

Esprit

European Strategic Programme for Research and Development in Information Technology

The Project Synopses

Index of Projects and Programme Overview

Volume 1 of a series of 7

April 1988

Directorate General XIII Telecommunications, Information Industries and Innovation Commission of the European Communities

The Project Synopses Index of Projects and Programme Overview Volume 1 of a series of 7

April 1988 XIII/318/88

CONTENTS

Information Technology : A Strategic Sector for Europe's Economy	1
ESPRIT : A Strategy for European IT	
Sub-Programme Overviews:	
Advanced Microelectronics	4
Software Technology	10
Advanced Information Processing	12
Office Systems	14
Computer Integrated Manufacturing (CIM)	23
Infrastructure Action : Information Exchange System	24
Master Index by Project Number	25
Master Index by Acronym	34
List of Participating Organisations	
Industry	40
Universities & Research Establishments	58

INFORMATION TECHNOLOGY A STRATEGIC SECTOR FOR EUROPE'S ECONOMY

Information Technology (IT) is one of the fastest developing areas of industrial activity, with annual growth rates in IT markets expected to continue at 15-25% into the 1990s. It is not only a major industry in itself but contributes significantly to the competitive status of most economic activities.

In world trade, electronic equipment will overtake the automobile sector in the 1990's. With worldwide R&D spending on information technologies rising from \$35 billion in 1986 to some \$90 billion in 1990, IT will remain one of the dominant sources of technological advance until the end of the century.

The convergence of IT with the increasingly deregulated telecommunications and broadcasting sectors is enabling an intangible product - information, in all its forms - to become both one of the leading international commodities in itself and a vital element of economic activity in general. And IT is rapidly becoming a driving force for social change, with far-reaching applications in such areas as education, health care and transport. Information technology is therefore of key importance to the economy, both in renewing the competitiveness of established sectors and in the new opportunities it offers for a Europe rich in information skills.

For Europe to make the most of the opportunities offered by information technology requires strategic action. The Commission in close consultation with national administrations, industry and research institutions throughout the EC, is providing both a framework comprehensive enough for such strategic action and the mechanisms for successful transnational teamwork.

The blueprint for this emerging European Technology Community has been established in the 1980s with the European Strategic Programme for Research and Development in Information Technology - ESPRIT.

ESPRIT - A STRATEGY FOR EUROPEAN IT

Although national European markets represent a substantial segment of world demand for IT, European suppliers have been in a weak position in several ESPRIT was defined after an assessment undertaken by the Community sectors. in close liaison with industry in 1982. This analysis proposed action to specific handicaps: scattered R&D efforts; lack of overcome university/industry cooperation; sub-optimal size of markets and enterprises. due to fragmentation into national markets and the practice of national preferences, resulting in insufficient economies of scale.

Deterioration of the competitive situation in IT was linked with increasing requirements for scale unattainable at national level, in particular largescale investments, coupled with very short product life cycles. The initiatives required included the mobilization of resources on a large scale, in particular by public R&D funding, and the promotion of inter-industry and industry/university cooperation in projects of common interest.

In adopting ESPRIT the Community took into account both the European and the international situation by organizing, at Community level, a cooperative drive in pre-competitive R&D and in the preparation of standards.

Officially launched on 28th February 1984, the ESPRIT programme was conceived for a 10-year period with three main objectives :

- to provide European IT industry with the basic technologies to meet the competitive requirements of the 1990s;
- to promote European industrial cooperation in IT;
- to contribute to the development of internationally accepted standards.

For the first five-year phase of the programme an overall effort of ECU 1,500 million was foreseen, 50% (ECU 750m) allocated from the research budget of the Community. Esprit research partners provide the other half of the funding.

The programme is implemented by projects selected from public calls for proposals and based upon a work programme updated annually. The programme comprises collaborative pre-competitive research and development projects, carried out across frontiers by Community companies, universities and research institutes. ESPRIT contributes to the coordination of R&D activities carried out under the programmes of the Member States and of the Community.

The programme is concentrated on:

- Microelectronics;
- Information processing services, including software technology and advanced information processing;
- IT application technologies including computer integrated manufacturing and office systems.

ADVANCED MICROELECTRONICS

Introduction

Advanced Microelectronics in the context of this subprogramme, encompasses all research and development aspects concerning the provision of the physical elements for the acquisition, processing, storage, transmission and display of data required by modern informatic products. It is therefore the hardware foundation of the Information Technology (IT) industry.

This subprogramme concentrates on the priority areas needed to ensure that Europe maintains a competitive position regarding the supply of these essential ingredients for her IT manufacturing industry with the required capability, in sufficient quantity and at competitive prices.

Overview of the Sub-Programme Areas

The major thrust of the research and development programmes within Microelectronics is to push the silicon based technologies of MOS and Bipolar towards their limits of capabilities whilst pursuing the possibilities afforded by the compound semiconductor materials, such a Gallium Arsenide, which have potential capabilities in key areas beyond those possible using silicon.

Apart from a capability to produce high function count chips, it is also necessary to deal with the problems posed by the complexity of their design. Managing this design complexity effectively is the main goal of the work on Computer Aided Design (CAD) of VLSI Systems.

Optoelectronic devices offer many possibilities especially in the data transmission field, these will be investigated.

An investigation of advanced display technologies offers the possibility of replacing the ubiquitous CRT, as the main vehicle for large scale display, by more compact solid state based counterparts.

Research themes which are more innovative or longer term than those contained in the first six topic areas as well as critical areas of technology and techniques with a common thread are brought together under the heading of General Supporting Topics. These include packaging, device modelling and special processing materials and techniques.

Submicron MOS

The requirement is to develop all the individual process steps to achieve submicron feature size in MOS (such as lithography, etching and doping). The target is a process capable of making several million components of logic and memory per chip. It is envisaged that below about 0.7 um tools other than optical lithography will be used. Process and device modelling will be included.

The main objectives of the broad 5-year programme are :

- At 18 months: design and evaluation of test vehicle of more than 1000 transistors based on 1 um design rules with a pitch (metal plus spacing) of 3 um.
- At 3 years: first samples of demonstration circuit with 0.5 million transistors, 1 um design rules, with data on figure of merit and delay time.
- At 4 years: statistical data on homogeneity on a slice and yield for 1 um design rules; and test vehicle with more than 1000 transistors with 0.7 um design rules and a pitch of 2 um.
- At 5 years: first samples of circuits with more than 1 million transistors, 0.7 um design rules, with data on figure of merit and delay time.

Submicron Bipolar

The overall objective is to develop specific bipolar submicron process steps, leading to a complete processing sequence for very high performance ICs.

To realize this objective the following developments are included in the project area:

- Overall circuit concepts which must evolve together with the technology.
- A vertical device structure appropriate to submicron lithography.
- A convenient multilayer interconnection technology.
- A suitable contact and multilayer interconnection technology.
- Appropriate high dissipation, high pin count, electrically matched leads, packages.
- Process and device modelling.

The critical techniques needed to support the submicron MOS and bipolar areas are covered in area of general supporting topics.

The main objectives of the programme over 5 years are :

- At 1 year: initial process design; evaluation and choice of critical equipment.
- At 2 years: establish final design rules at 1 um.

- At 3 years: demonstrate 1 um 10/20K gates, 100 ps gate delay circuits.
- At 4 years: establish final design rules for 0.7 um structures.
- At 5 years: Availability of first samples of 20/50K gate circuits in 0.7 um process.

Computer Aided Design (CAD)

The two primary objectives are :

- (a) To develop advanced CAD techniques to manage the ever increasing circuit complexities within microelectronics.
- (b) To provide a capability for complex VLSI design which is widely accessible to the EEC IT community.

The overall aim is to develop within a common framework an integrated set of portable tools capable of handling VLSI circuits containing up to several million components. This set of tools should :

- Provide a fast response, user friendly design facility that is readily adaptable to changes in technology.
- Allow designers to achieve a rapid turnaround of valid and testable designs and associated test information.
- Provide facilities for reliability and performance optimisation of circuits.
- Include methodologies of cell-based design and libraries of adaptable building blocks.
- Assimilate relevant results of CAD projects under microelectronics regulation (EEC) 3744/81.

The strategy for this R & D area is that:

- (a) A positive attempt should be made to encourage the emergence of an overall CAD infrastructure such that the majority of tools developed under existing programmes together with future tools can be combined to provide an integrated widely accessible tool capability.
- (b) As far as possible, complex demonstrator chips will be used as a focus for each stage of the programme.
- (c) Device and process modelling is not considered as part of the CAD projects but is included in the projects concerned with the development of new VLSI processes however compatibility with CAD is required.
- (d) Care should be taken to promote cooperative development between

-6-

universities, industrial groups and research institutions in order to transfer know-how and make CAD available to a broader community.

- (e) Care will be taken to interface with, support and employ the results of other ESPRIT activities.
- (f) The application of knowledge engineering techniques to CAD should be emphasised.
- (g) Dedicated CAD hardware should be incorporated where appropriate.
- (h) There is a vital need to incorporate the results of current European projects which are in most cases difficult to quantify.

Compound Semiconductor Integrated Circuits

Integrated digital circuits in III-V compound semiconductor materials offer potential speed and/or speed/power product advantages over silicon circuits because of higher electron mobility. The degree of understanding of the technological complexity of these materials is less advanced than for silicon and considerable materials and process research is necessary. Because of the increasing market for high-speed, low-power circuits, many problems need to be tackled in order to bring forward knowledge in this area.

The technology encompasses GaAs circuits based on Field Effect Transistors (FET's) as well as GaAs/GaAlAs heterojunction structures using high electron mobility transistors (HEMT) or the heterojunction bipolar transistors (HJBT's). Basic research is required in materials preparation, ion implantation, and IC process technologies.

The specific objectives of this programme are:

- At 1 year: demonstrate feasibility of MESFET based circuits with 1000 gates and gate delay (tpd) of less than 100 ps. Also, demonstrate basic HJBT and/or HEMT circuits (other than ring oscillators).
- At 2 years: Demonstrate at least 1K memory (less than 1 ns access time, less than 500 mW dissipation) and/or equivalent complexity circuits.and demonstrate feasibility of 100 gates HEMT and/or HJBT circuits.
- At 3 years: Evaluate yield on a demonstrator circuit of 1K or equivalent complexity, on at least 10 wafers. Demonstrate feasibility of 1K HEMT memory and /or comparable HJBT circuit. Comparison of various technologies (if possible with the same circuit for each technology). Decision for selecting one out of them.
- At 4 years: Demonstrate 16K memory (or equivalent) in the selected technology.
- At 5 years: Demonstrate large circuit of 10 to 20K gates complexity, gate

delay of less than 50 ps with figure of merit less than 100 femtojoules. This demonstrator could be a 16K memory with an access time in the order of few nanoseconds or it could be defined during year 3 to fulfil needs of other ESPRIT areas (especially high speed data bus) or of telecommunication industry (signal processing circuits for instance).

Optoelectronics

Optoelectronic devices will be increasingly required for telecommunication type transmission ultra wide band image processing and switching. Future generations of mono-mode communications systems may use coherent detection and multi-channel wavelength multiplexing and may be phase modulated. This will provide improved performance and be compatible with integrated optical logic. It will allow processing, combining and routing at very high speeds. In semiconductor form it will also be compatible with III-V integrated circuits, providing a fast electrical interface. This programme is not aimed at optically-based computers, but rather at providing components and subsystems for large bit rate transmissions.

The total achievement of the objectives of this programme needs very large resources which may not be available within the framework of ESPRIT. On the other hand these objectives represent a minimum target to remain globally competitive.

The objectives are as follows:

(a) Integrated electronic and optical components on the same chip:

At 1 year: demonstrate a monolithic photodetector with internal amplification.

At 2 years:demonstrate a monolithically integrated receiver with bandwidth greater than or equal to 2.5 GHz.

At 3 years: demonstrate an integrated transmitter with a bandwidth greater than $2.5~{
m GHz}$.

After year 3, further optimisations of receiver, transmitter, and perhaps also repeaters have to take into account the progress and needs of the telecommunications industry and of the other ESPRIT areas.

(b) Wavelength multiplexing (WDM) with integrated optics:

At 1 year: demonstration of DFB laser with threshold current lower than 50 mA; demonstration of waveguide fed photodetector; low loss monolithic waveguide (smaller than 1dB/cm).

At 2 years: demonstration of 2.5 GHz bandwidth modulators in semiconductors.

At 3 years: demonstrate an integrated transmitter with a bandwidth greater than 2.5 GHz.

At 4 years: demonstrate integrated WDM transmitter and receiver modules.

At this point, some inputs from other ESPRIT areas and telecommunications industry are needed to implement a demonstration link at a several gigabit rate.

Advanced Display Technologies

In many product areas, eg workstations, electronic office equipment etc. there is an urgent need in Europe for new advanced display systems to replace and supercede the conventional CRT. Such displays would need to be of large size (A4 and above) and of medium to high definition. Colour capability would also be desirable/necessary.

Many approaches are currently being investigated. A technology definition effort in which major existing community practitioners would combine their knowledge and experience is required to define within a short time period the most adequate way to tackle this problem.

General Supporting Topics

This area covers :

- (a) Research themes not already identified in the previous microelectronics areas.
- (b) Topics which support one or more of the other areas.
- (c) Research themes which look forward beyond the early stages of the microelectronics programme towards the submicron goals.

