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Abstract: Estimated travel time is a key input for many intelligent transport systems (ITS) applications and traffic management
functions. There are numerous studies that show that fusing data from different sources such as global positioning system
(GPS), Bluetooth, mobile phone network (MPN), and inductive loop detector (ILD) can result in more accurate travel time
estimation. However, to date, there has been little research investigating the contribution of individual data sources to the quality
of the final estimate or how this varies according to source-specific data quality under different traffic states. Here, three different
data sources, namely bus-based GPS (bGPS) data, ILD data, and MPN data, of varying quality are combined using three
different data fusion techniques of varying complexity. In order to quantify the accuracy of travel time estimation, travel time
calculated using automatic number plate recognition (ANPR) data are used as the ‘ground truth’. The final results indicate that
fusing multiple data together does not necessarily enhance the accuracy of travel time estimation. The results also show that
even in dense urban areas, bGPS data, when combined with ILD data, can provide reasonable travel time estimates of general
traffic stream under different traffic states.

1 Introduction
Travel time estimation is the basis for many intelligent transport
systems (ITS) applications and traffic management functions [1].
Therefore, the accurate and reliable estimation of travel time is an
area of active research [2]. In recent years, the availability of a
range of new data sources has led to the application of sensor
fusion techniques which aim to improve the quality of travel time
estimates by combining data from multiple sensor sources.
However, to date, there has been little research investigating the
contribution of individual sources to the quality of the final
estimate or how this varies according to the characteristics and
quality of the specific sensor sources under different traffic states.

Understanding the trade-offs that exist between source-specific
data characteristics and fusion complexity is of considerable
practical importance, especially as such sources proliferate and
practitioners must make tough decisions regarding how to spend
limited budgets on procuring and analysing data. This paper aims
to explore the effect on the final travel time estimation accuracy of
combining data sources with different characteristics and quality
using a range of different sensor fusion approaches, of varying
complexity. The focus of the work is on urban road networks, using
data from London as a case study.

The rest of this paper is organised as follows. After a
background section where existing data sources and data fusion
techniques for travel time estimation on urban roads are reviewed,
an expectation maximisation (EM) algorithm is introduced to
cluster the different traffic states, i.e. congested state and
uncongested state. In addition, artificial neural networks (ANNs)
and weighted mean approach (WMA), selected as representatives
of widely used machine learning and statistical technique,
respectively, and a hybrid method, the combination of ANNs and
WMA, are presented. The fourth section describes the four data
sources used in the study, namely mobile phone network (MPN),
bus-based global positioning system (bGPS), inductive loop
detector (ILD), and automatic number plate recognition (ANPR),
where travel times estimated using ANPR data are considered as
the ‘ground truth’. The accuracy of data fusion estimation is
measured separately under different traffic-state regimes in the fifth
section, followed by a discussion on the data source inputs and the
merits and limitations of data fusion techniques.

2 Background
A number of data sources have been used for travel time
estimation, such as the probe vehicle location data extracted from
global navigation satellite systems [2], moving car observer data
[3], mobile phone data [4], ANPR system data and flow and
occupancy data from ILD [5]. Recently, some researchers have
attempted to explore the application of bGPS data for travel time
estimation [6]. bGPS data have the advantages of good spatial
coverage and low unit cost, and are hence potential inputs for
travel time estimation. However, every data source has inherent
biases and limitations, such as low polling frequency for ILD, the
low penetration and map-matching accuracy of probe vehicle
techniques, and the false displacement problem for the MPN. As
with other single data sources, bGPS data have some drawbacks,
such as the small sample size and biased data; buses sometimes use
exclusive bus lanes and travel faster than general traffic, but incur
additional delays at bus stops. One key issue of the use of bGPS
data for travel time estimation is that bGPS data represent the
specific subpopulation, i.e. buses, of the general traffic. These
source-specific errors can have an impact on the accuracy of travel
time estimation. In order to overcome these drawbacks, one
feasible solution is to fuse bus data with data from other sensors.

Multi-sensor data fusion technique enables to combine the
heterogeneous sensors through the process of fusion, which aims to
compensate for the shortcomings of individual sensor sources and
therefore increase confidence, robustness, and spatial coverage of
the input of estimation [7]. Combining multiple sensor data has
several potential advantages over using a single source of data.
First, different types of sensors confirming the same output can
increase confidence and reduce ambiguity. Second, the same traffic
states are recorded by different sensors in the form of different
variables and these independent observations can enhance the
reliability of measurements. Furthermore, mutual complementarity
can be achieved by fusing multiple data sources with different
spatial and temporal coverage and thus increases the robustness as
well as the spatial and temporal range of travel time estimation [8].
For example, MPN has a high market penetration and thus has the
advantage of wide spatial coverage. This wide spatial coverage can
help to estimate the travel time on corridors without sensors such
as ILD. Conversely, ILD can provide accurate traffic flow
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information to compensate the low accuracy of MPN data based on
travel time estimates.

