
Supported by the Air F o r c e Cambridge R e s e a r c h Labora to ry under 
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was incorporated in this system to minimize oxygen contamination. 

It will be shown la ter that the t rap was quite effective for this purpose. 

Two water -cooled blocks were used to prevent the escape of cesium 

vapors from the t r ap . 

The gas injection procedure is as follows: With valve No. 1 

closed, valve No. 2 is opened momenta r i ly to introduce the des i red 

p r e s s u r e of inert gas into the t r ap . The gas is kept in the hot cesium 

vapor for about 20 hours , and then it is injected into the conver ter by 

opening valve No. 1. The gas p r e s s u r e in the conver ter is continu

ously monitored by the p r e s s u r e gauge. 

EXPERIMENTAL RESULTS AND CONCLUSIONS 

The vo l t -ampere cha rac t e r i s t i c s were monitored as the iner t 

gases were introduced into the conver te r . Each t ime the ces ium 

t empera tu re was changed, a t ime interval of one to th i r ty hours was 

required to es tabl ish p r e s s u r e equilibrium between the cesium r e s e r 

voir and the in te re lec t rode space. Iner t gases impede the t r anspor t 

of cesium atoms and cause poor communicat ion of cesium between 

the cesium r e s e r v o i r and the in te re lec t rode space. Even after 

p r e s s u r e equil ibrium is es tabl ished, the cesium p r e s s u r e s in the 

r e s e r v o i r and in the in te re lec t rode space a r e not n e c e s s a r i l y the 

same. Cesium atoms mus t diffuse through the iner t gas from the 

r e s e r v o i r to the emi t te r surface . This p roces s takes place in the 

p resence of a t e m p e r a t u r e gradient which causes the ces ium p r e s s u r e 

in the in tere lec t rode space to be higher than that in the r e s e r v o i r and 
2 

is called the Soret Effect. 

Because of these cons idera t ions , the data in this exper iment a r e 

in the form of v a r i a b l e - c e s i u m - t e m p e r a t u r e families of vo l t - ampere 

c h a r a c t e r i s t i c s . Such a family is obtained by changing the ces ium 

r e s e r v o i r t empe ra tu r e while all the other conver te r p a r a m e t e r s a r e 

held constant; an envelope is formed that r e p r e s e n t s the optimized 
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per formance with respec t to ces ium t e m p e r a t u r e . The effectiveness 

of the t r ap in eliminating oxygen contamination was es tabl ished by 

the following procedure : An envelope obtained before introduction of 

the inert gas was compared with an envelope obtained after the gas 

was introduced and removed from the conver te r . The two envelopes 

were in good agreement within ±2%. 

The effect of the iner t gas was evaluated by a compar ison of the 

envelopes obtained at various i ne r t -gas p r e s s u r e s . The emi t t e r 

t empera tu re and in te re lec t rode spacing chosen for this compar ison 

was 1800°K and 10 m i l s . A typical family and its envelope a r e 

shown in Figure 2, and a s u m m a r y of the ces ium envelopes obtained 

for the argon p r e s s u r e range of zero to 200 t o r r is shown in F igure 3. 

Similar data for krypton and xenon a r e shown in F igures 4 and 5. A 

consistent dec rease in output cur ren t is observed when the ine r t -gas 

p r e s s u r e is increased . This finding contradicts the resu l t s of other 

s tudies , in which a substant ial improvement in per formance was 
3- 6 repor ted when iner t gases were introduced into conve r t e r s . The 

improvement in per formance repor ted in the re fe rences cited was 

probably caused by oxygen contamination in the iner t gas . 

These data can be presen ted in an a l te rna te form by plotting the 

current density at a given voltage as a function of p r e s s u r e (Figure 6). 

This figure shows the dec rease in output cur ren t at 0. 10 volt due to 

ine r t -gas p r e s s u r e . In Figure 7 inverse cu r ren t at 0. 10 volt is 

plotted as a function of p r e s s u r e . For xenon and krypton the re is 

an approximate l inear re la t ionship between inverse cu r r en t and gas 

p r e s s u r e . This is consis tent with mos t p lasma theor i e s . The curve 

for argon, however, c r o s s e s that of xenon. This is believed not to 

be caused by exper imental e r r o r s , but is probably re la ted to the 

sca t te r ing c ro s s section of these gases . Several se ts of data taken, 

using two gas injection sys t ems , showed good reproducibi l i ty 

(Figures 8 through 10). 
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Figure 3. Cesium Optimized Envelopes for 
Several Preseures of Argon. 

Figure 4. Cesium Optimized Envelopes for 
Several Pressures of Krypton. 

Figure 5, Cesium Optimized Envelopes for 
Several Pressures of Xenon. 
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Figure 7. An Alternate Cross Plot of 

Figures 3, 4 and 5 at V= 0.10 Volt. 
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Figure 8. Raw Data Showing the Attenuation of 
Output Current by Argon. 
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Summary. With the help of pulse ionization the decay time 
for the cesium ions T¿ in thermionic converter is investi
gated in gas-kinetic mode of operation. A dependence of SL¿ 
on interelectrode potential distribution is established. 
In ion rich mode of operation TL almost does not depend on 
Tjç while in electron rich emission mode of operation T¿ 
rapidly increase with the decrease of T^· Qualitative expia 
nation of the obtained results is given. 

1. Introduction 
Pulsed ionization of the interelectrode space was 

reported in some papers as a method to improve the perfor
mances of the Cs thermionic converters [1]}[2] ,expecting 
that needed electrical power to sustain the pulsed dischar
ge is much lower than the output power increase of the 
diode. This expectation is reasonably because the rise-
time of the discharge at pulse application is ussually 
shorter for a Cs diode than the ions life-time in the 
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emittercol lector space. The decay times of the ions were 

measured and the presence of two kind of Cesium ions (Cs
+ 

and Cs;j>), was assumed [2] · 

In connections with these resu l t s we must note 

that the investigations were not systematic and complete, 

containing some contradictions. For example in Π] , a value; 

of the decay time for ions T¿  loofs was optained, not 

depending on pressure and as pointed in Í3] not depending 

on experimental conditions too . In [2] , two decay times 

were observed ( T¿' =* 30ji8 and T¿ =* \ u.s ) and associated 

these with two kinds of Cesium ions . 

In th i s preliminary report, experimental resu l t s 

are given convincigly i l lu s t ra t ing ion decay time dependence 

on the interelectrode potential distr ibution of the therm

ionic converter· The obtained resu l t s are useful for the 

optimization of the pulse ionization method as wel l as a 

new poss ib i l i ty to studa physics of thermionic diode. 

2 . Experimental setup 

The experimental glassmetal device i s shown in 

f i g . l . I t consists of a f l a t molibdenum cathode (1),heated 

by electron bombardement ( 2 ) . The cathode temperature i s 

measured by TaW thermocouple ( 4 ) . A s t a i n l e s s  s t e e l guard 

ring (5) ensures paral le l plane geometry of the cathod

anode system. The anode (6) made of s ta in l e s s  s t e e l i s 
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provided with a moving system (7) for interelectrode dis
tance changing. 

Two additional tungsten wire electrodes (8) are 
placed in anode-cathode space at 2 mm from the cathode. 
These electrodes are ceramic insulated except the end of 
the wires (1 mm) 

The schematic diagram of the circuit is given in 
fig.2. In order to avoid the measurement difficulties en
countered in Í.1J and [2j , the pulse discharge circuit 
as shown in fig.2, is separated from the circuit for the 
ion decay time measurements. 

The typical oscilloscope curves are given in 
fig.3t where a indicates the shape of the pulse applied 
between the cathode and the additional electrodes (the 
pulse distorsion is due to the discharge which appears 
between these electrodes during the pulse), and b the chan
ging of the drop voltage on the load resistence Rr, regis
tered after the pulse. 

The positive ions formed during the discharge 
neutralize the netagive space charge and increase the elec
tron current of the converter. The decrease in time of con
verter current conditionally gives us the life time of the 
Cesium ions. 
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3. Experimental results and discussions 

The aim of the present experimental investigation 

was, to estabilish whether the ion decay timo depends on 

the interelectrode potential distribution of the thermionic 

converter. 

As is known for „gas kinetic" mode of operation 

of the diode, i.e, electron mean free path Xe is of the 

same order of magnitude as interelectrode distance d ^ 

( Λβ —"ακ ), is characterized by two possible inter

electrode potential distribution as shown in fig.A. In the 

case of electron rich emission mode of operation (fig.4a) 

the drop voltage at the cathode limits the emitted electrons. 

( Δφ'^0 )t
 and

 *
n tlae

 case of ion rich emission mode of 

operation (Fig.4b) the drop voltage at the cathode accele

rates the emitted electrons ( Δψ'<0 ). The potential dis

tribution is shown by solid lines for short circuit ace by 

dashed ones for open circuit. 

It is obvious that the potential distribution 

corresponding to short circuit in electron rich mode of 

operation (Fig.4a) is a potential 6cap for the positive ions. 

That is why the ion ãecay time should be longer compared 

with the ionrich emission mode of operation where poten

tial distribution permits free ion loss. For the open cir

cuit (Fig.4a) the potent ialtjja ρ at the anode side dissappe

ars and shorter ion decay times must be expetec. 
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In ord «¿ι vo prove these assumptions we carried 

out following investigations. At 7¿S=423°/C and interelec

trode spaer■daK*HtT.mfa:x$mm)il.et we are in gaskinetic condi

tion ; i le-da* ) 

We measured the dependen e of the converter cu

rrent Ia on the cathode temperature T k a* an output vol

tage Tifi » 0,5V in the low temperatur: maximum range (Fig. 5a). 

According to the results reported in [4J , the 

temperature where the curve has a maximum almost correspond 

to Αφ' 0 · i.e., to the point of transition from 

the electronrich emission to the ionrich emission mode 

of operation.. 

By dashed curve on the figure 5a I
s
 given the 

same dependence Ia versus Tk but in the presence of pulsed 

ionization with a repetition frequency of f^l Kc/sec pulse 

width Τ« =/0us and pulse amplitude Up = 8,5 V. 

As should hive been expeted, to the left of the 

ma
v
imum (electron ri?h emission region) the influence of 

the additional puis?· ionization is considerably, while in 

the .riß!**, of the máximum (ien rich emission region) this 

influence is negligible, 

The cepenoonee of the decay time for the ions T¿ 

of Tjç was measurec in short circuit conditions (Ua= 0,05 V) 

at pulse parameters Up =e$5V,Tp»■· 10 Í2 ÜS and fp = 60Öc/s 

All calculations of T¡ were made at 1/e level 

of the exponent of the type shown in Fig.3b. 
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In fig.5b such a depene enee is given by a solid 

line, averaging the results of four series of measurements. 

The obteined results are in agreement with the 

above mentioned considerations on the influence of the in

terelectrode potential distribution of the converter on the 

ion lifetime. The increase of T^ in the condition of elec

tron rich emission mode of operation leads to a sharp drop 

of Ti due to the decrease of the depth of the potentialtfeap 

and of the ion retarding field at the cathode. This dro

pping continues till to cathode temperatures close to the 

maximum of the dependence I (T^)» (given in fig.5a), where 

Δ& becomes equal to 0 and the potential distribution 

pass from electron rich emission (Fig.4a) into ion rich 

emission mode of operation (fig.lb). In the case of higher 

T^, T^Ä const ï* 20Z0ji% f a s should have been 

expected. Indeed, in ion rich emission operation there is 

no ion potentialtgap the ions beeing lossed by free mouve

ment to the cathode, and tL should remain constant. 

The slight increase of Tj. for higher Tk may 

be explained by the rapid increase of electron emission 

and consequently by the transition into the second region 

of electron rich emission mode of operation. 

The computation, of Ti with the assumption that 

ion kinetic energy is given by thermal energy only at 

Ti = 425 °K and that the ions are lossed by free mouvement 

gives at aaicHmm ;T¿d /9/ts which is in good agreement with 
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our experimental values for the ti in ion rich emission mode 
of operation. 

A. Conclusion 

In the present investigations the dependence of the 
decay time for the Cesium ions Ti. on the interelectrode po
tential distribution in thermionic converter has beem epe-
rimentally established for the first time. Investigations 
on, the dependence of Ti on the remaining parameters of the 
converter,and also for the clarification of the question 
of the presence of two decay times and in how far they ac
tually correspond to two types of Cesium ions - Cs+and Csj?, 
are in progres. 
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Pre-ignition and Ignition Characteristics of Cesium Thermionic Diodes* 

Katsunori Shimada 

Jet Propulsion Laboratory, California Institute of Technology 

Pasadena, California 

ABSTRACT 

Pre-ignition volt-ampere curves for thermionic cesium diodes exhibit 

non-saturation characteristics when the diodes are operated at low tempera

tures under electron-rich emission conditions. The current through diodes 

under those conditions increases exponentially, exhibiting two straight 

lines as asymptotes in semi-log plots of the volt-ampere curves. The slopes 

of these curves for diode voltages immediately above the knee of the volt-

ampere curve (Schottky-like region) were found to be determined "by the emit

ter temperature. For diode voltages larger than those in the Schottky-like 

region but smaller than the diode breakdown voltage (avalanche region), the 

current increased at a rate that was an order of magnitude larger than that 

in the Schottky-like region. The rate of current increase in the avalanche 

region was determined by the cesium reservoir temperature. 

An abrupt ignition follows the avalanche as the applied voltage reaches 

a certain value—the breakdown voltage—at which the current increases many 

orders of magnitude above that in the pre-ignition region. We have examined 

the breakdown voltages for emitter temperatures up to 1900°K and for pressure-

distance product Ρ · D between 0.2 and 200 mil-torr. Paschen-type curves were 

obtained for the breakdown voltage V as a function of Ρ · D. Breakdown 

voltages as small as 0.8 volts were observed for Ρ · D values between 20 and 

100 mil-torr. 
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Pre-ignition Volt-Ampere Curves 

A SET-type thermionic energy converter was operated at relatively low 

emitter temperatures T_ (1120°K - 1560°K) and cesium reservoir temperatures 
Ει 

Tp (103°K - 513°Κ). The diode had basically plane-parallel electrode geomet-

ry with an interelectrode distance of 0.028 inch (0.712 mm), and an effective 

emitter area of 2.67 cm . At a cesium reservoir temperature Τ = 463°K, 
LrS 

the eleetron-neutral mean-free-path was approximately equal to the inter

electrode distance; therefore the diode operated in a collisionless regime 
for Τ < 4e3°K. Furthermore, the combination of temperatures Τ and Τ was Cs E Cs 
selected to be such that the emission was either strongly electron-rich or 

weakly ion-rich. Under these conditions the volt-ampere curve prior to the 

ignition of the diode exhibited its non-saturation characteristics very 

clearly. As is shown in Fig. 1, the current increased quite rapidly just 

before cesium breakdown. From such volt-ampere curves, the normalized cur

rent—that is, the ratio of the measured current I to the current I at the 
o 

knee of a particular volt-ampere curve—was calculated. The normalized cur

rent increased exponentially in the manner shown in Figs. 2 and 3 as the 

diode voltage increased. Two different slopes are evident in Fig. 2: the 

lower and higher parts of the curve represent the Schottky-like region and 

the avalanche region of the volt-ampere curve respectively. Curves for a 

given emitter temperature yielded the same slope in the Schottky-like region 

for all cesium reservoir temperatures used, whereas the slopes in the aval

anche region dependend upon the cesium reservoir temperature. Obviously the 

current in the lower part of the curve was governed by the negative space-

charge barrier rather than by the true Schottky barrier. The current I in

creased exponentially as the applied voltage increased; this finding is somewhat 
1 2 in contradiction to those reported elsewhere. ' 

The normalized current can be related to the applied voltage V by an 
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empirical expression: 

l/l0 = A1 exp kL(V - V1) + A2 exp k^(V - V p). (1) 

The first term is dominant for voltages V less than 1 volt; the second term 
is dominant for voltages above 2 volts. The constant k1 was first determined 
from the asymptotic slope of the lower part of the semi-log volt-ampere curve. 
Then the asymptote was extrapolated to larger voltages and the current on the 
asymptote was subtracted from i/l measured at the same voltage. The reduced 
current thus obtained indeed lay along another straight line on a semi-log 
plot. From this line, representing the second term in Eq. (l), the constant 
kp was determined. The constant k was found to depend on the emitter tem
perature Τ but not on the cesium reservoir temperature. An empirical ex-

E 
pression for k is 

k. = 0.5 χ IO-3 exp(8.7 χ 10 3/T„) per volt, (2) 
1 i!, 

where T-g is the emitter temperature in degrees K. A theoretical model in 

which it is assumed that all the electrons and ions that are generated at. 

the emitter surface subsequently drift toward the collector yields a trend 

for k similar to that given by Eq. (2). Further studies are required to 

clarify the correlation between k and T_. 
1 iii 

As the applied voltage increased above approximately I.5 volts, the cur

rent increased at a much faster rate than in the Schottky-like region. The 

constant kp that describes this rate was in the range 3·0 to 5«0 per volt. The 

rate also increased as the cesium reservoir temperature increased. This be

havior is attributed to those ions generated near the collector by impact 

ionization processes. As ions drift back toward the emitter, they will modify 

the potential minimum in the motive in such a way as to increase the electron 

flow. The resulting feedback mechanism causes an avalanche and an eventual 

cesium breakdown. 
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Ignition Characteristics 

As the voltage across the diode reaches a certain value—the breakdown 

voltage—the diode current increases discontinuously over that in the pre-

ignition region. The breakdown voltages were measured for a wide range of 

cesium pressure and emitter temperature. Moreover, the breakdown voltages 

were measured in two different diodes, a conventional diode (No. l) and a 
3 non-conventional diode (No. 2) that was equipped with a cavity emitter. 

Diode No. 2 has two interelectrode regions: one between the collector and the 

bottom of the cavity (an 18-mil gap), the other between the collector and the 

remainder of the emitter (a 2-mil gap). The breakdown voltage V_ was deter-

mined by adding the contact potential between the cesiated tantalum emitter 

and the molybdenum collector to the measured breakdown voltage. Results are 

shown in Fig. h for diode No. 1, which has a planar geometry with a uniform 

interelectrode gap of 28 mils. For small values of pressure-distance prod

uct Ρ · D, the breakdown voltage was nearly equal to the ionization potential 

of cesium. As Ρ · D increased from 1 to 10 mil-torr, V generally increased 
Β 

again except at high emitter temperatures. The minimum of V occurred for 
Β 

Ρ · D — 10 mil-torr. Note that the output voltages of thermionic energy con

verters are the highest for Ρ · D values between 10 and 20 mil-torr. The 

breakdown voltages for diode No. 2 are shown in Fig. 5 as a function of the 

Ρ · D values calculated using an interelectrode distance of 18 mils. In this 

diode the increase in V„ for Ρ · D > 10 mil-torr was negligible. Since this 

diode has narrow gap regions (2 mil) as well, the breakdown is apt to occur 

there for larger cesium pressures. The minimum breakdown voltage was 

approximately 0.8 volt at T_ = 1900°K. 
E 

Another representation of the breakdown curves is shown in Fig. 6 in 

which Xn (V_./P · D), instead of V_. itself, is plotted as a function of Ρ · D. 
Β Β 
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In this representation, in (V_/p · D) depends linearly on Ρ ■ D over three 

Β 

decades for diode No. 2, indicating that VR is proportional to (P · D) 

with α slightly less than minus 1. This type of plot may be useful in deter

mining the interelectrode distance and the parallelism of the electrodes in 

hardware converters once a standard curve has been obtained. 

Conclusion 

Preignition voltampere curves for a thermionic cesium diode that was 

operated at low temperatures exhibited Schottkylike and avalanche'regions 

prior to the ignition. The current increased exponentially with the diode 

voltage at different rates in the two regions. The rate in the Schottky

like region was determined by the emitter temperature, whereas that in the 

avalanche region was determined by the cesium reservoir temperature. 

Cesium breakdown voltages, at which the diode current increased 

abruptly above that in the avalanche region, were measured as a function of 

the pressuredistanee product. A Paschentype dependence was evident except 

that the breakdown voltage lowered as the emitter temperature increased. 
4 

Results were in agreement with those of Gibbons for large Ρ · D values. 
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No. 1 with a planar emitter. 
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ARC IN TJEHIÆIONIC CONVERTER 

F.G.Baksht, G.A.Djuzhev, V.B.Kaplan, I.L.Korobova, 
A.ÏÎ.Martzinovskiy, B.Ya.Moizhes, G.A.Shahnasarova, 

V.G.Yuriev. 
Semiconductor Institute of the Academy of Sciences of USSR. 

Leningrad 

Introduction 
At present there are considerable data on the experimen

tal [1-3 J and theoretical [3-6.] research of tne low-voltage 
arc (LVA) in thermionic converter (.TC) with caesium vapour. 
The experimental data, obtained by us, and the theoretical 
computation carried on enable us to take not only a qualita
tive, but also a quantitative comparison between the theory 
and the experiment. Such comparison shows a possibility of 
the correct physical description of main phenomena in gas -
- discharge plasma of TC by solving a system of differential 
equations without using any arbitral parameters. 

§1. Basic equations and boundary conditions 
Theoretical plasma parameters distribution is found from 

the solution of transfer equations of electron ,je, ion jj cu
rrents and of electron energy flux Q^. 
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n
» %9> T

e
 a r e t'ae

 parameters to be found  electron concen

tration, potential energy and electron temperature' u is a 

mobility, T>= —u is a diffusion coefficient of charged parti

cles. The constants ot and ρ in (1 ) and (3) depend on the type 

of electron scattering: c£̂ =â =2 (electron  atom scattering)» 

°W
=1
»
6
» Å(<

=3
»
2
 (electron ion scattering [7] ). In the in

termediate case we used the interpolation formulas 

where 
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(lga  the electron atom mean free path, Λ Coulomb loga

rithm [β]). Equations (2) and (3) are supplemented with the 

continuity equations for fluxes of particles and energy 

dx' " 7^ = fyll*), (4) 

where 2·^ is the ionization energy,  α,ψ is the potential 

energy of generated ion and Γ ( Χ ) is the ionization rate 

 the number of ionization acts in unit of volume per unit 

of time. In working conditions of TC the gap voltage drop is 

less than ionization potential Therefore the change of elec

tron current is relatively small, and we shall neglect it, 

considering the left part of (1) as a constant. At the same 

approach we must neglect the term ÄV(X) in brackets in (5). 

The boundary conditions for equations (15) bind the flu

xes of partiales and energy, carried over the near electrode 

potential barrier, with values η, T and ψ at the plasma 

— electrodes boundaries. 

• · (Ο ψ 

*71 / ' 
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J. 1** 0fe- f ^ i -^ . ï «^ - -^MÎ c f K.ec ( 8 ) 

Je- ί M «V f- #)-/" (9) 
'tu ' es 

ƒ = _ ' , ¿= (10) 

i c j 

where "i and i 
ües °is are the currents of electron and ion emis

sion from cathode, j ^ * is the electron emission current from 

anode, Τ „ is the cathode temoeratuure, ψ and ψ are the catho
C _ ' C A. 

de and anode potential barriers, jr is the voltage drop across 

the gap. Indexes c and a lebel the plasma parameters near ca

thode and near anode respectively. The boundary conditions 

for o and Q are written for Maxwellian distribution functi
tí tt 

on of electrons, leaving the plasma, because in the ordinary 

discharge conditions the deviation of electron distribution 

function from Maxwellian one is usually not essential, owing 

to sufficiently large concentration of free electrons. [9J 

This problem is considerd in detail in [10 L The distribution 

function and the drift velocity of ions in the near  elect

rode layer require a special consideration [n/» However the 

change of the ion velocity at the plasma  electrode boundary 

leads only to the redistribution of the voltage between the 

volume of plasma and the near  electrode layer of the thick

ness of about the mean free path of ion. In this paper we as

sume the drift velocity of ion at the boundary to be equal 

'A 
Ï,  K J IM I

 u 

§2» The ionization rate in gas discharge caesium plasma 

The theoretical consideration fiol and probe measurements 

show [ll], that in ordinary LVA discharge in TC the maxwell

zat ion length of electrons (including fast electrons with en
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ergy about the threshold of Cs atom excitation to the first 

level) is usually small in comparison with the gap. Therefore 

the energy distribution of free electrons may be assumed to 

be Maxwellian one. The Cs ionization rate for Maxwellian el

ectrone distribution was computed in [l2,13J: 

where n & is a concentration of Cs atoms, nCT > is the equili

brium Saha concentration of free electrons at temperature Τ 

and ç(Te) is the effective ionization cross section, depen

ding on the electron temperature Τ . 

The value*of ion current ^(x) and ionisation rete Γ(χ) 

may be calculated from the probe and optical measurements. 

The results of measurements in the near cathode layer, where 

the ionization essentially prevails over recombination, were 

used for the experimental determination of C0(.T ). At Fig„1 

the experimental values of effective Ionization time 

T. =* fyCmtZjiU]' ar
* depicted by points. At the same 

figure the calculated curves, obtained with different excita

tion crosssections, are shownt curve 1 is obtained with 

crosssections in BetheBorn approximation fl3], curve 2 is 

obtained with Thomson crosssections [12J. rt is evident, that 

satisfactory agreement exists between the theoretical and ex

perimental results. In our calculations we used the expres

sion, obtained in [13J. 

§3. The voltage  current characteristics of the ther

mionic converter and general features of lowvoltage 

gas discharge f16]» 

The numerical integration of the differential equations 

(*) In the case of large values of Vc and Ó¿%* when the inten
sive electron beam Is injected into plasma, the nonequilinri

um ionization may be essential in addition to above mentioned 
so called equilibrium ionization. 

The beam ionization is considered in [1QJ* 
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(1-5) was carried out by the electronic computer. The equa
tions were solved about the derivatives and then were Integ
rated with some arbitrary values of any two parameters (e.g. 

7C and n c ) . On the other end of plasma the corresponding di
screpancies in the boundary conditions were obtained. These 
discrepancies were reduced to zero according Newtonls method 
by changing f and nc» 

At Fig.2 the typical v-c characteristics are shown. The 
form of chracreristies and their changes with change of ca
thode temperature T., cathode work function j( and interelec
trode distance oi are in a good agreement with the experimen
tal data [ΐ4-]„ E.g» it is seen from Fig»2, that the nonstable 
part of v-c characteristics decreases and vanishes, if Τ in-
creases» As the computation shows, such manner of changing of 
the v-c characteristics is connected with the fact, that, at 
low cathode temperature, it is necessary to have sufficient 
volume voltage drop in plasma to receive the high electron 
temperature. Therefore the arc is ignited near anode - in the 
region of the highest electron temperature.**^ 

The arc ignition leads to concentration increase and to 
forming the potential maximum at the place of the most inten
sive ionization. The potential difference on the plasma vo
lume increases and this leads to the further increase of ele
ctron temperature» 

Owing to the rapid (exponential) rise of ionization with 
increase of Τ , plasma passes into the nonequilibrium state, 
in which the volume ionization is not balanced by ion fluxes 
to the plasma boundaries» The potential difference must de
crease for the electron temperature stabilisation, and from 
solution of the system of equations one receives the unstable 
part of the v-c characteristics, where the ionization moves 
to the near - cathode plasma region and concentrates near 
(xx) Before the arc ignition, in diffusion mode of operation 
[15]»,only the limited potential difference may be applied to 
the plasma volume» Therefore, when the cathode temperature Τς is sufficiently low, the plasma electron temperature Τ may 
be insufficient to arc ignition» Then the arc is ignited by 
ionization on the near »■ anode potential barrier. 



 1152 

J
t while in the other plasma volume the ioniza

tion is balanced by recombination, which usually regulates 

the dimension of ionization layer near cathode. 

At high cathode temperature and accelerating near  ca

thode barrier there is a sufficiently high electron tempera

ture already in the diffusion mode of operation, and diffu

sion mode of operation passes continuously into the discharge 

one» 

At the stable part of the discharge characteristics near

ly the whole Increase of the external voltage falls on the 

near — cathode barrier. However the electron temperature Τ 

e 

in the discharge increases comparatively little owing to the 

large Ionization energy losses» Τ is also affected by the 
tt 

resonance radiation, carrying out from plasma. In ordinary 

discharge conditions the radiation energy losses are usually 

small in comparison with ionization losses. However near the 

minimum discharge current the radiation, carrying out from 

plasma, may be essential for energy balance» The comparison 

between computed and experimental characteristics requires to 

take into account Shottky effect on cathode» In intensive 

diacharge the spatial ion charge prevails in Langmuir layer 

near cathode» Therefore the electric field strength on ca

thode may be evaluated by the 3/2 law for ion current from 

plasma to the cathode. f£
 Λ = 16 ÏÏJ_"φ '/z få. )'"■ At Fig »2 ( 

2 ) the VC characteristic , computed with Shottky effect, is 

given. Xt is seen, that even normal Shottky effect leads to 

the marked change of vc characteristics form» However anoma

IQUS Shottky effect is essential for the full comparison bet

ween, characteristics. Therefore the theory will be compared 

with the experiment mainly at the constant values of j . In 
tt 

this case lack of the full emissive cathode characteristics 

does not prevent the experimental verification of the theory. 

(aoEx) As probe and spectral measurements show, near the point 
of discharge extinguishing the contraction of discharge oc
curs, the concentration, current density and other parameters 
being constant» 
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§4. Comparison of calculated and experimental data 
on the plasma parameters distribution 

At Fig.3 the calculated and experimental datû. on n, \P and 
» 

T distributions are depicted for points of V-C characteris
tic , given at Fig,2. Though the cathode emission current was 
considered to be constant in the calculation, the agreement 
(.not only qualitative, but quantitative (for n and Ό ) bet
ween the theory and the experiment is received. 

The comparison between the calculated and experimental 
plasma parameters was carried out at the different gaps d at 
constant current j . At Fig.4 the experimental probe results 
for n, ƒ and j* distributions are shown. The same concentra
tion distribution is also carried out from the spectral mea
surements» It is seen, that, when gap increases, the concen
tration maximum increases also and slightly moves aside the 
cathde, the concentration falling down nearly linearly behind 
maximum» At Fig»5 the calculation results are shown for dif
ferent gaps at the constant current j_» The general character 
of calculated parameters distribution agrees well with the 
experiment. At Fig.5 the calculated values of the ionization 
rate Γ = ti\C, i\)ti^ and recombination rate 4 = ^CÍV^^n 

are given separately {Γ= Í¿/¡) ί 0 Γ "two gaps 
0,4 mm and Q,8 mm» At the same figure the electron concent
ration to its equilibrium value n(T) ratio is given. When 
gap increases and concentration rises, j^ stopps to change 
noticebly still in that region, where the electron temperatu
re is high. The ion current constancy in the central part of 
the gap is connected not with the Ionization lack, but with 
recombination» 

It is Interesting to investigate the mode of operation 
with a considerable electron emission from anode. The main 
experimental fact is that the plasma parameters distribution 
in the gap remains practically unchanged (Fig,6), when the 
anode temperature T and electron emission current from anode 
^x' change in the large diapason. The results of theoretical 
SS (d-9 
calculation leads to the same conclusions when zea increases\ 
the anode barrier decreases and then changes the sign, the 
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parameters distribution in the volume of plasma being nearly 
unchanged. (Fig.7). This result is partly connected with re
latively low value of plasma electron temperature near anode. 
Therefore the appearance of "cold" anode electrons in the ne
ar-anode region perturbs plasma comparatively little. As the 
computation shows, in these conditions two different values 

es 
may correspond to the same plasma parameters distribution. 
of anode emission ¿sj and near - anode potential barrier %_ 

Conclusion 
As the experiment and the theory show, plasma in thermio

nic converter is essentially inhomogeneuous. Rather peculiar 
plasma parameters distribution in TC is connected mainly with 
the conditions of the best ions moving away from plasma to 
the electrodes. Therefore in the near- cathode region, where 
the main Ionization takes place, the field component of elec
tron current prevails. In the near - anode region electron 
current flows mainly owing to the diffusion in retarding ele
ctric field. 

The presence of ionization maximum in the near-cathode 
region leads to the electron temperature maximum occurence at 
the same place, that is observed in the experiment. The com
putation shows, that it is impossible to apply the conside
rable electron accelerating field to the plasma volum€, be
cause it would increase the electron temperature and would 
move the ionization maximum deep Into plasma. When TC current 
increases, the near - cathode potential barrier and electrons 
heating increase. Therefore the electron temperature increa
ses also, though the increasing is slow. In consequence of 
this, plasma behind the ionization region approaches to the 
state of the local ionization equilibrium, in which the con
centration is connected to electron temperature by Saha for
mula. In this regime the length of ionization equilibrium 
establishment must be small in comparison with the gap. To 
maintain such mode of operation, the temperature must be 
high enough (T ^C27QQ-28QQ)°K)» This conclusion agrees well 
with the experimental results» 
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Thus plasma i n TC i s d i f f e r e n t from homogeneous p lasma, 
i n which t h e c u r r e n t f lows under t he i n f l u e n c e of e l e c t r i c 
f i e l d , and hea t i s t r a n s m i t t e d from e l e c t r o n s t o a toms, r a 
d i a t e s and so on . 

Therefore plasma i n narrow gap i s f a i r l y p e c u l i a r ob
j e c t , which has an independent p h y s i c a l i n t e r e s t » 
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THE ELECTRON ENERGY DISTRIBUTION FUNCTION 
AND THE RATE OF NONEQ.UILIBRIUM IONIZATION IN THE 

NEAR-CATHODE LAYER OF THE THERMIONIC CONVERTER 
F»C»Baksh t , Β»Ya»Moizhes, Y»A»NemchinskIy 

S e m i c o n d u c t o r I n s t i t u t e of t h e Academy of S c i e n c e s , o f USSR» 
L e n i n g r a d 

When considering the phenomena in the thermionic conver
ter (TC), one must often calculate the electron energy dist
ribution function (DF) near the electrode, negatively biased 
with respect to plasma» This problem is essential for calcu-
lation of the electron beam produced ionization near the ca
thode, the reverse electron current from plasma to electrode 
etc., as well as for potential and temperature evaluation 
from the results of probe investigations» 

Introduction 
In low-voltage arc in TC the Debye length Is always small 

with respect to the mean free path lia°f electron, colliding 
with C< neutral atoms, and one may consider the near electro
de potential barrier as rectangular one (Fig.1), when calcu
lating the electron DF In plasma. 

The degree of ionisation in plasma is small [lj» and the 
randomization of the electron DF, which is due to the elect
ron-atom collisions, occurs before the interelectron collisi
ons and the collective effects in plasma will change the ene
rgy spectrum of electrons. Therefore one may consider the el
ectron motion as diffusion. The electron concentration in the 
beam, injected to (or extracted from) plasma, Is usually 
small compared with concentration of thermal plasma electrons, 
Therefore one can neglect the interaction between the fast 
electrons and consider the collisions between the fast and 
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thermal electrons only. Owing to the quick randomization, the 

DF is stable, and one may consider the interelectron interac

tion as pair collisions, i»e. as diffusion in energy space 

(in FokkerPlank approximation). 

§1. The fundamental ecu8tion and the boundary conditions 

Thus one may consider the electron motion as twodimensi

onal diffusion (in coordinate and energy spaces) and write 

the kinetic equation as differential one. [ 2/ 

^dl + L ΓκΤ$!£*), 7*te)I 0 

*** ¿ft ¿£* ?f J ' (1) 

where L 0=(DT ) ί - t he energy r e l a x a t i o n l e n g t h . D= ¿ζα(~7¿?) — 

the d i f f u s i o n c o e f f i c i e n t of f a s t e l e c t r o n s , E  nea r e l e c t 

rode p o t e n t i a l b a r r i e r (E » k T ) . 

Vx r Jà 
γ m t0 

t he energy r e l a x a t i o n t ime due t o the i n t e r e l e c t r o n * c o l l i s i 

ons [¿J* n  the c o n c e n t r a t i o n of the thermal e l e c t r o n s . J 

Coulomb l o g a r i t h m , q and m  the e l e c t r o n charge and mass . 

The boundary c o n d i t i o n s nea r the e l e c t r o d e ( z  o ) are 

.Ζ,ΊψλΙ J* få. i f . Lu ffl'eff,) (f>S.) 

(4) 

where J  electron emission current from cathode, Τ  cathode 

temperature. (3) is the balance of currents over the potenti

al barrier, electron DF being symmetric near the boundary, 

that is true, when solid angle for the electrons, emitted 

from plasma to cathode, is small compared with 41Γ; —«1 · 
' t » 

( 4 ) s i g n i f i e s , t h a t the cu r r en t i s z e r o , when E<cEQ. I f z»<^>, 
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^ -fr <5' 

ι (κ υ 

where η , (Ε) I s Maxwellian DF, η and Τ are the concentrat ion 

and temperature of the plasma e lec t rons in the near e lec t rode 

layer . 

The so lu t ion of the equation (1) may be wr i t t en in the 

form 

where the none qui l ibr ium addi t ions ^(E. jZ) and_n2(E.jZ) are 

the so lu t ions of equation (1) with boundary cond i t i ons . 

~* ' * 'jt-o t (*V <*°
 U J

 (3a) 

inteso* o />oj ( 8 ) 

n^CE^Z;)  is the DF of the electrons of beam, injected into 

plasmai« η (B)n2(E1¿) is the DF of the electrons near the 

nonemitting electrode, the negative term n2(E^Z) correspon

ding the deviation of DF from Maxwellian one due to the elec

tron emission from plasma to electrode /2j. The total DF is 

the sum of these two solutions. The electric field is omitted 

in equation (1), because the potential drop in neutral plasma 

near Langmuir sheath ~
 K"T/*\. [3J and affects little the motion 

of fast electrons. 
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52. Electron distribution function and electron current 

on the plasmaelectrodg contact 

One usually writes the electron current over the potenti

al barrier (Fig.1) in the form 

This formula is valid, if the two conditions are satisfied: 

electron loose energy before they return from plasma to elec

trode after collisions with neutral atoms' the DF of plasma 

electrons near the barrier is Maxwellian one. 

These conditions may be actually not satisfied. E.g. let 

n,. be a concentration of injected fast electrons with energy 

Ε>ΕΛ at the boundary z=o» Their energy dispersion ΔE=ES skT , 

and they must loose this energy Δ E to be "captured" by plasma. 

Their current into plasma ~DnF/l*t where L=LQ /*£/£ Í2T0 κΤ£/f0 

is the length of relaxation of energy ~kTg. In order to es

cape from plasma to electrode, electron must be reflected in 

small solid angle  — after collision with neutral atom. 

Therefore the reverse electron current ~ ~^"n
F(rn) *~ · Tlie 

ratio, of these two currents is determined by parameter 

Η iL oo) P(TC)-- ti ± 
U
<?<L 

If p(T )»1 and p(T) »1 , the energy relaxation of fast 

electrons is slow, electrons return to electrode before they 

loose energyvkT, and formula (9) is not valid. In this case 

one must solve the above mentioned problem to calculate the 

true value of boundary current. 

In opposite limit case, when Ρ ( Τ Β ) Λ 1 and ρ(Τ)<κ.1, the 

energy relaxation is quick, and probability of electron ref

lection from plasma is small. In its turn, in this case the 

generation of fast electrons by plasma itself due to the in

terelectron collisions is very intensive, and emission from 

plasma doesn't disturb the tail of plasma Maxwellian DF. In 

this case formula (9) is actually valid» 

If p»1 one can neglect the left side of (3), (3a) and 
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(3b) and obtain a priori the boundary values ^(EO) and 

n2(E^0) for E>EQ» In this case electrons, injected into plas

ma, are in equilibrium with cathode at the plasma boundary 

z*o, if E>E , and electron current may be regarded as zero in 

first approximation. This case corresponds to sligtly ionized 

plasma. Because the boundary conditions at Z=Q contain un

known functions, if E>E , and derivatives of these functions, 

if E<E0, the problem must be solved by WienerHopf(WH)tech

nique f 4 J» 

In opposite limit case, when pÄl, one may neglect the 

electrons, reflected from plasma, i.e. the last terms in 

right sides of (3a) and (3b)» Then boundary .conditions cont

ain only derivatives 2¿' j both for E>E Jañd the problem 

may be solved simply by Fourier transformation» In this case 

the solution of problem is interesting only for the evaluati

on of nonequilibrium part of DF, because, in spite of quick 

relaxation of injected beam/the nonequilibrium part of DF 

may be important, if the ratio of cathode emission current to 

equilibrium emission from plasma 

is larger than 1. 

The dependence of parameter ρ upon the concentration of 

plasma electrons for 1 =»2,5.10 cm (o^2torr) at various En * en. ' Cs. o 

and Τ is demonstrated at Fig.2. In usual conditions of TC f'ij 

p<1 » The case, when p>1, is rare one and corresponds to high 

Cs pressures. But we shall describe both limit cases in order 

to explain the physical sense of results. 

If p(T )»1 and p(T)»1, the equation (1 ) with boundary 

conditions was solved analytically. The results are 

ρ υ J; /c ) ''"III > ♦ (*< η'ά £< \ V i 'à 

/ 
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1*1 ØL 

- * \ . . * . 

j»W¿~ //* l A V 

is the probability integral of complex argument, tabulated 

in f5j. 

The electron current over potential barrier is 
<=XD 

From ( 6 ) , (12) , (13) and (14) we conclude, t h a t i may be 

regarded as difference of two te rms , each term being small as 

comparad to analogous terms in ( 9 ) : 

In TC at the cathode boundary j ^ > 1 . But, under condit ion 

EEQ>kT>kT_, the t o t a l nonequilibriurn pa r t of DF may be p o s i 

t i v e or nega t ive , because, i f Τ·>Τ , the number of e l e c t r o n s , 

emitted from plasma with given energy E, may be l a r g e r or 

smal ler , than the number of in jec ted ones» 

E.g» we show at Fig.3 the values n^(E^Z), n2(E^Z.) and 

n(E^Z), ca lcula ted by formulas (12) , (13) and (6) at the con

s tan t e lec t ron energy E. Curve 1 corresponds t o the t o t a l DF 

n(JJLZ) to Maxwellian one nM(E) p a t i o . Curve 2 corresponds t o 

in jec ted e lec t ron DF. Curve 3 corresponds to e lec t ron concen

t r a t i o n diminution due to the emission from plasma. 

n^(E^Z) i s nonmonotonous function of Z, because of the 

i n t e r a c t i o n of beam e lec t rons with r e l a t i v e l y small energy 

d ispers ion kT_ with plasma' e lec t rons with l a rge r energy d i s 
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pers ion kT. This i n t e r a c t i o n increases the p a r t of f a s t e l e c 
t r o n s i n e l ec t ron beam. 

In opposite case , when p<1, t ha t usual ly corresponds t o 
the low-voltage are i n TC, the re i s an appreciable gradient 

of concentrat ion i n near-cathode layer [ i j . The concentrat ion 
d i s t r i b u t i o n may be usual ly regarded as l i n e a r one along the 
dis tance ~LQ» n ( (Z.)*no(1*e*x), where C «Const ~ 1 , x* £ . The 
energy DF I s ca lcu la ted as Fourier i n t e g r a l 

. / / · . , kkiMll ii.cxfi'^f'*/!-*» -¿*y/j±¿l , cs) 

where 

* - i ία/*; * --» (*¿-0¿ »·Ά·. »Μ¿ζ'[(«"f'J C?) 

In order to define more exactly the criterion of applica

tion of formula (16), we calculated the "kinetic coefficient 

of electron reflection*
1 [2 J f rom plasma boundary r=j/j , where 

— es 

J
-
 =

 cÊ) à /?*■£ΜΛ>Μ Κ J
L
" -I-fie."'"-; C'8) 

to 

 I s the reverse currents Calculat ing the value of r , we may 

neglec t the plasma inhomogenity, because r i s a function of L 

(but not of 11} and concentrat ion change at L i s usually not 

e s sen t i a l» From (16) and (.18) we deduce 

tA. 

where 

6*I(T/)3/:L * J*(r0 * T' 

 is a function describing that electron plasma temperature Τ 

Is larger than cathode temperature Τβ(Fig.4). In TC plasma 

near cathode T»1,5 flj, and Ϋ(1,5 >*/l ,Ί5* It can be shown from 
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Fig.2 and Fig.4, that in TC lowvoltage are plasma r(T ) and 

r(T) are usually small and we may utilize the ordinary form 

of boundary condition (9) in nearcathode layer [ï] and the 

ordinary method of electron part probe characteristics ana

lysis [6 J. 

In intermediate case, when ρ Ά , one must retain all the 
terms in boundary conditions (3a) and (3b). Neglecting the 
energy dependence of emission solid angle on electron energy, 
one may replace ·—~- by ^" ° , where E -- is constant va-

τ er ρ Y c* p r ? ^ 
lue. Then the problem may be solved by WH technique [4 7 . It 
is convenient to describe the result of calculation as a 
function of parameter. 

f . - i L l fr-'ffi-^ <21 ) 
Éfc


If E ,E^kT, PQ~P(see(10)). Formula (1213) and(16) may be 

calculated as the limit cases for large and small values of 

Ρ ..We show the dependence of DF on Ρ at Fig.5 in order to 

explain the physical sense of results. These results were ca

lculated at the distance fc*L from cathode. One can see, that 

the energy relaxation increases and electron concentration n, 

diminishes when value ΡΛ decreases. 

o 

83. Noneouilibrium Ionization in the NearCathode Layer 

of TC» 

The rate of nonequilibriurn ionization (NI) in TC was pre

viously calculated in Γ 7] under following assumptions. 1) the 

rate of ionization is equal to the rate of excitation to the 

first level» 2) the injected fast electrons are in equilibri

um with the cathode at the plasma boundary. The calculation, 

recently carried out [e,9j, shows, that the stepwise ioniza

tion of excited atoms occurs slowly and the concentration of 

excited to the first level atoms must be deduced under assum

ption of equality between excitation and deexcitation rates. 

Furthermore experiments show [lj, that degree of ionization 

in plasma is large and it is necessary to use formula (16) 

instead of (12)(see §2). Both the factors lead to the diminu
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tion of the rate of NI. Utilizing (16) and experimental line

ar dependence of excitation crosssection on the electron en

ergy difference EE^, E^ being the threshold of excitation 

[10J, one obtains the concentration of atoms, excited to the 

first level a) 9,  L. 

J If-fJ n,(ft ï) J ε 
//

c)
 ÍL (22) 

f OO ) 

J (εε,)ηΗ (£tà)JE 

where V^ is the excited atoms concentration to equilibrium 

one ratio. Because of exponential increase of η (E) with en

n 

ergy decrease, the transitions between the other levels are 

usually due to Maxwellian plasma electrons, and we may utili

ze the results, obtained in [9j, in order to calculate the 

rate of ionization of excited atoms. 

/J 
c, (τ) ,*, 4, fi fa' e **<* * 

l/åVer 

Ctìi (24) 

where n(T) is the equilibrium Saha concentration. In the case 

of equilibrium ionization, when the DF is Maxwellian one, V^

*1 le,9j» Therefore tf characterizes the relative number of 

Ions, generated by the nonequilibrium part of electron DF» 

The values TJL are shown at Fig.6 for the highest point of 
• I 

calculated VC characteristic , depicted at Fig.2 (curve 2 ) 

In fl] » Αt this point E0«=E^ , and NI is more essential than at 

the other points» It is obvious, that NI is significant in 

the case, described in (1J. 

In situations, when NI is essential, one may calculate 

analytically the addition to ion current by formulas (2224) 

replacing n » (Ζ.) by the mean quantity n ^ . Then 

Jíc-=^tT€C,[T)iL^Í "J/t *VÜ;/2 C25) 
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The integral in (25) is calculated, and we obtain 

ε,-εο v-i 
x/e 

»v I 

7 _ £  £ 
Ι ρ *ΤΒ.τ 

(26) 

(27) 

The func t ion ^(Χ) i s shown a t Fig»7» 
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Dependence of the value of para
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Dependence of the electron distribution function n(E,z) 
upon the distance x=w at the constant electron energy. 

0
 E=const. 

Τ=2Τε , E  E0=2,3kT, E0=4 kT , γο=3. 
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Pig. 5 
Dependence of the electron distri
bution function upon the value of 
parameter p. 
T=I,5Tf·, ¿=I,I; E-E0=2,3kT; E=4kT. 1) ï.» I; 2) P.=I; 3) Po =0,66; 

4) P0«I. 

0.05ctn 0.0/cm 
Pig. 6 

Nonequilibrium population 
of the first excited level. 
E0=I,34eV; Et=I,4eV; np£(0;=I,I-10 ¿ =0,25; lo=7,8-I0-3cm; j =3 A/cm; T=2900?K. 

10 cm 

1) Et-Eo=0 
2) E4-E0= kTf 3) EA-E0= 2kT£ 
3 
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THE PROBE AND SPECTRAL INVESTIGATIONS OF DENSE 
PLASMA THERMIONIC CONVERTERS 

G.A.Djuzhev, A»M»Martsinovskii, B.Ya.Moizhes, G.E»Pikus, 
Y»B»Kaplan, G.A.Shahnazarova, V.G.Yurjev. 

Institute of semiconductors.Academy of Sciences of USSR. 
Leningrad 

It is necessary to use various methods of plasma di
agnostic for investigation of various processes in the 
dense plasma of the thermionic converter» In this report 
a probe and a spectroscopical methods were used. 

The Construction of experimental Devices and Method 
of measurements» 

The investigations were fulfiled on a flat system of 2 electrodes with area 0,8em in glass envelope. A special 
system of sapphire guarding rings (screen) was used to de
crease the edge effects from the side surface of the elec
trodes. The probe was able to move by means of a silfon 
¿unction. One model of devices Used is represented in 
fig.l. The manylayer insulation system of probe suppor
ters [llwasused to prevent the penetration of the plasma 
current in measuring circuit» The equipotential defence 
was used to exclude the probe-electrode leakage currents. 
The cooling of the supporters reduced the thermionic cur
rent from the probe into plasma to a necessary minimum» 
The envelope had a sapphire window for the radiation pas
sing» The electrical scheme of probe measurements was 
constructed to receive directly the disrtibutions of po
tential, concentration and dependence of the tempera-
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ture of electrons upon the location of the probe in the 
gap. The impulse measurements were used to decrease the 
heating of probe and to expand the limit of measured con-

15 —3 
centration up to 2.10 -'cm. . The photoelectrical regis
tration of the plasma radiation was used. The optical sy
stem permitted to measure the width of the spectral lines. 
The calibration for the continuum radiation was done dir
ectly in the experimental apparatus with the aid of a 
block cavity in the cathode [27. 

The Method of Determination of the Plasma Parameters 
and their Control 

Firstly it was necessary to develop the theory of 
probes in the dense plasma, when the probe diameter is 
larger, than free path of electrons and ions in the plas
ma and to take into account that the length 
of the cylindrical probe is longer than the distance bet
ween electrodes. The theory used the approximate bounda
ry conditions on the electrodes [3,4Ì» The concentration 
of the electrons was determined from the electronic 

+12 3 '13 3 
(n -s1Q cm ) or ionic (n>10 cm , when the electronic 
part of the characteristics is distorted) saturation cur
rent 

. $ r J t in /ί. ¿ι η 

n*- v- <¿ 
et 

iíere a  is the probe radius, d  the gap between electro

des, R  distance between the probe and one of the elec

trodes, 1  the free path. According to [*4j we put <p=1 » 

The space potential V may be found from the potential V^, 

where the total probe current is equal to zero ( J& = ¡J¡j ). 
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or from the electronic branch of the char act eriáítics with 
the aid of potential Y2, where!., the current is 

• sai: 

Here X, is the work function of the probe and the coeffi
cients are^«l [4] and Jr«-¿ [5]» The electron tempera
ture was found from the slope of probe characteristics 
Í3, 6J, in the semilogarithmical scale as usually» 

For the control of the errors of developed method 
special measurements of the quality of the probe insula
tion, the contribution value of thermionic current from 
probe were done. 

We carried out firstly the investigation of the iso-
temperature plasma, which was created between two elect
rodes, heated to the same temperature, secondly the expe
riments with simultaneous measurements with two probes of 
different diameters, thirdly simultaneous probe and spe
ctral measurements of the plasma parameters. All experi
ments proved, that the probe methode gives satisfactory 
results and may be used for the determination of para-^ae-
ters of a dense plasma in a wide range of pressure of ce
sium vapour. [ 6j. 

