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Abstract 

Most legumes can form a unique type of lateral organs on their roots: root nodules. These 

structures host symbiotic nitrogen fixing bacteria called rhizobia. Several different types of 

nodules can be found in nature, but the two best-studied types are called indeterminate and 

determinate nodules. These two types differ with respect to the presence or absence of a 

persistent nodule meristem, which consistently correlates to the cortical cell layers giving rise to 

the nodule primordia. Similar to other plant developmental processes, auxin signalling overlaps 

with the site of organ initiation and meristem activity. Here we review how auxin contributes to 

early nodule development. We focus on changes in auxin transport, signalling and metabolism 

during nodule initiation, describing both experimental evidence and computer modeling. We 

discuss how indeterminate and determinate nodules may differ in their mechanisms for 

generating localized auxin response maxima and highlight outstanding questions for future 

research. 
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Introduction 1 

Legumes are well known for their ability to form a symbiotic interaction with nitrogen fixing 2 

bacteria collectively called rhizobia. These bacteria are housed intracellularly in specialized 3 

organs on the root called nodules. These organs are very different from lateral roots, making the 4 

legume root an interesting model from a developmental point of view. Although there are large 5 

overlaps in the signalling components and developmental processes involved in the formation of 6 

both lateral organs, there also exist striking differences (Hirsch et al., 1997; de Billy et al., 2001; 7 

Franssen et al., 2015). Lateral root initiation is influenced by environmental signals, but 8 

ultimately, the plant produces lateral roots in response to internal signals. Nodules, on the other 9 

hand, require the presence of a symbiont and their initiation is triggered by specific rhizobially 10 

produced signalling molecules: lipochitooligosaccharides (LCOs) often referred to as Nod 11 

factors (Yang et al., 1994). The required early signalling cascade for nodule initiation is largely 12 

co-opted from the much older (~450 MYA) and more widespread (~80% of all land plants) 13 

symbioses with arbuscular mycorrhiza (Catoira et al., 2000; Maillet et al., 2011). 14 

Much of our current understanding on the role of auxin during nodule initiation is based on 15 

insights into auxin signalling during lateral root organogenesis (Mathesius, 2008). It seems that 16 

auxin signalling is crucial to the developmental programs of both organs. Three main functions 17 

have been demonstrated for auxin during nodulation: cell cycle control, vascular tissue 18 

differentiation and rhizobial infection. During nodule development, auxin is a crucial signal 19 

controlling the cell cycle (Kondorosi et al., 2005). Silencing of the cell cycle regulator CDC16 in 20 

Medicago truncatula reduced auxin sensitivity and increased nodule numbers (Kuppusamy et al., 21 

2009), while the auxin-induced cyclin CycA2 is important for activation of the cell cycle in 22 

nodule meristems (Roudier et al., 2003). Moreover, auxin plays a role in vascular differentiation 23 

in the nodule, with strong auxin responses occurring in the vascular tissue of nodules (e.g. 24 

Takanashi et al., 2011) and aberrant auxin responses found in vascular tissues of nodules that 25 

formed central, rather than peripheral vascular bundles (Guan et al., 2013). As an additional role 26 

in nodulation, auxin is also involved in the infection process in the root hair. For example, 27 

infection of rhizobia is significantly reduced in the auxin response mutant arf16a in Medicago 28 

truncatula (Breakspear et al., 2014). The main focus of this review will be the role of auxin in 29 

the process of nodule initiation and development. 30 
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In both developmental programs -lateral root and nodule-, a tight correlation has been found 31 

between the position of auxin response and meristematic activity (Larkin et al., 1996; Rolfe et 32 

al., 1997; Mathesius et al., 1998b; Pacios-Bras et al., 2003; Takanashi et al., 2011; Suzaki et al., 33 

2012; Herrbach et al., 2014). In addition, meristematic markers including PLETHORA (PLT) and 34 

WUSCHEL-RELATED HOMEOBOX (WOX5) are expressed in both organs, with localization of 35 

four PLT and the WOX5 genes in the nodule meristem as well as the root apical meristem, in 36 

both cases, expression overlapping with an auxin maximum in the meristem (Osipova et al., 37 

2012; Franssen et al., 2015). Nevertheless, there are several indications that the processes leading 38 

to lateral root and nodule initiation are wired differently. For example, nodule-like structures can 39 

be induced by exogenous cytokinin application (e.g. Cooper and Long, 1994; Heckman et al., 40 

2011), whereas this hormone has a strong inhibiting effect on lateral root initiation in both 41 

Arabidopsis thaliana and model legumes (Lohar et al., 2004; Laplaze et al., 2007; Marhavy et 42 

al., 2011; Plet et al., 2011). The number of lateral roots is increased by the application of auxin 43 

(Blakely et al., 1997; Woodward et al., 2005), while external auxin application inhibits 44 

nodulation (van Noorden et al., 2006; Li et al., 2013). In addition, the initiation of lateral roots 45 

shows a strong preference for the convex side of root bends (Fortin et al., 1989; Laskowski et al., 46 

2008; Deinum et al., 2015), whereas nodules show no such bias (Deinum et al., 2015). Last, but 47 

not least, the primordia are initiated from different cell layers. In Arabidopsis, lateral roots are 48 

exclusively founded from pericycle cells (Malamy and Benfey, 1997; Casimiro et al. 2003). In 49 

model legumes, which all have multiple cortical cell layers, lateral root primordia are still 50 

predominantly pericycle derived in both indeterminate (e.g. Herrbach et al., 2014) and 51 

determinate nodule-forming species (e.g. Held et al., 2014). However, endodermal and some 52 

cortical divisions can also be observed, a feature shared with many non-legume plants (Mallory 53 

et al., 1970; Lloret et al., 1989; Casero et al., 1993; Op den Camp et al., 2011; Xiao et al., 2014). 54 

Nodule primordia in the model legume Medicago truncatula are predominantly founded by the 55 

inner cortical cell layers, but pericycle and endodermis cells also contribute to the eventual 56 

nodule (Timmers et al., 1999; Xiao et al., 2014). The induction of these nodule primordia occurs 57 

in the so-called susceptible zone. The exact position of the susceptible zone along the root 58 

developmental axis differs among species, but it is transient and often begins where root hairs 59 

start to develop several mm behind the root tip (Bhuvaneswari et al., 1981). This is similar to the 60 

zone where lateral roots are initiated, approximately 4 mm behind the root tip in M. truncatula, 61 
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although lateral roots continue to emerge from dormant primordia in the mature root (Herrbach 62 

et al., 2014). 63 

In this review, we will focus on the role of auxin transport, metabolism and signalling in 64 

controlling auxin accumulation during nodule initiation. How are auxin transport, metabolism 65 

and signalling modified in response to Nod factor signalling? And what are the commonalities 66 

and differences between different nodule types? 67 

 68 

Different types of legume nodules 69 

Several different types of nodules exist in nature. However, here we will mainly focus on the two 70 

most predominant and best-studied types: indeterminate and determinate nodules. A key 71 

difference between these two types of nodules is which cortical cell layers give rise to the nodule 72 

primordium (Hirsch, 1992; Sprent, 2007) (Figure 1). While many legumes from all three 73 

subfamilies of Leguminosae form nodules with a persistent nodule meristem (“indeterminate 74 

nodules”), mature nodules of members of the Millettioid, Dalbergioid and Loteae clades do not 75 

retain an active meristem (“determinate nodules”) (Hirsch, 1992; Sprent, 2007). Correlated with 76 

meristem persistence is the position of the first cell divisions that give rise to the nodule 77 

primordium. In indeterminate nodules (such as those formed by species like M. truncatula, 78 