Some research studies have already shown that fusing two data
sources by multi-sensor fusion techniques can produce more
accurate travel time estimates [9]. In addition, the accuracy of
estimation models with different input structures is varied under
normal and abnormal traffic conditions [10]. However, to date,
there has been little research investigating the contribution of
individual sources to the quality of the final estimate or how this
varies according to source-specific data quality under different
traffic states. In fact, it is reasonable to assume that the accuracy of
individual data sources will influence the accuracy of the fused
travel time estimates. In this context, this paper focuses on the
question – is more always better? If a number of data sources are
available, should one use all available data sources or should one
be selective? Moreover, how to select data input under different
traffic states?

3 Methodology
Three different data sources (MPN, bGPS, and ILD) of varying
characteristics and quality are combined using three different data
fusion techniques of varying complexity under different traffic
states. All data sources and the fusion methods are the
representatives of current practice. To determine the performance
of data fusion under different traffic-state regimes, traffic data need
to be classified into congested and uncongested traffic states. EM
algorithm, which has been proved to be a satisfactorily general and
transferable traffic state probabilistic classifier [11], is used to
cluster congestion and uncongested regimes. In addition to a
detailed formulation of the proposed EM algorithm, this section
also introduces the data fusion approaches used in this study.

3.1 Expectation maximisation

The traffic state is related to the relationship between flow and
occupancy [11] as follows:

αi = oi
qi

(1)

where qi and oi  are the flow and occupancy of the ith observation
measured by ILD, respectively.

The traffic state of the ith observation is represented by notation
Zi with Zi = 0, 1 .

Two assumptions are made in this paper: firstly, the traffic
states are clustered into two separable regimes by either
uncongested (Zi = 0) or congested (Zi = 1); secondly, the
probability distributions of these traffic states follow a Gaussian
distribution with

p(α) z = 0 ∼ N(μ0, σ0
2) (2)

p(α) z = 1 ∼ N(μ1, σ1
2) (3)

where N(μ, σ2) is Gaussian distribution with the mean μ and
variance σ2 and p(α) z the probability density function of α given
by a traffic state. So

P αi = γ0N μ0, σ0
2 + γ1N μ1, σ1

2 (4)

where γ0 = (Zi = 0) and γ1 = Zi = 1  are the mixture factors with
the constraint of γ0 + γ1 = 1.

Equation (4) is a typical Gaussian mixture model (GMM) with
unknown parameters Θ = γ0, γ1, μ0, σ0

2, μ1, σ1
2 . So, the probabilistic

model is defined as:

p α Θ = ∑
k

γkpk α θk (5)

Each pk is a Gaussian distribution function parameterised by θk,
where θk = (μk, σk

2) and k = 0, 1 .
With the Gaussian distribution of these two traffic states, the

question is then modelled to solve the probability of
P Zi = 1|α = αi , and we can know from Bayesian theory:

P Zi = 1 α = αi = P αi Zi = 1 P(Zi = 1)
P(αi) (6)

With (5), (6) is then formulated to:

P Z = 1 α = αi = γ1p1(α = αi θ1)
p(α = αi Θ) (7)

In (7), only the parameters Θ of GMM are unknown to the model,
and these parameters can be calculated by using maximum
likelihood estimation with

ℒ Θ α = p α Θ (8)

According to the maximum likelihood estimation theory, the
parameters are ones that maximise ℒ, i.e.

Θ∗ = argmax
Θ

ℒ(Θ α) (9)

So, the problem is reduced to find the parameters to statistically
cluster two different traffic states.

EM algorithm is used to find maximum likelihood estimates of
parameters in statistical models. EM algorithm conducts an
iteration of expectation (E) step, which creates an expectation of
the log-likelihood for the parameters, and maximisation (M) step,
which maximises the log-likelihood on E step. The E step and M
step are formulated as shown in Fig. 1. 

Then, γk, μk, andσk are the estimates for parameters Θ  of
assumed two traffic states Gaussian mixture distribution. They
perform both the expectation step and the maximisation step
simultaneously. In the case of the corrupted ILD data and extreme
traffic conditions, an error handling module suggested by Han et al.
is used in this model [11]: if the value of the ith observation αi is
smaller than μ0 − 3σ0 (low occupancy but high flow), then assign 0
(uncongestion) for the observation.

3.2 Artificial neural networks

ANNs are a family of machine learning methods inspired by
emulating the structures of biological networks, generally
presented as a system of connected neurons and multi-layers of
processing units. They have the advantages of dealing with
complex linear and non-linear problem in which the precise
interrelationships among elements are not well understood and
defined. ANNs techniques have been widely used in the sensor
fusion literature both within transport and more widely [12].

