
ON STRONG HOMOTOPY FOR QUASI-SCHEMOIDS

KATSUHIKO KURIBAYASHI

Abstract. A quasi-schemoid is a small category with a particular partition of the set
of morphisms. We define a homotopy relation on the category of quasi-schemoids and
study its fundamental properties. The homotopy set of self-homotopy equivalences on a
quasi-schemoid is used as a homotopy invariant in the study. The main theorem enables
us to deduce that the homotopy invariant for the quasi-schemoid induced by a finite
group is isomorphic to the automorphism group of the given group.

1. Introduction

Let Cat be the 2-category of small categories. Hoff [6] and Lee [11] have introduced a
notion of strong homotopy on Cat using 2-morphisms; see also [7, 9, 12]. Thus if the
objects we investigate have the structure of small categories, we may develop homotopy
theory for them with the underlying small categories.

Association schemes play crucial roles in the study of algebraic combinatorial theory,
design and coding theory; see for example [13] and references contained therein. Very
recently, such combinatorial objects were used in investigating continuous-time quantum
walks from a mathematical perspective; see [1, 2]. This motivates us to consider their
classification problem. Though it is important to classify such subjects in the strict
sense [4], namely up to isomorphism, one might make a rough classification of association
schemes relying on abstract homotopy theory.

Association schemes can be regarded as complete graphs, and hence objects in Cat by
considering each edge to be an isomorphism and its inverse. Therefore, the existence of an
initial object allows us to deduce that every association scheme is contractible in the sense
of strong homotopy. In fact, each association scheme is equivalent to the trivial category
as a category. Thus we need an appropriate category instead of Cat in which to develop
meaningful homotopy theory for combinatorial objects such as association schemes.

Matsuo and the author [8] have proposed the notion of quasi-schemoids generalizing
that of association schemes from a small categorical point of view. Roughly speaking,
the new object is indeed a small category with suitable coloring for morphisms. In this
paper, we define a homotopy relation on the category qASmd of quasi-schemoids extending
that due to Hoff, Lee and Minian, and study the fundamental properties of homotopy.
In particular, the group (of homotopy classes) of self-homotopy equivalences on a quasi-
schemoid is investigated.
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An important point here is that qASmd admits a 2-category structure under which the
category Cat is embedded into the category qASmd as a 2-category; see Theorem 3.9 below.
Thus one might expect a relevant notion of a homotopy group for a quasi-schemoid, as
in [7], and an application of categorical matrix Toda brackets due to Hardie, Kamps and
Marcum [5] to our category qASmd. As for homological algebra on schemoids, in order
to develop categorical representation theory, we may consider the Bose-Mesner algebra
introduced in [8, Section 2] and an appropriate functor category with a quasi-schemoid
and an abelian category as source and target, respectively; see [8, Sections 5 and 6] for
first steps in this direction. These topics will be addressed in subsequent work.

Though association schemoids and their category ASmd are also introduced in [8], we
do not develop homotopy theory in ASmd in this paper; see the Appendix.

This manuscript is organized as follows. In Section 2, we recall the definition of a
quasi-schemoid with examples. Section 3 explains a homotopy relation which we use in
the category of quasi-schenoids. Section 4 is devoted to describing rigidity properties
of homotopy for association schemes and groupoids. In particular, our main theorem
(Theorem 4.7) asserts that the group of self-homotopy equivalences on the quasi-schemoid
arising from a groupoid includes the group of autofunctors on the given groupoid. It turns
out that the group of self-homotopy equivalences on a finite group is isomorphic to the
automorphism group of the given group.

2. A brief review of quasi-schemoids

We begin by recalling the definition of an association scheme. Let X be a finite set and
S a partition of the Cartesian square X × X, namely a subset of the power set 2X×X

with X ×X = qσ∈Sσ, which contains the subset 1X := {(x, x) | x ∈ X} as an element.
Assume further that for each g ∈ S, the subset g∗ := {(y, x) | (x, y) ∈ g} is in S. Then
the pair (X,S) is called an association scheme if for all e, f, g ∈ S, there exists an integer
pgef such that for any (x, z) ∈ g,

pgef = ]{y ∈ X | (x, y) ∈ e and (y, z) ∈ f}.

Observe that pgef is independent of the choice of (x, z) ∈ g.

Let G be a finite group. Define a subset Gf of G × G for f ∈ G by Gf := {(k, l) |
k−1l = f}. Then we have an association scheme S(G) = (G, [G]), where [G] = {Gf}f∈G.
Moreover, by sending a group G to the quasi-schemoid S(G), we can define a functor S( )
from the category Gr of finite groups to the category AS of association schemes in the
sense of Hanaki [3]; see also [15, Section 5.5].

