\mathbb{Z}-modules

Yuichi Futa
Shinshu University
Nagano, Japan

Hiroyuki Okazaki ${ }^{1}$
Shinshu University
Nagano, Japan

Yasunari Shidama ${ }^{2}$
Shinshu University
Nagano, Japan

Abstract

Summary. In this article, we formalize \mathbb{Z}-module, that is a module over integer ring. \mathbb{Z}-module is necassary for lattice problems, LLL (Lenstra-LenstraLovász) base reduction algorithm and cryptographic systems with lattices [11].

MML identifier: ZMODUL01, version: $\underline{7.12 .014 .167 .1133}$

The papers [10], [17], [18], [7], [2], [9], [14], [8], [6], [13], [5], [1], [15], [4], [3], [19], [16], and [12] provide the terminology and notation for this paper.

1. Definition of \mathbb{Z}-module

We introduce \mathbb{Z}-module structures which are extensions of additive loop structure and are systems
\langle a carrier, a zero, an addition, an external multiplication 〉, where the carrier is a set, the zero is an element of the carrier, the addition is a binary operation on the carrier, and the external multiplication is a function from $\mathbb{Z} \times$ the carrier into the carrier.

Let us mention that there exists a \mathbb{Z}-module structure which is non empty.
Let V be a \mathbb{Z}-module structure. A vector of V is an element of V.
In the sequel V denotes a non empty \mathbb{Z}-module structure and v denotes a vector of V.

Let us consider V, v and let a be an integer number. The functor $a \cdot v$ yields an element of V and is defined by:
(Def. 1) $a \cdot v=($ the external multiplication of $V)(a, v)$.

[^0]Let Z_{1} be a non empty set, let O be an element of Z_{1}, let F be a binary operation on Z_{1}, and let G be a function from $\mathbb{Z} \times Z_{1}$ into Z_{1}. One can verify that $\left\langle Z_{1}, O, F, G\right\rangle$ is non empty.

Let I_{1} be a non empty \mathbb{Z}-module structure. We say that I_{1} is vector distributive if and only if:
(Def. 2) For every a and for all vectors v, w of I_{1} holds $a \cdot(v+w)=a \cdot v+a \cdot w$.
We say that I_{1} is scalar distributive if and only if:
(Def. 3) For all a, b and for every vector v of I_{1} holds $(a+b) \cdot v=a \cdot v+b \cdot v$.
We say that I_{1} is scalar associative if and only if:
(Def. 4) For all a, b and for every vector v of I_{1} holds $(a \cdot b) \cdot v=a \cdot(b \cdot v)$.
We say that I_{1} is scalar unital if and only if:
(Def. 5) For every vector v of I_{1} holds $1 \cdot v=v$.
The strict \mathbb{Z}-module structure the trivial structure of \mathbb{Z}-module is defined as follows:
(Def. 6) The trivial structure of \mathbb{Z}-module $=\left\langle 1, \mathrm{op}_{0}, \mathrm{op}_{2}, \pi_{2}(\mathbb{Z} \times 1)\right\rangle$.
Let us observe that the trivial structure of \mathbb{Z}-module is trivial and non empty.
Let us observe that there exists a non empty \mathbb{Z}-module structure which is strict, Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, and scalar unital.

A \mathbb{Z}-module is an Abelian add-associative right zeroed right complementable scalar distributive vector distributive scalar associative scalar unital non empty \mathbb{Z}-module structure.

In the sequel v, w denote vectors of V.
Let I_{1} be a non empty \mathbb{Z}-module structure. We say that I_{1} inherits cancelable on multiplication if and only if:
(Def. 7) For every a and for every vector v of I_{1} such that $a \cdot v=0_{\left(I_{1}\right)}$ holds $a=0$ or $v=0_{\left(I_{1}\right)}$.
The following propositions are true:
(1) If $a=0$ or $v=0_{V}$, then $a \cdot v=0_{V}$.
(2) $-v=(-1) \cdot v$.
(3) If V inherits cancelable on multiplication and $v=-v$, then $v=0_{V}$.
(4) If V inherits cancelable on multiplication and $v+v=0_{V}$, then $v=0_{V}$.
(5) $a \cdot-v=(-a) \cdot v$.
(6) $a \cdot-v=-a \cdot v$.
(7) $(-a) \cdot-v=a \cdot v$.
(8) $a \cdot(v-w)=a \cdot v-a \cdot w$.
(9) $(a-b) \cdot v=a \cdot v-b \cdot v$.
(10) If V inherits cancelable on multiplication and $a \neq 0$ and $a \cdot v=a \cdot w$, then $v=w$.
(11) If V inherits cancelable on multiplication and $v \neq 0_{V}$ and $a \cdot v=b \cdot v$, then $a=b$.