Medicago sativa, Pisum sativum and Vicia sativa), cell divisions occur in the inner cortex and 79 

pericycle (Libbenga and Harkes, 1973; Timmers et al., 1999; Xiao et al., 2014), whereas in 80 

determinate nodules cell divisions are restricted to the middle (Lotus japonicus) or outer (Glycine 81 

max) cortex (Hirsch, 1992). The position of these primary divisions coincides with the position 82 

of auxin signalling in cortical cells, with additional expression in the pericycle and endodermis 83 

during nodule initiation (Figure 1). This indicates that the initiation of cell division is correlated 84 

with the presence of an auxin maximum, as determined through GH3::GUS auxin reporter lines 85 

in species forming indeterminate (Mathesius et al., 1998b; van Noorden et al., 2007; Breakspear 86 

et al., 2014; Ng et al., 2015) and determinate nodules (Takanashi et al., 2011). Further auxin 87 

maxima determined through DR5::GFP-NLS reporter lines in L. japonicus (Suzaki et al., 2012), 88 

as well as DR5::tDT and DR5::GUS in soybean (Turner et al., 2013) were found mainly in the 89 

proliferating outer cortical cells. Both nodule types contain peripheral vascular bundles and a 90 
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central mass of mostly infected cells, where nitrogen fixation takes place, as well as some 91 

uninfected cells. However, the processes of infection, nitrogen fixation and senescence of 92 

nitrogen fixing tissue are spatially separated in indeterminate nodules, whereas such a separation 93 

does not exist in determinate nodules (Figure 1; Hirsch, 1992). Auxin responses are absent in the 94 

infected zone of both indeterminate and determinate nodules, but retained in vascular tissue 95 

(Takanashi et al., 2011; Suzaki et al., 2012; Breakspear et al., 2014; Turner et al., 2013). 96 

Indeterminate nodules, which retain an apical meristem, also show auxin responses in the 97 

meristem (Guan et al., 2013; Breakspear et al., 2014; Franssen et al., 2015) 98 

An additional type of nodule can be found on the roots of the only non-legume genus known to 99 

form a root nodule symbiosis with rhizobia: Parasponia. Here, indeterminate nodules contain a 100 

central vascular bundle. In other words, these nodules are morphologically more similar to lateral 101 

roots than legume nodules (Price et al., 1984). This different type of nodule shows that the 102 

peripheral vasculature is not essential for nodule function. Further morphological and 103 

developmental diversity can be found in other legumes such as lupin (Lupinus albus) and peanut 104 

(Arachis hypogaea) (Guinel, 2009). Unfortunately, these nodule types have hardly been studied 105 

using molecular approaches and no data are available on auxin responses in these nodule types.  106 

 107 

The meaning of pseudonodules 108 

A final “type” of nodule that has had and still has great influence on the field is the 109 

pseudonodule. Pseudonodules are a collection of roughly nodule-shaped root outgrowths that can 110 

be induced in the absence of rhizobia in a number of ways. Few of these structures develop the 111 

typical peripheral vasculature, including pseudonodules induced by purified Nod factors on G. 112 

max and M. sativa (Truchet et al., 1991; Stokkermans and Peters, 1994), cytokinin application 113 

(Heckmann et al., 2011), as well as the spontaneous (pseudo)nodules formed on roots with 114 

constitutive active cytokinin receptor LHK1 (Tirichine et al., 2007) or DMI3/CCaMK (Tirichine 115 

et al., 2006; Gleason et al., 2006). Other pseudonodules develop a central vasculature, which lead 116 

to the suggestion that they are more like modified lateral roots (e.g., Allen et al., 1953). Such 117 

include pseudonodules formed by application of synthetic auxin transport inhibitors like TIBA 118 

(2,3,5-triiodo benzoic acid) or NPA (1-N-naphthylphthalamic acid)  (e.g. Hirsch et al., 1989), or 119 
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the synthetic auxin 2,4-D (e.g. Hiltenbrand et al., 2016), although IAA itself does not induce 120 

pseudonodules (Mathesius et al., 2000). Similar central vascular structure, however, is also 121 

observed in several uninfected rhizobia-induced nodules (Guan et al., 2013). In addition, 122 

transport inhibitor induced pseudonodules on M. sativa, P. sativum and M. truncatula have been 123 

shown to express genetic markers typical for real nodules (Hirsch et al., 1989; Scheres et al., 124 

1992; Rightmyer and Long, 2011).  125 

Clearly, the occurrence of pseudonodules (particularly in response to 2,4-D) has to be interpreted 126 

with caution. Regardless, pseudonodules have been important in the hypotheses that auxin 127 

transport inhibition is part of the process that leads to nodule formation  (Hirsch et al., 1989), and 128 

that cytokinin signaling is sufficient to trigger nodule initiation (Tirichine et al, 2007). A careful 129 

study of the timing and location of earliest cell divisions in various pseudonodules would be 130 

informative. Nonetheless, as discussed below, differences exist among legumes in their potential 131 

to form pseudonodules, which could hint at underlying differences in the mechanisms of 132 

initiation and progression of nodule formation. 133 

 134 

The ins and outs of auxin transport in legumes 135 

It has been demonstrated that in response to Nod factor signalling an auxin maximum -visualised 136 

by GH3::GUS and/or DR5::GUS expression- is established during the initiation of a nodule 137 

primordium (Figure 1; Mathesius et al., 1998b; van Noorden et al., 2007; Takanashi et al., 2011; 138 

Suzaki et al., 2012). It has long been postulated that initiation of this maximum is regulated by 139 

changes in auxin transport capacity (Hirsch et al., 1989, Mathesius et al., 1998b). However, the 140 

molecular mechanisms by which this is achieved are still poorly understood. A contributing 141 

factor to this is that most legumes are far from ideal plant models. Cell biology has proven more 142 

difficult compared to the model species Arabidopsis (Barker et al., 1990, Kouchi et al., 2004). A 143 

chronic absence of stable transformation protocols, especially in M. truncatula where elevated 144 

levels of co-suppression hinder their usage, leads to a limited amount of available genetic tools. 145 

In addition, the relative thickness of the root and a high abundance of secondary metabolites 146 

hinder state-of-the-art cell biology (Watson et al., 2015, Holmes et al., 2008). As a result, most -147 

if not all- research on auxin homeostasis in model legumes like M. truncatula and L. japonicus is 148 
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based on fundamental research performed on the model Arabidopsis. However, Arabidopsis does 149 

not form root nodules and in many cases functionality is extrapolated from sequence homology 150 

only (e.g. Schnabel et al., 2004, Huo et al., 2006, Plet et al., 2011, Sańko-Sawczenko et al., 151 

2016). The genes involved in auxin transport; PIN (PIN-FORMED) and AUX1/LAX (AUXIN 152 

RESISTANT 1/LIKE-AUX1) are no exception. Please note that the numbering of the legume PINs 153 

and AUX1/LAXs is not always consistent with that of Arabidopsis. Although this is a recurring 154 

theme in plant biology, it is an important fact to keep in mind when dealing with functionality 155 

based on orthology.  156 

PIN proteins are a group of auxin efflux carriers extensively studied in Arabidopsis (Friml et al., 157 

2003; Furutani et al., 2004; Blilou et al., 2005; Paponov et al., 2005; Huang et al., 2010). 158 

However, their function in legumes has never been demonstrated. PIN proteins are specifically 159 

positioned on the cell membranes and therefore are responsible for the polarity of auxin 160 

transport. If the direction of auxin transport needs to change, PIN proteins can be re-localized 161 

accordingly, a process often required during organ initiation (Wiśniewska et al., 2006; Benková 162 

et al., 2003). In the Arabidopsis genome, eight PIN proteins have been identified, which can be 163 

divided into two distinct types referred to as long and short-looped PINs based on their 164 

molecular structure. The long-looped PINs (AtPIN1, 2, 3, 4, and 7) co-facilitate auxin cell-to-cell 165 

transport (Vieten et al., 2005; Ganguly et al., 2010). The short-looped PINs (AtPIN5 and 8) are 166 

less well studied. These PINs are located to the endoplasmic reticulum and are believed to 167 

regulate cytosolic auxin homeostasis (Mravec et al., 2009; Ding et al., 2012). The only exception 168 

to this rule seems to be AtPIN6, which as a long looped PIN was shown be located to the ER 169 

