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1 Introduction

M-theory is expected to unify all of our understandings on the nonperturbative effects of

string theory. Despite its importance, many aspects on this interesting theory await to be

understood. One of the most mysterious facts on M-theory is the degrees of freedom of the

branes. From the AdS/CFT correspondence, it is known [1] that N coincident M2-branes

(or M5-branes) have the degrees of freedom of order N3/2 (or N3, respectively). In the case

of D-branes in string theory, the worldvolume theory can be described by the super Yang-

Mills theory, which has the degrees of freedom N2. Compared with such a case, the field

theoretical realization on the branes in M-theory is still unclear.

Recently, there is a breakthrough [2] (along with its extension with fractional branes [3])

in understanding branes in M-theory, where it was proposed that the worldvolume theory

of M2-branes is described by the supersymmetric extension of the Chern-Simons theory.

Concretely speaking, the proposal states that N coincident M2-branes on the geometry

R8/Zk is described by the N = 6 Chern-Simons theory with gauge groups U(N)k×U(N)−k

and bifundamental matters A1,2, B1,2 forming the superpotential W = 2π
k

Tr(A1B1A2B2 −
A1B2A2B1) where the coupling constant is given by gs = 2πi

k
. The geometry R8/Zk in a

special case with k = 1 is nothing but the flat space, hence it is natural to expect that the

supersymmetry is enhanced to N = 8 in that case. It was then proposed that assuming

the existence of the monopole operator we can construct the N = 8 supersymmetry algebra

when k = 1, 2 [4, 5, 6, 7].

Subsequently, it was shown in [8] that the localization technique [9], which reduces the

partition function defined by infinite-dimensional path integral to a finite-dimensional matrix

model, is applicable to supersymmetric Chern-Simons theories. This matrix model has the

measure of the Chern-Simons type and many techniques from the Chern-Simons matrix

model such as [10] was utilized [11] to obtain not only the N3/2 behavior of the free energy

in the planar limit but also the shift of ’t Hooft coupling N
k
→ N

k
− 1

24
as expected from the

Euler coupling in the gravity dual [12].

Besides, it was also noticed that this matrix model is closely related to the topological

string theory on a local Calabi-Yau over the Hirzebruch surface F0 = P1 × P1. Using this

relation, we can study the higher genus contribution by borrowing a celebrated recursive re-

lation, the holomorphic anomaly equation [13], from the topological string theory. Following

interesting observations by [14], it was found in [15] that we obtain the Airy function after

summing up the contributions from all genus.

This result on the Airy function suggests some interesting relations to previous under-

standing on M-theory. In [16] it was noticed that the Airy function also appears in other
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context of M-theory as the wave-function of the universe. Further, the integral expression of

the Airy function Ai (z) =
∫
C
dt exp(−zt + t3

3
), which is a contour integral of an exponenti-

ated cubic term, looks similar to the partition function Z =
∫
DA exp(−S[A]) of the cubic

Chern-Simons action S[A]. Therefore, we are led to expect a deep relation among M-theory,

the Chern-Simons theory and the Airy function.

Another expectation from this result is its implication in understanding some of hidden

structures in the membrane theory. String theory originates from the Veneziano amplitude

in the dual resonance model, out of which the string worldsheet conformal symmetry was

realized. Similarly, one might expect to find some hidden symmetry out of this Airy function

and realize some structure for M-theory. An interesting hidden structure of this Airy function

was beautifully realized by [17]. It was shown that the partition function of M2-branes (as

well as its generalization with N = 3 supersymmetry) can be rewritten exactly into the

partition function of a Fermi gas system with the density matrix (related to Hamiltonian by

ρ = e−H)

ρ =
1√

2 cosh q
2

1

2 cosh p
2

1√
2 cosh q

2

, (1.1)

and, with the standard analysis of the statistical mechanics, we can reproduce the behavior

of N3/2 and Airy function easily. Very recently, it was further proposed in [18] that we

can generalize this formalism to the N = 2 case by introducing interactions to the Fermi

particles and in [19] that we can extend to the cases with Wilson loops.

This simple rederivation of the Airy function implies the importance of this Fermi gas

formulation. Since we have already a good control on the perturbative terms using the

statistical mechanical method, as a next step, we would like to proceed to the study of

this quantum mechanics extensively beyond the perturbation theory and to obtain some

non-perturbative information out of it.

Aside from its possible important message on M-theory, the mathematical structure in

this maximally supersymmetric theory seems very interesting. The supergravity analysis [20]

suggests the BPS condition is expressed by a continuous Toda equation and the Hamiltonian

of this Fermi gas system takes the form similar to the relativistic Toda theory [21, 22].

Therefore, it is natural to expect some kind of the exactly solvable structure in this theory.

Some of the exact results was found in [23].

We would like to make a first step towards the goal to compute the exact partition

function of the ABJM theory for arbitrary N and arbitrary Chern-Simons level k, and to

solve the eigenvalue equation of the corresponding Fermi gas system. Heading for this goal,

we have found some interesting exact results on this theory as we will report in this paper.

As we will see in the next section, the (grand) partition function of this Fermi gas system
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is computed by the trace of the power of the density matrix. The main difficulty resides in

the computation of convoluting the matrix element successively,

ρn(q0, qn) =

∫
dq1
2π

dq2
2π
· · · dqn−1

2π
ρ(q0, q1)ρ(q1, q2) · · · ρ(qn−1, qn). (1.2)

Following the previous work on the thermodynamic Bethe ansatz (TBA) equations [24, 25],

here we are able to express the matrix elements in terms of more basic vector quantities and

reducing the computation of convoluting matrices into that of convoluting vectors.

In addition, we have also attempted to reduce the integration by commuting the coordi-

nate q and the momentum p. We have found that, although the naive commutation relation

is anomalous, interestingly the additional term to the naive commutation relation can be ex-

pressed in terms of a projection operator |p = 0〉〈q = 0|. Using this relation, we can express

Tr ρn for odd n by some combinations of 〈q = 0|(2 cosh q/2)−1/2ρm(2 cosh q/2)1/2|p = 0〉. For

even n, we have found an interesting novel relation which separates the density matrix into

two parities.

We will mostly restrict ourselves to the maximally supersymmetric case k = 1. Most of

our following analysis goes straightforwardly to other values of k though a key relation will

only look simple for k = 1. The case k = 1 is particularly interesting from the viewpoint of

holography since the ABJM theory at k = 1 is conjectured to be dual to the M-theory on

AdS4 × S7 which is in the truly M-theoretic regime. The study of the ABJM matrix model

in the large N , finite k regime was initiated by [26] and further studied in [17] from the

Fermi gas approach. However, the approach of [17] is restricted to the perturbation around

k = 0. We would like to study the k = 1 case exactly.

As a result, we have computed the exact partition function Z(N) up to N = 9. We shall

summarize our results in the following,

Z(1) =
1

4
, Z(2) =

1

16π
,

Z(3) =
π − 3

26π
, Z(4) =

10− π2

210π2
,

Z(5) =
−9π2 + 20π + 26

212π2
, Z(6) =

36π3 − 121π2 + 78

214 · 32π3
,

Z(7) =
−75π3 + 193π2 + 174π − 126

216 · 3π3
, Z(8) =

1053π4 − 2016π3 − 4148π2 + 876

221 · 32π4
,

Z(9) =
5517π4 − 13480π3 − 15348π2 + 8880π + 4140

223 · 32π4
, (1.3)

Surprisingly, all of these results are written in terms of polynomials of π−1 with rational

coefficients.

This paper is organized as follows. In Section 2, we present our general procedure to

compute the grand partition function. Applying the lemma of Tracy-Widom [24], we first
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show that the power of density matrix ρn(q, q′) is written in terms of a set of functions of one

variable. We also show that the eigenvalue problem of ρ is reduced to the diagonalization of

a certain Hankel matrix. In Section 3, we find that the commutation relation of (2 cosh q
2
)−1

and (2 cosh p
2
)−1 appearing in ρ contains an anomalous term, which can be expressed by a

insertion of projection operator. Then we show that such anomalous commutation relation

leads to a nontrivial relation of the grand partition function. In Section 4, using our general

method, we compute exactly the first few terms of the Taylor expansion of the grand partition

function at k = 1. These are nothing but the partition functions Z(N). Along the way, we

find a non-trivial equation relating the even part and odd part of density matrix. In Section

5, some numerical results are given. We consider the TBA-type integral equation proposed

in [25] to compute Tr ρn. These integral equations are powerful in the numerical analysis.

We also study the numerical solutions of the eigenvalue problem of the Fermi gas system. In

Section 6, we compare our results with the known perturbative results of the ABJM matrix

model and find a good agreement with the Airy function even for small N . We study the

non-perturbative corrections to the free energy, and find numerical evidence that the leading

correction scales as e−2π
√
2N . We also consider the expectation value of N in the grand

canonical ensemble. We find that the numerical computation using TBA-like equations

smoothly interpolates our exact results and the perturbative results. Finally, we conclude

in Section 7 with discussions and future directions. Appendices A, B and C contain some

details of the computations skipped in the text.

2 Grand partition function of ABJM theory

The aim of this section is to present a general prescription which is helpful for computing

the grand partition function of the ABJM theory. The concrete computation based on the

method given here will be presented in Section 4.

Let us start by reviewing the Fermi gas formalism developed in [17]. By using the

localization, the partition function of the ABJM theory on S3 is written as the matrix

integral

Z(N) =
1

N !2

∫
dNµ

(2π)N
dNν

(2π)N

∏
i<j[2 sinh(

µi−µj
2

)]2[2 sinh(
νi−νj

2
)]2∏

i,j[2 cosh(
µi−νj

2
)]2

exp

[
ik

4π

N∑
i=1

(µ2
i − ν2i )

]
.