SOFTWARE TECHNOLOGY

Introduction

This directory contains information on forty seven projects supported within the Software Technology area of the ESPRIT programme. The entry against each provides a summary of its objectives together with information on the progress made and results obtained. Further information can be obtained from the person indicated on the project sheet.

From its outset in 1984, the objective of this part of the ESPRIT programme has been to encourage the development of a scientific basis for software engineering from which a range of industrial practices can be designed and implemented.

The approach has been primarily one of viewing the software development process in the wider context of complex system development. This has ensured that the collaborative, pre-competitive research and development actions of the ESPRIT programme have addressed the real problems faced by to-day's software industry in Europe, particularly the production of high-quality software products and improving the productivity of the software development process.

To achieve these dual goals, the Software Technology programme has concentrated on four key sub-areas:

(i) Theories, Methods and Tools

The definition and development of rigorous design methods and the development of the appropriate support tools. The work covers formal methods (formal in the mathematical sense) and informal techniques, and the appropriate use of the knowledge engineering techniques.

(ii) Management and Industrial Aspects

The development of techniques for project management and production management. The complexity of many software development projects is such that they require the coordination of large development teams, the production and revision of large amounts of documentation and code, the use of distributed computing facilities, etc. Appropriate techniques are therefore needed for resource management, documentation control, configuration management and version control.

(iii) Common Environment

Clearly, the information which is generated during each phase of the development process needs to be stored in a relevant form not only for easy access by the design team and the project managers, but also for the appropriate relationships to be maintained between the various design descriptions produced as the design proceeds. To provide the mechanism for

this "object management", a common utility is necessary which provides the relational database mechanism and the relevant common interfaces for design tools, project management tools, user access etc. This common environment provides the framework within which many of the results of the Software Technology programme can be integrated to form industrial systems. Within sub-area the first generation environment, based the on the entity relationship model has already produced common interface definitions which have entered the international standardisation process. and industrial systems are available. Next generation systems eq. incorporating knowledge engineering techniques, are under development.

(iv) Evaluation and Demonstration

Proper evaluation of the environments, methods and tools within industrial contexts is crucial for the industrial take-up of the results of the programme. Therefore a number of projects have been launched to provide cost/benefit data on the use of these systems in industry.

ADVANCED INFORMATION PROCESSING

Introduction

This directory contains information on forty five of the projects supported within the Advanced Information Processing area of the ESPRIT programme. The entry against each provides a summary of its objectives together with information on the progress made and results obtained. Further information can be obtained from the persons named on the project sheets.

The objective of this part of the ESPRIT programme has been to develop the necessary technologies for the implementation of the next generation of computing systems, by supporting three main action lines:

- the development and application of knowledge engineering techniques;
- the development of new computer architectures for symbolic and numeric processing, and fault tolerant systems; and
- the development of advanced system interfaces for effective communication between computing systems, the computer and its environment, and the computer and the user.

Priority has been given to consolidating and accelerating the industrialisation of the results emerging from the projects. Results have been achieved particularly in the knowledge engineering and computer architecture projects where a firm base is being built for the future enhancement and exploitation of these technologies and techniques by European industry.

The Advanced Information Processing programme has concentrated on three key sub-areas:

i) Knowledge Engineering

The development and application of knowledge-based systems. The approach adopted has been to:

- develop the methods and techniques for knowledge acquisition and knowledge representation;
- develop application independent knowledge-based system shells, supporting languages and user interfaces;
- develop domain specific systems; and
- evaluate knowledge-based systems in the industrial environment.

(ii) New Computer Architectures

The development of high-performance computers capable of processing symbolic and numerical information, concentrating on highly parallel architecture machines.

Such computers will provide the computing capacity needed as the results of knowledge engineering work and advanced man-machine interfaces become embedded into a wide range of applications, eg. CAD and office systems.

(iii) Advanced Systems Interfaces

The work has concentrated primarily on image processing, natural language understanding and speech processing, and is complemented by studies of multi-sensor operation.

OFFICE SYSTEMS

Introduction

Information is an important instrument of competition. This concept is now widely recognised. Office Systems provide a major vehicle through which information can be applied as an aid to navigation through the present turbulent changes in business, technology, commerce and government.

While the potential contribution of information technology to improve effectiveness can be easily recognised, the delivery of solutions to the information problem areas is an entirely different matter. The problems are "fuzzy" and frequently the solution processes appear to be artistic rather than scientific. The users of information frequently have little or no knowledge of the technological content and necessary technical processes that are involved in processing information.

The majority of users require total solutions and not isolated products. These solutions have to be reasonably complete and this implies that integrated systems must be provided, not only in the sense of the interrelationship of the technical components (both hardware and software) but also in terms of the functions that these components perform as a support to the day-to-day operations, planning and strategy development of organisations.

The challenges facing Office Systems development include:

- Providing integrated information system architectures and scenarios for their implementation that will allow rapid, economic and reliable adaptation to the changing needs of a great variety of private and public enterprises.
- Understanding and supporting the non-deterministic tasks of a wide range of office workers and not just providing a technological update of traditional and limited office functions.
- Achieving major improvements in human-system interfaces that realistically allow effective use of office systems by a wide range of office workers.
- The development of solution oriented approaches to office problems. Delivering product elements and some services and expecting the user to create the total own solution cannot continue.

The key European opportunity relates to the development of system solutions. The implications of European requirements must be that these solutions have an adaptability, flexibility and inbuilt interworking capability that will be a real strength outside Europe. This will only be true if the application of technology reflects a degree of user sensitivity ahead of our major competitors. Research work in the field of Office Systems can be characterized as follows: on the basis of fundamental and methodological developments in VLSI, software technology, knowledge representation and some other fields. Integrated and applied system solutions are developed which take into consideration user requirements and foreseeable evolutions in the technical, social and economical field.

The Office Systems programme provides the key elements and concepts that mark the development from classical data processing to integrated information processing in administrations and industrial and service enterprises, by which the future work environment will be characterised. For that purpose, systems architectures, functional modules and communication networks with standardised interfaces are necessary.

In developing these systems, which are essential for the survival of our industrial companies, human and social factors have to be considered in the early stages of planning. Only in this way can we ensure that the systems will eventually be accepted by the users and that economic expectation will also be met.

Taking into account the above mentioned integrated approach, the subprogramme has been divided into five research areas. The aims are:

Office system science and human factors

To analyse current and predicted office activities to determine how information technology might be applied to improve the effectiveness of office work and organisation of the enterprise as a whole. Besides automation of various functions and the use of knowledge management methods, this means better support particularly for administrators, professional and managerial staff in executing their judgmental tasks.

To improve understanding of human, social and cultural factors in the office and to ensure high performance of users when interacting with the systems, whilst at the same time offering optimal working conditions and ensuring adequate organisation and individual acceptance.

Advanced workstations and human-machine interface

To establish major new human-machine interface technologies, peripheral technologies document representation technologies and information manipulation relevant to the development of office workstations for use in advanced office systems.

Communication systems

To create the basic technologies required for advanced office communication systems including technical fundamentals in communication systems architecture, optical technologies as a particularly significant technology, the management of resources connected by networks, and system aspects of value added services. Advanced multi-media information storage and retrieval systems

To acquire the system and applications expertise related to storage and retrieval of all forms of office information in electronic storage systems in a user organisation in an adequate way.

Integrated office information systems

To create flexible, reliable and economical total information system architectures and implementation scenarios, and to check the validity of the total information concepts in environments that are realistic and allow quantitative evaluation.

Priority is given to integration projects throughout, especially in this area.

Office Systems Science and Human Factors

This research programme has been devised to give a better understanding of the office environment. Offices are the "nervous system" of any enterprise. These must be organised, staffed and equipped for effective and efficient operation, and interfaced with other branches of the enterprise (such as research laboratories and manufacturing) and the external environment.

At present the understanding of this field is patchy. There is no formal science of office automation, as there is for example for production automation. This programme, however, makes possible coherent approaches to the problems, ranging from empirical studies to consistent operational classifications and definition of computer based analysis and design tools.

Consistent with this approach, the main topics identified are (a) office systems analysis, (b) office systems design, (c) human factors and (d) the possible application of knowledge based methods. The analysis part of the programme delivers useful input for the design oriented phases.

It is evident that the incorporation of human factors, especially into a technology-oriented programme is an essential pre-requisite for effective use and a broad acceptance of the envisaged systems and thus for their final economic success. The research programme therefore includes specific research projects on human factors related to the office environment. This leads to programmes for cognitive aspects together with work structuring, qualification and training. Human factors laboratories are also seen as key competence centers and catalysers, offering the possibility of unbiased judgment about experimental systems and on commercial products.

The topics to be studied in this area include:

Office systems analysis

(a) Operational and functional analysis of office requirements

- (b) Cost benefits analysis
- (c) A glossary of agreed terminology
- (d) Analysis of human tasks within the office

Office systems design

- (a) Office system design methodology
- (b) Modelling and simulation of office information systems
- (c) Transaction monitor
- (d) Deterministic and judgmental function
- (e) Techniques for user interface design

Human factors

- (a) Human factors laboratories
- (b) Human-machine cognitive compatibility
- (c) Qualification and work
- (d) User aids and learning tools
- (e) Human-machine interface specification languages
- (f) Natural language interpretation and production

Advanced Workstations and Human-Machine Interfaces

The workstation is the user's gateway to the office system. User acceptance and user performance depend on the design of the corresponding human-machine interface.

The most important channel for information input to the human user is the visual channel. This channel, as well as the bi-directional vocal channel, has evolved to provide information for motoric activities which should be adequately integrated in operating the interface. In consequence, VDU's and touch keyboards and speech receptors will emerge to form an integrated input/output device suitable to manipulate text and images by direct manual and vocal control. Preferably the screens should have the dimensions and portability of paper (electronic paper). Another approach to a more comfortable 'visual input' will be the large screen display. The need for multi-functional capabilities will require the development of devices which allow graphic input and editing, on line handwriting and ideogrammatic conversation.

As long as there is no portable paperlike display, printing will be necessary and the need will be growing for faster, more versatile (text, graphic, colour) printers at lower cost. The provision of human-machine interfaces which support the complete range of functions traditionally carried out by pen or paper is necessary.

A high proportion of telephone or face-to-face communication indicates that visual and spoken information will be preferred whenever it is applicable. Visual communication will require the development of high definition colour video scanning devices with the necessary processing capabilities for efficient storage and transmission and the use of the multifunction flat panel display.

The voice channel cannot handle as much information as the vision channel but is our most efficient carrier of natural language. Voice communication will require the development of sophisticated processing for improving the acoustic environment, and the development of coding schemes. Voice communication between man and the office system will require the development of efficient speech recognition and of a natural speech synthesizer.

An important aspect of facilitating the standardisation of the interface with the human world and the paper world is the use of formalised languages. These are to be designed in a way which allows the user, rather than the computer professional, to specify his needs directly to the system.

The implementations and testing of user decision support functions are considered to be embedded in the workstation. Availability of these functions is supposed to be a key-factor in the competition among office products.

The development of specific system interface components should lead to a general architecture which will allow the integration of the subsystems in an architecturally homogenous solution. Although the work items are phased in terms of integration into a physical workstation, projects are not necessarily confined to assume that all the associated functionality is resident in the workstation. Solutions involving distributed functionality accessed over communication links are equally relevant.

Much of the software that supports the user will reside in the workstation. Any rules that are, or will be, agreed upon in order to improve portability of software, should be implemented. This applies as well to rules and agreements with respect to other aspects of the system.

The following R & D topics are identified:

System aspects

- (a) system aspects of workstation design
- (b) workstation security

Vision

- (a) vision interface
- (b) flat panel workstation design
- (c) high resolution video imager
- (d) image coding

Paper

- (a) paper interface
- (b) advanced scanner
- (c) advanced printer

- (d) microfilm interface
- (e) graphics coding (f) graphics recognition
- (g) intelligent graphics recognition

Speech

- (a) speech interface
- (b) speech coding
- (c) speech recognition
- (d) intelligent user function support
- (e) user to user multimedia communication

Office languages and procedures

- (a) office document architectures and languages
- (b) office interface languages
 (c) multi-media document manipulation
- (d) intelligent user function support
- (e) user to user multimedia communication

Communication Systems

Office communication presents a number of possible long lead time research Technological advances are needed in microelectronics and in fibre topics. optics, and research is necessary on the principles of future communication systems such as wideband local area networks (LAN), the interconnection of LAN's and the gateway facilities for multimode functionality . R & D should lead to new systems and to standards consistent with the ISO reference model for open systems interconnection (OSI). Besides these technical problems, there are non-technical problem areas which have to be addressed in order to support the progress of office communication systems. The requirements of office communication have to be explored more systematically to get a more solid basis of future telecommunication system design. The special aspects of human interface with communication have to be studied, and the future relationship of the PTTs to new local communication systems has to be considered. New languages and operating system facilities are necessary in connection with distributed sytems.

Within this scope of possible research activities, four main topics which cover some key issues have been determined.

The first topic is dedicated to the fundamental question - how to provide a common communication system for all office communication needs. This question becomes more and more urgent, since non-voice communication will be needed at almost every desk in the future and video communication is on its way.

The second topic addresses the wide band LAN, including the application of optical fibres, and all the technical problems related to this. It is also concerned with the role of switched communication in the office. It. addresses the problems of advancing from current single services switching techniques towards multiservice variable bandwidth switching which will allow the interconnection of all office peripherals and resources.

