
RATIONAL VISIBILITY OF A LIE GROUP IN THE MONOID
OF SELF-HOMOTOPY EQUIVALENCES OF A HOMOGENEOUS

SPACE

KATSUHIKO KURIBAYASHI

Abstract. Let M be a homogeneous space admitting a left translation by a
connected Lie group G. The adjoint to the action gives rise to a map from G
to the monoid of self-homotopy equivalences of M . The purpose of this paper
is to investigate the injectivity of the homomorphism which is induced by the

adjoint map on the rational homotopy. In particular, the visible degrees are
determined explicitly for all the cases of simple Lie groups and their associated
homogeneous spaces of rank one which are classified by Oniscik.

1. Introduction

The study of rational visibility problems we here consider is motivated by work
due to Kedra and McDuff [18] in which symplectic topological methods are effec-
tively used. In this paper, we deal with such problems relying upon algebraic models
for spaces and maps, which are viewed as complements of those developed and used
in recent work on rational homotopy of functions spaces [4, 6, 7, 8, 21, 22, 23].

Let f : X → Y be a map between connected spaces whose fundamental groups
are abelian. We say that X is rationally visible in Y with respect to the map f if the
induced map f∗⊗1 : πi(X)⊗Q → πi(Y )⊗Q is injective for any i ≥ 1. Let aut1(M)
denote the identity component of the monoid of self-homotopy equivalences of a
space M . Let G be a connected Lie group and M an appropriate homogeneous
space M admitting a left translation by G. We then define a map of monoids

λG,M : G → aut1(M)

by λG,M (g)(x) = gx for g ∈ G and x ∈ M . In this paper, we investigate the rational
visibility of G in aut1(M) with respect to the map λG,M .

The monoid map λG,M factors through the identity component Homeo1(M) of
the monoid of homeomorphisms of M as well as the identity component Diff1(M)
of the space of diffeomorphisms of M . Therefore the rational visibility of G in
aut1(M) implies that of G in Homeo1(M) and Diff1(M). We also expect that non-
trivial characteristic classes of the classifying spaces Baut1(M), BHomeo1(M) and
BDiff1(M) can be obtained through the study of rational visibility. Very little is
known about the (rational) homotopy of the groups Homeo1(M) and Diff1(M) for
a general manifold M ; see [10] for the calculation of πi(Diff1(Sn))⊗Q for i in some
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range. Then such implication and expectation inspire us to consider the visibility
problems of Lie groups. We refer the reader to papers [12] and [38] for the study
of rational homotopy types of aut1(M) itself and related function spaces.

The key device for the study of rational visibility is the function space model
due to Brown and Szczarba [5] and Haefliger [15]. Especially, an explicit rational
model for the map λG,M is constructed by using that for the evaluation map de-
scribed in [7] and [19]; see Theorem 3.3. By analyzing such elaborate models, we
obtain a recognition principle for rational visibility in Theorem 3.1 below. We here
emphasize that not only does our machinery developed in this paper allow us to
give other proofs to results in [18], [32], [34] and [39] concerning rational visibility
but also it leads us to an unifying way of looking at the visibility problem explicitly
as is seen in Tables 1 and 2 below.

In the rest of this section, we state our results.

Theorem 1.1. Let G be a simply-connected Lie group and T a torus in G which
is not necessarily maximal. Then G is rationally visible in aut1(G/T ) with respect
to the map λG,G/T defined by the left translation of G/T by G.

Theorem 1.1 is a generalization of the result [32, Proposition 2.4], in which T is
assumed to be the maximal torus of G. We mention that the result due to Notbohm
and Smith plays an important role in the proof of the uniqueness of fake Lie groups
with a maximal torus; see [31, Section 1]. Theorem 1.1 is deduced from Theorem
1.2 below, which gives a tractable criterion for the rational visibility.

In order to describe Theorem 1.2, we fix notations. Let G be a connected Lie
group and U a closed connected subgroup of G. Let Bι : BU → BG be the map
induced by the inclusion ι : U → G. We assume that the rational cohomology of
BG is a polynomial algebra, say H∗(BG; Q) ∼= Q[c1, ..., ck]. In what follows, we
write H∗(X) for the cohomology of a space X with coefficients in the rational field.

Consider the Lannes division functor (H∗(BU) : H∗(G/U)) in the category of
differential graded algebras (DGA’s). Then the functor is regarded as a quo-
tient of the free algebra ∧(H∗(BU) ⊗ H∗(G/U)), which in turn is isomorphic
to ∧(QH∗(BU) ⊗ H∗(G/U)) as an algebra, where QH∗(BU) denotes the vec-
tor space of indecomposable elements; see Section 2 for more details. Under the
isomorphism, we can define an algebra map u : (H∗(BU) : H∗(G/U)) → Q by
u(h ⊗ b∗) = 〈j∗(h), b∗〉, where j : G/U → BU is the fibre inclusion of the fibration

G/U
j→ BU

Bι→ BG. Moreover define Mu to be the ideal of (H∗(BU) : H∗(G/U))
generated by the set

{η|deg η < 0} ∪ {η − u(η)|deg η = 0}.
Let π : H∗(BU) ⊗ H∗(G/U) → (H∗(BU) :H∗(G/U)) denote the composite of the
inclusion H∗(BU) ⊗ H∗(G/U) → ∧(H∗(BU) ⊗ H∗(G/U)) and the projection.

A recognition principle for rational visibility, Theorem 3.1 below, enables one to
deduce the following result.