For simplicity, we follow the rules: V is a \mathbb{Z}-module, u, v, w are vectors of V, F, G, H, I are finite sequences of elements of V, j, k, n are elements of \mathbb{N}, and f_{9} is a function from \mathbb{N} into the carrier of V.

Next we state several propositions:
(12) If len $F=\operatorname{len} G$ and for all k, v such that $k \in \operatorname{dom} F$ and $v=G(k)$ holds $F(k)=a \cdot v$, then $\sum F=a \cdot \sum G$.
(13) For every \mathbb{Z}-module V and for every integer a holds a. $\sum\left(\varepsilon_{(\text {the carrier of } V)}\right)=0_{V}$.
(14) For every \mathbb{Z}-module V and for every integer a and for all vectors v, u of V holds $a \cdot \sum\langle v, u\rangle=a \cdot v+a \cdot u$.
(15) For every \mathbb{Z}-module V and for every integer a and for all vectors v, u, w of V holds $a \cdot \sum\langle v, u, w\rangle=a \cdot v+a \cdot u+a \cdot w$.
(16) $(-a) \cdot v=-a \cdot v$.
(17) If len $F=$ len G and for every k such that $k \in \operatorname{dom} F \operatorname{holds} G(k)=a \cdot F_{k}$, then $\sum G=a \cdot \sum F$.

2. Submodules and Cosets of Submodules in \mathbb{Z}-Module

We use the following convention: V, X are \mathbb{Z}-modules, V_{1}, V_{2}, V_{3} are subsets of V, and x is a set.

Let us consider V, V_{1}. We say that V_{1} is linearly closed if and only if:
(Def. 8) For all v, u such that $v, u \in V_{1}$ holds $v+u \in V_{1}$ and for all a, v such that $v \in V_{1}$ holds $a \cdot v \in V_{1}$.
One can prove the following propositions:
(18) If $V_{1} \neq \emptyset$ and V_{1} is linearly closed, then $0_{V} \in V_{1}$.
(19) If V_{1} is linearly closed, then for every v such that $v \in V_{1}$ holds $-v \in V_{1}$.
(20) If V_{1} is linearly closed, then for all v, u such that $v, u \in V_{1}$ holds $v-u \in V_{1}$.
(21) If the carrier of $V=V_{1}$, then V_{1} is linearly closed.
(22) If V_{1} is linearly closed and V_{2} is linearly closed and $V_{3}=\{v+u: v \in$ $\left.V_{1} \wedge u \in V_{2}\right\}$, then V_{3} is linearly closed.
Let us consider V. Observe that $\left\{0_{V}\right\}$ is linearly closed.
Let us consider V. Note that there exists a subset of V which is linearly closed.

Let us consider V and let V_{1}, V_{2} be linearly closed subsets of V. Note that $V_{1} \cap V_{2}$ is linearly closed.

Let us consider V. A \mathbb{Z}-module is called a submodule of V if it satisfies the conditions (Def. 9).
(Def. 9)(i) The carrier of it \subseteq the carrier of V,
(ii) $0_{\text {it }}=0_{V}$,
(iii) the addition of it $=($ the addition of $V) \upharpoonright$ (the carrier of it), and
(iv) the external multiplication of it $=$ (the external multiplication of $V) \upharpoonright(\mathbb{Z} \times$ the carrier of it).
In the sequel W_{2} denotes a submodule of V and w, w_{1}, w_{2} denote vectors of W.