The third topic deals with resource management in a distributed environment.

The fourth topic intends to advance the standardisation of value added communication services in the office e.g. in the form of mail box messaging for text, image and voice, and for multi-media information systems such as advanced videotex.

Architecture

- (a) communication system architectures
- (b) security in communications
- (c) harmonisation issues in communication

Technology

- (a) optical wideband
- (b) advanced switching techniques

Resource management

(a) distributed systems

Services

- (a) multi-mode messaging
- (b) ISDN-based advanced videotex(c) teleconferencing
- (d) advanced services

Advanced Multi-media Storage and Retrieval Systems

Information technology and office automation are fundamentally concerned with the storage, accessing and movement of information, covering data, text, Investigations leading to the graphics, voice, images and other forms. definition of an advanced data-base model for office applications and studies of the security, privacy, authority of access and information distribution are fundamental to a wide range of office systems research.

The proposed research is oriented toward construction of a number of experimental prototype office information servers, and the operation of these in realistic conditions, alone and in association with each other, to gain practical experience in the systems implications of building these servers, loading them with practical information and using them in a realistic way. The work is therefore divided into three general classes: systems issues, usage and needs, and components.

Systems issues: these cover the design and operation of office information servers, including high-performance filters and investigations of new information models and the development of metrics relating to these. Servers must be considered in relation to the other components of a comprehensive office system including other information servers and the distribution of information and functions between them. Work on the filing interface-related aspects of query languages and declarative content languages is identified.

Usage and needs: this topic addresses the nature of the information (data, text, graphics, images etc...) that will be held in office information servers in terms of quality, quantity and combination and the usage of that information. An internal adaptive interface is to be investigated that responds to the needs and experience of users.

Components: the development of hardware, software and systems elements that will be incorporated into advanced filing systems, primarily in information servers, but also in advanced workstations. These include filters, the sytems management issues relating to using optical discs in advanced office systems, the systems techniques required to achieve very high perceived reliability, and the application of advanced information processing techniques to advanced filing and retrieval systems.

The topics covered by this R & D area include:

File server architectures

- (a) office information server design and evaluation
- (b) very high security systems

System issues

- (a) new information models
- (b) file query and declarative content languages

Usage and needs

- (a) nature and usage of filed information
- (b) user-file adaptive interface
- (c) performance of office information servers

Components

(a) file filters(b) optical storage systems concepts

Integrated Office Information Systems

The research and the prototype development of components for office systems has to be supplemented by the research and evaluation of integrated office systems concepts for a variety of office environments. In an industrial R & D programme the testing of prototypes against requirements that are representative for market conditions, is the most important check on the relevance of the research done.

The architecture for distributed systems is a major area of concern. Distribution of functional units networked together can be considered the fundamental concept not only for office systems, but for all future information systems. Elaboration and implementation of this concept is by no means trivial, and requires many new ideas as well as the development of reference models and standards.

A particular aspect, system security, should be considered throughout the design process on the total system level as well as on component level.

Two topics are identified in the sub-area test and evaluation that are complementary but not necessarily mutually dependent.

- The creation of test and evaluation environments for office system components and integrated office system prototypes, that allow qualitative and quantitative validation in a variety of simulated offices and enterprises. This work would also use the products of the work on office system science and human factors as well as other standards, performance and integration work.
- 2) The design, development and evaluation of advanced office systems prototypes based upon state-of-the-art components developed in Europe, possibly under the ESPRIT programme, and based upon the results of structures analysis in the office systems science and human factors areas.

The following R&D topics to be studied in this area include:

Information system architecture

- (a) system architectures
- (b) systems security

Test and evaluation

- (a) office system test and evaluation facilities
- (b) office systems application test beds

COMPUTER INTEGRATED MANUFACTURING (CIM)

Introduction

This area relates to the total range of computer integrated manufacturing activities including computer aided design (CAD), computer aided engineering (CAE), computer aided manufacturing (CAM), flexible machining and assembly systems, robotics, testing, and quality control. The area has been selected for its potential impact on the methods and economies of production, which are strongly geared to success specifically for the IT industries, and for manufacturing industry in general.

This is an area where the potential for significant advances through a unified approach are high, and it is therefore particularly suitable for effort on a Community scale.

The objectives in CIM are to create an environment in which multi-vendor systems can be implemented in a progressive manner, and in which Community IT suppliers can compete effectively. To achieve this, effort is concentrated in two main streams. Firstly, work on infrastructure, which concentrates on the development of design rules, systems architectures and communications which will lead to a common reference frame. Relevant international standards activity are supported. The second stream involves action on those sub-systems, interfaces and tools whose development or refinement is judged to be of strategic value for European Community industry (both users and vendors).

INFRASTRUCTURE ACTION : INFORMATION EXCHANGE SYSTEM

The Esprit Communications Infrastructure - IES

The Council decision on ESPRIT required that in addition to the work defined in the main technical areas, supporting infrastructural actions be taken, particularly that an Information Exchange Services (IES) be implemented to ensure that the execution and management of the research and development projects be properly supported, and that appropriate dissemination be given to their results.

The general policy adopted hinges around the gradual development and availability of Open Systems Interconnection, (OSI), conformant computer communications products and is split into 3 fairly discrete parts :

- 1) The provision of services to the ESPRIT community.
- 2) Support for developments conforming to the International Standards Organisation (ISO) standards for OSI.
- 3) Harmonisation of standards implementations and other related Europe-wide research networking activities, in order to allow for interworking.

As part of the policy of supporting and accelerating migration to OSI, development activities were actively stimulated by the IES in order to provide OSI-conformant tools for IES users and service providers and o encourage the acceptance of OSI amongst European manufacturers. The overall objective was set, that in those areas where standards were sufficiently mature, products which would be of potential benefit to IES would be available in a time-frame allowing support to be given to other ESPRIT R & D projects.

The IES infrastructural actions were also intended to supply working services to be used by the IT R & D Community. Within one month of the initial Pilot Projects starting (the first project started work on 12/07/1983), ESPRIT had an operational electronic mail and conferencing system available called EUROKOM, based on work under the COST 11 programme. Four years later, the system is used regularly by a significant proportion of the ESPRIT community and is growing rapidly as a means of:

- Projects communicating amongst themselves.
- Projects coordinating with the CEC.
- Dissemination of information about ESPRIT norms, standards, institutional news and conference calendars in many different fields.

MASTER INDEX BY PROJECT NUMBER

Number	Title and Acronym	Area	Page
9	Exploitation of Real-time Imaging for Arc Welding	CIM	2
10	High Level CAD for Interactive Layout and Design	MEL	7
14	Advanced Interconnect for VLSI	MEL	9
26	Advanced Algorithms and Architectures for Speech and Image Processing (SIP)	AIP	3
28	A Multimedia Filing System (MULTOS)	0 S	10
32	A Basis for a Portable Common Tool Environment (PCTE)	ST	3
33	Research Open Systems for Europe (ROSE)	IES	2
34	Design Rules for Computer Integrated Manufacturing Systems	CIM	4
43	Standardisation of Integrated LAN Services and Service Access Protocols	05	12
56	Functional Analysis of Office Requirements (FAOR)	0S	13
59	New Information Models for Office Filing and Retrieval (MINSTREL)	05	15
64	Speech Interface at Office Workstation (SPIN)	0 S	17
73	Broad Site Local Wideband Communication System	0S	19
75	Design Rules for the Integration of Industrial Robots into CIM Systems	CIM	5
82	Intelligent Workstation (IWS)	0 S	20
92	A Computer Integrated Production Insula: Design Rules and Standards	CIM	6
96	Expert System Builder(ESB)	AIP	5
97	Advanced Algorithms Architecture & Layout Techniques for VLSI Dedicated DSP Chips	MEL	10
107	A Logic-Oriented Approach to Knowledge and Data Bases Supporting Natural User Interaction (LOKI)	AIP	6
112	Knowledge Integration and Management Systems	AIP	8
118	General Purpose Sensory Controlled Systems for Parts Production	CIM	7
121	Handling of Mixed Text/image/voice Documents Based On a Standardised Office Document Architecture (HERODE)	0\$	23
125	Personal Workstation for Incremental Graphical Specification and Formal Implementation of Non- sequential Systems (GRASPIN)	ST	5
130	The Unix-United Aspects of the IES	IES	4
131	Integrated Sensor-based Robot System	CIM	8
169	Local Integrated Optical Network (LION)	0S	25
179	Integrated Electronic Subsystems for Plant Automation	CIM	9

197	Computer Aided Thermal Image Technique for Real Time Inspection of Composite Material	CIM	11
231	Design and Operational Evaluation of Office Information Servers (DOEOIS)	05	27
234	Cognitive Simulator for User Interface Design	0S	29
237	Communications Systems Architecture (CSA)	OS	31
243	Submicron Bipolar Technology I	MEL	12
245	SOI Materials & Processing Towards 3-D Integration	MEL	14
249	Ultra Wideband Optical Coherent LAN (UCOL)	0S	33
255	CAD Methods for Analog GaAs Monolithics IC's	MEL	17
256	Time Dependency and System Modeling in KBS Design for Industrial Process Applications	AIP	9
263	Integrated Opto-electronics on InP	MEL	19
266	Software Development using Concurrently Executable Modules (PEACOCK)	ST	7
267	Automated Support for Software Engineering Technology Feasability Study (ASSET)	ST	9
271	Automation Design Validation of Integrated Circuits using E-beam (ADVICE)	MEL	21
278	Integrated Sensor-based Robot System	CIM	13
280	Intelligent Help for Information System Users (EUROHELP)	AIP	10
281	Submicron Bipolar Technology II	MEL	23
282	Software Production & Maintenance Management Support (SPMMS)	ST	10
283	Formalisms, Methods and Tools (FOR-ME-TOO)	ST	11
285	Office Support Systems Analysis and Design (OSSAD)	0 S	34
291	Linguistic Analysis of the European Languages	0S	36
293	Knowledge & Decision Support for Material Handling Systems	CIM	14
295	The Paper Interface	0 S	38
300	Reliability and Quality of European Software (REQUEST)	ST	13
302	Investigation of Performance Achievable with Highly Concurrent Interpretations of Functional Programs	ST	16
304	Design of Techniques and Tools to Aid in the Analysis and Design of Knowledge Based Systems	AIP	11
305	Assessment of Silicon-MBE Layers	MEL	25
311	Advanced Data & Knowledge Management Systems (ADKMS)	AIP	12
315	Rigorous Approach To Industrial Software Engineering (RAISE)	ST	17
316	An Architecture for Interactive Problem Solving by Cooperating Data and Knowledge Bases	AIP	14

319	Data Transfer Between CIM Systems & Management Information Systems	CIM	16
322	CAD Interfaces (CAD-I)	CIM	18
334	Plasma Deposition Technology for Magnetic Recording Thin Film Media	MEL	27
338	Product Design for Automated Manufacture & Assembly	CIM	20
348	Generation of Interactive Programming Environments (GIPE)	ST	19
367	Secure, Open, Multimedia, Integrated Workstation (SOMIW)	OS	40
369	Physical-chemical Characterisation of Si Oxynitrides in relation to their Electronic Properties	MEL	29
370	Silicon-on-insulator Systems Combined with Low Temperature Silicon Epitaxy	MEL	31
384	Integrated Information Processing for Design Planning and Control of Assembly	CIM	21
385	Human Factors Laboratories in Information Technologies (HUFIT)	0S	42
387	Knowledge Representation and Inference Techniques in Industrial Control	AIP	16
390	Program Development by Specification and Transformation (PROSPECTRA)	ST	21
393	Construction and Interrogation of Knowledge Bases Using Natural Language Text and Graphics (ACORD)	AIP	18
395	An Integrated Network Architecture for Office Communications (INCA)	0\$	44
401	Application Software Prototype Implementation System (ASPIS)	ST	23
409	Development of an Integrated Process and Operations Planning System With the Use of Interactive 3-D Modelling Technology	CIM	23
410	Software Environment for the Design of Open Distributed Systems (SEDOS)	ST	25
412	A High Performance CMOS-Bipolar Process for VLSI Circuits (BICMOS)	MEL	33
415	Parallel Architectures & Languages for AIP-A VLSI Directed Approach (PALAVDA)	AIP	19
418	Open CAM System Allowing Modular Integration Into Factory Management of a Workshop Structure in Functional Cells with Various Levels of Automation	CIM	24
419	Image and Movement Understanding (IMU)	AIP	22
432	An Integrated Formal Approach to Industrial Software Development (METEOR)	ST	27
440	Message Passing Architectures & Description Systems (MADS)	AIP	24