In fig.2 some results of these investigations are 
given. The experimental distribution of concentration in 
the interelectrode space of the thermionic converter in 
the regime of the thermodynamic equilibrium is represen
ted here» In this regime the temperatures of cathode and 
anode are equal, and the current across the apparatus va
nishes (fig.2a). The concentration distribution is repre
sented in fig.2b when was possible to find the plasma pa
rameters simultaneously from the electronic and ionic 

13 3 
branches of the probe characteristics (n — IQ cm ). The 
distribution of the relative concentration between elec
trodes of the converter in the arc mode of operation is 



- 1176 -

represented in fig»2c from spectral and probe measurements, 
The ratio of absolute values of concentrations determined 
by various methods does not exceed 1,5 times. The tempera
tures of electrons which were determined by probes and 
from 6P - continuum coincide with the exctness of 200 -
- 300°£. 

Plasma Investigation in the Diffusion Regime. 
The investigation of the diffusion regime has been 

performed, over a range of temperatures T, * 1400-1800°K 
and vapour pressure of cesium Ρ « 0,5 - 4 torr. The dis
tribution of the plasma parameters obtained is in full 
agreement with the theory f 7] ► For example, in the fig»4 
we have plotted the current - voltage characteristics, 
disrtibution of the potential and the electron concentra
tion in the regimes of no load (*), and short circuit (o) 
and With voltage when glow is visible near the anode (x) 
[ej. The full curves give the results of the theoretical 
calculation according to [7]· for the regime of short 
circuit. 

The Investigation of Discharge Plasma 
The parameters of the discharge plasma were investi

gated in the range Tf» 800-1900°K, PCs = 0,5-4,0 torr, 
d - 0,6 -2,5 mm, The cathode vacuum, worx function was 
in the range 4,3 - 5 ev. 

We have measured the distributions of the electron 
concentration, the electron temperature and the potential 
in the interelectrode space. The results obtained were 
used in calculation of the ionic current in plasma as well 
as the distributions of the separate components of the 
current, (fig.3). We have checked the obtained values of 
the plasma parameters by comparing the sum of the calcu
lated components of the electron current with the experi
mental value of the converter current (fig.3b) at the di-
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fferent cross  sections of the plasma» Another way of 

the control was the calculation of the anode barrier» 

(fig»3a)» 

Some results are plotted in the fig»5a, b, c» Diffe

rent points on the current  voltage characteristics are 

shown» The distributions of the concentration n, of the 

potential V , of the electron temperature Τ and ionic 

current J* in the gap were found Cor each point. 

According to the experimental datd the maximum of 

the electron concentration is located at 0.30.4 mm from 

the cathode and always excists in discharge plasma of the 

thermionic converter. Approximately linear decreasing of 

the concentration is observed behind the maximum in the 

anode direction» If the current increases the maxi mum of 

the concentration displaces towards the cathode. 

The potential distribution has the following featu

res» The main drop falls on the cathode barrier» Further 

the little potential drop is observed, behind this drop 

the potential increases a little to the anode, where the 

small anode barrier prevents the electrons to leave from 

plasma to anode» The fall of the potential near the ca

thode is in general less than the energy of the first ex

cited level of the Cs atom» 

13 —3 

Our measurements show that if h>10 cm the probe 

characteristics in semi logarithmic scale are linear up to 

the electron energy of 2.5 ev» It means that the electron 

distribution is Maxwellian one» In such cases according 

to probe and spectroscopic measurements the variation of 

electronic temperature is rather small» The absolute va

lues of Τ are in the interval 2400  28QQ°K:» 
1 3 — 3 

When A.Í1.Q ci in addition to plasma electrons 
or

 β 

the more less pronounced beam is observed on the probe 
characteristics. The energy of beam electrons Is approxi

The Fermi level of the cathode is taken as the potenti
al zero» 
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mately equal to the cathode potential fall» The observed 
beam relaxation does not contradict to the point of view 
that pair electron - electron collisions are the main me
chanism of Maxwellisation [ 5]. The experiments show, that 
the contributions to the total electron current are given 
by the field and diffusion components, (the thermodiffus
ion component is negligibly small)» In the near - cathode 
region the field current prevails, while in near - anode 
one the total current is directed against the field and 
diffusion component is predominated (fig.3)» 

The ion current in plasma changes rather strongly» In 
the part of the gap adjacent to the cathode J. is positive, 
i.e. j. is directed to the cathode. At the distance 
0.4-0.5 mm j^ changes the sign after passing through 

zero, in the anode part of the gap j. is directed to the 
anode. Thus the conditions for the maximum draining of 
ions to the electrodes- are created. The investigation 
show, that the thermionic converter plasma is weakly ioni
zed and essentially nonequilibriurn» The ionization pre
vails in the region near the cathode, recombination being 
predominate in the region near the anode in the case of 
sufficiently large gaps. Maxwellisation is often occurr^s 
in comparatively narrow layer near the cathode, more nar
row than the region of the main generation [9j» At larger 
currents the plasma approaches the thermodynamic equilib
rium. 

The high efficiency of the thermionic converter in 
the arc mode is explaned by comparatively low plasma tem
perature as well as relatively small radiation, ioniza
tion and deexcitátion losses. 
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Pig. I 
Experimental device. 

I-Cathode with thermocouple, 2-higb current heater, 
3-copper collector, 4-eeramic, ^-sapphire screen, ¿-enve
lope of the device. 7-molybdenum probe (diameter 0,1 mm), 
8-copper probe support, 9-ñappbire insiliator, 10-metallic 
sereen with lead, II-equipofcential arreen, I2-nut for 
probe shift, I3-sapphire discs for probe shift. 
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Comparison of the concentration, determined from the 
electron and ion saturation current of probe characte
ristics. rcj=2 torr, T£=I880s£, no load work regime. 
The distribution of concentration, determined by various 
methods in the arc mode operation. 
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Fig. 3 
Measurements in the arc mode operation of thermionic 

converter. 
a) Concentration .n", potential V«, electron temperature Te distributions in the interelectrode gap. ic-collector 

worm function, aV- load voltale, Ve -collector barrier. 
b) Calculation of field (j*), diffusion <j. ) and thermodif

fusion (j") components of the electron current in the 
various points of the gap and comparison of the whole cur
rent with the experimental one. 

c) Calculation of the ion current (j¿ ) in the various points of the gap. 
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d « 0.7mm 

Fig.5 
Investigation of plasma parameters in the arc mode 

of oneration. 
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ON THE PLASMA SHEATH THEORY 

F»G.Baksht, B.Ya.Moizhes, V.A.Nemchinskiy. 

Semiconductor Institute of the Academy of Scienses of 
USSR. 

Leningrad. 

Introduction 

In the present paper the potential distribution and 
distribution of the concentration in the near - electro
de layer are considered. Such a consideration is necessa
ry for ionic current to the electrode, potential differ
ence between plasma and electrode, electric field strength 
at the surface defining the Schottky effect calculations 
and for undisturb plasma parameters determination from 
the probe volt age-current characteristic. 

One usually divides the near-electrode shell into 
two principal parts: I) the region afar off the electrode 
where plasma is quasi-neutral and the current can be de
termined by means of constant mobility and diffusion co
efficient* 
II) the narrow collisionless near-electrode layer of 
space-charge » 
In the more correct stating of the problem it is necessa
ry to introduce the intermediate region III in which pla
sma characteristics vary so rapid, that this region can 
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not be described by means of local diffusion coefficient 

and mobility and plasma parameters must be obtained from 

the solution of the integral equation. Besides, joining 

the solutions, describing the collisionness and the co

llisionless regions is concerned with certain difficul

ties, first pointed out by Bohm [ï] » Incorrect joining 

can lead to nonmonotonous plasma parameters distributions 

and even to fiction potential barrier formations. Nonmo*»· 

notonous plasma parameters distributions also can be ob

tained, joining the solutions, describing diffusive re

gion and the region of rapid variation, being unsuffici

ent correct. 

The contact of plasma and unemitting electrode is 

considered in that case, when potential barrier is much 

greater than electron thermal energy. Electron concentra

tion dependence upon the potential is therefore of Bolt

zmann type in the whole near  electrode sheath 

The near  electrode sheath description depends on the 

electron temperature T to atomic one T ratio. The lat

e a 

ter determines the ion velocity just after collision 

 charge exchange. If ψ » 1, even when potential varia

tion is slight, the field can be strong for ions, i.e. 

the velocity ion obtaines under electrical field influ

ence is much greater than it»s initial velocity. If 

ψ » 1 the strong field extent is much greater then ion 

mean  free pathlt» and the whole near  electrode sheath 

can be described under ion initial velocity neglection. 

If ψ £, 1 the strong field Is realized only in the small 

part of the region I, yet region I can be described by 

diffusion equation, taking into account the dependence of 

the mobility and the diffusion coefficient upon the field 
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strength» Both the cases are considered in the present 

paper. The space charge region II and the joining of the 

solutions at it»s border, we consider only when ·—· » 1. 

Corresponding consideration in the case of s»>, 1 can be 
TA» 

made by the same way and that is why it was not done. 

Part 1. ff»l·» 

ål. QTuasi  neutral Plasma. 

Under Ionization and recombination neglection in the 

near — electrode shell, the Ion concentration n.f satisfy 

the following equation» 

¿-χ 

1
 ¿føl>t<*T<K»*3 

This equation was obtained In [ 2 , 3 ] , but was solved only 
in the  case of small var iat ion on the ion meanfree path. 
Combining t h i s equation with equation (1) leads to equa
t ion , describing the potent ia l d is t r ibut ion in the quasi
neutral plasma 

U'^ 

t 

where 

 (fp, J ■ 

•S ̂ $'i) φ(*Λ 

m. is the ion mass. Equation (Ä) is unlocal equation, fa

ir not only in the region I, but in the region III also» 

Xe parameter defines direct ion current i to concentra

tion η ratio at that point, where the potential is equal 

to zero. Changing of the Γβ physically means that another 
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point (of another concentration) is chosen as a point of 
zero potential. So, equation (2) does not depend on any 
parameter. It was solved numerically by means of electro
nic computer. The solution is represented on Fig»2 and 
Fig.3. Integration of this equation was made, the point 
of Ye =0,3 being the initial, because far from electrode, 
the local mobility approximation operates, the latter can 
be obtained by setting in the equation (2) ^(*') - <-P(x) -
= t° (xj (x'-x) The field strength increases rapidly 
with potential diminution and at the certain potential 
% v a n ¿ higher derivatives increase infinitely» 
This means that potential drop in the quasi - neutral 
area is limited by potential about kT ► The value of X , 
determining the drift velocity is limited also» 

The quasi - neutrality maintaining demands the col
lisions, because in their absence ion and electron con«#; 
centrations depend on potential by different ways i»e» 
electron concentration varies versus potential by expone
ntial way, while ion concentration by square root one» 
That is why, with field strength increasing, when signi
ficant' potential difference arises on the distances small 
compared with Ion mean - free path, the quasi - neutrali
ty must be broken. 

Near the e lectrode the space - charge decompensation 
rap id ly increases 

Δνν _ rvt n e r*  Φ ( ^ ¿2 φ 

"  ne * J*
 e
 ¿φ C4) 

I kT·, 
where r = \H »  the Debye radius at that point where 

ο ι ■Htr ru <V 
Φ » o. The region of applicability of the equation (2) is 

restricted on the left by the c o n d i t i o n n e l , and on the 
Τβ ΑΦ 

right by the condition of the ^strong field, I.e.^j|»1. 

Evidently, that if ψ »> 1 and L»T>, one could satisfy the 
•α γ* 

both conditions. 



- 1189 -

§2. Space - charge region. 

While approaching the electrode, the space - charge 
decompensation increases and i t is necessary to solvo the 
Poisson's equation instead of equation (2) 

ο«· λ-,ζ ~~ ft« J ΠΓΓΤ:—Τ-ΓΤ 

ri 
tf W 5° i {+c*)-«*^ 

If "Ti« 1 and if the potential difference between the 
plasma and the electrode is not large, space - charge la
yer extent is small compared with mean - free path I. . 
By this reason one usually neglects collisions everywhere 
in the space - charge region. 
Equation (5) in this case takes the following form 

where point ̂  «ζ corresponds the border of collisionness 
and the collisionless regions» Although in view of nar
rowness of the space - charge layer, the neglected in (6) 
term is small compared with the net ion concentration, it 
is very important in solving of the Poisson's equation 
near the border. Incorrectness of such a neglection leads 
in particularly, to infinite derivative of the right part 
of the equation (6) when ̂ « S. and to rapid increase of 
the ion concentration. If one does not consider the bor
der space - charge decompensation at all, that leads to 
electron space - charge predominace and to altering the 
sign of V\^-g . Neglecting the border field strength 
φ L _£ leads in this case to nonmonotonous potential 

distribution. Appearence of such oscillations is a result 
of the incorrect model. Correct potential distribution 
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demands the consideration of the collisions near the bor

der. 

Equation (5) was solved numerically by means of elee

tronie computer for a set values of ̂  .At the border 4 

and φ were joined» Extent of the space  charge layer 

depends on the potential difference between the plasma 

and the electrode» If the latter Is large enough, the 

space  charge layer extent exceeds Debye radius and app
of conti deration 

roaches the free path lj , that also leads to necessity of 

the collisions in this region» 

Fig»4 represents the results of the numerical integ

ration of equation (5)» Fig»5 represents the solution of 

the Poisson's equation while neglecting the collisions in 

the space  charge region taking into account the initial 

field strength and the Initial space  charge decompensa

tion (curve 2) and without it (curve 1)· Exact solution 

is represented by curve 3. 

Thus, solutions of the Poisson's equation, taking 

into account the collisions, occurring In the space  cha

rge region, are such, that the distributions of the field 

strength, concentrations of the charged particles etc. 

are monotonous in the near  electrode shell. 

Part 2. jjf ¿ 1 

§3» Region I» 

If electron temperature exceeds the atomic one only 

in few times, the field can be treated as a weak almost 

in the whole region I» Although, in it's part, which bor

ders with region III, the field is not weak and therefore 

while describing region I by means of diffusion equation, 

we take into account the dependence of the mobility Ü and 

the diffusion coefficient D upon the field strength. The 

dependence of the mobility was determined by Perei [4] . . 

Hls calculations can be approximated by the following de
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pendence 

TJ s j W 

where B*·^^  dimentionless field strength» By method, 

analogous to that of [4], we determined the dependence of 

diffusion coefficient D upon the B. With the same accura

cy this dependence can be approximated by;. 

T ^ M + ^ V î ^  y ^ (β) 
fc+2,9 

We are Interested especially with the confirmation of our 

method of probe voltage  current characteristics consi

deration In the dense plasma [5"} and that Is why, for ob

taining the finite potential drop in the plasma, we solve 

the diffusion equation in the region I in the case of 

spherical probe 

We introduced the following dimensionless parameters 

ηβ-*ί p = £ λ- ; I
1 ^ (10) 

1 κΤ«. 1 l ; ^wrruà^ZtcTa/m·. 
Te. 

Equation (9) was solved at the set of the A and ψ values. 

Fig.6 represents the solution of this equation in the ca

se of^ »2 and A=4 (curve 1). 

Validity of the diffusion approximation in the region 

of the large gradients is restricted by inequalities 

k —ΖΓ~«. \
 l

¡ J? ** (n ) 
Supposing the justice of the equation (9) up to the point, 

where Inequalities change to equalities, one can estimate 

the error which arises in region I when neglecting D and 

CI dependence upon the field strength. Curve 2 Fig.6 repre

sents the solution of the diffusion eouation under cons

*(^fe+i?0($?Vi
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"fc. 
t a n t D and U and w i t h t h e same qp and A» I t i s s e e n , t h a t 

'OL 

the error in the potential difference in the region I de

termination is about 0,2 kT and in the border position 

determination is about 0,21· . Under another values of the 

parameters this error remanes small, increasing only when 

\ ~ 10. 

As before, one can Introduce parameter ]T, defining 

the direct ion current to chaotic one ratio 
χ · = Aje. 1 _ ^ ^ ( 1 2 ) 

Within the rather wide interval of the parameters ψ" and 

A values, the border value of A is within 0,6̂ 0,8. 

Thus, introduction of the constant mobility and the 

diffusion coefficient does not lead to any sufficient er

ror and the border value of Τ is about unity. 

§4. Region III 

The region III begins in that point, where inequali

ties (11) are broken and the diffusion approximation be

comes incorrect. In this region the field is strong, but 

one cannot apply the consideration, analogous to that in 

§1, because this method demands the on the right, from 

the given region existence of the area of the strong field 

and the extent of this area must be at least about a free 

path» This demand fulfils only whenψ is large» 

Equation in the rtfegion III can be considerably simp

lified by neglecting the ini t ial ion velocities just af

ter collisions, occurring in the region Ι Π . In this case 

the equation takes the form 

¡a ■ ■> " i f . , rjT? J>, C13) 
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where the point r»r corresponds to the IIII border. We 

do not know the distribution function ̂ .(V ) exactly, but 

it can be chosen in such a way that to obtain 1) the gi

ven values of Ion current and concentration at the border 

and 2) the field strength without any irregularities, but 

the continuos field strendth and it's derivative. The di

stribution function was taken in the form, depending on 

five arbitral parameters, which were chosen according to 

above mentioned conditions. 

The Equation (13) does not take into account the ion 

current variation versus radius r because, as we shall 

see further, the region III is so narrow, that one can 

neglect this variation. 

The region III, as in the case^ » 1 , is restricted 

on the left by condition η£^ 1 » The solution of equation 

(13) shows that the field strength and therefore the spa

ce  charge decompensation increase very rapidly on app

roaching the electrode. By this reason the region III ex

tent and the potential drop on it are small. For example, 

in .the case of A*4 and ■£ =2, the width of the region III 

is about 0,21. and the potential difference on it is 

about 0,3kT . 
e Te. 

Thus, in the case o f  ^ ^ 1 , the quasineutral area 
of the nearelectrode shel l sat isfactory describes by the 
constant mobility and diffusion coefficient up to the po
int where jp=0,6f0,8 and one can reckons that the region I 
t r ans i t s direct ly to the spacecharge layer . Such an app
roximation does not lead to any sufficient error in the 
determination neither of nearelectrode sheath extent 
nor of potential drop on i t . 

Conclusion 

The present calculations show the just ice of the bo
under conditions, used in [.5,6] for describing arc mode 
operation of the thermionic converter and for ion current 



 1194 

to the probe in the dense plasma determinat ion. If ~ —12 
τ». 

utilization of the constant mobility and diffusion coef

ficient up to that point where ion drift velocity is equ

al to the mean chaotic one (̂ =1) is equivalent to the 

small (of order of 0,21.) error in the electrode position 

(radius) determination and to the small (of order of 0,3 

kT ) error in the potential drop on the quasineutral 

plasma determination. 
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Fig.5 

The field strength dependence upon potential in the 

space charge layer. 

curve I  without taking into account a) the collisions 
in the region Híj b) the initial field 
strength and the initial space charge decompen
sation. 

ciïrve 2  with b) and without a). 
curve 3  exact solution. 
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Fig. 6 

Potential distribution near the spherical probe, 

when ̂ = 2 . 
curvet: without taking into secourt D and U depen

dence upon the field strength, 
curve 2 with taking into account this dependence. 
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DISCUSSION 

Speaker of papers - J - I , 3-2, J - 3 and J - 4 : G. DJUZHEV. 

RASOR (USA): I am troubled by the very good agreement that you get in the 
p lasma diagnostics internal ly in the conver te r as compared with the r a the r 
obvious difficulty with the cur ren t -vol tage output c h a r a c t e r i s t i c s . 
E . g . , Gurve 2 in F ig . 2 of paper J - l shows a ve ry sharp negative res i s t ance 
region. Yet, at this t empera tu re and p r e s s u r e - s p a c i n g product , this is not 
observed in conver te r s with adequate guard r ings . I wonder if you can in any 
way reconci le these two seemingly contradic tory r e s u l t s ? 

DJUZHEV (USSR): In the negative r e s i s t ance region you mention, we observe 
exper imental ly that the one-dimensional cha rac t e r of the d i scharge is lost , 
and that the d ischarge begins to cont rac t . Since the theory is based on a one-
dimensional d i scharge , it cannot be compared with exper iment in this region. 
Therefore , the compar ison between theore t ica l and exper imenta l p l a sma p a 
r a m e t e r s was made only in the upper or sa turat ion region of the output cha
r a c t e r i s t i c s . Does this answer your quest ion? 

RASOR: Yes, but only in pa r t . The theory you have given yields a la rge 
negative res i s t ance region even for a one-dimensional d i scharge , whereas 
this effect is not observed in exper imenta l devices with e lec t rodes carefully 
guarded to suppress edge (two-dimensional) effects. Since other theor ies 
exist which a r e consistent with this exper imenta l behavior, I am curious as 
to the bas ic reason why your theory gives a different resu l t . 

DJUZHEV: The theory has not yet been compared in detai l with exper iment 
in the lower or negative r e s i s t ance region. 

WARNER (USA): We run into difficulties in our computer calculations at 
l a rge r c u r r e n t s . Your calculat ions were made at approximately 1 to 2 
A m p s / c m . Do you run into difficulties at high c u r r e n t s ? 

DJUZHEV: 1 personal ly did not do the theore t ica l work, but as far as I 
know there were such difficulties, when we went to high c u r r e n t s . At the 
p resen t t ime, a t tempts a r e being made to p r o g r a m the machine taking into 
account the high c u r r e n t s . 

RASOR: Have you taken into account the conservat ion or loss of resonance 
radiation from the p lasma in this pa r t i cu la r theory? 

DJUZHEV: Yes, we did. We did calculate the loss of resonance radiat ion. 
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AN INVESTIGATION OF THE IONIZATION MECHANISMS IN THE IGNITED MODE CESIUM THERMIONIC CONVERTER* 

Edward L. Burgess* and Denys 0 . Akhurst++ 

A b s t r a c t 

The ionization mechanisms present in the ignited mode cesium thermionic converter have 

been studied in order to determine the dominant mechanism producing positive ions for electron 

space charge neutralization. The theoretical ion density, produced by each ionization 

mechanism, has been calculated for electron impact ionization from the cesium ground state 

and from cesium excited states, and for molecular ion formation through excited state impact. 

Calculations, based on rate balance considerations, assume a Maxwellian energy distribution 

and a uniform spatial temperature distribution of ions and electrons in the interelectrode 

region. The ion density is assumed to be limited by recombination processes. The calculations 

show that ion formation from electron impact of cesium 6p states is the dominant mechanism. The 

theoretical studies are supported by experimental results from currentvoltage characteristic 

measurements and from investigations of plasma density and electron temperature. 

Introduction 

Under certain conditions, positive ions for space charge neutralization may be generated 

by inelastic electroncesium atom collisions in the interelectrode region of a cesium thermionic 

1 Ρ

** 

converter ' . A converter is said to be operating in the ignited mode under these conditions. 

This mode of operation has received considerable attention and the following ionization 

mechanisms have been suggested: (l) electron impact ionization from the cesium ground state, 

(2) electron impact ionization from cesium excited states and (3) molecular ion formation through 

excited state impact. There is support in the literature for each of these mechanisms; however, 

7 fi 

recently, Witting and Reichelt and Agnew have presented experimental results which show that 

atomic ions are the dominant ionic species in the ignited mode. The present study considers the 

theoretical basis for ionization by electron impact and shows that electron impact of cesium 6p 

states is the most productive mechanism for the considered emitter temperatures and cesium 

pressures. 

Theoretical Considerations 

In this discussion the following assumptions are made: (l) electrons and ions in the inter

electrode space have a Maxwellian energy distribution, (2) electron and ion temperatures are 

uniform across the interelectrode region and (3) ion density is limited by recombination processes 

only. 

ttThis work was supported in part by the U. S. Atomic Energy Commission and in part by the 

Arkansas Power and Light Company 

+Sandia Laboratory, Albuquerque, New Mexico, U.S.A. 

++University of Arkansas, Fayetteville, Arkansas, U.S.A. 

*«■ Super scripts refer to references listed at the end of the paper. 
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I. Electron Impact Ionization from the Ground State 
Cesium atoms in the ground state may be ionized by electron impact according to the equation, 

Cs + (e" + E. ) -Cs + + 2e~ (l) 

where E. is the ionization potential of cesium (3-8? eV). The rate at which atomic ions are pro
duced by this mechanism can be defined by 

R. = N n ƒ f (Ε)σ. (E)V (E)dE (2) 
xg o e J ex ig^ ev 

and the recombination rate defined by 

E. ι 

R = n. n ff (Ε)σ (E)V (E)dE (3) 
rg ig e j e' rg^ ex 

o 
where N is the cesium atom density, n is the electron density, n. is the ion density, f (E) 
is the electron energy distribution, σ. (Ε) is the ionization cross section, σ (E) is the 
recombination cross section and ν (E) is the electron speed. 

The recombination cross section can be related to the ionization cross section by the 
Q principle of detailed rate balance and is given by 

[E+E.1 -ΤτΗσ. (E+E.) E J igv xy °rg(E) = r M - ^ K J E + E j a ) 

where LU and uu. are the s t a t i s t i c a l weights of the ground s t a t e atom and ion, respect ively. 
Combining equations (2) - (li), we have 

R. Ν LI; 

^  ¿ 2 . ^ . e x p t  e E / k T j (5) 
rg ig '""i 

where Τ i s the electron temperature. Since we are assuming R. = R , equation (5) becomes 

.υ 
η. = 2N exp(eE./kT ) (6) 

i g χ . o
 r

^ ι e 

I I . Electron Impact Ionization from Cesium Excited States 

In general, atomic ions may be formed by electron impact ionizat ion from a l l levels of 

excitat ion of the cesium atom; however, the 6p s ta tes should be more important since the 

population of these s ta tes i s l a rger . We wi l l consider only the 6p s ta tes and t r ea t them as 

one excited s ta te with an average excitat ion energy (E ) of l.U eV. The equations are 

Cs + (e"+E ) ^Cs* + e" (7) 

Cs" + (e"+E . )Cs + + 2e" (8) 

where E . i s the energy required to ionize the excited atom. 

The r a t e a t which ions are produced by th i s mechanism can be defined by 

/

CO 

f (Ε)σ .(E)v (E)dE (9) 

e x i e E 
χ ι 

and the r a t e of recombination defined by 

R = a. n. n (10) 
ra ra ia e 
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where N is the excited state atom density, n. is the atomic ion density, σ .(E) is the 
χ ia xx 

ionization cross section, and α is the recombination coefficient. 

11
 r a 

Hinnov and Hirschberg have derived an expression for the recombination coefficient for 

12 
hydrogen. Bates, Kingston and McWhirter have predicted that the recombination rate is not very 

13 
sensitive to the species of singly charged ions. Wada and Knechtli have made measurements of 

the recombination coefficient in a cesium plasma and their results are in good quantitative 

agreement with both the theories of Hinnov and Hirschberg and Bates, Kingston and McWhirter. 

The expression obtained by Hinnov and Hirschberg for the recombination coefficient will be used 

here. Their expression is 

α = 1.09x10"
1Î4
 Τ ~

9/2
n (ll) 

ra e e 
Thus equation (10) becomes 

R = 1.09X10"
11
* Τ '9/2n 2

n. . (12) 

ra e e xa 

From the classical Thomson theory , the ionization cross section may be written as 

σ
χ ^ =

 π(ΐ%)2 I(F7 - ï) (U) 

Combining equations (9)  (13) and using the expression given by Witting and Gyftopoulos for the 

excited s ta te densi ty , i . e . , 

Nx  ¡ ζ Noexp(eEx/kTe) (li;) 

we obtain 

η η = 3.75χ10 ΐ8Ν Τ 3[3.1£χ10~5Τ exp(-eE./kT )- l l (15) 

where 

oo 

ƒ I exp Γ-β( E+Ex)/kTe1 dE (16) 
E -xx 

III. Molecular Ion Formation 
It was suggested by Freudenberg that the collision of two excited cesium atoms, each 

excited to the 6p state, could lead to the formation of the molecular cesium ion. The equations 
for this mechanism are 

Cs+(e"+E )rlCs*+e" (17) 

Cs +Cs -Cs« - Cs2
++e" (18) 

where E is the energy required to excite the cesium atom to the 6p state (l.U eV). Witting 
x ζ 

and Gyftopoulos have treated this mechanism in detail; however, since their paper was 
1 f-\ Π 7 

published, improved data on the ionization cross section and recombination coefficient 
Ί Α Π 7 

have been reported. Using the analysis of Witting and Gyftopoulos and more recent data ' 

we obtain 
η. η = 2.£lxl0"10N 2T 1 / 2 T 3 / 2exp(-2eE AT ) (19) 

i m e o a e ^ x e ' 
where n. i s the molecular ion densi ty and Τ i s the cesium atom temperature. 
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IV. Numerical Comparison of Ion Generation Mechanisms 

I t i s apparent from equation (6) tha t the electron temperature would have to be of the order 

of 10,000°K before signif icant ionization would r e s u l t . This i s much higher than observed 

electron temperatures ; therefore, i t i s concluded that ionization by electron impact from the 

cesium ground s ta te i s not important in cesium thermionic converters operating in the ignited 

mode. 

If we take the ra t io of equations (19) and (15), we obtain 

e x p ^ e E ^ k T ^ 

[3.1i5xlO"5T exp(eE./kT )  l ] ~  6 . 6 9 * 1 0  2 \ T a
1 / 2 T e  3 / 2 [TWxl0 tT eexp"(eE. /kT e ) 1 < 2 Ü > 

This r a t io i s p lot ted as a function of reciprocal electron temperature in figure 1 for three 

different combinations of atom temperature, Τ , and cesium pressure, Ρ . The atom density, 
a Us 

Ν , is related to the cesium pressure by the ideal gas law. This graph indicates that 

n. « n. for a large range of atom temperatures and cesium pressures. This fact is in 

agreement with the experimental studies of Witting and Reichelt and Agnew . 

For a neutral plasma in the interelectrode region, the total ion density is equal to the 

electron density and hence 

Since n. « η. , equation (21) becomes 
xm xa'

 n 

n. + n. = η (21) 
i a xm e 

η =" η . = η. (22) 
e xa ι 

and the ion densi ty, η . , i s determined from equation (1$) as 

n. = 1.92xl09NQ
1/2T 3 / 2 3.U5xlO"5T expCeE^kT )  I 1 / 2 (23) 

Comparison of Theoretical and Experimental Results 

Figure 2 shows a comparison of theore t ica l currentvoltage charac te r i s t i cs with some 
τ fi 

experimental data by Paquin and Bornhorst . The theore t ica l currentvoltage charac te r i s t i c s 

were calculated using the model for the ignited mode given by Ingold and equation (23) for the 

ion densi ty. The cesiated work functions used in the theore t ica l calculat ions are consistent 
19 

with the adsorption theory of Rasor and Warner 

The currentvoltage charac ter i s t ic for Τ = 568°Κ of f igure 2 i s reproduced in figure 3 
üs 

and the electron temperatures which were used in the calculation of the theoretical curve are 

indicated on the curve. These values are in the range of experimental electron temperatures 

reported 

Although successful correlation of currentvoltage characteristics is necessary, it is 

not sufficient to verify the validity of a particular theoretical model for the ionization 

mechanisms in the ignited mode . A more direct verification would be to compare the model 

with experimental data on plasma density and electron temperature. Figure U is such a 

comparison of the ion density as a function of electron temperature calculated by equation (23) 

and some recent experimental data ' . 

The reported experimental data ' shows that electron temperature and, hence, plasma 

density decreases across the interelectrode space from emitter to collector. For purposes of 

presentation in figure U, values near the midpoint of the interelectrode space were chosen; 

however, equation (23) also predicts satisfactorily the values at other points. This 
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indicates that assumption 2 i s more r e s t r i c t i v e than i s necessary; however, i t was convenient 
to make th i s assumption for purposes of calculat ing the current-voltage cha rac t e r i s t i c s . 

Conclusions 
From the study, it is concluded that electron space charge neutralization in the ignited 

mode is provided primarily by atomic ions produced by electron impact of cesium 6p states. The 
conclusion is made on the basis of the theoretical analysis which is supported with good 
agreement by experimental results. 
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Spectroscopic Investigations in a Thermionic Converter Plasma 

C. G. St ojan off , W. Hoffmann, K. Sewing 
Institut für Kernenergetik der Universität Stuttgart 

Electron temperature T e and density N e distributions across the inter
electrode gap of a Cs-converter have been determined spectroscopically. 
The adjustable planar geometry of the converter and the precision of the 
optical system facilitated measurements with 50 microns spatial resolu
tion at d = 0. 05 cm and pd = 40 mi l - to r r . The emitter temperature Tj¿ 
was varied between 1600 and 1800 K. The T e and Ne distributions exhi
bit pronounced maxima, which move toward the emitter with increasing 
current density and emitter temperature. 

Experimental Apparatus and Instrumentation 

The thermionic converter cell consists of two adjustable Ta-electrodes 
in planar geometry (2 cm dia), enclosed by a stainless steel body with 
4 mutally perpendicular, demountable, sapphire windows. Bakeable 
metal-to-metal seals, used throughout the UHV-system, ensure high 
vacuum operational conditions at temperatures as high as 800 K (back-
ground pressure better than 10 torr) . The emitter is heated by means 
of an electron gun. Its temperature is measured pyrometrically and kept 
constant. The Cs-reservoir temperature is automatically regulated with 
accuracy better than 0. 5 / o . The interelectrode gap is imaged in 1 : 1 
ratio on the entrance slit of a 0. 5 m Ebert scanning spectrometer. An 
adjustable mi r ro r system is used simultaneously for alignment of the gap 
image parallel to the entrance slit and sweeping it across . The sensed 
radiation emersed in a 10 s r solid angle from a plasma volume of 40 
microns width, 20 mm depth and 5 mm height. A good signal recovery 
was attained with an EMI 9558 AQ photomultiplier and a PAR HR-8 Lock 
in amplifier. The BW was 0. 3 Hz and 0. 1 Hz for the line and continuum 
intensity measurements correspondingly (Fig. 1) . 

+ 
Columbia University-ERL, New York. Fellow of the A. v. Humboldt -
Foundation at Institut für Kernenergetik, Universität Stuttgart . 
Work supported by the Bundesministerium f. wiss. Forschung, Bonn. 
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Spectroscopic Analysis 

The analysis of the plasmabroadened lines of the fundamental series of 

1 2 
Cs, reported elsewhere ' , is used for the determination of the electron 

densities Ne from the measured profiles of the 5D3 i¿  nFc¡l2 > n = ^> ^> 1 0 ' 

transitions. The experimental profiles are shape corrected for apparatus 
3 

imperfection, unfolded and evaluated via Voigt profiles . The electron 

temperature is determined from the radiative recombination continuum 

of the 6P state : 

Cs+ + e ^Cs* + hV (1) 

The rate of electron transitions from the continuum into any atomic state 

is given by the expression : 

dN 

e dv = NN & (v)vf(v)dv (2), where: 

dt 

f(v) » electron velocity distribution function 
5 

6"(v) = cross section for radiative recombination 

N_, Np « ion and electron densities respectively 

Suitable transformation of Eq. (2) yields for steady state : 

ln(SA Λ ) » Κ  JÜ^r (3), where 

S ̂  a intensity of radiation at wavelength λ 

Å 

Κ » constant 

However, noting that one measures directly the amplitude of the photo

multiplier signal I ν and not S» , a useful form of Eq. (3) is straightfor

ward obtained : 

ln(IA λ 2 Tf'1) = K# j ^ r (4), where 

I . = signal amplitude in volts 

IJ> a quantum efficiency 

Κ ■ constant 

he 
The temperature Te is determined from the slope r=— of the plot of 

lv X p. 

Eq. (4) vs. 1 /λ . 
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Experimental Results and Discussion 

Figs. 2 and 3 represent typical line and continuum shapes. The axial dis
tributions of the N e and T e (z » 0 at emitter) are shown in Figs. 4 -9 . Due 
to limited experimental data at this time, the curves are regarded as ge
neral trend, to be checked by farther measurements. The e r ror limits 
strongly depend upon the signal-to-noise ratio and the small linewidths 
involved. The strong resonance transitions 7^3/2* 1/2 "6S1/2 distort the 
shape of the continuum, thus enhancing the e r ro r in T e . Typical er ror 
limits for N e and T e are presented in Fig. 6 a, b . Measurements in the 
proximity of the emitter are in addition impeded by the radiation of the 
latter and have to be corrected for. Moreover, a departure from linea
rity in Eqs. (3, 4) was observed for positions ζ < 0. 1 mm, which suggest 
as an explanation the deviation, to some extend, of f(v) from Maxwellian. 
Summarizing the results of this investigation, the following conclusions 
are pointed out : 

1. Within the investigated range of emitter temperatures and current 
13 14 3 

densities the N e is in the order of magnitude of 10 - 10 /cm . A com
parison of Ν cgijo to the N e m e a s indicates a departure from LTE. The 
measured densities are in most cases appreciably less than the computed 
N e from Sahas equation. 
2. The N e distributions exhibit pronounced maxima in the vicinity of the 
emitter, which move toward the emitter with increasing T-g and current 
density. 
3. The electron temperatures Τ increase toward the emitter and exhibit 
maxima in its vicinity. The electron energy distribution f(v) in the very 
proximity of the emitter is most probably not Maxwellian. 
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DISCUSSION 

Speaker of paper J - 7 : C G . STOJANOFF. 

RASOR (USA): At what point on the vo l t - ampere curve relat ive to the t r a n 
sition point did you take your data? 

STOJANOFF (USSR): The exper imenta l data was taken in th ree different 
points of the vo l t - ampere cha rac t e r i s t i c . We took one exactly in the t r a n 
sition region, one above and one below. That is how we obtained the resul t 
that the maximum moved towards the emi t t e r with increasing cur ren t den
s i t i e s . 

RASOR: What happens to the e lec t ron t empera tu re near the emi t t e r as you 
pass into the saturat ion region? 

STOJANOFF: The e lect ron t empera tu re increased and the maximum moved 
towards the emi t t e r . 

RASOR: This change in e lectron t empera tu re should co r re l a t e with changes 
in the dark region before the emi t t e r . Have you compared the intensity of 
radiation with the existence of the maximum in e lect ron t e m p e r a t u r e ? 

STOJANOFF: Actually we did not observe the dark region, in this pa r t i cu 
l a r set of data at leas t not visual ly. We did not do any scanning of the spec 
t rum in that region. We just took the spec t rum at the continuum. 

RASOR: It does appear that the maximum is a cha rac t e r i s t i c of the obs t ruc 
ted mode, because it is tending to d isappear in the saturat ion mode. Is that 
c o r r e c t ? 

STOJANOFF: That depends on how you in te rpre te this resu l t . It is t rue that 
it tends to disappear ; that is what the data s ays . But a lso the tendency is 
there that this maximum moves towards the emi t t e r at increased cu r ren t 
densi t ies in the sa turated mode. It could be f i rs t , that the maximum is not 
there any m o r e or the maximum occurs ve ry close to the emi t t e r . We a r e 
going to per form more careful experimentat ion in o rde r to confirm whether 
this is the case . We have been able to get as close as 50 mic rons to the e -
mi t t e r . That is present ly the l imit to exper imenta l techniques. 

AGNEW (IAEA): In your o ra l presenta t ion you repor t d i sc repanc ies by fac 
to r s of 3 to 5 between measu red ion density and the Saha ion densi ty. 

STOJANOFF: F o r the calculations we used the e lec t ron t empera tu re but I 
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would like to point out that the calculated densi t ies a r e very sensitive to 
t empera tu re variat ion in the Saha-equation. If you have noticed, in our ex
per imenta l resu l t s we do have e r r o r s of about 200-300 so I 'm not very sure 
that the factor of 3 to 5 for the Saha-densi t ies over the exper imental densi t ies 
is co r r ec t . 

WARNER (USA): I believe that REICHELT did observe a maximum in the 
electron t empera tu re near the emi t t e r . This was reported at the San Diego 
Specialist Conference. 

STOJANOFF: Yes, I 've heard of this but I do not have any information about 
it. The only information, or at least cor re la t ion with other exper imental data 
that I am aware of, was given in the paper J -3 by Dr . DJUZHEV which was 
obtained by means of p robes . 

HANSEN (Euratom): If the e lectron distr ibution function is very non-Maxwel-
lian in the region of the emi t te r , in -what way would this affect the s p e c t r o s 
copic m e a s u r e m e n t s ? 

STOJANOFF: The electron energy distr ibution, as a weight-function actually 
goes very strongly into the express ion, so any deviation from the Maxwellian 
distr ibution would affect the spectroscopic m e a s u r e m e n t s . It usually would 
tend to bend the shape of the continuum and we have observed some 
deviation from the l inear i ty of the equation which we give in the paper , which 
re la tes the intensity of the continuum to the e lectron t empera tu re near the 
emi t t e r . We believe that in that region the distr ibution is not Maxwellian, 
but we do not have any further investigation in that ma t t e r . 

RASOR: In paper H-7 by KUCHEROV there were some data shown in which 
the e lectron t empera tu re measured by cer ta in methods did show a maximum 
and by other methods showed quite the opposite behavior, an increase at the 
emi t t e r . I wonder whether Dr . KARETNIKOV could comment on what was the 
difference in measuremen t techniques for those different electron t e m p e r a 
tu res and compare them to your measu remen t s ; i. e. which one of these a c 
ted in which way? 

KARETNIKOV (USSR): In paper H-7, the electron t empera tu res determined 
from ionization level (Saha), and from line r eve r sa l , both showed the ex i s 
tence of a maximum near the emi t te r ; i. e. the e lectron t empera tu re drops 
near the emi t t e r . However, the e lectron t empera tu re determined from the 
recombination continuum showed an inc rease near the emi t te r , contrary to 
the resu l t of STOJANOFF. 
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SPECTRUM OF THE LOW-VOLTAGE DISCHARGE IN A CAESIUM-FILLED DIODE 
D. Glast Eindhoven Technological University; The Netherlands 

Measurements were carried out on a caesium-filled diode with a hot 
cathode. Its construction is shown in fig. 1. The current-voltage 
relation of this diede is shown for 
Ρ = 0.2 mm Hg and T. = 1500°K (fig. 2) 
cs ° k 

For these values of the Cs-pressure and the cathode temperature only 
a small part of the characteristic is found at negative anode voltages. 
In this part of the characteristic the diode acts as a thermionic con
verter. 
At positive values of the anode voltage we distinguish the ignited mode 
and the extinguished mode. At higher cathode temperatures the charac
teristic shifts to the right and it is possible to find point A at 
negative values of the anode voltage. 
The emitted spectral lines with wave lengths between ^555 A and 8°A3 A 
were studied in both modes of operation. We observed the following 
phenomena: 

o o 
I) In the extinguished mode only the 8°Aj5 A and 8521 A lines could be 

measured. So the other lines were, not present or very weak. 
II) In the ignited mode also other spectral lines were present at 

any voltage at which that mode exists. So in the ignited mode the 
spectral lines can be emitted at voltages lower than their 
excitation voltage (except the two resonance lines mentioned 
above). When the anode voltage passed the excitation voltage of 
a specific line there was no marked change in the intensity of 



- 1214 -

of t h i s l ine ; a l s o the c u r r e n t showed no m a r k e d change when the anode 

vo l t age p a s s e d the ion iza t ion vo l t age a t C s . 

Ill) T r a n s i t i o n of the igni ted m o d e back to the ex t ingu i shed m o d e o c c u r s 

when the anode vo l t age ) is d e c r e a s e d to 1.4 Volt i . e . the exc i t a t ion 

p o t e n t i a l of the 8943 A l ine and at the s a m e m o m e n t the s p e c t r u m d i s 

a p p e a r s . 

F r o m III) one m a y conc lude tha t the igni ted mode and hence the v o l u m e i o n i z a 

t ion i s coupled to the exc i t a t i on vo l t age of the 6 P s t a t e . F r o m II) we conc lude 

that (except for the r e s o n a n c e l i ne s 6 P , / and 6P_ / ) the e m i s s i o n of the 
1/2 V 2 

s p e c t r a l l i n e s i s not coupled to the e x c i t a t i o n vo l t age of the l i n e s . 

In r e c e n t p u b l i c a t i o n s (1-4) a t h e o r y i s deve loped that in the igni ted m o d e m u l t i 

s t age ion iza t ion and r e c o m b i n a t i o n is t he p r e d o m i n a n t p r o c e s s to e s t a b l i s h the 

ion d e n s i t y 

C s + e + E — * Cs + e n 
ι 

Cs + e"—> Cs + e " + E 
η 

The r e s u l t s of the m e a s u r e m e n t s III) and the above t h e o r y s u g g e s t , tha t t he 

e x c i t a t i o n of the 6P l e v e l by e l e c t r o n s i s t he f i r s t s t ep of the m u l t i s t a g e i o n i z a 

t ion p r o c e s s . A p p a r e n t l y p h o t o n - i n d u c e d exc i t a t i on i s not s ign i f ican t a t the 

ca thode t e m p e r a t u r e and e l e c t r o d e s p a c i n g u s e d du r ing ou r m e a s u r e m e n t s . 

Howeve r a l s o m o l e c u l a r ion f o r m a t i o n t a k e s p l a c e ( th rough i m p a c t of two e x 

ci ted 6 P a t o m s ) 

2 Cs - '> C s ? — > Cs_ + e 

C s ? + e — γ C s -

5) The d i s s o c i a t i v e r e c o m b i n a t i o n o c c u r s at a high r a t e and Witt ing showed tha t 

t h e r e is a high p r o b a b i l i t y of d i s s o c i a t i o n of the exc i t ed m o l e c u l e C s ? in two 

n e u t r a l a t o m s , one o r both of which m a y be in an exc i t ed s t a t e . T h i s s u g g e s t s , 

tha t the e m i s s i o n of the s p e c t r a l l i ne s i s due a l s o to the t r a n s i t i o n to l ower 

s t a t e s of the exc i t ed a t o m s f o r m e d a f t e r the d i s s o c i a t i o n of the C s ? m o l e c u l e . 
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transition to lower states of the excited atoms formed after the 
* dissociation of the Csp molecule. 
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DISCUSSION 

Speaker of paper J - 8 : D. GLAS. 

MOS HK VIN (USSR): Can you consider the resu l t s of this work as a proof 
that the main mechanism of ionization is the molecular mechanism? 

GLAS (The Netherlands): The molecular ion formation is not the dominant 
p roces s in establishing the ion-densi ty because the dissociat ive recombina
tion p roces s is a very fast p roces s and however molecular ion formation 
takes place, every ion formed i s immediately removed by the fast d i s s o 
ciation p r o c e s s , so the main p rocess in establishing the ion-density is the 
mul t i - s tage p r o c e s s , giving atomic ions . 

WILSON (USA): H. WITTING built a conver ter with a pin hole in the co l lec
to r . Behind the pin hole he had a m a s s spect rograph. He observed that just 
as the a r c initiated there were some C s . ions . At g r ea t e r cur ren t dens i 
t ies the ions were essent ia l ly a l l single a toms , not molecular ions. 



J9 

ACTION DU RAYONNEMENT SUR LE FONCTIONNEMENT DE CONVERTISSEURS THERMOIONIQUES 

CONVERSION DU RAYONNEMENT SOLAIRE 

J.P. DAVID et F. FLORET 

Faculté des Sciences de Marseille 

RESUME 

On étudie la possibilité de déplacer le point de fonctionnement d'un convertisseur therrhoibnique à 

vapeur de césium en faisant interagir un rayonnement visible ou proche ultraviolet avec les atomes alcalins de 

manière à parfaire la neutralisation de la charge d'espace par création d'ions supplémentaires. Divers mécanismes 

sont examinés : photoi'onisation directe, photoionisation par étapes, ionisation par les électrons, action sur l'ioni

sation de surface. Expérimentalement, deux effets sont observés, en illuminant l'espace interélectrode du conver

tisseur avec le rayonnement issu d'un flash au xénon : un effet réversible, pour les régimes à faible température 

d'émetteur, et un effet irréversible avec amorçage du régime d'arc, dans d'autres conditions de fonctionnement 

Des applications solaires ont été envisagées et une première réalisation est décrite. 

INTRODUCTION 

On sait que, dans les convertisseurs thermoiòniques à vapeur de césium, la plupart des ions nécessaires 

à la neutralisation de la charge d'espace sont produits par ionisation des atomes alcalins sur la surface chaude de 

l'émetteur. La condition de neutralisation totale n'est vérifiée que si la température de l'émetteur Te depasse une 

valeur minimale Tg m ¡ n , la température du bain de césium Tç s étant fixée. Nous nous sommes donc intéressés 

dans le cas de convertisseurs dont Te < Tpmin à la possibilité d'amé lio rer cette neutralisation par l'action d'un 

rayonnement, lequel peut également servir pour le chauffage de l'émetteur. Sur le plan expérimental, cela entraîne 

quelques difficultés techniques, pour faire pénétrer le rayonnement dans l'espace interélectrode; sur le plan fon

damental, cela conduit à examiner les processus pouvant donner lieu, en volume ou à la surface de l'émetteur, à 

la création d'ions supplémentaires. 

I  MECANISMES D'INTERACTION RAYONNEMENT  VAPEUR ALCALINE 

Les processus envisagés, sont les suivants : photoionisation directe, photoionisation par étapes, ionisa

tion par collisions électroniques, action sur l'ionisation de surface. 

a  La photoionisation directe correspond à l'interaction 

Cs + hV Cs + e" avec hv y eV. 

V· étant le potentiel d'ionisation de l'alcalin. LUKE (1) a examiné cette influence du rayonnement en calculant la 

variation de l'intensité du courant débité par un convertisseur recevant, dans l'espace interélectrode, un tel flux 

photonique. 

En utilisant la distribution spectrale du rayonnement solaire, en empruntant la section efficace d'ioni

sation à BRADDICK et DITCHBURN (2) et le coefficient de recombinaison à MOHLER (3), il obtient une densi

té de courant électronique. 

r = 1.63.103 C 1 ' 2 Tf/ '2 T C S " 3 / 4 exp (  ~ 4 * 5 5 _ ) A. cm"2 

C étant un facteur de concentration du rayonnement reçu. Pour C = 1000, TT, = 1500 Κ, Γ prend des valeurs 

comprises entre 1 et lO.A.cm lorsque Tp varie entre 450° K et 600° K. Mais, dans les convertisseurs que nous 

avons expérimentés, la proportion de rayonnement d'énergie hs> > eV¡ (soit 3,89 eV pour le césium, donc de 

longueur d'onde λ < 3189 Â) qui parvient dans l'espace interélectrode reste faible et ce processus doit être 

limité. 

b  Photoionisation par étapes correspond au schéma réactionnel 

* * + 
Cs + hv j2 ► C s C s + h v 2oo "~* C s ■·" e " 
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L'ionisation se fait par absorption successive de deux photons. Le rendement ionique a été calculé par divers au
teurs (4), (5) et peut s'écrire : 

œ 
I 

M+\* A B„ C L U O 
_ \ - -^ ' avec C 

<r(v)c Ä v 

où N désigne la densité d'ions, N j la densité d'atomes dans l'état fondamental, u (V ) la densité spectrale 
monochromatique, <J ( Ό ) la section efficace de photoi'onisation , Λ j , α

χι_ ' e s coefficients de recombinai
sons total et sur le niveau 2, A et B les coefficients d'Einstein. Ce rendement reste faible pour les densités photo
niques classiques. On peut envisager aussi l'ionisation par étapes, faisant intervenir des électrons pour l'une des 
étapes ou par les deux : 

Cs + e"—* Cs* + e" Cs* + h\> 7cû—* Cs + e (1) 200 
* * _ 

12 
* * _ - ) - — — 

ou Cs + h v n —► Cs Cs 4- e _ ^ Cs + e +- e (11) 

Les électrons libres qui interviennent sont ceux de la queue de la distribution ou ceux qui sont activés 
par interaction avec le rayonnement. Pour le processus 11, BENSIMON (4) a donné le rendement ionique : 

r (*yfi(V}Q_sL_a(veidV 
r J 

où V est le potentiel de l'électron 
Q la section efficace totale de collision 
f (V) la fonction de distribution des électrons libres. 

Cet auteur a calculé, en se fixant certaines données numériques, l'importance de ce rendement. Aux 
basses températures électroniques (inférieures à 2000 TC), ce rendement ne dépasse pas 10 , avec prédominance 
des transitions utilisant l'état excité 8P comme étape. Pour des températures électroniques supérieures à 3500 K, 
les transitions par les états 6P deviennent prépondérantes et pour des températures électroniques de 8000 K, le 
rendement ionique pourrait atteindre quelques pour cent. 

c- Action sur l'ionisation de surface 

. Dans ce processus (6), les atomes de césium seraient excités par absorption d'un quantum lumineux 
avant d'être ionisés sur la surface chaude de l'émetteur, ce qui devrait se traduire par une amélioration du rende
ment ionique. Un calcul simple conduit à un rapport entre les flux d'ions provenant d'atomes excités, soit p* * 
et d'atomes non excités, soit u + . 