Various ANNs topologies have been applied to estimate travel
time, such as fuzzy neural networks, probabilistic networks, feed-
forward networks, recurrent neural network (RNN), and counter
propagation neural network [13]. Among the various ANNs
topologies, RNNs models are dynamic networks with internal
feedbacks that enable the learning of complex temporal patterns.
RNNs have been shown to be well suited to the analysis of times
series data with the treatment of seasonal or temporal patterns, and
a number of researchers have used RNNs techniques for travel time
estimation [12, 14, 15]. RNNs are thus selected as a representative
of the wider class of machine learning techniques used for sensor
fusion in the context of travel time estimation. The parameters used
in RNNs, such as the hidden layer size, the input delay, and the
feedback delay, are optimised based on different data inputs.

3.3 Weighted mean approach

The WMA is a simple and widely used statistical technique for
sensor fusion in which specific weights can be assigned to the
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various data sources [16]. These weights are calculated to reflect
the reliability of each data source, so that more reliable sources
have more significant influence on the final fused estimate.

In this paper, three weighting schemes are compared. The mean
absolute percentage error (MAPE) and mean square error (MSE)
are commonly used metrics to quantify estimation accuracy. Thus,
two weight schemes are calculated by the inverse of MAPE and the
inverse of MSE, respectively. The third weighting scheme is that
suggested by Choi and Chung [9] which incorporates sample size
information given in (12). Three weight schemes are
mathematically summarised as below.

Weight scheme 1 (w1): the inverse of MAPE

W j = 1
MAPE j

(10)

Weight scheme 2 (w2): the inverse of the MSE

W j = 1
MSE j

(11)

Weight scheme 3 (w3): sample size divided by the square of the
standard deviation

W j = nj

sj
2 , j = 1, …, N (12)

where sj  is a standard deviation and nj  the sample size of the jth
source. The sample standard deviation si  can be calculated by the
below equation

sj = 1
n − 1 ∑

i = 1

n
(xi − x̄)2 (13)

where n is the sample size; xi the ith  sample value; x̄ the mean of
sample values; N the number of data sources; W j the weights of ith
data sources and ∑ j

N W j = 1.

3.4 Hybrid method

In addition to using ANNs and WMA individually, a hybrid
method based on combining these two approaches is also used.
WMA has the constraint of fusing the same type of independent
variables to estimate the dependent variable. For example,
provided with data from bGPS, MPN, and ILD, we can only use
bGPS data and MPN data to estimate travel time by WMA, as the
same travel time variable can be got from these two data sets, while
ILD data consisting of the traffic flow variable cannot be used
directly without converting traffic flow into travel time. ANNs are
effective machine learning tools to establish the relationship
between different independent variables and dependent variables.
With the contribution of ANNs, all traffic variables firstly can be
converted into travel time. WMA plays an important role to assign

Fig. 1  EM algorithm with E step and M step
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more weights to more accurate data sources and fewer weights to
less accurate sensors. Fusing the output from ANNs by WMA
tends to be more powerful than the individual method.

The general process can be summarised into three phases:
firstly, sampling and cleaning the raw traffic data sources;
secondly, estimating travel time using ANNs; finally, fusing the
estimated travel time output from ANNs by WMA.

3.5 Quantification of estimation accuracy

The accuracy of the estimation is measured using four metrics:
mean percentage error (MPE), MAPE, root mean squared error
(RMSE), and root mean squared percentage error (RMSPE).

Usually, the MPE is the average of percentage errors and
measures the existence of bias in the estimation. MAPE measures
the average magnitude of the errors by setting absolute average
errors without considering the direction. Apart from MPE and
MAPE which weight all the individual difference equally, a more
common measure is RMSE. Since the errors are square rooted
before averaging, RMSE assigns a relatively high weight to the
large error. Compared to the MAPE, RMSE amplifies large errors.
RMSPE provides the same properties as the RMSE, but is
expressed as a percentage [17]. Every performance criterion has its
advantages and limitations, and using all the criteria will result in a
more comprehensive evaluation of accuracy. The equations of
these four metrics are shown below

MPE = 100 × 1
N ∑

n = 1

N (xn − x^n)
xn

(14)

MAPE = 100 × 1
N ∑

n = 1

N xn − x^n
xn

(15)

RMSE = 1
N ∑

n = 1

N
(xn − x^n)2 (16)

RMSPE = 100 × 1
N ∑

n = 1

N (xn − x^n)2

xn
2 (17)

where N is the total number of time intervals, xn the nth observed
travel time during the evaluation time period, and x^n the nth
estimated travel time during the evaluation time period.

4 Data description
4.1 ANPR data

Link travel time data used as the ‘ground truth’ in this study are
based on ANPR camera data, which is obtained from the Transport
for London's (TfL) London Congestion Analysis Project (LCAP).
A pair of ANPR cameras located at the start and the end of the link
records the vehicle registration number and the time stamp of
passing vehicles, while an external system measures the travel time
using the corresponding arrival time and departure time. The
ANPR data are cleaned by TfL using the overtaking rule method
[18]. The cleaned average link travel time, at 5 min intervals from
17 to 27 February 2015 is provided on the associated links, among
which LCAP 2509, 1917.38 m in length, and LCAP 2511, 1969.24 
m in length, of A501 road that serves as central London's major
corridor are used in this research. The locations of two links, LCAP
2509 (northeast bound) and LCAP 2511 (southwest bound), are
shown in Fig. 2. These two links are located on the same road in
different directions with seven bus stops, respectively. However,
the traffic conditions and traffic compositions are quite different.
According to the travel time pattern from ANPR data, LCAP 2509
has more severe congestion than that of LCAP 2509, while the
proportion of buses on LCAP 2511 tends to larger than that of
LCAP 2509 in the light of the evidence of less bus travel time from
bGPS data on LCAP 2509.