443	Molecular Engineering for Optoelectronics	MEL	35
449	Investigation Into the Effective Use of Speech At the Human-machine Interface	0S	46
477	Control Systems for Integrated Manufacturing: the CAM Solution (COSIMA)	CIM	26
491	Materials & Technologies: High Mobility TFTs for LC Display Bus Driver	MEL	37
496	Design and Specification of Configurable Graphics Subsystem for CIM (PAPILLON)	CIM	28
504	Plant Availability and Quality Optimisation (PAQO)	CIM	29
510	An Advanced Support Environment for Method Driven Development and Evolution of Packaged Software (TOOL USE)	ST	29
514	Quantum Semiconductor Devices	MEL	39
519	Dopant Profiling in Submicron Structures	MEL	41
527	Communication Failure In Dialogue: Techniques for Detection and Repair	AIP	26
530	Advanced Knowledge Base Management System (EPSILON)	AIP	28
532	Real-time Generation and Display of the 2.5D Sketch for Moving Scenes (GENEDIS)	AIP	30
534	Development of A Flexible Automated Assembly Cell and Associated Human Factors Study	CIM	31
544	Investigation of All Aspects of Interconnection of High Pincount IC's	MEL	43
554	Submicron CMOS Technology (SPECTRE)	MEL	45
563	A High Compression Picture Coding Algorithm for Photographic Videotex (PICA)	0S	49
574	High Resolution Dry Etching Modelling	MEL	48
595	The Application of CIM To Welded Fabrication	CIM	33
599	Knowledge Based Assistant for Electromyography	AIP	32
612	Modeling and Simulation of the Visual Characteristics of Modern Display Technologies Under Office Work Conditions	0S	51
623	Operational Control for Robot System Integration Into CIM	CIM	35
688	A European Computer Integrated Manufacturing Architecture (AMICE)	CIM	37
700	ESPRIT/European Local Area Network (ELAN)	IES	6
706	Computer Conferencing and Electronic Mail for ESPRIT (EUROKOM)	IES	7
710	IES Support Services	IES	9
717	Message Handling Survey and Trends for the IES User Community (HERMES)	IES	11

718	Communications Architecture for Layered Open Systems (CARLOS)	IES	12
719	The Obviously Required Name-Server (THORN)	IES	13
802	CAD for VLSI Systems (CVS)	MEL	50
809	Advanced Control Real-time CIM Systems and Concepts for Flexible Automation	CIM	39
812	Experimental Centre for System Integration in CIM	CIM	41
813	Tools for Designing Office Systems (TODOS)	0S	53
814	Project Integrated Management Systems (PIMS)	ST	31
818	Definition and Design of an Open Dependable Distributed Computer System Architecture (DELTA 4)	AIP	34
820	Design,Experimentation of a KBS Architecture and Tool Kit for Real-time Process Control Applications	AIP	36
824	Wafer Scale Integration (WSI)	MEL	52
830	Packages for High Speed Digital GaAs IC's	MEL	54
831	Advanced and Integreted Office Systems Prototypes for European Public Administrations (ASTRA)	0\$	55
833	Large Area Complex LCDs Addressed By Silicon TFTS	MEL	56
834	Construction and Management of Distributed Office Systems (COMANDOS)	0S	57
835	Demonstration of Prospectra Methodology and System (PROSPECTRA DEMO)	ST	32
843	Compound Semi-conductor Integrated Circuits	MEL	58
850	Predesign of FMS for Small Batch Production of Electronic Cards	CIM	43
853	Acquisition, Compression & Reproduction of True- colour Image Documents	0S	59
855	European Typewriters and Other Workstation Integration	0S	60
857	Graphics & Knowledge Based Dialogue for Dynamic Systems (GRADIENT)	AIP	38
865	Non-monotonic Reasoning Techniques for Industrial Planning Applications	AIP	40
866	Integrated Optic Technologies for Real-time Wideband Optical Signal Processing (COUSTO)	AIP	42
867	Adaptive Real-time Strategies for Image Processing a Case for Satellite Data (ARTS-IP)	AIP	44
870	Testing and Analysis of Local Area Optical Networks (TALON)	0S	62
874	Integrated Environment for Reliable Systems	AIP	45
878	Extended Office Process Migration With Interactive Panel Displays (PROMINAND)	OS	63
881	Formal Description of Arbitrary Systems by means of Functional Languages (FORFUN)	ST	33

887	European CAD Integration Project (ECIP)	MEL	60
888	Advanced Integrated-circuit Design Aids (AIDA)	MEL	62
890	Parallel Architecture for Networking Gateways Linking OSI Systems (PANGLOSS)	0 \$	65
891	Development of an Efficient Functional Programming System for the Support of Prototyping	ST	35
892	Advanced Interactive Development of Data-intensive Applications (DAIDA)	ST	37
898	External Interface for Processing of 3-D Holographic and X-ray Image for Analysis and Control (PHOX)	AIP	46
901	An Intelligent General Public Data, Voice and Picture Storage Retrieval System	0S	67
909	Development of Tools for Economic Evaluation of CIM in Smaller Manufacturing Companies	CIM	44
925	Coding for Moving Picture & Still Picture At 256 Kbits/s and 64 Kbits/s	0S	69
927	Basic Technologies for GaInAs MISFETS\$	MEL	64
928	A Rule Based Approach to Information Systems Development (RUBRIC)	ST	39
932	Knowledge Based Real Time Supervision in CIM	CIM	46
937	Debugging and Specification of Ada Real-time Embedded Systems (DESCARTES)	ST	41
938	Integrated Management Process Workbench (IMPW)	ST	42
940	Depth and Motion Analysis (DMA)	AIP	48
951	PCTE-Added Common Tools (PACT)	ST	44
954	Intelligence and Knowledge Aided Recognition of Speech (IKAROS)	0S	70
955	Communication Network for Manufacturing Applications (CNMA)	CIM	48
956	Components for Future Computing Systems (COCOS)	OS	72
957	High Density Mass Storage Memories for Knowledge and Information Storage	MEL	66
957	High Density Mass Storage Memories for Knowledge and Information Storage	AIP	50
958	High Performance VLSI Packaging for Complex Electronic Systems	MEL	68
962	Three-Dimensional Algorithms for Robust and Efficient Semiconductor Simulation (EVEREST)	MEL	70
967	Parallel Associative Development Machine as a Vehicle for Artificial Intelligence (PADMAVATI)	AIP	52
971	Technology of GaAs GaAlAs Bipolar IC's	MEL	72
973	Advanced Logical Programming Environments Support (ALPES)	AIP	54

974	A Knowledge-base Environment for Software System Configuration Reusing Components (KNOSOS)	ST	46
975	Transponders for Real-time Activity Control of Manufacturing Links To CIM Information Technology Systems (TRACIT)	CIM	50
986	Optical Interconnect for VLSI and High Bit Rate IC's	MEL	73
991	Multiview VLSI-design System (ICD)	MEL	75
998	Highly Secure Office Information Systems-definition Phase (MARS)	0S	74
1005	Next Generation Data Base Management System (MUST)	AIP	56
1007	0.5 Micron X-ray Lithography: Sources, Masks, Resists and Transferred Images	MEL	77
1015	Integration of Artificial Intelligence, Vocal I/O and Natural Language Dialogue - Application to Directory Services (PALABRE)	AIP	58
1024	Piloting of the Office Document Architecture (PODA)	0S	76
1030	Human and Economic Factors in IT Uptake Processes (IT-UPTAKE)	05	78
1032	An Office Systems Research Workstation for Europe (ERW)	OS	80
1033	Formal Methods for Asynchronous System Technology (FORMAST)	ST	48
1035	2-D Coherent Optical Dynamic Processor (CODP)	AIP	60
1041	A General Environment for Formal Systems Development (GENESIS)	ST	50
1043	Advanced Mask and Reticle Technology for VLSI Sub- micron Microelectronics Devices	MEL	79
1051	Amorphous Silicon Contact Imager for Office and Graphic Applications	05	81
1056	Ultrasensitive Impurity Analysis for Semi-conductor Structures & Materials	MEL	80
1057	Multipoint Interactive Audiovisual Communication (MIAC)	0S	83
1058	Knowledge Based Design Assistant for Modular VLSI Design	MEL	82
1059	Dynamically Adaptable Multi-service Switch (DAMS)	0 S	84
1062	Computer-Aided Engineering Software for Advanced Workstations in the CIM Environment (ACCORD)	CIM	52
1063	Integration of Symbolic and Numeric Learning Techniques (INSTIL)	AIP	62
1072	Development and Integration of Accurate Operations in Numerical Data Processing (DIAMOND)	ST	52
1074	Shipboard Installation of Knowledge Based Systems Conceptual Design (KBS-SHIP)	AIP	64

۸

1085	Development and Apllication of a Low-cost High Performance Multi-processor Machine (SUPERNODE)	AIP	66
1094	Support System for Pragmatic Reuse of Software Concepts (PRACTITIONER)	ST	53
1098	A Methodology for the Development of Knowledge Based Systems (KADS)	AIP	68
1106	Further Development of PROLOG and its Validation by KBS in Technical Areas	AIP	70
1117	Knowledge Based User Friendly System for the Utilisation of Information Bases (KIWI)	AIP	72
1128	Large Diameter Semi-insulating GaAs Substrates Suitable for LSI Circuits	MEL	84
1133	Advanced Model for Integration of DB AND KB Management Systems (ISIDE)	AIP	74
1136	Distributed Automated System for Inspection and Quality Control (DASIQ)	CIM	54
11 58	Advanced Techniques Integration into Efficient Scientific Application Software (ATES)	ST	54
1199	Human Centred CIM System	CIM	55
1 252	A Multi-method Approach for Developing Universal Specifications (AMADEUS)	ST	56
1256	Dynamic Software Migration between Cooperating Environments (CHAMELEON)	ST	58
1257	Software Quality and Reliability Metrics for Selected Domains : Safety Management & Clerical Systems (MUSE)	ST	59
1258	Testing & Consequent Reliability Estimation for Real- time Embedded Software (TRUST)	ST	60
1261	Host Target Development System (HTDS)	ST	61
1262	Software Factory Integration and Experimentation (SFINX)	ST	62
1265	SEDOS Estelle Demonstrator (SEDOS DEMO)	ST	64
1270	Advanced Processing Technology for GaAs Modulation Doped Transistors and Lasers	MEL	86
1271	SETL Experimentation and Demonstrator (SED)	ST	66
1277	PCTE Portability (SAPPHIRE)	ST	67
1282	PCTE and VMS Environment (PAVE)	ST	69
1283	VDM Interfaces for PCTE (VIP)	ST	71
1520	Advanced Software Engineering Environment Logistics Framework (Accueil De Logiciel Futur,ALF)	ST	73
1527	Software Productivity Evaluation Model (SPEM)	ST	75
1532	A Preliminary Study of a Vector Processing-oriented Parallel Architecture	AIP	76
1533	Multilingual Information System (MIS)	05	85

1535	A PCTE Host-target Distributed Testing Environment (APHRODITE)	ST	76
1541	Multi-lingual Speech Input-output Assessment, Methodology & Standardisation	0S	86
1542	Intelligent Documents Production Demonstrator (INDOC)	AIP	77
1550	Distribution and Reusability of Ada Real-time Applications through Graceful and On-line Operations (DRAGON)	ST	77
1551	Advanced Manufacturing System (AMS)	MEL	88
1556	Visualisation Standard Tools in Manufacturing Industry (VITAMIN)	CIM	57
1558	Efficient Qualitative and Quantitative use of Knowledge-Based Systems in Financial Management (EQUUS)	AIP	78
1560	Signal and Knowledge Integration with Decisional Control for Multi-Sensory Systems (SKIDS)	AIP	79
1561	A High Performance Flexible Manufacturing System Robot With Dynamic Compensation (SACODY)	CIM	59
1563	Automatic Control of an ASIC Fabrication Sequence (ACAFS) as Demonstrated in the Plasma Etch Area	MEL	90
1570	Application of Experts Systems to Industrial Chemical Analysis	AIP	81
1572	Basic Technologies for High Performance Solid State Image Sensors	CIM	61
1573	Intelligent Business Application Support System (IBASS)	OS	88
1588	Parallel Computer Systems for Integrated Numeric and Symbolic Processing (SPAN)	AIP	83
1592	Therapy Adviser for Oncology	AIP	84
1598	Replay and Evaluation of Software Development Plans using High-Order Meta Systems (REPLAY)	ST	79
1609	System Measurement and Architectures Techniques (SMART)	ST	81
1613	Evaluation of an Intelligent Tutoring System Shell for Industrial/Office Training (ITS)	AIP	85

MASTER INDEX BY ACRONYM

Acronym	Proj.No.	Title		Page
ACAFS	1563	Automatic Control of an ASIC Fabrication Sequence as Demonstrated in the Plasma Etch Area	MEL	90
ACCORD	1062	Computer-Aided Engineering Software for Advanced Workstations in the CIM Environment	CIM	52
ACORD	393	Construction and Interrogation of Knowledge Bases Using Natural Language Text and Graphics	AIP	18
ADKMS	311	Advanced Data & Knowledge Management Systems	AIP	12
ADVICE	271	Automation Design Validation of Integrated Circuits using E-beam	MEL	21
AIDA	888	Advanced Integrated-circuit Design Aids	MEL	62
ALF	1520	Advanced Software Engineering Environment Logistics Framework	ST	73
ALPES	973	Advanced Logical Programming Environments Support	AIP	54
AMADEUS	1252	A Multi-method Approach for Developing Universal Specifications	ST	56
AMICE	688	A European Computer Integrated Manufacturing Architecture	CIM	37
AMS	1551	Advanced Manufacturing System	MEL	88
APHRODITI	E 1535	A PCTE Host-target Distributed Testing Environment	ST	76
ARTS-IP	867	Adaptive Real-time Strategies for Image Processing a Case for Satellite Data	AIP	44
ASPIS	401	Application Software Prototype Implementation System	ST	23
ASSET	267	Automated Support for Software Engineering Technology Feasability Study	ST	9
ASTRA	831	Advanced and Integreted Office Systems Prototypes for European Public Administrations	05	55
ATES	1158	Advanced Techniques Integration into Efficient Scientific Application Software	ST	54
BICMOS	412	A High Performance CMOS-Bipolar Process for VLSI Circuits	MEL	33
CAD-I	322	CAD Interfaces	CIM	18
CARLOS	718	Communications Architecture for Layered Open Systems	IES	12