\ + 2e*p{<V r0EybT^ 
H+ Ί -ε , ^ 2 « p {e(VL*-0E/kT^ 

où F donne la proportion d'atomes excités, V· est le potentiel d'ionisation à partir de l'état excité considéré. 

Pour V = 3,89 V, V. = 2,44 V, T c — 1500°K, ε = 10 , pour un flux d'atomes neutres incidents de 10 °cm . 
, ι ι h 

s , ce rapport peut atteindre la valeur 10. Ce processus d'activation de l'effet Langmuir implique que le rayonne

ment excitateur puisse pénétrer suffisamment dans l'espace interélectrode. 
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II - ETUDE EXPERIMENTALE 

Pour montrer l'influence du rayonnement sur le fonctionnement d'un convertisseur, nous avons 
expérimenté sur des enceintes permettant de faire pénétrer le rayonnement dans l'espace inter-électrode, soit 
tangentiellement à l'émetteur (fig. 1) soit perpendiculairement à l'émetteur, à travers un collecteur percé de trous 
(fig.2). Les fenêtres transparentes sont en saphir peu attaqué par le cesium à chaud. L'émetteur en molybdène est 
chauffé par bolbardement électronique. L'espace inter-électrode est, suivant le cas compris enlre 0,5mm et 1mm. 
La figure 3 donne les caractéristiques I-V relevées dans le cas d'un convertisseur du premier type et fonctionnant 
dans les conditions suivantes : Tps = 623°K et TE = 1685°K, 1730°K, 1785°K. Les caractéristiques (1 ) et (2) 
correspondent au régime d'arc. La figure 4 montre la variation du courant débité dans la résistance de charge 
lorsqu'on illumine l'espace inter-électrode avec le rayonnement provenant d'une lampe flash au xénon, le conver
tisseur fonctionnant dans les conditions Tç s = 623°K, Tg = 1685°K, I - 0,2 A. On note alors pour une 
impulsion lumineuse de quelques millisecondes, une variation d'intensité atteignant 100 % · 

Une autre action du rayonnement peut être observée avec le convertisseur précédent, fonctionnant 
dansdes conditions voisines de celles correspondant à l'apparition du régime d'arc : pour Tçs = 623°K, 
1685°K < TE < 1730 K, I - 2A, V - 0,1 V. L'illumination dans l'espace inter-électrode par le rayonne
ment issu du flash fait passer de façon irréversible le courant a une valeur d'environ 5 ampères. Si maintenant 
on fait varier la résistance de charge jusqu'à annuler pratiquement le courant, on décrit une caractéristique d'arc, 
puis en ramenant la charge à sa valeur initiale, on revient à I - 2A. Le cycle peut être décrit plusieurs fois 
de suite, l'amorçage du régime d'arc étant obtenu par action de l'impulsion lumineuse. Ces résultats ont été retrou
vés sur des convertisseurs du type représenté figure 2, en éclairant à travers le collecteur percé de trous. La figure 5 
donne quelques caractéristiques I-V d'un tel convertisseur fonctionnant dans les conditions Tg :=. 1430° K et pour 
des températures du bain de césium s'échelonnant entre 498 °K et 598 °K . Le dispositif expérimental permettant 
de relever les caractéristiques I-V a été modifié de façon à pouvoir balayer un domaine de tensions s'étendant 
entre +3V et - 3V et permettant d'explorer la zone où l'enceinte ne fonctionne plus en convertisseur. ► 

La figure 6 donne, en trait fin, la caractéristique I-V pour le convertisseur fonctionnant à T Q = 548° K 
et Tg = 1460°K. Le régime d'arc ne peut être amorcé que si V devient légèrement "négatif'. Fixons la charge 
du convertisseur de façon à ce que le point de fonctionnement soit en A. Le rayonnement issu du flash le fait pas
ser en B avec amorçage de l'arc. Ces quelques expériences montrent l'intérêt pratique que l'on peut avoir à intro
duire le rayonnement dans l'espace inter-électrode d'un convertisseur à césium et l'application eventuelle à la con
version solaire. Elles sont en accord, avec les résultats obtenus par J. BENSIMON (4) dans des conditions expéri
mentales différentes. 

III - REALISATION ET ESSAIS DE CONVERTISSEURS SOLAIRES 

Nous avons réalisé des convertisseurs solaires dans lesquels le rayonnement peut intervenir : 
- comme moyen de chauffage de l'émetteur 
- comme moyen de parfaire la neutralisation de la charge d'espace ou d'amorcer le régime d'arc suivant 

les conditions de fonctionnement. 

A la suite de travaux réalisés à la C.S.F. sur des convertisseurs à émetteur multicapillaire, nous nous 
sommes proposés d'adapter cette structure d'émetteur à des convertisseurs solaires. 

L.ensemble du convertisseur est en titane qui convient mieux au point de vue technologique pour les 
soudures et scellements utilisés. L'émetteur est constitué par un ruban de molybdène en le faisant passer entre deux 
molettes et en l'enroulant ensuite en spirale. Il a une hauteur h =. 6mm, un diamètre 0 = 1 2 m m . Les fenêtres 
sont soit en saphir, soit en quartz, et ont pour diamètre 50 ou 60 mm. Mais les fenêtres en saphir résistent mal 
aux chocs thermiques que nous leur avons fait subir et pour le moment nos résultats correspondent à des conver
tisseurs à fenêtre de quartz. 
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Le convertisseur est placé au foyer d'un miroir parabolique recevant le rayonnement issu d'un arc au carbone. La 
puissance lumineuse disponible au foyer est de l'ordre du kilowatt. La tache focale a 14mm de diamètre. 
Les figures 8 et 9 donnent les caractéristiques courant-tension relevées pour Tg— 1430°K et Tg =-1710 K et pour 
des températures du césium variant entre 175°C et 350°C. Ces courbes montrent qu'il faut atteindre des tempé
ratures d'émetteur de l'ordre de 1700°K pour commencer à avoir des courants et des puissances dignes d'intérêt. 
II semble qu'il soit possible d'accroftre les courants en agissant sur la résistance propre de l'émetteur multicapil-
laire. 

CONCLUSION 

D'autres résultats de conversion solaire nous paraissent nécessaires avant de pouvoir tirer des conclu
sions définitives. Mais de nombreux problèmes technologiques restent encore à résoudre. 

Néanmoins, les expériences décrites mettent en évidence l'influence que peut avoir le rayonnement 
sur le fonctionnement d'un convertisseur thermoi'onique. 
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INTRODUCTION 

The emiss ion p rope r t i e s of the surfaces of the e lec t rodes of a 

thermionic conver te r play the mos t impor tant role in the determinat ion 

of the optimum per formance c h a r a c t e r i s t i c s of the conver te r . Future 

advances in conver ter pe r formance may well be achieved by means of 

bet ter e lect rode surfaces . This point is i l lus t ra ted by the substant ial 

exper imenta l effort which present ly is devoted to the study of surface 

p rope r t i e s . An example of such a p roper ty is the work function. The 

value of the work function depends on the m a t e r i a l , the c rys ta l lographic 

orientat ion of the surface , the degree to which the surface is covered 

by adso rba t e s , and the t e m p e r a t u r e of the surface. 

The theore t ica l understanding of surface p rope r t i e s i s not as ad

vanced as it might be. Although many prac t i ca l r e su l t s have been ob

tained, the re is sti l l a lot of work which needs to be done. 

The purpose of this paper is to d i scuss briefly some of the 

theore t ica l work which has been done about surface p r o p e r t i e s , with 

emphas is on the work function of e lec t rodes for thermionic conve r t e r s 

only. The paper is not meant to be an exhaustive or even adequate 

review of the l i t e ra tu re on the subject. It a t tempts to focus attention 

on a few points only. 

Invited paper . 

On sabbat ical leave from Massachuse t t s Insti tute of Technology, 
Cambridge , Massachuse t t s , U .S .A . 
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The paper is organized as follows. F i r s t , the definition of the 

work function φ is given. Although this definition is well known, it is 

repeated here in order to focus attention on the importance of the 

points just outside the surface and on the requ i rements for a r igorous 

calculation of the work function. Second, the information needed for 

the calculation of φ is discussed. This information is not available and 

very likely will not become available for many ye a r s to come. Third, 

theore t ica l analyses of ba re work functions a r e briefly reviewed. 

F r o m the review of the l imited number of approximate calculations 

which have been performed it is concluded that the understanding of 

surface phenomena is neither complete nor accura te . F r o m the review 

of the s emi -empi r i ca l cor re la t ions it is concluded that only one of 

these cor re la t ions a t tempts to account for the dependence of φ on 

crys ta l lographic orientation. Four th , analyses of work functions of 

composite surfaces a r e briefly summar ized . F r o m the summary of 

some approximate calculations it is seen that work in this a r ea is 

minimal and inconclusive. F r o m the summary of the two semi -

empi r ica l cor re la t ions used in the field of thermionic conversion it is 

concluded that both cor re la t ions yield prac t ica l numer ica l r e su l t s but 

that no par t icu lar fundamental significance can be assigned to .the 

models used for their derivation. 

DEFINITION OF WORK FUNCTION 

Given a surface of a c rys t a l la t t ice , the work function φ of the 

surface is defined as the r eve r s ib le work per e lect ron requi red to 

take an infinitesimal charge in equil ibrium with the e lect r ica l ly neutra l 

lat t ice to a state of zero entropy and zero energy at a point just outside 

the surface. This is also the definition of the negative of the value of 
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the chemical potential of the points jus t outside, or the negative of 

the value of the e lec t rochemica l potential with r e spec t to the points 

jus t outside. Work function i s , in genera l , a function of the t e m p e r a 

tu re of the surface. 

It mus t be noted that φ can be r ega rded as a meaningful proper ty 

of a surface only with r e spec t to the points jus t outside. These points 
o 

a re about 500 A from the plane of the surface l a t t i c e - s i t e s . Opera

tionally, they are defined as the points at which the value of the image 

force experienced by an e lec t ron escaping from the surface (the value 

of the cor re la t ion force) equals that of the force due to the space 

charge , in an a r rangement in which the c rys t a l and the adjacent 

e lec t ron gas phase a re in thermodynamic equi l ibr ium. Such an ar range

ment may be a thermionic conver te r with identical e lectrode sur faces , 

kept at the same t e m p e r a t u r e . The equality of the two types of forces 

means the following. Beyond the points just outside, the change in 

the" potential energy of the image force is negligibly smal l while that 

of the space charge may be appreciable . On the other hand, before 

the points jus t outside, the change in the potential energy of the image 

and other interfacial forces is abrupt while space charge effects a r e 

completely negligible. 

Without the concept of the points jus t outside, all surfaces of a 

given ma te r i a l would have ei ther the same value of work function, 

independent of c rys ta l lographic orientat ion, or values of work function 

which depend on the magnitude of the space charge effects. 

* Exper imenta l ly , an apparent or Richardson work function φ is 

deduced from Schottky plots at different t e m p e r a t u r e s , extrapolated to 

zero field conditions. Implicit in this measu remen t of φ is the 
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assumption that φ is approximately a l inear function of t empera tu re . 

It can be readily shown that this assumption is equivalent to saying 

that the value of the apparent work function equals that of φ at zero 

degrees Kelvin. 

More often than not, it is difficult to associa te an accurate exper i 

mental value with the work function of a surface. The reason is not only 

because of e r r o r s in the exper imental procedure but p r imar i ly because 

it is difficult to establ ish the nature of the surface with r ega rd to ei ther 

crysta l lographic orientation, or degree of contamination, or both. 

INFORMATION NEEDED FOR THE CALCULATION OF φ 

The r igorous calculation of the work function φ of a surface of a 

metal would requi re knowledge of the energy eigenvalues of the c rys ta l 

regarded as an open thermodynamic sys tem, namely the eigenvalues for 

all possible degrees of charging. In other words , given a piece of 

meta l , complete sets of energy eigenvalues must be found for the 

metal being e lectr ical ly neutra l , being charged by one, two, . . . 

positive units of charge , and being charged by one, two, . . . negative 

units of charge . These sets of eigenvalues can be used in a well 

specified formal i sm, namely the formal ism of grand canonical ensembles , 

to compute the e lec t rochemica l potential of the neutral meta l . If the 

a rb i t r a ry zero energy reference level is taken at the points just outside 

the surface, the negative of this e lec t rochemica l potential will be 

equal to ψ+ . For an example of such a calculation of the e lec t ro

chemical potential of an atom with Ζ e lec t rons see reference 2. The 

procedure for the calculation of φ would be the same as that in 

reference 2, except that the energy eigenvalues w> uld be those of the 

metal . 

Thermodynamical ly , the value of the work function at zero t empera 
ture can be defined only as a l imit of the value of φ as the t empera tu re 
Τ approaches zero from positive values of T. 



 1229 

It is c lear that the above r igorous approach to the calculation of 

φ is present ly impossible and, the re fore , d ras t i c approximations a re 

necessa ry . Neve r the l e s s , knowledge of the exact p rocedure provides 

a useful re ference for the in terpre ta t ion of the var ious approximations 

that might be used in p rac t i ce . 

BARE WORK FUNCTIONS 

Approximate Calculat ions. For the calculation of the work function 

of a surface of a pure meta l , of the soca l lèd b a r e work function, the 

following approximate procedure has been used. F i r s t , the calculation 

is r e s t r i c t e d to that of the value φ of φ at ze ro t e m p e r a t u r e . Attempts 

a r e subsequently made to es t imate an approximate t empe ra tu r e co 

3 

efficient of φ. Second, the motions of the ion co re s of the c rys t a l a r e 

neglected. In other words , the BornOppenheimer approximation is 

used for the quantummechanical opera tor of the c rys t a l . This approxi

mation r e su l t s in a manye lec t ron problem. Third , the manye lec t ron 

problem is approximated by an onee lec t ron problem. The onee lec t ron 

eigenvalue problem is solved and the interfacial e lec t ron motive c o r r e s 

ponding to the ground state of the e lectronic s t ruc tu re is computed. In 

the context of the onee lec t ron approximation, the value of φ is given 

by the difference between the values ψ of the motive of the points just 

outside the meta l surface and μ of the F e r m i energy. The F e r m i 

energy is taken ei ther as that of the f ree e lec t ron model or as that 

of some band s t ruc ture calculation. 

The interfacial motive is found to be the sum of three t e r m s . 

One t e r m is purely e lec t ros ta t ic and is due to the a symmet r i c charge 

distr ibution at the surface. This t e r m is called the dipole moment 

effect. Another t e r m accounts for the fact that an e lec t ron does not 
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act on itself. It is called the exchange effect (or exchange correct ion) . 

Finally, the thi rd t e r m accounts for the fact that the presence of one 

e lect ron at a par t icu lar position a l t e r s the distr ibution of and, hence, 

the potential energy due to the other charges . The third t e r m is called 

the cor re la t ion effect. The three effects a r e not independent of each 

other but very closely in ter re la ted . 

Approximate calculations of the type discussed above have been 
4-7 made by severa l authors . Because of numer ica l difficulties, only 

monovalent meta ls a re t rea ted , and the crysta l lographic orientation 

of the surface is not considered explicitly (i. e. , all interfacial 

phenomena a r e analyzed as one-dimensional) . The re su l t s a re quali-
4 

tatively s imi lar and suggest the following conclusions. 

(a) The interfacial motive is largely due to exchange and c o r r e l a 

tion effects r a the r than ordinary e lec t ros ta t ic effects. A s imi lar con-

elusion applies to φ . 

(b) There is no single interfacial motive which is sat isfactory 

for e lec t rons of all veloci t ies . Each e lect ron, so to speak, has i ts 

own motive. 

(c) The dipole moment effect is relat ively smal l for monovalent 

meta l s . 

Although these conclusions a re informative, their general i ty is 

questionable. For example, it is general ly accepted that exchange and 

cor re la t ion effects a r e important in determining both the electronic 

s t ruc ture and the interfacial e lect ron motive of a meta l . As d iscussed 
g 

by Slater , however, the dependence of these effects on e lect ron 

velocity (conclusion (b) above) is a consequence of the approximations 
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introduced in the calculat ions r a the r than a represen ta t ion of a t rue 

physical phenomenon. 

With r ega rd to the dipole moment effect, the si tuation.is even 

more ambiguous. For monovalent m e t a l s , conclusion (c) cannot be 

judged because the accuracy of the express ions used for exchange 

and cor re la t ion effects is not known. For mult ivalent e lements , many 

authors believe that the dipole moment effect is l a rge r than that for 

monovalent e lements . In fact, it is often stated that differences in 

the values of work functions of surfaces of the same meta l but of 

different crys ta l lographic orientat ions a re due only to differences in 
9-10 the magnitude pf the dipole moment effect. This s ta tement cannot 

be co r r ec t . Exchange and cor re la t ion effects may be substantially 

different for different surfaces of the same element and, hence, may 

be part ly the cause of the differences in work functions. Moreover , 

it may be argued that since the dipole moment effect is closely in t e r 

re la ted to the other effects, if the dipole moment effect changes the 

other effects must a lso change. It appears that no genera l conclusions 

can be stated until surface exchange and cor re la t ion effects a r e 

analyzed more accura te ly and by means of th ree -d imens iona l mode ls , 

namely models which account explicitly for the crys ta l lographic 

orientation of the surface. 

The thermodynamic proof that " the difference in work functions 

of two surfaces of the same meta l is due to dipole moment effects " 

is not co r rec t . The reason is as follows. Essen t i a l to the proof in 

reference 10 is the assumption that the average e lec t ros ta t ic potential 

ψ in the meta l is uniform. The value of the average potential , however, 

depends on the direct ion along which the averaging is per formed and, 

therefore , this value is different for direct ions normal to surfaces of 
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different crysta l lographic orientation. The dependence of the average 

of the e lec t ros ta t ic potential on the direct ion along which the averaging 

is performed is re la ted to the direct ional dependence of thermoelec t r ic 

p roper t i e s of c ry s t a l s . 

In summary , much work needs to be done on surfaces even for a 

sat isfactory qualitative understanding of the factors which contribute to 

the value of the work function. 

Semi -empi r i ca l Corre la t ions . A number of s emi - emp i r i c a l c o r r e -

lations have been derived for φ . These cor re la t ions at tempt to re la te 

φ to known exper imenta l quantities ei ther of the meta l itself or of the 

a toms of the meta l . They a re derived by means of a var ie ty of a rgu

ments borrowed from quantum mechan ics , e l ec t ros t a t i c s , chemis t ry , 
12-17 17 

etc. With the exception of one cor re la t ion , al l o thers do not 
* 

account for the dependence of φ on crys ta l lographic orientation. 
Because of its re lat ive newness , the cor re la t ion of reference 17 is d i s 

cussed in the Appendix. 

It should be noted that an important considerat ion in any attempt 

to co r re l a t e values of work functions of polycrystal l ine surfaces is the 

distr ibution of patches on the surface, The important problem of patch 

effects is not d iscussed in this paper . 

WORK FUNCTION OF COMPOSITE SURFACES 

General R e m a r k s . A composite surface is defined as the uniform 

or non-uniform surface of the solid of an element covered by a fractional 

or a full monolayer of one or more different e lements . For example, 

a cesiated tungsten surface is defined as a composite surface. 
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The analysis of the work function of a composite surface is much 

more difficult than that of a pure meta l surface. For this reason , 

quantum-mechanical t r ea tmen t s of this problem have been r e s t r i c t e d 

to a par t i a l understanding of the in teract ion of one adsórbate atom 

with a subs t ra te meta l surface by means of per turbat ion methods. 

These t r ea tmen t s a r e summar ized and d iscussed in re fe rence 18. The 

conclusions about the nature of the a tom-me ta l in terac t ions a r e not 

un iversa l . At this t ime , it is not possible to state which r e su l t s a re 

conclusive because the accuracy of the per turbat ion schemes used in 

the analyses is not known. Much more work is needed in this a rea . 

Semi -empi r i ca l Cor re la t ions . A number of cor re la t ions have 

been derived for the work function of composi te sur faces . Common 

to all the cor re la t ions is the idea that the effect of the adsórbate 

par t i c les can be considered as a per turbat ion on the work function of 

the subs t ra te . The difference between cor re la t ions l ies in the models 

used for the calculation of the per turbat ion and the type of information 

which is assumed as known, namely as input information for the c o r r e 

lation. 

The following r e m a r k s a re devoted to two of these cor re la t ions 

only. These two cor re la t ions have been proposed for meta l surfaces 

coated by metal l ic films and have found seve ra l applications in the 

field of thermionic conversion. One has been developed by Raso r and 

Dther : 
20,21 

19 Warner , and the other is the resu l t of the works of Gyftopoulos, 

Levine and Steiner. 

For the derivat ion of thei r cor re la t ion , Rasor and Warner make 

the following major assumpt ions . 
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(a) The subst ra te ma te r i a l has a fixed electronic s t ruc tu re , 

namely a s t ruc ture independent of the p resence of adsórbate par t ic les 

on the surface. 

(b) For the subs t ra te adsorba te in terac t ions , the surface of the 

subst ra te can be regarded as that of a perfect conductor. 

(c) The adsórbate par t i c les exist on the surface of the perfect 

conductor in two distinct energy e igens ta tes , one ionized and one 

neutra l . The energy difference between these two states equals E. 

This energy can assume both positive and negative values . 

(d) The re la t ive degrees of coverage , Θ. of the ionic state and 

θ of the neutra l s ta te , a re given by the Boltzmann rela t ion 

θ / θ . = 2 exp (  E / k T ) , 
cL 1 

where Τ is the surface t empera tu r e . The degree of coverage θ of the 

surface by the adsórbate par t i c les equals the sum of Θ. and θ . 
ι a 

(e) The ion core is at a dis tance r from the surface, where r 
i ι 

is the effective ionic radius of the adsórba te . This core is held on 

the surface by the image force. 

(f) The ions and their image charges form a double layer on the 

surface, an a r r a y of dipole s on the surface. The potential drop a c r o s s 

the double layer yields the change Δφ of the work function of the sub

s t r a t e . 

By vir tue of these assumptions plus considerat ions regarding 

depolarization effects and energy ba lances , Rasor and Warner obtain 

their cor re la t ion for Αφ. This cor re la t ion may be expressed either 

as a function, Δ φ ( θ , Τ ) , of the coverage θ and the t empera tu re T, or , 
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under ce r ta in conditions, as a function, Δ φ ( Τ / Τ ), of the ra t io of Τ 
R 

and the adsórbate r e s e r v o i r t empe ra tu r e Τ . 

is. 

For the cor re la t ion Δφ (θ , Τ), the following information is needed: 

the adsórbate surface density σ ( # / c m ) at a coverage of one monolayer , 

the effective ionic radius r . , the polar izabi l i ty a. of the ionic s ta te , and 
the value E of the energy difference E at ze ro coverage . If the value 

o 
of E is not known, the value of the ba re work function φ and the values 

o o 
φ. of the ion and φ of the atom desorpt ion energ ies at ze ro coverage 
^10 a o °

 β 

are a lso requi red . A unique feature of this cor re la t ion , not included 

in any other cor re la t ion , is the dependence of Αφ(θ,Τ) on T. For 

ce r ta in degrees of coverage the dependence on Τ is appreciable . 

For the cor re la t ion Αφ(Τ/ Τ ), the following information is 
R 

needed: the value φ of the b a r e work function, the value φ . of the 
o T i o 

iqn desorpt ion energy at ze ro coverage , the ionization energy I of the 

adsórba te , and the heat of vaporizat ion h of the adsórba te from i ts 

r e s e r v o i r . A unique feature of this co r re l a t ion is that for a fixed 

adsórba te , say ces ium, Δ ψ ( Τ / Τ _ ) depends only on the value φ of 
JR. Ο 

the b a r e work function, because φ. is taken as the dipole energy at 

ze ro coverage . 

21 

The cor re la t ion der ived by Gyftopoulos and Steiner (G-S) is 

numer ica l ly s imi la r to that obtained e a r l i e r by Gyftopoulos and Levine 

However, because in the former ideas a r e m o r e sharply defined than 

in the l a t t e r , the subsequent d iscuss ion is p resen ted in connection with 

the G-S cor re la t ion . The major assumpt ions made a r e as follows: 

(a) The e lec t ronic s t ruc tu re of a meta l l ic sys tem may be regarded 

as consist ing of sp in-orbi ta l s local ized around individual latt ice s i tes . 
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In par t i cu la r , valence e lec t rons localized around surface la t t i ce s i t es 

a r e thought of as surface a toms. 

(b) Thermionical ly emitted e lect rons originate from surface 

a toms. The charge condition of a surface atom is the same before 

and after emiss ion, namely e lectr ical ly neutra l , since the charge of 

an emit ter must be continuously replenished. 

(c) Each surface atom (namely a valence spinorbi ta l localized 

around a surface la t t ices i te) can be assigned a neutra l orbital e lec t ro 

negativity. 

By vir tue of the definitions of the work function φ and the neutral 

orbi tal electronegativi ty x, it is concluded that φ i s identically equal 
+ 

to x. 

(d) The neut ra l orbi tal electronegativity of a composite surface 

is taken as the sum of the electronegativity of the subst ra te plus 

electronegativity per turbat ions introduced by the chemical interact ions 

between subst ra te sur facea toms and adsórbate a toms. The procedure 

is s imi la r as that used in molecular chemis t ry . 

(e) For a valence orbital of an adsórbate atom, the chemical 

interact ions resu l t in an overlap charge Q with another adsórbate 

valence orbi tal , and in a charge t ransfer F and an overlap charge Q 

with a subs t ra te valence orbital localized at a surface la t t i ce s i t e . 

(f) The change in electronegativity and, hence, Δ^ depends 

l inearly on F and Q only. 

(g) The charge t ransfer F is found by maximizing the part ial ly 

ionic and part ial ly covalent bond energy of the adsórbate atom with 

r e spec t to F . 

Assumptions (a) through (c) have been confirmed quantumthermo 
dynamically in re ferences 2 and 25. 



1237 

(h) The overlap charge is proport ional to a Morse function for θ 

g rea te r than about 0. 3, and a modified Morse function for θ smal le r 

than about 0. 3. The modified Morse function v e r s u s θ has a slope 

different than zero at θ equals zero in cont ras t to the Morse function 

ve r sus θ which has a slope equal to ze ro at θ equals ze ro . 

(i) The neut ra l orbital electronegativi ty at a coverage of one 

monolayer equals that of a pure adsórbate surface with the same 

par t ic le a r rangement . This is equivalent to saying that the work 

function of the composite surface at a coverage of one monolayer 

equals that of the pure adsórbate surface with the same par t ic le a r r ange

ment. 

By vir tue of these assumpt ions plus considerat ions of depolar iza

tion effects, Gyftopoulos and Steiner obtain a cor re la t ion for Δ ψ v e r s u s 

θ only, as well as a cor re la t ion for the desorpt ion energy of the adsór

bate v e r s u s θ only. These cor re la t ions a r e then combined with the 

22, 23 
s ta t i s t ica l analyses of Levine and Gyftopoulos " to find that , under 

ce r ta in conditions, the change Δ φ in work function depends on Τ / Τ 
R 

only. 

■ For the cor re la t ion Δ φ ( θ ) the following information is needed: 

the surface densi t ies σ for the subs t ra te and σ , for the adsórba te , 
s f 

the atomic rad i i of the substrate, and the adsórba te , the c rys t a l lo 

graphic orientat ion of the subs t ra te surface, the polar izabi l i t ies of the 

subs t ra te and adsórbate a toms , the valence of the adsórba te , the work 

functions φ at zero coverage a n d ø , at full coverage , the energy D 
S X o 

of the purely covalent sub s t r a t e adsó rba te bond, and the sum of the 

differences of the ionization energy and e lec t ron affinity of the subst ra te 

and the adsórbate . The energy D is re la ted to the heats of sublimation 
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24 
of the subst ra te and the adsórbate . For the cor re la t ion Δψ (Τ/ Τ ) 

R 
the information required is the same as that for Αφ(θ). 

This completes the discussion of the major assumptions and input 

information requi red for the cor re la t ions by Rasor and Warner , and by 

Gyftopoulos and Steiner. The assumptions and information needed a r e 

i l lus t ra t ive of the differences and s imi la r i t i es between the two c o r r e 

lat ions. Numerical ly , both cor re la t ions yield reasonable prac t ica l 

r esu l t s for a var ie ty of bimetal l ic sy s t ems , and have been found useful 

tools for the representa t ion of data obtained from thermionic conver te r s . 

It should be noted that in spite of the numer ica l success of the 

cor re la t ions , no fundamental significance can be assigned to the models 

used for the calculation of the per turbat ion. What is meant by this 

observation is that no experiment can be devised which would conclu

sively indicate that the adsórbate par t ic les exist on the surface as 

suggested by the models of ei ther of the cor re la t ions . 

In attempting to evaluate the pract ica l i ty of these two corre la t ions 

or any other corre la t ion , a fruitful approach might be to check exper i 

mentally their internal consistency. Some questions which might be 

asked along this approach a re as follows: 

(a) For a given Θ, does Αφ depend on T? 

(b) Is the work function at a coverage of one monolayer p r imar i ly 

controlled by the adsórbate? 

(c) In fitting exper imental data, a re the result ing values of the 

input information consistent with the values that a re expected from 

the definitions of these quantities? 
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(d) For a given adsórba te , does Δ ψ ( Τ / Τ ) depend only on the 
R 

ba re work function? etc . 

P re sen t ly , the available exper imenta l information is nei ther 

sufficiently accura te nor does it cover a sufficiently la rge range of 

surface conditions to allow conclusive answers to some of these ques

t ions. It is hoped that such information will become available in the 

future. 

There a re other important aspec ts of composite surfaces·, such 

as the problem of work function in the p resence of two adsorba tes (for 

example oxygen and ces ium) , which as a l ready stated a r e not d iscussed 

he r e . 

In closing these br ief r e m a r k s , it is fair to state that the p r o g r e s s 

which has been made with r e g a r d to the theore t ica l understanding of 

surface p roper t i e s has provided us with sufficient insight to recognize 

many new, exciting and challenging p rob lems . 

APPENDDC 

A CORRELATION FOR THE PREDICTION OF 

BARE WORK FUNCTIONS 

The purpose of this appendix is to d iscuss briefly the cor re la t ion 

for ba re work functions proposed in re fe rence 17. 

F r o m the a rguments p resen ted in r e fe rences 2, 17, and 25, it is 

concluded that , at Τ equals ze ro , the work function φ of a pure unifori 

surface equals the neut ra l orbi ta l electronegativi ty χ (0) of a valence 

spinorbi ta l localized around a surface l a t t i ce s i t e and, the re fore , φ 

would be known if χ (0) were known. The electronegat ivi ty at ze ro 
S 

t empera tu re may be computed by a d i rec t extension to surface orbitale 
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of a cor re la t ion which has been derived for orbi tais of atoms in a 

molecule. 

2f> 
To this end, it is noted that according to the works of Gordy 

27 
and of P r i t cha rd and Skinner, thé neutra l orbital electronegativity 

x(0) of an atom in a molecule can be approximated by the relat ion 

x(0) = 0. 98 ^^- + 1. 57 (ev), (A-l) 

where ν is the number of e lect rons per atom which part ic ipate in bond-
o 

ing, and r is the effective size in A of the atom in the bonded state . 

Now, it is assumed that relat ion A- l is also applicable to surface 

orbi tais and, consequently, 

* ν + 1 
φ = χ (0) = 0. 98—- + 1. 57 (ev), (A-2) 

m 

where ν is the number of e lect rons per surface atom which part ic ipate 

in bonding, and r is the effective size of these atoms in A. The 
m 

quantity ν will be r e f e r r ed to as the surface valence. 

The effective size of atoms on the surface is assumed to be 
Q 

equal to the atomic radius given by Slater . The surface valence, ν , 

is derived from the metal l ic valence v and fractional bond numbers 
m 

of atoms in the bulk, as d iscussed below. 

Surface Valence. The metal l ic valence, ν , is defined as the 
m 

number of e lectrons per atom which par t ic ipate in bonding in the bulk 
28 

of a meta l . The fractional bond number , n, is defined such that 2n 

equals the average number of bonding e lect rons shared by two in te r -

29 
acting atoms at an interatomic separat ion R. According to Pauling , 
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the fractional bond numbers n and n assoc ia ted with the interatomic, 

separat ions R and R , respect ive ly , satisfy the following empir ica l 

relat ion: 

R - R 1 = 0. 26 ln fn j /n ). (A-3) 

For body centered cubic (BCC), and for closed packed hexagonal 

(CPH) c rys t a l s t r uc tu r e s , fractional bond numbers between atoms 

further distant than nex t -nea res t neighbors a re negligible. For face 

centered cubic (FCC) c rys t a l s t r u c t u r e s , fractional bond numbers 

between atoms further distant than nea re s t neighbors a re negligible. 

Thus, for each c rys t a l s t ruc tu re , metal l ic valence and fractional bond 

numbers a r e in te r re la ted as follows: 

BCC 

CPH 

FCC 

V 
m 

V 
m 

ν m 

= 

= 

= 

8n + a 
6n + a 
12n a 

6 n b : 

6 n b : 

(A-4a) 

(A-4b) 

(A-4c) 

where n and n a re the fractional bond numbers for nea re s t and next-

nea re s t neighbor s, respect ively . Tabulated values of metall ic valences 

and in tera tomic dis tances can be used in Eqs . A-3 and A-4 to compute 

the fractional bond numbers η and η for different: m a t e r i a l s . 

If it is assumed that the fractional bond numbers of atoms on 

the surface a re identical to those of a toms in the bulk, then the surface 

valence, ν , is given by a summation of the form: 
S 

(A -5a) 

(A-5b) 

(A- 5c) 

where Ν and N. a r e the number of nea re s t and nex t -nea re s t neighbors a b 
of surface a toms , respect ive ly . The numbers Ν and N, a r e fixed by 

a b 

BCC: 
CPH: 

FCC: 

ν = Ν η + Ν, η ; s a a b b 
v = N n + N, n, · s a a b D 
v = N n , s a a 
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the crysta l lographic orientation of the surface. Table Α-I l is ts values 
of N and N for var ious crysta l lographic planes of the BCC, CPH and a D 
FCC s t ruc tu res . 

In summary , ν can be computed from known proper t ies of meta l -

through the procedure descr ibed above. Computed values of ν and 

tabulated values of r can then be used in Eq. A-2 to calculate bare 
m 

work functions. 
Resu l t s . Equation A-2 has been used to compute bare work 

functions for a large number of meta l surfaces . The values of metal l ic 

va lences , atomic radi i , and in tera tomic d is tances , used in the calcula

t ions , a r e given in Table A-2. 

The re su l t s for tungsten, molybdenum, tantalum and rhenium 

a re presented in Tables A-3 through A-6, respect ively. These tables 

a lso contain exper imental values derived from thermionic emiss ion 

data. It is seen that the predicted work functions a re in very good 

agreement with the exper imental values. 

Ba re work functions of individual planes have not yet been 

measu red for most meta l s . Pred ic ted values for a number of me ta l -

of in te res t a re presented in Table A-7 . 

A significant implication of Eq. A-2 is that the bare work function 

of a meta l surface is determined by three factors: (a) the number of 

ligands possessed by an atom on the surface; (b) the in tera tomic d i s 

tances between that atom and its ligands; and (c) the metal l ic valence. 

As indicated by the r e s u l t s , a surface exhibits a high ba re work function 

when the number of ligands and the metal l ic valence a r e l a rge , and the 

interatomic distances are small. 



T a b l e A - 2 

P r o p e r t i e s of A t o m s in the Bulk 
8,29 

T a b l e A - l 

L i g a n d s of Sur face A t o m s 

N u m b e r of N e i g h b o r s 

P l a n e 

110 

112 

100 

111 

116 

111 

100 

110 

0001 

1010 

N e a r e s t ; 

BCC 

6 

5 

4 

4 

4 

F C C 

9 

8 

7 

C P H ( c / a < l . 

3 

4 

, N 
a 

633) 

Nex t -

N e a r e s t , N 

4 

3 

5 

3 

3 

6 

4 

E l e m e n t 

W 

Mo 

Ta 

V 

Li 

I r 

P t 

Ni 

Au 

Cu 

Th 

Re 

Os 

Z r 

Ti 

I n t e r a t o m i c 

D i s t a n c e s 
o 

to N e i g h b o r s (A) 

M e t a l l i c 

V a l e n c e , 

V 

m 

6 

6 

5 

5 

1 

6 

6 

6 

5. 56 

5. 56 

4 

6 

6 

4 

4 

A t o m i c 

R a d i u s , 

m 

1. 35 

1.45 

1.45 

1.35 

1.45 

F C C 

1. 35 

1.35 

1. 35 

1. 35 

1. 35 

1. 80 

CPH 

1. 35 -

1. 30 

1. 55 

1.40 

N e a r e s t , 

R 
a 

BCC 

2. 74 

2. 72 

2. 86 

2. 62 

3. 04 

2. 71 

2. 78 

2 . 4 9 

2. 88 

2. 56 

3. 60 

2. 74 

2. 68 

.3. 18 

2. 90 

Next 

N e a r e s t , 

R b 

3 . 16 

3 . 15 

3 . 31 

3. 02 

3 . 50 

3. 83 

3. 93 

3. 52 

4 . 0 7 

3 . 62 

5. 10 

2. 76 

2. 74 

3 . 23 

2. 95 

to 
* > ■ 

co 
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P l a n e 

110 

112 

100 

111 

116 

T a b l e A  3 

B a r e Work F u n c t i o n s of T u n g s t e n 

T h e o r y 

5. 50 

4. 94 

4. 66 

4 . 4 7 

4 . 4 7 

W o r k F u n c t i o n , φ (ev) 

r ™30 
5. 29 

4. 65 

4 . 52 

4. 38 

4. 29 

E x p e r i m e n t 

5 . 3 5 3 1 

4. 80 

4. 60 

4 . 4 0 

4 . 3 2 

5 .40 

4 . 80 

4 . 55 

4 . 4 2 

32 

T a b l e A  4 

B a r e Work F u n c t i o n s of Mo l ybdenum 

P l a n e 
W o r k F u n c t i o n , φ (ev) 

110 

112 

100 

111 

116 

T h e o r y 

5. 23 

4. 71 

4 . 4 4 

4 . 27 

4. 27 

r Λ Λ31 
5. 00 

4. 55 

4 . 4 0 

4 . 10 

4 . 0 0 

E x p e r i m e n t 

■ , Λ 3 3 
5. 10 

4 . 4 0 

4 . 15 

4 . 9 0 

4 . 3 5 

4 . 18 

34 

T a b l e A  5 

B a r e W o r k F u n c t i o n s of T a n t a l u m 

P l a n e 

110 

112 

100 

111 

116 

Work Function, 

Theory 

4. 75 

4.31 

4. 08 

3. 94 

3. 94 

φ(βν) 

Exper iment 

4 . 8 0 3 1 

4. 3 4 .4 

4. 15 

4 .00 

3.90 
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T a b l e A - 6 

B a r e W o r k F u n c t i o n s of R h e n i u m 

P l a n e 

00^1 
1010 

W o r k F u n c t i o n , φ[ev) 

T h e o r y 

5. 53 
5 .20 

E x p e r i m e n t 
.35 

5. 
5. 

59" 
15 

T a b l e A - 7 

P r e d i c t e d B a r e W o r k F u n c t i o n s 

P l a n e 

E l e m e n t 

V 
Li 

I r 
P t 
Ni 
Au 
Cu 
Th 

Os 
Z r 
T i 

110 

4. 97 
2. 78 

4. 84 
4. 84 
4. 84 
4. 65 
4. 65 
3.38 

for Various 

112 

4. 50 
2. 66 

Metal Surfaces 

100 
BCC 

4. 
2. 

FCC 
5. 
5. 
5. 
4. 
4. 
3. 

CPH 

28 
61 

20 
20 
20 
99 
99 
57 

111 

4. 11 
2. 58 

5. 56 
5. 56 
5. 56 
5. 32 
5. 32 
3. 75 

0001 

5. 59 
4. 04 
4. 29 

1010 

5. 34 
3. 89 
4. 13 
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QUANTUM THERMODYNAMIC MEANING OF 
ELECTRONEGATIVITY AND WORK FUNCTION1" 

by 
Elias P. Gyftopoulos and George N. Hatsopoulos 

Thermo Elec t ron Corporat ion 
Waltham, Massachuset ts (USA) 

ABSTRACT 

The purpose of this paper is to dijscuss the re la t ion between surface 

orbi tal electronegativi ty and work function, both from the standpoint of 

thermodynamics and that of quantum mechanics . 

F i r s t , it is shown that the e lectronic s t ruc ture of c rys t a l s can be 

descr ibed by means of spin orbi ta is which a r e localized around individual 

lat t ice s i t es . Second, electronegativi ty is re la ted to the chemical 

potential of an e lect ron in a spin-orbi ta l . Third , it is shown that the work 

function of a uniform surface equals the neutra l orbital electronegativi ty 

of a spin-orbi ta l localized around a surface atom. 
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INTRODUCTION 
1-3 In previous publications by Steiner and Gyftopoulos, emiss ion 

phenomena, occurr ing at meta l l ic sur faces , a r e analyzed in t e r m s of 

surface a toms and their orbi tal electronegativi ty. For example, in 

reference 1 the view is advanced that e lec t rons , emitted thermionical ly 

from a pure uniform surface of a c rys t a l , originate from a " valence 

orbital" of an " atom on the surface. " It is assumed that the shape, the 

ionization energy, the e lect ron affinity, and the excitation energies of this 

orbital a re prec ise ly defined, although not necessa r i ly spectroscopical ly 

observable , and that they a r e determined by the many-body interact ions of 

the c rys ta l . On the bas i s of this p ic tu re , it is concluded that the work 

function of the surface must equal the neutra l orbital electronegativity of 

the valence orbital of the surface atom. 

This way of thinking about a c rys ta l and i ts surface r a i s e s two questions. 

The f i rs t r e la tes to the validity of viewing the electronic s t ruc ture of a 

c rys ta l in t e r m s of orbi tais which a re associa ted with individual latt ice 

s i t e s , such as a valence orbital of a surface atom. It is cus tomary to 

think of the e lec t rons as belonging to the c rys t a l as a whole and, therefore , 

it is not obvious that e lec t rons can be ass igned to, localized around, indivi

dual lat t ice s i tes . 

The second is a relat ively old question. It r e fe r s to the meaning of 

electronegativi ty. This quantity has been found useful in many chemical 

studies and yet it has not been given a r igorous definition. 

The purpose of the p resen t communication is to d iscuss the preceding 

two quest ions, in the context of the one-e lec t ron approximation for the 

e lectronic s t ruc ture of many-e lec t ron sys tems . It is shown that the picture 

of localized orbi tais is valid, and that electronegativity equals the negative 

of the chemical potential of an e lect ron in an orbi tal . 
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The paper is organized as follows. F i r s t , the procedure for the 

derivat ion of the localized orbi ta is is d iscussed . These orbi tais a r e 

shown to provide a descr ipt ion of the e lect ronic s t ruc ture of c rys t a l s 

which is ent i re ly equivalent to the well known quantum-mechanical 

p ic ture of e lec t rons in me ta l s . Second, the work of the authors on the 
4 

identification of electronegativi ty with the chemical potential is 

summar ized . Third , it is shown that the work function of a pure uniform 

surface equals the orbi tal e lectronegativi ty of a surface atom. 

LOCALIZED SPIN-ORBITALS FOR CRYSTAL LATTICES 

The equivalence between the descr ip t ions of the e lect ronic s t ruc ture 

of c rys t a l s by means of ei ther nonlocalized, band s t ruc tu re theory, or 

localized spin-orbi ta ls is bes t understood through a br ief review of p r o 

cedures employed for the analysis of any N-e lec t ron sys tem. 

Quantum-mechanical ly, the analysis of the energy e igensta tes of 

the e lect ronic s t ruc ture of N-e lec t ron sys tems is very difficult. To 

avoid the difficulty, the e lec t rons a r e t r ea ted as an ideal substance. In 

other words , the N-e lec t ron Hamiltonian operator is reduced to a sum 

of N separable one-e lec t ron Hamiltonian ope ra to r s . Various methods 

a r e used for the reduction. Differences between methods a r i s e from the 

degree to which exchange and cor re la t ion effects a r e included in the 

one-e lec t ron potential energy. In this r ega rd , all methods a r e approxi 

mate and not al l methods a r e equally accura te . 

A given one-e lec t ron Hamiltonian opera tor defines an energy eigen

value problem. The eigenfunctions and eigenvalues of this opera tor can 

be more readi ly found than those of the complete N-e l ec t ron opera tor . 

Each eigenfunction, one-e lec t ron orbi ta l , of a sys tem with m o r e than 

one nucleus , is delocalized throughout the sys tem and is given the same 

in terpre ta t ion a s , say, the eigenfunctions of the hydrogen atom. For 

example, the orbi tal can accommodate at mos t two e lec t rons with opposite 

spins . The negative of the eigenvalue equals approximately the energy 

requ i red to ex t rac t an e lec t ron from the orbi ta l , and it r e p r e s e n t s an 
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ion iza t ion e n e r g y of the s y s t e m . When the o r b i t a l i s occup ied by an 

e l e c t r o n with a g iven sp in , it i s c a l l e d a s p i n - o r b i t a l . In m a n y a p p l i c a 

t i o n s , a d i f fe ren t o r b i t a l i s u s e d for e a c h spin . In o the r w o r d s , e a c h 

s p i n - o r b i t a l h a s i t s own s p a t i a l d e p e n d e n c e . 

. By v i r t u e of the i dea l s u b s t a n c e a s s u m p t i o n , the e igenfunct ion ψ , 

for a g iven s t a t e of the s y s t e m a s a w h o l e , should be g iven by the p r o d u c t 

of the occup ied s p i n - o r b i t a l s . T h i s , h o w e v e r , i s not c o n s i s t e n t wi th the 
5 

s y m m e t r y r u l e s of quan tum m e c h a n i c s . F o r t h i s r e a s o n ψ i s r e p r e s e n t e d 

by an a n t i s y m m e t r i c , d e t e r m i n a n t a l funct ion of s p i n - o r b i t a l s , a S l a t e r 

d e t e r m i n a n t . The d e t e r m i n a n t i s g iven by the r e l a t i o n 

^ " ^ T 7 " 2 

U1 (V U2 (V 
U l ( q 2 ) U 2 ( q 2 } 

U l ( q N ) U 2 ( q N } 

U N { q l } 

U N ( q 2 ) 

U N ( q N ) 

(1) 

w h e r e q. r e p r e s e n t s the c o o r d i n a t e s and sp in of the j - t h e l e c t r o n , u. i s 

the i - t h o r b i t a l , and u.(q. ) i s the i - t h s p i n - o r b i t a l occup ied by the j - t h 

e l e c t r o n . 

In g e n e r a l , it i s found tha t o n e - e l e c t r o n e n e r g i e s E . , e i g e n v a l u e s 

E . , a r e in good a g r e e m e n t wi th e x p e r i m e n t a l l y o b s e r v e d ion i za t ion 

e n e r g i e s of the s y s t e m ( a t o m , m o l e c u l e , or c r y s t a l ) . H o w e v e r , the s u m 

of the E . , the e i g e n v a l u e of ψ with r e s p e c t to the s u m of the Ν o n e - e l e c t r o n 

o p e r a t o r s , i s not in good a g r e e m e n t wi th the t o t a l e n e r g y of the s y s t e m , 

n a m e l y the e n e r g y which would be d e r i v e d f r o m the e x a c t ψ and the exac t 

N - e l e c t r o n o p e r a t o r . N e v e r t h e l e s s , ψ in the f o r m of Eq. 1 i s often 

c o n s i d e r e d a s an a d e q u a t e a p p r o x i m a t i o n for the e x a c t ψ . 

F o r c r y s t a l s , the o n e - e l e c t r o n r e s u l t s c a n a l s o be d e s c r i b e d in 

t e r m s of l o c a l i z e d o r b i t a i s by m e a n s of the following p r o c e d u r e . Con

s i d e r a c r y s t a l bounded by a u n i f o r m s u r f a c e . Suppose tha t a r e l a t i v e l y 



 1253 

accura te onee lec t ron equation has been es tabl ished, say, by the method 
7 

suggested by Slater . The onee lec t ron eigenvalue problem may be 

wri t ten in the form 

(H + H.) u = E u , (2) 
o 1 

where H is the onee lec t ron , spatially per iodic , Hamiltonian operator 

that would be derived if the solid were imbedded in an infinite la t t ice , and 

H1 is the onee lec t ron operator which accounts for the per turbat ion in t ro 

duced by the uniform surface. The spatial pa r t of the eigenfunctions of 
Q 

Eq. 2 can be expanded into a s e r i e s of Wannier functions a (r  R ) 

associa ted with the operator H . Thus the i  th eigenfunction is given by 

9 ° 
the relat ion 

u.(r) = Σ Σ U. (R ) a (r  R ), (3) 
ι — s n in —s n — —s 

where U. (R ) is a constant, and the sums a re over all lat t ice s i tes R 
in— s' —s 

and over all bands n. Mathematical ly , Eq. 3 is exact if an infinite number 

* Recal l that the Block functions b (k, r) of the nth band of the infinite 
η — — 

crys ta l a r e given by the" re la t ion 

H b (k, r) = E (k)b (k, r ) , 
o n — — n — n — — 

and that the Wannier functions a (r  R ) of the n th band a r e determined 
η — —s 

by the express ion 

 1 / 2 
a (r  R ) = NT '■ Σ b (k, r) exp (  ik · R ), 

η — —s L k η — —s 

where R is the sth site of the la t t ice , and NT is the number of lat t ice 
—s L 

s i tes . The Wannier functions form a complete , or thonormal set over all 

bands and over all latt ice s i t es , namely 

ί a* (r - R.) a (r - R.) dr = δ δ..· m — —j η — ι — mn ij 

Moreover , each Wannier function a (r - R ) is localized around, associa ted 
η — —s 

with, the s-th si te. 
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of bands is included in the expansion. As in all p rac t ica l p rob lems , 

however, through a judicious choice of localized, Wannier- l ike functions 

w ( r , R ) (for example, a suitable l inear combination of Wannier functions n s 
at the site R ), the summation over n may be reduced to a number equal 

to the number of valence e lec t rons per atom, without grea t loss of accuracy. 

Thus, if different orbi tais a re used for different spins , a spin-orbi ta l u.(q.) 

may be adequately r ep resen ted by the relat ion 

ν u.(q.) = Σ Σ c. (R )w (q., R ), i j s n in —s n j —s (4) 

where v is the number of valence e lec t rons per atom, and c (R ) is a 
in —s 

constant. 

Without loss of general i ty , suppose the c rys ta l is that of a monovalent 

me ta l , v equals unity and the number N of latt ice si tes equals the number 

N of valence e lec t rons . For this c rys ta l , substitution of Eq. 4 into the 

determinenta l re la t ion, Eq. 1, for the overal l eigenfunction ψ yields 

ψ = Ψ Ν 
( N I ) πτ 

i C l ( R s ) w ( q 2 , R , 

i c 1 ( R s ) w ( q N , R s ) 

i c N ( R s ) w ( q i , R s ) 

S ' N ^ ^ V ^ 

, ( 5 ) 

where the subscr ipt n equals unity has been omitted from the w' s and the 

c' s. Note that each column of the determinant in Eq. 5 is a l inear com

bination of the Ν Wannier- l ike functions associa ted with the Ν si tes of the 

c rys ta l . It follows from the ru les for the product of two de terminants that 

Eq. 5 can be wri t ten in the form 
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ψ = ΨΝ 

w(q2 ,R1) 

(Ν!) î / 2 

wtqj^.Rj). 

w í q ^ R ^ l 

w 

^ N ' Í N * 

CjtRj) c2(R2) . . ο Ν ( ^ ) 

c l ( R 2 ) c2(R2) . . cN(R2) 

' ^ c 2 ( _ V ' ·
 C

N
(
*N,> 

(6) 

In the form of Eq. 6, the eigenfunction ψ for the whole c rys ta l admits 

the localized spinorbi ta l in te rpre ta t ion which is sought. Indeed, note that 

each Wannier l ike function w(q,R ) is a spinorbi ta l assoc ia ted with, 

localized around, lat t ice site R (the set of constants C.(R ), for i= 1, 2, N, 

—s ι —s 
is a lso assoc ia ted with the same site R ). If the Ν e lec t rons of the c rys t a l 

—s 

a re dis t r ibuted among the Ν spinorbi ta ls w(q,R ), an an t i symmet r i c de t e r 

minental function, Eq. 6, can be formed. This function is completely 

equivalent to that obtained from the delocalized orb i ta i s . In other words , 

the ψ ' s const ructed from ei ther the local ized or the delocalized sp inorbi ta l s 

a r e identical . 