We now state a number of propositions:
(23) If $x \in W_{1}$ and W_{1} is a submodule of W_{2}, then $x \in W_{2}$.
(24) If $x \in W$, then $x \in V$.
(25) w is a vector of V.
(26) $0_{W}=0_{V}$.
(27) $0_{\left(W_{1}\right)}=0_{\left(W_{2}\right)}$.
(28) If $w_{1}=v$ and $w_{2}=u$, then $w_{1}+w_{2}=v+u$.
(29) If $w=v$, then $a \cdot w=a \cdot v$.
(30) If $w=v$, then $-v=-w$.
(31) If $w_{1}=v$ and $w_{2}=u$, then $w_{1}-w_{2}=v-u$.
(32) V is a submodule of V.
(33) $0_{V} \in W$.
(34) $0_{\left(W_{1}\right)} \in W_{2}$.
(35) $0_{W} \in V$.
(36) If $u, v \in W$, then $u+v \in W$.
(37) If $v \in W$, then $a \cdot v \in W$.
(38) If $v \in W$, then $-v \in W$.
(39) If $u, v \in W$, then $u-v \in W$.

In the sequel d_{1} is an element of D, A is a binary operation on D, and M is a function from $\mathbb{Z} \times D$ into D.

We now state several propositions:
(40) Suppose $V_{1}=D$ and $d_{1}=0_{V}$ and $A=$ (the addition of $\left.V\right) \upharpoonright\left(V_{1}\right)$ and $M=($ the external multiplication of $V) \upharpoonright\left(\mathbb{Z} \times V_{1}\right)$. Then $\left\langle D, d_{1}, A, M\right\rangle$ is a submodule of V.
(41) For all strict \mathbb{Z}-modules V, X such that V is a submodule of X and X is a submodule of V holds $V=X$.
(42) If V is a submodule of X and X is a submodule of Y, then V is a submodule of Y.
(43) If the carrier of $W_{1} \subseteq$ the carrier of W_{2}, then W_{1} is a submodule of W_{2}.
(44) If for every v such that $v \in W_{1}$ holds $v \in W_{2}$, then W_{1} is a submodule of W_{2}.

Let us consider V. Note that there exists a submodule of V which is strict. Next we state several propositions:
(45) For all strict submodules W_{1}, W_{2} of V such that the carrier of $W_{1}=$ the carrier of W_{2} holds $W_{1}=W_{2}$.
(46) For all strict submodules W_{1}, W_{2} of V such that for every v holds $v \in W_{1}$ iff $v \in W_{2}$ holds $W_{1}=W_{2}$.
(47) Let V be a strict \mathbb{Z}-module and W be a strict submodule of V. If the carrier of $W=$ the carrier of V, then $W=V$.
(48) Let V be a strict \mathbb{Z}-module and W be a strict submodule of V. If for every vector v of V holds $v \in W$ iff $v \in V$, then $W=V$.
(49) If the carrier of $W=V_{1}$, then V_{1} is linearly closed.
(50) If $V_{1} \neq \emptyset$ and V_{1} is linearly closed, then there exists a strict submodule W of V such that $V_{1}=$ the carrier of W.
Let us consider V. The functor $\mathbf{0}_{V}$ yielding a strict submodule of V is defined by:
(Def. 10) The carrier of $\mathbf{0}_{V}=\left\{0_{V}\right\}$.
Let us consider V. The functor Ω_{V} yields a strict submodule of V and is defined by:
(Def. 11) $\Omega_{V}=$ the \mathbb{Z}-module structure of V.
We now state several propositions:
(51) $\quad \mathbf{0}_{W}=\mathbf{0}_{V}$.
(52) $\quad \mathbf{0}_{\left(W_{1}\right)}=\mathbf{0}_{\left(W_{2}\right)}$.
(53) $\quad \mathbf{0}_{W}$ is a submodule of V.
(54) $\quad \mathbf{0}_{V}$ is a submodule of W.
(55) $\mathbf{0}_{\left(W_{1}\right)}$ is a submodule of W_{2}.
(56) Every strict \mathbb{Z}-module V is a submodule of Ω_{V}.