CHAMELEON	1256	Dynamic Software Migration between Cooperating Environments	ST	58
CNMA	955	Communication Network for Manufacturing Applications	CIM	48
COCOS	956	Components for Future Computing Systems	0 S	72
CODP	1035	2-D Coherent Optical Dynamic Processor	AIP	60
COMANDOS	834	Construction and Management of Distributed Office Systems	05	57
COSIMA	477	Control Systems for Integrated Manufacturing: the CAM Solution	CIM	26
COUSTO	866	Integrated Optic Technologies for Real- time Wideband Optical Signal Processing	AIP	42
CSA	237	Communications Systems Architecture	0S	31
CVS	802	CAD for VLSI Systems	MEL	50
DAIDA	892	Advanced Interactive Development of Data- intensive Applications	ST	37
DAMS	1059	Dynamically Adaptable Multi-service Switch	0S	84
DASIQ	1136	Distributed Automated System for Inspection and Quality Control	CIM	54
DELTA 4	818	Definition and Design of an Open Dependable Distributed Computer System Architecture	AIP	34
DESCARTES	937	Debugging and Specification of Ada Real- time Embedded Systems	ST	41
DIAMOND	1072	Development and Integration of Accurate Operations in Numerical Data Processing	ST	52
DMA	940	Depth and Motion Analysis	AIP	48
DOEOIS	231	Design and Operational Evaluation of Office Information Servers	0S	27
DRAGON	1550	Distribution and Reusability of Ada Real- time Applications through Graceful and On-line Operations	ST	77
ECIP	887	European CAD Integration Project	MEL	60
ELAN	700	ESPRIT/European Local Area Network	IES	6
EPSILON	530	Advanced Knowledge Base Management System	AIP	28
EQUUS	1558	Efficient Qualitative and Quantitative use of Knowledge-Based Systems in Financial Management	AIP	78
ERW	1032	An Office Systems Research Workstation for Europe	0S	80
ESB	96	Expert System Builder	AIP	5
EUROHELP	280	Intelligent Help for Information System Users	AIP	10

EUROKOM	706	Computer Conferencing and Electronic Mail for ESPRIT	IES	7
EVEREST	962	Three-Dimensional Algorithms for Robust and Efficient Semiconductor Simulation	MEL	70
FAOR	56	Functional Analysis of Office Requirements	OS	13
FOR-ME-TOO	283	Formalisms, Methods and Tools	ST	11
FORFUN	881	Formal Description of Arbitrary Systems by means of Functional Languages	ST	33
FORMAST	1033	Formal Methods for Asynchronous System Technology	ST	48
GENEDIS	532	Real-time Generation and Display of the 2.5D Sketch for Moving Scenes	AIP	30
GENESIS	1041	A General Environment for Formal Systems Development	ST	50
GIPE	348	Generation of Interactive Programming Environments	ST	19
GRADIENT	857	Graphics & Knowledge Based Dialogue for Dynamic Systems	AIP	38
GRASPIN	25	Personal Workstation for Incremental Graphical Specification and Formal Implementation of Non-sequential Systems	ST	5
HERMES	717	Message Handling Survey and Trends for the IES User Community	IES	11
HERODE	121	Handling of Mixed Text/image/voice Documents Based on a Standardised Office Document Architecture	05	23
HTDS	1261	Host Target Development System	ST	61
HUFIT	385	Human Factors Laboratories in Information Technologies	0S	42
IBASS	1573	Intelligent Business Application Support System	0S	88
ICD	991	Multiview VLSI-design System	MEL	75
IKAROS	954	Intelligence and Knowledge Aided Recognition of Speech	0S	70
IMPW	938	Integrated Management Process Workbench	ST	42
IMU	419	Image and Movement Understanding	AIP	22
INCA	395	An Integrated Network Architecture for Office Communications	0S	44
INDOC	1542	Intelligent Documents Production Demonstrator	AIP	77
INSTIL	1063	Integration of Symbolic and Numeric Learning Techniques	AIP	62

ISIDE	1133	Advanced Model for Integration of DB AND KB Management Systems	AIP	74
IT-UPTAKE	1030	Human and Economic Factors in IT Uptake Processes	0\$	78
ITS	1613	Evaluation of an Intelligent Tutoring System Shell for Industrial/Office Training	AIP	85
IWS	82	Intelligent Workstation	0 S	20
KADS	1098	A Methodology for the Development of Knowledge Based Systems	AIP	68
KBS-SHIP	1074	Shipboard Installation of Knowledge Based Systems Conceptual Design	AIP	64
KIWI	1117	Knowledge Based User Friendly System for the Utilisation of Information Bases	AIP	72
KNOSOS	974	A Knowledge-base Environment for Software System Configuration Reusing Components	ST	46
LION	169	Local Integrated Optical Network	0S	25
LOKI	107	A Logic-Oriented Approach to Knowledge and Data Bases Supporting Natural User Interaction	AIP	6
MADS	440	Message Passing Architectures & Description Systems	AIP	24
MARS	998	Highly Secure Office Information Systems - Definition Phase	05	74
METEOR	432	An Integrated Formal Approach to Industrial Software Development	ST	27
MIAC	1057	Multipoint Interactive Audiovisual Communication	0S	83
MINSTREL	59	New Information Models for Office Filing and Retrieval	05	15
MIS	1533	Multilingual Information System	0S	85
MULTOS	28	A Multimedia Filing System	0S	10
MUSE	1257	Software Quality and Reliability Metrics for Selected Domains : Safety Management & Clerical Systems	ST	59
MUST	1005	Next Generation Data Base Management System	AIP	56
OSSAD	285	Office Support Systems Analysis and Design	0S	34
PACT	951	PCTE-Added Common Tools	ST	44
PADMAVATI	967	Parallel Associative Development Machine as a Vehicle for Artificial Intelligence	AIP	52
PALABRE	1015	Integration of Artificial Intelligence, Vocal I/O and Natural Language Dialogue – Application to Directory Services	AIP	58

PALAVDA	415	Parallel Architectures & Languages for AIP-A VLSI Directed Approach	AIP	19
PANGLOSS	890	Parallel Architecture for Networking Gateways Linking OSI Systems	0\$	65
PAPILLON	496	Design and Specification of Configurable Graphics Subsystem for CIM	CIM	28
PAQO	504	Plant Availability and Quality Optimisation	CIM	29
PAVE	1282	PCTE and VMS Environment	ST	69
РСТЕ	32	A Basis for a Portable Common Tool Environment	ST	3
PEACOCK	266	Software Development using Concurrently Executable Modules	ST	7
РНОХ	898	External Interface for Processing of 3-D Holographic and X-ray Image for Analysis and Control	AIP	46
PICA	563	A High Compression Picture Coding Algorithm for Photographic Videotex		
PIMS	814	Project Integrated Management Systems	ST	31
PODA	1024	Piloting of the Office Document Architecture	0\$	76
PRACTITIONER	1094	Support System for Pragmatic Reuse of Software Concepts	ST	53
PROMINAND	878	Extended Office Process Migration With Interactive Panel Displays	0\$	63
PROSPECTRA	390	Program Development by Specification and Transformation	ST	21
PROSPECTRA DEMO	835	Demonstration of Prospectra Methodology and System	ST	32
RAISE	315	Rigorous Approach To Industrial Software Engineering	ST	17
REPLAY	1598	Replay and Evaluation of Software Development Plans using High-Order Meta Systems	ST	79
REQUEST	300	Reliability and Quality of European Software	ST	13
ROSE	33	Research Open Systems for Europe	IES	2
RUBRIC	928	A Rule Based Approach to Information Systems Development	ST	39
SACODY	1561	A High Performance Flexible Manufacturing System Robot With Dynamic Compensation	CIM	59
SAPPHIRE	1277	PCTE Portability	ST	67
SED	1271	SETL Experimentation and Demonstrator	ST	66

SEDOS	410	Software Environment for the Design of Open Distributed Systems	ST	25
SEDOS DEMO	1265	SEDOS Estelle Demonstrator	ST	64
SFINX	1262	Software Factory Integration and Experimentation	ST	62
SIP	26	Advanced Algorithms and Architectures for Speech and Image Processing	AIP	3
SKIDS	1560	Signal and Knowledge Integration with Decisional Control for Multi-Sensory Systems	AIP	79
SMART	1609	System Measurement and Architectures Techniques	ST	81
SOMIW	367	Secure, Open, Multimedia, Integrated Workstation	0S	40
SPAN	1588	Parallel Computer Systems for Integrated Numeric and Symbolic Processing	AIP	83
SPECTRE	554	Submicron CMOS Technology	MEL	45
SPEM	1527	Software Productivity Evaluation Model	ST	75
SPIN	64	Speech Interface at Office Workstation	0S	17
SPMMS	282	Software Production & Maintenance Management Support	ST	10
SUPERNODE	1085	Development and Apllication of a Low-cost High Performance Multi-processor Machine	AIP	66
TALON	870	Testing and Analysis of Local Area Optical Networks	0\$	62
THORN	719	The Obviously Required Name-Server	IES	13
TODOS	813	Tools for Designing Office Systems	0S	53
TOOL USE	510	An Advanced Support Environment for Method Driven Development and Evolution of Packaged Software	ST	29
TRACIT	975	Transponders for Real-time Activity Control of Manufacturing Links To CIM Information Technology Systems	CIM	50
TRUST	1258	Testing & Consequent Reliability Estimation for Real-time Embedded Software	ST	60
UCOL	249	Ultra Wideband Optical Coherent LAN	0 S	33
VIP	1283	VDM Interfaces for PCTE	ST	71
VITAMIN	1556	Visualisation Standard Tools in Manufacturing Industry	IES	57
WSI	824	Wafer Scale Integration	MEL	52
	PROJECTS	WITHOUT ACRONYMS CAN BE FOUND IN THE MAIN IND	DEX	

LIST OF PARTICIPATING ORGANISATIONS INDUSTRY

AALBORG SHIPYARD LTD.	DK	CIM	595
ABSY	В	AIP	1005
ACEC S.A.	В	0S	73
ACORN COMPUTERS LTD	UK	0S	291
ADERSA GERBIOS	F	CIM	504
ADVANCED SYSTEM ARCHITECTURES	ŮK	ST	1033
AFG A.G.	D	MEI	10
	D	ATP	26
	D	05	64
	D	C TM	179
	n	05	295
	D D	ST ST	300
	D	05	367
	D	03 CIM	307
	D	ATD	A16
	D		415
	D	MEL	400
	D	MEL	491
	U	MEL	519
	D	CIM	688
	U	MEL	802
	D	MEL	833
	D	CIM	932
	D	CIM	1561
AERITALIA	I	CIM	812
	Ι	AIP	865
	I	CIM	955
AGFA-GEVAERT	В	0S	1051
AGUSTA SPA	Ι	AIP	1133
AIXTRON	D	MEL	927
ALCATEL ESC	UK	0S	234
ALCATEL STANDARD ELECTRICA SA	Ε	ST	390
	Ε	ST	835
ALPHA S.A.I.	GR	ST	1598
AMTRI	UK	CIM	504
	UK	CIM	909
ANALOG DEVICES BV	IRL	MEL	962
ANSALDO IMPIANTI	I	AIP	820
APSIS	F	AIP	1085
ARG-APPLIED RESEARCH GROUP S.P.A.	T	05	834
	- T	ATP	1542
ARS SPA	ī	ΔΤΡ	932
	T	CIM	1133
AT T & PHILIPS TELECOM REDD	NI	CIM	1133
ATT & THILITS TELECOM. DEDK.	R	CT T2	689
ATM COMPLITED CMBH	D D	00	205
	עוו	CIM	222
DADLULK FUWEK	UK	UIM	Э

BARCO INDUSTRIES N.V.	В	0S	612
BARR & STROUD LTD.	UK	AIP	197
	UK	CIM	532
BASF A.G.	D	AIP	334
	D	MEL	957
BATTELLE INSTITUT	D	0 S	28
	D	CIM	504
	D	AIP	865
BBC INTERACTIVE TELEVISION UNIT	UK	0 S	901
BELL TELEPHONE MFG.CO.	В	MEL	71
	В	0S	73
	В	MEL	97
	В	MEL	522
	В	ST	881
BENSE KG	D	AIP	530
BERTIN & CIE	F	0S	998
	F	CIM	1062
	F	CIM	1561
	F	MEL	1563
BIAS	D	AIP	898
BICC PLC.	UK	CIM	932
	UK	CIM	1199
BIM S.A.	В	AIP	107
	В	ST	892
	В	ST	928
	В	ST	1252
BMW-BAYERISCHE MOTORENWERKE	D	CIM	322
	D	CIM	955
BOGEN ELECTRONIC GMBH	D	AIP	957
BPA TECHN.& MANAGEMENT LTD	UK	MEL	544
BRAMEUR LTD.	UK	ST	1257
BRITISH AEROSPACE DYNAMICS	UK	MEL	544
	UK	CIM	688
	UK	CIM	955
	UK	AIP	1560
BRITISH MARITIME TECHNOLOGY	UK	0S	449