It should be noted that the local ized sp inorb i ta l s w(q,R ) a r e not energy 

eigenfunctions of the onee lec t ron equations. Only ψ , Eq. 6, is an approxi 

mate eigenfunction of the Hamiltonian opera tor for the whole c rys t a l . Neve r 

t he l e s s , each localized spinorbi ta l can be ass igned p rec i s e values for the 

ionization energy, e lec t ron affinity, and excitation energies of the e lec t ron 

ih the sp inorb i ta l , in a manner which is consis tent with the usual definitions 

of these quanti t ies . The values of the ionization energy, e lec t ron affinity, 

e tc . , of a localized spinorbi ta l a r e not equal to the corresponding values 

of the delocalized sp in orb i ta l s . This point can be seen from the definition 

of the ionization energy given below. . · 

Suppose that ψ , Eq. 6, r e p r e s e n t s the ground state of the c rys ta l . 

The ionization energy of a spinorbi ta l local ized around lat t ice site R is 

defined as the difference between the energy corresponding to an eigen

function ψ and that of the ground s ta te . The eigenfunction ψ is given 

by Eq. 6 except that the sth column and the sth row of the f i rs t and the 
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1/2 second determinants a re replaced by ze ros , respect ively , and (N! ) 
1/2 is replaced by [ ( N - l ) l ] . The Hamiltonian operator for ψ is that 

corresponding to Ν lattice si tes and N - l valence e lec t rons . This defini

tion of the ionization energy a s sumes that removal of a localized spin-

orbital from the system does not al ter the functional dependence of the 

other N - l localized sp in-orb i ta l s . Such an assumption is used in 

pract ica l ly all approaches to the analysis of the electronic s t ruc ture of 

solids (see , for example, Koopmans' theorem for the one-elect ron 

H a r t r e e - F o c k equations ). 

The other energies of a localized spin-orbi ta l can be defined in a 

manner analogous to that used for the ionization energy. 

ELECTRONEGATIVITY AND CHEMICAL POTENTIAL 
4 In this section, the work of the authors on the identification of 

electronegativity with the negative of the chemical potential of an electron 

in an atom is summar ized . 

In reference 4, an ensemble of identical , one atom sys tems is con

s idered. Each atom is thought of as consisting of two components , 

e lec t rons and ions. The sys tems a re in thermodynamic equil ibrium with 

a r e s e r v o i r of e lec t rons and tons at a small t empera tu re T (degrees 

Kelvin). The components can flow back and forth between the sys tems 

and the r e s e r v o i r . The energy eigenstates of the atoms a r e assumed to 
12 be derivable from the one-elect ron Har t r ee -Fock equations. In other 

words , the e lec t rons a re viewed in an ideal substance. 
13 According to the theory of s ta t is t ics of ensembles , the physical 

situation descr ibed above obeys the ru les of grand canonical ensembles . 

Use of these ru les yields. the following important conclusions. 

Strict ly speaking, the electronegativi ty has been identified with the 
e lect rochemical potential. For the reference level of energy selected 
in this paper , however, the values of the chemical and the e l ec t ro 
chemical potential a re identical. 
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(a) Stat is t ical ly, the energy E of an one-atom sys tem can be expressed 

as a continuous function E(q) of a continuous var iable q which r e p r e s e n t s a 

s ta t is t ica l m e a s u r e of the charge in a valence spin-orbi ta l . The range of 

the value of the charge q is from minus one electronic charge (-e), the 

orbital is doubly occupied, through zero , the orbital is occupied by one 

e lect ron, to plus one electronic charge (+e), the orbital is ionized. 

(b) The chemical potential μ of a valence e lect ron is given by the 

re la t ion 

μ = - (9 E (q ) /9 q) at constant entropy. (7) 

In the l imit of very smal l t e m p e r a t u r e s , this potential is found to have the 

following exact values 

M = - (I + A ) / 2 e for q = 0 (neutral atom), 
' c 

η - οο for q = e (positive ion), 
, " c 

μ = - co for q = -e (negative ion), 

c 
and 

^c 

where I and A a re the f i rs t ionization energy and the e lect ron affinity of 

the a tom, respect ively . The quantities I and A can a lso be r e f e r r e d to 

the valence e lec t ron spin-orbi ta l . 

(c) For fractional values q and for smal l Τ, μ is a function of both 

q and T. 

(d) By vir tue of (b) above, it is found that for smal l t e m p e r a t u r e s 

(in the l imit of zero tempera ture ) an excellent approximation for E(q) is 

given by the re la t ion 

e 

when the ze ro energy level is taken to be at the energy of the neut ra l 

atom (q equals zero) . Note that this approximation yields exact values 

for E(q) and μ for q - - e , ü, e. 

(e) The orbital electronegativi ty x(q) of a valence e lec t ron is defined as 

x(q) = ( 9 E(q) / 9 q) at constant entropy = 

This is the f i rs t t ime that a r igorous definition of x(q) is given. 
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(f) The value of the neutral orbital electronegativity x(0) obtained 

from Eq. 8 is identical to the value of electronegativity suggested by 
14 

Mulliken . It should be noted however, that Mulliken' s value is con
s idered to be approximate. Here , the thermodynamic analysis yields 
that, in the l imit of small t e m p e r a t u r e s , x(0) has the exact value given 
by the relat ion 

*<0>»I±A (9) 

(g) The definition of the orbital electronegativity given above can 

be easily extended to orbi tais in sys tems other than a toms. Such an ex

tension is d iscussed in the next section. 

WORK FUNCTION AND ELECTRONEGATIVITY 

Without loss of general i ty , consider a c rys ta l of a monovalent meta l , 

bounded by a uniform surface. Suppose the analysis of the electronic 

s t ruc ture of this meta l has been c a r r i e d out with respec t to a zero energy 

level taken at the points just outside the surface. Moreover , suppose that 

both the delocalized and the localized spin-orbi ta ls have been established, 

in accordance with the procedure d iscussed in Section 2. 

Thermo'dynamically, for a sys tem of N-e l ec t rons , any set of N 

spin-orbi ta ls which desc r ibes the system may be thought of as r e p r e s e n t 

ing N degrees of freedom. When these N degrees of freedom are t rea ted 

s ta t is t ical ly , the following resu l t s can be obtained. 

(a) Given the N delocalized sp in-orb i ta l s , one-elect ron sp in-orb i ta l s , 

the negative of the chemical potential of the surface , with respec t to the 

points just outside the surface, equals the work function. This is the 

well-known thermodynamic definition of work function. 

(b) Given the N localized sp in-orb i ta l s , Wannier- l ike functions, 

suppose that all degrees of freedom are frozen except that corresponding 

to the spin-orbi ta l localized around the surface site R . Under this con-
—s 

dition, the surface spin-orbi ta l can be t rea ted s tat is t ical ly by the same 

procedure as that used for a toms in Section 3. In other words , this 
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orbital may be thought of as a surface atom. Thus, a chemical potential 

for the electron in the orbital can be defined. For example, in the limit 

of small t e m p é r a t u r e s , the value of the chemical potential of the localized 

spm-orb i ta l equals 
- II + A l / 2 e , " s s ' 

where I and A a re the ionization energy and the e lectron affinity of the s s 
orbital as defined in Section 2. This value equals the negative of the 

neut ra l orbital electronegativi ty of the spm-orb i t a l , Eq. 9-

(c) F r o m thermodynamic equil ibrium cons idera t ions , it can be shown 

that, the chemical potential of the localized spm-orb i ta l as defined in (b) 

must be equal to the chemical potential of the surface , as defined in (a). 

(d) By vir tue of (a), (b), and (c), it follows that the work function 

equals the neutral orbital electronegativi ty of a spm-orb i ta l localized 

around a surface atom. 

In conclusion: (a) the charac te r iza t ion of the electronic s t ruc ture 

of meta l s by localized spin-orbi ta ls is equivalent to the ordinary picture 

of e lec t rons in me ta l s ; (b) electronegativi ty can be given a r igorous 

thermodynamic definition; and (c) the neut ra l orbital e lectronegativi ty of 

a surface sp in-orbi ta l , a tom, equals the work function of the surface. 

The proof of this s tatement is analogous to that used in the study of 
chemical reac t ions with or without a catalyst . 
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DISCUSSION 

-speaker of the invited paper and paper K - l : E . P . GYFTOPOULOS. 

RASOR (USA); I would like to comment on the invited paper , which is a 
survey of two alterniate approaches , from the standpoint of someone p r e 
judiced.toward the other viewpoint. I think that Prof. GYFTOPOULOS' 
s ta tements were enlightening, and I do not want to diminish what he has 
said. However, I would like to modify his unqualified s ta tement that the 
RASOR-WARNER theory a s s u m e s two dist inct s t a t e s : an atom (a neu t ra l 
par t ic le) and an ion (a fully charged par t ic le ) . An unqualified identification 
of these states as atoms and ions in thè same sense as they exist in a gas 
is an oversimplif icat ion and mis leading. In real i ty they should be .cons ider 
ed as different charge s ta tes , conveniently identified by the names "a tom" 
and "ion". F u r t h e r m o r e , it is misleading to imply that this approach is 
confined to only two such charge s t a t e s . The effect of multiple s ta tes is 
considered in our original paper , but the detailed compar ison with data is 
made on the basis of only two s ta tes since the computation is much s imple r , 
and indeed is adequate to co r re la te the exper imenta l r e s u l t s . The impor 
tance of recognizing such charge s ta tes is that it then is possible to com
pute the t ime-ave rage charge of the layer of adsorbed pa r t i c l e s by s t a t i s 
t ical mechanics , and to thereaf ter apply the famil iar phys ica l -e l ec t ron ic -
thermodynamic formal i sm developed by LANGMUIR. A r igorous analyt ical 
descr ipt ion of the charge s ta tes by modern quantum-mechanic al methods 
is possible in the same sense as is the solution of other p roblems in solid 
state physics , and steps in this di rect ion have been taken by GADZ.UK and 

• othe r s. 

Therefore' ,"it is par t icu la r ly misleading to imply that the GYFTOPOULOS-
LEVINE-STEINER approach, based on the molecular-bond and e lec t ronega
tivity t radi t ion of PAULING, is any m o r e f irmly based in thermodynamics 
or quantum theory than is the RASOR-WARNER approach, based on the 
phys ica l -e lec t ronic t radi t ion of LANGMUIR, SLATER and BARDEEN. In 
fact the opposite can be argued since the PAULING phys ica l -chemis t ry 
tradition has been quite empi r i ca l in the past , whereas the LANGMUIR-
SLATER-BARDEEN t radi t ion has been based almost entirely on quantum«-
statistical-me chanic s. 
At their present primitive state of development, both the RASOR-WARNER 
and the GYFTOPOULOS approaches must rely heavily on approximations, 
since the exact solutions required are very complex and presently poorly 
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def ined . As they a r e both re f ined , they p r o b a b l y wil l a p p r o a c h each o the r 

in f o r m a l i s m . Howeve r , I p e r s o n a l l y be l i eve tha t the f inal d e s c r i p t i o n , 

say 20 y e a r s f r o m now, wil l m o r e c l o s e l y r e s e m b l e the p h y s i c a l  e l e c t r o n i c 

t r a d i t i o n of LANGMUIRBARDEEN than the p h y s i c a l  c h e m i s t r y t r a d i t i o n of 

PAULING. In fact , in r e m o v i n g s o m e of the e m p i r i c a l n a t u r e of the PAULING 

a p p r o a c h , Prof . G Y F T O P O U L O S h a s now r e  d e f i n e d e l e c t r o n e g a t i v i t y to be 

equ iva l en t to w o r k funct ion. C e r t a i n l y , I no l o n g e r can be c r i t i c a l of the e m 

p i r i c a l n a t u r e of e l e c t r o n e g a t i v i t y s ince it would be l ike impugning the a n 

c e s t o r y of m y own m o t h e r . 

I have felt for s o m e t i m e now tha t the RASORWARNER a p p r o a c h should have 

i t s g r e a t e s t u s e and va l id i ty in the r e g i o n of 0 to 3 /4 s u r f a c e c o v e r a g e by 

c e s i u m , and the G Y F T O P O U L O S  L E V I N E a p p r o a c h should be va l id only n e a r 

full c o v e r a g e , at l e a s t for c l ean s u r f a c e s . Unfor tuna te ly , the full c o v e r a g e 

r e g i o n i s s igni f icant only for the c o l l e c t o r of t h e r m i o n i c c o n v e r t e r s , and the 

c o l l e c t o r i s u s u a l l y not c l ean , so tha t p r o b a b l y n e i t h e r t h e o r y d e s c r i b e s the 

s i t ua t i on on the c o l l e c t o r . 

WARNER (USA): I be l i eve in the f i r s t p a r t of you r t a l k you s t a t ed tha t t h e r e 

w a s no fundamen ta l way to d i s t i n g u i s h be tween a d a t o m s and ad ions on the 

s u r f a c e . I would l ike to d i s a g r e e wi th t h i s and t h r o w the q u e s t i o n into a dif

f e r e n t l igh t . I th ink tha t in a m e t a l you have f r ee e l e c t r o n s and you m a y a l s o 

h a v e , with c e s i u m on the s u r f a c e , e l e c t r o n s which a r e l o c a l i z e d . I th ink wi th 

e x p e r i m e n t s , e . g . l ike MUZ is doing wi th the p h o t o  e l e c t r i c effect , you could 

p r o b e the s u r f a c e to find what k inds of e l e c t r o n s e x i s t t h e r e . 

T h e r e f o r e , I th ink th i s fundamen ta l q u e s t i o n can be a n s w e r e d . I a l s o be l i eve 

tha t if you took t h e s e WANNIERfunc t ions , in a r i g o r o u s c a l c u l a t i o n they 

would l ead to j u s t t h o s e e l e c t r o n s which you could i n t e r p r e t u n d e r the high 

c o v e r a g e cond i t ions a s a d a t o m s on the s u r f a c e . Would you c o m m e n t on t h a t ? 

G Y F T O P O U L O S (USA): Y e s , I d i s a g r e e wi th what you s a i d . L e t m e r e v i e w 

b r i e f ly the p i c t u r e u s e d by RASOR and WARNER. The a d s ó r b a t e p a r t i c l e s 

on the s u r f a c e a r e v iewed a s ions of ionic r a d i u s r . and a s n e u t r a l a t o m s . 

ι 

T h e s e two t y p e s of p a r t i c l e s a r e r e g a r d e d a s s t a t e s . 

Now, le t m e r a i s e the q u e s t i o n : "What do we m e a n when we say tha t we have 

an ion ized s t a t e on the s u r f a c e ? " 

What we r e a l l y m e a n i s tha t if we d r a w a s p h e r e wi th a r a d i u s of about the 

ionic r a d i u s t hen we wi l l find i n s i d e the s p h e r e a ne t p o s i t i v e c h a r g e equa l 

to one e l e c t r o n i c c h a r g e . Now a l l of you r e a l i z e t ha t t h e r e i s nothing def in i te 
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about the ionic radius of any element in a compound. So let us examine how 
we might check this p ic ture exper imental ly . We might, for example, m e a 
sure the charge density around the nucleus of the adsórba te . Then we might 
draw different spheres (spheres of different radii) around the nucleus . It is 
c lear that depending on the s ize of the sphere that we draw, the net charge 
in the vicinity of a pa r t i cu la r si te on the surface may correspond to s o m e 
thing which appears to be doubly charged, t r ip ly charged, neutra l , negat ive
ly ionized, or whatever we p l ease . It is that kind of conceptual difficulty, 
that forbids the es tabl ishment of cer ta in postulates in e i ther your model or 
mine . Now, let me review our model , les t you feel that I have these com
ments only for the posit ive ion. Our p ic ture is that we put the ces ium p a r 
t ic les on the surface and then we examine the var ious in te rac t ions . The in 
te rac t ions that occur on the surface consist of an overlap charge between 
adsórbate pa r t i c l e s , overlap charge between adsórbate and subs t ra te p a r 
t i c l e s , and a charge t r ans fe r between subs t ra te and adsórbate p a r t i c l e s . 
This p ic ture leads to the concept of par t ia l ly ionic, and par t ia l ly covalent 
bonds. This is what you might call an anthropomorphic way of descr ibing 
a very difficult situation. There is no definite fundamental way, by means 
of which one could de-couple the in teract ions and descr ibe them by overlap 
charges and charge t r ans fe r . The two types of charges a r e very tightly 
knit together . This is not t rue only for su r faces . Any book on molecular 
chemis t ry , e. g. COULSON on VALENCE d i scusses this to a la rge extent. 
The crux of the ma t t e r l ies in the fact that we cannot observe spec t roscop ic 
ally, or by some other means the assumptions inherent in the descr ipt ion 
of binding as par t ia l ly ionic and par t ia l ly covalent. Another way of d e s c r i b 
ing the difficulty is in t e r m s of quantum-mechanics . Let me use a simple 
molecular p ic ture because then we have got fewer things to talk about. The 
s imples t molenule I could think of is the hydrogen molecule . Now, in the 
hydrogen molecule , even in the context of the one e lect ron approximation, 
we have molecular o rb i ta i s , namely the e lec t rons belong to both ion cores 
of the molecule . On the other hand, no calculation is made di rect ly in t e r m s 
of molecular o rb i ta i s . These orbi ta is a r e always approximated by a l inear 
combination of atomic o rb i t a i s . The concepts of overlap charge and charge 
t rans fe r emerge only when the l inear combination is in a special form. 

MUZ (Germany): I would like to point out that the p ic ture of an isolated ion 
core on the meta l surface and the pic ture of overlap bonds a r e both s impl i 
fied, because the e lect ron a tmosphere in front of the surface is neglected. 
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It seems to me , that the differences in the approach to adsorption by you and 
Dr . LEVINE and by Dr . RASOR and Dr . WARNER a re not fundamental. In 
the f i rs t model a space average is used, in the second approach a s ta t is t ica l 
t ime average of charge distr ibution is used. The difference concerns the 
way of performing the averaging. 

GYFTOPOULOS: I think that the discussion has got off a little bit on a t an
gent. My r e m a r k s were not concerned with the differences that you mentioned. 
I addressed myself to the following question: " Is it possible to perform an 
experiment which would lead to the conclusion that the adsórbate par t ic les 
on the surface look like positive ions or to the conclusion that the adsórbate 
par t ic les on the surface look like neutra l a t o m s ? " My answer to this question 
is no. 

HATSOPOULOS (USA): I would like to make just a brief comment that may 
be helpful in clarifying some of the discussion. There is no doublt that work 
function and e lec t ro -chemica l potential a r e thermodynamic averages over 
severa l s ta tes , and we all know that the number of s tates is very l a rge . 
The difference between RASOR and the electronegativity approach is th i s . 
In the case of RASOR, in order to conduct the averaging, he had to a s sume , 
in o rder to simplify his averaging procedure , two states and then he a v e r a 
ges over these two s ta tes . On the other hand the electronegativity approach, 
as you were shown thermodynamical ly, the electronegativity being a s s o c i a 
ted with the e lec t ro -chemica l potential, implies that electronegativity has 
built into it a thermodynamic average of all possible s ta tes ; and there a re 
two paths to follow from there on, once you have real ized th is . 
Ei ther you conduct the averaging which is a numerical ly very difficult p r o 
cess to conduct over all possible allowed states on the surface or you take 
an empir ica l equation that re la tes the electronegativity, which is a s t a t i s 
t ical average as we showed, to some other quanti t ies . This is exactly what 
GYFTOPOULOS and LEVINE have done. Therefore , I would like to say that 
drawing a picture for the electronegativity and implying that this is one 
state is incor rec t . Electronegativi ty implies by definition a s ta t is t ical a v e 
rage over all the possible s ta tes . 

RASOR: I think that it would be a good idea to make reference to some 
work that dwells on these p rob lems . One is some work that has been done 
by GADZUK in the USA. He made a detailed calculation at the surface. This 
add re s se s itself specifically to the problem whether or not you can descr ibe 
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a particle on the surface in terms of distinct states. The second reference 
I would like to make is to a paper at the end of this sess ion in which is shown 
some photo-electric evidence, emission evidence of the existence of such 
states. Now whether this particular data shows the existences or not, I 
don't think that is the important thing. The point i s that it is conceptually 
possible to do so. 
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A NEW INTERPRETATION OF THE THERMIONIC EMISSION FROM BARE 
AND COVERED METAL SURFACES 

J. Bohdansky 
Eura tom CCR, I spra (Varese) , Italy 

Abs t rac t 

Thermionic emiss ion is descr ibed as an activation p r o c e s s of surface 
a toms . The in terpre ta t ion is based on the model of localized e lec t ron o rb i 
ta is at the surface, which has been introduced most recent ly by D. Steiner 
and E . P . Gyftopoulos [ 1 ] . Following the i r concept it is concluded that 
e lec t rons can be emitted from atoms at and on the surface . A new formula 
for the emiss ion cu r ren t is indicated. Consequences for Cs -covered s u r 
faces a r e d iscussed in detai l and an es t imat ion for the min imum work function 
of cesiated surfaces is given. 

Introduction 

Most recent ly D. Steiner and E . P . Gyftopoulos |_ 1 j calculated work func
tion data of bare meta l sur faces , based on the view "that each extracted 
electron or iginates from a valence orbi tal of a surface a tom" . Thei r r e 
sults a r e in good agreement with measu red work function data, although 
they used the concept of electronegativi ty [ 2 j which has not been founded 
r igorously on basic pr inciples of quantum phys ics . However, this concept 
proved very useful in chemis t ry , and therefore thei r s ta tement about l o 
calized valence orbi ta is for surface a toms must be considered as a r e a l i s 
tic a l ternat ive to the free e lec t ron concept d iscussed so far. 

In this paper consequences a r e d iscussed for the emiss ion p roces s if the 
e lec t rons originate from localized valence orbi ta is at the surface . In a 
f irs t par t the thermionic emiss ion from bare surfaces is investigated and 
a special in terpreta t ion for the emiss ion p roces s is given. 

In a second par t thermionic emiss ion from cesiated surfaces is considered 
in more detai l . The existing in terpre ta t ions of the emiss ion data a r e com
pared regarding the new concept for e lec t ron emiss ion . 

A ra the r simple re la t ionfor the possible minimum workfunction of cesiated sur
faces is derived in the third pa r t of the paper as a resu l t of this d iscuss ion. 
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Thermionic emiss ion from bare surfaces 

If the emitted electrons originate from a localized valence orbi tal , the 
common descript ion of the emiss ion p rocess as an escape of free e lectrons 
ac ros s a potential b a r r i e r is not the only possible interpretat ion for the electron 
emiss ion. However, we can in terpre t the emiss ion as a t ransi t ion p rocess of a 
localized electron configuration in the solid s t ruc tu re . Such a t ransi t ion p rocess is 
normally descr ibed in solid state physics by the concept of activated states [ 3 ] . 
In this case the calculated electronegativity would appear as the activation energy 
for the emiss ion p roces s . Such an interpretat ion leads to a relation for the emission 
cur rent density j which corresponds completely to the relation for the eva
poration p rocess of surface a toms, j is given by the express ion 

j = en τ . e" " 'Ύ (1) 
J o o v ' 

w h e r e the s y m b o l s have the following m e a n i n g : 

e : c h a r g e of e l e c t r o n 

η : n u m b e r of s u r f a c e p a r t i c l e s p e r uni t a r e a 

1 : c h a r a c t e r i s t i c l a t t i c e f r equency 

0 ' : e l e c t r o n e g a t i v i t y , ref. L 1 J 

T : t e m p e r a t u r e ( e x p r e s s e d in un i t s of e n e r g y ) . 

T h i s f o r m u l a has to be c o m p a r e d with the R i c h a r d s o n f o r m u l a : 

j = A T 2 , e" ' / T <2> 

which i s n o r m a l l y d e r i v e d f rom p r i n c i p l e s of t h e r m o d y n a m i c s [ 4 ] . 

If the d e r i v a t i o n of f o r m u l a (2) is b a s e d only on t h e r m o d y n a m i c p r i n c i p l e s , 

the t e m p e r a t u r e d e p e n d e n c e of the " t r u e w o r k funct ion" ψ r e m a i n s undef ined. 

T h e r e f o r e , j can have any dependence on Τ in f o r m u l a (2). Th i s i s n ice ly 

c h a r a c t e r i z e d if we u s e a C a r n o t p r o c e s s to d e r i v e the R i c h a r d s o n equa t ion 

Γ 5 1 . We get f r om such a d e r i v a t i o n for the hea t of v a p o r i z a t i o n (per e l e c t r o n ) 

the r e l a t i o n 
Τ 

1(T) = 1 - I C(T»)d T ' + 5 k T (3) 

C(T) i s the t e m p e r a t u r e d e r i v a t i v e of the a v e r a g e e n e r g y l o s s of the sol id 

s y s t e m p e r a c t i v a t i o n p r o c e s s [ 6 J . One h a s to t ake for the i n t e g r a l in 

equa t ion (3) the a v e r a g e e n e r g y equa l to 2 kT to ge t an e x p r e s s i o n a n a l o g o u s 
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to equation (1) 

i  R Λ / Τ (4) 
j  Jb. e o 

To see whether the proposed p r o c e s s might be responsible for e lect ron 

emiss ion or not we have also to compare formula (1) with measured e m i s 

sion cur ren t data. F r o m the repor t of SteinerGyftopoulos [ 1 ] we know 

that the i r electronegativi ty  which is the activation energy for the emiss ion 

p roces s in our concept  is prac t ica l ly equal to the measu red work functions 

taken from a R icha rdson plot. 

It need not be mentioned that measu red thermionic emiss ion data plotted in 

a logari thmic j or J/T>2 p resenta t ion form a s traight line in both c a s e s . 

In other words , it cannot be decided from measu red data whether equation 

(1) or (2) is valid with a constant \ox respect ively ψ value. In addition both 

values inferred from the slope of the line should be prac t ica l ly equal due to 

the weak influence of the AT t e r m compared with the exponential function. 

Therefore the good agreement of measu red work function and calculated 

electronegativi ty is one support for the given in terpre ta t ion . Another may 

be found in the compar ison of the express ion en »ç /.j.2 with measu red A 

values . In table 1 such a compar ison for different me ta l s is given. The 

calculation of τ η is based on measu red lat t ice d is tances and c h a r a c t e r 
o o 

is t ic frequencies deduced from Debye t e m p e r a t u r e s |_ 7 j . Τ is taken as an 

average t empera tu re in the investigated region. This compar ison shows 

that the proposed emiss ion mechan ism is reasonable and measu red e m i s 

sion cur ren t densi t ies can be explained quantitatively by the d iscussed in

te rpre ta t ion of the emiss ion p r o c e s s . The la rge sca t t e r of measu red A va

lues as well as the fact that these values should be inferred from a p r e s e n 

tation in In j and not in In j / χ ^ does explain sufficiently well the differ

ence between measu red and calculated data. 

Before we d i scuss the conditions for Cs covered surfaces we may consider 

what happens to a subs t ra te atom at the surface. Substrate a toms a r e p r e 

sent a lso at bare surfaces especial ly at high t e m p e r a t u r e . Therefore such 

a discussion is by no means a hypothetic one. Also a toms at the surface 

have of course localized e lec t ron orbi ta is and therefore subs t ra te ( and 
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other) a toms at the surface cannot be excluded from the electron emiss ion 
p r o c e s s . A naive application of the concept of electronegativity would give 
different electronegativi t ies for surface atoms and atoms at the surface 
L 1 ] . However, from a simple cycle p rocess (fig. 1) (including the e m i s 
sion from one species and the r e v e r s e p rocess from the other) we have to 
conclude that the "emiss ion electronegat ivi ty" for surface a toms and atoms 
at the surface must be equal due to thermodynamic pr inc ip les . We have a 
s imi la r situation for surfaces of different orientation and analog to that 
case the difficulty can be overcome if we assume that atoms at the surface 
and surface a toms a r e at different e lec t r ica l potent ials . This potential 
difference causes an additional change in "emiss ion e lect ronegat iv i t ies" . 

A change in potential and therefore a change in electronegativity of surface 
a toms can equally be produced by an external influence as for instance by 
a dipole layer or by the e lec t r ic field of an electron (just outside the su r 
face). A detailed discussion of this influence shows that the c lass ica l ca l 
culations concerning the change in work function by a surface dipole layer 
or the creat ion of an image force by charged par t ic les just outside the s u r 
face a re valid a lso for the concept of localized electron orb i ta i s . Such a 
discussion would exceed the l imits of this paper and will be presented e l s e 
where [ 8 ] . 

Thermionic emiss ion from Cs covered surfaces 

In recent t imes two different explanations for the thermionic emiss ion from 
Cs covered surfaces have been given. Gyftopoulos and coworkers [ 9 , 10 ] 
applied the concept of electronegativi ty to Cs -a toms adsorbed at the surface 
in o rde r to calculate the change of the work function in dependence of C s -
coverage. Rasor and Warner [ 11 ] used a c lass ica l interpretat ion for this 
phenomena and explained the inc rease in thermionic emiss ion by the forma
tion of a dipole layer (created by Cs ions at the surface) . We mentioned 
a l ready that in principle the la t te r in terpreta t ion does not contradict the 
concept of the localized electron orbi ta is and therefore it seems reasonable 
to d iscuss both concepts in connection with the new interpreta t ion of the 
emiss ion p r o c e s s . In this case the e lect ron emiss ion from surface atoms 
and atoms at the surface must be considered. But as we pointed out in the 
f irs t section we have to imply that the "emiss ion electronegat ivi ty" is equal 
for a l l species involved in the emiss ion p r o c e s s . 
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The dipole layer concept can be regarded as a calculation for the var ia t ion 
of the electronegativi ty of subs t ra te surface a toms [11 ] whereas the ca l 
culations in r e f s . [ 9 ] [ 10 ] a r e re la ted in pr inciple to the e lec t ronega t i 
vity of adsorbed Cs a t o m s . Therefore in both concepts the same quantity 
is investigated as long as subs t ra te surface a toms take pa r t on the e m i s 
sion p r o c e s s . The emiss ion is suppressed if bonds between Cs a toms a r e 
formed. Of course this l imited range of validity for the dipole layer concept 
has not been d iscussed in the paper of R a s o r - W a r n e r because a different 
emiss ion p r o c e s s was considered. 

Having this in mind there is only one difference in both desc r ip t ions . 
Gyftopoulos and Levin a s sume only one state for the adsorbed Cs par t i c le 
at the surface , whereas Rasor and Warner differ between an adsorbed Cs 
atom and Cs ion. Pr inc ipal ly both assumpt ions a r e reasonable and in fact, 
if we include al l exited e lec t ron orb i ta i s , even m o r e than two s ta tes should 
be included into the considerat ion. The question is whether two orbi ta is of 
such different dipole moments and e lec t ron s t ruc tu re can exist having n e a r 
ly the same energy. The author bel ieves that this can be the case for Cs 
a toms due to two r ea sons : 

1. Cs has a low free atom ionization energy and therefore an "idealized 
ionization p r o c e s s at the su r face" (this means the ion is only kept by i ts 
image force at the surface [ 11 ] ) needs a smal l amount of (positive or 
negative) energy. 

2. The Cs iòns have a noble gas e lec t ron configuration, which does not form 
common orbi ta is with surface a toms as we know from the surface ad 
sorption of noble gas . Therefore the idealized ion adsorpt ion may be 
r a the r r ea l i s t i c . This in terpre ta t ion is a lso supported by m e a s u r e d va 
lues of the ion adsorpt ion energy (of 2. 15 eV) [ 12 ] which cor responds 
nicely to the calculated data (of 2. 04 eV) [ 11 ] . 

In the following d iscuss ion common fea tures of the one and two surface s ta tes 
concept a r e considered. To get a l so a good compar ison to exper imenta l data 
the work function var ia t ion is calculated in dependence of the t empera tu re 
ra t io / T R · T R means the Cs r e s e r v o i r t empera tu re charac te r iz ing a c e r 
tain C s p r e s s u r e . Normal ly , the emiss ion cu r ren t is taken at conditions 
where only neut ra l a toms can escape from the emi t t e r surface . Therefore 
we only have to obey the par t i c le balance equation for neu t ra l s , which is 
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given for both cases as 

R  W 

η. τ . e 
o  V a / T =  C s  C ,  " h / T < 5 R > 

where V is equal to 

V = E + 0 + V.V. 
a " ι j (6R) 

G  L 

ic 
η . ι . e 

o 

yi/τ 
 n _ . τ _ . e 

Cs Cs 

 h / T 
(5G) 

r± ■ 
where V is equal to 

V* = Λ + V *  V. 
a * ι j 

(6G) 

The symbols have the following meaning (all η values a r e related to unit 

surface area) 

η number of adsorbed Cs atoms η number of adsorbed Cs pa r t i c l e s 

t cha rac te r i s t i c frequency of the subs t ra te lat t ice 

V evaporation energy of a Cs atom 

from the subst ra te 

V evaporation energy of a par t ic le 

as atom 

n_ number of Cs atoms on the Cs surface (this number should 
Cs 

also be equal to the number of s i tes available for Cs atoms at 

the subst ra te surface) 

T,„ cha rac te r i s t i c frequency of Cs 
V. s 

h evaporation energy of Cs from the Cs surface 

Tp Cs r e s e r v o i r t empera tu re 

E ionization energy for a Cs atom at 

the subs t ra te surface 

fi subs t ra te work function 

V. evaporation energy of a Cs ion 

from the surface 

V. evaporation energy of a Cs par

t icle as an ion 

V. ionization energy of a free Cs atom 

F o r the number of surface ions η we 

get the relat ion 

+ _ E / T 
η 

η 
= K. e (7R) | 
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where g is the rat io of weight factors 

for the C s a toms and ion adsorpt ion 

s ta te . 

If we combine equations (5R) (6R) and (7R) or (5G) and (6G) and form the 

logari thmic express ion , we get 

KÎ 
, V  V "" 

2SL_. s \ __JL + ¿ilili  , -') - ■ ±
+
^^

(8R> 

Cs Cs / R 

η "Ό Ji_ 0 + 
η , ~„ T r . T i 

In — - ^ = - $ - + r - * 1 (8G) 
Cs T C s *R A 

The lefthand side of both equations is of the o rde r of one for the region of 
medium coverage . In equation (8G) we have the product of surface coverage 
and ra t io of cha rac t e r i s t i c frequencies or Debye t e m p e r a t u r e s in the loga
r i thmic express ion . Also in express ion (8R) we can prove this s ta tement if 

n+/ we multiply the ra t io ' n/~ ^y the dipole moment ρ of a surface ion plus 
i ts image charge and r ea l izé that ep η » Δ ψ whereas ep n_ is about 

8 eV (fig. 2 in ref. [ 11 ] ). The rat io of weight factors is of course of the 

order of one. 

Therefore we can wri te for this in terval of coverage 

0 + V. » h ^ +V. (9R) 
1 R J 

fS + V* Äh ~  + V. (9G) 
T R J 

We know from exper iments [ l l ] that in this in terva l fi is a l ready a l inear 

function of / T D (fig. 2) and therefore V. mus t a l so be a l inear function of 
Κ. ι 

/ T . F o r both models the relat ion mus t hold 
R* 

Δ0 =  f Δ V. (ÌOR) áfí =  f AV* (ÍOG) 

f, is a constant factor and Δ means the difference between work function or 

adsorpt ion energy at bare and covered surface conditions, f can be concluded 

from the slope of the line (fig. 2) which is given by —— . b (9G, R). 

Rasor and Warner gave a s imple explanation for the appearance of f. The 

ions have only to overcome a pa r t of the dipole potential whereas the e l e c 

t ron work function is reduced by the whole amount of this potential difference. 

In the concept of Gyftopoulos Levin such a simple explanation of re la t ion 

(10G) is not possible and therefore the assumpt ion of two adsorbed s ta tes leads 

to a more convenient descr ip t ion for the range of medium coverage . In the follow

ing section another example is given which confirms that s ta tement . 
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At high coverage however, the dipole layer concept can no more be applied 

to explain exper imental data. A formation of bonds between adsorbed Cs 

a toms r e s t r i c t the emiss ion from the subst ra te sur face*) . In this region 

the only reasonable descr ipt ion, which exists up ti l l now, is that of Gyfto

poulos and coworkers [9, 10 ] . Calculations based on the i r concept agree 

very well with measured emiss ion data at high coverage. This can be due 

to the fact that in this region the influence of the ions is of minor impor 

tance or even that an ion formation is pract ica l ly suppressed by the C s 

Cs bonds at the surface. 

Minimum work function calculation 

In this section it is shown that reasonable minimum work function values 

for cesiated surfaces can be calculated based on the assumption that a toms 

and ions a r e present at the surface and formation of bonds can be neglected 

even for medium coverage. Fo r the calculation the additional assumption is 

made that V is independent of coverage [ 11 ] . We use for V the empi r ica l 
a a 

relat ion 

v a = | ( h . h s ) (11) 

where h is the evaporation energy of a subs t ra te a tom. Relation (11) can 
S 

also be justified by the concept of electronegativi ty [ 13 ] . Desorption ex

pe r imen t s , although with other a toms , showed that V can be constant at 

least up to a coverage of 50% [ 14 ] . 

We will further neglect the polar izabi l i ty of the Cs ion, which simplifies the 

calculation. In this case the change in work function is simply given by thé 

relat ion 

Δ $ = e n + p o (12) 

where ρ is the dipole moment of a single ion plus image charge . If we ex

* ) The author believes that the formation of bonds between Cs a toms at 
the surface has been overes t imated in ref. [ 9, 10 ] for the range of 
medium coverage . 
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press n by equation (7R) and substituting (12) we get the relation 

_Δ£ _ 
E

/ T (13) 

e Pon 

The logarithmic form of equation (13) can be written 

l n A £ _ . ^°
 + V

i o _
V

i "
V

a . ( l  f ) A ^ ( ) 

e p n . g " Τ Τ Τ
 K

*> 
\JOJ 

if equations (6R) and (10R) are substituted, fi and V. are related to bare 

surface conditions. 

We realize that even at full coverage (n = n, ) the value en r ρ is about 8 V 
L/S \u S O 

(ref. [ 11 ] fig. 2) whereas the measured Δ φ values for refractory metals 

are in the order of 3 V. Therefore Δ ψ does not depend sensitively on η in 

the range where minimum work function occurs. This means equation (14) 

can be used to estimate minimum work function even if we do not know exactly 

the numerical value of η for the minimum conditions. 

Of coursethis conclusion is only correct if we further suppose that the forma

tion of bonds between Cs atoms at the surface increases the work function 

monotonously towards the value of Cesium (a similar assumption has been 

made in ref. [10 ] ). 

We substitute Δ é by fi -fi in equation (14) and express V by equation 
o min a 

(ll) to derive 1_ 

'mm  " "lit* K * 1(b) ( " Ζ * VCf0+T <15> 

The ratio ——τ* can be concluded from work function data taken in the linear 

range of the Rasor plot (fig. 2). 

té 1 
The factor b means the expression In 

3
—. — which should be in the order 

Pon g 

of I . ° 

If we take T equal 0.1 eV (characteristic for collector temperatures in therm

ionic converters) we get the best fit to experimental values taking g =  1.5. 
The quantities V. (3. 89 eV) and V. (2. 05 eV) are known and therefore if . 

J io min 

can be calculated for materials which have been investigated in the range of 

low Cs surface coverage. 

In table 1 theoretical values of minimum work function for different materials 

are indicated. ( τ—τ concluded from ref. [ 11 ] and [12] ; h taken from ref.[ 11] 
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Although the calculation must be considered as a rough approximation, 

the agreement with exper iments is surpr is ingly good. Due to this data Ir , 

Mo, Ni and Re have lower work functions than the other meta ls l isted in 

table 2. 

This theoret ica l resul t cor responds with the experience that Mo and Ni t u rn 
ed out as two of the best collector m a t e r i a l s . 

Due to the large sca t te r of repor ted minimum work function data, a detailed 
compar ison with such values is not very ins t ruct ive . However, the gained 
resu l t s confirm again that the assumption of C s ions leads to reasonable con
clusion. 
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M aterioi 

W 

Mo 

Ta 

eno% 

260 

310 

210 

A 
Measured 

30-200 

20 -300 

10 -100 

Table 1» Comparison of the emission constants. 
(Τ -1300 °K) 
x o ' 

Material 

W 

Ta 

Nb 

Mo 

Re 

Ir 

Ni-

Os 

Va 
(ίη eV) 

2,58 

2,4 6 

2,36 

2,26 

2,5 

2,24 

1,62 

2,4 

T+r 
1,73 

1.6 

1,76 

1.6 

1,6 

Iß 5 

"1.6 

"W 

Φο 
( in eV ) 

4,6 

V 

*,i 

4,4 

4.9 

5,4 

4.5 

5.' 

Φ m i η 
(in eV ) 

1,6 

1,7 

1.7 

14 

1.4 

15 

1,5? 

1,5 ? 

Table 2t Calculated minimum work function values. 



- 1278 -

No energy 
O *~ O 

Φ' 

<cv * Surface 

No energy 

Fig.l: Emission from surface atoms and atoms at the surface. 

f 

1 2 3 4 5 6 T/n R 

Pig.2« Typinal result for workfunction decrease in dependence 
of Cs ooverage (example W) 
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DISCUSSION 

Speaker of paper K-2 : J . BOHDANSKY. 

MUZ (Germany): Dr . BOHDANSKY, the equation used to desc r ibe the work 
function dec rea se , that is Δ P= Kn.exp(-E/T) seems to be a ve ry rough a p 
proximation. I wonder, how you can calculate a minimum in work function 
from this s imple assumption, and if so, should the re be not a ve ry strong 
t empera tu re dependence of this min imum? 

BOHDANSKY (Euratom): We obtain a minimum in the work function by 
assuming that ions and a toms a r e at the surface according to the theory of 
RASOR and WARNER and that the surface has near ly full ces ium coverage . 
For this condition the energy t e r m in the exponential function becomes about 
ze ro . Therefore , the influence of t empera tu re on this minimum value is 
very weak. 
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The cathode materials of TEC must possesse the complex 
of the physical-mechanical and technological properties· 
They also satisfy a number of the specific requirements 
connected with thexr utilization as the thermoemittera in 
the alkali metal vapours· The pure refractory metals have 
not satisfactory mechanical and technological characteris
tics /1/· The mechanical and technological properties of 
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the refractory materials can be improved by making of the 
alloys /2/. 

The possibility of utilization the alloys as the emit
ter covers of TEC are determined by their emission characte
ristics and their stability in the work conditions. J?Or the 
investigation were cnoosed low and hign alloys on the basis 
of molibdenum ana tungsten (see TaDle 1),obtained by the 
electrical arc melting in vacuum with the expensing electrode, 

It is known, that the more high specific parame
ters of TEC can be obtained either in the arc regime (pres
sure of the cesium vapours 3-20 mm Hg ), or at low cesium 
pressures,when the value of cathode-anode gap is of the 
order of electron free path length /3/· At present,the 
practical importance has the first direction· In this case 
the high specific parameters are determined by the proper
ties of effective metalic film emitter, forming on the 
cathode surface, and with the cathodic jump of potential, 
reducing the effective worx function. 

Materials having the near values of mean work fun
ction in vacuum, has the different effectiveness in the 
arc regime of TEC working /4/»The latter is explained with 
tne different spotting of the cathodes and with the anoma
lous Schottky effect. In our opinion, the increasing of 
emission current in the arc regime can be explained also 
with the increasing of cesium heat desorption on arising at 
the cathode of che positive excessive charge. At little 
degrees of cover tne desorption neat increases on the value 
£. j^rj »wnere y^,c - local work iunctioQ of the cathode 

in vacuum /5/· J -potential of cesium ionisation. 
In connection with that the cathodes of TEC must 

be characterizied by not average, but the local values of 
work function. As the development of the specific electri
cal parameters is limited by the desorption process of 
cesium, at rising temperature the cathodes with large value 
^-&c a r e m o r e effective. 
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The work at high level of the residual gases and 
also at the accumulation of fission products in the volume 
are the specific conditions for the reactor TEC. In the 
present work for this reason the measurements £ƒ ̂ c were 
carried out at the residual preeeure of the order 5·1θ""-3 
mm Hg in the device· We originated from the fact, that the 
oxygen partial equilibrium preseure determined by the cesi
um fila on the anode is of the order 3 - 10"^mm Hg /6/. 

The distribution function of the cathode surface 
S on the work function of is leaded into the co sider a-
tiom n (\ß) - -L· àA 

ß ( V) - <S Of \f ( 1 ) 

Ae the grains of different crystallites, forming the alloy, 

are distributed accidently, on his surface, the function 

β (if) c
«**

 D
® approximated by Gaussian distribution 

where oL , y~, 2,  parameters, characterizing the each alloy 

end the definite medium of residual gases. The knowledge of 

functionjd (yjof the materials, using as the emitters of 

TBC, allows to value their effectiveness· 

For the determination of fune t ion J3[)fj were used the 

two methods: the method of electron emission microscopy /7/ 

and the method based upon the culculation of necessary func

tions from the curves of thermocurrent delay /8/· For the 

first method the experiments was carried out in the device 

EEM75/7/ at tne pressure ox residual gases 5,10 nun Hg. 

The sample had the thickness 1520 M. and the length 1522mm. 

The sample serves as cathode of the immersion objective. 

The heating of cathode was realized either by means of the 

electron bombardment or with the current putting through 

the sample« The cathode temperature was determined to the 

nearest + 20°C. The part of electron beam, creating the 

image was collected in the Faraday cylinder through the hole 

ψ 0»34*>η in the screen and was measured by the electromet

rical amplifier d·current. Knowing the linear increasing of 
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the device we can calculate the current emission density 

from measured area of sample ( in the present case the value 
—6 2 

of this microarea was ~ 5,2.10 cm ), and consequently, the 

effective local work function. For exception, of the influ

ence the generalized field of "spots" on the emission cur

rent the latter was measured in the centre of crystallitics 

(the dimensions of which on samples were 10/w and more) /7/· 

AS the cuicuiations shows, in the case , the field of "spots" 

can't to account. The work function was measured in 100300 

different points of surface by means transfering of the sample 

in plane of object. 

If Nthe total number of the measurements, Ni

the number of the measurements of the work function, laying 

within the limits from )f to \f  W , ( ¿i)f » £ 0,05-0,ΟΪ\/ -
the error of determination of the local work function in 
our experiments) we have: . ./. 

MVJ?Û1 Or 
The f une t ions β ()P) were determined by this metnodic for a 

number of alloys on the basis of the molybdenum· 

In Fig«1 is given the emission photography of alloy 

N4 in which the grain boundaries are reveaid· The contrast 

of image depends on the different emission ability of the 

grains· 

The typical curves J3(^) are given in fig·2· Tne 

displacement or the curveβ (*ƒ/ after heading is connected 
with degassing oi the sample. The curve 1 - is reproduced 
after staying of the sample in the atmosphere· 11 is neces
sary to mark;that the data obtained are depended from time 
and temperature of heating of the sample· This accounts 
because in the choosing vacuum conditions the system of 
alloy-film the chemisorption oxygen is studied· 

On the basis of the experimental results can be 
concluded as follows: 
I.The functions β ()JJ of the studied alloys are Gaussian· 
2#At pressure in the device 5*10 top mm Hg the system of 
alloy-oxygen is studied. It is characterized with the 
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negligible halfwidth of the distribution work function on 

the surface ( ̂  0,15v.) 

At investigation by method of the delay curves the 

experiments have been carried out in the threeelectrode 
—Q 

system, mounted in the device in which vacuum 5*10
 7
tor can 

be ensured. The work have been carried out at pressure of 

the residual gases of the order 5,10 tor for comparison of 

the methods of determination β (i¿) · 

The diagram of the experimental set up are given 

in the Fig· 3· At fixed cathode temperature the grid bies is de

fined at which the current on the grid are reaching the sat

uration.By supplying on the anode of the delaying potential 

the curve of delay was measured.The grid wee choosed with 

low transparency and the measurements was carried out in the 
-•ΊΟ —11 

anode current region 10 -10 a· The electron temperature 
is determined by measuring curve of the delay /8/· The 
coincidence of the electron and lattice temperatures (the 
latter was determined with the optical pyrometer) was tb"> 
criterium of accuracy of the delay curvee· In accordance 
with /Θ/ the functionary have been determined by differen
tiation twice and normalization of the delay curves· The 
determination accuracy ox the function j8 ( by in the point 
~15»— ¿Q#t *Λβ

 determination accuracy of ^^0.03"^· 

This method permits to establish reliably the initial area 

of the function β ( )¿) , suitable for our case to the large 

j · The errors are arising at differentiation of the curve 

in points, near to saturation· This errors were excluded 

as follows· Calculating the initial area of the curve j3 (V/ 

we have approximate her by the formulas (2) and from coef

ficients cL , y, Ì , determined thus all the curve was reco

vered· 

In the Fig.4 are given the results of the investiga

tion of alloy N1 by this method· The curve 1 is described 

by function β ()?) = /,*·/ eoop Í-5, \k (y  4, 24 J * J 

Thue, the method of delay curves can be used for 

the determination of the function ß{)f) in the conditions 
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of the superhigh vacuum and for the exclusion of the ion 
bombardment of the sample· The investigation of the distri
bution local work function β {Sf) was carried out in paral« 
lel with the measurements of output parameters of TEC with 
emitters from the series of alloys (see Table 1). The in
vestigation were carried out on the sets with the TEC of 
flat configuration and with the electron heating of samples· 
The measurement of cathode temperature was conducted with o accuracy about + 30 C. Toe variation of distance between the 
cathode and anode was carried out within the limits 0,1-0,7 
mm with accuracy about + 0,005 mm· 

In Fig.5 are given the dependence curvee of the 
specific power from the pressure of cesium vapour for three 
moliDaenum alloys at the cathode temperature 1600°C· it is 
clear, that addition of the rhenium to molybdenum gives 
some increasing of parameters. The addition of rhenium 
leads to more influence in the case ox testing in residual 
vacuum 2-4*1u~-?mm Hg and some other conditions of degassing· 

In the Fig.6 are given -cne values of specific elec
trical power at temperatures1600 and 1800°C for the alloy 
N4 at gap 0,5 mm. The dependence of specific power from the 
gap at temperature 1800°C is given in the Fig.7. 

In the Fig. θ are given the optical values of speci
fic power of alloy N5 for some interelectrode distances. 
In the Fig .9 are given the comparison of output parameters 
Of alloys NN5 and 6 in the identical conditions at the gap 
0,4 mm the pressure of cesium vapour 6,2 mm Hg« The tes
tings shows, that the optimal specific parameters of TEC 
are provided in the identical conditions by alloys N5 and 
N6. The alloys on the basis of molybdenum show the essen
tial dependence of the specific parameters from vacuum con
ditions of testing· 

Methods of analysis of componete of alloys and of 
impurity in cesium were developed. 