We here recall the definition of a quasi-schemoid, which is a categorical counterpart
of an association scheme.

2.1. Definition. ([8, Definition 2.1]) Let C be a small category. Let S be a partition of
the set mor(C) of all morphisms in C. We call the pair (C, S) a quasi-schemoid if the
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set S satisfies the condition that for a triple σ, τ, µ ∈ S and for any morphisms f , g in µ,
as a set

(πµστ )
−1(f) ∼= (πµστ )

−1(g),

where πµστ : π−1
στ (µ) → µ denotes the restriction of the concatenation map πστ : σ×ob(C)τ :=

{(f, g) ∈ σ × τ | s(f) = t(g)} → mor(C).

We denote by pµστ the cardinality of the set (πµστ )
−1(f).

For an association scheme (X,S), we define a quasi-schemoid (X,S) by the pair (C, V )
for which ob(C) = X, HomC(y, x) = {(x, y)} ⊂ X ×X and V = S, where the composite
of morphisms (z, x) and (x, y) is defined by (z, x) ◦ (x, y) = (z, y).

For a groupoid H, we have a quasi-schemoid S̃(H) = (H̃, S) , where ob(H̃) = mor(H)
and

Hom
eH(g, h) =

{
{(h, g)} if t(h) = t(g)

∅ otherwise.

The partition S = {Gf}f∈mor(H) is defined by Gf = {(k, l) | k−1l = f}. We refer the reader
to [8, Section 2] for more examples of quasi-schemoids.

Let (C, S) and (E , S ′) be quasi-schemoids. It is readily seen that (C × E , S × S ′) is a
quasi-schemoid, where S × S ′ = {σ × τ | σ ∈ S, τ ∈ S ′} ⊂ mor(C) ×mor(E). In what
follows, we write (C, S) × (E , S ′) for the product.

2.2. Definition. Let (C, S) and (E , S ′) be quasi-schemoids. A functor F : C → E is a
morphism of quasi-schemoids if for any σ in S, F (σ) ⊂ τ for some τ in S ′. We then
write F : (C, S) → (E , S ′) for the morphism.

We denote by qASmd the category of quasi-schemoids and their morphisms. Let C be
a small category and K(C) = (C, S) the discrete quasi-schemoid associated with C; that
is, the partition S is defined by S = {{f}}f∈mor(C). By assigning the quasi-schemoid K(C)
to a small category C, we can define a functor K from qASmd to Cat. Thus we have a
pair of adjoints K : Cat

// qASmd : Uoo in which U is the forgetful functor and the right
adjoint to K. It is remarkable that the functor K is a fully faithful embedding; see [8,
Remark 3.1, Diagram (6.1)].

Let Gpd be the category of groupoids. Recall the quasi-schemoids S̃(H) and (X,S)

mentioned above. Then we define functors S̃( ) : Gpd → qASmd and  : AS → qASmd by

sending a groupoid H and an association scheme (X,S) to S̃(H) and (X,S), respectively.
With such functors, we obtain a commutative diagram of categories

(2.1) Gpd
eS( )

// qASmd
U //

Cat,
K

oo

Gr

ı

OO

S( )
// AS



OO

where ı : Gr → Gpd is the natural fully faithful embedding; see [8, Sections 2 and 3] for

more detail. Observe that the composite U ◦ S̃( ) is not the usual embedding from Gpd
to Cat.
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The homotopy category of Cat in the sense of Thomason is equivalent to that of
topological spaces [10, 14]. Moreover, a result of [8, Theorem 3.2] asserts that the functors

S( ) and S̃( ) are faithful and that  is a fully faithful embedding. Thus quasi-schemoids
can be regarded as generalized spaces and as generalized groups in some sense.

3. Strong homotopy

We extend the notion of strong homotopy in Cat in the sense of Hoff [7] and Lee [11] to
that in qASmd. Let [1] be the category consisting of two objects 0 and 1 and only one
non-trivial morphism u : 0 → 1. We write I for a discrete schemoid of the form K([1]).

3.1. Definition. Let F,G : (C, S) → (D, S ′) be morphisms between the schemoids (C, S)
and (D, S ′) in qASmd. We write H : F ⇒ G if H is a morphism from (C, S) × I to
(D, S ′) in qASmd with H ◦ ε0 = F and H ◦ ε1 = G. Here (C, S)× I denotes the product of
the quasi-schemoids mentioned in Section 2 and εi : (C, S) → (C, S) × I is the morphism
of quasi-schemoids defined by εi(a) = (a, i) for an object a in C and εi(f) = (f, 1i) for a
morphism f in C. We call the morphism H above a homotopy from F to G.

A morphism F is equivalent to G, denoted F ∼ G, if there exists a homotopy from
F to G or that from G to F .