Let us consider V, v, W. The functor $v+W$ yields a subset of V and is defined as follows:
(Def. 12) $v+W=\{v+u: u \in W\}$.
Let us consider V, W. A subset of V is called a coset of W if:
(Def. 13) There exists v such that it $=v+W$.
In the sequel B, C are cosets of W.
The following propositions are true:
(57) $\quad 0_{V} \in v+W$ iff $v \in W$.
(58) $v \in v+W$.
(59) $\quad 0_{V}+W=$ the carrier of W.
(60) $v+\mathbf{0}_{V}=\{v\}$.
(61) $v+\Omega_{V}=$ the carrier of V.
(62) $0_{V} \in v+W$ iff $v+W=$ the carrier of W.
(63) $v \in W$ iff $v+W=$ the carrier of W.
(64) If $v \in W$, then $a \cdot v+W=$ the carrier of W.
(65) $u \in W$ iff $v+W=v+u+W$.
(66) $u \in W$ iff $v+W=(v-u)+W$.
(67) $v \in u+W$ iff $u+W=v+W$.
(68) If $u \in v_{1}+W$ and $u \in v_{2}+W$, then $v_{1}+W=v_{2}+W$.
(69) If $v \in W$, then $a \cdot v \in v+W$.
(70) $u+v \in v+W$ iff $u \in W$.
(71) $v-u \in v+W$ iff $u \in W$.
(72) $u \in v+W$ iff there exists v_{1} such that $v_{1} \in W$ and $u=v+v_{1}$.
(73) $u \in v+W$ iff there exists v_{1} such that $v_{1} \in W$ and $u=v-v_{1}$.
(74) There exists v such that $v_{1}, v_{2} \in v+W$ iff $v_{1}-v_{2} \in W$.
(75) If $v+W=u+W$, then there exists v_{1} such that $v_{1} \in W$ and $v+v_{1}=u$.
(76) If $v+W=u+W$, then there exists v_{1} such that $v_{1} \in W$ and $v-v_{1}=u$.
(77) For all strict submodules W_{1}, W_{2} of V such that $v+W_{1}=v+W_{2}$ holds $W_{1}=W_{2}$.
(78) For all strict submodules W_{1}, W_{2} of V such that $v+W_{1}=u+W_{2}$ holds $W_{1}=W_{2}$.
(79) C is linearly closed iff $C=$ the carrier of W.
(80) For all strict submodules W_{1}, W_{2} of V and for every $\operatorname{coset} C_{1}$ of W_{1} and for every coset C_{2} of W_{2} such that $C_{1}=C_{2}$ holds $W_{1}=W_{2}$.
(81) $\{v\}$ is a coset of $\mathbf{0}_{V}$.
(82) If V_{1} is a coset of $\mathbf{0}_{V}$, then there exists v such that $V_{1}=\{v\}$.
(83) The carrier of W is a coset of W.
(84) The carrier of V is a coset of Ω_{V}.
(85) If V_{1} is a coset of Ω_{V}, then $V_{1}=$ the carrier of V.
(86) $0_{V} \in C$ iff $C=$ the carrier of W.
(87) $u \in C$ iff $C=u+W$.
(88) If $u, v \in C$, then there exists v_{1} such that $v_{1} \in W$ and $u+v_{1}=v$.
(89) If $u, v \in C$, then there exists v_{1} such that $v_{1} \in W$ and $u-v_{1}=v$.
(90) There exists C such that $v_{1}, v_{2} \in C$ iff $v_{1}-v_{2} \in W$.
(91) If $u \in B$ and $u \in C$, then $B=C$.

3. Operations on Submodules in \mathbb{Z}-module

For simplicity, we use the following convention: V is a \mathbb{Z}-module, W, W_{1}, W_{2}, W_{3} are submodules of $V, u, u_{1}, u_{2}, v, v_{1}, v_{2}$ are vectors of V, a, a_{1}, a_{2} are integer numbers, and X, Y, y, y_{1}, y_{2} are sets.