(2.1)

Applying the Cauchy identity to the measure factor and performing the Gaussian integral
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over µi, νi, this partition function is recast into the “mirror” expression [27, 23, 17]

Z(N) =
1

2NN !

∫
dNq

(2πk)N

∏
i

1

2 cosh qi
2

∏
i<j

tanh2 qi − qj
2k

. (2.2)

The key idea of [17] is to rewrite it as the partition function of an ideal Fermi gas

Z(N) =
1

N !

∑
σ∈SN

(−1)ε(σ)
∫

dNq

(2πk)N

N∏
i=1

ρ(qi, qσ(i)), (2.3)

where

ρ(q1, q2) =
1

(2 cosh q1
2

)1/2
· 1

2 cosh( q1−q2
2k

)
· 1

(2 cosh q2
2

)1/2
, (2.4)

is understood as the density matrix of this Fermi gas system. Since the sum over permuta-

tions in (2.3) can be also written as a sum over conjugacy classes of the permutation group,

it is convenient to consider the grand partition function

Ξ(z) = 1 +
∞∑
N=1

Z(N)zN , (2.5)

where z = eµ is the fugacity and µ is the chemical potential. In our analysis, it is important

to notice that the grand partition function has the following form

Ξ(z) = exp

[
−
∞∑
n=1

(−z)n

n
Tr ρn

]
, (2.6)

where Tr ρn is defined by

Tr ρn =

∫ ∞
−∞

dq1
2πk
· · · dqn

2πk
ρ(q1, q2)ρ(q2, q3) · · · ρ(qn, q1). (2.7)

It is easy to see that Ξ(z) can be expressed as the Fredholm determinant of the kernel ρ 1

Ξ(z) = det(1 + zρ). (2.8)

Once the grand partition function is known, one can obtain the partition function by per-

forming the contour integral

Z(N) =

∮
dz

2πi

Ξ(z)

zN+1
. (2.9)

1A similar analysis of the grand partition function of other matrix models has been appeared in [28, 29, 30].
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For later analysis, it is convenient to divide the density matrix into two parts. Since the

density matrix ρ(q1, q2) is parity-preserving: ρ(−q1,−q2) = ρ(q1, q2), we decompose it into

the parity even and odd parts

ρ(q1, q2) = ρ+(q1, q2) + ρ−(q1, q2), ρ±(q1, q2) =
ρ(q1, q2)± ρ(q1,−q2)

2
. (2.10)

By definition, ρ±(q1,−q2) = ±ρ±(q1, q2), and thus all the matrix elements of the product

ρ+ρ− vanish:

(ρ+ρ−)(q1, q2) =

∫ ∞
−∞

dq

2π
ρ+(q1, q)ρ−(q, q2) = 0. (2.11)

This means that Tr ρn splits into two parts,

Tr ρn = Tr ρn+ + Tr ρn−. (2.12)

and the grand partition function is factorized into

Ξ(z) = Ξ+(z)Ξ−(z), (2.13)

where

Ξ+(z) = det(1 + zρ+), Ξ−(z) = det(1 + zρ−). (2.14)

As we will see later, such a decomposition of the density matrix plays an important role in

the analysis of the grand partition function.

2.1 Method to compute the grand partition function

Now let us consider the computation of the grand partition function. As can be seen from

(2.6), we can compute the grand partition function if we know Tr ρn. To compute the

partition function Z(N), in particular, we need Tr ρn (1 ≤ n ≤ N). However it is technically

difficult to directly compute Tr ρn (or the matrix element ρn(q1, q2)) because it is given by

the multi-variable integral as in (2.7) (or (1.2)). To overcome this difficulty, we here use the

technique proposed in [24], which enables us to compute ρn(q1, q2) from a series of functions

of one variable. This technique can be applicable to a wide class of the kernels with the form

K(q1, q2) =
E(q1)E(q2)

M(q1) +M(q2)
. (2.15)

Here we apply it to the kernels ρ±. Below we concentrate our attention to k = 1 for simplicity.

It is straightforward to generalize the method here to general k ≥ 2.
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The important point is that two matrices ρ±(q1, q2) have the following forms2

ρ±(q1, q2) =
E±(q1)E±(q2)

cosh q1 + cosh q2
, (2.16)

where

E+(q) =
cosh q

2√
2 cosh q

2

, E−(q) =
sinh q

2√
2 cosh q

2

. (2.17)

We can apply Lemma 1 in [24] to (2.16). It is shown that (the generating functions of) the

density matrices are given by[
zρ±

1− z2ρ2±

]
(q1, q2) =

Q±(q1)Q±(q2)− P±(q1)P±(q2)

cosh q1 + cosh q2
, (2.18)[

z2ρ2±
1− z2ρ2±

]
(q1, q2) =

Q±(q1)P±(q2)− P±(q1)Q±(q2)

cosh q1 − cosh q2
, (2.19)

where

P±(q) =

∫
dq′

2π

[
zρ±

1− z2ρ2±

]
(q, q′)

√
zE±(q′), Q±(q) =

∫
dq′

2π

[
1

1− z2ρ2±

]
(q, q′)

√
zE±(q′).

(2.20)

If we expand P±(q) and Q±(q) as

P±(q) =
√
zE±(q)

∞∑
k=0

z2k+1φ2k+1
± (q), Q±(q) =

√
zE±(q)

∞∑
k=0

z2kφ2k
± (q), (2.21)

where

φk±(q) =
1

E±(q)

∫
dq′

2π
ρk±(q, q′)E±(q′), (2.22)

then (2.18) and (2.19) indicate that the density matrices are given by

ρ2n+1
± (q1, q2) =

E±(q1)E±(q2)

cosh q1 + cosh q2

2n∑
k=0

(−1)kφk±(q1)φ
2n−k
± (q2), (2.23)

ρ2n± (q1, q2) =
E±(q1)E±(q2)

cosh q1 − cosh q2

2n−1∑
k=0

(−1)kφk±(q1)φ
2n−1−k
± (q2). (2.24)

2Note that

ρ(q1, q2) =
e

1
2 q1√

2 cosh q1
2

1

eq1 + eq2
e

1
2 q2√

2 cosh q2
2

=
e−

1
2 q1√

2 cosh q1
2

1

e−q1 + e−q2
e−

1
2 q2√

2 cosh q2
2

itself is also of this class.
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These are the key relations in our analysis later. These results show that the matrix elements

ρn±(q1, q2) are determined algebraically by the functions φk±(q) (k = 0, . . . , n − 1) of one

variable respectively. Therefore our problem reduces to finding φk±(q), which is much simpler

than the original one of finding ρn±(q1, q2) themselves.

For the determination of φk±(q), as discussed in Appendix A, we can show that φk±(q)

satisfy the following recurrence relations

φk+(q) = cq

∫ ∞
−∞

dq′

2π
cq−q′φ

k−1
+ (q′), φk−(q) = cq

∫ ∞
−∞

dq′

2π
cq−q′t

2
q′φ

k−1
− (q′). (2.25)

Throughout this paper, we often use the notations

cq =
1

2 cosh q
2

, sq =
1

2 sinh q
2

, tq = tanh
q

2
. (2.26)

From (2.25) with the initial condition φ0
±(q) = 1, one can recursively fix φk±(q). In Section

4, we will indeed determine the first few φk±(q) by using these recurrence relations.

Let us summarize our general prescription to compute the grand partition function. We

first determine φk±(q) by using (2.25). Then from (2.23) and (2.24), we find the matrix

elements ρn±(q1, q2). Computing Tr ρn± from such expressions, we obtain the grand partition

function through (2.6) and (2.12).

2.2 Eigenvalue problem and Hankel matrix representation

In the previous subsection, we considered Tr ρn to know the grand partition function. There

is another approach to analyze it. The grand partition function can be expressed in terms

of the eigenvalues of the density matrix ρ,

Ξ(z) = det(1 + zρ) =
∞∏
n=0

(1 + zλn), (2.27)

where λn is the n-th eigenvalue of ρ with decreasing order λ0 ≥ λ1 ≥ · · · . Thus if we can

solve the eigenvalue problem of ρ, we obtain Ξ(z). The eigenvalue equation is given by the

homogeneous Fredholm integral equation of the second kind∫ ∞
−∞

dq′

2π
ρ(q, q′)Ψ(q′) = λΨ(q). (2.28)

It is, of course, hard to solve this equation, but we can rewrite it as the eigenvalue equation

for an infinite dimensional Hankel matrix M whose matrix elements are given by

Mnm =
1

8πk

∫ ∞
−∞

dq
tanhn+m( q

2k
)

cosh( q
2
) cosh2( q

2k
)

=
1

4π

∫ 1

−1
dt

tn+m

Tk(1/
√

1− t2)
, (2.29)
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where Tk(x) is the k-th Chebyshev polynomial of the first kind. This representation is useful

in our later analysis.

To rewrite the eigenvalue equation, let us first expand the kernel (2.4) into

ρ(q1, q2) =
∞∑
n=0

ρn(q1)ρn(q2), (2.30)

where

ρn(q) =
tanhn( q

2k
)

2
√
k cosh( q

2
) cosh( q

2k
)
. (2.31)

Since ρn(−q) = (−1)nρn(q), the decomposition (2.10) indicates that ρ± are respectively

expressed as

ρ+(q1, q2) =
∞∑
n=0

ρ2n(q1)ρ2n(q2), ρ−(q1, q2) =
∞∑
n=0

ρ2n+1(q1)ρ2n+1(q2) (2.32)

Plugging (2.30) into (2.28), we obtain

∞∑
n=0

vnρn(q) = λΨ(q), (2.33)

where

vn =

∫ ∞
−∞

dq

2π
ρn(q)Ψ(q). (2.34)

Substituting (2.33) back to (2.34), we find

∞∑
m=0

Mnmvm = λvn, (2.35)

where the matrix elements of M are given by (2.29). The equation (2.35) formally shows

that all the eigenvalues of ρ are also the eigenvalues of the infinite dimensional matrix M .