3.2. Remark. Suppose that there exists a homotopy H : (C, S) × I → (D, S ′) from F to
G. Then for any morphism f ∈ mor(C), we have a commutative diagram

H(s(f), 0)
H(1s(f),u)

//

H(f,u)

((PPPPPPPPPPPPP

F (f)=H(f,10)

��

H(s(f), 1)

H(f,11)=G(f)

��

H(t(f), 0)
H(1t(f),u)

// H(s(f), 1)

in the underlying category D. Here we use the same notation as in Definition 3.1.

Since H is a morphism of quasi-schemoids, it follows that H(g, u) and H(h, u) are
in the same element of S ′ if g and h are in the same element of S. We observe that,
in each square for a given morphism f , morphisms H(1s(f), u) and H(1t(f), u) are in the
same element of S ′ if 1s(f) and 1t(f) are in the same element of S. In fact, the condition
is satisfied if the quasi-schemoid comes from an association scheme. As for the diagonal
arrows, in order to show the well-definedness of the homotopy H in qASmd, we need to
verify that the arrow H(f, u) in a square and H(g, u) in other squares are in the same
element of S ′ if g is in the same element of S as that containing f .

In what follows, we will define a homotopy assigning objects and morphisms in D to
those in C × I as in the square above.

Let F : (C, S) → (D, S ′) be a morphism of quasi-schemoids. Then for any f : i→ j in
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mor(C), we have a commutative diagram

F (i)
F (1i)

//

F (f)

$$JJJ
JJJ

JJJ
J

F (f)

��

F (i)

F (f)

��

F (j)
F (1j)

// F (j)

in the underlying category D. If 1i and 1j are in the same element of S, F (1i) and F (1j)
are in the same element of S ′. The diagram gives rise to a homotopy from F to itself.

3.3. Definition. Let (C, S) and (D, S ′) be a quasi-schemoids. For morphisms F,G :
(C, S) → (D, S ′), F is homotopic to G, denoted F ' G, if there exists a finite sequence
of morphisms F = F0, F1, ..., Fn = G such that Fk ∼ Fk+1 for any k = 0, ..., n. We say that
(C, S) is homotopy equivalent to (D, S ′) if there exist morphisms F : (C, S) → (D, S ′)
and G : (D, S ′) → (C, S) such that FG ' 1 and GF ' 1. In this case, F is called a
homotopy equivalence.

The usual argument gives the following result.

3.4. Proposition. The homotopy relation ' in the category qASmd defined in Definition
3.3 is an equivalence relation which is preserved by compositions of morphisms.

We denote by 'S the homotopy relation, which is called strong homotopy, in the
category Cat due to Hoff [7], Lee [11] and Minian [12]. The relation is defined in the same
way as in Definitions 3.1 and 3.3.

3.5. Proposition. Let F,G : (C, S) → (D, S ′) be morphisms in qASmd. Then U(F ) 'S

U(G) if F ' G. Assume further that (C, S) = K(C), namely a discrete schemoid. Then
F ' G if and only if U(F ) 'S U(G).

Proof. Let H be a homotopy between F and G. Since U((C, S) × I) = U((C, S)) × [1],
it follows that U(H) is a homotopy between U(F ) and U(G). We have the first of the
results.

Suppose that (C, S) is the discrete quasi-schemoid K(C). The forgetful functor U gives
rise to a natural bijection

U : HomqASmd(K(C) × I, (D, S ′)) = HomqASmd(K(C × [1]), (D, S ′))
∼=→ HomCat(C × [1], U((D, S ′))).

This implies that L : C × [1] → U((D, S ′)) is a homotopy from U(F ) to U(G) if U−1(L)
is a homotopy from F to G. We have the result.
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Let aut((C, S)) denote the monoid of self-homotopy equivalences on (C, S) in qASmd;
that is, the composition of the equivalences gives rise to the product in the monoid. Then
the monoid structure gives a group structure on the set of equivalence classes

haut((C, S)) := aut((C, S))/ ' .

We observe that the group haut((C, S)) is a homotopy invariant for quasi-schemoids.
Proposition 3.5 enables us to deduce that the functor U induces a map

Ũ : [(C, S), (D, S ′)] := HomqASmd((C, S), (D, S ′))/ ' −→ HomCat(C,D)/ 'S

which is a bijection provided (C, S) is a discrete quasi-schemoid. In particular, the ho-

momorphism of groups Ũ : haut(K(C)) −→ haut(C) is an isomorphism. Moreover, the
composition of morphisms in qASmd gives rise to a left haut((D, S))-set structure and a
right haut((C, S))-set structure on the homotopy set [(C, S), (D, S ′)]. This follows from
Proposition 3.4.