Let us consider V, W_{1}, W_{2}. The functor $W_{1}+W_{2}$ yielding a strict submodule of V is defined by:
(Def. 14) The carrier of $W_{1}+W_{2}=\left\{v+u: v \in W_{1} \wedge u \in W_{2}\right\}$.
Let us notice that the functor $W_{1}+W_{2}$ is commutative.
Let us consider V, W_{1}, W_{2}. The functor $W_{1} \cap W_{2}$ yields a strict submodule of V and is defined as follows:
(Def. 15) The carrier of $W_{1} \cap W_{2}=\left(\right.$ the carrier of $\left.W_{1}\right) \cap\left(\right.$ the carrier of $\left.W_{2}\right)$.
Let us observe that the functor $W_{1} \cap W_{2}$ is commutative.
We now state a number of propositions:
(92) $x \in W_{1}+W_{2}$ iff there exist v_{1}, v_{2} such that $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $x=v_{1}+v_{2}$.
(93) If $v \in W_{1}$ or $v \in W_{2}$, then $v \in W_{1}+W_{2}$.
(94) $x \in W_{1} \cap W_{2}$ iff $x \in W_{1}$ and $x \in W_{2}$.
(95) For every strict submodule W of V holds $W+W=W$.
(96) $W_{1}+\left(W_{2}+W_{3}\right)=\left(W_{1}+W_{2}\right)+W_{3}$.
(97) W_{1} is a submodule of $W_{1}+W_{2}$.
(98) For every strict submodule W_{2} of V holds W_{1} is a submodule of W_{2} iff $W_{1}+W_{2}=W_{2}$.
(99) For every strict submodule W of V holds $\mathbf{0}_{V}+W=W$.
(100) $\mathbf{0}_{V}+\Omega_{V}=$ the \mathbb{Z}-module structure of V.
(101) $\Omega_{V}+W=$ the \mathbb{Z}-module structure of V.
(102) For every strict \mathbb{Z}-module V holds $\Omega_{V}+\Omega_{V}=V$.
(103) For every strict submodule W of V holds $W \cap W=W$.
(104) $\quad W_{1} \cap\left(W_{2} \cap W_{3}\right)=\left(W_{1} \cap W_{2}\right) \cap W_{3}$.
(105) $W_{1} \cap W_{2}$ is a submodule of W_{1}.
(106) For every strict submodule W_{1} of V holds W_{1} is a submodule of W_{2} iff $W_{1} \cap W_{2}=W_{1}$.
(107) $\mathbf{0}_{V} \cap W=\mathbf{0}_{V}$.
(108) $\mathbf{0}_{V} \cap \Omega_{V}=\mathbf{0}_{V}$.
(109) For every strict submodule W of V holds $\Omega_{V} \cap W=W$.
(110) For every strict \mathbb{Z}-module V holds $\Omega_{V} \cap \Omega_{V}=V$.
(111) $W_{1} \cap W_{2}$ is a submodule of $W_{1}+W_{2}$.
(112) For every strict submodule W_{2} of V holds $W_{1} \cap W_{2}+W_{2}=W_{2}$.
(113) For every strict submodule W_{1} of V holds $W_{1} \cap\left(W_{1}+W_{2}\right)=W_{1}$.
(117) If W_{1} is a submodule of W_{2}, then $W_{2}+W_{1} \cap W_{3}=\left(W_{1}+W_{2}\right) \cap\left(W_{2}+W_{3}\right)$.
(118) If W_{1} is a strict submodule of W_{3}, then $W_{1}+W_{2} \cap W_{3}=\left(W_{1}+W_{2}\right) \cap W_{3}$.
(119) For all strict submodules W_{1}, W_{2} of V holds $W_{1}+W_{2}=W_{2}$ iff $W_{1} \cap W_{2}=$ W_{1}.
(120) For all strict submodules W_{2}, W_{3} of V such that W_{1} is a submodule of W_{2} holds $W_{1}+W_{3}$ is a submodule of $W_{2}+W_{3}$.
(121) There exists W such that the carrier of $W=$ (the carrier of $\left.W_{1}\right) \cup$ (the carrier of W_{2}) if and only if W_{1} is a submodule of W_{2} or W_{2} is a submodule of W_{1}.

Let us consider V. The functor $\operatorname{Sub}(V)$ yields a set and is defined by:
(Def. 16) For every x holds $x \in \operatorname{Sub}(V)$ iff x is a strict submodule of V.
Let us consider V. One can verify that $\operatorname{Sub}(V)$ is non empty.
We now state the proposition
(122) For every strict \mathbb{Z}-module V holds $V \in \operatorname{Sub}(V)$.

Let us consider V, W_{1}, W_{2}. We say that V is the direct sum of W_{1} and W_{2} if and only if:
(Def. 17) The \mathbb{Z}-module structure of $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\mathbf{0}_{V}$.
Let V be a \mathbb{Z}-module and let W be a submodule of V. We say that W has linear complement if and only if:
(Def. 18) There exists a submodule C of V such that V is the direct sum of C and W.
Let V be a \mathbb{Z}-module. Observe that there exists a submodule of V which has linear complement.