Theorem 1.2. With the above notation, assume that for ci1 , ..., cis ∈ {c1, ..., ck},
there are elements cj1 , ..., cjs ∈ H∗(BG) and u1∗, ..., us∗ ∈ H≥1(G/U) such that

π((Bι)∗(cit) ⊗ 1∗) ≡ π((Bι)∗(cjt) ⊗ ut∗)

for t = 1, ..., s modulo decomposable elements in (H∗(BG) : H∗(G/U))/Mu. Then
there exists a map ρ : ×s

j=1S
deg cij

−1 → G such that ×s
j=1S

deg cij
−1 is ratio-

nally visible in aut1(G/U) with respect to the map (λG,G/U ) ◦ ρ. In particular,
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if (Bι)∗(ci1), ..., (Bι)∗(cis) are decomposable elements, then π((Bι)∗(cit) ⊗ 1∗) ≡ 0
in (H∗(BG) : H∗(G/U))/Mu for t = 1, ..., s and hence one obtains the same con-
clusion.

For a Lie group G and a homogeneous space M which admits a left translation
by G, put n(G) := {i ∈ N | πi(G) ⊗ Q 6= 0} and define the set vd(G,M) of visible
degrees by

vd(G,M) = {i ∈ n(G) | (λG,M )∗ : πi(G) ⊗ Q → πi(aut1(M)) ⊗ Q is injective}.
As for monoids of homeomorphisms and of diffeomorphisms, we benefit by the

study of rational visibility. In fact, we have an immediate but very important
corollary.

Corollary 1.3. If l ∈ vd(G,M), then there exists an element with infinite order
in πl(Diff1(M)) and πl(Homeo1(M)).

Example 1.4. Since SO(d + 1)/SO(d) is homeomorphic to the sphere Sd, we can
define the maps λSO(d+1),Sd : SO(d + 1) → aut1(Sd) by left translations. The
Haefliger, Brown and Szczarba model for the function space aut1(Sd) allows us to
deduce that aut1(S2m+1) 'Q S2m+1 and aut1(S2m) 'Q S4m−1; see Example 2.4
below. Therefore λSO(d+1),Sd is not injective on the rational homotopy in general.
However it follows that the induced maps

(λSO(2m+2),S2m+1)∗ : π2m+1(SO(2m + 2)) ⊗ Q → π2m+1(aut1(S2m+1)) ⊗ Q,

(λSO(2m+1),S2m)∗ : π4m−1(SO(2m + 1)) ⊗ Q → π4m−1(aut1(S2m)) ⊗ Q
are injective. In fact it is well known that, as algebras, H∗(BSO(2m + 1)) ∼=
Q[p1, ..., pm] and H∗(BSO(2m + 2)) ∼= Q[p1, ..., pm, χ], where deg pj = 4j and
deg χ = 2m + 2. Moreover for inclusions ι1 : SO(2m + 1) → SO(2m + 2) and
ι2 : SO(2m) → SO(2m + 1), we see that (Bι1)∗(χ) = 0 and (Bι2)∗(pm) = χ2; see
[30]. Thus Theorem 1.2 yields that vd(SO(2m + 2), S2m+1) = {2m + 1} and that
vd(SO(2m + 1), S2m) = {4m − 1}.

The result [1, 1.1.5 Lemma] allows one to conclude that the map SO(d + 1) →
Diff1(Sd) induced by the left translations is injective on the homotopy group. This
implies that the inclusion Diff1(Sd) → aut1(Sd) is surjective on the rational homo-
topy group.

Theorem 3.1 yields another proof of results due to Kedra and McDuff [18] and
Sasao [34].

Theorem 1.5. [18, Proposition 4.8][34] Let M be the flag manifold of the form
U(m) /U(m1) × · · · × U(ml) . Then SU(m) is rationally visible in aut1(M) with
respect to the map λSU(m),M given by the left translations; that is, vd(SU(m),M) =
n(SU(m)) = {3, 5, ..., 2m − 1}. In particular, the localized map

(λSU(m),U(m)/U(m−1)×U(1))Q : SU(m)Q → aut1(CPm−1)Q

is a homotopy equivalence.

Furthermore, the same argument as in the proof of Theorem 1.5 allows one to
establish the following result.

Theorem 1.6. Let M be the flag manifold Sp(m) /Sp(m1) × · · · × Sp(ml) . Then
vd(Sp(m),M) = {7, 11, ..., 4m − 1}. In particular, the 3-connected cover Sp(m)〈3〉
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is rationally visible in aut1(M) with respect to λSp(m),M ◦π, where π : Sp(m)〈3〉 →
Sp(m) is the projection.

Let G be a compact connected simple Lie group and U a closed connected sub-
group for which G/U is a simply-connected homogeneous space of rank one; that
is, its rational cohomology is generated by a single element. In order to illustrate
usefulness of Theorems 1.2 and 3.1, by applying the results, we determine visi-
ble degrees of G in aut1(G/U) for each couple (G,U) classified by Oniscik in [33,
Theorems 2 and 4].

In the following table, we first list such homogeneous spaces of the form G/U
with a simple Lie group G and its subgroup U , which is not diffeomorphic to spheres
or projective spaces, together with the sets vd(G, G/U).