Let B : Cat → Top be the functor which sends a small category to its classifying space.
A natural transformation between functors F and G induces a homotopy between BF
and BG. This enables us to conclude that B ◦ U induces a group homomorphism

ρ : haut((C, S)) −→ E(BC),

where E(X) denotes the homotopy set of self-homotopy equivalences on a space X.
We here give an example of a contractible quasi-schemoid. Let C be a small category

in which σ := {φij : i→ j}i,j∈ob(C) is the set of non-identity morphisms and the composite
is given by φjk ◦ φij = φik. Let 1 be the set of all identity maps in C. Then it follows
that (C, S = {σ,1}) is a quasi-schemoid. In fact, it is readily seen that pσ1σ = 1, pσσ1 = 1,
pσ11 = 0, p111 = 1, p11σ = 0, p1σ1 = 0 and p1σσ = 0. Moreover, we see that the map
θ : (πσσσ)

−1(φij) → ob(C) defined by θ((φkj, φik)) = k is bijective.
Let • be the trivial category; that is, it consists of one object • and the identity. We

call the quasi-schemoid K(•) the trivial schemoid.

3.6. Proposition. The schemoid (C, S = {σ,1}) mentioned above is contractible; that
is, it is homotopy equivalent to the trivial schemoid.

Proof. Let 0 be an object of C. We define a morphism s : K(•) → (C, S) in qASmd
by s(•) = 0. Let p : (C, S) → K(•) be the trivial morphism. We define a homotopy
H : (C, S) × I → (C, S) by

k
φk0 //

φk0

��
==

==
==

==

φkl

��

0

id0
��

l
φl0

// 0

for any φkl. Observe that φk0 and φl0 are in σ for any k and l. Thus we see that 1C ∼ sp.
We have the result.
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The following proposition gives a sufficient condition for a quasi-schemoid (C, S) not
to be contractible.

3.7. Proposition. Let F : (C, S) → (C, S) be a morphism of quasi-schemoids which is
homotopic to the identity functor. Suppose that 1 = {1x}x∈ob(C) is a subset of an element
in the partition S and that F (f) is an identity for some non-identity element f ∈ mor(C).
Then there exist elements σ and τ such that τ contains a non-identity element and pσστ 6= 0
or pστσ 6= 0.

Proof. By assumption, we have a sequence of morphisms F = F0 ∼ F1 ∼ · · · ∼ Fn−1 ∼
Fn = 1C. Since F (f) is an identity but not f , there exists a number l such that Fl(f)
is an identity and Fl+1(f) is not an identity. Then the homotopy H which induces the
relation Fi ∼ Fi+1 gives rise to a commutative diagram

sFl(f)
φ

//

Fl(f)=1

��

sFl+1(f)

Fl+1(f)

��

tFl(f)
φ′

// tFl+1(f)

or sFl(f)

Fl(f)=1

��

sFl+1(f)
φ

oo

Fl+1(f)

��

tFl(f) tFl+1(f).
φ′

oo

Since 1 is a subset of an element in S, it follows that φ and φ′ are in the same element
σ in the partition S; see Remark 3.2. We choose an element τ in S which contains the
morphism Fl+1(f). It turns out that pσστ 6= 0 or pστσ 6= 0.

3.8. Remark. Let us consider a quasi-schemoid (C, S) whose underlying category C is
defined by the diagram

a
β

''OOOOOOOO

x ε //

α
77oooooooo

γ &&NNNNNNNNN y with βα = ε = δγ

b
δ

88ppppppppp

and whose partition S = {σ1, σ2, σ3,1} of mor(C) is given by σ1 = {α, γ}, σ2 = {β, δ},
σ3 = {ε} and 1 = {1x, 1y, 1a, 1b}. A direct computation enables us to deduce that pσστ = 0
and pστσ = 0 for σ, τ ∈ S if τ 6= 1. Then Proposition 3.7 implies that the quasi-schemoid
(C, S) is not contractible in qASmd. We observe that the underlying category U(C, S) = C
is contractible in Cat because C has an initial (terminal) object; see [9, (3.7) Proposition].

We conclude this section after describing a 2-category structure on qASmd.
Let Im be a discrete quasi-schemoid of the form K([m]). For morphisms F and G

from (C, S) to (D, S ′), if there exist a non-negative integer m and a morphism φ : (C, S)×
Im → (D, S ′) such that φ ◦ ε0 = F and φ ◦ εm = G, then we write φ : F ⇒m G or

(C, S)
F

,,

G
22

�� ��
��m φ (D, S ′) when emphasizing the source and target of the functors. We call

such a morphism φ a sequential homotopy from F to G. Observe that there exists a
homotopy φ : F ⇒m G if and only if φ0 : F ⇒ F1, φ1 : F1 ⇒ F2, ..., φm−1 : Fm−1 ⇒ G
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for some functors Fi and homotopies φj; see Definition 3.1. Then we identify φ with the
composite φm−1 ◦ · · · ◦ φ0.