(Mravec et al., 2009). 170 

The model legumes M. truncatula, L. japonicus and G. max genomes harbour 12, 11 and 23 PIN 171 

proteins, respectively (Wang et al., 2015a, Sańko-Sawczenko et al., 2016; Figure 2A). The 172 

genome of G. max underwent a relatively recent whole genome duplication, and -with the 173 

exception of PIN1a- all PINs can be found in duplicate (Schmutz et al., 2009). In L. japonicus, 174 

several incomplete fragments resembling PIN proteins can be found. However, it is not clear 175 

whether these fragments represent genuine PINs, or are just artefacts since the L. japonicus 176 

genome is far from complete and almost no L. japonicus transcriptome data has been made 177 

publically available. For figure 2A, the ORF of LjPIN8 (Lj3g3v3735560) was extended by an 178 
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additional 345 nucleotides before reaching a stop codon, and the two annotated LjPIN6 179 

fragments LjPIN6a (Lj0g3v0178829) and LjPIN6b (Lj1g3v0264160) were joined to form 180 

LjPIN6a/b. A similar correction was made in GmPIN6a (Glyma.13G038300-181 

Glyma.13G038400). These changes provided sequences very similar to those of M. truncatula 182 

(Figure 2A). However, whether these corrections are justified remains to be validated. In 183 

addition, two L. japonicus PIN1 genes (Lj4g3v3114900 and Lj2g3v0661480) with 100% identity 184 

on the nucleotide level were considered to be only one copy.  185 

When analysing long PINs, three subgroups - so called orthogroups - can be identified (Figure 186 

2A). The first group is comprised of AtPIN1, three M. truncatula PINs (MtPIN4, MtPIN5 and 187 

MtPIN10), two L. japonicus (LjPIN1 and LjPIN7) and five G. max (GmPIN1a-e), together they 188 

form the PIN1 orthology group. Interestingly, MtPIN10, LjPIN7 and GmPIN1d-e represent an 189 

ancestral form, lost in Arabidopsis (Figure 2A). Expression data is only available for M. 190 

truncatula, where it was shown that MtPIN10 is highly expressed in both root and nodules 191 

(Sańko-Sawczenko et al., 2016, Roux et al., 2014). This makes MtPIN10 an excellent candidate 192 

for studying its involvement in nodulation. So far, no nodulation phenotypes have ever been 193 

described for these PINs. However, it is possible that this lack of phenotypes is due to 194 

redundancy with any of the additional PINs in this orthogroup. In line with this, MtPIN4 is 195 

expressed in mature nodules (Roux et al., 2014). RNAi knockdown of MtPIN4 reduced nodule 196 

density (Huo et al., 2006), but off-target effects of this construct on MtPIN10 and/or MtPIN5 197 

were not excluded, leaving the question of possible gene redundancy unanswered. As little is 198 

known of the involvement of long PINs during nodulation, it would still be interesting to analyse 199 

double and/or triple mutants of this orthogroup in relation to nodule initiation. A second 200 

orthology group is comprised of three Arabidopsis proteins (AtPIN3, AtPIN4, and AtPIN7), two 201 

M. truncatula (MtPIN1 and MtPIN3), two L. japonicus (LjPIN3 and LjPIN4) and four G. max 202 

proteins (GmPIN3a-d). Closer inspection reveals MtPIN1/LjPIN4/GmPIN3c/d are likely 203 

orthologues to AtPIN4, whereas MtPIN3/LjPIN3/GmPIN3a/b are closer related to AtPIN3 and 204 

AtPIN7 (Sańko-Sawczenko et al., 2016). Interestingly, MtPIN1 is expressed in both M. 205 

truncatula roots and nodules. In Arabidopsis, AtPIN4 expression is located around the quiescent 206 

centre (Friml et al., 2002). Here it functions in transporting auxin towards the auxin maxima in 207 

the quiescent centre and columella (Blilou et al., 2005). The expression of MtPIN1 in both roots 208 
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and nodules suggests it has a function in both organs. Detailed analysis of gene expression, using 209 

laser-microdissection of mature nodules combined with RNA sequencing, revealed that MtPIN1 210 

is most predominantly expressed at the nodule apex (Roux et al., 2014). The M. truncatula root 211 

nodule has a functional meristem, and the expression domain of MtPIN1 fits with a function 212 

during meristem maintenance. Mutants have not been reported so far, but could shed light on any 213 

putative MtPIN1 function during nodulation. As L. japonicus and G. max have both meristemless 214 

mature nodules, a differential spatial-temporal expression between MtPIN1 and 215 

LjPIN4/GmPIN3c/d during nodule initiation and/or development could -at least in part- explain 216 

absence of such meristem. However, such expression data are currently not publically available 217 

neither for L. japonicus nor for G. max. MtPIN3 is highly expressed in the M. truncatula root, 218 

but absent from the nodule (Sańko-Sawczenko et al., 2016, Roux et al., 2014). Finally, MtPIN2, 219 

MtPIN7, LPIN2 and GmPIN2a-b are orthologous to AtPIN2. Like MtPIN3, MtPIN2 is expressed 220 

in the M. truncatula root but not in mature nodules. However, promoter activity was detected at 221 

the base of developing nodules (Huo et al., 2006; Sańko-Sawczenko et al., 2016). 222 

When looking at the short type PINs, also three orthology groups can be identified (Figure 2A). 223 

AtPIN5 groups together with MtPIN9, LjPIN5 and GmPIN5a/b, AtPIN6 with MtPIN6, LjPIN6 224 

and GmPIN6a-b and AtPIN8  with MtPIN8, MtPIN11, LjPIN11, LjPIN8 and GmPIN8a-d. 225 

Overall, short type PINs - apart from MtPIN11 - are lowly expressed in the M. truncatula root. 226 

On the other hand, expression of MtPIN6, 9 and 11 is relatively high in the mature nodule. In 227 

particular, MtPIN9 expression is strikingly high (Sańko-Sawczenko et al., 2016). However, this 228 

is in contrast to previously published work that demonstrated expression of MtPIN6 and MtPIN9 229 

to be low in mature nodules (Roux et al., 2014). If the function of short PINs is evolutionarily 230 

conserved, even a low expression could indicate that MtPIN9 might be involved in nodule auxin 231 

homeostasis. In addition, although MtPIN9 expression in the root is also low, it is strongly down-232 

regulated in the early response to Nod factors (Plet et al., 2011). This could suggest a function 233 

for MtPIN9 during the establishment of an auxin maximum prior to the development of a nodule 234 

primordium. However, it is too early to draw any conclusions. Like for most legume PINs, 235 

currently limited data are available on the exact spatio-temporal expression patterns, localization, 236 

or function of MtPIN9. Overall, available results suggest a role for PIN-related auxin transport 237 

during nodulation. 238 
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In addition to efflux, auxin transport requires influx. This occurs in part by diffusion, but is also 239 

facilitated by a small multigene family of high-affinity auxin influx carrier (AUX1/LAX). In 240 

Arabidopsis, this family consists of four highly conserved genes AUX1, LAX1, LAX2 and LAX3 241 

(Péret et al., 2012, Swarup & Péret 2012). Although this multigene family is larger in M. 242 

truncatula, L. japonicus and G. max (five, six and fifteen, respectively ((Roy et al., 2017, Chai et 243 

al., 2016), Figure 2B)), their sequences remain highly conserved even between these species. 244 

This suggests high evolutionary pressure on these genes, indicating the importance of active 245 

auxin influx in higher plants. As with PIN genes, nomenclature does not follow Arabidopsis. In 246 

M. truncatula, the genes are named MtLAX1-5, and similar names are used for the L. japonicus 247 

gene family, which has one additional member, LjAUX1 (Roy et al., 2017, Sato et al., 2008). The 248 

G. max genes have been named by genomic position: with the first LAX on chromosome 1 249 

called GmLAX1, and the last LAX on chromosome 18 GmLAX15 (Figure 2B, Chai et al., 2016). 250 

Also here, the signature of the whole genome duplication appears, as all - except GmLAX4 - are 251 

found in pairs. Based on our phylogeny the AUX1/LAX proteins can be divided into at least 252 

three orthogroups. The largest group AUX1/LAX1 orthogroup consists of AtAUX1 and probably 253 