(G, U, index) (G/U)Q vd(G, G/U) n(G)

(1) (SO(2n + 1), SO(2n − 1)×SO(2), 1) CP 2n−1 {3, ..., 4n − 1} {3, ..., 4n − 1}
(2) (SO(2n + 1), SO(2n − 1), 1) S4n−1 {4n − 1} {3, ..., 4n − 1}
(3) (SU(3), SO(3), 4) S5 {5} {3, 5}
(4) (Sp(2), SU(2), 10) S7 {7} {3, 7}
(5) (G2, SO(4), (1, 3)) HP 2 {11} {3, 11}
(6) (G2, U(2), 3) CP 5 {3, 11} {3, 11}
(7) (G2, SU(2), 3) S11 {11} {3, 11}
(6)’ (G2, U(2), 1) CP 5 {3, 11} {3, 11}
(7)’ (G2, SU(2), 1) S11 {11} {3, 11}
(8) (G2, SO(3), 4) S11 {11} {3, 11}
(9) (G2, SO(3), 28) S11 {11} {3, 11}

Table 1

Here the value of the index of the inclusion j : U → G is regarded as the integer
i by which the induced map j∗ : H3(U ; Z) → H3(G; Z) = Z is multiplication; see
the proof of [33, Lemma 4]. The second column denotes the rational homotopy
type of G/U corresponding a triple (G,U, i). The homogeneous spaces G/U for the
cases (6)’ and (7)’ are diffeomorphic to those for the cases (1) and (2) with n = 3,
respectively. Moreover, the homogeneous spaces are not diffeomorphic each other
except for the cases (6)’ and (7)’.

The following table describes visible degrees of a simple Lie group G in aut1(G/U)
for which G/U is of rank one and diffeomorphic to the sphere or the projective
space, where the second column denotes the diffeomorphism type of the homoge-
neous space G/U for the triple (G, U, i).

(G, U, index) G/U vd(G, G/U) n(G)

(10) (SU(n + 1), SU(n), 1) S2n+1 {2n + 1} {3, ..., 2n + 1}
(11) (SU(n + 1), S(U(n)×U(1)), 1) CP n {3, ..., 2n + 1} {3, ..., 2n + 1}
(12) (SO(2n + 1), SO(2n), 1) S2n {4n − 1} {3, ..., 4n − 1}
(13) (SO(9), SO(7), 1) S15 {15} {3, 7, 11, 15}
(14) (Spin(7), G2, 1) S7 {7} {3, 7, 11}
(15) (Sp(n), Sp(n − 1), 1) S4n−1 {4n − 1} {3, ..., 4n − 1}
(16) (Sp(n), Sp(n − 1) × S1, 1) CP 2n−1 {3, ..., 4n − 1} {3, ..., 4n − 1}
(17) (Sp(n), Sp(n − 1)×Sp(1), 1) HP n−1 {7, ..., 4n − 1} {3, ..., 4n − 1}
(18) (SO(2n), SO(2n − 1), 1) S2n−1 {2n − 1} {3, ..., 4n − 5, 2n − 1}
(19) (F4, Spin(9), 1) LP 2 {23} {3, 11, 15, 23}
(20) (G2, SU(3), 1) S6 {11} {3, 11}

Table 2
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Here LP 2 stands for the Cayley plane.
The former half of Theorem 1.2, namely the Lannes functor argument, does

work well enough when determining the set vd(G2, G2/U(2)) of visible degrees in
case (6) in Table 1; see Section 8. Observe that for the cases (12) and (18) the
results follow from those in Example 1.4. We are aware that in the above tables
G is rationally visible in aut1(G/U) if and only if G/U has the rational homotopy
type of the complex projective space. It should be mentioned that for the map
λ∗ : π∗(F4)⊗Q → π∗(aut1(LP 2))⊗Q, the restriction (λ∗)15 is not injective though
the vector space π15(aut1(LP 2))⊗Q and π15(F4)⊗Q are non-trivial; see Section 8.
Moreover, Corollary 1.3 enables us to obtain non-trivial elements with infinite order
in πl(Diff1(M)) and πl(Homeo1(M)) for each homogeneous space M described in
Tables 1 and 2.

Let X be a space and HH,X the monoid of all homotopy equivalences that act
trivially on the rational homology of X. The result [18, Proposition 4.8] asserts
that if X is generalized flag manifold U(m) /U(m1) × · · · × U(ml) , then the map
BψSU(m) : BSU(m) → BHH,X arising from the left translations is injective on the
rational homotopy. Let ι : aut1(X) → HH,X be the inclusion. Since BψSU(m) =
Bι ◦ BλSU(m),X , the result [18, Proposition 4.8] yields Theorem 1.5. Theorem 1.7
below guarantees that the converse also holds; that is, the result due to Kedra and
McDuff is deduced from Theorem 1.5; see Section 7.

Before describing Theorem 1.7, we recall an F0-space, which is a simply-connected
finite complex with finite-dimensional rational homotopy and trivial rational coho-
mology in odd degree. For example, a homogeneous space G/T for which G is a
connected Lie group and T is a maximal torus of G is an F0-space.

Theorem 1.7. Let X be an F0-space or a space having the rational homotopy type
of the product of odd dimensional spheres and G a connected topological group which
acts on X. Then (BλG,X)∗ : H∗(BG) → H∗(Baut1(X)) is injective if and only if
so is (Bψ)∗ : H∗(BG) → H∗(BHH,X). Here ψ : G → HH,X denotes the morphism
of monoids induced by the action of G on X.