Let V be a \mathbb{Z}-module and let W be a submodule of V. Let us assume that W has linear complement. A submodule of V is called a linear complement of W if:
(Def. 19) V is the direct sum of it and W.
One can prove the following propositions:
(123) Let V be a \mathbb{Z}-module and W_{1}, W_{2} be submodules of V. Suppose V is the direct sum of W_{1} and W_{2}. Then W_{2} is a linear complement of W_{1}.
(124) Let V be a \mathbb{Z}-module, W be a submodule of V with linear complement, and L be a linear complement of W. Then V is the direct sum of L and W and the direct sum of W and L.
(125) Let V be a \mathbb{Z}-module, W be a submodule of V with linear complement, and L be a linear complement of W. Then $W+L=$ the \mathbb{Z}-module structure of V.
(126) Let V be a \mathbb{Z}-module, W be a submodule of V with linear complement, and L be a linear complement of W. Then $W \cap L=\mathbf{0}_{V}$.
(127) If V is the direct sum of W_{1} and W_{2}, then V is the direct sum of W_{2} and W_{1}.
(128) Let V be a \mathbb{Z}-module, W be a submodule of V with linear complement, and L be a linear complement of W. Then W is a linear complement of L.
(129) Every \mathbb{Z}-module V is the direct sum of $\mathbf{0}_{V}$ and Ω_{V} and the direct sum of Ω_{V} and $\mathbf{0}_{V}$.
(130) For every \mathbb{Z}-module V holds $\mathbf{0}_{V}$ is a linear complement of Ω_{V} and Ω_{V} is a linear complement of $\mathbf{0}_{V}$.
In the sequel C is a coset of W, C_{1} is a coset of W_{1}, and C_{2} is a coset of W_{2}.
Next we state several propositions:
(131) If C_{1} meets C_{2}, then $C_{1} \cap C_{2}$ is a coset of $W_{1} \cap W_{2}$.
(132) Let V be a \mathbb{Z}-module and W_{1}, W_{2} be submodules of V. Then V is the direct sum of W_{1} and W_{2} if and only if for every coset C_{1} of W_{1} and for every coset C_{2} of W_{2} there exists a vector v of V such that $C_{1} \cap C_{2}=\{v\}$.
(133) Let V be a \mathbb{Z}-module and W_{1}, W_{2} be submodules of V. Then $W_{1}+W_{2}=$ the \mathbb{Z}-module structure of V if and only if for every vector v of V there exist vectors v_{1}, v_{2} of V such that $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $v=v_{1}+v_{2}$.
(134) If V is the direct sum of W_{1} and W_{2} and $v_{1}+v_{2}=u_{1}+u_{2}$ and v_{1}, $u_{1} \in W_{1}$ and $v_{2}, u_{2} \in W_{2}$, then $v_{1}=u_{1}$ and $v_{2}=u_{2}$.
(135) Suppose $V=W_{1}+W_{2}$ and there exists v such that for all v_{1}, v_{2}, u_{1}, u_{2} such that $v_{1}+v_{2}=u_{1}+u_{2}$ and $v_{1}, u_{1} \in W_{1}$ and $v_{2}, u_{2} \in W_{2}$ holds $v_{1}=u_{1}$ and $v_{2}=u_{2}$. Then V is the direct sum of W_{1} and W_{2}.
Let us consider V, v, W_{1}, W_{2}. Let us assume that V is the direct sum of W_{1} and W_{2}. The functor $v_{\left\langle W_{1}, W_{2}\right\rangle}$ yields an element of (the carrier of V) \times (the carrier of V) and is defined as follows:
(Def. 20) $\quad v=\left(v_{\left\langle W_{1}, W_{2}\right\rangle}\right)_{\mathbf{1}}+\left(v_{\left\langle W_{1}, W_{2}\right\rangle}\right)_{\mathbf{2}}$ and $\left(v_{\left\langle W_{1}, W_{2}\right\rangle}\right)_{\mathbf{1}} \in W_{1}$ and $\left(v_{\left\langle W_{1}, W_{2}\right\rangle}\right)_{\mathbf{2}} \in$ W_{2}.
Next we state several propositions:
(136) If V is the direct sum of W_{1} and W_{2}, then $\left(v_{\left\langle W_{1}, W_{2}\right\rangle}\right)_{\mathbf{1}}=\left(v_{\left\langle W_{2}, W_{1}\right\rangle}\right)_{\mathbf{2}}$.
(137) If V is the direct sum of W_{1} and W_{2}, then $\left(v_{\left\langle W_{1}, W_{2}\right\rangle}\right)_{\mathbf{2}}=\left(v_{\left\langle W_{2}, W_{1}\right\rangle}\right)_{\mathbf{1}}$.
(138) Let V be a \mathbb{Z}-module, W be a submodule of V with linear complement, L be a linear complement of W, v be a vector of V, and t be an element
of (the carrier of V) $\times($ the carrier of $V)$. If $t_{\mathbf{1}}+t_{\mathbf{2}}=v$ and $t_{\mathbf{1}} \in W$ and $t_{\mathbf{2}} \in L$, then $t=v_{\langle W, L\rangle}$.
(139) Let V be a \mathbb{Z}-module, W be a submodule of V with linear complement, L be a linear complement of W, and v be a vector of V. Then $(v\langle W, L\rangle)_{1}+$ $\left.{ }^{(v}\langle W, L\rangle\right)_{2}=v$.
(140) Let V be a \mathbb{Z}-module, W be a submodule of V with linear complement, L be a linear complement of W, and v be a vector of V. Then $\left(v_{\langle W, L\rangle}\right)_{\mathbf{1}} \in W$ and $\left(v_{\langle W, L\rangle}\right)_{\mathbf{2}} \in L$.
(141) Let V be a \mathbb{Z}-module, W be a submodule of V with linear complement, L be a linear complement of W, and v be a vector of V. Then $\left(v_{\langle W, L\rangle}\right)_{\mathbf{1}}=$ $\left.{ }^{v}\langle L, W\rangle\right)_{2}$.
(142) Let V be a \mathbb{Z}-module, W be a submodule of V with linear complement, L be a linear complement of W, and v be a vector of V. Then $\left(v_{\langle W, L\rangle}\right)_{\mathbf{2}}=$ $\left.{ }^{(v}\langle L, W\rangle\right)_{1}$.
In the sequel A_{1}, A_{2}, B are elements of $\operatorname{Sub}(V)$.
Let us consider V. The functor SubJoin V yielding a binary operation on $\operatorname{Sub}(V)$ is defined by:
(Def. 21) For all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $($ SubJoin $V)\left(A_{1}, A_{2}\right)=W_{1}+W_{2}$.
Let us consider V. The functor SubMeet V yields a binary operation on $\operatorname{Sub}(V)$ and is defined by:
(Def. 22) For all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $($ SubMeet $V)\left(A_{1}, A_{2}\right)=W_{1} \cap W_{2}$.
One can prove the following proposition
(143) $\langle\operatorname{Sub}(V), \operatorname{SubJoin} V, \operatorname{SubMeet} V\rangle$ is a lattice.