AtLAX1, combined with MtLAX1/2/4, LjAUX1, LjLAX1/2/4 and 254 

GmLAX1/2/3/4/9/11/13/14/15. This large group can most likely be divided in more sub groups. 255 

However, the conserved nature of these proteins makes it difficult to properly group them. The 256 

two additional orthogroups are more distinct. In the second group, AtLAX2 groups together with 257 

MtLAX5, LjLAX5 and GmLAX5/7/10/12 and in the last group AtLAX3 finds itself with 258 

MtLAX3, LjLAX3 and GmLAX6/8. A link between nodule development and auxin influx 259 

comes from M. truncatula, where it was demonstrated that MtLAX2 is expressed during 260 

nodulation (Roy et al., 2017). MtLAX2 is not orthologous to AtLAX2, but belongs to a putative 261 

legume specific subclade of the AUX1/LAX1 orthogroup (Figure 2B). In L. japonicus, no data 262 

are available for the function of LjLAX during nodule initiation or development. However, in G. 263 

max several GmLAX genes are highly expressed in roots (GmLAX1, 3, 4, 6, 8, 9, 10, 12, and 15), 264 

but only three are expressed in nodules, although relatively lowly (GmLAX6, 13, and 14). 265 

Surprisingly, none of these can easily be considered orthologous to MtLAX2. Although this is 266 

just an observation, it could also indicate that auxin responses in the determinate nodulating 267 

species G. max are regulated differently or are less important. 268 
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So far key data are missing to draw any solid conclusions on how PIN and AUX1/LAX proteins 269 

contribute to nodule initiation and development in (in)determinate legume species. As additional 270 

legume genomes of sufficient quality become available, a more extensive phylogenetic analysis 271 

of the PIN and AUX1/LAX gene families becomes possible. Nevertheless, functional validation, 272 

combined with detailed spatio-temporal studies of PIN and AUX1/LAX during nodule initiation 273 

and development, remains crucial to uncover any differences between determinate and 274 

indeterminate nodule forming species. It would be interesting to see where auxin transport 275 

related nodulation research will lead us in the near future and what new hypotheses this could 276 

yield in relation to the differences between both nodule types.  277 

 278 

Auxin accumulation during nodule primordium induction: hypotheses from modelling 279 

work  280 

With so many unknowns about auxin transport and metabolism, models were used in an attempt 281 

to understand the auxin accumulation patterns during the first steps of nodulation (Deinum et al. 282 

2012, Xiao et al. 2014, Deinum et al. 2016). By necessity, these models used the broad PIN 283 

layout pattern from Arabidopsis (Laskowski et al. 2008) placed over a Medicago-like legume 284 

root geometry representing the susceptible zone. 285 

Several singular changes in auxin transport/metabolism were applied to a cluster of cells roughly 286 

the size of an early nodule primordium (Deinum et al. 2012). Of these changes, a local reduction 287 

of auxin efflux (PIN function) produced a large and fairly homogeneous increase of the auxin 288 

concentration over the whole length of the cluster. In contrast, increased influx (LAX function) 289 

produced a large increase on the shootward or “upstream” (single cell wide) edge of the cluster, 290 

but much less in the remaining cells of the cluster; and locally produced auxin was mostly 291 

transported away. The difference between influx and efflux patterns depended on the polarity of 292 

the PIN proteins within the respective cell files, and disappeared if these cells had equal amounts 293 

of PIN protein located on their apical and basal ends (Deinum 2013).  294 

Interestingly, when local reduction of auxin efflux was triggered by a diffusive signal of 295 

epidermal origin - in response to a hypothetical rhizobial encounter - the strongest auxin 296 

accumulation occurred in the pericycle and inner cortex (Deinum et al., 2016). These are the sites 297 
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of the first cell divisions in indeterminate nodules forming on M. truncatula (Xiao et al., 2014). 298 

These patterns appeared within the first hour of simulated time. 299 

The conclusion that most likely a local reduction of auxin efflux underlies the earliest auxin 300 

accumulation during nodulation correlates closely with the range of observations on changes in 301 

auxin transport during the early stages of nodulation (Mathesius et al., 1998b; Boot et al., 1999; 302 

Wasson et al., 2006). The strong single-edge pattern produced in a model of increased influx, on 303 

the other hand, contradicts the observations of auxin responses in a group of cells in 304 

experimental studies (Takanashi et al., 2011; Ng et al., 2015). 305 

These modeling results, however, do not exclude a contribution of influx or production in 306 

combination with other changes in auxin transport, they only seem insufficient in isolation. 307 

Indeed, primordium-wide expression of MtLAX2 has been observed at 16 hours post inoculation, 308 

and later in the meristem of Medicago nodules (Roy et al. 2017). Additionally, increased 309 

expression of the auxin biosynthesis enzyme LjTAR (tryptophan aminotransferase-related) has 310 

been observed in developing L. japonicus primordia, peaking at 3 days post inoculation (Suzaki 311 

et al. 2012), while no increased PsTAR expression was found in P. sativum nodule primordia 312 

(Dolgikh et al. 2017; measured from 5 dpi). Future experiments with mutants defective in auxin 313 

synthesis would help to elucidate the extent to which local auxin synthesis is required for auxin 314 

localisation and subsequent development of nodule primordia of either type. 315 

In conclusion, it is likely that multiple changes in auxin transport and metabolism occur during 316 

nodule development, the first of which may be a temporal reduction of auxin efflux, at least in 317 

indeterminate nodules. It remains unclear, however, whether auxin transport inhibition can also 318 

produce the observed auxin accumulation in the outer cortex for determinate nodules. In the 319 

model, the lateral position of the induced auxin maximum could be tuned by altering the amount 320 

of outward lateral PINs in the cortical layers, which strongly affected the auxin availability in the 321 

outer cortical layers and epidermis (Deinum et al., 2012; 2016). Thus future experiments should 322 

be aimed at testing whether this lateral shift in PIN protein localization can explain the observed 323 

auxin responses in the outer cortex of determinate nodule forming species. 324 

Thus far, our understanding of the mechanism by which auxin transport is controlled in legumes 325 

is fragmented, partly due to our insufficient knowledge of auxin transporter biology in legumes. 326 



  15 

In the following section, we will discuss experimental evidence for the contribution of auxin 327 

export and import, auxin metabolism and auxin signalling in defining the auxin maximum in 328 

nodule primordia. 329 

 330 

Auxin transport, auxin metabolism and auxin response contribute to auxin maxima formed 331 

in nodule primordia 332 

Within 24 h of rhizobia infection, the auxin transport capacity below the initiation site of 333 

indeterminate nodules is reduced (Mathesius et al., 1998b; Wasson et al., 2006). Moreover, it has 334 

been demonstrated that in V. sativa application of specific Nod factors reduced auxin transport 335 

with 4 h, with a stronger reduction after 24 to 48 h (Boot et al., 1999). These observations 336 

support the mathematical modelling that predicted auxin export inhibition to be the strongest 337 

driver of auxin accumulation. In contrast, auxin transport capacity in L. japonicus roots, forming 338 

determinate nodules, increases in response to inoculation with a compatible symbiont (i.e. 339 

Mesorhizobium loti) within 48 h (Pacios-Bras et al., 2003). The formation of pseudonodules 340 

through auxin transport inhibitors NPA and TIBA has been reported for numerous species 341 

forming indeterminate nodules, e.g. Afghanistan pea (P. sativum; Scheres et al., 1992), white 342 

sweetclover (Melilotus albus; Wu et al., 1996), alfalfa (M. sativa; Hirsch et al., 1989) and M. 343 

truncatula (Rightmyer and Long, 2011). However, induction of pseudonodules by application of 344 

auxin transport inhibitors have only been reported for one single species forming determinate 345 

nodules (i.e. Macroptilium atropurpureum; Relić et al., 1993), unfortunately without a thorough 346 

description of the structures. Previous reports of pseudonodules formed in response to the auxin 347 

transport inhibitor 2-bromo-3,5-dichlorobenzoic acid in some determinate nodule forming 348 

species were described as modified lateral roots of mainly pericycle origin and with central 349 

vasculature, and thus not true pseudonodules (Allen et al., 1953). Despite the difference in the 350 

apparent requirement for auxin transport control, both legumes forming indeterminate and 351 

determinate nodules show elevated auxin response in the cortical cells during the formation of a 352 

nodule primordium (van Noorden et al., 2007; Takanashi et al., 2011; Suzaki et al., 2012; Turner 353 

et al., 2013). This suggests that changes in acropetal auxin export are insufficient to explain the 354 

similarities in the auxin response maximum observed in indeterminate vs. determinate nodule 355 
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types.  356 