4.2 ILD data

ILDs are widely used for providing inputs to the SCOOT traffic
control system [19]. They report vehicles presence or absence (0/1
values) sampled at 4 Hz at the fixed location. Traffic variables such
as flow and occupancy can be calculated from the reported data.
There are 20 ILDs on the LCAP link 2509 and 21 ILDs on the
LCAP link 2511. In order to guarantee the initial quality of data,
daily statistics algorithm (DSA) test was applied to examine the
working state of detectors. DSA test was firstly introduced to
detect errors for single-loop detectors [20]. Then, it is approved to
be an effective method to clean the ILD data, and the DSA with the
same failure of criteria used in Robinson's paper was applied to

Fig. 2  Map of study LCAP links (Source: Google Maps)
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verify the working state of ILD data [21]. According to the results
of the DSA cleaning, one detector on LCAP 2511 failed to meet
the requirements of DSA test and therefore was excluded from the
analysis. ILD data in 5 min intervals from 7:00 to 19:55 during the
period of 17–27 February 2015 are used in this research.

4.3 Mobile phone data

MPN data are provided by a commercial supplier in the form of
direct estimates of travel time on the segmented links. The travel
time data are grouped into four pseudo-modal categories: static,
walking, moving (such as car, bus, and freight), and rail, and only
the moving group is used in this paper. Every LCAP link has
several segmented links. Adding up the travel time of segmented
links to obtain the corresponding LCAP links is the main idea to
process the MPN data. Five days of MPN data from 23 to 27
February 2015 are used in this research. These data are extracted at
5 min intervals from 7:00 to 19:55 every day and thus, we have
156 samples per day and 780 samples in total.

The travel time sourced from MPN data are significantly
different from the corresponding ‘true’ travel time from ANPR on
both two links. The MAPE is 152% on LCAP 2509 and 62% on
LCAP 2511, respectively. The quality of MPN data on LCAP 2509
is better than that of LCAP 2511. These differences are statistically
significant at the 1% level using a suitable non-parametric
(Friedman) test. A number of reasons may account for these
differences, such as low sampling rates, spatial imprecision in
positioning leading to errors in map matching, and errors in modal
discrimination.

4.4 bGPS data

The bGPS data are extracted from TfL's GPS-enhanced automated
vehicle location system, which is used for bus fleet management,
traveller information provision, and bus priority at traffic signals.
The iBus system operates on over 8500 buses, providing the real-
time GPS location and signage, throughout London [22]. bGPS
data are extracted in 5 min intervals from 7:00 to 19:55 every
weekday from 17 to 27 February 2015, and thus, we have 156
samples per day and 1404 samples in total, same as that of ILD and
ANPR.

The iBus system provides bGPS data with traffic variables such
as the average bus speed on the route for traffic control and
management. In addition, the iBus system provides information on
the location of buses from which estimates of journey duration can
be derived. The link travel time is estimated by adding up the travel
time of segmented links, in a manner similar to the pre-processing
of the MPN data. As one would expect, bus travel time is also
significantly different at the 1% level using a suitable non-
parametric (Friedman) test, and generally larger than the travel
time of the general traffic stream as measured by ANPR.

Comparing the MPN and bGPS data, it is clear that both are
substantially different from ANPR, reflecting both differences in
the source technologies and also differences between the behaviour
of the general traffic stream and the subpopulations comprising bus
and mobile phone users. Interestingly, there is a strong correlation
between MPN and bGPS data in both links, which may reflect the
fact that many of the mobile phones contributing to the MPN data
source are in fact located on bus passengers. It is also notable that
the differences between MPN and bGPS data and the ANPR
ground truth data differ significantly as between the two links. On
LCAP 2509, travel times from MPN and bGPS generally over-
estimate the ANPR-based travel time, whereas, on LCAP 2511, the
tendency is to under-estimate the ANPR-based travel time.

5 Experimental results and analysis
This section presents the results of probabilistic classifier EM
algorithms and the data fusion analysis using ANNs, WMA, and
hybrid method. We divide the data sample into the training data set
and test data set, accounting for 70 and 30%, respectively. The
training data set is used to train ANNs or calculate the weights in
WMA, while the test data set is applied to quantify the out-of-

sample accuracy of travel time estimation of the calibrated method.
The evaluated performance is based on out-of-sample data sets.