The matrix elements Mnm depend only on n + m, and such matrices are called Hankel

matrices. For the present case, it is obvious that Mnm = 0 if n + m is odd. Namely, this

Hankel matrix M has the following form

M =



m0 0 m1 0 m2 0 · · ·
0 m1 0 m2 0 m3

m1 0 m2 0 m3 0

0 m2 0 m3 0 m4

m2 0 m3 0 m4 0
...

. . .


. (2.36)
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We shall call such a matrix a parity-preserving Hankel matrix. As can be seen easily, the

parity-preserving Hankel matrix can be decomposed into two blocks of Hankel matrices with

opposite parity

M+ =


m0 m1 m2 · · ·
m1 m2 m3

m2 m3 m4

...
. . .

 , M− =


m1 m2 m3 · · ·
m2 m3 m4

m3 m4 m5

...
. . .

 . (2.37)

These two Hankel matrices are related by

M− = M+T− = T+M+, (2.38)

with the shift matrix (T±)mn = δm±1,n. The eigen-spaces of M also decompose into the direct

product of the eigen-spaces of M±.

For k = 1, Mnm has the following very simple form (n+m: even)

M (k=1)
nm =

Cn+m
2

2n+m+3
, (2.39)

where Cn is the Catalan number

Cn =
(2n)!

(n+ 1)!n!
. (2.40)

For k = 2, we find (n+m: even)

M (k=2)
nm =

1

8π

[
− 2

n+m+ 1
+ ψ

(
n+m+ 3

4

)
− ψ

(
n+m+ 1

4

)]
, (2.41)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function.

After seen the simple Hankel matrix representation, before closing this subsection, now

let us express various quantities appearing in the previous subsection in terms of this Hankel

matrix M . Since the matrix M and the density matrix ρ share the same set of eigenvalues

assuming a certain regularity condition, it is obvious that TrMn is equal to Tr ρn for any n,

thus the grand partition function is given by

Ξ(z) = det(1 + zM). (2.42)

Repeating the same argument above, one finds that the eigenvalue problems for ρ± are

mapped to those for the Hankel matrices M±, respectively. Let λ±,n (n = 0, 1, 2, . . . ) be the

n-th (ordered) eigenvalue of the density matrix ρ±. Then, we find

Ξ+(z) =
∞∏
n=0

(1 + zλ+,n) = det(1 + zM+),

Ξ−(z) =
∞∏
n=0

(1 + zλ−,n) = det(1 + zM−). (2.43)

10



We observe from the numerical evaluations (see Section 5.3) that the eigenvalues of ρ± satisfy

the inequality

λ+,0 > λ−,0 > λ+,1 > λ−,1 > λ+,2 > λ−,2 > · · · , (2.44)

which means the following relations

λ+,n = λ2n, λ−,n = λ2n+1. (2.45)

Also, φk+(q) and its Fourier transformation φ̃k+(p)

φ̃k+(p) =

∫
dq

2π
e−

i
2π
pqφk+(q). (2.46)

can be expressed in terms of M as

1

4
c−2q φk+(q) =

∞∑
m,n=0

t2nq (Mk
+)nm, 2c−1q φ̃k+(q) =

∞∑
n=0

t2nq (Mk−1
+ )n0. (2.47)

where tq = tanh(q/2). The derivation of these representations will be given in Appendix B.

2.3 Representation in Chebyshev basis

In the previous subsection, we have found an interesting Hankel matrix representation for

the density matrix ρ(q1, q2). It is natural to wonder whether there is an orthonormal basis

in which the density matrix ρ(q1, q2) is represented by this Hankel matrix. We will show in

this subsection that the Hankel matrix M is closely related to the density matrix in a basis

constructed by the Chebyshev polynomials.

Motivated by the expansion (2.30), let us introduce the following function

〈q|n〉 =

√
2Un(tanh( q

2
))

cosh3/2( q
2
)

, (2.48)

where Un(x) is the Chebyshev polynomial of the second kind and its appearance originates

from the orthonomality of the basis {|n〉}∞n=0,

〈m|n〉 =

∫ ∞
−∞

dq

2π

√
2Um(tanh( q

2
))

cosh3/2( q
2
)

√
2Un(tanh( q

2
))

cosh3/2( q
2
)

= δmn. (2.49)

Then, the density matrix in this basis, Mρ
n1n2

= 〈n1|ρ|n2〉, is given by

Mρ
n1n2

=

∫
dq1
2π

dq2
2π
〈n1|q1〉〈q1|ρ|q2〉〈q2|n2〉 =

∞∑
n=0

∫
dq1
2π
〈q1|n1〉ρn(q1)

∫
dq2
2π
〈q2|n2〉ρn(q2).

(2.50)
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where we have used the expansion (2.30). Let B be the matrix for the basis change from

Chebyshev polynomials to monomials

tn =
∞∑
m=0

BnmUm(t). (2.51)

The explicit form of the non-vanishing matrix element Bnm is given by

Bnm =
1

2n
m+ 1

n+ 1

(
n+ 1

(n−m)/2

)
, (2.52)

when n+m is even and n ≥ m. Since one can check∫
dq1
2π
〈q1|n1〉ρn(q1) =

∑
m

Bnm

∫
dq1
2π

Un1(tanh( q1
2

))Um(tanh( q1
2

))
√

2 cosh3( q1
2

)
=

1

2
√

2
Bnn1 , (2.53)

the matrix element Mρ
n1n2

is given by

Mρ
n1n2

=
1

8

∞∑
n=0

Bnn1Bnn2 =
1

8
(BTB)n1n2 . (2.54)

On the other hand, the Hankel matrix M for k = 1 is written as

Mn1n2 =
1

8π

∫
dq

tanhn1+n2( q
2
)

cosh3( q
2
)

=
1

8π

∑
m1,m2

Bn1m1Bn2m2

∫
dq
Um1(tanh( q

2
))Um2(tanh( q

2
))

cosh3( q
2
)

=
1

8
(BBT )n1n2 . (2.55)

In summary, the Hankel matrix M and the density matrix Mρ in the Chebyshev basis are

written as

M =
1

8
BBT , Mρ =

1

8
BTB. (2.56)

These two matrices are isospectral, i.e., they have the same set of eigenvalues (assuming a

certain regularity condition)

Mv = λv ⇔ Mρv′ = λv′, v′ = BTv. (2.57)

Note that Mρ is not a Hankel matrix while M is so.

3 Algebraic treatment

Here we consider an algebraic treatment of our Fermi gas system. Note that the matrix

element in the position representation (2.4)

ρ(q1, q2) = 〈q1|ρ̂|q2〉, (3.1)
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comes from a one-dimensional quantum mechanical system with the operator ρ̂ expressed in

terms of the coordinate q̂ and the momentum p̂ as

ρ̂ =
√
cq̂cp̂
√
cq̂. (3.2)

Below we focus on the k = 1 case. Let us summarize our convention for the phase space

used in this paper, which is especially clean for k = 1. The commutation relation of q̂ and

p̂ is given by

[q̂, p̂] = 2πi. (3.3)

The normalization of the bases |q〉 and |p〉 is as follows:

〈q|q′〉 = 2πδ(q − q′), 〈p|p′〉 = 2πδ(p− p′), 〈q|p〉 = e
i
2π
pq. (3.4)

Therefore the projectors are normalized as

1 =

∫ ∞
−∞

dq

2π
|q〉〈q| =

∫ ∞
−∞

dp

2π
|p〉〈p|. (3.5)

Hereafter, we suppress the hats on operators for simplicity. Note that the matrix elements

of cp and sp in the position representation are

〈q1|cp|q2〉 = cq1−q2 , 〈q1|sp|q2〉 =
i

2
tanh

(
q1 − q2

2

)
. (3.6)

Using the bra-ket notation, the matrix elements of ρn are given by

ρn(q1, q2) = 〈q1|(
√
cqcp
√
cq)

n|q2〉 =

√
cq1
cq2
〈q1|(cpcq)n|q2〉. (3.7)

Since Tr ρn = Tr[(cpcq)
n] = Tr[(cqcp)

n] from this equation, the grand partition function is

also written as

Ξ(z) = det(1 + zcpcq) = det(1 + zcqcp). (3.8)

3.1 Anomalous terms in commutation relations

As explained around (1.2), the difficulty in computing Tr ρn consists in the multi-dimensional

integral. In the operator representation, it can also be stated as the difficulty in the inte-

gration over the multi-dimensional phase space. Therefore, we would like to reduce the

dimension.
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If we know the commutation relation between cp and cq, we can reduce the dimension of

the phase space involved. As is seen here, one should be careful to derive the commutation

relation. From the operator identity

2 cosh
q

2
· 2 cosh

p

2
= i · 2 sinh

p

2
· 2 sinh

q

2
, (3.9)

one would naively expect

1

2 cosh p
2

· 1

2 cosh q
2

?
= −i · 1

2 sinh q
2

· 1

2 sinh p
2

. (3.10)

However this is not the case. There is an anomalous term in this commutation relation. To

see this, let us consider the matrix element of the difference between both sides of (3.10)

〈q1|
1

2 cosh p
2

· 1

2 cosh q
2

|q2〉 = −i〈q1|
1

2 sinh q
2

· 1

2 sinh p
2

|q2〉+
1

4 sinh q1
2

tanh
q2
2
. (3.11)