BRITISH TELECOM PLC	UK	0 S	43
	UK	05	169
	UK	MEL	244
	UK	MEL	271
	UK	ATP	387
	UK	MEI	554
		05	563
		MEI	002
		MEL	024
		MEL	024
	UK		900
	UK	MEL	1015
	UK	AIP	1015
	UK	MEL	1043
	UK	05	1057
BROWN, BOVERI & CIE.	D	AIP	857
	D	ST	1094
BROWN, BOVERI & CIE.	DK	ST	315
BSO.BUR.V.SYSTEEMONTWIKKELING	NL	ST	348
	NL	ST	814
BULL S.A.	F	MEL	10
	F	ST	32
	F	05	43
	F	05	82
	F	05	231
	F	ATP	311
	F	05	367
	Ē	05	385
	F	ΔΤΡ	202
	F	ST	410
	, E	AID	415
	, C	MEI	41J
	г Г	CIM	200
	г г		000
	r r	AIP	818
	F C	05	831
	F	05	834
	F	MEL	887
	F	ST	951
	F	CIM	955
	F	0S	956
	F	AIP	957
	F	MEL	958
	F	AIP	973
	F	0S	1024
	F	AIP	1532
	F	0S	1533
	F	ST	1535
	F	0S	1573
BUREAU MARCEL VAN DIJCK N.V.	В	0S	901
CAMECA	F	MEL	1056
CAP INDUSTRY LIMITED	ŬK	ST	1262

	UK	ST	1277
CAP SOGETI INNOVATION	F	ST	302
	F	AIP	316
	F	ST	401
	F	ST	814
	F	AIP	820
CAPTEC-COMPUTER APPL.TECHNICS	IRL	AIP	419
CCS/SCYT	E	ST	1609
CERCI	F	ST	1527
CERILOR	F	ST	1520
CGE.LAB DE MARCOUSSIS	F	0 S	64
	F	MEL	263
	F	CIM	293
	F	AIP	393
	F	ST	432
	F	AIP	440
	F	0S	954
CGP-COMP.GEN.DE PRODUCTIQUE	F	CIM	293
CHORUS SYSTEMES	F	ST	1535
CHRISTIAN ROVSING A/S AF 1984	DK	0 S	998
CIG-CENTRE D'INFORMATIQUEGEN.	В	CIM	418
•	В	ST	1520
CIMAF	Р	CIM	338
	Р	CIM	909
CIMSA-SINTRA	F	AIP	96
	F	0 S	612
	F	AIP	967
	F	AIP	1588
CISE	I	AIP	256
	Ι	AIP	820
CISE S.P.A.	I	MEL	255
CISI/II	F	0S	73
	F	ST	300
	F	ST	1598
CISIGRAPH	F	CIM	322
CIT ALCATEL	F	CIM	688
	F	MEL	887
	F	0S	925
	F	ST	974
CIT-ALCATEL/CERSI	F	ST	282
CIT-ALCATEL/SESA	F	ST	282
CIT/ALCATEL	F	MEL	802
CITSA	E	AIP	1592
CITYMAX INTEGR.INF.SYSTEMS LTD	UK	AIP	1558
CLETT	F	0S	563
COGNITECH	F	AIP	1063

COMAU SPA	I	CIM	118
	Ι	CIM	338
	I	CIM	477
COMPUTER SYSTEMS DEVELOPMENT	UK	CIM	319
COMPUTER TECHNOLOGIES CO.	GR	ST	1520
COPS (EUROPE) LTD	IRL	ST	432
, ,	IRL	0S	998
COSSOR ELECTRONICS LTD	UK	05	870
COURSEWARE EUROPE B.V.	NL	AIP	280
CRAI	I	AIP	1117
CRANFIELD INST.OF TECHNOLOGY	UK	AIP	107
	UK	CIM	322
	UK	CIM	338
CRI	UK	ST	1609
CRI A/S	DK	AIP	280
	DK	AIP	857
	DK	ST	1094
	DK	ST	1262
	DK	ST	1598
CRI-COMPUTER RESOURCES INTL.	DK	AIP	599
	DK	CIM	688
CRIAI	I	0S	831
CRIL	F	AIP	1133
	F	AIP	973
	F	ST	1257
CRISS	F	AIP	530
CSEA	Ι	CIM	850
CSEE	F	MEL	491
CSELT S.P.A.	I	AIP	26
	I	0S	43
	I	0S	64
	I	AIP	96
	I	0S	169
	I	MEL	263
	I	MEL	271
	I	ST	283
	I	AIP	316
	I	0S	367
	Ι	AIP	415
	I	0S	563
	Ι	MEL	802
	I	AIP	967
	I	0S	1057
	I	0S	1541
DANISH MARITIME INSTITUTE	DK	AIP	1074
DANISH WELDING INSTITUTE	DK	CIM	595
DANOBAT S.COOP	E	CIM	504

DANSK DATAMATIK CENTER	DK	0S	59
	DK	AIP	280
	DK	ST	315
	DK	ST	390
	DK	AIP	1117
DANTEC ELEKTRONIK	UK	CIM	534
DATA MANAGEMENT SPA	Ι	ST	282
DATAMAT SPA	Ι	AIP	1613
DATAMONT SPA	I	0S	1573
DELPHI	Ι	AIP	440
	Ι	ST	1256
	Ι	ST	1535
DIGITAL EQUIPMENT CORP.GMBH	D	CIM	477
	D	CIM	688
DORNIER GMBH	D	CIM	688
	D	05	813
	D	AIP	867
	D	ST	974
	D	ST	1550
E2S-EXPERT SOFTWARE SYSTEMS NV	В	ST	1265
	В	ST	1598
ELECTRONIQUE SERGE DASSAULT	F	ST	937
ELEKTRONIK CENTRALEN	DK	ST	300
ELSAG SPA	I	CIM	812
	Ī	AIP	865
	Ī	ATP	940
EMPIRICA	D	05	1030
ENIDATA SPA	Ī	AIP	973
	Ţ	ATP	1117
	Ī	ST	1271
ERDISA	F	CIM	322
ERIA S.A.	F	05	28
	Ē	CIM	850
	Ē	ST	1262
ERLI	F	AIP	1015
ERNO RAUMFAHRTTECHNIK GMBH	D	ST	1033
ESA CONTROL	Ī	ST	300
ESI	F	ST	974
EUROPEAN SILICON STRUCTURES	F	MFI	1563
EUROSOFT SYSTEMS S.A.	F	ST	266
	F	CIM	850
	F	ST	951
EXAPT SYSTEMTECHNIK GMBH	D	CIM	409
FABRIOUE NATIONALE HERSTAL S.A.	B	CIM	418
FARRAN TECHNOLOGY I TD.	TRI	MFI	522
	IRI	MFI	843
	IRL	MEL	971

FERRANTI ELECTRONICS LTD.	UK	AIP	818
	UK	MEL	1043
	UK	ST	1535
FIAR SPA	I	CIM	623
	I	CIM	932
FINCANTIERI	I	0S	449
FOXBORO NEDERLAND N.V.	NL	ST	937
FRAMENTEC	F	AIP	256
	F	AIP	387
	F	AIP	820
FRAUNHOFER IAO	D	AIP	107
	D	0S	385
FRAUNHOFER IM	D	MEL	574
FRAUNHOFER INSTITUT	D	CIM	118
	D	CIM	278
	D	AIP	393
	D	0S	834
	D	0S	954
FRAUNHOFER IPK	D	CIM	75
	D	CIM	293
	D	CIM	384
	D	CIM	623
FRAUNHOFER-IITB	D	CIM	1556
FRAUNHOFER-IPA	D	CIM	932
FUIGI ITALIANA SRL	I	ST	1527

GEC RESEARCH LABORATORIES	ик	MEL	10
	UK	MEL	14
	UK	ST	32
	UK	05	43
	UK	20	234
	UK UK	MEI	245
		05	249
		MEI	263
		MEI	305
		MEI	370
			3/0
			205
	UK	05	395
	UK	21	401
	UK	MEL	514
	UK	MEL	519
	UK	MEL	522
	UK	0S	612
	UK	MEL	833
	UK	MEL	843
	UK	AIP	866
	UK	AIP	898
	UK	0S	925
	UK	0S	954
	UK	MEL	958
	UK	MEL	962
	UK	MEL	971
	UK	MEL	986
	UK	AIP	1035
	UK	ATP	1063
GEC SOFTWARE LTD	UK	ST	951
	UK	ST	1282
GENERAL ELECTRIC COMPANY	UK	CIM	179
	UK	ΔΤΡ	415
	UK	CIM	688
	UK	ΔΤΡ	867
	UK	ΔΤΡ	940
		CIM	955
		CIM	1062
GET	F	510	802
GES-GES FUD STRUKTURANALVSF	'n	CTM	322
CTE EMEDAUDE	5	CIN	1277
GIL LMERAUDE	г с	51 ст	12//
	r D	31	1520
GLAVERDEL J.A.	B	AIP	957
	UK	05	59
GRATED LONDON ENTERDRICE	U	51	26/
GREATER LUNDON ENTERPRISE	UK		1199
GRUPU DE MECANICA DEL VUELO SA	E 2	51	1520
	U	CIM	496
HARLEQUIN LID	UK	ST	1256
HITEC LTD	GR	AIP	26

	GR	ST	1252
HUNTING TECHNICAL SERVICES LTD	UK	AIP	867
HUSAT RESEARCH CENTRE	UK	0S	385
I/S DATACENTRALEN AF 1959	DK	0S	831
IBM DEUTSCHLAND GMBH	D	CIM	293
	D	CIM	688
ICI PLC	UK	MEL	443
ICL	UK	ST	32
	UK	0 S	231
	UK	AIP	280
	UK	ST	302
	UK	ST	315
	UK	0 S	385
	UK	ST	410
	UK	0S	449
	UK	CIM	688
	UK	CIM	809
	UK	0 S	834
	UK	MEL	887
	UK	MEL	888
	UK	ST	891
	UK	ST	938
	UK	ST	951
	UK	CIM	955
	UK	0 S	956
	UK	05	1024
	UK	ST	1520
	UK	0 S	1533
ICL NETWORK SYSTEMS	UK	AIP	304
ICS HOLDING B.V.	NL	MEL	991
II	F	ST	1609
IKERLAN	E	CIM	504
IMEC V.Z.W.	В	MEL	97
	В	MEL	369
	В	MEL	370
	В	MEL	509
	В	MEL	519
	В	MEL	554
	В	MEL	962
	В	MEL	1043
	В	0 S	1051
	В	MEL	1056
	В	MEL	1058
IMPERIAL SOFTWARE TECHNOLOGY	UK	ST	1041
INCA	D	AIP	107
INDEPENDENT BROADCASTING AUTH.	UK	0 S	563
INDUSTRIE PIRELLI SPA	I	CIM	932

INDUSTRY FACE STANDARD SPA	I	0S	249
	I	0S	1057
INFORMATIQUE INTERNATIONALE	F	ST	510
INMOS LTD.	UK	AIP	1085
INST.ORGANISATIONS TECHNOLOGIE	D	0 S	285
INTERPROGRAM B.V.	NL	ST	1252
INTERSYS GRAPHIC	В	0 S	853
IRAM	F	AIP	898
ISA RIBER	F	MEL	305
IST.PER AUTOMAZIONE RISPARMIO	I	0 S	285
ITAL TELEMATICA SPA	Ι	0S	367
	I	MEL	802
	I	0S	813
ITALCAD	I	AIP	865
ITALSIEL SPA	I	CIM	595
	I	CIM	688
ITMI	F	AIP	940
ITT INDUSTRIES LTD	UK	AIP	527
	UK	AIP	1613
JAMES MARTIN ASSOCIATES	В	ST	928
JEUMONT-SCHNEIDER	F	AIP	818
	F	AIP	874
	F	0S	1059
JOHN BELL SYSTEMS	UK	ST	1258
JOYCE LOEBL LIMITED	UK	CIM	278
JUDEX DATASYSTEMER APS	DK	AIP	599
JUTLAND TELCO (JTAS)	DK	0S	1541
KRUPP ATLAS ELEKTRONIK GMBH	D	AIP	387
	D	CIM	809
	D	AIP	1074
	D	CIM	1199
	D	AIP	1560
KTAS	DK	OS	563
KUKA SCHWEISSANL.&ROBOTER GMBH	D	CIM	623
	D	CIM	1561
LAB DE PHYSIQUE APPLIQUEE	F	MEL	843
	F	MEL	927
	F	MEL	1128
LABORATOIRES DE MARCOUSSIS	F	AIP	112
LANGTON LIMITED	UK	0S	1573
LEUVEN MEASUREMENT & SYSTEMS	В	CIM	322
	В	CIM	1561
LETBULD HERAEUS GMBH	U	MEL	334
	U	MEL	5/4
	U	MEL	1563
LIVERPOOL DATA RESEARCH ASSOC.	UK	21	1258
LLUTU'S REGISTER OF SHIPPING	UK	AIP	10/4