5.1 Probabilistic traffic states identification

The real traffic flow and occupancy data from detectors at 5 min
intervals of 9 days, in two LCAP links, i.e. LCAP 2509 and LCAP
2511, are used to identify the traffic states, i.e. the congested traffic
state and the uncongested traffic state. The examples of flow-
occupancy scatter plots based on two LCAP links are shown in
Fig. 3. The ideal relationship between flow and occupancy is that
the lower regime represents samples from uncongested states,
while the upper regime represents samples from congested states
[23].

From the flow–occupancy scatter plot, it can be seen that the
EM algorithm effectively identifies the congested and uncongested
traffic states. The results presented in the rest part are based on the
traffic states identified by the EM algorithm.

5.2 Data fusion using ANNs

In order to implement the ANNs to this research, the framework
shown in Fig. 4 is used. 

As for one data source, the traffic flow from ILD data, and
travel time from MPN data and bGPS data are used as inputs,
respectively, to estimate travel time by the ANNs method. Then
different combinations of two and three data sources are fused
together to estimate travel time. The final accuracy is quantified by
MPE, MAPE, RMSE, and RMSPE.

With trial and error method, the travel time results from ANNs
with optimised parameters are presented. Overall, the RNN gives
accurate travel time estimates based on different data inputs on
both LCAP 2509 and LCAP 2511. The precise accuracy is given in
Table 1. 

As can be seen in Table 1, in general, the ANNs provide
accurate travel time estimates in the light of MAPE and RMSE. It
is obvious that the performance using one data input overrides that
of accuracy from using two and three data inputs according to
MAPE criteria. One possible reason is that the patterns of travel
time from MPN and bGPS, as well as the variation of flows from
detectors, are quite different, and at the same time, with large errors
compared to ‘ground truth’ from ANPR. Fusing them together
using ANNs with feedback loop may add extra noise to the
estimated results. ANNs give more accurate travel time estimates
in the uncongested traffic context.

5.3 Data fusion using WMA

In order to implement the WMA, same traffic variables with that of
‘ground truth’ are needed as the input of the WMA. We can get the
travel time variable from ‘ground truth’ ANPR data, bGPS data,
and MPN data, while get traffic flow from ILD. Thus, only bGPS
and MPN data are fused based on three weight schemes. The
framework is shown in Fig. 5. 

The bGPS and MPN data are fused with different weights. The
results are shown in Table 2. As can be seen in Table 2, the
performance of different weight schemes is varied and depends on
the statistical information in both training and test data set. In
addition, fusing two different data source by WMA does not
necessarily contribute to better results compared to the
performance based on single data input. We can also conclude that
the performance of ANNs is obviously better than that of the
WMA. The reason why the WMA does not output accurate travel
time estimates is probably due to some dependencies between
bGPS and MPN data. These dependencies and correlations lead to
the similar traffic patterns based on MPN data and bGPS data. The
performance of LCAP 2511 is better than LCAP 2509, same with
the results from ANNs data fusion, which indicates that the quality
of data inputs has an impact on the performance of data fusion. The
WMA estimation becomes less accurate during the congested
traffic states.

5.4 Data fusion using the hybrid method

IET Intell. Transp. Syst., 2018, Vol. 12 Iss. 7, pp. 651-663
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

655



Fig. 3  Examples of flow-occupancy scatter plots on LCAP 2509 and LCAP 2511
(a) Scatter plots and travel time patterns on LCAP 2509,
(b) Scatter plots and travel time patterns on LCAP 2511
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Fig. 4  Framework of ANNs implementation
 

Table 1 Summary of ANNs performance on LCAP 2509 and LCAP 2511
One data source Two data sources Three data sources

ILD MPN bGPS MPN + ILD bGPS + ILD bGPS + MPN bGPS + ILD + MPN
LCAP 2509
overall
MPE, % −2.43 0.15 −0.46 −1.77 −0.78 −0.96 −0.69
MAPE, % 11.12 10.17 9.76 12.16 10.98 11.65 12.30
RMSE 47.65 47.53 45.88 50.29 50.09 50.68 52.29
RMSPE, % 16.32 14.93 12.99 16.31 15.90 15.28 17.95
uncongested
MPE, % −0.77 −1.46 −1.43 −4.21 −3.67 −2.35 −0.32
MAPE, % 8.97 8.39 9.25 11.71 11.09 9.95 10.45
RMSE 40.36 36.93 39.46 53.24 55.04 43.92 44.91
RMSPE, % 11.41 11.50 12.28 15.40 18.83 12.37 14.58
congested
MPE, % −2.86 −0.39 −0.65 −0.01 0.78 0.04 −0.97
MAPE, % 12.91 11.47 10.39 12.48 10.92 12.87 13.63
RMSE 49.76 54.31 49.26 48.05 47.22 55.02 57.01
RMSPE, % 17.52 15.43 16.03 16.93 14.07 17.07 20.02

 