If we introduce a projection operator |p = 0〉〈q = 0| =: |0p〉〈0q| satisfying (|0p〉〈0q|)2 =

|0p〉〈0q|, we can express the relation as

cpcq = −isqΠsp, Π = 1− |0p〉〈0q|, (3.12)

at the operator level. Similarly, we find

cqcp = ispΠ
†sq, Π† = 1− |0q〉〈0p|. (3.13)

Using the commutation relations (3.12) and (3.13), we can calculate Tr ρn correctly. Let

us see the computation of Tr ρ2 as a simple example:

Tr ρ2 = Tr(cpcqcpcq) = −iTr(sqΠspcpcq) = −iTr(s2qΠs2p), (3.14)

where we have used sqcq = s2q. Since Π = 1− |0p〉〈0q|, (3.14) is further rewritten as

Tr ρ2 = −i
∫
dqdp

(2π)2
s2qs2p + i

∫
dq

2π
〈q|s2q|0p〉〈0q|s2p|q〉. (3.15)

The first term vanishes because the integrand is an odd function. The second term is

evaluated as

i

∫
dq

2π
〈q|s2q|0p〉〈0q|s2p|q〉 =

1

4

∫
dq

2π
cqc

2
q/2. (3.16)

where 〈q|s2q|0p〉 = s2q and 〈0q|s2p|q〉 = −(i/4) tanh(q/4). Therefore we obtain

Tr ρ2 =
π − 2

16π
. (3.17)
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One can easily check that the same result is reproduced by a brute force integration using

(2.7). In the above computation, it is obvious that the anomalous term in the commutation

relation is crucial to obtain the correct answer. In principle, we can compute Tr ρn by

using the relations (3.12) and (3.13) repeatedly instead of doing multi-integral. In practice,

however, the computation becomes very complicated as n grows. One advantage to consider

the algebraic treatment is to give us some non-trivial implications for the grand partition

function as we see in the next subsection.

3.2 Implications for the grand partition function

In the previous subsection, we originally intended to reduce the dimensions of the phase

space integration by commuting the coordinate q and the momentum p. Though this was

not successful because of an anomaly term, the anomaly term is controlable and gives us

an algebraic method to compute Tr ρn. In this subsection, we would like to discuss a more

important implication.

Using (3.13) and (3.12), it is not difficult to show

Tr(cqcpΠ)n = in Tr(spΠ
†sqΠ)n = in Tr(Π†sqΠsp)

n = i2n Tr(Π†cpcq)
n. (3.18)

Since Tr(cqcpΠ)n is real, this should be equal to its conjugate Tr(Π†cpcq)
n. The observation

(3.18) shows that, if the power n is odd, we have Tr(cqcpΠ)n = 0 which implies that,

by expanding Π = 1 − |0p〉〈0q|, Tr ρn = Tr(cqcp)
n can be expressed in terms of a certain

combination of 〈0q|(cqcp)m|0p〉. The easiest way to incorporate the combinatorics correctly

is as follows.

Let us consider the determinant Ξ1(z) = det(1 + zcpΠcq). This determinant is rewritten

as

Ξ1(z) = det
(

1 + zcpcq −
z

4
|0p〉〈0q|

)
, (3.19)

where we have used cq|0q〉 = (1/2)|0q〉. This determinant is formally written as

Ξ1(z) = det(1 + zcpcq) det

(
1− z

4

1

1 + zcpcq
|0p〉〈0q|

)
. (3.20)

The first factor is just the grand partition function Ξ(z), and (the logarithm of) the second

factor is evaluated as

log det

(
1− z

4

1

1 + zcpcq
|0p〉〈0q|

)
= −Tr

∞∑
n=1

1

n

(
z

4

1

1 + zcpcq
|0p〉〈0q|

)n
. (3.21)
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Due to the insertion of the projection operator, the last equation is drastically simplified

−
∞∑
n=1

1

n

(z
4

)n(
〈0q|

1

1 + zcpcq
|0p〉
)n

= log

(
1− z

4
〈0q|

1

1 + zcpcq
|0p〉
)
. (3.22)

Therefore the relation (3.20) becomes

Ξ1(z) = Ξ(z)G(−z), (3.23)

where we have introduced the new function G(z) by

G(z) = 1 +
z

4
〈0q|

1

1− zcpcq
|0p〉 = 〈0q|

1

1− zcqcp
|0p〉. (3.24)

Let us show that Ξ1(z) is invariant under z → −z. Using the commutation relations

(3.13) and (3.12), we have

Ξ1(z) = det(1 + zΠcqcp) = det(1 + zΠispΠ
†sq) = det(1− zcpcqΠ†). (3.25)

Since Ξ1(z) is a real function for z ∈ R, this implies

Ξ1(z) = det
(
1− z(cpcqΠ

†)†
)

= det(1− zΠcqcp) = Ξ1(−z). (3.26)

Plugging (3.23) into (3.26), we find a relation

Ξ(z)

Ξ(−z)
=

G(z)

G(−z)
. (3.27)

Now note that the left hand side is nothing but (the square of) the grand partition function

with odd power terms. More explicitly, let us divide Ξ(z) into two parts

Ξ(z) = Ξodd(z)Ξeven(z), (3.28)

where

Ξodd(z) = exp

[
−
∞∑
n=1

(−z)2n−1

2n− 1
Tr ρ2n−1

]
, Ξeven(z) = exp

[
−
∞∑
n=1

(−z)2n

2n
Tr ρ2n

]
. (3.29)

By construction, one easily finds

Ξodd(−z) =
1

Ξodd(z)
, Ξeven(−z) = Ξeven(z). (3.30)

Then, (3.27) shows

Ξodd(z)2 =
Ξ(z)

Ξ(−z)
=

G(z)

G(−z)
. (3.31)
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Using this relation, we can compute Tr ρ2n+1 from G(z). As we will see in the next section,

the function G(z) also has an important meaning for the even power terms, which connects

the two determinants Ξ+(z) and Ξ−(z) defined in the previous subsection.

After introducing the bra-kets such as 〈0p|, we can simplify various definitions and rela-

tions appearing previously. Using the bra-ket notations, the functions φk+(q) and φ̃k+(q) are

expressed as

φk+(q) = 〈q|(cqcp)k|0p〉, φ̃k+(q) = 〈q|(cpcq)k|0q〉. (3.32)

It is easily shown that φk+(q) satisfies the recurrence relation (2.25)

φk+(q) =

∫
dq′

2π
〈q|cqcp|q′〉〈q′|(cqcp)k−1|0p〉 = cq

∫
dq′

2π
cq−q′φ

k−1
+ (q′). (3.33)

Similarly, φ̃k+(q) also satisfies the recurrence relation

φ̃k+(q) =

∫
dq′

2π
cq−q′cq′φ̃

k−1
+ (q′). (3.34)

Finally let us comment on some useful algebraic relations steming from (2.23) and (2.24)

by setting one of the coordinate to zero. First, comparing (3.32) with (3.7), one finds the

relation between ρk and φ̃k+

ρk(q, 0) =
√

2cqφ̃
k
+(q). (3.35)

Since ρk−(q, 0) = 0 for k ≥ 1, ρk(q, 0) = ρk+(q, 0) holds. Secondly, by definition of G(z), the

expansion of G(z) is given by

G(z) =
∞∑
n=0

gnz
n, gn = 〈0q|(cqcp)n|0p〉. (3.36)

From (3.32) and (3.36), one immediately finds

φk+(0) = gk. (3.37)

Thus, with (3.35) and (3.37), (2.23) and (2.24) imply novel relations between φk+(q) and

φ̃k+(q)

φ̃2n+1
+ (q) =

1

4 cosh( q
2
)

2n∑
k=0

(−1)kφk+(q)g2n−k, (3.38)

φ̃2n
+ (q) =

cosh( q
2
)

4 sinh2( q
2
)

2n−1∑
k=0

(−1)kφk+(q)g2n−1−k. (3.39)

Recall that φk+(q) and φ̃k+(q) are related through the Fourier transformation originally.

17



4 Exact results

In this section, we give some exact results for the grand partition function at k = 1. After

the study of the algebraic treatment in the previous section, our strategy to compute Tr ρn

explained in Section 2 is improved. There are three steps to know Tr ρn. We first fix φk±(q)

by using the recurrence relations (2.25). We then compute Tr ρn separately for odd n and

for even n. The computation of Tr ρ2n+1 reduces to the problem to compute the expansion

coefficients gn of G(z), which are fixed by φk+(q). For the computation of Tr ρ2n, on the

other hand, we use the formula (2.24). From this prescription, we have determined the exact

partition functions of the ABJM theory at k = 1 up to N = 9.