The determination of alloy components Mo-Re and 
Mo-W-Re have been carried out by differential-spectropho-
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tometric methods in presence of masking complexing agents or 
after separation of elements by extraction· The separation 
of rhenium from the molybdenum reached with extraction by 
cyclohexanone from the solutions of sulphuric acid. The ex
traction of rhenium from the solution of sulphuric and nit
ric acid was appllcated also at concentrating of the impu-
ritiee Nb, Zr, W, U, Ta, Fe, Mn, Mg, Pb, Cr, Sn, Ni, Bi, Ou, 
In, Co, Cd, Zn and other in 10-80 times before the spectral 
determination with the sensitivity -1θ'~·'-η·1θΓ̂ 6· 

The concentrating ox the impurities Fe, al, Ni, Pb, 
Bi, Ga, Co, Cd, Cu, In, Zn, Mo, Mn, Ti, Ag, Sr, V, Be, in 
20-50 times for the spectral determination at analysis of cs 
carried out with the extraction by means organic solvents with 
group reagents-oxyquinoline and dithizon· The impurities Ca, 
Mg, Ba, Cr, Sr, determined by spectral method without concen
trating. The sensitivity of the method 1.'i0"^-1.10"^· The 
determination Na, E, Li, in the Cs were conducted by the 
method of flame photometry witn the sensitivity 1.10 %· 

the concentrating of the oxygen impurity produced by 
distillation of the metallic Cs from the sample in vacuum· 
In the residue after distillation have been determined the 
concentration of oxygen by acid titration of ague solution 
of the residue· The sensitivity of method 1·10 nv/o ojP oxy
gen· The mechanical properties of research alloys on the 
plate samples in different conditions are given in Table 2· 

The molybdenum alloys can be treated well by the method 
of hot and cold deformation· They had a low temperature of 
cold brittleness and the satisfactory technological plasticity 
allowing to recieve the rod, sheet, f oil, tube and wire· the 
alloy can be welded by electron beam welding· 

The tungsten alloy N5 possesses with insufficient 
technological properties· The optimal composition of alloys 
of the Mo and W with Re possessing a well technological pro-
peties,weldability and simultaneo sly the high mechanically 
properties at room and high temperatures lays near to the 
boundary of saturation of solid solutions (20-30%Re,in W and 
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40-50% in Mo)· The W alloy Né is one of the most plastic 
alloys at room temperature· On technological properties 
weldability,processing and temperature of recrystalization 
the alloy JN4 of the triple system Mo—W-Re takes up the in
termediate position between the alloys of molybdenum,Re and 
W-Re· 
Conclusion 
I.The metnodic of determination of local work function by 
means the emission microscope, and also by the method of the 
delay curves were developed· 
2.The investigation of output parameters of TEC with the 
emitters from the alloys on the basis of Mo and W at temperar-
ture about 1600-2000°C was carried out. It is shown, that 
TEC with the emitter from the alloys on the basis of W posse
sses the more high output parameters· 
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Table I 

The composition of alloys and condition of testing 

N Composi. The regime of emitter degassing 

ηp oiinv time temperatur, vacuum alloy of alloy 

% hour mm Hg 

=5" 

The parame

t e r s of 

t e s t i n g 

Mo+0,4 a)lO 

Ti+0,k¿ b;lO 

Zr 

1800 

1650 

1 . i0 

Η · · 1 0 ry 

Anode T= 

580630°C 
Res.vacuum 
I.IO^mmHg 

Anode T= 

600°C 
Res.vacuum 

4.10^mmHg 

2 Mc+8Re a/10 

b /10 

1800 

1650 

1.10 
6 

3.10 I5 

Anode Ta580+ 

630 C Res. 

vacuum 1.10*" 
mm Hg 0 

Anode T=<>00 C 

Res.vacuum 

3>10^mm Hg 

3 MO+47RS 10 1800 1 .10 
Anode Τ =58o

630°C Res· 

vacuum 1,10 

HUH Hg 

r6 

4 Mo+27Re+ 

+39W 10 1900 1.10 

Anode T= 600

700°8 Res. 

vacuum 1.10 
mm Hg 

6 

5 W+0,05Nb 14 1900 

Anode Τ = 690 

1.10"
5
5.10"

6
730°C Res. 

vacuum 5.10 

SB 

,6 

6 W+2?Re 14 1900 1.10""
5
5.10~

6
 Anode Τ = 

690740°C 

Res.vacuum 

5.10""
6
mm Hg 
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The mechanical conditions of 

alloy Condition 

1 

2 

3 

4 

5 

6 

Cold work

ing 

mm II _ 

1100 hour 

Cold work* 

1200°30min 

β Μ β 

Cold work. 

_"«· 

Recrystal· 

Recrystal· 

Cold work· 

βιι β 

Recrystal· 

Recrystal· 

Recrystal· 

Recrystal, 

Cold work« 

_ " « · 

Recrystal· 

Recrystal. 

Φ Ol 

measure· 

°C 

20 

1200 

20 

1200 

20 

20 

1200 

20 

1500 

20 

1500 

20 

1800 

20 

1500 

400 

1200 

20 

1500 

20 

1500 

alloys 

Table II 

The mechanical properties 

a¿*jl*** 

143,0 

57,1 

106,0 

^ | 5 

105,3 

56,4 

16,? 

178 

15,2 

110 

15 

220 

9,3 

120 

2
5 , 
50,5 

24.0 

250 

30 

150 

35 

¿>βιφτϊ 

140 
51 
101 
39 
105 
40 
15 
-
-
-
-
-
-
-
— 
34 
8 
-
-
-
— 

«·/· 

5,5 
4.5 
8,2 
4.7 
4,8 
17,8 
14.3 
2-4 
9 
15-25 

-

2-3 
23· 5 
15-20 

« 
40,0 
33.5 
2*3 
6,7 

1>20 
·" 
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Fig·'! The emission electron* 

microscopical image of alloy 

«4. 

The catnode temperature 

¿GOO
0
*, χ 1000. 

Fig.2 The distribution fun

ction of area of the sam

ple on work functions J3(yj 

for the alloy N1, by mea

suring at 1800°K: 

1  before degassing 

2  after degassing at tem

perature 1850ΛΚ for 5 hour. 

4,5 fvJ 

Fig· 3 The diagram of the 

experimental set up for the 

measurements ß(V on the 

method of the delay curves· 

1  anodeι 

5,2  guarding rings; 

3  grid (platinum 120x120^ 

4  object; 

6  cylinder, screening of 

the heater 7. 

BK the cathodic voltmeter 

y/2galvanometer 

yuiH  rect i f i er 
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ßLWH 

Fig.4 The distribution 

function β (V) for the same 

sample from the alloys N1, 

on the method of the delay 

curves· At temperature 

1600°K by degassing at 

1850°K for 1,5 hour. 

Halfwidth of function 

equal fig«2· 

Oft 0,6 l,0 iv] 

5 

^ Ί 
«o 

Q 
> % 

\ 

4 f ί 

Ν 

ι : 

\ 

3 i 

■HZS 

NS 

V2ft 

Ni α 

* t 

Fig·5 The dependence of 

specific power TEC from 

pressure Cs vapour for the 

alloys NN1,2,3: 

N1a,2a,3 taking at residu
^ 6 _ 

al vacuum 1.10 mm Hg« 

N1b,2b  taking at residual 

vacuum 2 ♦ 4.10""̂ mm Hg 

interelectrode gap 0,5 ma« 

5 mmHg 

Fig·6 The dependence of the 

specific power TEC from 

the pressure of cesium 

vapour for the alloy N4« 

IZ mm HQ 
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Fig.7 The dependence of 

the specific power TjaC 

from the value of inter

electrode gap for the 

alloy N4. at the pressure 

of cesium 5 nm Hg· 

0,1 ο,ι 0.3 0,V QSmm 

12 

10 

1J 

I* 

«·»* 

700 η 

$*o*. 

&*0j5 

ÄrOjL

Ì00 I 900 i wo °c 

Fig.8 The dependence of 

the optical specific power 

TSC from temperature of 

emitter· The pressure of 

cesium vapour 617am Hg 

at gaps 0,3;0,5{0,7 mm. 

The alloy N5. 

Fig·9 The dependence of 

specifio power TEC from 

temperature of emitter 

for the alloy N6 and N5. 

At the pressure of cesium 

6,5 m Hg and at gaps 0,4mm. 
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Work Function Measurements of Refractory Metals in a High 

"Pressure Cesium Plasma for Lov; Probe Temperature Range 

V. Bundschuh 

Institut für Technische Physik der Kernforschungsanlage 

Jülich GmbH, Germany 

Summary 

A special plasma anode technique was used for the analysis 

of the workfunction of polycrystalline tungsten, rhenium and 

nickeldisks in cesium vapour. These measurements were 

carried out at a cesium bath temperature between 4?0 and 

5̂ 0 Κ and at a probe temperature range from about 13ΟΟ Κ 

down to near the bath temperature. The results are repre

sented in RasorWarner diagramm 0 versus Tp / Τ~ . 

Thè smallest value of the workfunction of cesium cove

red probes, which is important for the collector of ther

mionic converters, depends on the "bare" workfunction. The 

higher the "bare" workfunction the lower is the minimum of 

the workfunction of covered probes. This result corresponds 

to the theory of Rasor and Warner. 

Introduction 

During the last years many measurements of the workfunction 

in dependence of the cesium pressure and the probe tempera

ture are reported. However, for high cesium pressure and 

low probe temperature there are known only few results. 

These temperature ranges are important for the practical 

application of the thermionic converter and the theory of 

adsorption. Further, the most used methods require wire 

shaped emitters. Because measurements of single crystal 

faces are necessary to prove the theory, it is desirable 
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to develop a method for disk shaped probes. 
These conditions can be fullfilled approximately by a 

method similiar to the plasma-anode method described first 
by P. M. Marchuk [I] and experimentally performed by 
J. M. Houston and P. K. Dedericks (2 J . 

Description of .the method 
In the plasma anode method the probe is situated inside a 
cesium plasma between two auxiliar electrodes, The plasma 
surrounding the probe represents the anode. An electrical 
isolated probe takes a negative potential l/ewith regard to 
the surrounding plasma potential Op- This floating potential 
is defined by the condition, that the total current vanishes, 
If t?ie probe is "cold" (not heatedjand does not emit elec
trons, then the total current consists of an ion current 
and an electron current both flowing from the plasma to the 
probe (fig. 1). In this case the floating potential is de
fined by the equation , 

C*(Of -Uo)_ 
i t = », e * ^ ( 1 ) 

i. = ion current, "P¿ = electron current 
T = plasma electron temperature 

An electron currentj^ emitted by the hot probe is imposed 
to the ion current. Then the equation for this floating 

. I 
potential U0 is 

.eßy^LCL· 
í¿ + je =· *e e ^Te (2) 

The amount AU^oÏ the shifting of the floating potential can 
be calculated by means of these two equations: 
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An additional shifting of the floating potential is caused 

by the change of the contact potential. The probe voltage 

is measured with respect to one of the discharge electrodes 

(this was always the anode). Assuming that the workfunction 

of this electrode is constant during the measurements, then 

the change of the contact'potential.is equal to the change 

oif the workfunction of the probe only. 

AV<=(h-tc)
 W 

ψ, j ψ workfunction of the hot respectively the cpld 

probe. 

The total difference of the floating potential between a 

cold and hot probe is therefore (fig. 2). 

Δυ(ΤΛ)· AU, +Ali-{*,i%)-te)r&*\fr*£Ûffl5) 

Tp = probe temperature 

Provided that the three values 4, r *.¿V are constant, then 

one can calculate the workfunction of the hot probe from a 

measurement of the floating potential in dependence of the 

probe temperature. While the ion current can be measured 

directly, the other two constants can be determined from a 

measurement of the Richardson current L for at least two 

different values of the probe temperature, according to 

equ. (5). 

Experimental apparatus 

The gas discharge tube was a pyrex glass vessel (fig. 3)· 

The distance between cathode and anode was about I50 mm. 

The discharge current was varied between 2 A and 10 A and 

the corresponding voltages 10 V to I5 V. 

The disk shaped probes were 0.5 cm in diameter and 

O.15 cm in thickness. The leads of the probes were 0.5 cm 

thick tungsten wires and the 0.0125 cm thick WRe thermo
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couples were welded to the border of the probes (fig. 4). 
All wires were fused in the pyrex glass vessels directly and 
isolated against the cesium plasma by aluminium oxyd tubes. 

Before each measurement the probe was heated by plasma 
electron bombardement several minutes. During the cooling 
down the floating potential in dependence of the probe tem
perature was measured by a X-Y recorder. 

For measurements of the Richardson current (necessary 
for the calculation of the constants) the probe was held 
a few volts negative with respect to the plasma. Under 
these experimental conditions the measurement of the Ri
chardson current is difficult because the surrounding plasma 
is disturbed by this current \J>\ · However, it is possible 
to make corrections, if the current is very small. Each 
measurement of the voltage and current is reproducible very 
well. 

Experimental results 
The results for polycrystalline tungsten, rhenium and nickel 
are represented in a Rasor-Warner diagramm 0 versus T p / T r 

in the figures 5-7. The deviations of the different curves 
are principally caused by an experimental error in the 
measurements of the voltages and the currents (ion current 
and Richardson current)by the resolution of the X-Y recorder, 
An essential improvement of the accurcy could be obtained 
by a digital electronic equipment for recording the voltage 
and the current, which is projected. 

In table 1 the values of the minimum workfunction and 
the electron temperatures are listed. 
Table 1 

w 

Re 

Ni 

0 . eV 
1,61 

1,59 
1, 4·' 
1,44 
1,57 
l,5'7 

τ /τ 
Pr7 Cs 1,63 
1,75 
1,66 
1,66 
1,65 
1.63 

τ κ ^ s Λ 

542 
4'3 
523 
430 
523 
503 

Τ °Κ e 
1963 2114 
2436 
2143 
2320 
1963 
2109 

τ 
D 
4 
6 
6 
5 
5 
5 
5 
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Conclusions 
The described method is apt to measure the workfunction for 
high cesium pressure and low probe temperature. Another 
advantage is, that one can use disk shaped probes. 

A detailed description of the method and a discussion 
of its limits relatively to cesium bath temperature, probe 
temperature size of the probes will be published later on. 
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DISCUSSION 

Speaker of paper K-4: V. BUNDSCHUH. 

VON BRADKE (Germany): What do you es t imate is the accuracy of this 
measur ing method, and by which effects is it l imited? What was the amount 
of the par t ia l p r e s s u r e s during your exper iments ; i . e . was the measur ing 
tube pumped during the measu remen t s ? 

BUNDSCHUH (Germany): I have not made a theore t ica l calculation for the 
accuracy because the e lect ronics equipment was not the best . A new e l e c 
tronic equipment is being designed and these a r e only the f i rs t resu l t s for 
this method. 

VON BRADKE: Are you saying that for now the accuracy is determined by 
the electronic equipment? 
And another question: What was your res idual gas p r e s s u r e ; was the tube 
pumped during the measu remen t? 

BUNDSCHUH: Yes, the accuracy is determined by the electronic equip
ment . In answer to your second question: The pump sys tem was only a 
normal diffusion pump system. During the measu remen t I did not pump the 
tes t cel l . 
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PREPARATION AND INVESTIGATION OF TUNGSTEN SURFACES 
WITH PREFERRED ORIENTATIONS* 

P. Batzies, J. Demny, H.-E. Schmid 
Brown, Boveri & Cie, Mannheim, Deutschland 

Zentrales Forschungslabor 

Summary 
High work function surfaces are generated on tungsten single 
crystals, polycrystals and vapor-deposited layers by electro
chemical etching. The increased work functions are compared 
with those of the unetched surfaces. Different crystals give 
different amounts of work function increase. Tungsten {ill} 
showed the greatest gain (0.4 eV) and greatest absolute value 
(4.85 eV). 
When an etched crystal is heat-treated in ultrahigh vacuum, 
its surface is smoothed, and the work function decreases. A 
heat-treatment index, which was used to describe the combined 
effects of time and temperature [l] on the aging of rhenium is 
shown to rule the smoothing process of tungsten. Using this, a 
quantitative and graphic description of the work function 
dependence on heat-treatment becomes possible.lt allows 
comparison of the different crystals studied and results from 
the literature L2J . Different crystals show different work 
function increase and surface stability. Different behaviour of 
similar crystals may presumably be due to different pre-
etching heat-treatment. 
The lifetime of an etched surface can hereby be calculated in 
advance, even at temperatures too low for reasonable life 
testing. The tungsten polycrystal is found to have the most 
stable etched surface, although the gain in work function is 
0.2 eV only. 
It is to note that the smoothing process was carried out in 
vacuum. Therefore the results cannot be directly used in the 
design of a cesium filled thermionic converter. 

* This work was partially supported by the German "Bundes
ministerium für wissenschaftliche Forschung" 
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Introduction 

One of the means for improving the efficiency of a thermionic 
converter is to increase its emitter bare work function. This 
can be done in different ways. One possibility, which has been 
applied [lj , is the electrochemical etching. By this method 
{llO}-faces are developed in the case of bodycentered cubic 
metals as tungsten. Therefore the work function will be in
creased. The gain, however, is lost partially or totally by 
necessary subsequent heat-treatment in vacuum. One purpose of 
this contribution is to find out the increase for different 
tungsten single crystals, polycrystalline and vapor-deposited 
material and to compare it to results obtained by others 2̂J . 
The other not less important point is the thermodynamic 
stability of these etched surfaces at elevated temperatures, 
which is necessary for use in a thermionic converter. Is is 
known from the literature ¡ 2_' that the etched surface is 
smoothed and the high work function lowered by annealing in 
vacuum. The emitters are therefore examined regarding their 
thermionic vacuum emisssion and their surface structure before 
and after the etching process and during the following heat-
treatment. 

Some restrictions concerning the possible results have to be 
made in advance : 

1. The increase in work function is accompanied by an increase 
in surface area, which is not known exactly. Because the 
work function is calculated from the Richardsonequation, 
which uses the emitting area, this uncertainty enters the 
work function. A rough estimate gives a maximum surface-
factor of two and an apparent loss of work function in the 
order of a tenth of a volt, using the value of the unetched 
surface area, instead. This effect vanishes when the surface 
is smoothed. 
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2. No well founded forecast can be given on the influence of 
this increase in bare work function on the converter per
formance because of the difficult surface geometry and a 
lack of information on the numerical influence of the bare 
work function on the converter efficiency. 

3. No theory is known to us, which relates the thermodynamic 
stability of the surface in vacuum to that in a cesium 
atmosphere. 

Surface Preparation 

The materials used are zone refined tungsten single crystal 
rods of ultra purity, polycrystal tungsten of 99.94 % purity, 
and vapor plated layers, formed by thermal decomposition of 
WF6 on molybdenum substrates. For measurements the crystals 
were used in form of disks, 2 mm thick and 5 mm in diameter, 
with a black body hole for temperature measurements of 0.5 mm 
in diameter and of 1 mm in depth on the back side. 

The orientations of the single crystals were determined by 
reflection electron diffraction. Small deviations were 
eliminated by definite grinding. The surfaces of the crystals 
were mechanically ground and polished with 15 μ diamond paste, 
and then heated half an hour at about 1500 °C to recrystallise 
the Beilbylayer. For elektropolishing a solution of 2 % NaOH 
in water at room temperature was used, the voltage being 
15 - 17 V. Etching was carried out in 10 % NaOH, at a voltage 
of 1 V. Fig. 1 shows an electron-micrograph of a replica of an 
etched tungsten {111}-surface. It reveals an interesting 
feature. There are many etch-pits with large planes of {110}-
orientation. Areas between these large pits show smaller, 
but similar etching structures. This will be of importance 
for the discussion of results, following later on. 
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Work Function Measurements, Experimental Apparatus and 
Performance 

The work functions of the emitters are measured in a diode 
with a screened emitter surface of 0,16 cm2, using the 
Richardson equation. The emitter is heated by electron 
bombardment, using a special electron gun of small size. The 
collector is a ring, in order to allow fast removal of gases 
adsorbed on the emitter, and to prevent contamination of the 
emitter by the collector. The latter was outgassed at 2200 °K 
in ultrahigh vacuum, before the measurements were performed. 

The emission current is taken as a function of applied 
voltage, until the space charge is removed. The Schottky 
effect is taken into account. The emitter temperature is 
measured pyrometrically in the black body hole on the back 
side of the emitter. It is corrected for losses in the glass 
window, the prism and the ratio of depth to diameter. To 
eliminate the influence of oxygen on the work function, the 
measurements are performed in ultrahigh vacuum. How the 
pressure is calculated, which is necessary to avoid mistakes, 
will be published elsewhere !_3,4_ . 

At the beginning of every measurement the crystal is outgassed 
at low temperatures in order to avoid destruction of the 
etched surface as far as possible, until a pressure of 
2·10~9 torr is obtained. 

Afterwards the temperature is raised stepwise, and the work 
function measured (The temperatures and heating intervals can 
be extracted from Fig. 4). 

Results 

At first the work functions of the unetched, electropolished 
crystals were measured. The results were reasonable and in good 
agreement with the literature (Table 1). 
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The etched crystals, using the same materials and prepared as 

cited above, were investigated and their work function measured 

(Table 1). The difference "etched-polished" is called gain 

and also listed in Table 1. At temperatures below 1850 °K and 

pressures above 2·10~
9
 torr no reliable results could be 

obtained 3,4_ . Therefore the highest work functions 

measured may not be those of the undisturbed etched surfaces, 

but already be lowered by the beginning of the smoothing 

process. The annealing is finished, when the work function is 

no longer decreasing, i.e. an equilibrium is obtained.■These 

values are given in Table 1, labeled "smoothed".With the 

exception of the vapor-deposited emitter all "smoothed" values 

are nearly as low as the "polished" ones, that means that the 

surface structure has been smoothed so far that the gain in 

work function has been lost completely. 

Work Functions in eV 

W-illl} 

W-{100} 

W-Poly 

W-Vap. 

Table I 

polished 

4,48 

4,54 

4,57 

4,50 

Work 

etched 

4,85 

4,80 

4,75 

4,68 

functions of 

smoothed 

4,50 

4,52 

4,59 

4,58 

different tungi 

gain 

0,37 

0,26 

0,18 

0,18 

sten-

crystals after different treatments. 

Fig. 2 shows an optical micrograph of an etched surface of a 

tungsten-{lll}-single-crystal after a heat-treatment, as 

indicated in Fig. 4 by an arrow. It can be seen clearly that 

the microstructure has been smoothed completely. Only large 

etch-pits have remained. The edges of these large structures 

have been smoothed too. The electron micrograph (Fig. 3) 
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reveals only slight shadows, indicating that the smoothing 
process is more complete than one would guess from the optical 
micrograph (Fig. 2). 

The speed of the smoothing process, which is assumed to be 
caused by surface diffusion, depends on temperature Τ and 
time t. Van Someren, Lieb, and Kitrilakis [lj have suggested 
a function of the form t*exp - Q/RT, where Q is an energy of 
about 100 kcal/mol and R is the gas constant. It is not known 
yet, whether this is correct or not and what the dependence of 
the work function on this argument is. Nevertheless the work 
functions, obtained after heat-treatments at various temperatures 
T and times t, were plotted as a function of t-exp - Q/RT as 
shown in Fig. 4. 

Discussion 

In connection with Fig. 4, it is worth noting that points, 
measured at different temperatures, lie on one curve. That 
means that the function {t*exp - Q/RT} seems to be the right 
one for describing the combined effects of time and tempera
ture. The absolute value of Q is of no great influence on the 
form of the curves. Fig. 4 shows some interesting features. 
Principally three different kinds of curves can be distinguished. 
The two single crystals ({111}, {100}) start with a relatively 
high work function, but the decrease begins very soon. The 
dependence of work function decrease on log (t-exp-Q/RT) is a 
linear one in the greater part of the curve. The final value 
is nearly that of the polished surface (see also Table 1). That 
means that the smoothing process completely removed the etched 
structure as far as it was responsible for the gain in bare 
work function. 
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The etched vapor plated crystal shows a curve of different 
shape. Its work function is also decreasing from the very be
ginning, but becomes constant at a value, which is one thenth 
of a volt above that of the polished surface. It is possible 
that the work function can decrease once more, if the heat-
treatment is continued, and also reach its original value. 

The third type is the curve of the pólycrystalline material. 
It shows a constant work function over a long period of time 
from the beginning, even at elevated temperatures, and· then 
decreases very fast, until the value of the polished surface 
is reached. As an example, a similar curve (2B - Id, Fig.4) 
was calculated, using results obtained by Yang and Hudson [2J 
with an etched vapor-deposited tungsten sample. In principle, 
it is in good agreement with our results, as far as the method 
of evalutation is concerned. 

These different types of curves can be explained as follows : 
Due to different treatment of the crystals during fabrica
tion and preparation, a different number of dislocations is 
present, when the crystal is etched. This leads to a different 
etch-structure, especially regarding the ratio of small and 
large structures, as discussed above. The small structures will 
be smoothed much faster than the large ones. This may already 
happen during the outgassing of a crystal before any work 
function can be measured. 

If large areas were covered with the small structure, we will 
find a low and relatively stable work function, which will 
begin decreasing, when the large etch-pits are removed 
noticeable. The polycrystal and the vapor-deposited sample 2j 
belong to this category. 

Another parameter, which influences the shape of the curve, is 
the orientation of the unetched surface and the shape of 
etch-pits, resulting from this orientation. This effect could 
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be responsible for the different starting points of the 
decrease after the premeasurement heat-treatment. In the case 
of polycrystalline and vapor-plated material the influence of 
grain boundaries may not be negligible. 

Accepting this model one can use these measured curves for a 
practical purpose in thermionic converter technology. It 
enables us to predict the lifetime of an etched emitter at 
temperatures, where no measurements have been taken. Another 
advantage is that the time needed for investigating an etched 
emitter can be reduced by orders of magnitude. As an example, 
the lifetime calculated from the polycrystalline curve, 
using an emitter temperature of 1800 °K, gave a lifetime at 
constant work function of about 1000 hours. As indicated by 
measurements of others [2j , this can be improved, presumably 
by changed pre-etching heat-treatment. 

Conclusions 

A method has been developed and used, by which it is possible 
to judge the performance of an etched emitter more precisely 
than up to now. But it will be successfully used in therm
ionic converter technology only, if it is accomplished by 
measurements on crystals which have been aged in a cesium 
atmosphere. 
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Fig. 1 
Electron micrograph of 
a replica of an etched 
tungsten-{111}-surface, 
2500 χ 

Fig. 3 
Electron micrograph of a 
replica of an etched tungsten-
{ll-i}-surface after heat-
treatment, 2500 χ 
(arrow in Fig. 4) 

-6 
hq.(ttxp- Q/RT) -

• 1900'K 02050 "K * 2150 "K * « 5 0 'K m 2W0'K 4 2550 'K 
+ 2000 'K *2100 "K O2200 'K '2350 °K τ »50 °K »2650 °K 

Fig. 2 
Optical micrograph of an 
etched tungsten-{111}-
surface after heat-treat
ment, 500 χ (arrow in 
Fig. 4) 

Fig. 4 
Work function of different 
tungsten crystals as function 
of the smoothing parameter 
(t in sec., Τ in °K) 
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RECHERCHE DE SURFACES DE TUNGSTENE A TRAVAIL DE SORTIE ELEVE 

D. THIVELLIER 
DM/SER  Centre d 'Etudes Nucléaires de Saclay 

91 GifsurYvet te (France) 

Résumé 

Le but de cette recherche est d 'améliorer le travail de sort ie φ des surfaces 
émettrices en tungstène, en y faisant apparaî tre des plans cristall ins denses < 110> 

On étudie les possibilités d'obtenir de telles surfaces, soit au cours de la croissance 
des dépôts pyrolytiques ou électrolytiques, soit par attaque chimique ou électrolytique d'une sur
face l i sse . La stabilité de ces surfaces est étudiée à haute température , avec ou sans adsorp
tion de gaz, en vue de leurs utilisations dans les convertisseurs thermoioniques. 

1. Introduction. 

L'obtention d'un émetteur à t ravai l de sort ie élevé, permet d'optimiser l'influence 
du césium dans les convert isseurs thermoioniques. Le tungstène a un travail de sort ie effectif 
moyen de 4,52 eV [l] ; mais s i , dans les émetteurs en tungstène déposé, on peut amener en sur 
face des plans cristall ins (110), ce travail de sort ie atteint alors 5,3 eV [ l ] . D'après la théorie 
des surfaces en t e r r a s s e s  m a r c h e s  c r a n s , (exposée par Y. ADDA et J . PHILIBERT [2] ), ap
pliquée au tungstène, le système cubique centré présente t rois surfaces singulières, constituées 
d'un réseau dense d'atomes : (110), (112) et (100) ; la coordinance et le t ravail de sort ie y sont 
élevés respectivement (5,3 eV, 4,75 eV, 4,62 eV). Les autres surfaces sont constituées d 'élé
ments de surfaces singulières en t e r r a s s e s , séparés par des,marches et des crans monoatomi
ques ; la coordinance et le t ravai l de sort ie y sont plus faibles [ φ (111) = 4,40 eV, φ (116) = 
4.32 eV]. 

2. Faciès de croissance cris tal l ine. 

Le mécanisme de la croissance à par t i r d'une solution ou d'une vapeur saturée est 
le suivant : les atomes du métal sont adsorbes sur les t e r r a s s e s ; ils diffusent jusqu'au moment 
où ils sont "p i égés" par les crans et les marches , provoquant ainsi l 'avancement des marches , 
et la croissance du cr is ta l . La vitesse de croissance est donc, d'autant plus rapide que le nom
bre de marches est grand, et elle est minimale pour les surfaces singulières. Le faciès, qui 
est formé de surfaces à faible vitesse de croissance, ne devrait comprendre que des surfaces 
singulières. En réal i té , ce n 'est pas toujours le cas , car d 'autres facteurs influencent la vitesse 
de croissance, tels que le gradient thermique, et la présence de substances étrangères adsorbées. 

2 . 1 . Influence du gradient thermique. 

D'après les travaux de B. CHALMERS et F . C . FRANK [3], lorsque le flux de chaleur 
est dirigé de l 'extérieur vers l ' intérieur du cr is ta l , oh a la croissance cellulaire qui donne des 
petits cristaux d'orientation aléatoire . Lorsque le flux de chaleur est dirigé de l ' intérieur du c r i s 
tal vers l 'extér ieur , on a la croissance dendritique, qui donne, dans le cas d'un système cubique 
centré , des cristaux allongés suivant l 'axe < 1 0 0 > (c'est l 'axe de croissance maximale pour un 
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cris ta l isolé). Ces cristaux présentent en surface un faciès de plans (110) (c'est la surface d'é
nergie minimale pour un cr is ta l isolé). Des dépôts dendritiques obtenus par réduction de WF en 
présence d'hydrogène, sur un support chauffé par induction, ont un axe de croissance < 100 > 
en effet le flux de chaleur est dirigé de l ' intérieur vers l 'extérieur du cr is tal . 

2 .2 . Influence des substances étrangères adsorbées. 

Par leur présence, les substances étrangères adsorbées, gênent la progression des 
marches , et dans certains cas , entraînent un changement de faciès [4]. U. BERTÙCCI [5] a dé
veloppé des calculs sur la forme des marches et leur vitesse d'avancement en présence d'adsor
bat, au cours des dépôts électrolytiques. Il montre qu'il existe deux régimes de croissance 
L'un est obtenu aux tensions élevées, et donne un faciès l isse ; l 'autre est obtenu aux tensions 
plus faibles, et donne un faciès constitué de surfaces singulières. 

3. Faciès d'attaque électrochimique. 

U. BERTÙCCI [5] t rai te de même le cas de l'attaque électrolytique, et montre qu'il 
existe aussi deux régimes d'attaque : l'un est obtenu aux tensions élevées et donne un faciès l isse , 
c'est le polissage électrolytique, que nous avons observé entre 2 et 30 V avec des solutions de 
soude, de concentrations variables ; l 'autre est obtenu aux tensions plus faibles, et donne un faciès 
de surfaces singulières ; nous l'avons observé pour les tensions inférieures à 2 V. L'étude de 
l'oxydation anodique du tungstène a été effectuée dans des solutions de soude (5 à 100 g/1). Les 
ions OH donnent au contact du tungstène des radicaux (OH) qui forment des acides tungstiques 
ionisés, et l'on obtient en solution des ions W 0 4 , W2 Og , WO, , OH" , Na , H+ , c 'es t à
dire des tungstates de sodium. Les variations des paramètres tension, intensité et concentration 
s'expliquent t rès bien par la théorie de l 'électrode réversible qui perrrfet de calculer le saut de 
potentiel à la t raversée de la surface des électrodes, et par la théorie de la double couche de diffu
sion qui permet de calculer l 'intensité du courant en faisant intervenir la présence d'une double 
couche de charges électriques au voisinage des électrodes. En ajoutant du ferricyanure de potas
sium qui abaisse le potentiel d'oxydation, l'attaque se produit sans f. e. m. auxiliaire. Dans tous 
les cas d'attaques chimiques ou électrochimiques, on observe d'abord l'apparition de piqûres 
limitées par des facettes (110) avec troncatures (100), et dont la forme dépend de l 'orientation 
(fig. n" 1, 2 et 4). L'attaque prolongée produit des facettes (110) et (100) (fig. n° 3, 5 et 6). 

4. Distribution du travail de sortie des surfaces brutes. 

Le travail de sortie 0 (h k 1) est d'autant plus élevé que la coordinance est forte ; la 
théorie de D. STEINER et E . P . GYFTOPOULOS [6] permet de calculer la fonction 0 (h k 1) 
(fig. nc 7) d 'après la relation : 

v (h k 1) + 1 
0 (h k 1) = 0,98 — + 1,57 (eV) 

r 
m 

v étant le nombre d'électrons par atome en surface qui participent aux liaisons, r étant le 
rayon de ces atomes en A . En mesurant sur cette figure n° 7 les a i res correspondant à chaque 
tranche de valeur de 0, on obtient la distribution de 0 sur le triangle élémentaire de la projec
tion stéréographique. C'est aussi la distribution de 0 pour un échantillon polycristallin poli, où 
les orientations des grains sont équiprobables (fig. n° 8). 

5. Stabilité des surfaces dans le vide. 

La stabilité des surfaces dépend de leur énergie. L'énergie libre de surface est pro
portionnelle au nombre de liaisons libres des atomes de la surface. Elle est donc d'autant plus 
faible que la coordinance est grande, et elle est minimale pour les surfaces singulières, à l ' inver
se du travail de sort .c . Les calculs de T.K. Mac KENZIE et al. [7] montrent que la fonction éner
gie libre de surface t (h k 1) présente deux minima pointus pour (110) et (100) (fig. n° 12), et une 
"va l l ée" de minimums relatifs entre (112) et (110), suivant un schéma analogue à la figure n" 7, 
mais avec un relief inversé. 

En faisant apparaître une facette (110) sur une surface l isse quelconque (h k 1), on 
augmente l 'a i re dans le rapport : 1 cos 0 [θ étant l'angle ( < h k 1 > , < 110 > )], et on 
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diminue l 'énergie spécifique de surface de la valeur y (h k 1) à la valeur Y (110). La facette est 
stable si l 'énergie de la surface facetée est inférieure à celle de la surface l i s se , soit : 

 ^ £  < T(hki) 
cos 0 ' 

Pour une distribution quelconque de facettes (110) faisant l 'angle 0. avec la surface 
(h k 1), et d 'a i re respective f., la condition de stabilité s 'écr i t : 

L ^ Y (no) 

< Y (h k 1) 
y" f. cos o. 
*— χ ι 

La fonction γ (h k 1) présente , comme on l'a vu, un minimum pointu pour (110), alors 
que la fonction 

Ια 
I 

i  (πο ) 

f. cos 0. 
ι ι 

présente un minimum plat (fig. n° 12). 

Il en résulte que la condition de stabilité est réal isée dans une plage d'orientations voi
sines de (110). Le même phénomène a lieu pour des facettes (100), autour de (100). Pour un é
chantillon polycristallin, la surface stable est formée de facettes (110) pour les grains ayant une 
orientation voisine de (110), de facettes (100) pour les grains ayant une orientation voisine de 
(100), et elle est l i sse pour les grains ayant une autre orientation. 

6. Stabilité des surfaces en présence d'un adsorbat. 

La présence d'atomes adsorbes en "surface entraîne une redistribution des liaisons in
teratomiques et abaisse l 'énergie de surface. Dans le cas d'une adsorption sur les t e r r a s s e s , à 
l'exclusion des marches et des c rans , le taux d'adsorption est plus grand sur les surfaces singu
l ières qui n'ont ni marches ni crans ; l 'abaissement d'énergie de surface est a lors plus marqué 
pour les surfaces singulières. Les minima pointus de la fonction Y (h k 1) sont accusés et, pour 
un taux d'adsorption convenable, la plage de stabilité des facettes (110) recouvre toutes les orien
tations (fig. n° 13). F . P . DUMONT [8] a étudié l 'adsorption d'oxygène sur des faces monocris
tallines de tungstène pour diverses conditions de température et de pression. Ses résultats per
mettent de définir deux zones : une zone "pol luée" où le taux de gaz adsorbes n'est pas nul, et 
une zone " p r o p r e " où ce taux est négligeable [ θ < 10~3 ] (fig. n° 14). 

7. Changement de faciès par diffusion de surface. 

La surface stable tend naturellement à apparaî tre si on permet aux atomes de se dé
placer par diffusion de surface. En chauffant une surface l isse dans des conditions de température 
et de pression correspondant à la zone " p r o p r e " , on obtient le facetage part iel , conformément 
aux c r i tè res de stabilité définis au paragraphe 5 : il apparaît des surfaces singulières d'énergie 
minimale. Ce facetage modifie la distribution de p (fig. n° 8) et ce phénomène a été observé ex
périmentalement par T. ALLEAu [9] (fig. n° 15 et 16). Un exemple est donné figure n° 9 : 5 h à 
2 200 °K sous 2,5 . 10"6 t o r r . 

En chauffant une surface gravée par attaque électrochimique, toujours dans les condi
tions de la zone " p r o p r e " , on obtient au contraire un l issage part iel : par exemple 5 h à 2 500 °K 
sous 6 . 1 0  6 t o r r (fig. n° 11). 

En chauffant une surface l isse dans les conditions de la zone "pol luée" , on obtient le 
facetage total de la surface : par exemple 1 h à 1 700 °K sous 10"4 t o r r (fig. n° 10). 
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8. Conclusion. 

Si on peut réa l i ser au cours du dépôt, une croissance cristall ine suivant l 'axe 
< 110 > , on obtient après polissage, une surface (110) parfaitement stable. Mais si la surface 
est un faciès de croissance, ou d'attaque, constitué de facettes (110), elle n'est stable à haute 
température , que dans les conditions de température et de pression correspondant à la zone "pol
luée" . Dans les conditions de la zone " p r o p r e " , elle tend à se l i sser d'autant plus vite que la 
température est élevée, et que les facettes sont petites [9]. Aussi, l 'amélioration du travail de 
sort ie effectif ne dépasse pas 0,25 eV, dans le vide, par rapport au tungstène polycristallin : 
4,55 à 4,80 eV. La présence de césium n'atténue pas le phénomène de lissage et un tel émetteur 
ne garde ses caractérist ique que quelques heures à haute température (2 000 °K) [ l0] . 
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Fig.n°1  Forme des piqûres d'attaque Fig.n°2  Orientation (100) X1000 
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S u r ? · « « pefi"r ellemen t 

Fig.n°9  Facetage partiel. X500 Fir.n°ÎO  Facetase total. X?OC 

Fig.n°11  Lissage partiel d'une surface gravée après 5h à 250C°K (XpCûJ 
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DISCUSSION 

Speaker of paper K-6: Th. ALLEATJ. 

WILSON (USA): I would like to make the r e m a r k that the San Fernando 
Laboratory in California, USA, makes (ICO) oriented tungsten from WF, 
and (110) oriented tungsten from WC1,. H. F . WEBSTER has developed a 
NaOH solution for etching W to preferent ia l ly expose the (110) sur faces . 
His technique is descr ibed in a paper by V. C. WILSON in the proceedings 
of-the 1967 Specialist Conference at Palo Alto. 

ALLEAU (France): Yes, as r egards the orientation (110), which we have 
obtained and the ones that you have mentioned obtained by various people, 
I thought one did not know how the (110) orientation was obtained. I think 
Mr . FEDERER is working on this in the US. Isn ' t it difficult to give a con
clusive judgement on the subject? We personal ly bought samples with (HO) 
orientation made by the San Fernando Laboratory , and indeed there was 
(110) orientation, more or less 100% of the surface as deposited. But after 
the the rmo- t r ea tmen t and the polishing we only had about 20-30% of the 
surface left. The r e s t of it was st i l l (100). The l i t e ra ture on high work 
function on the basis of these samples , I think, is more due to impuri t ies 
in the meta l than to the (110) orientat ion. In the paper I was discussing, 
emiss ion cha rac te r i s t i c s were obtained, which were equivalent to the (110), 
but which were only due to the p resence ei ther of impur i t ies , perhaps oxy
gen. I don't know what we should conclude. Perhaps one can retain the 
(110) orientation as obtained by pyrolytic deposition. 
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EVALUATION Qg SEMICONDUCTING COLLECTOR SURFACES 
IN THERMIONIC CONVERTERS*) 

R. Maly, H. Rapp, W. Kluge 
(Institut für Gasentladungstechnik und 
Photoelektronik, Universität Stuttgart, 

Breitscheidstrasse 2 (Germany) 

Abstract 
Experimental results of measurements in cylindrical diodes 
with Molybdenum emitters and collectors of the type Al-AlpO^ 
and Cr-Ni-steel are presented. 
It is shown that the work function of Al^O^ collectors, evalu
ated from experimental I-V-characteristics of thermionic con
verters, may be 0,1 to 0,2 eV lower compared with the work 
function of the Cr-Ni-steel collectors under optimum con
ditions. The experimental apparatus and the evaluation method 
are described. The range of application for the Al-AlpO, 
collector type is deduced from the experimental data. 
When the diodes operated in the ignited mode, overall effi
ciences in the range of 8 to 9 per cent have been obtained at 
emitter temperatures below 1500°K. 
Introduction 
Previous investigations J J^} on low work function collectors 
seemed to indicate that collectors of the type Al-AlpO^ are 
suitable for obtaining high efficiency. The AlpO^-Cs as a re
presentative of the class of semiconducting materials is an 
ideal semiconductor due to the compatibility with cesium and 
the ease of preparation. 
The mentioned investigations have been carried out with homo
geneous oxide layers in vacuum at low current densities. The 
electrical resistance and the behaviour of semiconducting 
layers at high current densities are difficult to measure and 



- 1322 -

can only be valuated under operation conditions in thermionic 
converters. 
The present paper is an extension of earlier work on oxidized 
Aluminium collectors in Cesium vapor. The following sections 
describe a method for obtaining values of collector work func
tions from experimental I-V-characteristics of thermionic con
verters. 

Experimental Apparatus 
The experimental measurements were carried out with thermionic 
converters of the type shown in Pig. 1 with cylindrical Molyb
denum emitters, interelectrode spacings of 1 mm and collectors 
of the type Al-Al-O, or bare Cr-Ni-steel. All parts of the 
converters were cleaned carefully and outgassed just before 
the assembly. The emitter was heated by electron bombardment. 
The bombardment filament was designed to maintain an effective 2 emitter surface area of about 10 cm . 
To avoid impurities in the coating of the collectors the Alu
minium films were formed by evaporation in high vacuum. The 
oxidation of these collectors was carried out by means of. glow 
discharge in oxygen atmosphere in the assembled converter. 
However, the best results were obtained when the Aluminium was 
oxidized by atmospheric air during the assembly. In this case 
the thickness of the Aluminium oxide is appr. 30 A. 
In addition, the converters were outgassed under operating 
conditions. After having obtained a satisfying vacuum the 
highly pure Cesium was destilled into the Cesium reservoir. 
Then the converter was sealed. 
Evaluation Method 
Por the evaluation of plasma and work function data a semilog 
plot of current versus voltage was drawn. A typical charac
teristic is shown ih Pig. 2. 
As long as electron cooling is negligible, T-g is constant. 
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To each point on the Boltzmann line, drawn as a t angent to 
the lower part of the experimental curve, an apparent work 
function 0g, including the negative emitter sheath, can be 
attributed. Prom the apparent contact potential for this 
point a first order approximation for the collector work 
function 0 is obtained. By means of this value the back 
emission is calculated, which may cause a shift of the Boltz
mann line and thus a correction of 0 , which can be determined 
to + 0.02 eV. In the range of high current densities the ef
fective work function 0 E is calculated assuming that no ne
gative space charge sheath is present in the arc mode. The 
difference of 0„ - U (output voltage) gives the sum of 0„ + 

_t_j CL C 

Ug (voltage drop in the arc). Usually the emitter temperature 
was measured by a W-WRh-thermocouple. However, it is possible 
to obtain T„ very accurately from the power balance of input 
power, and radiation and lead losses with and without electron 
cooling. Thus, changes in arc voltage and of the collector re
sistance can be evaluated. 
Converter Performance 
The performance of converters having AlpO-, collectors have 
been compared with diodes provided with Cr-Ni-steel collectors, 
whilst from the beginning steel collectors need no activation 
time and work stable, the I-V-characteristic of diodes with 
AlpO^ collector layers indicates high inner resistance. After 
five to ten hours of converter operation Cs-vapor has ob
viously reacted with AlpO-, forming an ΑΙ-ΑΙρΟ-,-Cs semicon
ductor with high conductivity. Hereafter the collector sur
face works stable. 
In Fig. 3 the effective collector work function of converters 
with AlpO, collector layers and without such layers are 
plotted for different reservoir temperatures versus T /T~ . 
In all cases the data were taken under optimum conditions. 
For comparison a curve for Ni by Lawrence and Perdew ' is 
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also shown. If the values of Cr-Ni-steel are very low this in
dicates that the collector is not absolutely clean. Under op
timum conditions AlpO^-Cs collectors, however, show a work 
function which is 0.2 eV lower. The minimum work function for 
a given material is always obtained for a specific value of 
VT0s· 
(1.25 for steel, 1.4 for Al20,-Cs). The absolute value of work 
function, however, is a strong function of temperature. 
The general behaviour of AlpO^-Cs collectors is unchanged af
ter a long period of operation. The minimum work function, 
however, is very sensitive to an increased residual gas 
pressure. A family of curves taken after I50 hours of opera
tion is shown in Pig. 2. 
Conclusions 
Semiconducting layers of AlpO^-Cs proved to be suitable for 
collector surfaces at temperatures up to 800°K. Such layers 
show a work function which is lower by 0.2 eV compared to Cr-
Ni-steel. No effect of collector-resistance could be detected 

p for current densities up to 10 A/cm . Minimum work functions 
as low as 1.25 eV could be obtained in converters. The abso
lute value of collector work function is very much affected 
by temperature and vacuum conditions. 

*This work has been sponsored by EURATOM, Ispra (Varese) 
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DISCUSSION 

Speaker of paper K-7: R. MALY. 

RASOR (USA): I understand that even though the minimum work function 
was something like 1. 25 eV initially, after one hundred hours of operation 
it had gone up to something like 1.4 eV, Now my question is , do you expect 
this p rocess of degradation to continue? At the end of 1, 000 hours would it 
perhaps even be higher? 

MALY (Germany): Yes, if your vacuum conditions a re becoming worse . 

RASOR: If this condition is assumed to be a monolayer of oxygen, the 
vacuum conditions would have to be very good to not put a monolayer of 
oxygen on the surface during 1, 000 hours or 10, 000 hours , would they not? 

MALY: It seems possible to us to keep up a reasonable good vacuum in a 
rea l conver ter also under operation conditions. Thus life t imes of severa l 
thousand hours a re not unrea l i s t i c . 

DESTEESE (USA): At what collector t empera tu re is the Al-Al O surface 
thermal ly des t royed? 

MALY: The maximum possible t empera ture is approx. 600 C. In p r a c t i 
cal application it proved to be about 450 C. 

SCHOCK (USA): Is this work directed toward space applications or toward 
t e r r e s t r i a l applicat ions? 

MALY: The Al O col lectors a re not intended to be used in conver te rs 
for space application. 
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Wetting of Some Refractory Metals by Cesium, Potassium, and 
Sodium* 

Harold F. Webster 
General Electric Research and Development Center 

Schenectady, New York 

Abstract 

Contact angles of sessile drops of three alkali liquid 

metals on rhenium, tungsten, molybdenum, tantalum, and 

niobium substrates have been measured and found to be related 

to the bare work function of the substrate surface. The 

contact angles vary from grain to grain of the substrates and 

are affected by monolayer amounts of impurities. The liquid 

drops used have been so small that all observations have been 

done with an optical microscope. An.electron emission micro

scope has been used to compare the bare work functions of 

individual grains in the substrate samples. Lower work 

function surfaces show complete wetting. 

Experimental Procedure 

All of the substrates were thin ribbons mounted in ultra

high vacuum tubes near optical flat windows. 
-9 The tubes were sealed off in the 10 torr residual gas 

range and cesium, potassium, or sodium was introduced from 

breakable glass ampules. The substrates were cleaned by 

*This work was supported in part by Air Force Cambridge 
Research Laboratories. 
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flashing them to high temperatures before deposition of the 

alkali metals. 

Three different techniques were used to measure the 

contact angles of the alkali metal drops. The first of these 

makes use of a light beam which can be directed at the sample 

from different directions and is moved until the reflection 

from the drop meets the substrate surface. 

The second method makes use of a tipping stage on the 

microscope which can be used to measure the angle between 

direct reflection from the drop edge and from the substrate. 

The third method makes use of a Nomarski interference 

attachment to the microscope which permits a contour map of 

the alkali metal drop to be made from which the contact angle 

can be calculated. 

Most measurements were made by the first method but all 

three methods yielded contact angles which agreed to about ±1' 

Wetting of the Substrates by Cesium 

The polycrystalline tungsten sample showed a variety of 

contact angles for the cesium drops ranging from 17° to 0°. 

There was only one grain in the sample which wet completely 

(i.e. had 0° contact angle). 

The polycrystalline molybdenum sample with the liquid 

cesium deposit, appeared to be different than the tungsten 

sample because about half of its grains wet completely. 
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The other grains showed contact angles as high as 12°. 

The polycrystalline tantalum sample had about 80% of its 

surface wet by cesium but the unwet grains showed a variety of 

contact angles with some as high as 11°. 

The (110) tantalum sample consisted of two large grains 

both of which had surface orientations within a few degrees of 

the (110) plane. No parts of this sample were wet by cesium 

and the drops on both grains had contact angles within Io of 

11°. 

The polycrystalline niobium sample had almost all of its 

surface wet by the cesium except for a few grains. None of 

the drops on the non-wetting grains had contact angles greater 

than 2° to 3°. 

This qualitative dependence of wetting upon material 

suggests a correlation with work function. The high work 

function grains of the high work function materials show the 

highest contact angles. Detailed analysis of these results 

suggest that surfaces with work functions less than 4.3 wet 

by cesium while those with higher work functions hold drops. 

To check this supposed relationship between contact 

angle and bare work function, some measured values of contact 

angle have been plotted vs the thermionic work function of the 

particular crystal face. The work function of the actual 

grain in the wetting tube was not measured but instead its 
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orientation determined and the work function of this crystal 
2-8 face determined in a previous measurement used as its value. 

The resulting plot is shown in Fig. 1. It will be seen that 

the graph is approximately a straight line which has an inter

cept at 0° contact angle which is near 4.3 e.v. in agreement 

with the previous deduction. 

Wetting of the Rhenium Substrate by Cesium, Potassium, and 
Sodium 

The same rhenium sample described in reference 1 was 

remounted and run in potassium vapor, sodium vapor, and in a 

vacuum emission microscope. Deposits of potassium on this sur

face are shown in Fig. 2. The same grains used as substrates 

for cesium in reference 1 are indicated and numbered in Fig. 2. 

All of the numbered grains except 1 are wet by potassium. The 

image of this area obtained in the vacuum emission microscope 

is shown in Fig. 3, and it will be seen that the brightest 

grains and thus those with the lowest bare work function are 

numbers 5 and 6 while, 2, 3, and 4 are of intermediate work 

function. The basal oriented grain number 1 appears almost 

black. The contact angles of drops of the three alkali metals 

on these six grains is summarized in Table I. It will be seen 

that the contact angles increase with increasing work function. 

Points for grains of known work function are shown in Fig. 1. 
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Grain 
1 
2 
3 
4 
5 
6 

No. 

Table 
Contact 
Cesium 
25° 
16° 
13.5° 
11° 
0° 
0° 

I 
Angle In 

Potassium 
17.5° 
0° 
0° 
0° 
0° 
0° 

Sodium 
14° 
5° 

0° to 2° 
0° 
0° 
0° 

It was previously thought that the linear dependence of 

contact angle on bare work function shown in Fig. 1 for the 

high work function grains would also apply to all grains. 

When this assumption was made, the data for sodium fell on a 

line parallel to that for cesium. The new data for potassium, 

however, fails to fall on a parallel line and more work using 

measured values for the bare work functions of the various 

grains is necessary to check this assumption. 
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DISCUSSION 

Speaker of paper K-8: V. C. WILSON. 

BOHDANSKY (Euratom): Was the wetting angle measured as a function of 
t empe ra tu r e? Did the author find any influence of contamination? 

WEBSTER ) (USA): The measu remen t s were done just at room t e m p e r a t u r e . 
Contaminants did change the contact angle (see Jour . Appi. Phys . 38, 3700 
(1967)). 

GYFTOPOULOS (USA): Was there a layer of liquid cesium between the d rop 
l e t s? 

WEBSTER: There probably was cesium between the droplets because the 
a r r i v a l rate from the vapor would deposit a monolayer every 2 seconds. 

DESTEESE (USA): 1. Was a get ter used in this exper iment? 2. Were the 
alkalis contaminated with ma te r i a l from the flashed r ibbons? 3. Was it 
possible that each ribbon could contaminate the other ribbons -when flashed? 

WEBSTER: The get ter was ces ium. The ribbons were thoroughly outgassed 
while the tube was on the pump before the cesium was admitted and the flash 
before measu remen t should introduce relat ively few pa r t s per million of 
contaminants in the bulk ces ium. The ribbons all were in 'a plane and depo
sition from one ribbon to the next should be reduced to a minimum. 