 
One data source Two data sources Three data sources

ILD MPN bGPS MPN + ILD bGPS + ILD bGPS + MPN bGPS + ILD + MPN
LCAP 2511
overall
MPE, % −1.22 −1.38 −1.56 −1.88 −0.44 −1.69 −1.92
MAPE, % 7.33 7.22 7.19 7.64 7.27 7.53 7.66
RMSE 53.23 40.42 50.91 42.7 52.77 42.88 41.90
RMSPE, % 9.58 9.33 9.48 9.69 9.49 9.83 9.43
uncongested
MPE, % 0.64 −0.32 1.37 −0.74 2.05 −1.17 −0.74
MAPE, % 6.96 6.81 6.62 7.88 7.54 8.83 7.88
RMSE 70.49 50.31 67.86 54.81 75.37 65.15 54.81
RMSPE, % 8.42 7.75 8.16 9.20 9.31 11.19 9.20
congested
MPE, % −1.72 −2.01 −2.58 −2.11 −1.31 −1.77 −2.11
MAPE, % 7.58 7.31 7.39 7.62 7.18 7.32 7.62
RMSE 45.19 37.12 43.46 39.46 42.10 38.16 39.46
RMSPE, % 9.83 9.08 9.89 9.47 9.56 9.60 9.47
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The hybrid method is the combination of ANNs and WMA. This
method estimates the travel time by ANNs, and then fuses these
ANNs outputs by the WMA model to produce the final travel time
estimates. The framework is shown in Fig. 6.

The weights of WMA are calculated according to the MAPE,
MSE, and s2 from the training data set of ANNs. The results from
LCAP 2509 and LCAP 2511 are shown in Tables 3–5, and some
example plots are shown in Fig. 7. 

Among three weight schemes of the hybrid method, the inverse
of MAPE gives the best estimates, and the main reason may come
from the consistent performance of the training data set and test
data set.

It is obvious that all of the estimates from the hybrid method are
accurate than that of ANNs and WMA. The possible reason is that
the hybrid method gives more weights to the accurate data and
fewer weights to the inaccurate data. Combining WMA and ANNs

can take the advantages of both methods to compensate for the
distortion caused by time lag and therefore reduce the spacing error
from ILD and MPN data. In addition, the underestimation and
overestimation parts from the outputs of ANNs can be offset by
WMA to achieve more accurate results than the results from using
either ANNs or WMA. The data fusion techniques are vital to
estimate accurate travel time. More advanced data fusion technique
can help to improve the estimation accuracy and reliability.

In contrast with WMA and ANNs that one input is better than
fusing two or three inputs, using the hybrid method to fuse multiple
data sources can improve the accuracy of estimates compared to
using only one data input. To be specific, fusing bGPS data with
ILD data can reduce one-third MAPE of fusing single bGPS or
ILD data on LCAP 2509 as well as LCAP 2511 under both
congested and uncongested traffic states.

The combination of bGPS and ILD data as inputs estimates the
most accurate result, superior to that of three data sources. This can

Fig. 5  Framework of WMA implementation
 

Table 2 Summary of WMA performance on LCAP 2509 and LCAP 2511
bGPS + MPN

Overall Uncongested traffic states Congested traffic states
LCAP 2509
w1(the inverse of MAPE)
MPE, % −131.92 −124.62 −137.58
MAPE, % 135.59 128.00 141.58
RMSE 329.26 328.37 332.59
RMSPE, % 164.08 161.79 166.94
w2 (the inverse of MSE)
MPE, % −130.40 −122.94 −136.26
MAPE, % 134.28 126.55 140.47
RMSE 325.99 324.54 329.89
RMSPE, % 162.84 160.59 165.76

w3 wi = ni

si
2

MPE, % −125.34 −117.24 −131.81
MAPE, % 130.09 121.92 136.76
RMSE 316.16 312.91 321.48
RMSPE, % 159.03 156.90 161.97
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be ascribed to the correlations among different data sources, for
example, the correlation between bGPS and MPN data can reduce
the accuracy of travel time estimates. So, fusing more data is not
necessary to improve the accuracy of travel time estimation. The
quality of data inputs that LCAP 2511 is better than LCAP 2509
leads to more accurate estimates for LCAP 2511 than that of LCAP
2509. In addition, the estimated results during uncongested traffic
states outperform that of estimates under congested traffic states by
using all three fusion methods. It indicates that the quality of data
input and traffic states can influence the outputs no matter which
methods are selected.