It is likely that local auxin accumulation within the cortex is not just regulated by auxin efflux, 357 

but that auxin influx also plays a role. This is supported by in situ hybridisation of MtLAX2 358 

(homolog of AtAUX1) auxin influx carriers during the early stages of nodule primordium 359 

formation (de Billy et al., 2001). MtLAX2 promoter activity has been demonstrated throughout 360 

early nodule primordia (at 16 hours post induction) as well as at specific locations in maturing 361 

and mature nodules (Roy et al., 2017). Mutants defective in MtLAX2 exhibited reduced auxin 362 

responses and fewer nodules. In line with this, application of auxin influx inhibitors to wild-type 363 

roots similarly reduced nodule numbers (Roy et al., 2017). This suggests that increased auxin 364 

influx capacity increases the effectiveness of local auxin accumulation and thus improves 365 

nodulation success (Deinum, 2013). Whether this happens through a generic feedback of auxin 366 

concentration on AUX1/LAX production - similar to the auxin/AtAUX1 feedback in A. thaliana 367 

(Laskowski et al. 2008) - or whether MtLAX2 is specifically induced as part of the nodulation 368 

program, remains to be investigated.  369 

In addition to auxin transport, control of auxin metabolism and auxin responses also contribute to 370 

nodule initiation. Proteome and transcriptome studies suggest that responses to S. meliloti or 371 

their Nod factors and auxin application to the roots of M. truncatula overlap extensively at the 372 

early stages (van Noorden et al., 2007; Herrbach et al., 2017) and increased auxin (indole-3-373 

acetic acid) content has been measured at the site of nodule initiation (Ng et al., 2015). Support 374 

for local auxin biosynthesis can be found in the increased expression of auxin biosynthesis genes 375 

during nodulation in L. japonicus (Suzaki et al., 2012). Campanella et al. (2008) showed an 376 

increased expression of several auxin conjugate hydrolase genes in response to S. meliloti 377 

infection, suggesting that the release of auxin from its conjugated form could be a mechanism 378 

contributing to increasing auxin concentration during nodulation. There is also indirect evidence 379 

that auxin breakdown in dividing cortical cells could be reduced by flavonoids accumulating in 380 

the same cells (Mathesius, 2001). However, under the (Arabidopsis-derived) assumption of 381 

continuous polar PIN activity in the whole cortex, local auxin biosynthesis or reduced 382 

breakdown would have to be accompanied by a reduction in auxin efflux at the same location to 383 

be effective. If not, the produced auxin is likely transported away (Deinum, 2013). This would 384 

make it unlikely that local auxin biosynthesis alone is sufficient to induce cell division and 385 
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indicates that modification of the auxin transport machinery could be required for the 386 

establishment of such an auxin maximum. Rhizobia-synthesized auxins also positively affect 387 

nodulation, as an IAA-overproducing strain of S. meliloti increased nodule numbers in M. 388 

truncatula (Pii et al., 2007). However, since rhizobia are not located in the inner cortex at the 389 

time that the first auxin maximum is observed, it is unlikely that this potential source of auxin 390 

contributes to generating the auxin maximum in the nodule primordium. Overall, there is little 391 

evidence to support host or symbiont auxin biosynthesis as a main strategy for increasing auxin 392 

concentrations early during nodulation.  393 

An additional mechanism to increase auxin responses in the cortex is to increase the sensitivity 394 

of its perception. One way of regulating auxin responses in Arabidopsis is through several 395 

miRNAs that target auxin receptors and auxin response genes (e.g., Weijers and Wagner, 2016; 396 

Couzigou and Combier, 2016). Similar miRNAs are expressed in legume roots and at various 397 

stages of nodulation and have effects on indeterminate and determinate nodule numbers (e.g., 398 

Subramanian et al., 2008; Turner et al., 2013; Bustos-Sanmamed et al., 2013; Wang et al., 399 

2015b; Cai et al., 2017; Table 1). It has been hypothesized in these studies that these miRNAs 400 

play a role in reducing auxin responses, and this may be relevant for controlling auxin responses 401 

in the growing nodule primordium (Turner et al., 2013; Nizampatnam et al., 2015). However, 402 

these data should currently be interpreted with some caution. Firstly, the effects of these 403 

miRNAs on auxin signalling are mostly based on direct extrapolation of their effects on specific 404 

target genes in Arabidopsis, and this has not always been confirmed in legumes. Secondly, many 405 

studies, although not all (Nizampatnam et al., 2015), have used ectopic overexpression of 406 

miRNAs, which may lead to expression of miRNAs and subsequent auxin responses in the cell 407 

types that do not usually divide, making interpretation difficult. Thirdly, a single miRNA may 408 

affect sensitivities to multiple plant hormones. For example, overexpression of miRNA160 in 409 

soybean reportedly resulted in auxin hypersensitivity as well as cytokinin hyposensitivity 410 

(Turner et al., 2013), and nodule numbers in these plants could be rescued by cytokinin addition 411 

(Nizampatnam et al., 2015). Currently, evidence of the involvement of miRNAs playing a role at 412 

the very earliest stages of nodule initiation that could explain an effect on the creation of an 413 

auxin maximum in the cortex is lacking.  414 

 415 
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Which signals modulate auxin transport during nodulation? 416 

Nod factor signalling modifies auxin transport during the initiation of indeterminate and 417 

determinate nodules (e.g. Wasson et al., 2006; Pacios-Bras et al., 2003). However, it is unlikely 418 

that it controls the auxin transport machinery directly. Nod factors are produced at the epidermis 419 

by infecting bacteria, and have been demonstrated to be highly immobile (Goedhart et al., 2003). 420 

Thus, a secondary signal is required that is induced by epidermal Nod factor signalling, but acts 421 

in the inner cortex. One possible candidate for endogenous auxin transport modulation are the 422 

flavonoids (Peer and Murphy, 2007). Flavonoids are a large group of secondary metabolites 423 

derived from the phenylpropanoid pathway. Flavonoids accumulate in dividing cortical cells of 424 

legumes forming both nodule types (Mathesius et al., 1998a) and flavonoid synthesis genes are 425 

induced at sites of nodule initiation (Chen et al., 2015). In M. truncatula, forming indeterminate 426 

nodules, silencing of the first dedicated enzyme towards flavonoid biosynthesis -CHALCONE 427 

SYNTHASE-, increased auxin transport rates, prevented inhibition of auxin transport in response 428 

to S. meliloti, and prevented nodule formation (Wasson et al., 2006). External application of 429 

specific flavonoids to M. truncatula roots could inhibit auxin transport similar to rhizobia (Ng et 430 

al., 2015). How flavonoids function to reduce auxin transport in this process is unknown. 431 

Analysis of MtPIN genes expression in flavonoid-deficient M. truncatula roots showed no 432 

changes compared to control roots (Wasson et al, 2006), suggesting that any effects involving 433 

PIN-mediated auxin transport should occur post-transcriptionally. The fact that nodule induction 434 

by application of auxin transport inhibitors was never observed in most determinate nodule type 435 

plants suggest that flavonoids might have a different function here. In soybean, which forms 436 

determinate nodules, silencing of isoflavone synthase reduced nodule numbers (Subramanian et 437 

al., 2006). It has been demonstrated that (iso)flavonoids induce rhizobial Nod genes and 438 

subsequent Nod factor biosynthesis (e.g. Kosslak et al., 1987), and in the soybean-439 