LOGICA UK LIMITED UK CIM 92 UK CIM 418 UK AIP 599 UK 0S 901 ST UK 1261 LOGOS PROGETTI SRL Ι 0S 234 LUCAS STABILITY ELECTRON. UK MEL 544 M.O.VALVE COMPANY LTD. UK MEL 830 MAPS INFORMATICA INDUSTRIAL Ε AIP 1560 MARBEN F ST 1265 MARCONI DEFENCE SYSTEMS LTD. UK ST 1261 MARI ADVANCED MICROELECTRONICS UK 0S 237 UK CIM 278 UK AIP 818 UK AIP 874 MATRA F CIM 409 F CIM 418 F AIP 940 F ST 974 F AIP 1560 F ST 1609 F MATRA HARRIS SEMI-CONDUCTEURS MEL 369 F MEL 509 F MEL 554 F MEL 802 MC 2 F 0S 831 UΚ MEDICAL RESEARCH COUNCIL CIM 234 UK 0S 534 MEDIMATICA LTD UK AIP 1592 MEDIPRINT AIP 1560 DK MEMORY COMPUTER PLC AIP 527 IRL IRL 0S 1030 MENTEC INTERNATIONAL LTD IRI CIM 319 IRI CIM 909 MESSER GRIESHEIM D CIM q MESSERSCHMITT BOLKOW BLOHM D 0S 1051 MICRO FOCUS LTD ST UK 928 MICROTECNICA SPA Ι CIM 1136 MIETEC N.V. В MEL 370 В MEL 1563 MNEMONICA COMPUTER SERVICES GR 0S 28 AIP 1542 GR MODULEX A/S DK MEL 833 DK 0S 878 MYFRA S.A. F 05 612 N E H ENGINEERING DK CIM 322

DKCIM1199NATIONAL SOFTWARE CENTRE LTD.IRLOS59NEA-LINDBERG A/SDKAIP820NIXDORF COMPUTER A.G.DST32

	D	0 S	43
	D	0 S	64
	D	AIP	311
	D	0S	395
	D	AIP	415
	D	0S	563
	D	0S	834
	D	CIM	955
	D	05	956
	D	05	1533
	D	05	1573
NKT	DK	05	169
	DK	05	870
NOESIS	F	AIP	940
NON STANDARD LOGICS	F	ST	891
	F	ATP	967
	F	ST	1256
NUMERICAL ALGORITHMS GROUP LTD	UK	ST	1072
O DATI ESPANOLA S I	F	ST	1527
OCE_NEDEDIAND R V	NI	05	43
OCE-NEDERLAND D.V.	NI	05	82
	NI	03	612
		03	012
	NL	US CT	1202
ODENCE STEEL SULDVADD		51 CTM	1203
OUDENSE STEEL SHIPTAKU	UK		295
ULIVEITI	I	05	20
	1	51 CTM	110
	1		118
	I	51	125
	1	05	291
	I	05	295
	1	AIP	311
	1	05	385
<i>,</i>	l	05	395
	I	51	401
	1	CIM	418
	1	AIP	532
	1	05	831
	1	05	834
	I	OS	853
	I	OS	855
	I	ST	951
	I	CIM	955
	Ι	OS	956
	I	0 S	1024
	I	0S	1032
	I	0S	1533
OLYMPIA AG	D	0S	855
ORGANON INTERNATIONAL B.V.	NL	AIP	1570
OROS	F	0S	64

PACTEL	UK	ST	814
PCS-PERIPHERE COMPUTER SYSTEMS	D	MEL	991
	D	ST	1094
	D	AIP	1588
PEUGEOT	F	CIM	955
PHILIPS & MBLE ASSOCIATED	В	AIP	316
	В	ST	432
	В	CIM	688
	В	CIM	812
PHILIPS GLOEILAMPENFABR. N.V.	NL	MEL	412
	NL	ST	432
	NL	MEL	1058
	NL	CIM	1062
PHILIPS GLOEILAMPENFABRIEKEN	NL	MEL	97
	NL	0S	295
	NL	MEL	369
	NL	0S	385
PHILIPS GLOIENLAMPENFABR.N.V.	NL	AIP	415
	NL	MEL	887
	NL	OS	901
	NL	MEL	962
	NL	ST	1041
	NL	AIP	1117
	NL	ST	1158
PHILIPS GMBH	D	0S	237
	D	CIM	932
PHILIPS INTERNATIONAL BV	NL	0S	43
PHILIPS RESEARCH LABORATORIES	UK	MEL	1056
PHILIPS/LEP	F	MEL	232
	F	ST	1535
PLASMA TECHNOLOGY LTD.	D	MEL	971
	UK	MEL	1043
	UK	MEL	1563
PLESSEY COMPANY PLC	UK	MEL	10
	UK	MEL	14
	UK	OS	43
	UK	AIP	96
	UK	MEL	232
	UK	05	237
	UK	MEL	243
	UK	ST	266
	UK	ST	267
	UK	OS	295
	UK	MEL	843
	UK	MEL	971
	UK	05	1059
	UK	MEL	1270
POLYDAIA GMBH	GR	CIM	975
PRAXIS SYSTEMS PLC	UK	ST	1283

DK

CIM

418

PRAXIS SYSTEMS PL PROCOS A/S

PROTEXARMS	F	0S	998
PYE UNICAM LTD.	UK	AIP	1570
R & D ADVISORY SERVICES	UK	CIM	1199
REDAR NAH-ORTUNGSTECHNIK GMBH	D	CIM	975
RENAULT AUTOMATION	F	CIM	75
	F	CIM	338
	F	CIM	477
	F	CIM	623
RIADA & CO.	IRL	AIP	1558
ROBERT BOSCH GMBH	D	AIP	1106
ROBERT BOSCH GMBH	D	CIM	278
ROLLS ROYCE PLC	UK	CIM	1199
RTC-RADIO TECHNIQUECOMPELECTR.	F	MEL	281
RTM	I	CIM	418
RWTUEV	D	ST	1257
SAGANTEC B.V.	NL	ST	881
SAGEM	F	MEL	334
	F	AIP	1133
	F	CIM	1136
SARIN S.P.A.	Ι	0 S	367
	Ι	AIP	1015
SCAITECH A/S	DK	0 S	878
SCANRAY A/S	DK	AIP	898
SCICON LTD.	UK	AIP	107
	UK	AIP	1098
SCS-SCIENTIFIC CONTROL SYSTEMS	D	AIP	107
	D	AIP	304
	D	ST	892
	D	AIP	1098
SELENIA SPA	Ι	CIM	688
	Ι	AIP	866
	Ι	AIP	867
SEMA METRA	F	ST	282
	F	ST	348
	F	0 S	813
SEP	F	0 S	901
SESA	F	0 S	43
	F	CIM	812
	F	AIP	1015
SFGL-SOC.FR.DE GENIE LOGICIEL	F	ST	1261
SFGL.SOCIETE FRANCAISE DE GENIE	F	ST	1262
SGI-SOC.GENERALE D'INFORMATICA	Ι	0S	831
SGN GRAPHAEL	F	CIM	932

	_		
SGS MICROELETTRONICA SPA	I	MEL	509
	1	MEL	554
	1	MEL	802
	I	MEL	887
	I	0S	956
	I	MEL	962
	I	MEL	1007
	I	MEL	1551
SGTE	F	CIM	1062
SIEMENS	D	ST	125
SIEMENS A.G.	D	ST	32
	D	MEL	42
	D	MEL	97
	D	AIP	112
	D	CIM	118
	D	0S	121
	D	MEL	232
	D	MEL	255
	D	ST	283
	D	0S	385
	n	MEL	412
	Ď	CIM	688
	Ď	MEI	843
	ñ	MEL	887
	D	MEL	888
	D	CIM	000
	D	05	1024
	D	05	1024
	D	MEI	1032
	D	MEI	1055
	D	пс. ст	1030
	U D	31 ATD	1072
STINAD LICCO N V	D		1552
SILVAR-LISCU N.V.	В	MEL	9/
C TMUL 00	Б	MEL	1058
SIMULUG	r r	AIP	957
CTNCON CDA	F	AIP	1133
SINCUN SPA	1	CIM	118
SIS AV	l	CIM	932
SNIAS-SUC.NAT.IND.AEROSPATIALE	+	CIM	688
	ŀ	AIP	820
SOBEMAP S.A.	В	OS	367
SOFEMASA	E	ST	282
	E	ST	1527
SOFT INTERNATIONAL B.V.	NL	AIP	1074
SOFTLAB GMBH	D	ST	1261
SOFTWARE ENGINEERING SERVICES	D	ST	1258
SOFTWARE SCIENCES LTD.	UK	ST	1277
SOREN T.LYNGSOE A/S	DK	AIP	96
	DK	AIP	1074
STANDARD ELEKTRIC LORENZ AG	D	MEL	263

STC IDEC	UK	ST	300
STC TECHNOLOGY LTD	F	0S	56
	UK	MEL	263
	UK	ST	300
	UK	ST	315
	UK	MEL	522
	UK	MEL	843
	UK	05	1030
	UK	05	1057
	UK	ΔΤΡ	1098
STE ANONYME TELECOMMUNICATIONS	F	05	925
STEWART HIGHES I TO	UK	CIM	504
		05	72
STOLENAM & CO GHOT	D	ATD	115
	р Г	AIF	415
STRENGTE INFORMA DEVELOPPEMENT	r r	03	207
STSECA LUGICIEL	r r	51	203
	r r	51	390
	F	51	835
	F	SI	951
	F	AIP	1005
	F	ST	1282
	F	CIM	1556
SYSTEAM KG	D	ST	937
SYSTEM AND MANAGEMENT SPA	I	AIP	530
	I	0S	813
	I	ST	951
TDS DEXTRALOG LTD.	UK	CIM	809
TE.KA.DE.	D	0S	925
TEAM SRL	Ι	CIM	1556
TECHNOPOLIS CSATA NOVUS ORTUS	Ι	0S	291
	I	ST	1262
TECSI SOFTWARE	F	0 S	831
	F	ST	937
	F	ST	1550
TECSIEL SPA	T	ST	125
	T	ST	401
TEKNOLOGISK INSTITUT	лк	СТМ	1100
TELECOM PADIOELEC & TELEPH	E E	05	1057
	г Г	03	025
	с с	03	323
	с с	03 6T	1057
		SI MEI	1252
TELEFUNKEN ELECTRUNIC GMBH	D	MEL	14
	U D		243
TELENECANIOUE	U F	MEL CIM	204
	r D		384
IELENUKMA (IN)	U	05	1059

TELETTRA S.P.A	I	MEL	255
	I	MEL	554
	Ι	AIP	818
	Ι	AIP	874
	Ι	MEL	986
TELMAT S/A	F	AIP	1085
THE EAST ASIATIC COMPANY LTD.	DK	0S	56
	DK	AIP	1074
THE WELDING INSTITUTE	UK	CIM	9
	UK	CIM	595
THOMSON CSF	F	AIP	26
	F	MEL	71
	F	ST	300
	F	MEL	830
	F	AIP	957
	F	AIP	967
	F	MEL	1007
	F	CIM	1572
THOMSON CSF/AVS	F	AIP	1035
THOMSON CSF/DCI	F	MEL	14
	F	MEL	232
	F	MEL	843
THOMSON CSF/DSE	F	ST	1271
THOMSON CSF/LCR	F	MEL	243
	F	MEL	263
	F	MEL	514
	F	MEL	833
	F	AIP	867
	F	AIP	1035
THOMSON INFORMATIQUE SERVICES	F	0S	813
THOMSON SEMICONDUCTEURS	F	MEL	888
	F	MEL	1551
THOMSON-EFCIS	F	MEL	244
	F	MEL	245
	F	MEL	456
	F	MEL	824
THORN EMI LTD.	UK	AIP	1588
TITN	F	0S	43
	F	0S	121
	F	0S	169
	F	CIM	932
	F	CIM	955
	F	0S	1024
TRIUMPH-ADLER A.G.	D	0S	28
	D	AIP	393
	D	0S	855
TXT-TECH.SOFT E TELEMATICA	Ι	ST	432
	Ι	ST	1550
UNIVERSITAT BREMEN	D	ST	390
VALVO BAUELEMENTE PHILIPS	D	MEL	1043

VALVO RHW	D	CIM	1572
VECTOR FIELDS LTD.	UK	CIM	1062
VERILOG	F	ST	938
	F	ST	1265
	F	ST	1527
VIDEO DISPLAY SYSTEMS SRL.	Ι	AIP	419
VISITEC	В	CIM	1136
VOICE SYSTEMS INTERNATIONAL	UK	0 S	449
VOLKSWAGEN AG	D	CIM	409
	D	CIM	688
WACKER CHEMITRONIC	D	MEL	927
	D	MEL	1128
WESTLAND HELICOPTERS LTD.	UK	CIM	534
WHITECHAPEL COMPUTER WORKS LTD	UK	0 S	1032
WORK RESEARCH CENTRE LTD.	IRL	0 S	1030
WTCM/CRIF	В	CIM	909
ZELTRON	I	AIP	532

.