6 Conclusion
The results presented in this paper show that the final accuracy of
travel time estimation depends on the reliability of individual data
sources, the characteristics of the sensor fusion techniques used,
and also the underlying traffic states. The hybrid method
outperforms WMA and ANNs to fuse multiple data resources, and
produces more accurate travel times. However, fusing more data

sources does not necessarily improve the quality of the final
estimation. The results show that fusing highly correlated data
sources can lead to a worse result. The results also show that
although bGPS data is inherently based on just a subpopulation of
the general traffic stream with markedly different behaviour to that
of the general stream, when bGPS data are combined with ILD
data from the general traffic stream, reasonable estimates of
general traffic stream travel time can be obtained.
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bGPS + MPN

Overall Uncongested traffic states Congested traffic states
LCAP 2511
w1 (the inverse of MAPE)
MPE, % −49.93 −4.93 −57.52
MAPE, % 51.89 17.26 57.94
RMSE 218.61 133.64 228.79
RMSPE, % 64.58 25.37 69.20
w2 (the inverse of MSE)
MPE, % −50.73 −6.10 −57.85
MAPE, % 52.60 17.86 58.31
RMSE 220.59 136.74 231.22
RMSPE, % 65.56 26.42 69.39

w3 wi = ni

si
2

MPE, % −52.08 −5.55 −60.61
MAPE, % 54.01 17.22 60.89
RMSE 225.33 132.16 239.10
RMSPE, % 67.49 25.09 72.67

 

Fig. 6  Framework of the hybrid method
 

IET Intell. Transp. Syst., 2018, Vol. 12 Iss. 7, pp. 651-663
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

659



Table 3 Summary of the hybrid method overall performance on LCAP 2509 and LCAP 2511
One data source Two data sources Three data sources

ILD MPN bGPS MPN + ILD bGPS + ILD bGPS + MPN bGPS + ILD + MPN
LCAP 2509
w1 (the inverse of MAPE)
MPE, % −2.43 0.15 −0.46 −1.41 −1.27 −0.07 −0.69
MAPE, % 11.12 10.17 9.76 10.14 7.29 9.37 9.59
RMSE 47.65 47.53 45.88 44.71 30.89 44.05 43.28
RMSPE, % 16.32 14.93 12.99 13.76 11.06 12.65 12.82
w2 (the inverse of MSE)
MPE, % −2.43 0.15 −0.46 −1.42 −1.33 −0.10 −0.74
MAPE, % 11.12 10.17 9.76 10.15 7.48 9.39 9.62
RMSE 47.65 47.53 45.88 44.70 31.46 44.13 43.33
RMSPE, % 16.32 14.93 12.99 13.77 11.28 12.68 12.87

w3 wi = ni

si
2

MPE, % −2.43 0.15 −0.46 −1.57 −1.33 0.11 −0.72
MAPE, % 11.12 10.17 9.76 10.36 7.48 9.29 9.68
RMSE 47.65 47.53 45.88 44.63 31.46 43.65 43.09
RMSPE, % 16.32 14.93 12.99 14.03 11.28 12.51 12.86

 

 
One data source Two data sources Three data sources

ILD MPN bGPS MPN + ILD bGPS + ILD bGPS + MPN bGPS + ILD + MPN
LCAP 2511
w1 (the inverse of MAPE)
MPE, % −1.22 −1.38 −1.56 −1.57 −0.88 −1.99 −1.78
MAPE, % 7.33 7.22 7.19 7.00 5.05 6.98 6.87
RMSE 53.23 40.42 50.91 38.35 35.83 37.02 37.34
RMSPE, % 9.58 9.33 9.48 8.69 7.18 8.64 8.59
w2 (the inverse of MSE)
MPE, % −1.22 −1.38 −1.56 −1.55 −0.87 −2.00 −1.77
MAPE, % 7.33 7.22 7.19 7.02 4.93 6.98 6.87
RMSE 53.23 40.42 50.91 38.48 34.88 36.99 37.42
RMSPE, % 9.58 9.33 9.48 8.72 7.00 8.65 8.61

w3 wi = ni

si
2

MPE, % −1.22 −1.38 −1.56 −1.49 −0.87 −2.06 −1.77
MAPE, % 7.33 7.22 7.19 7.11 4.93 6.98 6.89
RMSE 53.23 40.42 50.91 39.01 34.88 37.01 37.64
RMSPE, % 9.58 9.33 9.48 8.84 7.00 8.70 8.67
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Table 4 Summary of the hybrid method performance on LCAP 2509 and LCAP 2511 with uncongested states
One data source Two data sources Three data sources

ILD MPN bGPS MPN + ILD bGPS + ILD bGPS + MPN bGPS + ILD + MPN
LCAP 2509
w1 (the inverse of MAPE)
MPE, % −0.77 −1.46 −1.43 −1.11 −0.66 −0.63 −0.68
MAPE, % 8.97 8.39 9.25 8.21 6.54 8.21 8.00
RMSE 40.36 36.93 39.46 36.80 31.34 36.94 36.85
RMSPE, % 11.41 11.50 12.28 10.89 9.96 10.91 10.72
w2 (the inverse of MSE)
MPE, % −0.77 −1.46 −1.43 −1.11 −0.73 −0.66 −0.70
MAPE, % 8.97 8.39 9.25 8.22 6.69 8.20 8.01
RMSE 40.36 36.93 39.46 36.82 31.30 36.90 36.84
RMSPE, % 11.41 11.50 12.28 10.88 10.00 10.92 10.72

w3 wi = ni

si
2

MPE, % −0.77 −1.46 −1.43 −1.01 −0.73 −0.44 −0.57
MAPE, % 8.97 8.39 9.25 8.36 6.69 8.27 8.05
RMSE 40.36 36.93 39.46 37.47 31.30 37.24 37.21
RMSPE, % 11.41 11.50 12.28 10.92 10.00 10.87 10.71