Bradyrhizobium symbiosis this seems to be the case (Subramanian et al., 2006; 2007). 440 

Interestingly though, increased auxin responsiveness and transport was observed in these knock-441 

down lines as well (Subramanian et al., 2006), indicating that flavonoids could have a function in 442 

controlling auxin transport in soybean. However, how this is related to nodule initiation is 443 

unknown. Detailed genetic analysis of the flavonoid pathway in different legume species could 444 

shed light on this matter. 445 
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Another option for controlling auxin transport during nodule initiation can be found in 446 

strigolactones. These plant hormones are known to affect PIN protein levels (Bennett et al., 447 

2006; Crawford et al., 2010; Kohlen et al., 2011; Ruyter-Spira et al., 2011), but might also act 448 

independent of auxin transport, at least for shoot branching (Brewer et al., 2015). Increased 449 

numbers of nodules have been reported after application of the synthetic strigolactone GR24 to 450 

M. sativa roots (Soto et al., 2010). In M. truncatula, low concentrations of GR24 increased 451 

nodule number slightly, whereas higher concentrations had a reducing effect (de Cuyper et al., 452 

2015). Loss-of-function mutations or RNAi knockdown of strigolactone biosynthesis genes 453 

affect nodule numbers in legumes forming both indeterminate (P. sativum) and determinate (L. 454 

japonicus) nodules (Foo and Davies, 2011; Liu et al., 2013). In M. truncatula, the strigolactone 455 

biosynthesis gene DWARF27 is highly upregulated upon Nod factor application within 3 hours 456 

after inoculation (van Zeijl et al., 2015a), and a clear link between D27 expression and the Nod 457 

factor signalling pathway was demonstrated in the nsp1 nsp2 (nodulation-signaling pathway1 458 

and 2) mutants (Liu et al., 2011). In addition, it was demonstrated that expression of the 459 

strigolactone biosynthesis gene MtCCD8 (CAROTENOID CLEAVING DEOXYGENASE8) is 460 

upregulated at the site of primordia formation (Breakspear et al., 2014).  However, no increase in 461 

strigolactone levels during early signalling was ever reported. Notably, however, the 462 

Psrms1/ccd8 (ramosus1) mutant contains almost no strigolactones (Gomez-Roldan et al., 2008), 463 

but produces only ~40% less nodules than wild type (Foo and Davies, 2011). This suggests that 464 

if strigolactones are involved in regulating auxin transport upon Nod factor perception they are 465 

not the only factor involved in this. 466 

Other plant hormones like cytokinins and ethylene play a role in nodule initiation and there is 467 

strong evidence that they function in crosstalk with auxin. The gain-of-function mutation in the 468 

L. japonicus LHK1 (LOTUS HISTIDINE KINASE1) cytokinin receptor produces dividing 469 

cortical cells and nodules in the absence of rhizobia. These nodules have a very similar 470 

developmental pattern as rhizobia-induced nodules (Tirichine et al., 2007; Suzaki et al., 2012). 471 

Similar spontaneous nodules are produced from the gain-of-function mutation in the orthologous 472 

CRE1 (CYTOKININ RESPONSE1) receptor in M. truncatula (Ovchinnikova et al., 2011). 473 

External application of cytokinin induces empty nodules in alfalfa (M. sativa; Cooper and Long, 474 

1994), white clover (Trifolium repens; Mathesius et al., 2000), siratro (M. atropurpureum; Relić 475 
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et al., 1993), Aeschynomene spp. (Podlevšáková et al., 2013), L. japonicus (Heckman, et al., 476 

2011) and in the non-legume alder (Alnus glutinosa; Rodriguez Barrueco and Bermudez de 477 

Castro, 1973). These cytokinin responses have been linked to cortical auxin responses. For 478 

example, exogenous cytokinin treatment to white clover elicited auxin responses in associated 479 

divided cortical cells (Mathesius et al., 2000). In L. japonicus, cortical auxin responses were 480 

observed in the snf2 (spontaneous nodule formation 2) mutant, which harbours an autoactive 481 

LHK1 cytokinin receptor (Suzaki et al., 2012). In M. truncatula, cytokinin signalling via the 482 

CRE1 receptor is required for the onset of auxin response in the inner cortical cells during nodule 483 

initiation (Ng et al., 2015). This signal precedes the auxin maximum (Xiao et al., 2014; van Zeijl 484 

et al., 2015b), and could be mediated by the induction of flavonoids that inhibit auxin transport 485 

(Ng et al., 2015). During the early cell divisions of the inner cortex in M. truncatula, auxin and 486 

cytokinin response maxima overlap (Plet et al., 2011; van Noorden et al., 2007). However, it is 487 

possible that cytokinins are initially produced in the epidermis and translocated inward towards 488 

the cortex as several genes belonging to putative cytokinin transport facilitator family are 489 

upregulated in the epidermis upon Nod factor application (Jardinaud et al., 2016). At later stages 490 

of nodule development the localization of auxin and cytokinin responses only partially overlaps.  491 

Auxin responses localize to vascular cells and the entire M. truncatula nodule meristem (Table 492 

1), whereas cytokinin responses were observed in the nodule meristem for type-A cytokinin 493 

response regulators and throughout the nodule in type-B cytokinin response regulators (Plet et 494 

al., 2011; Franssen et al., 2015).   495 

Ethylene is regarded as a negative regulator of nodulation. Evidence for this can be found in the 496 

fact that in wild-type plants, nodules are preferentially formed opposite protoxylem poles, a 497 

position where ethylene biosynthesis is assumed to be low (Heidstra et al., 1997; Penmetsa and 498 

Cook, 1997). Moreover, ethylene-insensitive plants show massive numbers of nodules when 499 

inoculated with rhizobia (Penmetsa and Cook, 1997; Lohar et al., 2009). In addition, ethylene 500 

inhibits the calcium spiking that otherwise follows LCO perception, and the ethylene-insensitive 501 

sickle (skl/Mtein2) mutant forms more infection threads compared to wild type (Oldroyd et al., 502 

2001; Penmetsa et al., 2008). Application of the ethylene precursor ACC (aminocyclopropane 503 

carboxylic acid) to the roots of M. truncatula reduced auxin transport (Prayitno et al., 2006). 504 

Both the effect of ACC and rhizobia on shoot-to-root auxin transport were abolished in the skl 505 
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mutant (Prayitno et al., 2006). The skl mutant also showed increased MtPIN1 and MtPIN2 506 

expression at the site of nodule initiation. This suggests that ethylene signalling is required for 507 

the correct control of auxin transport during nodule initiation. This conclusion is supported by a 508 

significant reduction of pseudonodule formation induced by auxin transport inhibitors in the skl 509 

mutant (Rightmyer and Long, 2011). A similar control of auxin transport by ethylene has 510 

previously been described in Arabidopsis (e.g. Růžička et al., 2007).  511 

Ethylene also plays a role in controlling nodule numbers in species forming determinate nodules 512 

such as L. japonicus and M. atropurpureum, to the same extent as in M. truncatula and M. sativa 513 

(Nukui et al., 2000; Lohar et al., 2009). Some authors mention soybean as an exception (e.g., 514 

Nukui et al., 2000, Schmidt et al., 1999), but reports of strong hypernodulation in ethylene 515 

insensitive soybean genotypes exist just as well (Caba et al., 1999). Further conflicting reports 516 

for species forming determinate nodules may be explained by multiple copies of the EIN2 gene 517 

in L. japonicus (Miyata et al., 2013) and/or large redundancies among ethylene receptors. The 518 

latter is well illustrated by Arabidopsis, where often quadruple or quintuple mutants of ethylene 519 

receptors are required to induce developmental phenotypes (Hua and Meyerowitz, 1998). There 520 

are no reports yet that ethylene reduces shoot-to-root auxin transport in species forming 521 

determinate nodules. Such measurements would be interesting in the light of the emerging 522 

picture that the importance of shoot-to-root auxin transport differs between indeterminate and  523 

determinate nodules. 524 

In summary, several plant hormones and signals have been reported to interact with auxin 525 

transport during nodule initiations (Figure 3) and others will have to be investigated in the future. 526 