3.9. Theorem. The category qASmd of quasi-schemoids admits a 2-category structure
whose 2-morphisms are homotopies mentioned above and under which the fully faithful
embedding K : Cat → qASmd is a functor of 2-categories.

Proof. Let (C, S) and (D, S ′) be quasi-schemoids. We then see that the hom-set

A((C, S), (D, S ′)) := HomqASmd((C, S), (D, S ′))

is a category whose objects are morphisms from (C, S) to (D, S ′) in qASmd and morphisms
are sequential homotopies between them. Observe that the composite ψ ◦ φ : F ⇒m+n L
of two sequential homotopies φ : F ⇒m G and ψ : G ⇒n L is the vertical composite of
natural transformations. Moreover, the interchange law in Cat enables us to deduce that
the horizontal composition of the homotopies

(C, S)
F1

,,

F2

22

�� ��
��m κ (D, S ′) and (D, S ′)

G1
,,

G2

22

�� ��
��n ν (E , S ′′)

gives rise to a functor ∗ : A((D, S ′), (E , S ′′)) ×A((C, S), (D, S ′)) → A((C, S), (E , S ′′)). In
fact, the composite ν ∗ κ is defined to be the vertical composite (νF2) ◦ (G1κ) of natural
transformations, which coincides with the vertical composite (G2κ) ◦ (νF1).

To prove the theorem, it suffices to show the well-definedness of the horizontal com-
position. Suppose that ν : G1 ⇒1 G2 is a homotopy in the sense of Definition 3.1. Since
F2 preserves the partition, it follows from Remark 3.2 that νF2 : G1F2 ⇒ G2F2 is a well-
defined homotopy in qASmd. Thus for any ν : G1 ⇒n G2, in general, νF2 is the composite
of homotopies in the sense of Definition 3.1. The same argument yields that G1κ is the
composite of homotopies and hence so is ν ∗ κ. It turns out that ∗ is well defined.

4. Rigidity of homotopy for trivial association schemes and groupoids

We first investigate the structure of the group of self-homotopy equivalences on a trivial
association scheme.

4.1. Lemma. Let (X,S) be an association scheme with the trivial partition S = {1, σ}.
Then every self-homotopy equivalence on (X,S) is an isomorphism.

Proof. The assertion is trivial if ]X = 1. Assume that ]X ≥ 2. Let F be a self-homotopy
equivalence on (X,S). We have a sequence of morphisms GF ∼ F1 ∼ · · · ∼ Fn ∼ 1C,
where G is a homotopy inverse of F . Then there exists an integer l such that Fl+1 is
injective and hence bijective on X but not Fl. Suppose that Fl(i) = x = Fl(j) for some
distinct elements i and j of X. Since Fl(φij) = 1x and Fl is a morphism of schemoids, it
follows that Fl(f) = 1x for any f ∈ mor((X,S)). In fact, we see that Fl(φij ◦φt(f)i ◦f) =
Fl(φij) ◦ Fl(φt(f)i) ◦ Fl(f) = 1x ◦ 1z ◦ 1y for some z and y in X. Then x = z = x.
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Let H be a homotopy between Fl and Fl+1, say H : Fl ⇒ Fl+1. We choose an object
j′ with Fl+1(j

′) = x. Then for a map f : i′ → j′ which is not the identity, the homotopy
H gives a commutative diagram

x
φxFl+1(i′)

//

1x

��

Fl+1(i
′)

Fl+1(f)

��
x

φxx=1x

// x.

We see that φxFl+1(i′) is in 1 ∈ S and hence Fl+1(i
′) = x, which is a contradiction. This

completes the proof.

4.2. Remark. An association scheme with the trivial partition is not contractible in
general.

4.3. Lemma. Let (X,S) be an association scheme with the trivial partition S = {1, σ}
and F,G : (X,S) → (X,S) self-homotopy equivalences. Suppose that ]X ≥ 3 and
F ∼ G. Then F = G.

Proof. In order to prove the lemma, it suffices to show that if there exists a homotopy
H : F ⇒ G, then F = G. The homotopy gives rise to the commutative diagram

F (i)
φF (i)G(i)

//

φF (i)G(j)

%%JJJJJJJJJJ

F (φij)

��

G(i)

G(φij)

��

F (j)
φF (j)G(j)

// G(j),

where φij = (j, i) ∈ X ×X.

Suppose that F is different from G. Assume further that there exists an object i
such that F (i) = G(i). Since F 6= G, it follows that F (j) 6= G(j) for some j. We
see that H(1i, u) = φF (i)G(i) = 1i ∈ 1 and H(1j, u) = φF (j)G(j) ∈ mor(C)\1, which is a
contradiction; see Remark 3.2. This implies that F (j) 6= G(j) for any j.