 

 
One data source Two data sources Three data sources

ILD MPN bGPS MPN + ILD bGPS + ILD bGPS + MPN bGPS + ILD + MPN
LCAP 2511
w1 (the inverse of MAPE)
MPE, % 0.64 −0.32 1.37 0.32 −0.73 0.32 0.54
MAPE, % 6.96 6.81 6.62 6.93 4.27 6.85 6.92
RMSE 70.49 50.31 67.86 50.41 46.03 49.16 49.65
RMSPE, % 8.42 7.75 8.16 7.93 5.75 7.79 7.92
w2 (the inverse of MSE)
MPE, % 0.64 −0.32 1.37 0.38 −0.71 0.36 0.58
MAPE, % 6.96 6.81 6.62 6.94 4.15 6.86 6.93
RMSE 70.49 50.31 67.86 50.61 44.80 49.15 49.76
RMSPE, % 8.42 7.75 8.16 7.99 5.60 7.81 7.96

w3 wi = ni

si
2

MPE, % 0.64 −0.32 1.37 0.55 −0.71 0.54 0.72
MAPE, % 6.96 6.81 6.62 6.97 4.15 6.87 6.95
RMSE 70.49 50.31 67.86 51.35 44.80 49.17 50.04
RMSPE, % 8.42 7.75 8.16 8.19 5.60 7.87 8.06
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Table 5 Summary of the hybrid method performance on LCAP 2509 and LCAP 2511 with congested states
One data source Two data sources Three data sources

ILD MPN bGPS MPN + ILD bGPS + ILD bGPS + MPN bGPS + ILD + MPN
LCAP 2509
w1 (the inverse of MAPE)
MPE, % −2.86 −0.39 −0.65 −1.62 −1.59 0.34 −0.70
MAPE, % 12.91 11.47 10.39 11.53 7.69 10.21 10.73
RMSE 49.76 54.31 49.26 49.63 30.64 48.52 47.37
RMSPE, % 17.52 15.43 16.03 15.49 11.62 13.76 14.14
w2 (the inverse of MSE)
MPE, % −2.86 −0.39 −0.65 −1.64 −1.65 0.31 −0.77
MAPE, % 12.91 11.47 10.39 11.54 7.91 10.24 10.78
RMSE 49.76 54.31 49.26 49.60 31.55 48.67 47.45
RMSPE, % 17.52 15.43 16.03 15.51 11.91 13.80 14.22

w3 wi = ni

si
2

MPE, % −2.86 −0.39 −0.65 −1.98 −1.65 0.51 −0.83
MAPE, % 12.91 11.47 10.39 11.80 7.91 10.03 10.84
RMSE 49.76 54.31 49.26 49.15 31.55 47.73 46.87
RMSPE, % 17.52 15.43 16.03 15.89 11.91 13.56 14.20

 

 
One data source Two data sources Three data sources

ILD MPN bGPS MPN + ILD bGPS + ILD bGPS + MPN bGPS + ILD + MPN
LCAP 2511
w1 (the inverse of MAPE)
MPE, % −1.72 −2.01 −2.58 1.87 −1.31 −2.35 −2.15
MAPE, % 7.58 7.31 7.39 7.01 7.18 7.00 6.86
RMSE 45.19 37.12 43.46 36.06 42.10 34.70 34.98
RMSPE, % 9.83 9.08 9.89 8.80 9.56 8.77 8.69
w2 (the inverse of MSE)
MPE, % −1.72 −2.01 −2.58 −1.86 −0.93 −2.38 −2.14
MAPE, % 7.58 7.31 7.39 7.03 5.20 7.00 6.87
RMSE 45.19 37.12 43.46 36.17 30.66 34.67 35.06
RMSPE, % 9.83 9.08 9.89 8.83 7.42 8.77 8.71

w3 wi = ni

si
2

MPE, % −1.72 −2.01 −2.58 −1.82 −0.93 −2.47 −2.16
MAPE, % 7.58 7.31 7.39 7.13 5.20 7.00 6.88
RMSE 45.19 37.12 43.46 36.67 30.66 34.68 35.27
RMSPE, % 9.83 9.08 9.89 8.94 7.42 8.82 8.76
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Fig. 7  Examples of scatter plots and travel time pattern of ANNs estimates, WMA estimates, and hybrid estimates
(a) Example of scatter plots ANNs estimates of LCAP 2511,
(b) Example of scatter plots WMA estimates of LCAP 2511,
(c) Example of scatter plots hybrid method estimates of LCAP 2511,
(d) Example of travel time patterns of ANNs estimates, WMA estimates, and hybrid estimates of LCAP2511
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