We now provide an overview of the rest of the paper. In Section 2, we recall a
model for the evaluation map of a function space from [19], [7] and [17]. In Section
3, a rational model for the map λG,M mentioned above is constructed. Section
4 is devoted to the study of a model for the left translation of a Lie group on a
homogeneous space. In Section 5, we prove Theorem 1.2. Theorem 1.5 is proved
in Section 6. In Section 7, we prove Theorem 1.7. The results on visible degrees
in Tables 1 and 2 are verified in Section 8. In Appendix, Section 9, the group
cohomology of Diff1(M) for an appropriate homogeneous space M is discussed. By
using Theorem 1.2, we find a non-trivial class in the group cohomology.

2. Preliminaries

The tool for the study of the rational visibility problem is a rational model for the
evaluation map ev : aut1(M)×M → M , which is described in terms of the rational
model due to Brown and Szczarba [5] and Haefliger [15]. For the convenience of the
reader and to make notation more precise, we recall from [7] and [19] the model for
the evaluation map. We shall use the same terminology as in [3] and [11].

Throughout the paper, for an augmented algebra A, we write QA for the space
A/A ·A of indecomposable elements, where A denotes the augmentation ideal. For
a DGA (A, d), let d0 denote the linear part of the differential.
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In what follows, we assume that a space is nilpotent and has the homotopy type
of a connected CW complex with rational homology of finite type unless otherwise
explicitly stated. We denote by XQ the localization of a nilpotent space X.

Let APL be the simplicial commutative cochain algebra of polynomial differen-
tial forms with coefficients in Q; see [3] and [11, Section 10]. Let A and ∆S be the
category of DGA’s and that of simplicial sets, respectively. Let DGA(A,B) and
Simpl(K,L) denote the hom-sets of the categories A and ∆S, respectively. Follow-
ing Bousfield and Gugenheim [3], we define functors ∆ : A → ∆S and Ω : ∆S → A
by ∆(A) = DGA(A,APL) and by Ω(K) = Simpl(K, APL).

Let (B, dB) be a connected, locally finite DGA and B∗ denote the differential
graded coalgebra defined by Bq = Hom(B−q, Q) for q ≤ 0 together with the co-
product D and the differential dB∗ which are dual to the multiplication of B and
to the differential dB , respectively. We denote by I the ideal of the free algebra
∧(∧V ⊗ B∗) generated by 1 ⊗ 1∗ − 1 and all elements of the form

a1a2 ⊗ β −
∑

i

(−1)|a2||β′
i|(a1 ⊗ β′

i)(a2 ⊗ β′′
i ),

where a1, a2 ∈ ∧V , β ∈ B∗ and D(β) =
∑

i β′
i ⊗ β′′

i . Observe that ∧(∧V ⊗B∗) is a
DGA with the differential d := dA⊗1±1⊗dB∗. The result [5, Theorem 3.5] implies
that the composite ρ : ∧(V ⊗B∗) ↪→ ∧(∧V ⊗B∗) → ∧(∧V ⊗B∗)/I is an isomorphism
of graded algebras. Moreover, it follows that [5, Theorem 3.3] that dI ⊂ I. Thus
(∧(V ⊗B∗), δ = ρ−1dρ) is a DGA. Observe that, for an element v ∈ V and a cycle
e ∈ B∗, if d(v) = v1 · · · vm with vi ∈ V and D(m−1)(ej) =

∑
j ej1 ⊗ · · · ⊗ ejm , then

(2.1) δ(v ⊗ e) =
∑

j ±(v1 ⊗ ej1) · · · (vm ⊗ ejm).

Here the sign is determined by the Koszul rule; that is, ab = (−1)deg a deg bba in
a graded algebra. Let F be the ideal of E := ∧(V ⊗ B∗) generated by ⊕i<0E

i

and δ(E−1). Then E/F is a free algebra and (E/F, δ) is a Sullivan algebra (not
necessarily connected), see the proofs of [5, Theorem 6.1] and of [7, Proposition 19].

Remark 2.1. The result [5, Corollary 3.4] implies that there exists a natural iso-
morphism DGA(∧(∧V ⊗ B∗)/I, C) ∼= DGA(∧V, B ⊗ C) for any DGA C. Then
∧(∧V ⊗ B∗)/I is regarded as the Lannes division functor (∧V :B) by definition.

The singular simplicial set of a topological space U is denoted by ∆U and let
|X| be the geometrical realization of a simplicial set X. By definition, APL(U) the
DGA of polynomial differential forms on U is given by APL(U) = Ω∆U . Given
spaces X and Y , we denote by F(X,Y ) the space of continuous maps from X to
Y . The connected component of F(X, Y ) containing a map f : X → Y is denoted
by F(X, Y ; f).

Let α : A = (∧V, d) '→ APL(Y ) = Ω∆Y be a Sullivan model (not necessarily
minimal) for Y and β : (B, d) '→ APL(X) a Sullivan model for X for which B is
connected and locally finite. For the function space F(X,Y ) which is considered
below, we assume that

(2.2) dim⊕q≥0H
q(X; Q) < ∞ or dim⊕i≥2πi(Y ) ⊗ Q < ∞.