Let us consider V. Note that $\langle\operatorname{Sub}(V)$, SubJoin V, SubMeet $V\rangle$ is lattice-like.
We now state several propositions:
(144) For every \mathbb{Z}-module V holds $\langle\operatorname{Sub}(V)$, SubJoin V, SubMeet $V\rangle$ is lowerbounded.
(145) For every \mathbb{Z}-module V holds $\langle\operatorname{Sub}(V)$, SubJoin V, SubMeet $V\rangle$ is upperbounded.
(146) For every \mathbb{Z}-module V holds $\langle\operatorname{Sub}(V)$, SubJoin V, SubMeet $V\rangle$ is a bound lattice.
(147) For every \mathbb{Z}-module V holds $\langle\operatorname{Sub}(V)$, SubJoin V, SubMeet $V\rangle$ is modular.
(148) Let V be a \mathbb{Z}-module and W_{1}, W_{2}, W_{3} be strict submodules of V. If W_{1} is a submodule of W_{2}, then $W_{1} \cap W_{3}$ is a submodule of $W_{2} \cap W_{3}$.
(149) Let V be a \mathbb{Z}-module and W be a strict submodule of V. Suppose that for every vector v of V holds $v \in W$. Then $W=$ the \mathbb{Z}-module structure
of V.
(150) There exists C such that $v \in C$.