If there exists an element (i, j) /∈ 1 such that F (i) = G(j), then H(φij, u) = φF (i)G(j)

is in 1 and hence so is φF (k)G(l) for any (k, l) /∈ 1. This yields that F (k) = G(l) for any
(k, l) /∈ 1. Since ]X ≥ 2, it follows that G(1) = F (0) = G(2), which is a contradiction.
In fact, by Lemma 4.1 the morphism G is an isomorphism. In consequence, we see that
F (i) 6= G(j) for any i and j in X. Thus, F (0) 6= G(i) for any i. The fact enables us to
deduce that G is not surjective, which is a contradiction. This completes the proof.

4.4. Theorem. Let (X,S) be an association scheme with the trivial partition. Then the
group haut((X,S)) is isomorphic to the permutation group of order ]X if ]X ≥ 3. If
]X = 2, then haut((X,S)) is trivial.
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Proof. The result for the case where ]X ≥ 3 follows from Lemmas 4.1 and 4.3.
Suppose that ]X = 2. Let G be the only non-identity isomorphism on (X,S). Then

we define a homotopy H : 1 ⇒ G by

0
φ01

//

φ01

!!B
BB

BB
BB

id0
��

1

id1
��

0
φ01

// 1,

1
φ10

//

φ01

!!B
BB

BB
BB

id1
��

0

id0
��

1
φ10

// 0,

0
φ01

//

id0

!!B
BB

BB
BB

φ01
��

1

φ01
��

1
φ10

// 0,

1
φ10

//

id1

!!CC
CC

CC
C

φ10
��

0
φ01

��

0
φ01

// 1.

In each square, upper and lower horizontal arrows are in the same element of S. In the
first two squares, the diagonals are in the same element of S. The same condition holds for
the second two squares. This implies that H is well defined; that is, H is in a morphism
in qASmd; see Remark 3.2. We have the result.

The following theorem exhibits rigidity of strong homotopy on finite groups.

4.5. Proposition. For a finite group G, every self-homotopy equivalence on a quasi-
schemoid of the form S̃(ıG) = (ı̃G, {Gs}s∈G) is an isomorphism.

Proof. The set 1 := {1x}x∈ob(eS(ıG)) is nothing but the element {(h, h) | h ∈ G} in the

partition of the set of morphisms of the underlying category of the quasi-schemoid S̃(ıG).

Let F : S̃(ıG) → S̃(ıG) be a self-homotopy equivalence. In order to prove the theorem,

it suffices to show that F is injective on mor(S̃(ıG)). By assumption, there exists a
homotopy inverse G of F . Then we have GF ' 1C. We write φ for GF . Suppose
that φ((f, g)) = φ((f ′, g′)) for (f, g) and (f ′, g′) in mor(S̃(ıG)). Then it follows that
(φ(f), φ(g)) = (φ(f ′), φ(g′)) and the map φ(f, f ′) = (φ(f), φ(f ′)) is the identity. Assume
that f 6= f ′. By the first argument in the proof, we can apply Proposition 3.7 to the
morphism φ. Thus we see that there exist elements σ and τ such that τ contains a
non-identity element and pσστ 6= 0 or pστσ 6= 0.

Suppose that pστσ 6= 0, σ = Gl and τ = Gk. Then we see that there exist morphisms
(f, g) : g → f and (h, g) : g → h in Gl and (h, f) : f → h in Gk. Therefore, it follows that
h−1g = l, f−1g = l and h−1f = k and hence τ = G1• . Since G1• = {(m,m) | m ∈ mor(G)},
each element in τ is the identity, which is a contradiction. The same argument is applicable
to the case where pσστ 6= 0. Thus we see that f = f ′. We also have g 6= g′ by the same

argument above. It turns out that φ is injective on mor(S̃(ıG)).

4.6. Example. For a non-trivial finite group, the schemoid US(G) is contractible in
Cat but not S(G) in qASmd.

We consider the group of self-homotopy equivalences on the quasi-schemoid arising
from a groupoid via the functor S̃( ).

Let hAut((C, S)) be the group of the homotopy classes of autofunctors on a quasi-
schemoid (C, S). We have a natural map η(C,S) : hAut((C, S)) → haut((C, S). For a
groupoid G, let Aut(G) denote the group of autofunctors on G. In particular, Aut(ıG) for
a group G is nothing but the usual automorphism group Aut(G) of G.
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4.7. Theorem. Let G be a groupoid which is not necessarily finite. Then the functor
S̃( ) gives rise to a commutative diagram

haut(S̃(G))

Aut(G)
66

eS∗1
66nnnnnnnnnnn

eS∗2

// hAut(S̃(G))

η
eS(G)

OO

in which S̃∗1 is a monomorphism. Moreover S̃∗2 is an isomorphism provided G is finite.