Then the proof of [19, Proposition 4.3] enables us to deduce the following lemma;
see also [7].
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Lemma 2.2. (i) Let {bj} and {bj∗} be a basis of B and its dual basis of B∗,
respectively and π̃ : ∧(A ⊗ B∗) → (∧(A ⊗ B∗)/I)

/
F denote the projection. Define

a map m(ev) : A → (∧(A ⊗ B∗)/I)
/
F ⊗ B by

m(ev)(x) =
∑

j

(−1)τ(|bj |)π̃(x ⊗ bj∗) ⊗ bj ,

for x ∈ A, where τ(n) = [(n + 1)/2], the greatest integer in (n + 1)/2. Then m(ev)
is a well-defined DGA map.
(ii) There exists a commutative diagram

F(XQ, YQ) × XQ
ev // YQ

|∆(E/F )| × |∆(B)|
Θ×1

OO

|∆m(ev)|
// |∆(A)|

in which Θ is the homotopy equivalence described in [5, Sections 2 and 3]; see also
[19, (3.1)].

We next recall a Sullivan model for a connected component of a function space.
Choose a basis {a′

k, b′k, c′j}k,j for B∗ so that dB∗(a
′
k) = b′k, dB∗(c

′
j) = 0 and c′0 = 1.

Moreover we take a basis {vi}i≥1 for V such that deg vi ≤ deg vi+1 and d(vi+1) ∈
∧Vi, where Vi is the subvector space spanned by the elements v1, ..., vi. The result
[5, Lemma 5.1] ensures that there exist free algebra generators wij , uik and vik such
that

(2.3) wi0 = vi ⊗ 1 and wij = vi ⊗ c′j + xij , where xij ∈ ∧(Vi−1 ⊗ B∗),
(2.4) δwij is in ∧({wsl; s < i}),
(2.5) uik = vi ⊗ a′

k and δuik = vik.
We then have a inclusion

(2.6) γ : E := (∧(wij), δ) ↪→ (∧(V ⊗ B∗), δ),

which is a homotopy equivalence with a retract

(2.7) r : (∧(V ⊗ B∗), δ) → E;

see [5, Lemma 5.2] for more details. Let q be a Sullivan representative for a map
f : X → Y ; that is, q fits into the homotopy commutative diagram

∧W
' // APL(X)

∧V

q

OO

'
// APL(Y ).

AP L(f)

OO

Moreover we define a 0-simplex ũ ∈ ∆(∧(∧V ⊗ B∗)/I)0 by

(2.8) ũ(a ⊗ b) = (−1)τ(|a|)b(q(a)),

where a ∈ ∧V and b ∈ B∗. Put u = ∆(γ)ũ. Let Mu be the ideal of E generated
by the set {η | deg η < 0} ∪ {δη | deg η = 0} ∪ {η − u(η) | deg η = 0}. Then we see
that (E/Mu, δ) is an explicit model for the connected component F (X, Y ; f); see
[5, Theorem 6.1] and [17, Section 3]. The proof of [19, Proposition 4.3] and [17,
Remark 3.4] allow us to deduce the following proposition; see also [7].
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Proposition 2.3. With the same notation as in Lemma 2.2, we define a map
m(ev) : A = (∧V, d) → (E/Mu, δ) ⊗ B by

m(ev)(x) =
∑

j

(−1)τ(|bj |)π ◦ r(x ⊗ bj∗) ⊗ bj ,

for x ∈ A, where π : E → E/Mu denotes the natural projection. Then m(ev) is
a model for the evaluation map ev : F(X,Y ; f) × X → Y ; that is, there exists a
homotopy commutative diagram

APL(Y )
AP L(ev) // APL(F(X,Y ; f) × X)

APL(F(X, Y ; f)) ⊗ APL(X)

'
OO

A

'α

OO

m(ev)
// (E/Mu, δ) ⊗ B,

' ξ⊗β

OO

in which ξ : (E/Mu, δ) '→ APL(F(X, Y ; f)) is the Sullivan model for F(X, Y ; f)
due to Brown and Szczarba [5].

We call the DGA (E/Mu, δ) the Haefliger-Brown-Szczarba model (HBS-model
for short) for the function space F(X,Y ; f).

Example 2.4. Let M be a space whose rational cohomology is isomorphic to the
truncated algebra Q[x]/(xm), where deg x = l. Recall the model (E/Mu, δ) for
aut1(M) mentioned in [17, Example 3.6]. Since the minimal model for M has the
form (∧(x, y), d) with dy = xm, it follows that

E/Mu = ∧(x ⊗ 1∗, y ⊗ (xs)∗; 0 ≤ s ≤ m − 1)

with δ(x⊗1∗) = 0 and δ(y⊗(xs)∗) = (−1)s

(
m
s

)
(x⊗1∗)m−s, where deg x⊗1∗ = l

and deg(y⊗ (xs)∗) = lm− ls−1. Then the rational model m(ev) for the evaluation
map ev : aut1(M) × M → M is given by m(ev)(x) = (x ⊗ 1∗) ⊗ 1 + 1 ⊗ x and

m(ev)(y) =
m−1∑

s=0

(−1)s(y ⊗ (xs)∗) ⊗ xs + 1 ⊗ y.