4.1 Exact partition functions

Let us start by determining φk±(q). Since the integral equations (2.25) have the convolution

integral, the Fourier transformation is useful to solve (2.25). Let us consider φk+(q). The

initial condition is φ0
+(q) = 1. One can trivially find φ1

+(q) = cq/2. Using the Fourier

transformation, the convolution between cq and φ1
+(q) can be evaluated as∫

dq′

2π
cq−q′φ

1
+(q′) =

1

2

∫
dp

2π
e
i
2π
pqc2p =

1

4π
qsq, (4.1)

where we have used the formula

cp =

∫
dq

2π
e−

i
2π
pqcq. (4.2)

Thus we obtain φ2
+(q) = qs2q/(4π). Iterating this method, we can fix φk+(q) recursively. We

list the explicit forms of the first seven functions below

φ0
+(q) = 1, φ1

+(q) =
1

2
cq, φ2

+(q) =
1

4π
qs2q, φ3

+(q) =
1

16π
cq(πcq − 2qs2q),

φ4
+(q) =

1

128π2

(
4q2s22q + π2(cq − c2q − c2q/2)

)
,

φ5
+(q) =

1

256π2
cq
(
4q2s22q + 4πcq(qs2q + 1)− π2(3c2q + c2q/2)

)
,

φ6
+(q) =

1

384π3
q3s3qc

3
q +

1

512π
qsqc

3
q(1 + 4c2q/2)−

1

1536π
(16c3q + 2c2q + cq − c2q/2)

+
1

24π
(qsq − 1)s2qc

3
q +

1

1024
c2q(1 + 2cq). (4.3)
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Similarly φk−(q) is also fixed. The explicit forms for 0 ≤ k ≤ 6 are given by

φ0
−(q) = 1, φ1

−(q) =
1

2
c2q/2, φ2

−(q) =
1

4π
cq(qsq − πc2q/2),

φ3
−(q) =

1

16π
s2q
(
4− 2qsq(1 + 2cq)− π(1− 2cq)

)
,

φ4
−(q) =

1

32π2
q2s22q +

1

32π
s2q
(
4(1− cq)− 2qs2q(1 + 2cq)

)
− 1

128
cqc

2
q/2(6cq + 5),

φ5
−(q) =

1

64π2
(q2s2qc

2
qc

2
q/2 + 8qs3qc

2
q + 4qsqc

2
qc

2
q/2 − 2s2q)

+
1

64π
(−4qs3qc

2
q − qsqc2qc2q/2 + 3s2q − 4s2qcq)

+
1

256
s2q/2(12c2qc

4
q/2 + 8cqc

4
q/2 + 5c4q/2 − 3c2q/2),

φ6
−(q) =

1

384π3
q3s3qc

3
q +

1

128π2
(−q2s2qc3qc2q/2 + 8qs3qc

3
q + 4qsqc

3
qs

2
q/2 + 4qsqc

3
q

+ 156c3qc
2
q/2 + 26c2qc

2
q/2 − 24c3q − 4c2q + 456s2qc

3
q − 120c3qs

2
q/2)

+
1

1536π
(288s4qc

2
q − 72s4q + 52qs3qc

3
q − 12qs3qc

2
q − 15qs3qcq + 160s2qc

2
q − 36s2qcq + 20c2q)

+
1

1024
(−32s2qc

3
qc

2
q/2 + 224s2qc

3
q − 54c3qs

2
q/2 + 72c3qc

2
q/2 + 12c2qc

2
q/2 − 6c3q − c2q). (4.4)

Now we proceed to computing Tr ρ2n+1. For this purpose, let us start by computing

gn = 〈0q|(cqcp)n|0p〉. It is easy to see that gn has the following integral form

gn =

∫
dq

2π
〈0q|(cqcp)m|q〉〈q|(cqcp)n−m|0p〉 =

∫
dq

2π
φ̃m+ (q)φn−m+ (q). (4.5)

Note that gn obviously does not depend on the insertion position m (m = 0, · · · , n), thus

we can choose it handily. If m = 0 is chosen, we obtain (3.37) because of φ̃0
+(q) = 2πδ(q).

Using the results (4.3), we find the first fourteen values of gn

g0 = 1, g1 =
1

4
, g2 =

1

8π
, g3 =

π − 2

64π
, g4 =

1

27π2
, g5 =

−π2 + 3π + 1

29π2
,

g6 =
9π3 − 28π2 + 6

211 · 32π3
, g7 =

−45π3 + 92π2 + 162π − 12

214 · 32π3
,

g8 =
18π3 − 56π2 + 3

215 · 32π4
, g9 =

72π4 − 219π3 − 74π2 + 162π + 3

217 · 32π4
,

g10 =
−2475π5 + 5484π4 + 7650π3 − 1400π2 + 30

219 · 32 · 52π5
,

g11 =
4950π5 − 8684π4 − 22725π3 + 1700π2 + 6075π − 30

222 · 32 · 52π5
,

g12 =
2025π6 − 57150π4 + 118312π4 + 132300π3 − 8400π2 + 90

223 · 34 · 52π6
,

g13 =
−168075π6 + 493668π5 + 273112π4 − 522450π3 − 9750π2 + 65610π + 90

225 · 34 · 52π6
. (4.6)
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These lead to the exact value of Tr ρ2n+1 from (3.31)

Tr ρ =
1

4
, Tr ρ3 =

π − 3

16π
, Tr ρ5 =

10− π2

256π2
,

Tr ρ7 =
−27π3 + 49π2 + 126π − 42

210 · 32π3
, Tr ρ9 =

5π4 − 20π2 − 96π + 12

215π4
,

Tr ρ11 =
4725π5 − 6303π4 − 25300π3 − 12100π2 + 23100π − 660

217 · 32 · 52π5
,

Tr ρ13 =
−30375π6 + 10114π4 + 655200π3 + 978900π2 − 561600π + 4680

221 · 34 · 52π6
. (4.7)

Finally let us see the computation of Tr ρ2n. We have already determined φk±(q). Using

these results, we can know the matrix elements ρk±(q1, q2). The explicit forms of ρk±(q1, q2)

are given in Appendix C. These matrix elements enable us to compute Tr ρn±. Here we give

the exact values of Tr ρ2n± (1 ≤ n ≤ 4)

Tr ρ2+ =
1

16π
, Tr ρ4+ =

π2 − 8

512π2
, Tr ρ6+ =

9π − 28

212 · 3π
,

Tr ρ8+ =
−87π2 + 192π + 256

217 · 3π2
, (4.8)

and

Tr ρ2− =
π − 3

16π
, Tr ρ4− =

11π2 − 32π − 8

512π2
, Tr ρ6− =

−11π2 + 4π + 96

212π2
,

Tr ρ8− =
−1467π3 + 3520π2 + 5376π − 6144

217 · 32π3
. (4.9)

Note that Tr ρn is computed by using (2.12).

Collecting the above results, the grand partition function is expanded as

Ξ(z) = 1 +
z

22
+

z2

24π
+
π − 3

26π
z3 +

10− π2

210π2
z4 +

−9π2 + 20π + 26

212π2
z5 +

36π3 − 121π2 + 78

214 · 32π3
z6

+
−75π3 + 193π2 + 174π − 126

216 · 3π3
z7 +

1053π4 − 2016π3 − 4148π2 + 876

221 · 32π4
z8

+
5517π4 − 13480π3 − 15348π2 + 8880π + 4140

223 · 32π4
z9 +O(z10). (4.10)

Let us recall that the coefficient of zN in Ξ(z) is just the partition function Z(N), thus we

obtain the exact ABJM partition function Z(N) at k = 1 up to N = 9. The partition

functions for higher N can also be computed in this way.

4.2 Novel relation between G(z) and Ξ±(z)

From the results in the previous subsection, we find a novel relation

logG(z) =
∞∑
n=1

z2n−1

2n− 1
Tr ρ2n−1 +

∞∑
n=1

z2n

2n
(Tr ρ2n+ − Tr ρ2n− ) +O(z10), (4.11)
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in the expansion around z = 0. As we will see below, it is shown that the above relation

holds exactly for all z, that is,

G(z) =
det(1 + zρ−)

det(1− zρ+)
=

Ξ−(z)

Ξ+(−z)
. (4.12)

Before proceeding to the proof, let us comment on a consequence led by the above

equality. Using (4.12), the grand partition function is written as

Ξ(z) = det(1− z2ρ2+)G(z). (4.13)

Since the expansion coefficients of G(z) are just given by φk+(0) (see (3.37)), the function

G(z) is fixed by φk+(0). On the other hand, the matrix elements ρ2n+ (q1, q2) are fixed by φk+(q)

through (2.24). Therefore det(1− z2ρ2+) is also determined by φk+(q). We conclude that the

total grand partition function is completely fixed by φk+(q) (or ρ+) only! We do not need

any information about φk−(q) (or ρ−) to know Ξ(z). The novel relation we have found in

this section suggests that we have an alternative strategy for computing the grand partition

function. Previously we need to compute Tr ρn. In particular, to compute Tr ρ2n, we need

both of Tr ρ2n± and sum up them: Tr ρ2n = Tr ρ2n+ + Tr ρ2n− . After knowing the relation, the

ingredients we need are the coefficients gn of G(z) and Tr ρ2n+ . Tr ρ2n− is automatically fixed

by the above relation.

The rest of this subsection is devoted to the proof of (4.12) by using the properties of

the parity-preserving Hankel matrix M . Using the relation (3.31), one can check that the

odd power part of (4.12) holds for all-order in z. Thus we concentrate ourselves to the even

power part. The statement to be shown is now rephrased as

G(z)G(−z) =
det(1− z2ρ2−)

det(1− z2ρ2+)
. (4.14)

Let us recall that M decomposes into two Hankel matrices M±. From (2.38), we find

M2
− = M+T−T+M+ = M+PM+, (4.15)

where P = 1− |e0〉〈e0| and |e0〉〈e0| is the projector to the zero-th component. This relation

implies

TrM2n
− = Tr(M2

+P )n (4.16)

The right hand side looks similar to (3.18) and therefore suggests that a similar manipulation

is possible. All we have to do is to rewrite the right hand side by expanding P = 1−|e0〉〈e0|.
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Again, this is most easily done by studying the determinants. Let us rewrite the right

hand side of (4.14). We use the fact Ξ±(z) = det(1 + zM±), then

det(1− z2M2
−)

det(1− z2M2
+)

=
det(1− z2M2

+P )

det(1− z2M2
+)

= det

(
1 +

z2M2
+

1− z2M2
+

|e0〉〈e0|
)
. (4.17)

From the similar argument to derive (3.23), this determinant becomes simple

det

(
1 +

z2M2
+

1− z2M2
+

|e0〉〈e0|
)

= 1 + 〈e0|
z2M2

+

1− z2M2
+

|e0〉 = 〈e0|
1

1− z2M2
+

|e0〉. (4.18)

Expanding this in z, we obtain

det(1− z2M2
−)

det(1− z2M2
+)

=
∞∑
n=0

z2n(M2n
+ )00. (4.19)

Now we want to write the right hand side of (4.19) in terms of the coefficients gn of G(z). To

do this, we use (2.47) and (3.38). Setting q = 0 in the second equation of (2.47), we obtain

4φ̃k+(0) = (Mk−1
+ )00. (4.20)

On the other hand, if setting q = 0 in (3.38), we also obtain

4φ̃2n+1
+ (0) =

2n∑
m=0

(−1)mgmg2n−m. (4.21)

where we have used (3.37). Comparing these relations, we find

(M2n
+ )00 =

2n∑
m=0

(−1)mgmg2n−m. (4.22)

Substituting (4.22) into (4.19), one can confirm that (4.14) really holds.