MUZ (Germany): The contact angle is strongly influenced by films of a 
thickness smal le r than a monolayer . If there is no adsorption between the 
drople ts , I wonder if the system is s table? 

WEBSTER: The resul ts a re difficult to understand unless there is a cesium 
film between the drople ts . The system was stable over long per iods of t ime . 

VAN ANDEL (Euratom): Do you r e me mbe r the colour of the cesium meta l? 
Was it gold or white? 

WE3STER: The cesium meta l appeared gold in color while both the po ta s 
sium and sodium were like s i lver . 

) H. F . WEBSTER was not p resen t at the Conference. These a re the author ' s 
answers to the quest ions. 
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ETUDE DE L'ADSORPTION DU CESIUM SUR DES MONOCRISTAUX DE TUNGSTENE. 

T. ALLEAU, J . L . DESPLAT 

Service d'Electronique Physique, Centre d'Etudes Nucléaires de Saclay. 

9 1 G i f  s u r  Y v e t t e ( F r a n c e ) 

I  Résumé. 

La mise en programme du calcul de GYFTOPOULOS, STEINER et LEVINE, 
permet de t r ace r les réseaux de courbes en " S " de LANGMUIR. Il a été appliqué aux cas de 
monocristaux de tungstène d'orientation (100), (112) et (110) en présence de césium. La compa
raison avec les résultats expérimentaux est bonne. 

Des courbes en " S " expérimentales, obtenues au microscope à émission 
thermoionique, sont présentées pour des orientations (100) et (110) du tungstène, en présence 
de césium, dans le domaine de.lO1^ à ÎO1^ a t o m e s / c m 2 / s . 

II  Etude théorique. 

Le concept d'électronégativité orbitale, étendu par E . P . GYFTOPOULOS et 
D. STEINER [l] aux surfaces bimétalliques permet de re l ie r plus rigoureusement le t ravai l de 
sort ie d'une surface, au taux de recouvrement d'un adsorbe quelconque. L'application de la deu
xième part ie de la théorie de J . D . LEVINE et E . P . GYFTOPOULOS [2], conduit au t r acé direct 
des courbes en " S " . 

II. 1  Théorie de GYFTOPOULOSSTEINERLEVINE. 

Le t ravai l de sor t ie dont i l est question par la suite est le t ravai l de sort ie 
effectif qui est lié à la constante A = 120. En identifiant le t ravai l de sort ie d'une surface 
bimétallique à l 'électronégativité orbitale neutre des atomes du substrat , perturbée par les 
liaisons adsorbatadsorbat et adsorbatsubstra t , GYFTOPOULOS et STEINER ont complété et 
précisé la p remière théorie de GYFTOPOULOS et LEVINE. Nous avons pu ainsi t r a c e r les cour
bes en " S " de tous les systèmes métaux de transit ionalcalins (ou alcalinoterreux) [3]. 

Les principales relations utilisées sont les suivantes, les détails des cal
culs étant donnés dans les références [ l ] et [2] ; les notations étant identiques : 

φ = φ. + cQ + bF 

φ est le t ravai l de sort ie du substra t , cQ et bF sont donnés par : 

cQ =  ( φ3  φΐ ) M 

φ : t ravai l de sort ie de l 'adsorbé, 

M : fonction de MORSE. 
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bF =  2 π o f O μ 

O . : densité d'atomes adsorbes à 0 = 1 

μ : moment dipolaire effectif. 

Pour calculer le réseau de courbes en " S " , il faut re l ier cette fonction 
φ (θ) à la fonction θ (Τ, Τ ' ) , T et T' étant les températures d'émetteur et de r é se rvo i r . Il est 
nécessai re de connaître l 'énergie de desorption des atomes et des ions sur la surface, soit 
yf a (Θ) et <Ρρ(θ). GYFTOPOULOS et STEINER donnent une relation f>a (0) en affirmant que 
l 'énergie de desorption d'un atome n'est que l 'énergie d'une liaision adsorbatsubstrat . Mais 
si cette expression donne de t r è s bons résultats pour φ a (0 = 0), la courbe «pa (0) s'éloigne 
beaucoup des courbes expérimentales relevées dans la l i t té ra ture . En part icul ier , la relation 
de G.S. donne à l 'origine (0 = 0), une pente nulle, alors que tous les résultats expérimentaux 
semblent prouver une variation rapide de vp avec 0, pour les taux de recouvrement faibles ; si 
bien que l'application de cette expression conduit à de t r è s mauvais résultats sur les courbes 
en " S " . On peut déduire de cela que l'adsorption étant t r è s inhomogène (groupements des ato
mes autour des dislocations ou i rrégular i tés du rés eau ¡"active spo t s" de I. LANGMUIR), il 
faudrait tenir compte de l ' interaction des orbitales des atomes adsorbes voisins. Nous avons 
préféré reprendre l 'expression de vpa (Θ) donnée par [2], qui associe φ a à la somme d'une 
liaison covalente et d'une liaison ionique. Seulement il est nécessa i re de connaître le transfert 
de charge F entre l 'adsorbat et le substrat , différent suivant les 2 théories [ l ] et [2], Nous 
avons constaté qu'il existait un rapport constant, voisin de 3, entre les deux, ce qui nous a per
mis d ' éc r i re : 

*a ΤΓ tf<l+fï + <Xf λ , ) 1 ' 2 S f s Q f s 

les différents t e rmes étant explicités dans la réf. [2], 
Les taux de desorption E a et E p sont calculés suivant [2], ainsi que les taux 

d'évaporation E' audessus du réservoir de césium. L'équation d'état de la surface s 'écr i t en 
supposant une gaine de potentiel φ au voisinage de l 'émetteur : 

E' = E + E exp (  Ö /kT ) 
a p *x' 

C'est la résolution de cette équation d'état qui permet de calculer 0 (T, T ' ) , d'où on déduir ie 
t racé des courbes en " S " . Le programme complet a été mis sur ordinateur, et le t racé des 
courbes s'effectue automatiquement sur un t raceur BENSON, en unité périphérique de l 'ordina
teur util isé. 

II. 2.  Cas étudiés. 

a') yVJl0J)lsCj_{ng^l)_. 

 Principaux parametres choisis : 

6 = 4 , 52eV D, = 1,07 

' s 1 
φ = 1,63 eV φ = 0,5 eV 

1 o ** 

r  2,60 A 

cos β= 0,91 

<rf = 2 , 5 IO1 4 a t / c m 2 

_3 
 Chaleurs d'adsorption obtenues : d) (0 = 5.10 ) = 2,84 eV 

3 
J, (Θ = 5.10 ) = 2,21 eV. 
τρο 
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 Références des résul tats expérimentaux : R.G. WILSON [4], J .M. HOUS
TON [5], H . F . WEBSTER [6], D. KOENIG [7], I. LANGMUIR [13]. 

Le t ravai l de sort ie du césium est souvent pris égal à 1,81 eV. Néanmoins 
il semble, d 'après les nombreux résultats existant dans la l i t térature que la couche monoatomique 
de césium ait une configuration qui dépende de la nature du substrat et de la disposition du r é 
seau cristal l in qu'il présente à sa surface. V. M. GAVRILYUK [8] envisage même la possibilité 
d'une épitaxie des atomes de césium, ayant trouvé des travaux de sort ie découches de Cs variant 
dans le même sens que les travaux de sort ie du substrat , cette étude ayant été faite sur des mono
cris taux de tungstène. La valeur 1,63 eV a été pr i se en fonction des résultats expérimentaux 
c i dessus cités en référence. Une autre explication de cette faible valeur de φ* pourrait Être une 
contamination par des t races d'oxygène ou d 'autres gaz, de l 'enceinte dans laquelle ont été effec
tuées les mesu re s . En ce qui concerne l 'expérience de notre laboratoire, où les études du sys
tème WCs sont actuellement menées au, microscope électronique à émission, nous avons pu fai

oc césium sur 
r e var ie r le t ravai l de sor t ie d'une couchëVau tungstene (100) de 1,8 à 1,5 eV, par une dégrada
tion volontaire du vide de l 'enceinte du microscope (fig. n° 6). Nous pencherions donc vers cette 
deuxième hypothèse pour expliquer les valeurs de φ* anormalement bas ses, généralement données 
dans la l i t téra ture . 

b) W (112) ·  Cs (fig. n° 2) 

 Principaux paramètres choisis 

0s 

ft 

r 

cos β 

= 4,80 eV 

= 1,81 eV 

0 

= 2,60 A 

= 0,745 

 Chaleurs d'adsorption obtenues 

0 = 4 , 1 10 a t / cm 

D = 0 , 5 eV 

φ = 1 eV 
x 

φ (θ = 5. IO  3) = 3,0 eV T a o 

φ (0 = 5.IO"3) = 2,10 eV. 
■ po 

Références des résultats expérimentaux : J . L . COGGINS et R . E . STICK
NEY [9]. 

c) W_(U0_^ C j j f i g . n° 3) 

 Principaux paramètres choisis 

φ = 5 , 3 0 e V O f =7 ,07 10 1 4 a t / c m 2 

φ =1 ,81 eV D = 0 , 8 

r = 2,60 A φ = 2 eV 

cos Q = 0, 906 

_3 
 Chaleurs d'adsorption obtenues : φ (0 = 5.10 ) = 3,16 eV 

Λ (0 = 5. IO"3) = 1,80 eV. 
τ po 

 Références des résul tats expérimentaux : J . L . COGGINS et R . E . STICK
NEY [9], H . F . WEBSTER [6], D.H. POLLOCK [ l0] . 
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III  Etude expérimentale. 

III. 1. Appareillage de mesure . 

Des monocristaux de tungstène (SEMIELEMENTS INC. 99,999 %) d'orien
tation (100) et (110) se présentant sous forme de disques de diamètre 6 mm, polis mécanique
ment et électrolytiquement, sont chauffés par bombardement électronique. Les électrons émis 
sont focalisés par une optique électrostatique à immersion, type SEPTIER [ l l ] , et projetés sur 
un écran luminescent. Au centre de cet écran est percé un trou en face duquel une électrode 
entourée d'un anneau de garde collecte les électrons. La connaissance du diamètre de l 'é lec
trode et du grossissement du microscope permet de déduire la densité de courant émis . La 
température de l'échantillon est mesurée par un thermocouple WRe 526 % préalablement éta
lonné, et logé dans un trou diamétral de la pastil le. Le courant est mesuré par un picoampère
mètre logarithmique dont la sortie est branchée sur une voie d'un enregistreur XY, l 'autre voie 
recevant la tension du thermocouple. Les courbes J (T) sont directement relevées sur toute 
leur étendue. Cet 'ensemble de mesure est présenté plus en détail dans [ i l ] . Le vide dans l 'en
ceinte est assuré par une pompe à diffusion de mercure surmontée d'un piège à azote liquide ; 
un tamis moléculaire l ' isole de la pompe pr imai re , et évite le transport de vapeur d'huile. Le 
vide est de l 'ordre de 3.10"' ' mmHg au niveau de la jauge pendant les expériences. Le césium 
est injecté par un conduit logé dans le wehnelt (fig. nc 4). Le réservoir est constitué d'un bloc 
de graphite dans lequel sont insérés des atomes de césium. La pression de césium audessus 
de ce système est connue [12]. Le flux de césium au niveau de l'échantillon est donné par un 
calcul de conductance. Des vérifications expérimentales de ce calcul ont été faites, par mesure 
de courant ionique, en inversant les tensions de polarisation des électrodes. L'étude du champ 
électrique a été faite, et les mesures effectuées dans des conditions telles que le courant de sa
turation est t i ré en évitant de c rée r des décharges. La tension de polarisation de l'anode est 
généralement voisine de 200 V. 

III. 2. Résultats expérimentaux. 

a) W_U_00)_^Çs (fig. n° 5). 

■ï e ι n O 

Le flux de césium varie de 1,5 10 à 2,4 10 a t / cm / s e c . Les courants 
mesurés varient de 10 à 10~8 A au niveau de l 'é lectrode, c ' e s t à d i re 10"5 à 10"2 A /cm 2 au 
niveau de l'échantillon. La mesure du travail de sortie nu, en l 'absence de césium, a donné : 

φ (100) = 4,60 + 0,04 eV 

Les résultats sont présentés en comparaison avec deux courbes du réseau de D. KOENIG [7]. On 
constate immédiatement que pour des flux équivalents, la partie intermédiaire est sensiblement 
identique, mais le maximum se situe pour des courants plus forts , le minimum de travail de 
sort ie atteignant 1,5 eV : ce fait est t r è s caractérist ique d'une contamination, par des t races 
d'oxygène probablement, de l 'enceinte dans laquelle D. KOENIG a effectué ses mesures . 

Il est en effet bien connu que lessystèmes WOCs donnent des travaux de 
sortie t r è s bas [14], il est donc naturel de trouver des courants plus forts. Nous avons pu con
firmer ce fait expérimentalement en polluant volontairement l 'enceinte du microscope par un 
dégazage excessif de certaines pièces, le vide au niveau de la jauge atteignant 3.10 mmHg. On 
constate sur la figure n° 6, que pour un flux sensiblement équivalent, la pente de la partie inter
médiaire est plus forte, le courant est augmenté d'un facteur 10 au voisinage du maximum, et le 
minimum de travail de sort ie est inférieur à 1, 5 eV. L'augmentation de la pente signifie que le 
minimum de courant se situe plus bas ; en ce point, le taux de recouvrement en césium est pra
tiquement nul, et seul le système WO est présent. L'oxygène augmentant le travail .de sortie 
du tungstène [15], il est naturel d'y trouver un courant plus faible. 
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La mesure du travail de sort ie nu, en l 'absence de césium, a donné : 

φ (110) = 4 , 9 5 + 0,04 eV 

Cette valeur est inférieure à des mesures faites précédemment sur le même échantillon avec 
lequel une valeur de 5,3 eV a été trouvée. Un polissage mécanique ayant été effectué entre les 
deux sé r ies de mesure , i l est probable qu'une dés orientation de quelques degrés se soit produite. 
Le c r i s ta l util isé ne présente donc pas rigoureusement l 'orientation (110). Les résul tats sont 
présentés en comparaison avec une courbe donnée par STICKNEY [9] ; les courants mesurés 
sont inférieurs dans la région présentée, ce qui est naturel étant donné que ce dernier avait me
suré 5,3 eV sur son échantillon. On constate que la pente de la part ie intermédiaire est plus 
forte que dans le cas du W (100), ce que le t racé théorique avait montré. On constate d 'autre 
part un minimum de t ravai l de sort ie décroissant pour des pressions de césium croissantes : 
ceci est dû à une contamination progressive du césium provoquée par le dégazage des parois du 
rése rvo i r . 

IV  Conclusion. 

Nous avons pu mettre au point un programme de calcul satisfaisant pour le 
t racé des courbes en " S " de LANGMUIR, malgré quelques difficultés dans la détermination des 
chaleurs de desorption. Parallèlement le microscope à émission thermoionique à injecteur de 
césium nous permet de vérifier que la théorie de GYFTOPOULOS, LEVINE et STEINER concorde 
bien avec l 'expérience. Nous avons mis en évidence l ' importance de la pression résiduelle de gaz, 
pour la formation de couches à bas travail de sort ie : élément défavorable pour la vérification 
expérimentale d'une théorie, mais pouvant devenir favorable dans le cas d'un fonctionnement de 
convertisseur thermoionique. 
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DISCUSSION 

Speaker of paper K-9: Th. ALLEAU. 

WILSON (USA): I would like to r e m a r k that I have observed a lmost exac t 
ly the same thing. In paper A-2 I mentioned two cases in which the work 
function of the collector changed while the conver ter was left at room tempe
r a tu re for th ree or four weeks. The contamination, presumably 0?, s eems 
to reduce the work function of the ces ium coated col lector , by about 0. 1 or 
0. 15 eV. 

ALLEAU (France) : Ceci confirme la contamination, je c ro is s implement , 
et l ' influence des contaminants dans le" conver t i s seur , vu qu' i l marche p r o 
bablement beaucoup mieux qu' i l ne devrai t m a r c h e r le vide était t r è s 
p r o p r e . 





K-10 

ADSORPTION DE GAZ SUR DES MONOCRISTAUX DE TUNGSTENE 

F. P. DUMONT et J. MAURIES 
Service d 'Electronique Physique 

Centre d'Etudes Nucléaires de Saclay 
91 Gif-sur-Yvet te (France) 

RESUME. -

On a mesuré au microscope électronique à émission et par la méthode de 
Kelvin, les variations du travail de sortie de divers échantillons monocristallins de 
tungstène en présence d'une atmosphère d'oxygène ou d'oxyde de carbone. 

Avec le· microscope à émission thermoionique, on a étudié les variations du 
travail de sortie en fonction de la pression d'oxygène entre 1900°K et 2300°K. Au cours 
d'une première sér ie d'expériences on a constaté que l 'adsorption d'oxygène provoquait 
d'abord une diminution du travail de sortie suivie d'une augmentation au delà de la valeur 
caractérist ique du métal nu. On pense que la diminution observée doit ê t re attribuée à une 
impureté, dont la nature n'a pas encore été reconnue, car par la sui te , ces phénomènes se 
sont avérée peu reproductibles : dans une deuxième série d'expériences on a constaté une 
augmentation continue du travail de sortie en fonction de la pression totale. 

Par la méthode de Kelvin on a constaté une croissance du travai l de sortie 
en fonction du recouvrement (jusqu'à un maximum de 6,4 eV pour une face (100) couverte 
d'oxygène). Mais les résultats obtenus concordent assez mal avec les prévisions théoriques 
de D. STEINER et E.P.GYFTOPOULOS. 

INTRODUCTION. 

Le problème de l 'adsorption de l'oxygène sur le tungstène a suscité ces 
dernières années d'abondantes études en raison de son intérêt dans le domaine de la conver
sion thermoionique. Divers auteurs» ' V ' ont constaté une amélioration des performances de 
convert isseurs thermoioniques en y introduisant de l'oxygène. 'Cependant cette méthode est 
un peu empirique et pour obtenir des résultats plus précis il est nécessa i re d 'opérer dans 
des conditions mieux définies. C'est ce que nous avons tenté de faire en étudiant l ' adsorp
tion d'oxygène sur des monocristaux de tungstène par deux méthodes différentes. 

1-1. Microscope Electronique à Emission Thermoionique ( T . E . E . M . ) 

L'intérêt du microscope provient de ce qu'il permet d 'observer une image 
électronique des échantillons tout en mesurant le travail de sor t ie . En outre , on explore 
seulement une petite portion de la surface métallique étudiée (diamètre 33 l·1), ce qui 
permet de mettre eh évidence des variations locales du travail de sor t ie . 
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On peut étudier un échantillon de 0 = 4 ,6eV, à par t i r de 1500°K environ. 
Le chauffage par bombardement électronique nous permet d'atteindre 23 00°K au cours des 
mesures et 2500°K pendant quelques minutes lors des dégazages. 

II-2 . Méthode de Kelvin (ou du condensateur vibrant) 

Cette méthode permet de mesurer le travail de sortie en champ nul , mais ne 
donne que la différence des travaux de sortie de l'échantillon et d'une lame de référence 
poly cristalline saturée de gaz adsorbe, dont le travail de sortie moyen est en fait assez 
mal connu.C'est une méthode relative dont la précision peut atteindre 10 mV. 

Au cont ra i re du microscope électronique, la méthode de Kelvin mesure le 
travail de sortie de l'échantillon entier. De plus, opérant à température ambiante, on peut 
obtenir un recouvrement total de l'échantillon par le gaz. 

En contrepartie, il faut descendre à des pressions t rès basses pour être 
certain que les gaz résiduels ne faussent pas les mesures (100 s à 10 Torr pour 
obtenir une couche monoatomique). 

Les monocristaux de tungstène utilisés ont une pureté de 99,999 % ; l eur 
orientation a été vérifiée aux rayons X avec une précision de 2° . La pureté de l'oxygène 
est 99,998 %, celle de l'oxyde de carbone 99,995 % . 

On a étudié les mêmes échantillons métalliques par chacune des deux 
méthodes, cependant il est t rès probable que l 'arrangement des atomes de gaz diffère 
dans les deux cas .étant donné la différence des températures d'étude. Ceci limite les 
possibilités de comparaison entre les résultats des deux méthodes. 

U . MICROSCOPE ELECTRONIQUE A EMISSION THERMOIONIQUE (TEEM) -Figure 1-

II. 1 - Dispositif de mesure -

(3) Le microscope dont nous disposons a été décrit par B. DEVIN et N.X.PHUC . 
Il permet d'observer des échantillons métalliques avec un grandissement de l 'ordre de 150. 
On forme une image électronique de l'objet sur un écran luminescent. Ce dernier est percé 
d'un trou der r iè re lequel une électrode, reliée à un picoampèremètre, collecte les électrons 

La température de l'échantillon est mesurée par un pyromètre à disparition de 
filament visant une cavité percée dans l 'échantillon. On déduit le travail de sortie effectif 
de la loi de Richardson-Dushman : 

J = AT exp " ^R avec A = 120 
k T 

Le vide est assuré par une pompe à diffusion d'huile surmontée d'un piège à 
azote liquide. La pression limite atteinte dans ces conditions est 4 . 1 0 " ' tor r au niveau de 
la jauge qui est placée aussi près que possible de l'échantillon. Mais la présence du piège 
à azote liquide ne suffit pas à garantir l'obtention d'un vide parfaitement " p r o p r e " 

On a tracé sur la figure 2 les "zones de sécurité" obtenues de la manière 
suivante : 
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En diminuant progressivement la vitesse de pompage, on a fait croître la 
pression des gaz résiduels jusqu'à ce qu'ils s'adsorbent et provoquent une augmentation 
du travail de sortie de 50 mV au dessus de la valeur du matériau nu (50 mV est la pré
cision de la méthode de mesure). Pour chaque valeur de la température on obtient ainsi 
une pression critique au delà de laquelle la mesure du travail de sortie est erronée. 
Naturellement la valeur de cette pression critique dépend de la nature des gaz résiduels 
et en particulier de leur teneur en oxygène : c'est pourquoi on a tracé deux courbes 
séparées par une "zone d'incertitude" . On constate qu'au dessus de 2100°K on peut être 
certain d'obtenir un résultat correct. 

L'oxygène est contenu dans une bouteille métallique ; il est introduit dans 
le microscope par un capillaire (figure 1). 

On mesure les variations du travail de sortie en fonction de la température 
de l'échantillon, et de la pression d'oxygène donnée par la variation de lecture d'une 
jauge à ionisation. 

II. 2- Résultats Expérimentaux -

Au cours d'une première série d'expériences, nous avons constaté les 
phénomènes suivants : 

Lorsqu'on ouvre le robinet d'admission de gaz, on constate que la pression 
augmente progressivement sans que le travail de sortie ne varie, puis après quelques 
minutes, on voit sur l'écran du microscope la surface de l'échantillon se recouvrir d'une 
sorte de "nuage" sombre bordé d'un liseré plus clair que le métal nu (figure 3).Cela 
signifie que l'adsorption provoque d'abord une diminution du travail de sortie , suivie 
rapidement d'une augmentation . 

La figure 4 donne un exemple de ce comportement : à l'adsorption comme 
à la desorption on observe un "nuage" à travail de sortie élevé bordé d'une frange à 
faible travail de sortie. 

Ces résultats paraissent étonnants car on attendrait plutôt une adsorption 
progressive de l'oxygène provoquant un assombrissement progressif de l'image électronique. 

Pour expliquer la diminution du travail de sortie, on peut avancer plusieurs 
hypothèses. 

a) L'oxygène s'enterre sous les premiers plans du réseau du tungstène, ainsi 
que l'ont suggéré ZINGERMAN et c o l i / 4 ) , ESTRUP et ANDERSON^5' selon le mécanisme 
d'échange de place avancé par LANYON et TRAPNELL^ '. Un atome d'oxygène adsorbe et 
un atome de métal échangent leur place, éventuellement avec l'aide d'une lacune, puis les 
atomes métalliques ainsi exposés, à l'oxygène adsorbent de nouveau un atome de gaz . 

L'échange des places entre l'oxygène et le métal peut être énergétiquement 
favorable, car dans la situation initiale la surface se présente comme un réseau de 
dipoles électriques tous parallèles, et possède une énergie électrostatique élevée. 

b) Il y a formation de microfacettes sur les plans autres que les plans 
denses ( l lO)i' ' W ; j a diminution du travail de sortie s'explique alors par un effet de 
champ sûr les pointes des microfacettes. 

c) La diminution du travail de sortie est due non à de l'oxygène, mais à 
une impureté de nature inconnue pour l'instant qui s'adsorbe avant l'oxygène en diminuant 
le travail de sortie, et qui est ensuite recouverte d'oxygène. 
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Il semble que la dernière explication proposée soit exacte, car au cours 
des expériences suivantes, les phénomènes précédemment décrits se sont montrés t r è s 
peu reproductibles. En effet, on a pu constater par la suite une adsorption progressive 
sans "nuage" apparent, ni aucune diminution du travail de sortie ainsi qu'on le constate 
sur la figure 5 qui présente l e s résultats obtenus en opérant sur un monocristal d 'orien
tation (100) à 2100°K. 

Les figures 6 et 7 représentent le réseau des isothermes d'adsorption sur 
les cristaux d'orientation respective (110) et (100) ; elles donnent la variation du travail 
de sortie en fonction de la pression d'oxygène à diverses tempéra tures . Pour le tungstène 
nu, on a mesuré : 

JÖ(IOO) = 4,60 eV 
0(110)= 5,05 eV : valeur un peu faible, ce cr is tal semble 

légèvement désorienté. 

Certaines courbes présentent, vers les basses press ions , une portion inacces
sible à la mesure du fait de la pression résiduelle : W. ENGELMAIER et R. E. STICKNEY^9) 
ont montré qu'il fallait atteindre des pressions aussi basses que 10"" tor r pour effectuer 
des mesures correctes à 1900°K. 

II. 3 - Interprétation des Résultats -

Les courbes que nous présentons sont comparées à celles publiées par 
W. ENGELMAIER et R . E . STICKNEY™'. Les deux réseaux concordent assez bien dans le 
domaine des pressions suffisamment élevées. Au dessous de 10"" to r r environ, l ' e r reur 
commise est assez élevée car la pression partielle des gaz résiduels est du même ordre 
que celle de l'oxygène. 

Pour comparer plus aisément nos résultats à ceux de W. ENGELMAIER et 
R. E. STICKNEY, nous avons tracé les variations du travail de sortie à part i r de la valeur 
du métal nu puisque nous ne sommes pas en accord exact sur cette dernière valeur. 

On constate qu'à température et pression égales, l'augmentation du travail de 
sortie est plus faible sur la face (110) que sur la face (100). 

Enfin, on n'a pas mis en évidence, entre 1900°K et 2300°K, la possibilité 
que l'oxygène puisse s ' en ter rer sous les premiers plans du réseau cristal l in, 

suivant l'hypothèse avancée dans (4) (5), 

III . METHODE DE KELVIN -

III. 1 - Appareillage de Mesure -

La figure 8 présente le schéma de principe de l 'appareillage : l'échantillon 
étudié forme avec la lame de référence un condensateur vibrant. Si on ajuste Va de façon 
à annuler le signal observé sur l 'écran de l 'oscilloscope, la différence des travaux de 
sortie 0 - 0 n est égale à e Va . 0 - 0_, est mesuré avec une précision de l 'ordre de 
10 mV. R R 

La lame utilisée comme référence est un polycristal de tungstène qui n'a 
pas subi auparavant de traitement spécial. Un examen au microscope à émission a montré 
une assez grande homogénéité de la surface composée de t rès petits cristaux (travail de 
sortie moyen 4,71 eV). 
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Le vide est assuré par un ensemble pompe pr imaire à adsorption, pompe 
ionique, sublimateur à filaments de titane et panneau cryogénique. La pression résiduelle 
se situe aux alentours de 3.10 to r r d'un gaz contenant 8 0 % d'hydrogène (mesure faite 
au spectromètre de masse) . 

Le gaz est introduit par une microfuite réglable RIBER dans l 'enceinte 
préalablement vidée et dégazée. On commence alors la manipulation en recouvrant entiè
relnent de gaz la surface des deux armatures (échantillon et lame vibrante). Ensuite on 
chauffe l'échantillon seul à 2500°K par bombardement électronique afin de désorber le 
gaz dont il est recouvert . Enfin, on admet progressivement le gaz en ouvrant la micro
fuite réglable ; on peut régler la valeur de la pression entre 10" ' et 10"° t o r r . En opé
rant de cette manière , la lame de référence est constamment saturée de gaz adsorbes et 
son travail de sortie est supposé constant, au contraire l'échantillon se recouvre p rogres 
sivement de gaz et on peut suivre l'évolution de son travail de sor t ie . 

III. 2  Résultats des Mesures 

a) oxygène : 

La figure 9 représente la v ariation du travail de sortie du tungstène 
(100) et (111) en fonction du taux de recouvrement en oxygène ; cette dernière grandeur 
a été reliée au. flux d'atomes arrivant sur la surface, à par t i r des valeurs données par 
SINGLETON^ ' pour la probabilité d'adhésion de l'oxygène. L'exposition a été portée en 
Langmuir : unité proposée par GERMER et MAY' ' qui équivaut à 10"° to r r  seconde . 

Pour le (100) , nous avons tenté une comparaison avec les résultats publiés 
par HOPKINS et PENDER^1 1 ' en utilisant encore les données de SINGLETON et avec les 
prévisions théoriques de D. STEINER et E . P . GYFTOPOULOS^12). On constate que l 'accord 
est loin d'être réalisé entre les trois courbes. 

b) oxyde de carbone : 

La figure 10 représente la variation du travail de sortie en fonction du 
recouvrement d'oxyde de carbone pour un échantillon de tungstène polycristallin et pour 
un échantillon (100) ayant subi une attaque électrolytique dans' une solution de soude à 
10 g/l sous une tension de 2 V. 

Les valeurs du travail de sortie en présence d'une couche monoatomique 

adsorbée, sont : 

polycristal 0 = 5,18 eV 
face (100) attaquée 0 = 5,10eV 

Pour calculer le taux de recouvrement Ο , ' on avtilisé les valeurs de la probabilité 
d'adhésion données par GAVRILYUK^14). 

La figure 10 reproduit également les résultats de GAVR1LYUK pour la 

face (113). 

Dans tous les cas on observe 'une saturation du travail de sortie en présence 

d'un recouvrement de l 'ordre de θ = 0,9. 
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IV - CONCLUSION -

En ce qui concerne l'oxygène, la comparaison entre les résultats des deux 
méthodes utilisées est difficile car elles n'opèrent pas dans le même domaine de tempé
ra ture . Au dessus de 1900°K et dans le domaine des pressions explorées, le recouvre
ment est toujours nettement inférieur à 1 , comme on peut s'en convaincre en comparant 
les travaux de sortie atteints par chacune des deux méthodes. Dans ces conditions, on 
mesure le travail de sortie lorsque l'oxygène gazeux est en équilibre avec l'oxygène 
adsorbe. 

Au contrai re , à température ambiante, le recouvrement est pratiquement 
total à l 'équilibre et on étudie la phase transitoire qui précède l 'établissement de cet 
équilibre. 

En outre l 'arrangement des atomes d'oxygène sur le tungstène n 'est v ra i sem
blablement pas le même dans les deux cas . 

L'intérêt de cette étude est de permettre la connaissance des paramètres 
indispensables à la prédétermination de convert isseurs fonctionnant avec une pression 
partielle d'oxygène, pour obtenir d'une part des émetteurs à travail de sortie élevé , et 
d'autre part des collecteurs à bas travail de sortie (par formation de W-O-Cs par exemple) 
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THE INFLUENCE OF OXYGEN ON THE WORK FUNCTION 
OF TUNGSTEN-
P. Batzies 

Brown, Boveri & Cie, Mannheim, Deutschland 
Zentrales Forschungslabor 

Summary 

The work function increase of tungsten caused by oxygen is 
measured in a planar diode with screened emitter and ring 
shaped collector, using thermionic emission. Tungsten single 
crystals of {ill},{100} and {I10}orientation, polycrystalline 
material and vapor deposited layers are investigated. 
The background pressure with the diode in operation is in the 
10"9 torr range. The oxygen is introduced by means of a 
bakable gas inlet valve. The gas composition is controlled by 
a mass filter. Work function measurements were taken with 
oxygen pressures from 2·10~8 to 2·10~5 torr and emitter 
temperatures TE from 1800 °K to 2400 °K. 
From the oxygen pressure a fictitious oxygen reservoir tempera
ture TR is calculated. It is found that the work function 
increase is only dependent on the ratio T_/T_. This makes it 
possible to estimate the oxygen pressure necessary to obtain 
a given work function as function of emitter temperature. 

Introduction 

Besides other ways one possibility to increase the efficiency 
of a thermionic converter is to choose high emitter bare work 
functions [l,2,3j . Since there are often difficulties in 
doing so it has been tried to achieve the same result by using 
electronegative additives [4] , as for example oxygen \_5] in 
the form of cesium-oxide. Although the application in the 

* This work was partially supported by the German "Bundes
ministerium für wissenschaftliche Forschung" 
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thermionic converter necessarily includes the presence óf 
cesium, it is reasonable to study the system emitter-oxygen 
without cesium in advance. But it is to be kept in mind that 
for example the Rasor-Warner theory [l1 cannot be used in this 
case to predict the behavior in the presence of cesium. In 
order to get as close as possible to circumstances in a therm
ionic converter thermionic emission is used for studying the 
influence of oxygen on the work function of different oriented 
tungsten samples. 

Experimental Apparatus 

The apparatus used is same as already described in ';6j . It 
consists of a planar diode which is operated in an ultrahigh 
vacuum system, to which a gas inlet valve and a mass-filter 
are attached. The work function is calculated from emitter 
temperature and saturation current, using the Richardson 
equation. The emitter has an effective surface of 0,16 cm2 
and is heated by electron bombardment. The emitter temperature 
is measured pyrometrically in a black body hole on the back 
side of the emitter. To allow an undisturbed interaction of 
the oxygen with the surface the collector is a ring with a 
central opening of emitter diameter. The all-metal vacuum 
system is bakable, ion getter and sorption pumps are used. The 
ultimate pressure is below 1·10-9 torr. With the diode in 
operation the background pressure is in the 10"9 torr range. 
The oxygen is of ultrapure quality introduced by a bakable gas 
inlet valve. The oxygen pressure is measured by the ion getter 
pump and a Bayard-Alpert-ionisation gauge. Both gave compatible 
pressure readings. The mass-filter was used to make sure that 
the gas introduced did not contain any impurities in detectible 
quantities. 

The saturation current is measured by means of a microampere-
meter, a galvometer or an electrometer amplifier. 
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Emitter Preparation and Measuring Performance 

The tungsten emitters used are zone refined single crystals, 
polycrystalline material of ultra purity and vapor-deposited 
layers, produced by thermal decomposition of WF6 on molybdenum. 

The emitters are mechanically ground, heat-treated, electro
polished and then outgassed in the ultrahigh vacuum system up 
to 2500 °K. Simultaneously the collector is outgassed by 
electron bombardment. The work function in vacuum is measured, 
when the pressure has fallen to 5·10-9 torr with the diode 
running. The temperature range is 1800 °K to 2400 °K. 

Afterwards the oxygen is introduced. Since it is continually 
pumped by the getter ion pump a dynamic equilibrium is ob
tained. The emitter temperature is then varied at different 
constant oxygen pressures in the range from 2·10~8 to 2*10~5torr 
and the work function measured. 

Results 

The bare work functions (without influence of oxygen) which 
were calculated from the measurements are given in table I. 

W-Í100} W-illl} W-UlO} W-Vap. W-Poly 

VE[ev] 4,48 4,45 4,92 4,50 4,55 

They are compatible with the values known from the literature 
171 »although the work function of the {llO}-single crystal 
seems to be somewhat low. This may be due to some gross 
imperfections visible on the surface of the otherwise well 
prepared and oriented sample. 
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Since the measurements with oxygen admitted were performed at 
constant pressure by varying the emitter temperature the 
results are given in the same way. 

Fig. 1 shows as an example the influence of oxygen on the work 
function of a tungsten-{lOO}-single crystal. As one can see 
easily the emitter work function Y„ is increasing with de-
creasing emitter temperature Τ at constant oxygen pressure 
PQ and increasing with increasing oxygen pressure at fixed 
emitter temperature. It is also remarkable to note that even 
without oxygen admitted (ρ, , ) an increase in work function 
is found at temperatures below 2000 °K. 
Similar families of curves were obtained for tungsten {ill}-, 
{I10}-single crystals, a polycrystalline sample and a vapor 
deposited tungsten {100}-Iayer. They are not given here 
explicitly, but can be recomputed from the following figur 3. 
For adsorption of electropositive atoms on a metal as cesium 
on tungsten it is known [l] that the change in work function 
in this case is only dependent on the ratio of T„/T_, TD being 
the cesium reservoir temperature, but not on the absolute 
values of T_ and T_. 

L· is. 

The same principle has now been tried with oxygen on tungsten. 
The admitted oxygen pressure po2 was converted into a ficti
tious liquid-oxygen reservoir temperature Τ by means of the 
vapor pressure curve L 8,9 J . The result is shown in fig. 2. 
It reveals a good agreement between points measured at 
different pressures. All points, obtained in the range of four 
orders of magnitude in pressure, lie on one curve. As was 
pointed out to me by Dr. Rasor, a similar result had already 
been obtained by Engelmaier and Stickney [io] . Additional 
values were obtained by using the oxygen partial pressure of 
the background pressure (without any oxygen admitted) as 
indicated by the mass-filter measurements. 

Fig. 3 displays the dependence of work function on Τ /T for 
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all samples measured. The polycrystalline curve is dotted 

because some irregularities as a small influence of the absolute 

values of temperature and pressure seemed to have occured. The 

tungsten{110}curve could only be measured down to a T„/T 

ratio of 68 because a failure of the bombardment gun took place. 

Discussion 

From fig. 3 some general conclusions can be drawn. The first 

one is that all curves nearly start rising at the same TE/T 

value of 75. The same result had been qualitatively and 

quantitatively found by Engelmaier and Stickney [io] . From 

this ratio one can calculate the oxygen pressure PQ 2 as a 

function of emitter temperature T„, which must not be exceeded 
Γι 

in bare work function measurements. The resulting curve (a) 

is shown in fig. 4. It shows that very low oxygen (or back

ground) pressures must be obtained to get reliable work func

tion values below 2000
 Ö
K. Thus all results of vacuum emission 

measurements published in the literature can be checked 

regarding this point and possibly corrected. 

Another point is that no systematic connection can already be 

detected between the course of the different curves and their 

work functions. This could be cleared by more complete measure

ments with different oriented single crystals. 

Furthermore, no saturation could be found in the range which 

was covered by these measurements. Therefore measurements below 

a Tp/T ratio of 55 would be desirable. But further expansion 

in this direction will not be easy, because this would include 

high oxygenpressures (>10
5
 torr), low temperatures (<1700 °K) 

and high work functions (>5,5 eV), the latter two resulting in 

very low current densities (<10
9
 A/cm

2
). 

Since the aim of the application of oxygen in a thermionic con

verter is the increase of the emitter "bare" work function, one 

can ask for the oxygen pressures, which are necessary to obtain 

a certain work function, ■
p
^
v
' pvample 5,0 eV. 
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These were calculated from fig. 3 for all samples as a function 
of emitter temperature and are also shown in fig. 4. Tungsten 
{ill}, {100} and the polycrystalline material are summed up into 
one curve (b2). The two others are for the vapor-deposited 
tungsten {l00}-sample (bl) and the {I10}-single crystals (b3). 
Surprisingly very low oxygen pressures are needed at an emitter 
temperature of 1800 °K to obtain a work function value of 5,0 eV. 
Table II gives the oxygen pressures and the gain in work function 
under these conditions. 

W-Í111} 

W-Í100} 

W-Poly 

W-Vap. 

W-Í110} 

Table II 

PO 2 
4,8 
4,8 
4,8 
6,4 
6,0 

torr 
• 

• 

• 

• 

• 

IO"9 

IO"9 

IO-9 

IO"8 

io"10 

gain eV 

0,55 

0,52 

0,45 

0,50 

0,08 

Oxygen pressures and work function gain for different 
oriented tungsten samples at 1800 °K and 5,0 eV. 

Conclusions 

It has been shown and confirmed that the influence of oxygen 
on the work function of different oriented tungsten samples 
is only dependent on the ratio T„/T_. Surprisingly very low 

r, K 
oxygen pressures are sufficient for work function increases of 
about 0,5 eV. 
As a consequence, this point must be taken care of, if one is 
measuring thermionic emission constants in vacuum with an 
oxygen partial pressure. 
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DISCUSSION 

Speaker of paper K - l l : P . BATZIES. 

BOHDANSKY (Euratom): Did you find a saturat ion effect, that is a constant 
work function above a cer ta in oxygen p r e s s u r e ? 

BATZIES (Germany): No, we didn' t . This is only the beginning of our m e a 
surements and -we had some difficulties, as I explained in the paper . We will 
go on to lower Τ / T »values and we do hope to find it t h e r e . But the diffi
culty is that the work function is increas ing and the temperature ' dec reas ing . 
This gives a very low cur ren t . Moreover you need very high oxygen p r e s 
su res and that is a difficulty in a vacuum sys tem. 

GYFTOPOULOS (USA): Did you observe any t ime requi rement for the s y s 
tem to reach its thermodynamic equi l ibr ium? 

BATZIES: There was some t ime requi red to reach equil ibrium but this 
t ime was very shor t . In the o rde r of magnitude of seconds. 

STRECKER (Germany): Can you give some r e m a r k s about the i nc rease of 
work function even without oxygen admiss ion (Fig. 1)? 

BATZIES: We had a m a s s fi l ter at tached to our vacuum sys tem to examine 
the res idual gas . We found that we had about 20 or 25% oxygen. In the s e 
cond slide if you look at the c r o s s e s , we found that the points measu red at 
the background 'p ressure fit very well into the curve obtained by pure oxygen 
and that means that it is the background oxygen .that influences the inc rease 
of the work function. 

STRECKER: You had in the f i r s t slide curves at different p r e s s u r e s of 
oxygen and he re in the second slide you have the same differences in the 
p r e s s u r e of oxygen but you received only one curve . How is this to be unde r 
stood? 

BATZIES: Only the rat io of Τ / T is important . You see if we had only a 
—™—~~—~" ill i \ 

very low res idual gas p r e s s u r e , which contains about 20% oxygen you have 
in a sense a very low oxygen p r e s s u r e . Here you can go towards lower 
t empera tu re s before you get an influence of the oxygen, as shown in slide 4. 
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WORK FUNCTIONS OF POLYCRYSTALLINE W AND RE IN 
AN ATMOSPHERE OF CESIUM AND OXYGEN * 

R. Langpape and A. Minor 

Brown, Boveri & Cie, Heidelberg, Germany 

Summary 

By means of the plasma anode technique the work functions of 

polycrystalline tungsten and rhenium wires were measured in 

cesium vapor and with cesium oxide as additive. Most of the 

measurements were performed at a cesium reservoir temperature 

of 120 °C and cesium oxide temperatures between 200 °C and 

400 °C. The probe temperatures varied between 1150 °K and 

2250 °K. The results are described in RasorWarner diagrams 0 

versus Τ /T . 

In the region of high cesium coverage, which is of interest for 

emitters of thermionic converters the work function at a cer

tain Τp/T decreases monotonically with increasing
 T

Cs_ox¡¿e 

and reaches a saturation value, which depends on Τ /T . At 

low cesium coverage the work function decreases first with in

creasing Τ ., , takes a minimum value lower than the satura

tion work function, and increases then with further increasing 

T
.̂„ J until reaching the saturation value. The saturation 
Csoxide ^ 

values for different Tp/T_ form a Rasor curve corresponding 

to a "bare" work function which is about 0.5 eV higher than the 

clean surface work function. 

Introduction 

Several experiments performed during the last years have shown 

that the performance of cesium diodes can be considerably 

enhanced by the addition of electronegative gases. These gases 

»This work was partially supported by the German Bundesministe
rium für wissenschaftliche Forschung 
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reduce the cesium pressure which is required for adjusting the 
emitter work function and so reduce the plasma losses. At first 
fluorine had been used as additive [l - 3 j , but later investi
gations showed that the beneficial effect found with fluorine was 
most probably caused by oxygen impurities [4] . The influence 
of a controlled oxygen additive on both the work function of 
refractory metals and the performance of cesium diodes has also 
been investigated by several authors [5 - 7 j . 

In this paper work function measurements on polycrystalline 
tungsten and rhenium wires in an atmosphere of cesium and 
oxygen are described. The oxygen was generated by thermal 
dissociation of cesium oxide. The measurements were performed 
at low pressures of cesium and oxygen, but comparison with 
measurements of other authors suggest that the results of our 
measurements should be transferable to the normal working 
conditions of emitters in thermionic converters. 

Experimental Apparatus 

The work functions were measured by the plasma anode technique, 
developed by Marchuk [_8J and improved by Houston [9] .In this 
technique small loops of wire are immersed in the plasma of a 
conventional cesium vapor gas discharge tube. The work functions 
of the wire materials are calculated from the electron current 
densities emitted by the wire probes. An electron flow from 
the plasma to the probes is avoided by holding the probes a few 
volts negative with respect to the plasma. The electron space 
charge is compensated by cesium ions flowing from the plasma 
to the probes. 

The data reported here were taken with several measuring tubes 
being different in some details, therefore only the main features 
which were common for all tubes shall be described. The tubes 
made of "Jenaer Geräteglas" had a tungsten coil as cathode, a 
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nickel disc as anode, and probes of 0.1 mm tungsten wire and 

0.25 mm rhenium wire respectively (Fig. 1). The distance between 

cathode and anode was about 300 mm. The base of each probe was 

equipped with a guard ring in order to minimize leakage currents 

along the glass wall of the tube (Fig. 2). Cathode, anode, and 

probes were spot welded to vacon rods molten into the glass 

tube. With exception of the emitting loops the whole probe wires 

including the vacon rods were shielded by pure alumina tubes. 

In order to avoid discharges between guard rings and anode each 

guard ring was shielded by a glass tube surrounding it ■ 

(Fig. 2). Between measuring tube and cesium reservoir there 

was an orifice of about 4 mm diameter in order to minimize 

oxygen losses. 

The tube was outgassed up to 450 °C at about 10"
7
 torr while 

the cathode and the probes were flashed to at least 2200 °K. 

During outgassing two glass ampoules containing cesium and 

cesium oxide respectively were located in side arms of the 

measuring tube (Fig. 1). The cesium oxide had been prepared by 

oxidizing cesium in pure oxygen of some hundred torr pressure. 

In this way one gets a mixture of several cesiumoxygen com

pounds of different stochiometric composition. The glass ampoules 

were crashed later by pieces of steel. 

During all the measurements the measuring tube was continuously 

pumped out through the cesium reservoir by a Vacion getter 

pump. The cesium which diffused into the tube connecting the 

cesium reservoir with the getter pump condensed at the cold 

wall of the tube and dropped back into its reservoir. The 

residual gas pressure at the getter pump was always lower than 

10"
7
 torr. 

During the measurements the measuring tube was surrounded by 

an oven, therefore the probe temperatures had been measured 

before pyrometrically as a function of heating current. The 

electron emission of the probes was always so low that electron 
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cooling did not affect the probe temperature. 

Experimental Results 

At first the work functions were measured in cesium vapor only. 
The cesium temperature was held constant at 120 °C and 150 °C 
respectively and the probe temperature varied between 2150 °K 
and 1150 °K. Before taking a new data point the probe was 
always flashed to 2200 °K in order to eliminate an influence of 
the residual gases on the work functions. Such an influence had 
been found to be noticeable at low probe temperatures. Only 
measurements are reported here, which were reproducible within 
about 0.05 eV. The glass wall of the measuring tube was held 
at 200 °C during these measurements. 

Some of the measurements were repeated then at 400 °C wall 
temperature. Within certain ranges of probe temperatures the 
electron emission at 400 °C wall temperature was somewhat higher 
than at 200 °C. This effect is not yet fully understood. It is 
unlikely that it was caused by impurities, because the residual 
gas pressure in the tube was not affected by the wall temperature. 
Possibly the effect was due to an additional electron emission 
of the alumina tubes shielding the nonemitting parts of the 
probe wires. These tubes could have been slightly metallized 
during outgassing and so be able to emit electrons. A rough 
estimation shows that their electron emission should be 
neglegible at 200 °C wall temperature, but at 400 °C wall 
temperature and a correspondingly higher temperature of the 
alumina tubes their electron emission in cesium vapor could be 
in the order of magnitude to explain that effect. The influence 
of the wall temperature on the electron emission required small 
corrections of the work functions measured in cesium and oxygen 
as will be discussed later. 
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After finishing the measurements in cesium only the glass 
ampoule containing cesium oxide was opened, and the work func
tions were measured over the same ranges of temperatures as 
before. Again during each series of measurements the tempera
tures of both cesium and cesium oxide were held constant and 
only the probe temperature stepwise varied starting at the 
highest temperature. Because of the low oxygen pressures used 
it took some minutes after every change of probe temperature 
to reach the new equilibrium coverage of the probe surface. In 
order to keep this time small the probe was not flashed to a 
high temperature until a series of measurements at different 
probe temperatures was finished. The influence of the residual 
gases on the probe work functions had been found before to be 
always small compared with the influence of oxygen. 

Figs. 3 and 4 show the work functions of the tungsten and 
rhenium probe respectively in Rasor-Warner diagrams. All data 
of Figs. 3 and 4 were taken at a constant T_ = 120 °C, para
meter is the cesium oxide temperature Tr ., . For comparison 
some theoretical Rasor curves are shown, too. The glass wall 
of the measuring tube was always held at the temperature of the 
cesium oxide reservoir, therefore the data at higher Trs_0xide 
had to be corrected for the additional electron emission at 
high wall temperatures as mentioned above. But that correction 
was only small (<0.02 eV) because the probe emission at higher 
T_, _ . , was much larger than without cesium oxide so that 
the additional electron emission was only a small percentage 
of the probe emission at high cesium oxide temperatures. 

Discussion 

The work functions without cesium oxide follow quite well Rasor 
curves corresponding to the bare work functions of the probe 
materials. This agrees with the results of several other authors 
showing that there is no systematical error in our measurements. 
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In order to discuss the influence of oxygen one can roughly 
distinguish three ranges of Τ /T (note, that a variation of 
Τ /T means only a variation of Τ here, because Τ was held 
constant). 
a) Tp/Tcs > 5.5: 
In this range the probe surfaces are not yet noticeably covered 
with oxygen and cesium, therefore the work functions are nearly 
independent of T C s_ o x i d e and Tp/TCs. 

b) 4.0 < Tp/TCs < 5.5: 
In this range the probe surfaces are slightly covered with 
cesium. At a low oxygen coverage the work function at a certain 
T_/T_, decreases with increasing T_, . , . That is the expected P' Cs y Cs-oxide L 

behaviour. But there is a minimum value, above a certain 
Tr ., the work function becomes larger again (see Fig. 4, 
at T_/T^, > 4,5 the work functions at T_. . , = 400 °C are P' Cs ' Cs-oxide 
higher than the values at T _ ., = 300 °C). 

This behaviour can perhaps be explained in the following way: 
When the probe surface is only slightly covered with oxygen and 
cesium most of the adsorbed cesium particles are arranged around 
the oxygen particles. The adsorption energy of these cesium 
particles is enhanced by the oxygen particles and therefore the 
work function is the lower, the higher the oxygen coverage is. 
In this range of low oxygen coverage and low cesium coverage 
the 0 versus T /T -curves deviate from Rasor curves, because 
the adsorption energy of the cesium particles is mainly 
determined by the oxygen particles and not so much by the bare 
work function of the surface. 