Remark 2.5. We here describe variants of the HBS-model for a function space.
(i) Let ∧Ṽ

'→ APL(Y ) be a Sullivan model (not necessarily minimal) and B
'→

APL(X) a Sullivan model of finite type. We recall the homotopy equivalence γ :
E → Ẽ = ∧(∧V ⊗ B∗)/I mentioned in (2.6). Let ũ ∈ ∆(Ẽ)0 be a 0-simplex and
u a 0-simplexes of E defined by composing ũ with the quasi-isomorphism γ. Then
the induced map γ : E/Mu → Ẽ/M

eu is a quasi-isomorphism. In fact the results [5,
Theorem 6.1] and [7, Proposition 19] imply that the projections onto the quotient
DGA’s E/Mu and Ẽ/M

eu induce homotopy equivalences ∆(p) : ∆(E/Mu) → ∆(E)u

and ∆(p̃) : ∆(Ẽ/M
eu) → ∆(Ẽ)

eu, respectively. Here Kv denotes the connected
component containing the vertex v for a simplicial set K, namely, the set of simplices
all of whose faces are at v.
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Then we have a commutative diagram

π∗(|∆(E/Mu)|)
|∆(p)|

∼=
// π∗(|∆(E)|, |u|)

π∗(|∆(Ẽ/M
eu)|) |∆(ep)|

∼= //

|∆(γ)|∗

OO

π∗(|∆(Ẽ)|, |ũ|).

|∆(γ)|∗

OO

Since γ is a homotopy equivalence, it follows that |∆(γ)|∗ is an isomorphism and
hence so is |∆(γ)|∗. This yields that |∆(γ)| is a homotopy equivalence. By virtue
of the Sullivan-de Rham equivalence Theorem [3, 9.4], we see that γ is a quasi-
isomorphism.

As in Lemma 2.2, we define the DGA map m̃(ev) : (∧V, d) → Ẽ/F̃ ⊗ B and let

m(ev) : (∧V, d) → Ẽ/M
eu ⊗ B be the DGA defined by m(ev) = π ⊗ 1 ◦ m̃(ev). We

then have a homotopy commutative diagram

E/Mu ⊗ B

γ⊗1'
²²

∧V

m(ev) 33gggggggg

m(ev)
++VVVVVVVV

Ẽ/M
eu ⊗ B.

In fact the homotopy between id
eE and γ ◦ r defined in [5, Lemma 5.2] induces a

homotopy between id
eE/ eF and γ ◦ r : Ẽ/F̃ → E/F → Ẽ/F̃ . It is immediate that

r ◦ γ = idE/F . Let m(ev)′ : ∧V → E/F ⊗B be the DGA defined as in Proposition
2.3. Then it follows that

γ ⊗ 1 ◦ m(ev) = γ ⊗ 1 ◦ π ⊗ 1 ◦ m(ev)′

= π ⊗ 1 ◦ γ ⊗ 1 ◦ r ⊗ 1 ◦ m̃(ev)

' π ⊗ 1 ◦ m̃(ev) = m(ev).

(ii) In the case where X is formal, we have a more tractable model for F(X, Y ; f).
Suppose that X is a formal space with a minimal model (B, dB) = (∧W ′, d). Then
there exists a quasi-isomorphism k : (∧W ′, d) → H∗(B) which is surjective; see
[9, Theorem 4.1]. With the notation mentioned above, let {ej}j be a basis for the
homology H(B∗) of the differential graded coalgebra B∗ = (∧W ′)∗ and {vi}i a
basis for V . Then it follows from the proof of [5, Theorem 1.9] that the subalgebra
Q{vi ⊗ ej} is closed for the differential δ and that the inclusion Q{vi ⊗ ej} →
∧(W ⊗ B∗) = Ẽ gives rise to a homotopy equivalence

γ : E′ := (∧(vi ⊗ ej), δ) → (∧(W ⊗ B∗), δ) = Ẽ.

In fact, the elements wij in (2.3) can be chosen so that wi0 = vi⊗1∗ and wij = vi⊗ej

for j ≥ 1. Moreover we see that there exists a retraction r : ∧(W ⊗B∗) → E′ which
is the homotopy inverse of γ. Thus Proposition 2.3 remains true after replacing E
by E′. Here the 0-simplex ũ ∈ ∆(∧(W ⊗ B∗))0 needed in the construction of the
model for F(X, Y ; f) has the same form as in (2.8).

We conclude this section with some comments on models for a connected com-
ponent of a function space and related maps.

In the original construction in [15] and [7] of a model for a function space
F(X, Y ), it is assumed that the source space X admits a finite dimensional model.
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Indeed the construction of a model for the evaluation map in [7, Theorem 1] re-
quires existence of such a model for the space X. As described in Lemma 2.2
and Proposition 2.3, our construction only needs the assumption (2.2). Thus our
model for a function space endowed with a model for evaluation map is viewed as
a generalization of that in [7].

The arguments in [5, Section 7] and [7] on a model for a connected component
of F(X, Y ) begin with a 0-simplex; that is, the considered component is that con-
taining a map f which corresponds to the given 0-simplex via a sequence of weak
equivalences between the singular simplicial set of F(XQ, YQ) and the simplicial set
∆(E/F ); see [17, (2.3)]. On the other hand, for any given map f : X → Y , an
explicit form of a 0-simplex corresponding to f is clarified in [17, Remark 3.4] with
(2.8). Thus our constructions in this section complement the basic constructions
in rational homotopy theory of function spaces due to Buijs and Murillo [7].

Observe that aut1(X) is nothing but the function space F(X, X; idM ). More-
over, for a manifold M , the function space aut1(M) satisfies the assumption (2.2).
Thus we have explicit models for aut1(X) and for the evaluation map according
to the procedure in this section. Adding such the models, we moreover provide an
elaborate model for the map λG,M mentioned in Introduction in the next section;
see Theorem 3.1 below.