5 Numerical results

In the previous section, we compute the (grand) partition function analytically. Here we

discuss another approach to analyze the partition function of the ABJM theory. The key

idea is to use a link between the Fredholm theory for the kernel like (2.4) and TBA system.

This novel link was first considered by Zamolodchikov to study two-dimensional polymers

in [25]. The kernel appearing there is similar to (2.4). Thus we can use some of the results

in [25]. Particularly, we can write down the TBA-type integral equations that give Tr ρn.

Though the TBA equations can not be solved analytically in general, it is easy to solve
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them at least numerically. In this section, we numerically solve the TBA-like equations

and compute Tr ρn. We compare them with the exact results in the previous section. Our

numerical results show the very good agreement with the exact ones, and further give a

prediction of Tr ρn (and also the partition function), of which we have not found the exact

values, with a very high degree of accuracy. We also study numerically the eigenvalue

spectrum of the density matrix.

5.1 Partition function from TBA-like equations

In order to see the relation to the TBA-like equations, it is convenient to rewrite the kernel

(2.4) as the form

ρ(q1, q2) =
e−

1
2
U(q1)− 1

2
U(q2)

2 cosh( q1−q2
2k

)
, (5.1)

where

U(q) = log
[
2 cosh

q

2

]
. (5.2)

In [25], Zamolodchikov considered the following integral

Rn(x) = e−2u(x)
∫ ∞
−∞
· · ·
∫ ∞
−∞

dx1 · · · dxn
e−2u(x1)−···−2u(xn)

cosh(x−x1
2

) cosh(x1−x2
2

) · · · cosh(xn−x
2

)
. (5.3)

One can easily check that if u(x) = U(kx)/2 is chosen, the integral of Rn(x) is related to

Tr ρn+1 thorough ∫ ∞
−∞

dxRn(x) = (4π)n+1 Tr ρn+1. (5.4)

Let us introduce the generating functionals of Rn(x),

Re(x|z) =
∞∑
m=0

(
− z

4π

)2m
R2m(x), Ro(x|z) =

∞∑
m=0

(
− z

4π

)2m+1

R2m+1(x), (5.5)

R(x|z) = Re(x|z) +Ro(x|z). (5.6)

From (2.6) and (5.4), we obtain (z = eµ)

1

4π

∫ ∞
−∞

dxR(x|z) =
d

dz
log Ξ(z) = e−µJ ′(µ), (5.7)

where J(µ) = log Ξ(z) is the grand potential. Thus if we know the function R(x|z), we can

obtain the grand partition function.
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One of the important results in [25] is that the function Re(x|z) is conjectured to be the

solution of the following TBA-type integral equations

logRe(x|z) = log s(kx) +

∫ ∞
−∞

dx′K1(x− x′) log(1 + η2(x′|z)), (5.8)

η(x|z) = −z
∫ ∞
−∞

dx′K1(x− x′)Re(x
′|z), (5.9)

where η(x|z) is an auxiliary function, and we have introduced the following functions

s(x) =
1

2 cosh x
2

, K1(x) =
1

2π coshx
. (5.10)

These two equations determine the functions Re(x|z) and η(x|z) uniquely for given z. Once

Re(x|z) and η(x|z) are determined, the function Ro(x|z) is given by

Ro(x|z) = Re(x|z)

∫ ∞
−∞

dx′K2(x− x′) arctan η(x′|z), (5.11)

where

K2(x) =
1

π cosh2 x
. (5.12)

Therefore we can obtain the whole function R(x|z) from these integral equations. In our

case, the driving term in (5.8) takes the form − log(2 cosh(kx/2)), which is not a standard

form −m coshx in ordinary TBA systems for 2d relativistic quantum field theories. Note

that this conjecture has been proved in [24].

5.2 Numerical results from TBA

Now we want to solve the TBA-like equations (5.8), (5.9) and (5.11) and to compute Tr ρn.

For this purpose, we expand η(x|z) as

η(x|z) =
∞∑
m=0

(
− z

4π

)2m+1

η2m+1(x). (5.13)

Substituting (5.5) and (5.13) into (5.8), we obtain the following first few equations,

logR0(x) = log s(kx),
R2(x)

R0(x)
= K1 ∗ η21,

R4(x)

R0(x)
− 1

2

(
R2(x)

R0(x)

)2

= K1 ∗
(

2η1η3 −
η41
2

)
, (5.14)

where the convolution is defined by

f ∗ g =

∫ ∞
−∞

dx′f(x− x′)g(x′). (5.15)
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Similarly, from (5.9), we obtain

η2m+1(x) = 4πK1 ∗R2m, (5.16)

for m = 0, 1, · · · . Starting with R0(x) = s(kx), one can determine η1(x) from (5.16), then

R2(x) is determined by the second equation in (5.14). The flow of the determined functions

is as follows,

R0(x)→ η1(x)→ R2(x)→ η3(x)→ R4(x)→ · · · . (5.17)

In the similar way, Rn(x) for odd n is fixed from (5.11) such as

R1(x) = R0(x)K2 ∗ η1, R3(x) = R0(x)K2 ∗
(
η3 −

η31
3

)
+R2(x)K2 ∗ η1. (5.18)

The integral equations (5.14), (5.16), (5.18) etc. are solved recursively. In principle, we

can solve them analytically by evaluating the convolutions of the known functions at each

step. Technically, however, it is very messy to do that. Alternatively, here we solve these

sequential integral equations numerically at k = 1.3 If Rn(x) is determined, we can compute

Tr ρn+1 from (5.4).

We have indeed computed the numerical values of Tr ρn from such integral equations. In

Table 1, we summarize the numerical values for 2 ≤ n ≤ 16. The numerical results show

the very good agreement with the exact values obtained in the previous section. We would

like to emphasize that the TBA-like equations are valid for general k (even for non-integer

values). The only difference is the initial condition R0(x) = s(kx). We can predict the

high-accurate values of the partition functions for various N and k in the same manner.

In this subsection, we expand all the unknown functions Re(x|z), Ro(x|z) and η(x|z) in

z to compute Tr ρn. We note that the TBA-like equations (5.8), (5.9) and (5.11) can be also

solved for given z by iteration as we will see in the next section.

5.3 Eigenvalue distribution

Here we study the eigenvalue distribution of the density matrix numerically. For this purpose,

we use the Hankel matrix representation discussed in Section 2.2. Since this matrix is

discrete, we can evaluate its eigenvalues by the level truncation. Furthermore the Hankel

matrix elements Mij only depend on i + j. This means that we can reduce the O(L2)-

computation into O(L)-computation where L is the size of the matrix. This is the reason

3We have also analytically checked that the TBA-like equations indeed reproduce the correct Tr ρn up to

n = 5.
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Table 1: Numerical values of (2π)n Tr ρn at k = 1. These numerical values are computed

by using the TBA-like equations (5.8), (5.9) and (5.11). Our numerical results nicely agree

with the exact values in the previous section.

n (2π)n Tr ρn Errors

2 0.896604773477443035477301058329286341729730 1.1× 10−40

3 0.698731738515872159486421033736470898141922 1.7× 10−40

4 0.587330256906414478771564191224945948765499 2.1× 10−40

5 0.505385252214593561502730078447293192743804 2.2× 10−40

6 0.438346955317146787321292739552212309497233 2.3× 10−40

7 0.381274926859615816279007202371073982670788 2.2× 10−40

8 0.331972050713896807160802466534622236608778 2.2× 10−40

9 0.289152279521382289292363666349330742224258 2.0× 10−40

10 0.251890109244736461833445267225791497711006

11 0.219440841867035365985490063842951367327288 1.7× 10−40

12 0.191175332952772245351675601074802777111664

13 0.166551755978085254984697038651649345830601 1.4× 10−40

14 0.145100086034249146678243847815416397520091

15 0.126411483244355445082928632866179620259652

16 0.110129973053738524406779285719767961758381

why we use the Hankel matrix M rather than the Chebyshev representation Mρ of the density

matrix. Physically, we are interested in the energy spectrum of the Fermi gas system. Since

the Hamiltonian is related to the density matrix as ρ = e−H , the n-th energy eigenvalue is

given by

En = − log λn, (5.19)

where λn is the eigenvalue of the density matrix.

In Table 2, we summarize the numerical result of the energy eigenvalues of this quantum

mechanical system, computed from the Hankel matrix M using the level truncation. In

Figure 1, we show the distribution of these energy eigenvalues. We have used the extrapolated

values as in Table 2 to plot this graph. We observe that the square of the energy eigenvalue
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Table 2: Numerical energy eigenvalues of the Fermi gas system at k = 1. The values at ∞
are obtained by extrapolating the data with the functions e(0) + e(1)/L + e(2)/L2 + e(3)/L3

where L is the size of the matrix. E±,n mean the n-th energy eigenvalues of the systems

described by the density matrices ρ±.