4.8. Corollary. Let G be a finite group. Then haut(S(G)) ∼= Aut(G) as a group.

Proof. Proposition 4.5, Theorem 4.7 and the commutativity of the diagram (2.1) give
the result.

4.9. Example. Since S(Z/2) is the trivial scheme, it follows from Theorem 4.4 that
haut(S(Z/2)) is trivial. On the other hand, Corollary 4.8 yields that haut(S(Z/2)) is
isomorphic to the group Aut(Z/2) which is trivial.

Before proving Theorem 4.7, we consider the homotopy relation ' on morphisms
between quasi-schemoids which come from groupoids.

4.10. Proposition. Let G and H be groupoids, which are not necessarily finite. Let
φ, ψ : S̃(G) → S̃(H) be morphisms of quasi-schemoids. Then φ is homotopic to ψ, namely
φ ' ψ if and only if there exists a homotopy from φ to ψ.

4.11. Lemma. With the same notation as in Proposition 4.10, there exists a homotopy
L : φ⇒ ψ if and only if ψ(j)−1φ(i) = ψ(l)−1φ(k) for any (j, i) and (l, k) in mor(G̃) with
j−1i = l−1k.

Proof. We recall that in the category S̃(G), f = (j, i) is a unique morphism from i to j.

Suppose that there exists a homotopy L : φ⇒ ψ between morphisms φ and ψ from S̃(G)

to S̃(H). Then for any morphism f : i → j and g : k → l in S̃(G), we have commutative

diagrams in S̃(H)

φ(i)
L(1i,u)

//

L(f,u)

$$IIIIIIIII

φ(f)

��

ψ(i)

ψ(f)

��

φ(j)
L(1j ,u)

// ψ(j)

and φ(k)
L(1k,u)

//

L(g,u)

$$JJJJJJJJJ

φ(g)

��

ψ(k)

ψ(g)

��

φ(l)
L(1l,u)

// ψ(l).

Observe that 1i = (i, i) ∈ G1s(i)
for any i and that L(f, u) = (ψ(j), φ(i)). By definition,

morphisms f and g are in the same element Gh of S if and only if j−1i = h = l−1k.
Thus if j−1i = h = l−1k, then L(f, u) and L(g, u) are in the same element Hh′ for some
h′ ∈ mor(H). Therefore, we see that ψ(j)−1φ(i) = ψ(l)−1φ(k).

Suppose that ψ(j)−1φ(i) = ψ(l)−1φ(k) for any (j, i) and (l, k) in mor(S̃(G)) with

j−1i = l−1k. Then the map L : S̃(G) × I → S̃(H) defined by the squares above is a
well-defined homotopy. We have L : φ⇒ ψ.
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Proof of Proposition 4.10 Lemma 4.11 yields that if there exists a homotopy from
φ to ψ, then one has a converse homotopy from ψ to φ.

Suppose that there exist homotopies L : φ ⇒ ψ and L′ : ψ ⇒ η. We see that if
j−1i = l−1k, then ψ(j)−1φ(i) = ψ(l)−1φ(k). Since j−1j = l−1l, it follows that η(j)−1ψ(j) =
η(l)−1ψ(l). This allows one to deduce that η(j)−1φ(i) = η(l)−1φ(k) if j−1i = l−1k. By
Lemma 4.11, we have a homotopy from φ to η. This completes the proof.

Proof of Theorem 4.7 We show that the homomorphism S̃∗1 : Aut(G) → haut(S̃(G))

defined by S̃∗1(u) = [S̃(u)] is a monomorphism. Since (S̃(u))(i) = u(i) by definition, it

follows from Proposition 4.10 and Lemma 4.11 that u = v if S̃(u) ' S̃(v). In fact, for
any i, we see that u(i)−1v(i) = u(1s(i))

−1v(1s(i)) = 1x1y for some x and y in ob(G). Then

1x and 1y should be composable. This yields that S̃∗1 is a monomorphism. We define

S̃∗2 : Aut(G) → hAut(S̃(G)) by S̃∗2(u) = [S̃(u)]. It is readily seen that η
eS(G) ◦ S̃∗2 = S̃∗1.

Suppose that G is finite. In order to prove the latter half of the theorem, it suffices to
show that S̃∗2 is surjective.

Let u be an element in Aut(S̃(G)). We define a self-functor u′ on S̃(G) by

u′(i) = u(i)u(1s(i))
−1

for any i ∈ ob(S̃(G)) = mor(G). Observe that u(1s(i))
−1 and u(i) are composable. In fact,

we have s(u(i)) = s(u(1s(i))) by [8, Claim 3.3].