3. A rational model for the map λ induced by left translation

Let M be a space admitting an action of Lie group G on the left. We define
the map λ : G → aut1(M) by λ(g)(x) = gx. The subjective in this section is to
construct an algebraic model for the map

in ◦ λ : G → aut1(M) → F(M, M),

where in : aut1(M) → F(M, M) denotes the inclusion. To this end we use a model
for the evaluation map

ev : F(X,Y ) × X → Y

defined by ev(f)(x) = f(x) for f ∈ F(X, Y ) and x ∈ X, which is considered in [19]
and [7].

Let G be a connected Lie group, U a closed subgroup of G and K a closed
subgroup which contains U . Let (∧VG, d) and (∧W,d) denote a minimal model
for G and a Sullivan model for the homogeneous space G/U , respectively. Let
λ : G → F(G/U,G/K) be the adjoint of the composite of the left translation
G × G/U → G/U and projection p : G/U → G/K. Observe that the map λ
coincides with the composite

p∗ ◦ in ◦ λG,G/U : G → aut1(G/U) → F(G/U,G/U) → F(G/U,G/K).

We shall construct a model for λ by using the HBS-model for F(G/U,G/K; p)
mentioned in Remark 2.5 (i), a Sullivan representative

ζ ′ : ∧W → ∧VG ⊗ ∧W ′

for the composite G × G/U → G/K of the left translation G × G/U → G/U and
the projection p : G/U → G/K.
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Let A, B and C be connected DGA’s. Recall from [5, Section 3] the bijection
Ψ : (A ⊗ B∗, C)DG

∼=→ (A,C ⊗ B)DG defined by

Ψ(w)(a) =
∑

j

(−1)τ(|bj |)w(a ⊗ bj∗) ⊗ bj .

Consider the case where A = (∧W,d), B = (∧W ′, d) and C = (∧VG, d). Moreover
define a map µ̃ : ∧(A ⊗ B∗) → ∧VG by

(3.1) µ̃(y ⊗ bj∗) = (−1)τ(|bj |)〈ζ ′(y), bj∗〉,

where 〈 , bj∗〉 : ∧VG ⊗ ∧W ′ → ∧VG is a map defined by 〈x ⊗ a, bj∗〉 = x · 〈a, bj∗〉.
Then we see that Ψ(µ̃) = ζ ′. Hence it follows from [5, Theorem 3.3] that

µ̃ : Ẽ := ∧(A ⊗ B∗)/I → ∧VG

is a well-defined DGA map. We define an augmentation ũ : Ẽ → Q by ũ = ε ◦ µ̃,
where ε : ∧VG → Q is the augmentation. It is readily seen that that µ̃(M

eu) = 0.
Thus we see that µ̃ induces a DGA map ˜̃µ : Ẽ/M

eu → ∧VG.
The result [16, Theorem 3.11] asserts that the map

e] : F(G/U, (G/K); p) → F(G/U, (G/K)Q; e ◦ p)

is a localization. Thus we have the localization λQ : GQ → F(G/U, (G/K)Q; e ◦ p).
Observe that λQ fits into the homotopy commutative diagram

GQ
λQ // F(G/U, (G/K)Q; e ◦ p)

G

e

OO

λ
// F(G/U, (G/K); p),

e]

OO

where e denotes the localization map.
We then have a recognition principle for rational visibility.

Theorem 3.1. Let {xi}i be a basis for the image of the induced map

H∗(Q(˜̃µ)) : H∗(Q(Ẽ/M
eu), δ0) → H∗(Q(∧VG), d0) = VG.

Then there exists a map ρ : ×s
j=1S

deg xi → G such that the map

(λQ ◦ ρQ)∗ : π∗((×s
j=1S

deg xi)Q) → π∗(F(G/U, (G/K)Q), e ◦ p)

is injective. Moreover (λQ)∗ : πi(GQ) → πi(F(G/U, (G/K)Q), e ◦ p) is injective if
and only if Hi(Q(˜̃µ)) is surjective.

In order to prove Theorem 3.1, it suffices to show that ˜̃µ : Ẽ/M
eu → ∧VG is a

Sullivan model for the map GQ → F(G/U, (G/K)Q; e ◦ p).
We first observe that the diagram

(3.2) ∧VG ⊗ ∧W ′ (∧(A ⊗ B∗)/I)/F ⊗ ∧W ′eµ⊗1oo

∧W
ζ′

ggNNNNNNN m(ev)

55jjjjjjjjjjj
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is commutative. Thus Lemma 2.2 enables us to obtain a commutative diagram
(3.3)

|∆ ∧ VG| × |∆ ∧ W ′|

|∆ζ′|=actionQ **VVVVVVVVVVV
(Θ◦|∆eµ|)×1 // F((G/U)Q, (G/K)Q) × (G/U)Q

evssggggggggggggg

|∆ ∧ W | = (G/K)Q.

Observe that the assumption (2.2) is satisfied in the case where we here consider.
Since the restriction |∆ζ ′||∗×|∆∧W | is homotopic to pQ, it follows from the com-

mutativity of the diagram (3.3) that pQ ' Θ ◦ |∆µ̃|(∗). This implies that Θ ◦ |∆µ̃|
maps GQ into the function space F((G/U)Q, (G/K)Q; pQ).

Lemma 3.2. Let λQ : GQ → F(G/U, (G/K)Q; e ◦ p) be the localized map of λ
mentioned above and e] : F((G/U)Q, (G/K)Q; pQ) → F((G/U), (G/K)Q; e ◦ p) the
map induced by the localization e : (G/U) → (G/U)Q. Then

e] ◦ Θ ◦ |∆µ̃| ' λQ : GQ → F((G/U), (G/K)Q; e ◦ p).