Size E0 (E+,0) E1 (E−,0) E2 (E+,1) E3 (E−,1) E4 (E+,2) E5 (E−,2) E6 (E+,3)

100 1.975939 2.977194 3.739240 4.432293 5.142744 5.895999 6.709097

200 1.975808 2.974644 3.721872 4.372444 5.003785 5.656839 6.350546

400 1.975772 2.973812 3.715146 4.344395 4.928247 5.510457 6.116287

1000 1.975760 2.973523 3.712410 4.330522 4.883362 5.408403 5.933915

2000 1.975759 2.973474 3.711873 4.327247 4.870444 5.372886 5.860046

4000 1.975758 2.973460 3.711711 4.326134 4.865368 5.356542 5.820704

10000 1.975758 2.973456 3.711658 4.325733 4.863290 5.348715 5.798487

∞ 1.975758 2.973449 3.711541 4.324808 4.859445 5.339096 5.782347

En shows the good linear behavior on the excitation level n for small n:

E2
n − E2

0 ≈
π2

2
n. (5.20)

Surprisingly, the coefficient of n in this equation agrees with the one appearing in the relation

between the number of states and the energy in the thermodynamic limit [17]: n(E) =
2
π2k
E2 + n0.

Let us compare these results with the estimations from the exact results in the previous

section. We can estimate the ground state and the first excited state energies from Tr ρn±

because

Tr ρn± =
∞∑
`=0

λn±,` ≈ λn±,0, (5.21)

for large n. Using (4.8) and (C.7), we find

E0 = E+,0 ≈ − log

(
Tr ρ8+
Tr ρ7+

)
= 1.9757623 · · · , (5.22)

which matches the estimation from the Hankel matrix in Table 2. The order of the subleading

corrections is O(λ72/λ
7
0) ∼ O(10−6). Similarly,

E1 = E−,0 ≈ − log

(
Tr ρ8−
Tr ρ7−

)
= 2.9735127 · · · , (5.23)
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Figure 1: The (square of) energy spectrum of the Fermi gas system against the excitation

level n. The dots correspond to the extrapolated numerical eigenvalues in Table 2 while the

solid line is the plot of E2 − E2
0 = π2n/2.

where we have used the exact results (4.9) and (C.8). The result is again consistent with

the value in Table 2. The subleading corrections come from O(λ73/λ
7
1) ∼ O(10−5).

6 Comparison with perturbative results

In this section, we compare our results with the perturbative ones in [17].

We first consider the free energy of the ABJM theory. In [15, 17], it was shown that

the ABJM partition function is written in terms of the Airy function if one neglects the

instanton corrections. Since we have obtained the exact partition function Z(N) up to

N = 9 in Section 4, we can compare them with the perturbative results. This comparison

allows us to know the behavior of the non-perturbative effects. Our results suggest that the

leading non-perturbative correction scales as e−2π
√
2N .

We next consider the expectation value of N (or the derivative of the grand potential).

Using the TBA-like equations in the previous section, we can numerically compute 〈N〉 as a

function of the chemical potential µ. Our numerical results show the good agreement with

the perturbative solution in [17] in the large µ limit.
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6.1 Free energy

Let us consider the free energy of the ABJM theory. As was shown in [15, 17], the partition

function is written in terms of the Airy function if one neglects the instanton corrections,

Zk(N) = Z
(Airy)
k (N) + Z

(np)
k (N), (6.1)

Z
(Airy)
k (N) =

(
2

π2k

)−1/3
eA(k) Ai

[(
2

π2k

)−1/3(
N − 1

3k
− k

24

)]
, (6.2)

where Z
(np)
k (N) is the non-perturbative contribution. The function A(k) has the following

small k expansion,

A(k) =
2ζ(3)

π2k
− k

12
− π2k3

4320
+O(k5). (6.3)

In [31], it was conjectured that this function has the following integral expression, which

should be valid for arbitrary k,

A(k) =
1

2
log 2− ζ(3)

8π2
k2 − 1

6
log k +

1

6
log
(π

2

)
+ 2ζ ′(−1)

− 1

3

∫ ∞
0

dx
1

ekx − 1

(
3

x3
− 1

x
− 3

x sinh2 x

)
. (6.4)

Figure 2 (a) shows the behavior of the free energy F (N) = − logZ(N) at k = 1. The result

(6.2) shows the very close behavior of the exact results even though the non-perturbative

corrections are dropped. It is surprising that these corrections at k = 1 is very small even

for small N .

Let us consider the non-perturbative corrections to the free energy

F
(np)
1 (N) ≡ F

(exact)
1 (N)− F (Airy)

1 (N), (6.5)

where F
(Airy)
k (N) = − logZ

(Airy)
k (N).4 We find F

(np)
1 (N) is negative for all N ≤ 9. In [14, 17]

it was noticed that there are two kinds of non-perturbative instanton effects contributing to

the free energy. One of them is the worldsheet instanton exp(−2π
√

2N/k), while the other

is the membrane instanton exp(−π
√

2kN) which comes from D2-branes wrapping on RP 3

in CP 3. Since in the case k = 1 there is no RP 3 to wrap, we expect that the membrane

instanton effect vanishes and the non-perturbative corrections start from exp(−2π
√

2N).

In Figure 2 (b), we tried to fit our exact data of log |F (np)
1 (N)| by the function

log |F (np)
1 (N)| ∼ a+ b logN − c

√
N, (6.6)

4In the definition here, F
(np)
k (N) 6= − logZ

(np)
k (N) where Z

(np)
k (N) = Z

(exact)
k (N)− Z(Airy)

k (N).
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Figure 2: The behavior of the free energy at k = 1. (a) The dots show our exact values while

the solid line shows the free energy computed from (6.2). (b) The (log of) non-perturbative

correction F
(np)
1 (N). The dots are the exact data, and the solid line is the fitted function

(6.6) with (6.7).

and found the best values of the fitting

a = −3.17, b = 2.01, c = 9.00 . (6.7)

Note especially that the value of c is very close to 2π
√

2 = 8.88577. This result strongly

suggests that the membrane instanton e−π
√
2kN is absent when k = 1, and the leading non-

perturbative correction behaves as F np
1 (N) ∼ e−2π

√
2N at large N .

Finally, let us briefly comment on the pre-factor of the instanton correction e−2π
√
2N .

From the general argument in [17], one expects that F
(np)
1 (N) scales as

F
(np)
1 (N) ∼ (AN +B

√
N + C)e−2π

√
2N (6.8)

with some coefficients A,B and C. Our analysis (6.7) seems to indicate that the leading term

of F
(np)
1 (N) behaves as N2e−2π

√
2N rather than Ne−2π

√
2N . However, our result up to N = 9

is insufficient to tell. One possibility is that F
(np)
1 (N) may actually scale as (6.8) for much

larger N than N = 9. It would be interesting to study the behavior of the non-perturbative

correction F
(np)
1 (N) in more detail.

6.2 Expectation value of N

In the previous section, we solved the TBA-like equations by expanding all the unknown

functions in z in order to compute Tr ρn. It is possible to solve them for given z by itera-

tion. Let us compare the results from such integral equations with the perturbative ones as
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functions of z = eµ. For this purpose, it is convenient to focus on the derivative of the grand

potential J(µ) because this quantity naturally appears in the TBA approach as in (5.7).

From the standard argument of statistical mechanics, the derivative J ′(µ) corresponds to

the expectation value of N in the grand canonical ensemble

〈N〉 = J ′(µ) =
eµ

4π

∫ ∞
−∞

dxR(x|eµ), (6.9)

where (5.7) has been used in the last equality. Using (2.4), the grand potential is also

expressed in terms of Tr ρn. The expectation value 〈N〉 is thus written as the expansion

around µ = −∞

〈N〉 = −
∞∑
n=1

(−eµ)n Tr ρn. (6.10)

Let us consider the perturbative contribution of J(µ). As shown in [17], the grand potential

of the ABJM theory is given by

J (pert)(µ) =
2µ3

3kπ2
+ µ

(
1

3k
+

k

24

)
+ A(k), (6.11)

if non-perturbative corrections are neglected. Thus the derivative of J(µ) is given by

〈N〉(pert) =
2µ2

kπ2
+

1

3k
+

k

24
. (6.12)

Note that, in (6.12), the contribution from A(k) is dropped.

We numerically solve the TBA-like equations (5.8), (5.9) and (5.11) at k = 1 for various

values of z = eµ, and compute the expectation value of N by using (6.9) as a function of µ.

The results are shown in Figure 3. In the figure, the dots represent our numerical results from

the TBA-like equations. The red solid line is the plot of the truncated expansion (6.10) up

to n = 9 where we have used the exact values of Tr ρn. The green dashed line represents the

perturbative result (6.12). We find that our numerical results are close to the perturbative

result (6.12) in the large µ limit while in the limit µ→ −∞ the expansion (6.10) agrees with

the numerical results as expected. The TBA interpolates both results smoothly. This is not

surprising because the TBA results contain all the non-perturbative corrections, which are

neglected in (6.12).

Finally, let us give a comment on an underlying technical issue in this TBA system. As

was mentioned in [25], the iterative solution of the TBA equations describing the Fredholm

determinant converges only when z is in the regime |z| < 1/λ0 where λ0 is the largest

eigenvalue of the kernel ρ. If |z| crosses over this value, the iteration method does not

work any more. In our interested case k = 1, the bound of the convergence exists at

|z| = 1/λ0 ≈ 7.21 (µ ≈ 1.97).
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Figure 3: The behavior of the expectation value of N as a function of µ. The dots show the

results obtained from TBA-like equations. The red solid line represents the finite-truncated

expansion (6.10) up to n = 9 with the exact Tr ρn while the green dashed line represents the

perturbative result (6.12).