LIST OF PARTICIPATING ORGANISATIONS UNIVERSITIES AND RESEARCH ESTABLISHMENTS

AARHUS UNIVERSITY	DK	MEL	554
AERE-ATOMIC ENERGY RES.ESTABL.	UK	MEL	369
	UK	MEL	554
	UK	MEL	574
ATHENS SCHOOL OF ECONOMICS	GR	CIM	1062
BRUNEL UNIVERSITY	UK	MEL	244
	UK	ST	1094
CEA LETI IRDI	F	CIM	1136
CEA-DEIN/SIR	F	0S	64
	F	CIM	932
	F	ST	1609
CEA/LETI	F	MEL	244
	F	MEL	245
	F	MEL	824
	F	AIP	957
CENTRE D'ETUDES DU MANAGEMENT	F	0S	285
CENTRE D'ETUDES RECH. TOULOUSE	F	AIP	316
	F	ST	510
	F	ST	1598
CESIA	F	0S	831
CETE MEDITERANNEE	F	ST	938
CNAM	F	ST	1271
CNET	F	MEL	245
	F	MEL	263
	F	MEL	271
	F	MEL	443
	F	MEL	491
	F	MEL	522
	F	MEL	554
	F	MEL	802
	F	MEL	833
	F	MEL	971
	F	ST	974
	F	AIP	1015
	F	0S	1057
	F	MEL	1270
	F	0S	1541
CNR-IEI	I	0S	28
	I	05	813
	I	AIP	818
	I	0S	834
CNR-INSTITUTO LAMEL	I	MEL	554
CNR/IESS	I	MEL	1007

CNRS	F	0S	291
	F	ST	410
	F	AIP	818
	F	MEL	1007
	F	AIP	1015
	F	0 S	1051
	F	AIP	1560
COMPUTER TECHNOLOGY INSTITUTE	GR	ST	1271
	GR	ATP	1588
CRETAN COMPUTER INSTITUTE	GR	05	28
	GR	05	82
	GR	AIP	107
	GR	ST	892
CTRE ETUDE ENERGIE NUCLEAIRE	R	05	367
CWI_CEN V WISKINDERINEOPMATICA	NI	ST ST	348
	NI	ΔΤΡ	415
	NI	ST	432
	NI	ST	1072
DANMADKS TERNISKE HOUSKOLE		CIM	322
DANNARKS TERNISKE NOOSKOEL		СТМ	000
DATENZENTEALE SCHLESWIG HOLSTEIN		05	021
	U NI	05	562
DR. MEHER LADORATORIES		03 6T	1202
		21	1203
Feter	אנ	05	105/
	F	AIP	415
		AIP	867
	U		932
GES. F. REAKTORSICHERHEIT	D	51	300
CHD OFC F MATUEMATIK & DATENNED	U	LIM	504
GMD-GES.F.MATHEMATIK & DATENVER.	U	05	50
	D	51	125
	D	51	510
	D	MEL	802
	D	AIP	818
HERIOTT WATT UNIVERSITY	UK	AIP	820
HILDESHEIM HOCHSCHULE	D	AIP	311
	D	ST	1271
IAB GMBH	D	0S	878
IET-INST.OF EDUCATION TECHN.	UK	AIP	1613
IMPERIAL COLLEGE	UK	ST	938
	UK	ST	1033
	UK	ST	1041
INESC	Р	0S	367
	Р	AIP	818
	Р	0S	834
	Р	MEL	991
	Р	MEL	1058
	Р	AIP	1542
	Р	AIP	1588
INRIA	F	0S	82

	F	ST	302
	F	ST	348
	F	0 S	367
	F	AIP	940
	F	0 S	956
	F	AIP	1117
	F	AIP	1133
INST.SUP.TECNICO DE LISBOA	P	CIM	293
IROE	I	CIM	197
KATHOLIEK UNIVERSITEIT LEUVEN	B	MEL	71
	B	CIM	322
	B	05	853
	B	AIP	857
	B	CIM	1561
KATHOLIEK UNIVERSITEIT NIJMEGEN	N	05	291
	NI	ATP	419
	NL	ST	881
	NI	ATP	1570
	NI	05	82
KEREORSCHUNGZENTRUM KARI SRUHE	D	CIM	322
KING'S COLLEGE LONDON	IJК	MEI	1007
ABORATOIRE GENIE INFORMATIOUE	F	05	834
IGII	F	CTM	1556
I TETA	F	ΔΙΡ	415
	F	ΔΙΡ	940
LINGUISTICS INST OF IRFLAND	TRI	ΔΤΡ	527
NAT. TECHN. UNIVERSITY ATHENS	GR	05	73
	GR	05	64
	GR	CIM	278
	GR	ATP	1074
NTHF	TRI	ST	938
NORDJYDSK UDVIKLINGS CENTER	DK	ATP	599
PAISLEY COLLEGE OF TECHNOLOGY	ЫК	ST	1609
	I	20	169
	Ţ	20	249
	I	03 CIM	623
	T	CIM	812
	I	00	012
	T		967
	I		007
	I		932
DOLITECNICO DI TODINO	L T		1220
FOLITECNICO DI TORINO	L T	A17 05	20
	L T		000 1015
	1	AIP	1015
POLITECHNIC OF LENIKAL LUNDUN		AIP	80/
FULITEUNNIU UF MATFIELD	UK	21	200

POLYTECHNIC OF THE SOUTH BANK	UK	AIP	304
	UK	AIP	1098
	UK	0 S	1573
QUEEN MARY COLLEGE INTERACTIVE	UK	AIP	387
	UK	0S	1024
	UK	0 S	1032
RISO NATIONAL LABORATORY	DK	CIM	534
	DK	0S	878
ROYAL SIGNALS & RADAR EST	UK	AIP	1085
RUHR UNIVERSITAT BOCHUM	D	MEL	97
	D	0S	291
RUTHERFORD APPLETON LABORATORY	UK	CIM	322
	UK	MEL	962
RWTH AACHEN	D	CIM	9
	D	CIM	418
	D	CIM	688
	D	CIM	812
	D	MEL	927
SNS PISA	Ι	0S	64
ST. PATRICK'S COLLEGE	IRL	AIP	527
ST.MATHEMATISCH CENTRUM	NL	ST	1283
TECH. HOCHSCHULE DARMSTADT	D	MEL	244
	D	MEL	824
TECH. UNIVERSITEIT EINDHOVEN	NL	ST	937
	NL	MEL	991
TECHNICAL UNIV. OF DENMARK	DK	CIM	1199
TECHNISCHE HOCHSC.DARMSTADT	D	CIM	504
TECHNISCHE UNIVERSITAT BERLIN	D	MEL	243
TECHNISCHE UNIVERSITAT BERLIN	D	AIP	311
	D	AIP	415
TECHNISCHE UNIVERSITAT MUNCHEN	D	AIP	107
	D	AIP	415
	D	0S	878
	D	AIP	973
TECHNISCHE UNIVERSITEIT DELFT	NL	CIM	809
	NL	ST	881
	NL	MEL	991
THE CITY UNIVERSITY	UK	ST	1258
THE PIRAEUS GRADUATE SCHOOL	GR	0S	385
THE TURING INSTITUTE	UK	ST	814
TRENT POLYTECHNIC	UK	0S	295

TRINITY COLLEGE DUBLIN	IRL	0S	231
	IRL	MEL	271
	IRL	CIM	319
	IRL	AIP	419
	TRI	CIM	496
	TRI	CIM	496
	TRI	ST	510
	TRI	05	834
	TRL	MEL	962
		CIM	1062
		CIM	1661
UK ATOMIC ENERGY AUTHORITY		CIM	1001
UK ATUMIC ENERGY AUTHURITY	UK	51	300
UNTY DEALT CTURE OF MELANO	UK	51	152/
UNIV. DEGLI STUDI DI MILANU	1	05	285
UNIV. NACIONAL EDUCACIÓN DIST.	E	05	291
UNIV.POLITECNICA DE CATALUNYA	Ł	AIP	1560
	E	ST	1609
UNIV.POLITECNICA DE MADRID	E	CIM	623
UNIVERSIDADE DO MINHO	Р	0S	385
UNIVERSIDADE NOVA DE LISBOA	Р	CIM	278
	Р	CIM	623
	Р	AIP	973
UNIVERSITA DI BOLOGNA	Ι	AIP	311
	I	AIP	818
	I	MEL	833
	Ī	AIP	874
	Ī	MEL	962
UNIVERSITA DI GENOVA	ī	AIP	419
	ī	CIM	595
	T	ATD	940
	T	CIM	1062
INTVEDSITA DI DISA	T	ATD	527
UNIVERSITA DI FISA	1	AIP	527
UNIVERSITA DI DOMA	1	AIP	1117
UNIVERSITA DI KOMA	I	AIP	111/
UNIVERSITA DI TURINU	1	AIP	26
	1	AIP	311
UNIVERSITAIRE INST.ANTWERPEN	В	AIP	1117
UNIVERSITAT BREMEN	D	CIM	1199
UNIVERSITAT DES SAARLANDES	D	ST	390
UNIVERSITAT DORTMUND	D	ST	266
	D	ST	390
	D	AIP	530
	D	AIP	898
	D	ST	1520
UNIVERSITAT FRANKFURT	D	ST	892
UNIVERSITAT HANNOVER	D	CIM	1136
UNIVERSITAT KAISERSLAUTERN	D	AIP	1005
	D	ST	1033
UNIVERSITAT KARLSRUHE	D	CIM	75
	D	ST	266

	D	CIM	322
	D	CIM	623
	D	ST	1072
UNIVERSITAT KASSEL	D	AIP	857
UNIVERSITAT PASSAU	D	ST	390
	D	ST	432
UNIVERSITAT STUTTGART	D	AIP	393
	D	MEL	456
	D	05	954
UNIVERSITE C.BERNARD DE LYON	F	AIP	530
UNIVERSITE CATHOLIQUE LOUVAIN	В	ST	510
•	В	MEL	554
	В	MEL	1128
	В	ST	1520
	В	ST	1598
UNIVERSITE DE BORDEAUX I	F	CIM	418
UNIVERSITE DE GRENOBLE	F	ST	401
	F	AIP	1085
UNIVERSITE DE LIEGE	В	0 S	73
	В	0 S	890
	В	ST	1158
	В	ST	1535
UNIVERSITE DE NAMUR	В	MEL	443
UNIVERSITE DE NANCY-CRIN	F	0 S	121
	F	0S	901
	F	ST	1520
UNIVERSITE DE PARIS SUD/LRI	F	ST	432
	F	AIP	973
	F	AIP	1063
UNIVERSITE DE PARIS VI & VII	F	0S	169
	F	ST	1158
UNIVERSITE DE SAVOIE	F	CIM	932
UNIVERSITE DE STRASBOURG-LSIT	F	AIP	26
UNIVERSITE PARIS 1 SORBONNE	F	0 S	813
UNIVERSITEIT VAN AMSTERDAM TNO	NL	0 S	64
	NL	AIP	280
	NL	AIP	304
	NL	CIM	384
	NL	CIM	623
	NL	AIP	1 098
	NL	0S	1541

UNIVERSITEIT VAN TWENTE	NL	0S	43
	NL	ST	410
	NI	0S	612
	NI	CIM	809
	NI	05	890
	NI	ST	891
	NI	ST	1158
UNIVERSITETT VAN UTRECHT	NI	MEI	369
	TRI	05	59
	TRI	C T M	75
UNIVERSITY COLLEGE WAEWAY	TDI	CIM	623
		05	305
UNIVERSITY COLLEGE LONDON		0.5 A 1 D	966
		05	1541
			1541
		ATD	1550
			1000
UNIVERSITY OF CAMPBIDGE		MEL	902
UNIVERSITY OF CAMBRIDGE	UK	MEL	245
	UK	AIP	940
UNIVERSITY OF EDINDUDUU	UK	05	998
UNIVERSITY OF EDINBURGH	UK	AIP	393
UNIVERSITY OF ESSEX	UK	MEL	991
UNIVERSITY OF LANCASTER	UK	SI	1550
UNIVERSITY OF LEEDS	UK	AIP	280
	UK	AIP	527
	UK	AIP	1592
UNIVERSITY OF LEICESTER	UK	ST	1283
UNIVERSITY OF LIVERPOOL	UK	ST	1258
UNIVERSITY OF MANCHESTER	UK	ST	928
	UK	CIM	1199
	UK	ST	1252
UNIVERSITY OF NEWCASTLE	UK	CIM	278
UNIVERSITY OF OXFORD	UK	AIP	1560
UNIVERSITY OF PATRAS	GR	0S	169
	GR	0S	291
UNIVERSITY OF SOUTHAMPTON	UK	MEL	986
	UK	AIP	1085
UNIVERSITY OF STIRLING	UK	ST	302
	UK	ST	937
UNIVERSITY OF STRATHCLYDE	UK	CIM	197
	UK	ST	390
	UK	AIP	532
	UK	AIP	857
UNIVERSITY OF SUSSEX	UK	05	1032
UNIVERSITY OF THESSALONIKI	GR	MEL	833
VRIJE UNIVERSITEIT AMSTERDAM	NL	05	1032

VRIJE UN	IVERSITEIT	BRUSSEL	В	0 S	82
			В	AIP	440
			В	CIM	534
			В	AIP	1035
			В	AIP	1570
WILHELMS	UNIVERSITA	T WESTFAHL.	D	0S	385

MORE INFORMATION ?

If you require more information, please contact:

DG XIII Division A2 Esprit Information Office

on

Tel: +32 2 235 16 03 Tlx: 25946 JEPE B 21877 COMEU B Fax: +32 2 235 06 55

and at the

COMMISSION OF THE EUROPEAN COMMUNITIES DG XIII/A2 Telecommunications, Information Industries and Innovation A25 -ESPRIT INFORMATION 200 Rue de la Loi B-1049 Brussels

or

The External Relations Unit COMMISSION OF THE EUROPEAN COMMUNITIES DG XIII/E5 Telecommunications, Information Industries and Innovation J37 1/20 -Ref: ESPRIT 200 Rue de la Loi B-1049 Brussels