We show that u′ is an autofunctor; that is, u′ is bijective on ob(S̃(G)) = mor(G) and
for any k ∈ mor(G), there exists l(k) ∈ mor(G) such that u′(Gk) ⊂ Gl(k). Suppose that
u′(i) = u′(j). Then t(u(1s(i))) = s(u′(i)) = s(u′(j)) = t(u(1s(i))). We see that the pair

(u(1s(i)), u(1s(j))) is a morphism in S̃(G) and hence (1s(i), 1s(j)) is in S̃(G). Observe that
u has the inverse. Thus it follows that s(i) = s(j) and u(i) = u(j). We have i = j. This

implies that u′ is bijective on ob(S̃(G)) because mor(G) is finite.
Since u is a morphism of quasi-schemoids, it follows that for any k ∈ mor(G), there

exists l(k)′ ∈ mor(G) such that u(Gk) ⊂ Gl(k)′ . Suppose that (i, j) is in Gk. By defini-
tion, we have i−1j = k. Then s(i) = t(k) and s(k) = s(j). Moreover, it follows that
(u′(i))−1u′(j) = u(1s(i))u(i)

−1u(j)u(1s(j))
−1 = u(1t(k))l(k)

′u(1s(k))
−1. We can choose the

last element as l(k) mentioned above. Furthermore, we see that the autofunctor u′ pre-

serves the set G̃◦ = {1x, | x ∈ ob(G)}, which is the set of base points of S̃(G); see [8,
Section 3].

Let (j, i) and (l, k) be morphisms in G̃ which are in the same element Gh for some h
in mor(G). Then we see that j−1i = h = l−1k and hence s(i) = s(k). Moreover, since u
is a morphism in qASmd, it follows that there exists h′ ∈ mor(G) such that (u(j), u(i))
and (u(l), u(k)) are in the same element Gh′ ; that is, u(j)−1u(i) = h′ = u(l)−1u(k). Thus
we have

u(j)−1u′(i) = u(j)−1u(i)u(1s(i))
−1 = u(l)−1u(k)u(1s(k))

−1 = u(l)−1u′(k).

Then Lemma 4.11 yields that u is homotopy equivalent to u′, which is a base points pre-
serving automorphism, in qASmd. Let (qASmd)0 be the category of quasi-schemoids with
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base points. The result [8, Corollary 3.5] asserts that the functor S̃ : Gpd → (qASmd)0

is fully faithful. This enables us to conclude that S̃∗2 is surjective. This completes the
proof.

Acknowledgements. The author thanks Kentaro Matsuo who pointed out a mistake in
the proof of Lemma 4.3 in a draft of this paper. He is grateful for the referee’s careful
reading of the previous version of this paper.

5. Appendix

We refer the reader to [8, Section 2] for the definition of association schemoids and their
category ASmd. In this section, we consider a homotopy relation in ASmd with a cylinder
obtained by modifying the quasi-schemoid I = ([1], s) = K([1]) in Definition 3.1. Unfor-
tunately, the result is trivial; see Assertion 5.1 below. Thus we would need a different
cylinder to develop interesting homotopy theory on ASmd.

Let t : [1] → [1] be a contravariant functor defined by t(0) = 1 and t(1) = 0. Then

Ĩ := ([1], s, t) is an association schemoid. Observe that this is a unique association
schemoid structure on the discrete schemoid I. Let F,G : (C, S, T ) → (D, S ′, T ′) be
morphisms in ASmd. Then it is natural to define a homotopy relation F ∼ G in ASmd
by replacing the category qASmd with ASmd in Definition 3.1. More precisely, we write
F ∼ G if there exists a morphism H : (C, S, T ) × Ĩ → (D, S ′, T ′) in ASmd such that
H : F ⇒ G or H : G⇒ F ; see Remark 3.2.

5.1. Assertion. Let F and G be morphisms of association schemoids from (C, S, T ) to
(D, S ′, T ′). Then F ∼ G if and only if F = G.

Proof. In order to prove the assertion, it sufficies to show that if H : F ⇒ G for some
H : (C, S, T )×Ĩ → (D, S ′, T ′) in ASmd, then F = G. Since the homotopyH is a morphism
of association schemoids, it follows that H ◦ (T × t) = T ′H by definition. The morphism
H is a homotopy from F to G. Then F (f) = H(f, 10) for any f ∈ mor(C). This implies
that

T ′F (f) = T ′H(f, 10) = (H ◦ (T ′ × T ))(f, 10) = H(T (f), 11) = GT (f) = T ′G(f)

and hence F (f) = G(f) because (T ′)2 = idD by definition. We have the result.
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