When the oxygen coverage becomes too large the work function 
decrease, caused by the enhancement of the cesium adsorption 
energy, is overcompensated by the work function increase, 
caused by the oxygen particles. Therefore above a certain 
T n _ ., depending on TD/T_ the work function becomes higher 
L*S — O X 1 Q G ir V^S 

again with increasing T _ . , and reaches at last a satura-
V^o OJK. _L Cl S 

tion value, which is discussed in the following section. 
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c) Tp/TCs < 4.0: 
This is the range of interest for emitters of thermionic con
verters. The cesium coverage is rather high in this range, so 
that only some of the adsorbed cesium particles can be located 
in the neighbourhood of oxygen particles, while the adsorption 
energy of the remaining cesium particles is not enhanced by the 
adsorbed oxygen particles. Therefore in this range of high 
cesium coverage the work function is not so strongly influenced 
by oxygen as it is at a lower cesium coverage. At a certain 
Τ /T the work function decreases monotonically with increasing 
T., . , , there is no minimum value. Cs-oxide' 

The curves of different T^ ., approach with decreasing 
Cs-oxide ^^ ^ 

probe temperature (i.e. increasing oxygen coverage) a common 
"saturation curve", which is reached probably at a monolayer 
oxygen coverage. A very interesting fact is that the satura
tion curve follows again quite well a Rasor curve corresponding 
to a "bare work function" of about 5 eV for tungsten and about 
5.4 to 5.5 eV for rhenium respectively . That means, an emitter 
surface saturated with oxygen behaves with respect to cesium 
adsorption like a stable surface with a higher work function. 
But this new "bare work function" seems to be only a value 
determining the work function in cesium vapor and probably 
being different from the real work function of the same sur
face saturated with oxygen only, which Engelmaier and Stickney 
have found to be higher than 5.4 eV for several tungsten 
monocrystals 15 J 
The measurements reported here are limited to low pressures of 
cesium and oxygen, and therefore a high oxygen and cesium 
coverage could be realized only at probe temperatures much 
lower than the normal emitter temperatures in thermionic 
converters. There are other measurements, however, suggesting 
that the work function of a cesiated surface saturated with 
oxygen depends only on the Τ /T_, -ratio and not on the 
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absolute T and Τ . Fig. 5 shows again the work function of 
the tungsten probe as a function of Τ /T with Τ _ ., as 
parameter. The data were taken in the same way as before, the 
only difference to Fig. 3 is that Τ was held at 150 °C 
instead of 120 °C, so that a certain Τ /T corresponds in 

XT vO 

Fig. 5 to a higher Tp than in Fig. 3. Consequently at a cer
tain Τ /T a higher Τ _ ., is required to get saturation, 
but the saturation curve is the same in both figures. Lieb 
and Kitrilakis !7| determined the work function of a rhenium 
emitter in cesium and cesium oxide at Τ = 1650 °K and 
T0 = 513 °K (Τ„/Τ^ = 3.22). When T„ ., was raised in Cs P' Cs Cs-oxide 
steps of 50 °C the work function decreased monotonically but 
it seems to approach a saturation value. At T_ _ . , = 500 °C, 
the highest temperature used in that experiment, saturation 
was not yet reached, but by extrapolating the data to higher 
oxygen pressures, one can roughly estimate the saturation 
value to about 2.3 eV, which agrees well with the rhenium data 
in this paper (Fig. 4). So one can expect the saturation 
curves of Figs. 3 to 5 to be also valid for the normal Τ and 
Τ of emitters in thermionic converters. 

Conclusions 

From the foregoing discussion one can predict in general the 
largest possible effect of oxygen additives on the emitter 
work function in thermionic converters. Oxygen additives can 
at best (i.e. at a sufficiently high oxygen pressure) shift 
the 0 versus T„/T_, -curve from the clean surface curve to a 

L· CS 
new Rasor curve corresponding to a "bare work function" of 
about 5.0 eV for polycrystalline tungsten and about 5.4 to 
5.5 eV for polycrystalline rhenium respectively. A higher 
oxygen pressure does not further lower the cesium pressure, 
which is required to reduce the emitter work function to a 
certain value. 
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One can expect, however, that high work function emitters as 
for example W-110 will also get a still higher "bare work func
tion" by oxygen additives. So the lowest possible cesium 
pressure in a thermionic converter can probably be realized 
by using high work function emitters and additives. 
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DISCUSSION 

Speaker of paper K-12: R. LANGPAPE. 

GYFTOPOULOS (USA): There is not necessa r i ly a unique corre la t ion b e 
tween the oxide t empera tu re and the oxygen p r e s s u r e , seen by your probe . 
Is that your explanation? 

LANGPAPE (Germany): No, that is not our explanation. We oxidized cesium 
in a ra ther high oxygen p r e s s u r e . In this way one gets severa l ces ium oxide 
compounds, so we expected to have a mixture of a l l ces ium oxygen com
pounds. If at higher ces ium oxide t empera tu re s some compounds change 
part ly into other ones, only the enr ichment of the different compounds 
changes. So I think in all the measu remen t s we had quantities of each com
pound p resen t . 

GYFTOPOULOS: It is not a ma t t e r of changing your compound, but r a the r 
changing the relat ive par t ia l p r e s s u r e of each one of the specific compounds. 

LANGPAPE: Yes, but the par t ia l p r e s s u r e depends on the compound and 
on the t e m p e r a t u r e . Of course , by changing the t empera tu re -we change the 
oxygen p r e s s u r e but we think we changed it monotonically and there is not 
a s tep. The step would only a r i s e if one compound would completely d i sap 
pear or a new one would be genera ted . 

MUZ (Germany): Did you find decomposit ion of ces ium oxide and could the 
oxygen have affected your p lasma and thus give r i se to the l imitat ions you 
repor t ? 

LANGPAPE; We did not investigate this point but we expect that we a l 
ways had pure oxygen on the surface . That i s , the oxygen is provided by 
decomposition of ces ium oxide. But the oxygen p r e s s u r e was low, below 

— 8 10 T o r r , therefore we don't, think that the oxygen has any influence on 
the p lasma. 

RASOR (USA): At the 1966 Thermionic Conversion Special is t Conference, 
Mr. GAMMEL and I presented an analysis of the effect of electronegat ive 
adHitives on the 'work function of cesiated surfaces , based essent ia l ly on 
the two-dimensional Saha-equation. The analysis predicted a behavior 
which is very s imi la r qualitatively to that which your data show. In p a r t i 
cular , the depar ture from the Cs-only behavior at T / T c£ 3.5 is cons i s -
tent with the onset of dissociat ion of the adsorbed Cs_0 molecule , and the 
disappearance, of this deviation at high oxygen coverage is consistent with 
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the equilibrium being driven back toward the associated s tate . Did you 
apply the resu l t s of this analysis to your data? 

LANGPAPE: We realized these facts and our intention was to apply your 
theory to our measu remen t s . Unfortunately t ime was too short , these a r e 
very recent data, and therefore we could not do it before, this conference. 
But of course we will t ry to apply this theory to our data. 



K-13 

A CRITICAL EXPERIMENT ON THE NATURE OF .AD
SORBED CESIUM FILMS 

E. MUZ 
( Ins t i tu t für Gasentladungstechnik und 
Pilotoelektronik, Universität S tu t tgar t , 

Breitscheidstraáse 2 (Germany) 

Abstract 
Adsorption of alkaline metals on high work function metals in
volves charge transfer from the adsórbate to the substrate.' 

Ό In the model proposed by Levine and Gyftopoulos the space 
average of charge distribution is taken to account for the 
amount of charge transfer, assuming there is no difference in 
energy for an electron being inside or outside the surface of 
the substrate. 

2) In Rasor's J model the charge distribution is assumed to be 
determined by a difference in energy for an electron being in
side the metal substrate or at the ion core of an adsorbed 
species. 
In order to check these assumptions, the photoelectric emission 
of polycrystaline Mo was measured as a function of coverage 
with Cesium. 
Two selective photoelectric humps could be detected for 9>0.5 
and were separated from the normal photoemission of the sub
strate by means of Fowler's theory. The energy of the electron 
emitting states, as deduced from the spectral distribution, 
varies as a function of coverage. 
Thcr.̂ h no precise determination of the energy levels involved 
is possible, as nothing is known about exitation probabilities, 
one of the selective humps shows a variation in energy in 

p") accord with the theories of Rasor J and the author. 
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Introduction 
Adsorption of alkaline metals on high work function metals 
usually involves charge transfer from the adsórbate to the 
substrate. In order to calculate the work function change 
caused by adsorption it is necessary to make assumptions 
about the charge distribution in the surface layer. In the 

1") model proposed by Gyftopoulos ' and Levine the adsorbed 
particles are assumed to be partly ionisized. Thus a space 
average of charge distribution is deduced from the time 
average. 

2) In Rasor's J model the charge distribution is assumed to be 
governed by the difference in energy for an electron being in
side or outside the metal surface. The question arises, whe
ther this energy difference has a sound physical base and 
can be measured experimentally. It was attempted in this work 
to solve this problem by photoelectric measurements. 
Theory 
The relation between the adsorption'energy for atoms qQ, for 

3. 
ions q., the work function of the substrate e0 and the ioni
sation potential J of the adsórbate was first deduced by 

3) ° 
Schottky^y and reads: 

qa = q± + e0 - JQ (1) 
Applying this equation to adsorption, one assumes, that 1here 
is no energy difference for an electron being inside the me
tal surface or in the potential well of an adsorbed ion. 

Zi S M. von Laue ' showed that this" is true for condensation of 
vapor on the bulk material. If there is a difference, the 
energy to move an electron from the metal to an adsorbed ion 
has to be added to (1): 

qa = q± + e0 - J0 - qR (2) 
Now the following energy cycle can be considered: 
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Bring a neutral atom to the surface. The same state can be 
achieved by ionisation of an atom in the gas phase. Let the 
ion be adsorbed and let the electron recombine directly with 
the adsorbed ion core. The energy gained by this recombina
tion process would correspond to the activation energy J , , 
necessary to bring an electron from a neutral atom in the 
adsorbed state into free space. If the energy relation 

q = q . - J +J-U (3) 
Ha Hi o ph w y 

is combined with (2) one yields 
J
Ph = e0 - qH W 

In the experiments described in the next sections it is tried 
to measure e0 and J , simultaneously and thus determine qR. 
Experimental Tube 
In a tube made of pyrex glass a Tungsten wire of 0.2 mm'dia
meter is mounted in the center of two concentric Ta cylinders 
(Fig. 1). Each of the cylinders has. a horizontal slit. In 
front of the outer slit the target, a very thin rod of poly
crystalline Mo is mounted, which is guarded by two concentric 
electrodes. Through a slit in one of the guard electrodes a 
well defined area of the target can be covered by Cs by means 
of a Gs-beam. This area can be viewed through a quartz window. 
The work function can be evaluated from retarding potential 
measurements with electrons emitted by the W-wire. The 

-9 pressure in the tube was below 5 * ̂ 10 Torr. 
Experimental Procedure 
The idea was to measure the spectral distribution of the pho
toelectric emission and the work function as a function of 
Cesium coverage. Probably because of surface migration and 
the influence of residual gases, reproducible results could 
not be obtained in steady state due to long time changes in 
work function and photoelectric emission^'. Therefore, the 
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Cesium arrival rate to the target was calibrated by surface 
ionisation and the work function decrease caused by adsorp-

-10 tion was measured by a dc electron current of 10 A. The 
result is given in Fig. 3. For the measurement of the photo
electric effect, the electron current for a small interval 

— 1 "*i 

of wavelength (ac-current in the range of 10 -\A.) was plotted 
simultaneously together with the course of work function on 
a two channel plotter. Thus the long time drift of Cesium 
arrival rate could be eliminated. The photoelectric yield for 
360, 370, ..., 800, 850 nm was obtained as a function of 
coverage. 
Experimental Results 
From the above described experiment, the spectral photoelec
tric yield can be computed for any degree of coverage. Apply
ing Fowler's theory of the photoelectric emission from metals, 
that part of electrons coming from the base metal can be 
evaluated. Comparing this to the experimental curves, two 
selective photoelectric humps can be detected. This is shown 
in Fig. 2. These humps appear at θ = 0.4·, where they are very 
weak. They both are shifted to lower energies for increasing 
coverage. For θ * 1 they start to go towards higher energies. 
At 0 > 3 only one selective hump is left, which corresponds to 
the well known selective hump for thin alkaline metal films. 
Although not much can be said about the activation.probabili
ty for electrons from adsorbed atoms, the energy levels can 
be estimated. The energetic levels thus computed for the two 
selective humps (1 and 2) from the experiments are shown in 
Fig. 4- as a function of coverage. In addition, the work func
tion as evaluated from retarding potential measurements (so
lid line) and the photoelectric work function (circles) are 
compared. Clearly the long wavelength peak can be energetical
ly attributed to a process as described by Equation (4). 
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Summary 
Photoelectric measurements have been performed at cesiated 
Mo. There can be no doubt that additional electron levels at 
the surface of the base metal are formed by Cs adsorption, 
which are at least partly filled with electrons for θ > 0.4. 
No final decision can be deduced, however, as far as the 
energy difference between an electron i η side or outside "che 
substrate surface is concerned. The results seem to compare 
more favorably with Rasor's theory for G C 0.7, for Q > 0.7 
with the theory of Gyftopoulos. No theoretical model can be 
given at the time for the second selective emission peale. 
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DISCUSSION 

Speaker of paper K-13: Ε . MUZ. 

RASOR (USA): This is addressed both to you and Dr . GYFTOPOULOS. This 
selective photo-e lect r ic effect which you observe is what you would expect 
from a two-state or mul t ip le-s ta te adsorption. Now, the question i s , is there 
anything charac te r i s t i c of the molecular - type adsorption theory that would 
give a s imi la r behaviour? This would seem to be a sensit ive cr i t ica l tes t 
of the two theor ies . 

MUZ (Germany): The exper iments in fact indicate two states of an adsorbed 
Cs -pa r t i c l e , for 0 K. 0. 7. This can be deduced from the variat ion of the low 
energy selective peak, which is in accordance with your theory. 

WARNER (USA): How do your m e a s u r e your coverage? 

MUZ: The procedure of measur ing the degree of coverage was as follows: 
The a r r i v a l ra te of Cs -a toms from a beam was measured by surface ioniza
tion. The photo-e lect r ic yield for a selected wavelength was plotted together 
with the course of work function ve r sus increasing coverage. 

MASKEVITCH (USSR): How did the polycrystal l ine charac te r of the tungsten 
filament influence the resu l t s of the m e a s u r e m e n t s ? 

MUZ: The filament to be measured was made of polycrystal l ine molybdenum. 
Before the exper iments have been performed, the Mo-rod was thermal ly e t 
ched, so that the surface showed very large g ra ins . A post mor t em analysis 
showed, that probably only one grain was involved in the m e a s u r e m e n t s . 
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ETUDE AU MICROSCOPE A EMISSION DE SURFACES REFRACTAIRES 

EN PRESENCE DE VAPEUR DE CESIUM 
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Résumé 

Pour é t u d i e r l ' é m i s s i o n é l e c t r o n i q u e ou i o n i q u e d ' u n e s u r f a c e m é t a l 

l i q u e p longée dans une v a p e u r de c é s i u m , nous avons u t i l i s é une o p t i q u e 

é l e c t r o s t a t i q u e ( o b j e c t i f à i m m e r s i o n ) . Nous avons f a i t des mesures de 

c o u r a n t é l e c t r o n i q u e s u r d i v e r s é m e t t e u r s ( p o l y c r i s t a l de m o l y b d è n e , mono

c r i s t a l de t u n g s t è n e ) en p r é s e n c e ou non de v a p e u r de c é s i u m . En a n a l y s a n t 

à l ' a i d e d ' u n p h o t o m u l t i p l i c a t e u r l ' i m a g e o b t e n u e s u r l ' é c r a n , nous avons 

d é t e r m i n é l e p r o f i l du p o t e n t i e l de s o r t i e p r é s e n t é p a r une s u r f a c e p o l y 

c r i s t a l l i n e . 

Lors d ' u n e é t u d e q u a l i t a t i v e de l ' é m i s s i o n i o n i q u e , nous avons pu 

o b t e n i r une image é l e c t r o n i q u e e t une image i o n i q u e de l a même s u r f a c e 

e m i s s i v e pou r des c o n d i t i o n s e x p é r i m e n t a l e s i d e n t i q u e s . 

1  O p t i q u e é l e c t r o s t a t i q u e 

L ' o b j e c t i f à immersion e s t s o i t du type S e p t i e r / l / à deux é l e c 

t r o d e s ( g r a n d i s s e m e n t f i x e p o u r des d i s t a n c e s i n t e r é l e c t r o d e s d o n n é e s ) , 

s o i t du t ype J o h a n s o n à t r o i s é l e c t r o d e s ( g r a n d i s s e m e n t v a r i a b l e de 40 

à 1 2 0 ) . 

Pour l ' o b s e r v a t i o n des images i o n i q u e s , ' i l s u f f i t d ' i n v e r s e r l a 

p o l a r i t é des t e n s ions a p p l i q u é e s aux é l e c t r o d e s ; t o u t e f o i s , pou r é v i t e r 

l a d é t é r i o r a t i o n de l ' é c r a n , nous u t i l i s o n s un c o n v e r t i s s e u r d ' i m a g e : 

une g r i l l e en c u i v r e , à m a i l l e f i n e (30 μ) émet des é l e c t r o n s s e c o n d a i r e s 

sous l ' e f f e t des i m p a c t s i o n i q u e s 111. 

2  I n j e c t i o n de l a v a p e u r de cés ium 

Une r é s e r v e de cé s ium l i q u i d e e s t r a c c o r d é e à une vanne m é t a l l i q u e , 

l ' e n s e m b l e e s t p l a c é dans une e n c e i n t e t h e r m o s t a t é e ( s t a b i l i s a t i o n à + 1 °C), 

La v a p e u r de cés ium e s t é j e c t é e s u r l ' é m e t t e u r p a r un c a p i l l a i r e de d i amè

t r e 1 mm p e r c é dans l e c o r p s du w e h n e l t e t i n c l i n é à 60° p a r r a p p o r t à 

l ' a x e o p t i q u e / 3 / . Le c a l c u l des c o n d u c t a n c e s ( e f f e c t u é en régime m o l é c u 

l a i r e ) pe rmet de r e l i e r l e f l u x d ' a t o m e s n e u t r e s ua tombant s u r l ' é m e t t e u r 
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au flux moyen dans le r é s e r v o i r de césium, c ' e s t - à - d i r e finalement à 
sa température T : i l e s t a l o r s poss ib le d ' i n t r o d u i r e une température 
équ iva len te Tc dé f in ie comme la température d'un r é s e r v o i r de césium 
l iqu ide en é q u i l i b r e avec sa vapeur où le flux a la va leur μα. E l le 

T = T. / (1 t- 4 .10" 4 . τ ) 
cs R R 

3 - Mesure de la température d 'émet teur Ύγ -

L'émetteur e s t chauffé par bombardement é l e c t r o n i q u e . I l e s t néces
s a i r e de connaî t re sa température avec une bonne p réc i s ion pour l ' é v a l u a 
t ion du p o t e n t i e l de s o r t i e . Nous employons deux méthodes dont les r é s u l 
t a t s sont concordants : par un thermocouple p l a t i n e - p l a t i n e rhodié logé 
dans la masse de l ' é m e t t e u r , par pyrométrie optique dans un trou (tempera
ture du corps n o i r ) . 

4 - Mesures d 'émission é l ec t ron iques -

La dens i t é du courant émis J e s t évaluée en mesurant le courant 
tombant sur l ' é c r a n (gamme de mesure 2 . 1 0 - ' ' A à 10~3 A). 

Pour f a i r e v a r i e r le taux de recouvrement en atomes de césium, nous 
opérons à température de r é s e r v o i r de césium fixe e t seule le température 
de l ' é m e t t e u r e s t v a r i a b l e . 

4 . 1 . Molybdène p o l y c r i s t a l l i n -

La f igure 1 rassemble les r é s u l t a t s expérimentaux obtenus sur deux 
é c h a n t i l l o n s . La concordance avec les mesures de R.G. WILSON Iki e s t 
bonne. Cependant, i l faut remarquer que le p o t e n t i e l de s o r t i e moyen dans 
le vide e s t vo i s in de 4,55 V, a l o r s que la va leur couramment admise e s t 
de 4,40 V : c e t t e d i f férence e s t sans doute due à une contamination de 
la surface par des t r aces d'oxygène ( le vide dans l ' e n c e i n t e e s t vo i s in 
de 5.10~7 Tor r , mais la température Tg e s t i n s u f f i s a n t e pour empêcher 
l ' a d s o r p t i o n d 'oxygène) . 

Cet te contamination par l 'oxygène e s t vraisemblablement responsable 
également des débordements vers les p o t e n t i e l s de s o r t i e i n f é r i e u r s à 1,6 V. 

D 'au t re p a r t , l ' a p p a r i t i o n de décharges dues à la présence de 
césium l imi t e la dens i t é de courant observable aux environs de 10"-* A/cm . 

Nous avons évalué indi rec tement le courant émis par chaque c r i s t a l 
é lémenta i re en mesurant la luminosi té de la por t ion d 'éc ran correspondante 
avec un p h o t o m u l t i p l i c a t e u r . Si on dispose d e r r i è r e c e l u i - c i un ampl i f i ca 
t eu r logar i thmique , on o b t i e n t un s igna l p ropor t ionne l au p o t e n t i e l de 
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s o r t i e . La c o r r e s p o n d a n c e c o u r a n t - l u m i n o s i t é é t a b l i e à l ' a i d e d ' un mono
c r i s t a l nous a pe rmis de s u i v r e l ' é v o l u t i o n du p o t e n t i e l de s o r t i e de 
q u e l q u e s g r a i n s en f o n c t i o n du r ecouv remen t en cés ium ( f i g u r e 2 ) . 

4 . 2 . Tungs t ène o r i e n t é 1 . 1 . 0 . -

Nous avons é t u d i é l ' é m i s s i o n d ' un m o n o c r i s t a l 1 . 1 . 0 . ( d é s o r i e n - t a -
t i o n i n f é r i e u r e à 4 " ) . Les mesures du p o t e n t i e l de s o r t i e dans l e v i d e 
o n t f o u r n i la v a l e u r de 5 ,28 V en e x c e l l e n t a c c o r d a v e c l a d é t e r m i n a t i o n 
de WEBSTER / 5 / . 

La courbe de l a f i g u r e 4 r e p r é s e n t e l a v a r i a t i o n du p o t e n t i e l de 
s o r t i e en f o n c t i o n du r a p p o r t T,,/T 

E cs 
Le minimum se s i t u e à 1,60 V en bon a c c o r d avec l e s r é s u l t a t s 

de GAVRILYUK V.M. Ibi. 

5 - Emiss ion i o n i q u e -

5 . 1 . O b s e r v a t i o n d ' i m a g e s i o n i q u e s 

L ' o b s e r v a t i o n d ' u n e image i o n i q u e e s t d i f f i c i l e : l e c o u r a n t 
maximum a d m i s s i b l e dans l ' o p t i q u e sans que l e phénomène de c h a r g e d ' e s p a c e 
ne d e v i e n n e gênan t è s t 500 f o i s p l u s f a i b l e avec des i o n s Cs q u ' a v e c un 
f a i s c e a u d ' é l e c t r o n s . I l n ' e x i s t e pas d ' é c r a n f l u o r e s c e n t c o m p a t i b l e a v e c 
un f a i s c e a u é l e c t r o n i q u e ou un f a i s c e a u i o n i q u e . L ' u t i l i s a t i o n d 'un con
v e r t i s s e u r i o n - é l e c t r o n permet d ' o b t e n i r des images r é p l i q u e s de l ' é m i s 
s i o n i o n i q u e , mais empêche t o u t e mesure d i r e c t e . 

La f i g u r e 3 montre deux p h o t o g r a p h i e s de l ' é c r a n q u i o n t é t é o b t e 
nues en i n v e r s a n t la p o l a r i t é des t e n s i o n s : on y remarque une i n v e r s i o n 
complè te du c o n t r a s t e , conformément aux r é s u l t a t s donnés p a r l a l o i de 
SAHA-LANGMUIR. 

Les p h o t o g r a p h i e s de l a f i g u r e 5 m o n t r e n t l ' a s p e c t de l ' é m i s s i o n 
i o n i q u e à f l u x de cés ium c o n s t a n t , quand l a t e m p é r a t u r e d ' é m e t t e u r d é c r o i t , 
On peu t r e m a r q u e r l e s p o i n t s s u i v a n t s : 

- A température élevée (photo a ) , l ' i o n i s a t i o n e s t prat iquement 
complète e t indépendante du p o t e n t i e l de s o r t i e , ce qui rend l ' émis s ion 
uniforme. 

- I l e x i s t e un domaine de températures extrêmement é t r o i t (5°) 
où l ' émis s ion ionique p résen te une t r a n s i t i o n b r u t a l e (photo c ) . 

- Le c o n t r a s t e n ' a p p a r a î t e n t r e les d i f f é r e n t s g ra ins que lorsque 
le taux d ' i o n i s a t i o n e s t i n f é r i e u r à 10~2 environ (photos d e t e ) . 
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5 . 2 . Mesures d ' é m i s s i o n i o n i q u e 

En s u p p r i m a n t le c o n v e r t i s s e u r i o n s - é l e c t r o n s , nous pouvons m e s u r e r 
le c o u r a n t i o n i q u e ( s a n s f o r m e r d ' i m a g e v i s i b l e , l ' é c r a n f l u o r e s c e n t é t a n t 
r e c o u v e r t d ' une couche c o n d u c t r i c e opaque aux i o n s l o u r d s ) . 

Nous r e p l a ç a n t dans l e s mêmes c o n d i t i o n s e x p é r i m e n t a l e s , nous avons 
pu t r a c e r l a courbe de l a f i g u r e 5 e t y s i t u e r l e s d i f f é r e n t e s images 
i o n i q u e s . 

On y remarque l a t r a n s i t i o n c o r r e s p o n d a n t à l a p h o t o g r a p h i e c . 
Son o r i g i n e e s t s ans dou te l ' h y s t é r é s i s d ' é m i s s i o n i o n i q u e d é j à r e n c o n 
t r é p a r d i f f é r e n t s e x p é r i m e n t a t e u r s / 4 / , 111. 

6 - C o n c l u s i o n -

Le m i c r o s c o p e à é m i s s i o n nous a pe rmis de f a i r e des mesures d ' é m i s 
s i o n é l e c t r o n i q u e en p r é s e n c e de v a p e u r de cés ium e t de r e t r o u v e r des r é 
s u l t a t s o b t e n u s p a r d ' a u t r e s m é t h o d e s , t o u t en f o u r n i s s a n t une image de 
l ' é m e t t e u r , ce q u i e s t p a r t i c u l i è r e m e n t u t i l e dans l e cas d ' u n p o l y c r i s t a l , 

Nous pouvons éga l emen t f a i r e des mesures d ' é m i s s i o n i o n i q u e dans 
l e s mêmes c o n d i t i o n s , ce q u i pe rmet de v é r i f i e r l a r e l a t i o n de SAHA-
LANGMUIR. 
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FIG.1- EMISSION ELECTRONIQUE RELEVEE AU MICROSCOPE 

POUR UN POLYCRISTAL DE MOLYBDENE 
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Fl6.2 - POTENTIEL DE SORTIE D'UN POLYCRISTAL 
DE MOLYBDENE EN PRESENCE DE CESIUM ( Tr =345eK ) 
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FIG.5 - EMISSION IONIQUE D'UN POLYCRISTAL 

DE MOLYBDENE EN PRESENCE DE CESIUM (TCS=338°K) 
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SURVEY OF EXPERIMENTAL WORK IN THE USSR 

by Yu. L. DANILOV 

I have been asked, in addition to the p rog ra m, to say a few words about 
some of the exper imenta l work that has been done by Soviet sc ient is ts and 
engineers and about the work now being done. In the Soviet Union, we have 
the viewpoint that the possibi l i ty of setting up thermionic r e a c t o r s of a smal l 
power output from 5 to 50 kW has been shown and we can a l ready begin to 
develop such r e a c t o r s . This development has a l ready been s ta r ted . F o r high 
power r eac to r s there a r e many difficult p rob lems to overcome, but we feel, 
that thermionic r eac to r s a r e promis ing for the future for space power and 
for other pu rposes . F o r this reason we a r e carry ing out work concerning 
these high power devices . Work is proceeding along these two l ines . On the 
one hand, we a l ready have some applied r e s e a r c h that is d i rec ted toward 
setting up such smal l power r e a c t o r s . In addition, we a r e a lso studying the 
scientific and technical p roblems connected with the high power r eac to r s of 
a few megawatts of e lec t r i ca l power. These two t rends a r e represen ted in 
the papers that have been submitted to the conference, but the high power 
r eac to r s have not yet been d i scussed fully. 

What pa r t i cu la r questions a r e being studied and how is our work proceeding 
in the Soviet Union? 

F i r s t , we a r e trying to optimize the design p a r a m e t e r s of the r e a c t o r s . We 
a re varying the lat t ice p a r a m e t e r of the r e a c t o r s , the d i ame te r s of the 
thermionic e lements , the number of e lements , the height and length of the 
core and we a r e also varying the sys tem p a r a m e t e r s . Second, we a r e study
ing the heat exchange p r o c e s s e s in the r eac to r and a r e considering ways to 
dec rease the use l e s s pa ras i t i c heat l o s s e s . Third, we a r e trying to es t imate 
the construction var ia t ions with r e spec t to neutron phys ics , taking into a c 
count complications of the physical a s s e m b l i e s . Over the past few y e a r s we 
have investigated some 10 model a s sembl ie s of different design. Four th , 
we a r e carrying out optimization studies and we a r e working on a la rge range 
of quest ions, for example, the physical c h a r a c t e r i s t i c s , the question of com
patibility in the r e a c t o r s , and technological c h a r a c t e r i s t i c s . 

Fo r the t ime being,, we a r e not investigating very much the cost question. 
We a re a lso trying to dec rea se the fuel content in the r e a c t o r s and a r e d e t e r -
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mining what the optimum figures will be, by decreas ing the number of a b 
sorbing substances in the core and by introducing modera to r s in the co re . 
In the smal l sized r eac to r s we have not succeeded in getting the neutrons we 
wanted. But in getting the in termediate energy neutrons^ we have had m o r e 
succes s . We a r e fur thermore studying the var ious non-s ta t ionary p r o c e s s e s 
which can occur in the operation of the r eac to r . I 'm thinking of the the rmal 
p r o c e s s e s , in connection with the heat iner t ia and also sudden changes of the 
e lec t r ica l p a r a m e t e r s , that i s , the change of the I-V cha rac te r i s t i c s during 
operat ion. The la t ter is connected with the study of the effect on the device 
design and on possible fai lures in the overal l sys tem. In this respec t we 
have been studying very carefully the question of rel iabil i ty, so there will be 
no failure of the r eac to r . Our engineers and scient is ts have been working 
very carefully on optimizing the p r o g r a m s of ground tes t s not only with the 
var ious p a r t s , but with the reac tor as a whole, so with a smal l number of 
t es t s we can obtain rel iable objective representa t ive information. 

Naturally, we have also been studying cha rac te r i s t i c s and design poss ib i l i 
t ies on thermionic r eac to r e lements . Our scient is ts of the conference have 
on a number of occasions during the conference drawn attention to the ques 
tions why the Soviet Union have not shown the resu l t s of thei r in-pile t e s t s . 
In this connection I would like to make a comment. We have been carrying 
out these in-pile t es t s for over seven y e a r s . At the London Conference a 
summary paper was read and we spoke about the tes t s in the r eac to r with 
the s e r i e s connected th ree -e l emen t thermionic conver te r . By that t ime we 
had ca r r i ed out some 10 in-pile t e s t s . Over the past 3 y e a r s , we have made 
more than 15 in-pile exper iments . At the present t ime these exper iments 
a r e sti l l continuing. It should be pointed out par t icu lar ly that all these tes t s 
a r e not exper iments that can be repor ted . 

Very ser ious work is being done now according to a specific scientific p r o 
g ram. This p rogram is not yet completed, it is still underway. And when 
the organizing Committee of the Soviet Scient is ts , belonging to the Academy 
of Soviet Scient is ts , selected the papers for this conference, they did not 
think it was necessa ry to speak about work that is not yet completed. 

Never the less , what can be said concerning the final resu l t s of these expe r i 
men t s? In our country, the problem was set at the f i rs t stage, which was 
confirming the efficiency, the working capacity of thermionic e lements for 
a test period of 1, 000 hours to 4, 000 hours . We did not wish to go further 
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than this t ime period in the f i rs t s tage. We think that going by the r e su l t s 
of these t e s t s we may consider it demonst ra ted that smal l power e lements 
a r e workable . I 'm thinking of e lec t r i ca l power density of 2 to 6 Wat t s / cm . 
This working ability has been shown in exper iments , using 800 or 1, 000 
hours or 1, 200 hours or 1, 500 hour s . As I said, there have been 15 of these 
exper iments . Unfortunately, as in the case of the Amer ican sc ient is ts and 
among European sc ien t i s t s , many of the exper iments in our country were 
in terrupted not because of the thermionic conver te r , but because of the 
fai lures in the exper imenta l se t -up; the channels were no longer, he rmet ic 
in some cases and in other cases the re were other p rob l ems . However, an 
examination of the e lements that were opened in the ho t - l abora to r i e s have 
shown that the emi t te r and the col lector , the connections and insulation e l e 
ments a r e in a good condition, work well and could continue to opera te . We 
have also c a r r i e d out some tes t s of cer ta in s e r i e s connected conver te r s in 
a r eac to r and we have evera reason to believe that for smal l powers the 
se r i e s connection inside the r eac to r is fully rea l i s t i c and workable . 

The exper imenta l work on the r e a c t o r s is being ca r r i ed out in the Phys ica l 
and Energet ic Institute in Obninsk and also in the Atomic Energy Institute 
named after I .V . Kurchatov, in Moscow, At the p resen t t ime we have p r e 
pared a number of other in-pi le exper iments in r e a c t o r s of the Academy 
of Sciences of the Constituent Republics of the USSR. As is known, these 
r eac to r s a r e very s imi la r in many ways to the I s p r a - I r eac to r . This work 
is going to get underway very soon and as I a l ready pointed out we have very 
detailed r e s e a r c h plans in view; our sc ient i s t s and engineers believe in the 
supcess of setting up a thermionic r eac to r of this type. 
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DISCUSSION 

Speaker of invited contribution "Survey of Exper imenta l Work in the USSR": 
Yu. L. DANILOV. 

HATSOPOULOS (USA): At the beginning of your talk Prof. DANILOV, you 
mentioned that you work in two a r e a s . Small r eac to r s and large r e a c t o r s . 
May be I have misunderstood the t ransla t ion, but I believe I heard that you 
said that the smal l r eac to r s have a l ready been built. Is that co r rec t or did 
I mi s in t e rp re t the t rans la t ion? 

DANILOV (USSR): If these r eac to r s were built, then we would be able to 
tel l you of our findings. At the p resen t t ime we a r e working on the setting 
up and the engineering of these r eac to r s and in a few yea r s we shall have 
our findings to repor t on. 

HOWARD (USA): Could you tel l us the general type of design of reac to r , 
both for the smal l power and for the large power model . In other words do 
you have one cell that goes the whole length of the reac to r , do you have 
them broken up, do you have the modera to r on the outside or the inside; is 
it a t he rma l r eac to r , or a fast r e a c t o r ? 

DANILOV: I could answer the question in this way. The opinion of our scien
t i s t s i s , that a high capacity r eac to r of a few megawatts could be built only 
for fast neut rons . In view of the very high t empera tu re , the modera tor 
r equ i res c a r e . At this t empera tu re it is no't possible to use a hydride mode
r a to r . But we have not yet made our final choice. We a re working on seve
r a l var ia t ions for our type of r eac to r and the neutron physics tes ts have 
shown us that a high capacity r eac to r could be built with a modera tor with 
hydride of severa l me ta l s , but how this is going to be in prac t ice when you 
have your working t empera tu re so high we do not yet know. 

Now, for the smal le r r eac to r we have not yet selected the type and we a r e 
working on severa l configurations. In this case it appeared that hydrides of 
different meta l s can be used as a modera to r . We a r e looking at this case 
but in p rac t ice it has not yet been shown feasible. 

HOWARD: The second half of the question was on the geometry of the r e a c 
to r . 

DANILOV: We had considered a reac to r the geometry of which would be cy
l indr ical , with the thermionic conver te r s -within the core . The cubic type 
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repor ted by Dr. NEU we had not thought of, perhaps a failure on our pa r t . 

SCHOCK (USA): In your talk you mentioned that during the past year you 
had ca r r i ed out neutronic studies on ten model a s sembl ie s of different d e 
s igns . The phrase used is somewhat ambiguous in English, since it could 
refer e i ther to theore t ica l nuclear ana lys is , or to what we call ze ro-power 
c r i t i ca l assembly exper iments . In which sense did you employ the p h r a s e ? 

DANILOV: What I had in mind were neutron physical a s sembl i e s or mock-
ups . And we a r e modelling with the relevant engineering m a t e r i a l s : a c r i t i 
cal m a s s of the fission m a t e r i a l s , the s t ruc ture m a t e r i a l s , the modera to r , 
e tc . It is not a p rac t ica l construct ion, but it has the physical and the dyna
mic p roper t i es of a rea l r e ac to r . In cer ta in cases we have determined the 
the rmal capacity and the the rma l react ivi ty . 

SCHOCK: You mentioned that you had ca r r i ed out exper iments on t h r e e -
element conver ter a s s e m b l i e s . P resumably , these used a ce ramic insula
ting layer between the 3 col lec tors and the outer sheath. Was a voltage 
applied a c r o s s this insulator during the t e s t s , or was it mere ly subjected 
to the 1. 5 to 2 volts generated by the diodes? 

DANILOV: The tes t was performed in-pi le , using only the e l ec t r i ca l poten
tial as provided by the conver te r itself. Testswith applied voltage were done 
out-of-pi le . So far as I r e m e m b e r the applied voltage during the out-of-pile 
tes t a c r o s s the insulator was about 50 to 100 Volts. 

SCHOCK: Of the 15 exper iments you repor ted in your talk, how many were 
in-pi le , and what fuel composit ions were used? 

DANILOV: Actually there were more than 15, perhaps 16 or 17 exper iments 
were ca r r i ed out in the r eac to r . I do not have the s ta t i s t ica l account h e r e . 
I cannot speak in detai l of the fuel composition in each tes t because, I do 
not have the relevant information with m e . In many channels the fuel was 
uranium dioxide; but I can not go into further detai l about that. 

EINFELD (Germany): At the las t Geneva Conference on Peaceful Uses of 
Atomic Energy, you have presen ted the "Romaska" reac to r and I 'm wonder
ing whether this r eac to r is st i l l in considerat ion for use together with t he rm
ionic conver te r e lements . 

DANILOV: It is one of the var ian t s of r eac to r s that we a r e working on, one 
of seve ra l . As I a l ready repor ted to this distinguished assembly , we have 
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not yet made our final choice and I s t r e s s we have not yet completed the 
t e s t s . But one of the var ian t s , the one that you mentioned, is one that we 
have worked on. 

VAN HOOMISSEN (USA): In the USA we ei ther contain fission product gases 
in fuel, vent them into the in tere lec t rode space, or vent them into a cavity. 
Which method of fission product accommodation is s t r e s sed in your work? 

DANILOV: We tested and experimented with all the possible var ian ts that 
you have mentioned. We did not succeed with high t empera tu re to re ta in the 
fission products within the cathode. Our scient is ts think that the fission p r o 
ducts should not be allowed to vent into the in tere lec t rode space because even 
if you vent the cesium mixture into the outer space it does not ent i rely save 
the situation. There a r e always f ragments , decay products , fission products 
that remain in the in tere lec t rode space and change the conver ter c h a r a c t e r i s 
t i c s . We think it is bet ter to el iminate the fission products through the heat 
conduct e lements or through special channels into outer space. 

GYFTOPOULOS (USA): In your r e m a r k s you mentioned how you will use 
nuclear fission as a heat source for thermionics . I wonder whether you also 
a r e considering radio- isotopes and if so, what is your experience with them. 

DANILOV: F o r a detailed r e s e a r c h on this application for thermionic conver
t e r s , we have had individual interest ing tasks that perhaps we could d iscuss 
separa te ly , but these resu l t s and findings that would be of in te res t is some
thing we do not have for discussion to-day. 

BUDNICK (Germany): Fo r smal l power r eac to r s you talked about m o d e r a 
ted r e a c t o r s . Was it co r r ec t that you a r e thinking of ep i thermal r e a c t o r s , 
that is r eac to r s which have an epi thermal neutron spect rum because they 
a r e only low-moderated? 

DANILOV: I have already explained that due to the limited dimensions and 
the high t empera tu res we were unable to completely modera te the r eac to r . 

RASOR (USA): Are the exper iments that you a r e conducting on the mock-ups 
as you call them directed towards the large reac to r sys tems or the smal l 
reac tor sys tems at p resen t? 

DANILOV: This physical experiment concerns a low power r eac to r . 

DAVIS (USA): Have you conducted studies on turbine plants with r e a c to r s , 
RANKIN-cycles and BRAYTON-cycles compared to thermionic plants for 
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space application and have you reached any p re fe rences at this t ime . 

DANILOV: In the project stage we had considered this but we have no final 
conclusions. Like the United States of Ame r i c a , we have some who a r e in 
favour of turbine r eac to r genera to rs and some who a r e in favour of the other 
type of genera to r s and of the the rmoe lec t r i c conver te r type. 

PRUSCHEK (Germany): During Session Β var ious thermionic r eac to r s y s 
t ems have been d iscussed . Did you take any design under considerat ion which 
differs basical ly from those of Session B? If so, would you please comment 
on i t? 

DANILOV: Pe rhaps we even had thought of a sma l l e r var ie ty than those d i s 
cussed in Session B. We have concentrated our efforts on the cyl indrical 
geometry reac tor with the thermionic element inside the r eac to r co re . 

NEU (Euratom): You mentioned the difficulties for the modera to r to operate 
at high t empera tu re . Did you not consider to cool the modera to r by a sepa
ra te cooling sys tem, that is operated at a sufficient low t e m p e r a t u r e ? 

DANILOV : Yes, of course we did think of that and many other var ian t s of 
that too. But you mus t understand our posit ion. It is neces sa ry to make a 
f irs t model of this type as s imple as poss ible , and then we can have addi t io
nal changes. If we want to add separa te cooling sys t ems , it is going to make 
the assembly more complicated and the earth-bound t e s t s we want to c a r r y 
out would be more complicated, to say nothing of what will happen if we get 
into space. And we do see very complicated things even with the beginning. 

HATSOPOULOS: I would like to ask a clarif icat ion. You r e fe r r ed severa l 
t imes to a cyl indrical type of r eac to r . Does it mean a fuel element where 
segments a r e stacked one on top of the o ther? This element we call the f lash
light type of element . Is that what you mean by cyl indr ical? 

DANILOV: Yes. Just that . I was thinking that the s imples t of al l in the f i rs t 
phase would be to have a r eac to r where the form of the r eac to r would be a 
cylinder, the can, and the thermionic e lements should be placed axially and 
would a lso be cyl indrical . 

HARBOUGH (USA): Have heat pipes been employed in your exper imen t s? 

DANILOV: I would have to say that we thought a low power r eac to r could be 
made without using heat p ipes . F o r this reason these heat pipes had not been 
considered. The work on them is being done separa te ly , from the reac to r 
work. The interest ing things we have heard here in Dr. NEU's repor t , un-
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fortunately we had not considered. 

VAN HOOMISSEN: In some of your designs do you have single emi t te r and 
collector e lec t rodes that run the full length of the reac tor co re? 

DANILOV: Yes. It is one of our ideas , and one of the designs that we a re 
studying. But it is not the only var iant . We a re very a t t rac ted by the one of 
a mul t i -conver te r element, but we a r e considering and studying that of one 
element for the whole length of the reac tor co re . 

HANSEN (USA): I understand that 5, 000 hours for a maximum lifetime of a 
conver ter was reported at London. Is this number bigger, now, three yea r s 
l a t e r ? 

DANILOV: I had spoken and par t icu lar ly s t r e s sed that our task in the f irs t 
phase was to study a duration of 1, 000 to 4, 000 hours . We understand that 
the further space task will, I 'm sure , require 8, 000, 9, 000, 10, 000 and 
more hours , but our task to begin with was simply in testing 1, 000, 1, 200, 
1, 500 hours and then longer t e s t s , but not up to 8, 000; we have not had that 
yet. 

UNGER (Germany): Are you using zirconium hydride or lithium hydride in 
your the rmal r e a c t o r ? 

DANILOV: I repor ted var ious types of hydr ides , hydrides of var ious me ta l s , 
including zirconium and li thium. 

UNGER: You said that you a r e studying the "Romas hka"type also as a heat 
source for thermionic conve r t e r s . Have you made cr i t ica l t e s t s or power 
tes t s together with thermionic conver t e r s? 

DANILOV: I ought to explain to the meeting that the "Romas hka"reactor, which 
works successfully, is a thermoelec t r ic one, not thermionic . It might be in
teres t ing to talk about "Romashka" but it is not the subject of this conference. 

SCHOCK: Have you ca r r i ed out any exper iments to determine the effect of 
i r rad ia t ion on insula tors , and if so what were the r e s u l t s ? 

DANILOV: Our detailed r e s e a r c h concerns the low power reac tor where the 
15 19 

integral flux of neutrons is 10 to 10 nvt. The radiation effect on the insu
la tor in these conditions is pract ica l ly non-existent and should not exist , be 
cause the ce ramics behave well under these flux. When we go up to the high 

21 , 22 
power, 10 and 10 nvt, then of course radiation damage will become a 
problem. 
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PANEL DISCUSSION 

" P r e s e n t and Future of Thermionic Energy Conversion" 

THE UNITED STATES' THERMIONIC PROGRAM 
Remarks by Dr. Gerald F . TAPE, Commiss ioner US Atomic Energy Com

miss ion . 

Mr . Chairman, Ladies and Gentlemen, 

My one r eg re t is that I was not able to join you at the f i rs t of this week. 
However, I did have a few minutes las t night to t ry to get up to date with 
some of your d i scuss ions . I cer ta inly have been a s su red , that it has been 
a mos t fruitful conference. 

I think in the few minutes which I talk to you this afternoon, I would like to 
add re s s some of the more genera l considerat ions , looking at how we in the 
US a r e trying to approach the p r o g r a m of the var ious sys tems of energy 
sources , and energy conver te r s and to see where the thermionic sys tem may 
fit in. To be sure this d iscuss ion emphas izes those aspec ts of the p rog ram 
that we know best and I am sure would be seen dif f e rently by other people. 
However, I would like to a s s u r e you as a m e m b e r of our Atomic Energy 
Commiss ion that the d iscuss ions and the work that will be touched upon he re 
r ep re sen t s a more genera l posit ion of the government including the AEC, 
NASA and the other e lements of the government involved in these cons ide r 
a t ions . 

The pr incipal r e m a r k s will, as we al l understand, add re s s to thermionic 
sys tems and the coupling of these sys tems with nuclear energy s o u r c e s . 
I 'd like to s t a r t by noting that severa l factors can a r i s e which make the use 
of nuclear power advantageous for a source of energy in space appl icat ions. 
Briefly these a r e : the lack of sunlight, high radiation fields, high a t m o s 
pher ic drag , high power level , long life and somet imes heat as required for 
the payload itself. All of these indicate that nuclear sources a r e indeed a t 
t rac t ive and in fact quite neces sa ry for the continuation of a vigorous p r o 
g ram in space. 

While these considerat ions p resen t a very a t t rac t ive potential for nuclear 
power sources , we mus t recognize the competition that these sys tems face. 
Solar ce l l s , ba t te r ies and fuel cel ls have a l ready gained acceptance in the 
space community. Therefore it is nece s sa ry for the nuclear sources to de 
mons t ra te that they a r e not only competitive but in many cases have a c l e a r -
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cut advantage over the sys tems that a r e a l ready in being, if these new ones 
a r e to gain acceptance. 

Most of the experience with the nuclear power sys tems in space to date have 
been with isotopie sys tems , ra ther than with reac tor sys t ems . Several i so 
topie sys tems have been flown and some of them a re actually sti l l operating. 
The major disadvantage of such sys tems tends to be the fuel cost and the 
development cost in making such sys tems safe during launch and during r e 
entry, after use in orbit . Since each of these par t icu la r factors becomes 
more of a problem as the the rmal power i nc rease s , we present ly feel that 
the isotope sys tems have an upper l imit of around 10 kWe. 

There a r e three r eac to r concepts that have received p r i m a r y considerat ion 
in our US space e lec t r ic power p rog ram. These a r e shown in Fig . 1. Across 
the top of the figure the r eac to r system a r e indicated and along the ver t i ca l 
d i rect ion,some of the conversion sys tems which may go with t h e m , a r e 
l is ted. An explanation is needed for the meaning of the solid line box and the 
dashed line box: the solid lines enclose sys tems which have received con
s iderable development effort, whereas the dashed boxes a r e indications of 
work' that is going 'on, perhaps in other re lated sys tems which would have 
application to these par t i cu la r sys tems or r e a c t o r s . Fo r example, consider 
the zirconium hydride r eac to r . As mos t of you know this is a liquid meta l 
cooled the rmal r eac to r , operating at roughly 1300 F . The conversion s y s 
tems of immediate in te res t for this r eac to r a r e the rmoe lec t r i c s , in the 
5-30 kWe- range, and the m e r c u r y RANKINE-cycle, in the 30-70 kWe range. 
However, as F ig . 1 indicates , this r eac to r can also be used with other con
vers ion schemes such as the low t empera tu re BRAYTON-cycle and organic 
RANKTNE«cycle s y s t e m s . F o r more advanced sys tem concepts, the in -core 
thermionic sys tem and the liquid meta l cooled reac to r , coupled to a po ta s 
sium RANKINE-cycle a r e l is ted. These offer very high performance at high 
power levels and have always been considered as suitable candidates for 
e lec t r ic propulsion. 

The thermionic sys tem of course offers static conversion with the poss ib i l i 
ty of s e r i e s or para l le l e lec t r ic networks for very high rel iabil i ty. However, 
as we know from your own work these sys tems do requi re very high fuel and 
emi t te r t e m p e r a t u r e s . The potass ium RANKINE-cycle on the other hand seems 
to offer somewhat lower weights in cer ta in c l a s ses and the development p r o 
gram uti l izes to a g rea t e r extent previous engineering exper ience . However, 
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we a lso recognize, that this pa r t i cu la r sys tem requ i res boiling and condens
ing in ze ro -g rav i ty conditions. Also, the util ization of the high speed turbo 
machinery has caused some miss ion-p lanners to exhibit concern with the 
question of rel iabi l i ty. When these two advanced sys tem concepts a r e scaled 
down to power levels below 200-300 kWe, some disadvantages a r i s e for 
the rmion ics . The fast in -core thermionic sys tem does not re ta in the favour
able specific weight advantage as well as the potass ium RANKINE-cycle does . 
However, there a r e a lso problems with the scaling down of the potass ium 
RANKINE-cycle. 

I think it is interest ing to note that a typical minimum sized thermionic r e a c 
t o r concept which is optimized for specific weight is probably going to be 
in the 200-300 kWe range . Obviously, we can drop this by reducing the emi t 
t e r t empera tu re s and by other ways . But this perhaps gets us below a power 
level where we would like to opera te . However, I think that in the power 
range below this 200-300 kWe we a r e going to find some p rog rams of p r ime 
in te res t and p r ime importance over the next severa l y e a r s . I ' l l t ry to men
tion l a te r some of the ideas that we have and that we a r e looking at with r e s 
pect to achieving these scaled down uni t s . 

Let us consider for a few minutes some of the possible space miss ions for 
thermionic power uni t s . In F ig . 2 we l is t some of the c l a s ses of miss ions 
and some of the power level r equ i r emen t s . I think that you will ag ree with 
me that we a r e being a little bit speculative on the dates that a r e l is ted but 
in any planning of this kind one has to leave some attention paid to the dates 
in o rde r to coordinate the p r o g r e s s of the p r o g r a m . I think that there is no 
question on our pa r t that the power sources we have d iscussed will play a 
very significant role in many of the proposed sys t ems , both manned and un
manned. It is not surpr i s ing that most of the n e a r - t e r m miss ions a r e going 
to involve the lower power requireme nt of say up to a seve ra l hundred Watts 
and undoubtedly the t he rmoe lec t r i c sys tems that use isotope fuels as they 
a r e being cur ren t ly developed,will play a big role in this a r e a . However, I 
think that in the next few y e a r s as the efficiency and the specific weight r e 
qui rements become m o r e s tr ingent and higher power levels a r e needed the 
isotopie thermionic sys tems will b reak into the a r e a that may have been do
minated at that t ime by the other s y s t e m s . The isotope sys t ems , as I 'm sure 
we al l recognize, do have some ra the r difficult p roblems facing them as they 
go to higher power densi t ies and higher t empera tu re fuel forms and of course 
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one has the problem of allowing the helium-venting which is required for 
the a lpha~emit ters . 