7 Discussion

In this paper, we have studied the Fermi gas quantum mechanics associated to the ABJM

matrix model. We have computed Tr ρn, which is the ingredient of the grand partition

function, and obtained the partition function Z(N) up to N = 9 as a result. In reducing the

number of integrations by commuting coordinates and momenta, we have found an exact

relation concerning the grand partition function, which is interesting by itself and very helpful

for determining the partition function. We have also performed various numerical analysis.

All of these results are consistent with our exact results and also with the perturbative

analysis in [17].

Interestingly, all the partition functions we obtained are written in terms of polynomials of

π−1 with rational coefficients. Similarly, the functions φk±(q) which lead to the determination

of Tr ρn are also expressed in terms of polynomials of π−1, q, sq, cq, sq/2 and cq/2 with rational

coefficients. Since we have computed the partition function exactly and integer numbers (or

rational numbers) usually counts some information of the moduli space, we would like to

know what kind of the information we are counting right now.

We would like to understand better the origin of the anomaly in commuting the coordinate
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q and the momentum p. From the analogy of string field theory, typically these kinds of

anomaly appear because of the singularity of the moduli space we are considering and give

some information to the physical problem. For example, the associativity anomaly [32] in

cubic string field theory [33] comes from the singularity at the boundary of the moduli space

and relates to the translational invariance in string field theory. Also, the twist anomaly [34]

in vacuum string field theory [35] originates from the divergence at the midpoint interaction

point and contains the information of the tachyon mass and the brane tension.

We have shown that finding the energy spectrum of our Fermi gas system boils down

to the diagonalization of the Hankel matrix M defined by (2.39). As in the case of the

diagonalization of Neumann matrices in open string field theory [36], the first step would be

to find a (hidden) symmetry K commuting with M : [M,K] = 0. It would be very interesting

to find the exact spectrum of M and write down the exact grand partition function.

We showed in (2.13) that the grand partition function of the ABJM theory is factorized

into two parts. A similar structure has appeared in the study of holographic dual of BPS

black holes [37], and it was argued that going to the fixed charge sector leads to the entan-

glement of two sectors. Such entangled state has an interpretation of branched tree of baby

universes and the Catalan number appears as the number of branchings [37]. It would be

interesting to see if the factorized grand partition function of the ABJM theory has some

interpretation on the bulk gravity side.

We also would like to remark on an analogy with the so-called ODE/IM correspondence

[38, 39]. In [40, 41, 42], it was found that spectral determinants for certain Schrödinger

equations satisfy functional relations. In [38, 39], these spectral determinants were identified

with Baxter’s Q-functions of the corresponding integrable system, and the functional rela-

tions of the spectral determinants just correspond to the quantum Wronskian relations [43].

Our analysis implies that there is a non-trivial relation between the two determinants Ξ±(z)

because the total determinant Ξ(z) is fixed by the information of either of the two sectors

ρ±. It would be interesting to explore whether Ξ±(z) satisfy a functional relation like the

quantum Wronskian relation or not.

Recently, the expectation values of some BPS Wilson loops of the ABJM theory were

analyzed using the Fermi gas formalism [19]. It was found that the semiclassical expansion

of such Wilson loop expectation values is divergent for k = 1, 2. We hope that our formalism

will give some improvements for the computation of Wilson loops.
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A Recurrence relations for φk±(q)

Let us derive the recurrence relations (2.25). Using (2.22), we find

φk±(q) =
1

E±(q)

∫
dq′

2π

dq′′

2π
ρ±(q, q′)ρk−1± (q′, q′′)E±(q′′)

=
1

E±(q)

∫
dq′

2π
ρ±(q, q′)E±(q′)φk−1± (q′). (A.1)

Using the identity

1

cosh q + cosh q′
=

1

2 cosh q
2

cosh q′

2

(cq−q′ + cq+q′), (A.2)

we find that the kernel is written as

E+(q)−1ρ+(q, q′)E+(q′) =
cosh q′

2

2(cosh q + cosh q′)
= cq

cq−q′ + cq−q′

2
,

E−(q)−1ρ−(q, q′)E−(q′) =
sinh2 q′

2

2 cosh q′

2
(cosh q + cosh q′)

= cq
cq−q′ + cq+q′

2
t2q′ . (A.3)

Since φk±(q)’s are even functions of q, we get

φk+(q) =

∫
dq′

2π
cq
cq−q′ + cq+q′

2
φk−1+ (q′) = cq

∫
dq′

2π
cq−q′φ

k−1
+ (q′),

φk−(q) =

∫
dq′

2π
cq
cq−q′ + cq+q′

2
t2q′φ

k−1
− (q′) = cq

∫
dq′

2π
cq−q′t

2
q′φ

k−1
− (q′), (A.4)

which are the recurrence relations (2.25).

B Hankel representations of φk+(q) and φ̃k+(q)

Let us derive (2.47). We expand φk+(q) and φ̃k+(q) in tq = tanh(q/2)

φk+(q) = 4c2q

∞∑
n=0

t2nq α
(k)
n , φ̃k+(q) =

cq
2

∞∑
n=0

t2nq β
(k)
n , (B.1)
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We would like to show

α(k)
n =

∞∑
m=0

(Mk
+)nm, β(k)

n = (Mk−1
+ )n0. (B.2)

Since φ0
+(q) = 1 and φ̃1

+(q) = cq/2, one immediately finds

α(0)
n = 1, β(1)

n = δn0. (B.3)

Let us substitute (B.1) into the recurrence relation (3.33). Using the expansion

cq−q′ = 2cqcq′
∞∑
n=0

tnq t
n
q′ , (B.4)

we obtain

φk+(q) = cq

∫
dq′

2π

(
2cqcq′

∞∑
n=0

tnq t
n
q′

)
· 4c2q′

∞∑
`=0

t2`q′α
(k−1)
` (B.5)

The integral over q′ causes the Hankel matrix because of (2.29). Thus we find

φk+(q) = 4c2q

∞∑
`,n=0

t2nq (M+)n`α
(k−1)
` . (B.6)

Comparing this equation with (B.1), we obtain

α(k)
n =

∞∑
`=0

(M+)n`α
(k−1)
` . (B.7)

From this relation and the initial condition (B.3), one can show that α
(k)
n is given by (B.2).

The derivation of β
(k)
n is straightforward.

C Explicit forms of ρn±(q1, q2)

Let us summarize the explicit forms of ρn±(q1, q2) up to n = 4:

ρ2+(q1, q2) =
1

16

1√
cosh( q1

2
) cosh( q2

2
)

1

cosh( q1
2

) + cosh( q2
2

)
, (C.1)

ρ3+(q1, q2) =
1

16π

√
cosh( q1

2
) cosh( q2

2
)

cosh q1 + cosh q2

(
q1

sinh q1
+

q2
sinh q2

− π

2 cosh( q1
2

) cosh( q2
2

)

)
, (C.2)

ρ4+(q1, q2) =
1

128π

1√
cosh( q1

2
) cosh( q2

2
)

1

cosh( q1
2

)− cosh( q2
2

)

(
q1

sinh q1
− q2

sinh q2

)
+

1

256

1

cosh3/2( q1
2

) cosh3/2( q2
2

)
, (C.3)

35



and

ρ2−(q1, q2) =
1

16

tanh( q1
4

) tanh( q2
4

)√
cosh( q1

2
) cosh( q2

2
)(cosh( q1

2
) + cosh( q2

2
))
, (C.4)

ρ3−(q1, q2) =
1

16π

sinh( q1
2

) sinh( q2
2

)√
cosh( q1

2
) cosh( q2

2
)(cosh q1 + cosh q2)

×
(

q1
sinh q1

+
q2

sinh q2
− π

2 cosh( q1
2

) cosh( q2
2

)

)
− 1

64

tanh( q1
4

) tanh( q2
4

)

cosh3/2( q1
2

) cosh3/2( q2
2

)
, (C.5)

ρ4−(q1, q2) =
1

256π

tanh( q1
4

) tanh( q2
4

)√
cosh( q1

2
) cosh( q2

2
)

(
1

sinh2( q1
4

) sinh2( q2
4

)
− π

cosh( q1
2

) cosh( q2
2

)

)

+
1

512π

tanh( q1
4

) tanh( q2
4

)√
cosh( q1

2
) cosh( q2

2
)(cosh( q1

2
)− cosh( q2

2
))

×

(
q1 coth( q1

4
)

cosh( q1
2

) sinh2( q1
4

)
−

q2 coth( q2
4

)

cosh( q2
2

) sinh2( q2
4

)

)
. (C.6)

These matrix elements are directly derived from (4.3), (4.4) by using (2.23) and (2.24).5

Using these matrix elements, we can also compute Tr ρ2n+1
± up to n = 3 in addition to Tr ρ2n±

as given in (4.8) and (4.9). The results are given by

Tr ρ+ =

√
2

8
, Tr ρ3+ =

3− 2
√

2

64
, Tr ρ5+ =

(5− 8
√

2)π + 20

210π
,

Tr ρ7+ =
(16
√

2− 21)π2 − 14π + 28

213π2
, (C.7)

and

Tr ρ− =
2−
√

2

8
, Tr ρ3− =

(1 + 2
√

2)π − 12

64π
, Tr ρ5− =

(8
√

2− 9)π2 − 20π + 40

210π2
,

Tr ρ7− =
−9(16

√
2 + 3)π3 + 518π2 + 756π − 336

213 · 32π3
. (C.8)

Interestingly, in the above results the terms with
√

2 appear. Such terms are canceled out

in Tr ρ2n+1, and Tr ρ2n+1 do not contain them.
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