While cytokinin signaling appears to be essential for auxin transport control in both 527 

indeterminate and determinate nodulation, a role for flavonoids in controlling auxin transport has 528 

only been demonstrated for indeterminate nodulation. For strigolactones, influences on auxin 529 

transport and nodule number have been established in isolation, but how and if these hormones 530 

influence auxin transport, metabolism or signaling during nodulation remains to be shown. 531 

Ethylene signaling is required for correct auxin transport control during indeterminate 532 

nodulation, but its role in controlling auxin during determinate nodulation will require further 533 

investigation. 534 
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  535 

A role for auxin transport in the autoregulation of nodulation 536 

Whether nodules are initiated in response to compatible rhizobia largely depends on several 537 

environmental factors. A sophisticated system - called autoregulation of nodulation (AON) - 538 

systemically regulates nodule numbers on the root in response to signals derived from the shoot. 539 

AON is co-regulated by Nod factors as well as nitrate (Reid et al., 2011b) and some evidence 540 

suggests a role for auxin in this process (van Noorden et al., 2006; Suzaki et al., 2012). 541 

During AON, small regulatory peptides of the CLE (CLAVATA3/endosperm-surrounding 542 

region-related) family are induced. These CLE peptides bind to leucine-rich repeat receptor-like 543 

kinases (LRR-RLKs) and subsequently inhibit further nodules from forming. In soybean, nitrate 544 

induces the peptide GmNIC1, which is predicted to bind locally to the GmNARK (Nodulation 545 

Autoregulation Receptor Kinase; Searle et al., 2003; Reid et al., 2011a) receptor to inhibit nodule 546 

initiation. The same receptor is expressed in the shoot where it is hypothesized to bind GmRIC1, 547 

a second CLE peptide. This triggers the movement of a shoot-derived, nodule-inhibiting signal to 548 

the root (Reid et al., 2011a; Okamoto et al., 2013). In M. truncatula, Nod factors induce 549 

MtCLE12 and MtCLE13, which negatively regulate nodule numbers via the MtSUNN 550 

(SUPERNUMERARY NODULES) receptor in the shoot (Schnabel et al., 2005; Mortier et al., 551 

2010). An equivalent signalling pathway has been identified in L. japonicus via the receptor 552 

LjHAR1, which binds CLE-RS peptides (Nishimura et al., 2002; Okamoto et al., 2009; Okamoto 553 

et al., 2013). 554 

While the shoot-derived inhibitor has not been identified, both auxin and cytokinin movement 555 

from the shoot to the root have been implicated in AON. In L. japonicus, inoculation of roots 556 

with rhizobia led to increased translocation of cytokinin from the shoot to the root in an 557 

LjHAR1-dependent manner (Sasaki et al., 2014). It is possible that this source of cytokinin 558 

interacts with auxin signalling in the root, as the increased number of nodules in the Ljhar1 559 

mutant were accompanied by an increased area of auxin response (Suzaki et al., 2012). In M. 560 

truncatula, inoculation of roots with rhizobia led to a decrease of shoot-to-root auxin transport, 561 

and this was dependent on MtSUNN (van Noorden et al., 2006). In addition, nodule numbers in 562 

the Mtsunn mutant are significantly reduced by application of an auxin transport inhibitor at the 563 
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shoot/root junction. This suggests a positive correlation between the amount of shoot-to-root 564 

auxin transport and the number of nodules being formed (van Noorden et al., 2006). Similar to 565 

the increased zone of auxin response in the Ljhar1 mutant, Mtsunn mutants exhibited increased 566 

auxin (IAA) concentration at the root zone responding to rhizobia (van Noorden et al., 2006). 567 

It has been demonstrated in M. truncatula that the presence of an external nitrogen source affects 568 

root auxin responses during nodulation. It led to an elevated and diffuse auxin response in the 569 

whole cortex following rhizobia infection, preventing a local accumulation of auxin typical for 570 

an incipient nodule primordium (van Noorden et al., 2016). However, nitrate did not prevent the 571 

inhibition of auxin transport by Nod factors in vetch (Boot et al., 1999). It is possible, though, 572 

that experiments with rhizobia in the presence of nitrate are affected by the reduction in Nod-573 

gene inducing flavonoids (Coronado et al., 1995). At a whole plant level, the presence of nitrate 574 

at levels inhibiting nodulation altered shoot-to-root auxin transport in M. truncatula, and this was 575 

dependent on the SUNN receptor (Jin et al., 2012). Collectively these studies suggest that AON 576 

control of nodule numbers involves changes in the concentration, transport and response to auxin 577 

in the root zone susceptible to rhizobia. However, the precise mechanisms underlying this 578 

involvement are still poorly understood. 579 

  580 

Conclusion: Indeterminate and determinate nodules - minor variations on the same 581 

developmental program, or fundamentally different?  582 

The Nod factor signalling pathways for the interaction between legumes and rhizobia are shared 583 

between indeterminate and determinate nodule formation, as well as most known plant signalling 584 

components required for the induction of nodule organogenesis. However, so far it remains 585 

unknown what determines the location of the first cortical cell divisions. In both nodule types, 586 

the location of the first cell divisions is accompanied by auxin responses (e.g. van Noorden et al., 587 

2007; Takanashi et al., 2011; Figure 1; Table 1). In addition, there is evidence of increased auxin 588 

synthesis, content or release in both nodule types (Campanella et al., 2008; Suzaki et al., 2012; 589 

Ng et al., 2015). Similarly, cytokinin responses are found in early dividing cells of nodule 590 

primordia in both nodule types (e.g. Plet et al., 2011; Held et al., 2014), and it has been shown 591 

that cytokinin responses occur upstream of auxin responses in those cells (Plet et al., 2011; 592 
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Suzaki et al., 2012; Ng et al., 2015; Figure 3; Table 1). However, the mechanism that induces 593 

these responses at their respective location may differ between indeterminate and determinate 594 

nodules, either by degree or fundamentally. 595 

The modelling derived hypothesis -that differences in the cortical PIN distribution could shift the 596 

radial position of an induced maximum through altered auxin availability (Deinum et al., 2012; 597 

2016)- remains to be verified experimentally. 598 

Alternatively, it may be the case that the mechanism of inducing a local auxin maximum through 599 

auxin transport inhibition is effective for indeterminate nodules only, and other mechanisms for 600 

locally increasing auxin availability and/or the sensitivity of auxin perception are more important 601 

in the formation of determinate nodules. Evidence for this alternative hypothesis falls into two 602 

categories: 1) local auxin transport inhibition can induce pseudonodules in a range of legumes 603 

forming indeterminate nodules, but has only been reported for one species forming determinate 604 

nodules, M. atropurpureum, with marginal description (Relić et al., 1993). 2) Auxin transport 605 

inhibition in response to rhizobia has been measured in legumes forming indeterminate (e.g. 606 

Boot et al., 1999), but not determinate legumes (Pacios-Bras et al., 2003), and a role for 607 

flavonoids in this auxin transport inhibition has also only been clearly demonstrated for 608 

indeterminate nodules. It appears, therefore, that auxin transport inhibition explains auxin 609 

accumulation and subsequent nodule primordium initiation for indeterminate, but not 610 

determinate nodules.  611 

Thus, the main difference between indeterminate and determinate nodules appears to be the 612 

mechanism that different legumes use to achieve the initial buildup of an auxin maximum in 613 

different layers of the cortex. Future investigations will need to be directed at explaining how an 614 

auxin maximum in the outer cortex of legumes forming determinate nodules can be achieved, for 615 

example through lateral auxin transport or through altered auxin synthesis or sensitivity, which 616 

could be regulated by specific miRNAs. It will also be important to compare long distance auxin 617 

transport in supernosulation mutants of indeterminate and determinate nodule-forming species.  618 

Currently, our understanding of auxin signalling in legumes is limited, making experiments to 619 

answer how auxin maxima are formed in both nodule types difficult. For example, many legume 620 

auxin mutants remain uncharacterized, and a very limited number of reporter lines for auxin 621 
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transporters have been described. In addition, few studies have directly compared different 622 

legumes. However, with increasing species-specific molecular and genetic tools at our disposal, 623 

this will improve. The great diversity in root nodule morphologies and development in different 624 

legume species has the potential to become an important resource for fundamental research 625 

questions about plant development. 626 
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Table 1: Comparison of auxin transport, metabolism and response phenotypes during the formation 

of indeterminate and determinate legume nodules. 