4. Transformation of Abelian Group to \mathbb{Z}-module

Let A_{3} be a non empty additive loop structure. The left integer multiplication of A_{3} yielding a function from $\mathbb{Z} \times$ the carrier of A_{3} into the carrier of A_{3} is defined by the condition (Def. 23).
(Def. 23) Let i be an element of \mathbb{Z} and a be an element of A_{3}. Then
(i) if $i \geq 0$, then (the left integer multiplication of $\left.A_{3}\right)(i, a)=$ (Nat-mult-left $\left.A_{3}\right)(i, a)$, and
(ii) if $i<0$, then (the left integer multiplication of $\left.A_{3}\right)(i, a)=$ (Nat-mult-left $\left.A_{3}\right)(-i,-a)$.
The following propositions are true:
(151) Let R be a non empty additive loop structure, a be an element of R, i be an element of \mathbb{Z}, and i_{1} be an element of \mathbb{N}. If $i=i_{1}$, then (the left integer multiplication of $R)(i, a)=i_{1} \cdot a$.
(152) Let R be a non empty additive loop structure, a be an element of R, and i be an element of \mathbb{Z}. If $i=0$, then (the left integer multiplication of $R)(i, a)=0_{R}$.
(153) Let R be an add-associative right zeroed right complementable non empty additive loop structure and i be an element of \mathbb{N}. Then (Nat-mult-left $R)\left(i, 0_{R}\right)=0_{R}$.
(154) Let R be an add-associative right zeroed right complementable non empty additive loop structure and i be an element of \mathbb{Z}. Then (the left integer multiplication of $R)\left(i, 0_{R}\right)=0_{R}$.
(155) Let R be a right zeroed non empty additive loop structure, a be an element of R, and i be an element of \mathbb{Z}. If $i=1$, then (the left integer multiplication of $R)(i, a)=a$.
(156) Let R be an Abelian right zeroed add-associative right complementable non empty additive loop structure, a be an element of R, and i, j, k be elements of \mathbb{N}. If $i \leq j$ and $k=j-i$, then (Nat-mult-left $R)(k, a)=$ (Nat-mult-left $R)(j, a)-($ Nat-mult-left $R)(i, a)$.
(157) Let R be an Abelian right zeroed add-associative right complementable non empty additive loop structure, a be an element of R, and i be an element of \mathbb{N}. Then $-($ Nat-mult-left $R)(i, a)=($ Nat-mult-left $R)(i,-a)$.
(158) Let R be an Abelian right zeroed add-associative right complementable non empty additive loop structure, a be an element of R, and i, j be elements of \mathbb{Z}. Suppose $i \in \mathbb{N}$ and $j \notin \mathbb{N}$. Then (the left integer multipli-
cation of $R)(i+j, a)=($ the left integer multiplication of $R)(i, a)+($ the left integer multiplication of $R)(j, a)$.
(159) Let R be an Abelian right zeroed add-associative right complementable non empty additive loop structure, a be an element of R, and i, j be elements of \mathbb{Z}. Then (the left integer multiplication of $R)(i+j, a)=($ the left integer multiplication of $R)(i, a)+($ the left integer multiplication of $R)(j, a)$.
(160) Let R be an Abelian right zeroed add-associative right complementable non empty additive loop structure, a, b be elements of R, and i be an element of \mathbb{N}. Then (Nat-mult-left $R)(i, a+b)=($ Nat-mult-left $R)(i, a)+$ (Nat-mult-left $R)(i, b)$.
(161) Let R be an Abelian right zeroed add-associative right complementable non empty additive loop structure, a, b be elements of R, and i be an element of \mathbb{Z}. Then (the left integer multiplication of $R)(i, a+b)=($ the left integer multiplication of $R)(i, a)+($ the left integer multiplication of $R)(i, b)$.
(162) Let R be an Abelian right zeroed add-associative right complementable non empty additive loop structure, a be an element of R, and i, j be elements of \mathbb{N}. Then (Nat-mult-left $R)(i \cdot j, a)=$ (Nat-mult-left $R)(i,($ Nat-mult-left $R)(j, a))$.
(163) Let R be an Abelian right zeroed add-associative right complementable non empty additive loop structure, a be an element of R, and i, j be elements of \mathbb{Z}. Then (the left integer multiplication of $R)(i \cdot j, a)=($ the left integer multiplication of $R)(i,($ the left integer multiplication of $R)(j, a))$.
(164) Let A_{3} be a non empty Abelian add-associative right zeroed right complementable additive loop structure. Then 〈the carrier of A_{3}, the zero of A_{3}, the addition of A_{3}, the left integer multiplication of $\left.A_{3}\right\rangle$ is a \mathbb{Z}-module.

References

[1] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537541, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[5] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective (the international series in engineering and computer science). 2002.
[12] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.
[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[14] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, $1(1): 97-105,1990$.
[15] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[16] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[19] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received May 8, 2011

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 21240001.
 ${ }^{2}$ This work was supported by JSPS KAKENHI 22300285.