If we look now toward the miss ions in the mid-70 ' s and la ter , the power 
levels get into the few or tens of kW and these tend to point toward the r e a c 
tor sys tems as the pr ime contenders . The only reac tor sys tems as I have 
indicated ea r l i e r , which is under active development in the US and which 
can supply power in this power range and which will be available at the t ime 
period of the mid -70 ' s , is the zirconiumhydride reac tor system used with 
the thermoelec t r ic or the m e r c u r y RANKIN conversion sys t ems . I think 
that you have also heard in this conference that it may be possible to m a r r y 
the same reac tor system to thermionics . 

Let us now look at the p r imary applications for the thermionic sys t ems . 
These appear to be the group which is in the lower half of F ig . 2, that i s , 
advanced manned stat ions, TDE-communicat ion sa te l l i tes , and lunar ba se s . 
We expect these to appear in the late 70's and in the 1980's. These miss ions 
cover a wide range of power levels . Therefore , the sys tems chosen must be 
scalable, or at least the basic technology that would be required should be 
scalable so we can cover a ra ther la rge range of s i zes . This vre believe is 
one of the very a t t ract ive features of the thermionic sys tem. The manned 
planetary and the manned e lec t r ic propulsion miss ions requi re even higher 
power levels , ul t imately in the megawatt range. These have been given con
s iderable attention and thought but unfortunately at the p resen t t ime the date 
must bé shown as a question mark . We do not at this t ime have a good feel
ing as to when that date may occur . 

I recognize that none of the miss ions that I have mentioned here have ac tua l 
ly been approved or is actually on a firm schedule. On the other hand, we 
firmly believe that these will come about and that it is our responsibil i ty, 
to provide the technology and the engineering necessa ry to meet these r e 
quirements in t ime . This conclusion i s , I think, a good one. It says , that 
both nuclear energy and thermionics together, embodied in both reac to r and 
isotopie sys tems will play a major role in future space p r o g r a m s . 

I'd like to set forth a few of the specifics on the technical p rog ram. It should 
be c lear from the presentat ions this week that the approach we have taken 
for the last severa l yea r s in thermionic development has real ly been to de 
velop the technology which will be required for these future sys t ems . Since 
the key-par t of any future thermionic sys tem will be the fuel element itself, 
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the development work on such e lements has been a main portion of the p r o 
g ram. Although reac to r analysis and development efforts which para l le l the 
fuel element development have gone forward they have been p r imar i l y con
cerned with fast spect rum r e a c t o r s , -which have a power output equal to or 
g r ea t e r than around 300 kW. As I mentioned ea r l i e r , however , we a r e look
ing for ways which might pe rmi t us to dec rease this power level . "Dera ted" 
sys tems a r e being studied in -which the minimum cr i t i ca l size fast a s sembly 
is operated at a lower emi t t e r t empera tu re or power density. We a r e a lso 
looking at external ly fueled conver te r sys tems which offer much higher fuel 
volume fract ions . In addition "fast d r i v e r " sys tems have been studied -where 
pa r t of the core is without conver te r s and therefore has a higher fuel volume 
fraction. Moderated sys tems a r e a t t rac t ive because of pa r t experience in 
this a r e a . A the rma l "d r ive r " concept has been considered in which t h e r m 
ionic fuel e lements a r e i n t e r spe r sed in a fueled modera to r . Though each of 
these is s t i l l a contender at this s tage, I think the main point to emphasize 
he re is that the basic r equ i rements placed on the thermionic fuel e lement , 
namely operat ion in a completely fast sys tem, a r e not exceeded and in most 
c a s e s , a r e relaxed in the var ious a l te rna t ives which have been mentionedfor 
these lower power leve ls . F o r this reason our goals in the hardware develop
ment p r o g r a m a r e aimed toward an eventual fast r eac to r application of s e 
ve ra l hundred kWs and a r e therefore more ambit ious than they need to be 
to meet the lower power r equ i r emen t s . 

We a r e cur rent ly test ing diodes of two types , the exper imenta l diodes and 
the prototype diodes. These a r e shown conceptually in F ig . 3. In this con
ference reference has been made to these diodes. F ig . 3 indicates the gene
ra l p r o g r e s s that one would like to have. The exper imenta l diode is on the 
far left. These p r o g r e s s to the so-cal led prototype device which has many 
of the features that would be found in an actual application. Final ly one moves 
from exper imenta l and prototype diodes into the reference fuel e lements 
themselves and ul t imately into some sor t of r eac to r exper iment which is un
defined but might use any one of the a r r angemen t s that has been talked about 
during this sess ion. 

The exper imenta l p rogram has looked at rea l i s t i c configurations. Detailed 
tes t r esu l t s have been repor ted at this conference. The p r i m a r y objectives 
of the exper imenta l diode p rog ram of course have been to look at the fuel / 
emi t te r development, life t e s t behaviour and thermionic per formance and to 
consider the improvements that could be made . The prototype diodes on the 
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other hand have severa l purposes . They provide testing for more rea l is t ic 
geometr ica l configurations. They incorporate the components for actual 
reac to r applications and a r e operated at design t empera tu res for long periods 
of t ime . Again, the p rog res s which has been made has been repor ted by in
dividual au thors . However, in F ig . 4 we have assembled the resu l t s of our 
experience over the last 3 or 4 y e a r s . The white dots r ep resen t the exper i 
mental diodes which have had in-pile exper ience. We have plotted the opera 
ting t ime in hours as the ordinate . As can be seen there is considerable sca t 
t e r in the l i fet ime. On the other hand, you will find that some of the diodes 
have performed exceptionally well, the two most recent ones in the 1968 pe 
riod having run for over 5, 000 hours and for over 8, 000 hours . There a r e 
some 36 spots for the exper imenta l diodes on the d iagram. The prototype or 
mul t i -ce l l diodes a r e , on the other hand, indicated by dark spots . The t e s t 
ing is somewhat la te r in t ime and has reached, as you notice, something 
like 2, 000 hours at the cur ren t reading. This , I think will give you a feeling 
for some of the experience of our r e s e a r c h invest igators in this a r e a . 

The development schedule for the whole p rogram is shown in F ig . 5. F i r s t , 
let me call your attention to the fact that we have broken the schedule into 
three phases , the fuel element development, the reac tor experiment itself 
and finally a flight sys tem development which we ult imately would move into 
at the t ime of flight util ization of such a sys tem. The p r i m a r y emphasis at 
this t ime of course is on the f i rs t s tep. This involves the building and t e s t 
ing of the exper imenta l diodes, the prototype diodes and the reference fuel 
e lements . You will .notice that the upper bar indicates the p rog re s s expected 
in this phase . The major goal of this phase is to achieve sat isfactory perform
ance over a l O , 000 hour lifetime by the 1970-71 t ime f rame. This should be 
followed soon by s imi la r performance with the prototype diodes. This work 
of course leads into decisions which we would want to make with respec t to 
the reac tor experiment itself. You -will notice that the reac tor exper iments 
involve only pre l iminary design work through the immediate future. This will 
be followed by the detailed design work after more experience has been ob
tained with the diode p r o g r a m . Hopefully, after going through construction, 
fabrication and installation phases , we will have a r eac to r experiment ope
rating by 1974. Certainly, while this development is occurr ing, we will be 
continuing thè technology development of the diodes and we would hope to 
extend l ifetimes beyond the nominal 10, 000 hours that we have indicated on 
the char t . Obviously, at this t ime it is impossible to wri te down a t ime scale 
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for the flight sys tem development. In this case one needs to know m o r e about 
the pa r t i cu la r miss ion before proceeding with such a specific p r o g r a m . 

I think it would be inappropriate to conclude my r e m a r k s at this t ime with
out discussing some of the factors that will undoubtedly affect the schedules 
that I have indicated on the char t . Obviously, we a r e operating in t ime f rames 
where many changes take place from year to yea r . Technological develop
ments a r e neces sa ry but they a r e not always the ent i re s tory which controls 
a p r o g r a m of this kind. I 'm sure I don't have to state to this audience that in 
any p r o g r a m involving space applicat ions, the re a r e cer ta in aspec ts of the 
p r o g r a m that have to come before o the r s . In pa r t i cu la r there will have to be 
decisions as to what specific post-Apollo p r o g r a m s will be authorized and 
approved before some of the more advanced miss ions that we have talked 
about today will be forthcoming. Secondly, I think I should r e m a r k that t h e r m 
ionics is a popular subject in these days . There is t remendous in te res t , not 
only in this room but in genera l where there is in te res t in energy applications 
and especial ly energy applications in space. 

I think this is due principal ly to the very excellent p r o g r e s s which has been 
made in thermionics over the pas t few yea r s ; I don't have to remind you he re 
that there were many scept ics , who f i rs t believed that it -would be a lmost i m 
poss ible , to build one of these diodes, let alone to think about operating it for 
any useful period of t ime . But it is the solid p r o g r e s s that has been made so 
far which mus t be continued if the thermionic field is to re ta in the enthusiasm 
of i ts suppor te r s . 

In al l of the space sys tems and nuclear power sys tems there is t remendous 
emphasis these days on rel iabi l i ty, long per iods of continuous and unin te r 
rupted operat ion. Here again the a t t rac t ive features of thermionic devices 
a r e going to have to be demonst ra ted . We will have to produce high r e l i ab i 
lity, low weights, high per formance , all of the features which -will pe rmi t 
us to sell , if you will, the thermionic sys tem most easi ly . 
I think, therefore , that although there a r e many uncer ta in t ies , many q u e s 
tions to be answered, we have a challenging technological development p r o 
gram ahead of u s . I am very optimist ic that as the technology p r o g r e s s e s , 
enthusiasm for the use of these sys tems will inc rease and we will a l l be s e e 
ing applications in space in the not too distant future. Thank you ve ry much. 
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APPLICATION OF THERMIONIC ENERGY CONVERSION IN THE USSR 

Remarks by Dr. Yu. L. DANILOV, Consultant of the "State Committee for 
the Utilization of Atomic Energy", USSR. 

Mr. Chairman, Colleagues, 

I should like, in a short t ime , to take advantage of this occasion and say how 
grateful I am to the organizors of the Conference, to the Program Commit 
tee and to Dr. NEU in pa r t i cu la r , for the enormous amount of work that they 
have been doing to give us this opportunity to mee t and to exchange ve ry v a 
luable information. I would like to thank a lso al l par t ic ipants for the i r ve ry 
active in te res t . We may hope that this in te res t will be of benefit to us a l l for 
the future. Thank you ve ry much indeed. 

After the ve ry exhaustive account of Dr . TAPE it is ve ry difficult for me to 
add anything. I should like to l imit myself to just a few comments . 

Some of the considerat ions concerning p r o g r a m s , do not exist with uS. Now 
with respec t to what is happening in the Soviet Union considerable work is 
being done in the field of thermionic gene ra to r s . This we have told you about 
in the papers that have been read h e r e . What a r e our hopes for the future and 
concerning the creat ion of these devices? 

Well, I would like to apologize if I talk about things that you a r e a l ready a-
ware of, but since we a r e dealing with fundaments h e r e , I wanted to r eca l l 
some of them. 

F i r s t , we a r e a t t rac ted by the thermodynamic advantages of the thermionic 
conver ter sys t ems . As you a r e aware the efficiency in any t h e r m a l device, 
η , is the product of Carnot efficiency η and the coefficient η , which in 
dicates the deviation of the r e a l situation from the theore t ica l one: 

η ·= η . η . 
c r 

The Carnot efficiency is given by η = 1 - T / T . , where T. and Τ a r e , r e s 
pectively, the init ial and final t empe ra tu r e s of the sys tem. Natural ly, in 
this case , the t empera tu re ra t io is of grea t impor tance , the higher the max i 
mum tempera tu re in the cycle, the higher the efficiency, a l l other things b e 
ing equal. 

Of al l those sys tems which a r e rea l i s t i c today the thermionic power gene ra 
ting sys tems have the highest t empera tu re leve ls . In engineering today (in 
aviation for example, which is a highly developed industry) the maximum t em
p e r a t u r e s a r e confined within a range up to 1500 Κ whereas in thermionic sys· 
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terns we can already talk about 1800 to 2200 and even 2500 K. Of course 
this advantage is i r r espec t ive of other c i rcumstances or va r iab les . 

The minimum tempera tu res a re also of importance both for space devices 
and o thers . Fo r space application it is very inconvenient to have low t empe
ra tu res at the radia tor . We know that the higher the radia tor t empera tu re , 
the smal le r its dimensions and therefore the more convenient it will be. 
So, these two main advantages lie at the basis of our in te res t in the t h e r m 
ionic power sys tem. 

Another advantage that is no less important and is very promising for the 
future, of course , is the lack of mechanically moving or rotating working 
e lements . This is very important from the point of view of rel iabil i ty and 
rigidity. It is important from the as t ronaut ic point of view, since the gui
dance of space vehicles is thus much ea s i e r . 

Now, if we look at the power dependence of the specific powers for t h e r m o -
devices , we obtain a dependence like that shown in Fig . 1. 
The comparison for the isotope and reac tor sys tems can be seen in this f i
gure . In our opinion, the region where the two types of sys tems must be 
compared is in the power region of 0. 5 to 2. 0 kWe. F o r higher power s y s 
t ems the isotopes maintain cer ta in advantages with respec t to specific -weight 
but, as has been pointed out , - their cost is very high. 

This graph, in fact, includes al l the existing sys tems and projects for the 
future. What is par t icu lar ly a t t ract ive to us is that for both the isotope s y s 
tems and the reac tor sys tems (though this is st i l l in the blue-pr int stage) 
the thermionic devices lie at the higher l imit . In other words at the p resen t 
time they a r e devices which a r e the most advantageous in this respec t . This 
is an additional reason for our in te res t in thermionic sys t ems . 

Turning now to the isotope power generating sys tems , there is a r e m a r k 
that is called for which re la tes to a number of papers in this conference. We 
feel that the importance of long lived isotopes such as Plutonium 238 (half-
life 86.4 yr) and Curium 244 (12. 6 yr) has been overes t imated. Why do we 
think that? At the present t ime existing sys tems have an active life from a 
few months to a year , somet imes a little more than a yea r . F o r these s y s 
tems use of isotopes which a r e capable of working for tens to even more 
than a 100 yea r s is not very advantageous, both from the view of economis 
and from the point of view of radiation safety. Certain unfavorable c i r cum-
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s tances may a r i s e in operation, in launching, Or after r e - e n t r y . The conse
quences of damage can be very longlasting and can be a very ser ious health 
hazard . F o r this reason it would be bet ter to use shor te r lived e lements 
which decompose very rapidly. But this is a lso t rue from the point of view 
of economies . As is well known the power of isotope devices can be descr ibed 
by the exponent 

Ρ ~ e" t A 

where t is the halflife. This dependence is shown in Fig . 2. 

With longlife isotopes we a r e essent ia l ly working only at the beginning of this 
power curve . Thus the energy of the isotope actually util ized would c o r r e s 
pond to a thin a r ea under this curve such as the c ros s-batched a r ea A. Only 
a smal l fraction of the isotope energy is used. 

In o rde r to i l lus t ra te this point in a simple way we may consider that what we 
need for a pa r t i cu la r .mission is a constant power Ρ for the miss ion l ife
t ime t . Thus, in F ig . 2, to achieve maximum power uti l ization, it is of in
t e r e s t to maximize the square a r e a B with respec t to working t ime t . We 
find that this occurs when t = <τ . In this case the fraction of the energy u t i l i -

- l ' ° 
zed is thus e or about 1/3. Thus we see that from the point of view of po
wer util ization it would be more advantageous to use isotopes such as Po l lo -
nium 210 (138.4 days) or Curium 242 (163 days) . One could think of utilizing 
power from these isotopes for per iods of 200 to 300 days . A problem a r i s e s 
about the regulation of the power at the ear ly stages of work, but we mus t d e 
cide which is m o r e advantageous, to regulate this power or to uti l ize l ess 
than 1/2% of the s tored energy. 
These a r e some short observat ions concerning isotope s y s t e m s . 
Now, I would like to make some comments about applications for thermionic 
conver ter r e a c t o r s . Probably in the ye a r s to come these devices can be u s e 
fully applied 'for communication sa te l l i tes , for television broadcast ing cover 
ing the whole world, and we may expect that smal l 50-60 kW devices can be 
used for meteorological sa te l l i tes which work at much lower heights than 
communication sa te l l i t es . Fo r this purpose it may be difficult to use solar 
energy. Pe rhaps a thermionic device or some other device will lead to an 
inc rease in weight, but it can be thought that in this region it should be p o s 
sible to use a smal l power device of about 50-60 kWe. 

We think that our hopes with respec t to thermionic conver te r s a r e justified 
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and that thermionic power supplies a r e war ran ted . I agree with the p receed-
ing speaker to the effect that thermionic conver te rs a r e present ly popular 
and that we shall der ive benefit from th is . Our p resen t attention to this a r ea 
of development should make it possible for us to have devices of this type. 

Ladies and Gentlemen, these a r e in brief our views on this subject. Thank 
you very much for your attention. 

KWM 

P/w 
A 

reactor systems. 

isotope 
systems. 

5-2 -►P (KW) 

F i e . 1 

Fig. 2 



- 1421 -

DISCUSSION 

Moderator: Prof. P. D. DUNN, University of Reading (United Kingdom) 

Members of the Panel: 
Mr. D. S. BEARD, Space Nuclear Systems Division, USAEC 
Prof. Yu. L. DANILOV, USSR State Committee for the Utilization of Atomic 

Energy 
Dr. F. GROSS, Head of the Central Research Laboratory, Brown Boveri u. 

Cie. (Germany) 

Dr. G.N. HATSOPOULOS, President Thermo Electron Corporation (USA) 

Dr. H. NEU, Head of the Direct Conversion Division, EURATOM, Joint 
Research Centre, Ispra (Italy) 

Dr. G. F. TAPE, USAEC Commissioner 

DUNN: Comparing this conference to the one 2 l / 2 y e a r s ago in London, the 
f i rs t thing that s t r ikes me is the grea t simplification in the poss ib i l i t ies ; 
the increased confidence and understanding, the report ing of far m o r e ha rd 
ware and the emergence of specific appl icat ions. Taking some of these in 
turn, and perhaps being slightly mischievous in the sense of overs ta t ing, if 
one cons iders the heat sources , we seem to have confined ourse lves exclu
sively to nuclear sou rces , with I think one exception. Do we now ag ree that 
so lar and fossil heating a r e not real ly of p r ime importance in this subject? 
Again, the high p r e s s u r e ces ium diode has emerged as the only significant 
conver te r . We seem to have d i smissed things which used to in t e re s t u s : b i 
nary m i x t u r e s , iner t gas addit ives, auxi l iary d i scharges and th ree e lect rode 
devices . Pe rhaps the Pane l would not agree with m e , and I hope we will take 
this up with them. On the per formance of the high p r e s s u r e ces ium gene ra 
tor , confidence seems to have increased enormously, the control is much 
bet ter and one can predic t per formance and achieve long life. One would 
like to know what developments to expect, in efficiency, lifetime and power 
density. 

On the physics and theore t ica l understanding, the re st i l l seem to be p rob lems 
of detailed mechanisms as d i scussed in Prof. HATSOPOULOS' paper y e s t e r 
day. On the other hand as Dr . RASOR pointed out, there is a broad under 
standing of the diodes behaviour now, though there st i l l r emains the need for 
important measu remen t s and one thinks immediate ly of the pape r s e. g. of 
the KURCHATOV and the JOFFE Inst i tutes on p lasma p rope r t i e s and surface 
phys ics . 
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Turning to applications, have we d i smissed all t e r r e s t r i a l poss ib i l i t ies? At 
one t ime we were interested in toppers for power s ta t ions. Are these now 
ruled out, and a r e there no other t e r r e s t r i a l applications? If this is so and 
we a r e res t r i c t ed to space, then we have var ious a r rangements incorpora
ting thermionic genera tors which Dr. TAPE has ra ised and we also have the 
al ternat ive sys t ems . Since, I suppose, we can descr ibe ourselves as lovers 
of diodes, we have to look at the la t te r as the enemy. In the case of unman
ned space applications these a l ternat ives a r e the BRAYTON and RANKINE-
cycles , solar cel ls , and maybe fuel ce l l s . In the case of the manned applica
t ions, I think it will be cost that will l imit our work, par t icu lar ly for E u r o 
pean countr ies . It may well be that no single country can produce a manned 
system and a collaborative p rog ram will be necessa ry . 

Turning now to sys tems we have had interest ing discussions on low power 
sys tems , including the in -core proposa ls , by the German worke r s , the inside-
out, or external fuel in -core device and the out-of-core heat pipe extract ion 
sys tem, descr ibed by ISPRA and also by LIVERMORE. 

An important question is whether there is a c r o s s - o v e r between the in -core 
and out-of-core and if so where is it . Again one has the question of t he rma l 
ve r sus fast r eac to r . It a lmost seems to me that one can eliminate the t he r 
mal reac tor , or perhaps one should say the reac to r -with modera tor since 
these a r e in termediate spect rum reac to r s ; at power levels above about 
25-50 kW, but I think this is a topic that would be of in te res t to d i scuss . 

On in-pile testing a t remendous amount of new m a t e r i a l has been presented 
from the USA, F rance , Germany, Eura tom and the USSR. Lifetimes up to 
8, 000 hours have been mentioned. This c lear ly shows us what is poss ib le . 
On the other hand, Dr. TAPE showed on his slide that this was the best of 
a large number of t es t s and al l the other diodes failed at shor te r l i fe t imes. 
One is conscious of the large number of elements in a reac to r sys tem. This 
does ra i se the question of rel iabil i ty and whether it can be achieved to the 
degree required. 

On ma te r i a l s further work has been repor ted on compatibili ty. I think p e r 
haps most interest ing is the development in fuels. We st i l l have the conten
d e r s , UO_, UO. - ce rme t , UC-ZrC . It is not at al l c lear to me , which one is 
best and again one would apprecia te views on th is . On heat pipes we have had 
the exciting news of the f irs t flight in space of the w a t e r heat pipe and I think 
all of tts a r e very glad to know that it was put up by the father of the heat 
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pipe, Dr . GROVER, who a lso repor ted this in teres t ing double wick develop
ment . The ISPRA worke r s have demonst ra ted quite ex t raord inary advances 
in axial heat flow of heat pipes and have ra i sed the l imi ts from a few hun-

2 2 
d reds of Wa t t s / cm to 15 kW/cm . Dr . GROVER remarked that perhaps 
hundreds of kW p e r sq. cm. a r e not impossible and one would like to ask, 
what is the likely p r o g r e s s in this field. 
Those a r e the points that I noticed. There was one further thing that s t ruck 
me as pa r t i cu la r ly in teres t ing , I think because I have always mental ly w r i t 
ten off the thermionic diode as a low t empera tu re device, and that is the 
mini -d iode . It rea l ly i s an ex t raord inary device, 4 mi l l iwat ts , 780 K, 0. 3% 
efficiency with the possibi l i ty of 3% efficiency at a 100 mi l l iwat t s . 
The question one a sks he re i s , what is this going to do to the t h e r m o - e l e c t r i c 
genera to r , is it rea l ly going to compete s t rongly? 

This r e s u m é has probably demonst ra ted an ability to select the unimportant 
and ignore the important , but I am sure if this is the case that my colleagues 
on this Pane l will point this out, one hopes, kindly. 

So, with your pe rmi s s ion I would now s ta r t the discussion, by asking Dr. HAT
SOPOULOS, if he would perhaps c a r e to comment on the point that I put for
ward, that the only device that is worth considering is the nuclear heated high 
p r e s s u r e ces ium diode. Does he agree with th is , and if so, -will he a lso com
ment on the likely development possibi l i t ies of the efficiency l imit , 25%, 30%, 
40% or what? 

HATSOPOULOS: Thank you Prof. DUNN. I think your observat ion is ve ry well 
taken in that, except for one paper or a couple of pape r s , al l of the other pa 
p e r s had addressed themselves to nuclear heated devices and one can r a i se 
ve ry ser ious ly the question of whether we, as a group, have abandoned other 
heat s o u r c e s . 

I don't believe that we have, but the re a r e good reasons why the in te res t in 
other heat sources at the p resen t t ime is not as intense as it was in previous 
conferences . 

Two other types of heat sources were considered in addition to nuclear heat 
sources ; these were solar and fossi l fuel heated sou rce s . With respec t to 
so lar , considerable work has been conducted and has been repor ted in the US 
in previous conferences and the state of the a r t of such genera to r s has p r o 
g re s sed probably far beyond that for any other thermionic genera tor sys tem. 
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Right now, however, it appears that solar thermionic devices, although 
they have some advantages over other solar conversion devices such as 
photovoltaic sys tems in t e r m s of being l ighter and cheaper to build, have 
a ser ious disadvantage of orientation. This disadvantage has been cons ider 
ed to outweigh any potential advantage that you may gain by having a lower 
cost sys tem or a l ighter sys tem. So work in this a rea in the US, and I be 
lieve in other pa r t s of the world, has been reduced considerably and very 
little is being ca r r i ed on. So, in this par t i cu la r case I think that the answer 
would be that for the time being solar thermionic sys tems would probably 
not receive great attention unless , in the future, cer ta in miss ions , such as 
solar probes possibly with specific r equ i rements , war ran t their use . This 
could be feasible because of the ra ther la rge r e se rvo i r of technology that 
has been built up in this a rea in such sys t ems . This technology could be 
picked up again. 

As to the second type of heat source , the fossil fuel, it is my personal opi
nion that this type of e lec t r ic generation system sti l l has a very vast a r e a of 
application. Studies that we have made show that such sys tems for small 
production of power in the range of 1-10 kW using gasoline or other liquid 
fuels or gaseous fuels have many advantages over any other type of conver
sion sys tem, including the internal combustion engine. They a r e silent, 
they a r e much l ighter in weight, they a r e much more efficient than some of 
the other sys t ems , more efficient than t he rmo-e l ec t r i c s and a lmost equal 
in efficiency as internal combustion engines. Economic studies that we c a r 
ried out have indicated that they a r e economical . I think that the reason that 
so little attention has been paid to such studies in this conference is that 
there is one big draw-back that has to be solved and this is a ma te r i a l s p r o 
blem of having a conver ter be compatible with an oxidizing flame. This p r o 
blem of course requ i res the development of a protect ive coating of a diode in 
o rder to enable operation in a flamed environment. Work is being conducted 
in the States in this direct ion. P resen t ly , rel iable life of only 200 to 300 
hours has been achieved although some coatings have shown up to 1, 000 hours 
life. But this is not the level which makes this device prac t ica l . We may 
never develop a coating which will last for a few thousand hours ; but, if we 
do, I think that there would be numerous applications of flame as a heat 
source . 

I 'm not going to make any comments on r eac to r s because Dr . TAPE and 
Prof. DANILOV have made a very good case for thei r advantages and their 
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u s e s . Isotope thermionic sys tems have considerable future, pa r t i cu la r ly in 
space . They have the draw-back of needing a high t empera tu re fuel capsule . 
Once this problem has been solved, we will have, as was pointed out by p r e 
vious speaker s , a sys tem which is two or th ree t imes m o r e efficient than 
t he rmo-e l ec t r i c sys tems which is considerably l ighter and has many other 
operat ional advantages . 

I just wanted to say a few words about the question you ra i sed concerning the 
p resen t state of per formance and what we may anticipate in the future. My 
est imat ion is that p resen t ly we a r e approaching the following l imi t s . As far 
as power density and efficiency is concerned, we can divide conver te r s into 
two c l a s s e s : plane conver te r s which allow much c loser spacings and the cy
l indr ical conver te r s to be used in r eac to r s that requ i re l a r g e r spacing. In 
the fo rmer , some of the pape r s p resen ted during this week have demons t r a 
ted, that 20 W pe r sq. cm. and efficiencies of over 15% can be attained or 
approached with grea t re l i ab i l i t i e s . In cyl indrical conve r t e r s , and I am not 
counting now the fuel, we a r e approaching power densi t ies of about 10 Watts 
pe r sq. cm. and efficiencies of about 15%. How would these numbers change 
with t ime is hard to pred ic t . Slow but steady changes a r e being made by h a 
ving bet ter emi t t e r sur faces , by crys ta l lographic orientat ion or by etching 
and var ious techniques of this so r t . A very steady improvement of both 
power density and efficiency or conversely in the reduction of the operating 
t empera tu re at constant power density and efficiency has been achieved; and 
I expect these improvements to continue. However, I do not believe that with 
just these improvements vre can approach the projected efficiencies such a s 
25 or 28%, that we had hoped for ea r ly in the h is tory of the rmion ics . There 
is one hope to keep in mind however. Some of the spec tacular pe r fo rmances 
that have been demonst ra ted , not reproducible nor longlived, but neve r the 
l e s s demonst ra ted occasionally with both electronegat ive or e lect roposi t ive 
addit ives, show p romise that the re might be a t ime in the future when the re 
would be a large improvement in efficiency and power densi ty . When that 
t ime will come is ve ry hard to predic t because of the grea t complications 
associa ted with the chemis t ry of a l l these addi t ives . 

GROSS: I would like to comment on your las t sentence regarding the future 
hope for addi t ives . I don't believe that by using polycrystal l ine e m i t t e r s you 
can get be t ter r esu l t s in per formance than you can do by etching techniques . 
F o r instance, I don't think that one can get m o r e than 5 eV in work function 
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using polycrystal l ine tungsten. 

DUNN: There is a question that we might get views on. I 'm afraid it is a 
question of finance but it has to be faced. It i s , what do people think about 
the economic feasibility of a manned propulsion sys tem? What is the o rde r 
of cost that one must envisage in s tar t ing such p r o g r a m s ? 

TAPE: High. 

DUNN: Thank you Dr . TAPE. Pe rhaps then we could consider the sys t ems . 
I think that a point that will be r a the r interest ing to r a i se with Dr . NEU and 
Dr . GROSS, is -what they feel about the relat ive advantages and disadvantages 
of in -co re , ve r sus out -core in the power range that they a r e current ly con
sider ing. 

NEU: The situation here in Europe is charac te r ized by the fact that we have 
no p rogram on manned miss ions and we -will not have, as far as I know, such 
a p rog ram in the near future. Therefore , in Europe , we a r e not in teres ted 
in developing space r eac to r s in the megawatt e lec t r ica l power range as in 
the USA. We a r e , however, in teres ted in an e lec t r ica l power range up to 
approximately 100 kW or maybe la ter on severa l 100 kW, and we have in 
mind applications like the telecommunicat ion satel l i tes in an advanced stage, 
television broadcast ing and unmanned scientific mis s ions . 

What I have real ized from this conference is that in the megawatt range, the 
fast in -core sys tem or a slightly moderated sys tem as reported by the Los 
Alamos Labora to r ies , is the most a t t rac t ive sys tem because it shows the 
lowest specific m a s s . 

In the lower power range up to a few 100 kW we have a quite different s i tua
tion. As we have a l ready heard from Dr . TAPE there a r e inherent problems 
for scaling down the fast in -core reac tor to this power range. Neither the 
moderated in -core reac tor appears to be an ideal solution. In a paper of 
the Monday afternoon Session, German companies presented a concept of a 
hydride-mode rated reac tor , which shows that in the power range up to a l 
most 100 kW e lec t r ica l power one has to provide a booster zone around the 
active zone where the conversion sys tem is located in o rder to reach c r i t i 
cali ty. In the booster zone heat is generated but no e lect r ic i ty is produced. 
Since this use les s heat must be radiated into the space, the total m a s s is 
again increased . Fu r the r , we heard about a fast, in -core external-fuel ap 
proach and proposals for locating the ce ramics outside of the main flux by 
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using long diodes. 

Our studies in I spra on an out-of-core r eac to r with heat pipes have shown 
that it involves no higher specific m a s s than the in -co re sys tem but profits 
from the fact that the technology of rel iable out-of-core conver te r s is a l 
ready much bet ter es tabl ished than that of i n - co re conve r t e r s . The out-of-
core concept avoids many technical p roblems which occur neces sa r i l y in the 
in -core concept. Surely, it has other disadvantages . 

What I would like to say in conclusion is that in the low power range the re is 
apparently not yet a single solution accepted by al l as being the bes t . There 
a r e var ious possible solutions. It i s our opinion at EURATOM that it may 
be quite reasonable to s t a r t with the real izat ion of one solution but it is n e c e s 
sa ry to study other solutions and to work on the development of the key -com
ponents of such other sys tems in o rde r to be in a be t ter position to decide in 
the future which is the most appropr ia te r eac to r in this power range . 

GROSS: I ag ree with Dr . NEU that -we should not study only one r eac to r for 
the lower power range . As far as Germany is concerned, we have studied 
severa l concepts and have found that within the lower power range the out-of-
core thermionic r eac to r types have one big disadvantage. They have no growth 
potential . But that i s only one reason why the German Minis tery of Scientific 
Resea rch now intends to develop and build an in -co re thermionic t e s t r e ac to r . 
There is a lso the feeling that a decision has to be made to overcome the " r e 
qui rements m e r r y - g o - r o u n d " , in o rde r to make p r o g r e s s . The second reason 
is the considerat ion that the exploration of space will lead to commerc i a l appl i 
cat ions. This is in Europe the mos t in teres t ing field for the rmion ics . We do 
not see any commerc ia l benefit in ve ry high powered or manned space sys t ems , 
which will be very expensive. The development of the r e a c t o r type which we 
propose is d i rec ted toward use in broadcast ing and communicat ion sa te l l i t e s . 
Studies have been made on this subject in Germany and they will be repor ted 
at the United Nations Conference to be held in Vienna this fall. 

The choice of the in -co re - the rmion ic r eac to r as a power source is based on 
the following considerat ion. F i r s t , such a sys tem has , as I said before, a 
growth potential up to 100 or 200 kWe. Secondly, in Germany there is a t ech
nology at hand with r ega rd to meta l hydride modera ted , sodium cooled r e a c 
t o r s . I may mention to you that at the r e s e a r c h cent re nea r Kar l s ruhe a s o 
dium cooled 20 MWe reac to r will go into operat ion next yea r , built by Ge r 
man companies . Thirdly, in our country the re exist s eve ra l development 
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groups in Univers i t ies , in r e s e a r c h cen t res and in industry which have work
ed for a long t ime in the thermionic field. Here a lso a development potential 
is available, which should be used. 

Let me answer some of the r e m a r k s of Dr . NEU, concerning our r eac to r 
concept. He stated that we a r e wasting the heat generated in the booster zone, 
We choose the two-zone reac to r del iberate ly because we want to use it as a 
testbed r eac to r . It will enable us to t e s t a la rge number of thermionic fuel 
rods . Moreover it i s , as close as -we can conceive, a f i rs t step, toward a 
r eac to r which can be used la te r in space . 

One big advantage of this concept is that it can be easi ly matched to changing 
power r equ i rement s , that i s , it has "growth potential" . Raising the power 
output can be accomplished by replacing booster e lements by thermionic fuel 
e lements . Therefore , Dr . NEU's r e m a r k s about wasting the rma l energy 
natural ly do not concern a l a t e r space power reac to r based on the same con
cept. 

LOEWE (USA): Concerning the question of power l imitation oh out-of-core 
sys t ems , let me r e m a r k for the record , that the work done to date at the 
Lawrence Radiation Labora tor ies shows that for the sys tems -we have con
sidered, the out-of-core a l ternat ive in contras t to the in-pile sys t ems , seems 
to become more a t t rac t ive as the power level is increased into megawatts 
and m o r e . 

NEU: If I understood Dr . LOEWE cor rec t ly , his opinion is that the out-of-
core concept is not l imited to a cer ta in power range . I have some doubt about 
th is . I have doubts par t icu lar ly about the real izat ion of the concept proposed 
by the Lawrence Radiation Labora tory , because of the problem of high t e m 
pe ra tu re e lec t r ic insulation, that i s e l ec t r i ca l insulation at the emi t t e r t e m 
p e r a t u r e . If one goes to a higher power (more than some 100 kWe) one can 
not avoid this problem. Therefore my opinion is that the out-of-core concept 
with heat pipes has a power l imitation which is about the same as for the hy
dride modera ted in -core concept, that is some 100 kWe. 

LOEWE : That is an excellent point. We have used a beryl l ium oxide (comple
tely out-of-core) insulator . On the other hand, some of our studies have indi
cated that if you choose specific .mass , kg/kW, as a c r i te r ion and eliminate 
the insulator ent irely, going simply to radiant heat t rans fe r , there is only 
a cost of about 20% in the specific m a s s . 



- 1429 -

DUNN: Now, if we could move on to another question on applicat ions, I think 
it would be mos t in teres t ing to get the views of the Pane l on the competition 
with solar cel ls and turbines at low power levels , l e s s than say 10-20 kWe. 
Would Prof. DANILOV and Mr . BEARD ca re to say something on th i s? 

DANILOV: In answer to your question, I have a l ready t r i ed to s t r e s s our 
genera l point of view on this m a t t e r . A detailed answer is something we do 
not have. We do not have the n e c e s s a r y data at this t ime to allow a c o m p a r i 
son to solar o r photovoltaic ce l l s . We think that from the viewpoint of purely 
thermodynamics and efficiency these cel ls a r e not able to compete with the 
thermionic conver te r . On the other hand it i s difficult to judge the complexi
ty of the problem where one r equ i re s p r ec i s e orientat ion of a m i r r o r . 
Special is ts te l l us that adjustments to a second change in angle a r e requi red . 
We consider this to be an ex t raord inary , complicated task . F o r these reasons 
we feel that for these low power densi t ies we should use the thermionic r e a c 
tor sys tem. And that is what we a r e working on. 

BEARD: I don't think I can add ve ry much to th i s . It seems that d i sagreement 
on which is the beßt sys tem is a state of affairs which is spread in ternat ional 
ly. As was pointed out e a r l i e r , the solar cel ls a r e a l ready being used in a 
number of miss ions quite successfully. They will be good competit ion on c e r 
tain miss ions for quite a few y e a r s . As Dr . TAPE also pointed out, these 
compet i tors will a lso not be standing st i l l , -waiting for t he rmion ic s . I don't 
think I can add much m o r e to what Prof. DANILOV said. I think we view 
things pre t ty much the same way. He mentioned e a r l i e r this week that they 
have advocates of RANKINE v e r s u s BRAYTON in the USSR. We also have 
these two groups in the US. 

I would like to go back for just a moment to Dr. HATSOPOULOS' comment 
on pe r fo rmance . We a r e ent i re ly satisfied with 15% efficiency. If we can 
achieve that, sys tems will be ve ry a t t rac t ive . At this t ime if we could build 
a sys tem utilizing the p resen t state of technology it would be a ve ry i n t e r e s t 
ing sys tem. The added performance is not needed; it would be sugar on the 
frosting so to speak. 

DUNN: I am never the less r a the r uncer ta in about the solar cel l . People have 
quoted figures like S" 1, 000 pe r Watt for cu r ren t cel ls with predicted ex t r apo
lations to as li t t le as $ 20 pe r Watt using the cadmium sulphide type cel l . 
Now, providing one is able to st ick this enormous umbre l la up into space, one 
is up against very ser ious competit ion when one has to justify the cost of de -
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veloping a complete r eac to r sys tem against this very cheap competi tor . 
Would anyone care to make comments ? 

NEU: One of the questions that have been discussed in Europe is the power 
limit of such solar cell a r r a y s . Some ye a r s ago one could hear l imits of 
approximately 10 kW. Now we have heard that there a r e studies underway, 
e. g. in the Jet Propulsion Laboratory which go up to 50 kW. We know very 
well what thè complications a r e in the performance of our thermionic con
v e r t e r s and in making r eac to r s , but we a r e not exper ts of the field of solar 
ce l l s . I would ask if anybody could answer the question, -where a r e the in
herent difficulties of solar cell a r r a y s in the power range up to 50 kW? 

DUNN: Thank you Dr . NEU. As friends of thermionic conver te r s , we a r e 
looking for something wrong with the solar cel l . Pe rhaps ei ther Dr . TAPE 
could say something about this , or possibly a member of the audience. 

DAVIS (USA): There is an active p rog ram at the J P L on a 50 kW solar e l ec 
t r i c propulsion study. The specific weights of the sys tem that people a r e 
talking about a r e remarkably low. Numbers for the solar a r r a y s themselves 
a r e in the neighbourhood of 50 lbs per kW. F o r a total sys tem including the 
t h r u s t e r s and tankage,specific weights a r e about 75 to 100 lbs per kW, that 
i s , pe r kW in ear th orbit . There a r e cer tainly problems in deployment, 
guidance, navigation and control . None of these appear to be untenable at 
the p resen t t ime . Interest ing miss ions have been postulated for these s y s 
tems as far out as Jupi te r . So perhaps there real ly is some competition for 
thermionics at least for these types of mi s s ions . Now, there a r e cer tainly 
c l a s ses of miss ions where solar cel ls a r e totally inapplicable: Lander m i s 
sions, orbiting miss ions , which requi re continuous power and c lasses of 

• miss ions where orientation simply becomes an untenable situation. Pe rhaps 
in those categor ies there real ly is no competition from the solar cells in so 
far as thermionic reac tor sys tems a r e concerned. 

TAPE: I might add one or two r e m a r k s most ly in a philosophical vain. 
This is not the only a r e a of r e s e a r c h in which we find competition. Almost 
anyone who is working in a pa r t i cu la r field dear to his hear t finds that there 
a r e border l ine a r e a s that he must watch out for. Too many t imes in the de 
velopment of nuclear energy we have looked for the application which is clear
ly nuclear only, in.which we can freeze out al l of the competition. There a r e 
not very many of these , let me a s s u r e you. Some of the ear ly successes in 
nuclear sources made us so optimist ic that we s tar ted thinking about cer ta in 
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space applications as being just prime applications for nuclear sources . 
That was in the time when we thought of solar cel ls strictly in the watt-
category, but as Mr. DAVIS, and Mr. BEARD have said, so lar cel ls p r o 
vide a moving target; they will get better. They may get better before t h e r m 
ionics can move down, so philosophically I would tend to worry l e s s about 
the competition in these c ros s-over areas than I do in direct ing our atten
tion to these a r e a s where we have a much c l e a r e r mode of application. 

I don't want to get into long d iscuss ions relat ing to how low can we go in 
para l l e l s and compete . I would like to emphasize however, that these la rge 
solar a r r a y s and a s sembl i e s probably have specific applications and t h e r e 
fore one can not genera l ize . I know in one of the e a r l i e r applications of the 
solar energy, in which it was neces sa ry to do quite a bit of pannel o r ien ta 
ting and we had some disappointments . The orienting mechan i sms froze and 
we wished that we had had m o r e nuclear power available at that t ime . But 
these a r e specific applications that one does not plan on. One does not plan 
to have the pannel mechanism freeze e i ther . But again, in t ime one would 
hope that to be overcome. So I don't think this question does have a un iver 
sal answer but I would hope that although -we look at these c r o s s - o v e r a r e a s 
we would not lament the fact that the competition is improving too. 

RASOR (USA): There is one par t i cu la r application where a thermionic r e a c 
tor might be a unique power supply, i. e. having no r e a l compet i to r s . A l 
though I cannot a s s e s s the importance of this miss ion , so lar cel ls cannot 
provide high powers for long-duration miss ions in low ea r th -o rb i t . If you 
need say 10-50 kW of power in low ear th-orb i t , the drag on the solar cell 
a r r a y is so grea t that the weight of propellent required to keep it in orbit 
is prohibi t ive. Now the thermionic sys tem has such a grea t advantage here 
over other energy conver te rs because it has a very smal l rad ia tor a r e a and 
associa ted drag c ross - sec t ion . 

I would also like to comment on an ent irely different subject. We heard some 
of the speakers say that we might be able to push efficiency up to may be 
25% and other speakers say we don't need 25%. Perhaps this lack of enthu
s iasm for advances is based on the fact that we a r e not seeing rapid develop
ments taking place any more in the basic technology such as they did ear ly 
in the game. In the US I believe, using the dollar as an index, there is a de -
emphasis on r e s e a r c h in thermionic conversion. If this were only a change 
in the relat ive emphasis on r e s e a r c h , with respec t to hardware development, 
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I would not be concerned since that is appropria te in a maturing technology. 
However, it seems that the total amount of r e sea r ch is diminishing. T h e r e 
fore, I dorf't think it should be surpr is ing that the rate of new developments 
would also fall off in the same way. To say it in another way, if you want to 
have great improvements in thermionics , you must fund them. 

Now in surface physics , the basic work has paid off, and we a re actually 
seeing substantial improvements in conver te rs result ing from that. I think 
I can say just as certainly that the work in p lasma physics has not paid off. 
We have been spending all of this t ime in p lasma physics trying to find out 
how the conver ter works and, as a ma t t e r of fact, trying to find out why it 
works so very well. However, I think we a r e just now beginning to find out 
how the spontaneous p roces se s in this simple two-electrode device manage 
to proceed so efficiently without any basic innovations on our par t . T h e r e 
fore , now is the t ime to take advantage of this knowledge to improve this raw 
natural system which is about to be the basis of large expenditures for deve
lopment of engineering prototypes. So I would like to put these questions be
fore the Panel : Is the role of r e s e a r c h diminishing? Should it diminish at this 
point? Should it be expanding or held constant? 

GROSS: May I comment on this with regard to the situation in our country? 
We feel that we have to do more in the r e s e a r c h a r e a . We hope to pursuade 
our government to fur.d univers i ty- and r e s e a r c h inst i tutes to do r e s e a r c h 
work in this field. 

TAPE: I would like to answer Dr . RASOR. Those of us who live in Washing
ton or in a nation's capital whatever the nation, tend to look at these problems 
in a slightly different light than you who a r e in the l abora to r ies . Somet imes, 
it is r e fe r red to as being in the rea l world and the unrea l -world, and apparent
ly each of us has his own definition as to which is which. . . . If one looks at 
the total support for what is defined as thermionics e. g. in the US, one finds 
that it has been decreasing over the last few y e a r s . On the other hand if one 
looks at the elements of the p rogram, as supported by different agencies of 
the government, some have been decreas ing, some of them have been in
creas ing . I know, that in our own agency, the Atomic Energy Commission, 
this subject has been getting increasing attention. As we have appeared be 
fore the Congress , to justify and to propose different p rog rams in this a rea , 
the thermionics work in my opinion has received very favorable support from 
our "Joint Committee on Atomic Energy" . This is an a r ea in which they have 
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shown considerable in te res t . I think this is in no smal l m e a s u r e because , as 
I said ea r l i e r , the p r o g r e s s has been good and the p romise potential is high. 
I think that you will all find that the people in the government like to r ide a 
winner. And they believe that in this par t i cu la r case , that of the future space 
p r o g r a m s , thermionic p r o g r a m s will play a very definite ro le . 

One other coinment. Considering the support received by thermionics in con
t r a s t to other p r o g r a m s , one has to make a relat ive evaluation whereas there 
is a tendency to view this in absolute t e r m s . Whether support goes up or 
whether it goes down, we should also observe it in t e r m s of how it is doing 
in compar ison with other sy s t ems . I think that those of you who a r e more 
intimately acquainted with our p r o g r a m will have to agree that in cont ras t 
with some of our other p r o g r a m s thermionics is doing quite -well. 

HEFFELS (ESRO): I would like to comment on Dr . RASOR's s tatement that 
low orbiting sa te l l i tes a r e an application where thermionics have an advantage. 
In this application solar cel ls will r ep resen t a moving ta rge t difficult to catch 
up with by other power s y s t e m s . Low orbit sa te l l i tes with a high ecl ipse r a 
tio a r e ideal for solar cell a r r a y s with a var iable operating voltage. This 
technique pe rmi t s a maximum power t rans fe r (e. g. to the ba t te r ies ) at al l 
t e m p e r a t u r e s , which is not possible with a r r a y s operating at a fixed voltage 
calculated for wors t operating conditions. The a r r a y power uti l ization can 
thus be improved by about 30%. Elect ronic hardware to accomplish this type 
of operat ion is being developed in the US. 

RASOR: I was refer r ing more to an o rde r of magnitude improvement . 

DESTEESE (USA): I would like to add to this d iscuss ion the considerat ions 
from the sys tem in tegra to r ' s point of view which apply to the selection óf a 
flyable nuclear power sys tem. Previous speakers have compared the v i r tues 
of, in some c a s e s , quite complex concepts based on subtle differences in spe
cific power and efficiency. Given seve ra l devices of the same genera l o rde r 
of performance the space vehicle des igner will not be impre s sed by smal l 
differences in output cha rac t e r i s t i c s . F o r example, a slightly super ior spe
cific weight of a power sys tem would be rendered insignificant by the weight 
of pe r iphera l s t ruc tu res needed to integrate it into the vehicle . In the rea l 
world of system integration the most important c r i t e r i a a r e rel iabil i ty, rugged-
ness and system simplici ty. I think this point has beem missed in the previous 
discussion. 
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HEFFELS : I would just like to ask the previous speaker if he was speaking 
for or against thermionic r e a c t o r s ? 

DESTEESE: I am for those thermionic reac tor designs which meet the s e 
lection c r i t e r i a of the system in tegra tor . 

WILSON (USA): I was surpr i sed to hear Dr. HATSOPOULOS say that he 
thought the l imit was 25% efficiency. Pe rhaps he was thinking in t e r m s of 
an engineer device ra ther than in t e r m s of a r e sea r ch device. I still think 
we will achieve 30%efficiency. In addition, my experience and observation 
has been that if you can achieve 30% in the laboratory, when you mass p r o 
duce the device, you can usually do be t te r . This resu l t s because in a -well 
engineered device you can control puri ty things of this sor t . So I think that 
the future is much more br ighter than the Panel has indicated, at least in 
t e r m s of efficiency and output power. When we do get to the higher efficien
cies and the high power, I think we will begin to look at the possibil i ty of 
using thermionic conver te rs as topping devices to other power sys tems like 
s team turbines and centra l station power plants . 

HATSOPOULOS: I -would like to make a few r e m a r k s relating to severa l 
questions what were ra ised by Dr. WILSON and Dr. RASOR. 

F i r s t of al l , let me say that I agree with Mr. BEARD that 15% efficiency is 
adequate for the sys tems that we a r e considering now; and it is certainly 
adequate to war ran t the development of a r eac to r . In fact, I will go further; 
even if our efficiency were only 10% it probably would be adequate as well, 
so that is not the point.- I think, however, that the higher efficiency at which 
we a r e operating the sys tems , or the higher the power density that we a r e 
obtaining from the conver te rs at a given t empera tu re , or conversely the 
lower the t empera tu re will get for a given performance, a great var ie ty of 
applications will open up. Fo r example, there is no question that the out-of-
core becomes more a t t rac t ive as you lower the emi t te r t empe ra tu r e s . 

Many other sys tems that Dr. WILSON pointed out will come within the rea lm 
of application of thermionics if the efficiency were higher. Therefore , a l 
though we have something adequate for some application, there is a t r e m e n 
dous incentive to get bet ter performance; and, in that light, I would like to 
support the point of Dr. RASOR by saying that more r e s e a r c h and more un
derstanding will lead to bet ter per formance . Not direct ly do I think that we 
will ever come to the point where one equation will show us how to make a 
conver ter more efficient or how to make a break- through in conver ter p e r -



- 1435 -

formance. I don't think that this i s going to happen. However, break-throughs 
of this type occur because of invention; and invention takes place when you 
start understanding things. Therefore, through the process of research and 
understanding, the converter will lead us into more intuition, not something 
that t ies to any particular equation or any particular theory, but the totality 
of equations and theories and discussions will lead to a better understanding 
which will result in significant progress . I agree with Dr. WILSON that we 
are stil l quite far from exploiting the full potential of converters. I would 
still stick with my 25% simply because there is a difference in the definition 
of efficiency and because I am talking more of an efficiency relating to a 
system than is Dr. WILSON. But, essentially, I second the previous speakers 
on this subject. 

DUNN: It was my intention to give a summary of the proceedings but I think 
instead I will merely say that clearly there is enough meat left in this sub
ject to justify another international conference, and I will not attempt to give 
a survey at this t ime. I would like to thank on your behalf our distinguished 
contributors, Dr. TAPE and Prof. DANILOV and also the member of the 
Panel, Drs . NEU, GROSS, HATSOPOULOS and BEARD and also to thank 
Mr. ROUKLOVE for standing in to help us with the translations. 

We will c lose the final sess ion of the Panel Discussion. I would like to ask 
the Chairman of our Organizing Committee, Dr. NEU, to say a few words. 

Dr. NEU thanked all contributors and participants of the Conference, inter
preters and technicians and especially for the assistance of Mr. ROUKLOVE 
in English-Rus sian translating of special i tems. 

Prof. DUNN, in turn, thanked Dr. NEU on behalf of the conference attendere 
for his efforts which have contributed to a successful, informative conference. 
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