  

Process Indeterminate nodules Determinate nodules 

Auxin transport inhibition 

in response to rhizobia 

preceding nodule initiation 

Observed within 24 h of 

inoculation in Medicago 

truncatula and Vicia sativa 

(Wasson et al., 2006; Boot et 

al., 1999). 

No evidence from Lotus 

japonicus (Pacios-Bras et al., 

2003) but untested in other 

species. 

Auxin transport inhibitors 

induce pseudonodules 

Observed in M. sativa (Hirsch 

et al., 1989), M. truncatula 

(Rightmyer and Long 2011), 

Pisum sativum (Scheres et al., 

1992), Melilotus albus (Wu et 

al., 1996). 

Reported in Macroptilium 

atropurpureum but structure not 

analyzed in detail (Relić et al., 

1993) 

Flavonoids required for 

nodulation and auxin 

transport control 

Observed in M. truncatula 

roots lacking the whole 

flavonoid pathway (Wasson et 

al., 2006) 

No evidence that isoflavonoids 

are involved in soybean 

nodulation beyond their role as 

nod gene inducers, but other 

flavonoids remain untested 

(Subramanian et al., 2006; 2007) 

Auxin response in 

proliferating cortical cells  

Observed in inner cortex in M. 

truncatula (van Noorden et 

al., 2007) and Trifolium 

repens (Mathesius et al., 

1998) using GH3::GUS 

reporter 

Observed in middle/outer cortex 

of L. japonicus and Glycine max 

(Turner et al., 2013) using 

GH3::GUS (Takanashi et al., 

2011), DR5::GUS (Turner et al., 

2013), DR5::GFP-NLS (Suzaki 
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et al., 2012) and DR5::tDT 

(Turner et al., 2013) reporters 

Increased auxin content, 

release or synthesis during 

nodulation 

Increased auxin (indole-3-

acetic acid) content at 24 h 

post inoculation in M. 

truncatula (Ng et al., 2015). 

Increase expression of auxin 

conjugate hydrolases in M. 

truncatula (Campanella et al., 

2008) 

Increased auxin synthesis gene 

expression at 3 days post 

inoculation in L. japonicus 

(Suzaki et al., 2012) 

 

Altered auxin signaling in 

roots through microRNAs 

targeting the auxin 

receptor family TIR1/AFB 

Overexpression (OE) of 

miR393 reduced nodule 

numbers in M. truncatula 

(Mao et al., 2013).  

Overexpression (OE) of miR393, 

did not alter nodule numbers in 

G. max (Mao et al., 2013). 

Silencing of miR393, or 

overexpression of GmTIR1 in G. 

max increased nodule numbers 

(Cai et al., 2017). 

Altered auxin signaling in 

roots through microRNAs 

targeting the auxin 

response factor ARF8a/b 

Not tested. miR167 inhibits ARF8a/b during 

nodulation, which enhances 

nodule numbers in G. max 

(Wang et al., 2015b) 

Altered auxin signaling in 

roots through microRNAs 

targeting the auxin 

response family 

ARF10/16/17 

OE of miR160 reduces nodule 

numbers in M. truncatula 

(Bustos-Sanmamed et al., 

2013). 

OE of miR160 enhances auxin 

responsiveness and reduces 

nodule numbers in G. max 

(Turner et al, 2013; Nizapatnam 

et al., 2015). 

Cytokinin signalling The M. truncatula cre1 The L. japonicus snf2 mutant, 
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activates auxin response in 

cortex 

mutant fails to show an auxin 

response in the cortex after 

infection with rhizobia (Ng et 

al., 2015).  

exhibiting constitutive cytokinin 

signalling and spontaneous 

nodule formation, activates an 

auxin response in the cortex  

(Suzaki et al., 2012) 

High auxin 

response/content  in 

vascular tissue of a 

developing and mature 

nodule, while auxin 

response/content in the 

infected nodule zone is 

low 

Observed in M. truncatula 

using the DR5::GUS reporter 

(Franssen et al., 2015; Guan et 

al., 2013), GH3::GUS in T. 

repens (Mathesius et al., 

1998b) and M. truncatula 

(Breakspear et al., 2014), 

SAUR1::GUS (Breakspear et 

al., 2014), and anti-IAA 

antibody (Fedorova et al., 

2005). 

Observed in L. japonicus using 

the GH3::GUS reporter 

(Takanashi et al., 2011) and the 

DR5::GFP-NLS reporter (Suzaki 

et al., 2012) and in soybean using 

the DR5::dTD reporter (Turner et 

al., 2013). 

High auxin 

response/content in 

meristem of a mature 

nodule 

Observed in M. truncatula 

using the DR5::GUS reporter 

(Guan et al., 2013; Franssen et 

al., 2015), GH3::GUS and 

SAUR1::GUS in M. 

truncatula (Breakspear et al., 

2014), and anti-IAA antibody 

(Fedorova et al., 2005) 

Not observed, no nodule 

meristem retained in mature 

nodules. 

Increased auxin response 

or content in roots of 

supernodulating mutants 

Increased auxin content in 

rhizobia-inoculated roots of 

the M. truncatula sunn1 

mutant (van Noorden et al., 

Increased DR5::GFP-NLS 

response observed in L. 

japonicus har1 mutant (Suzaki et 

al., 2012) 
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2006) 

Increased shoot to root 

auxin transport in 

supernodulating mutants 

Observed in M. truncatula 

(van Noorden et al., 2006) 

Not tested. 
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Figure legends: 

 

Figure 1: Indeterminate (A,C) and determinate (B,D) nodules. Position of the first cell divisions 

(A,B), which coincides with a local auxin response. Mature nodule structure (C,D). Blue: cell 

divisions/meristematic tissue. Pink: vascular tissue: root stele and nodule vascular strands. 

Indeterminate nodules (C) maintain an active meristem (I) followed by an infection zone (II), 

transition zone (II-III), fixation zone (III) and, when the nodule gets older, a senescence zone 

(IV). Determinate nodules (D) lack this distinct zonation. When the nodule senesces, the process 

starts from the center of the nodule. Zones after Hirsch, 1992. 

 

Figure 2: Gene trees of A. thaliana (black), M. truncatula (blue), L. japonicus (pink), G. max 

(green) PINs (A) and AUX1/LAXs (B). The trees are depicted as rooted for readability only. 

Numbers along branches represent bootstrap values of 100 resampling trees. Scale bars indicate 

substitutions per site. Trees were constructed based on MAFFT multiple sequence alignments 

(Katoh et al., 2002) using the FastTree 2.1.5 algorithm, both using default settings of Geneious 

9.0.4 (alignment: algorithm: default; scoring matrix: BLOSUM62; gap open penalty: 1.53; offset 

value 0.123).  

 

Figure 3: Model for the involvement of auxin in local and systemic regulation of nodulation 

based on experimental evidence. Dashed lines/box outlines indicate that a feature has only been 

convincingly shown in legumes forming indeterminate nodules. Solid lines indicate features that 

play a role for both nodules types. The major root events are sorted in chronological order, 

insofar as known, on top of the large gray arrow. Grafting experiments have demonstrated that a 

shoot derived inhibiting mechanism is present in both legume types. For determinate nodules, the 

nature of this inhibitor as well as its exact point of action remain elusive, and for indeterminate 

nodules it is unclear whether there is an additional signal apart from reduced auxin loading. 

Therefore, the respective arrows are drawn in grey. Ethylene probably can inhibit nodulation 

processes at multiple stages.  
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