Proof. Consider the commutative diagram

(3.4) [G × G/U,G/K]

e∗
²²

θ

≈
// [G,F(G/U,G/K)]

(e])∗
²²

[G × G/U, (G/K)Q] θ

≈
// [G,F(G/U, (G/K)Q)]

[GQ × (G/U)Q, (G/K)Q]

(e×e)∗ ≈
OO

θ

≈ ++WWWWWWWWWWWWWWW
[GQ,F(G/U, (G/K)Q]

e∗

OO

[GQ,F((G/U)Q, (G/K)Q)]

(e])∗≈
OO

in which θ is the adjoint map and e stands for the localization map. It follows
from the diagram (3.3) that θ(actionQ) = Θ ◦ |∆µ̃|. Moreover we have θ(action) =
e] ◦ λ = λK ◦ e. Thus the commutativity of the diagram (3.4) implies that e∗([e] ◦
Θ ◦ |∆µ̃|]) = e∗([λQ]) in [G,F(G/U, (G/K)Q)]. Since G is connected, it follows
that (e]) ◦ Θ ◦ |∆µ̃| ◦ e ' λQ ◦ e : G → F(G/U, (G/K)Q; e ◦ p). The fact that
e] : F(G/U, (G/K); p) → F(G/U, (G/K)Q; e ◦ p) is the localization yields that the
induced map e∗ : [GQ,F(G/U, (G/K)Q; e ◦ p)] → [G,F(G/U, (G/K)Q; e ◦ p)] is
bijective. This completes the proof. ¤

Before proving Theorem 3.1, we recall some maps. For a simplicial set K, there
exists a natural homotopy equivalence ξK : K → ∆|K|, which is defined by ξK(σ) =
tσ : ∆n → {σ} × ∆ → |K|. This gives rise to a quasi-isomorphism ξA : Ω∆A

'→
Ω∆|∆A|. Moreover, we can define a bijection η : DGA(A,ΩK)

∼=→ Simp(K, ∆A)
by η : φ 7→ f ; f(σ)(a) = φ(a)(σ), where a ∈ A and σ ∈ K. We observe that
η−1(id) : A → Ω∆A is a quasi-isomorphism if A is a connected Sullivan algebra;
see [3, 10.1. Theorem].
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Proof of Theorem 3.1. Let π : Ẽ → Ẽ/M
eu be the projection. With the same

notation as above, we then have a commutative diagram
(3.5)

|∆(∧(W ⊗ B∗)/F )| Θ

'
// F((G/U)Q, (G/K)Q)

|∆(∧VG)|
|∆(e

eµ)|
//

|∆(eµ)|
66nnnnnnnnnnn

|∆(Ẽ/M
eu)|

OO |∆π|

OO

|∆π|
' // |(∆Ẽ)

eu| Θ

' // F((G/U)Q, (G/K)Q; Θ([(1, ũ)])),
?Â

OO

where [(1, ũ)] ∈ |∆Ẽ| is the element whose representative is (1, ũ) ∈ ∆0 × (∆Ẽ)0.
Lemma 3.2 yields that

(3.6) e] ◦ Θ ◦ |∆π| ◦ |∆˜̃µ| ' e] ◦ Θ ◦ |∆µ̃| ' λQ.

Thus we see that e] maps F((G/U)Q, (G/K)Q; Θ([(1, ũ)])) to F((G/U), (G/K)Q; e]◦
Θ([(1, ũ)])), which is the connected component containing Im(λQ). This implies
that F((G/U), (G/K)Q; e] ◦ Θ([(1, ũ)])) = F((G/U), (G/K)Q; e ◦ p). Therefore, by
the naturality of maps η and ξA, we have a diagram

(3.7) APL(GQ) APL(F(G/U, (G/K)Q; e ◦ p))
AP L(λQ)oo

((e]))∗

²²
APL(F((G/U)Q, (G/K)Q; Θ([(1, ũ)])))

Θ∗

²²
APL(|∆ ∧ VG|) APL(|∆(Ẽ/M

eu)|) = Ω∆(Ẽ/M
eu)

|∆e

eµ|∗oo

∧VG

't′:=(ξ∧VG
)η−1(id)

OO

Ẽ/M
eu

' ξ
eE/M

eu
η−1(id)=:t

OO

e

eµoo

in which the upper square is homotopy commutative and the lower square is strictly
commutative. Lifting Lemma allows us to obtain a DGA map ϕ : Ẽ/M

eu →
APL(F(G/U, (G/K)Q)) such that Θ∗◦((e])∗)∗◦ϕ ' t and hence APL(λQ)◦ϕ ' t′◦µ̃.

Given a space X, let u : A → APL(X) be a DGA map from a Sullivan algebra
A. Let [f ] be an element of πn(X) and ι : (∧Z, d) '→ APL(Sn) the minimal model.
By taking a Sullivan representative f̃ : A → ∧Z with respect to u, namely a DGA
map satisfying the condition that ι◦ f̃ ' APL(f)◦u, we define a map νu : πn(X) →
Hom(HnQ(A), Q) by νu([f ]) = HnQ(f̃) : HnQ(A) → HnQ(∧Z) = Q. By virtue
of [3, 6.4 Proposition], in particular, we have a commutative diagram

πn(GQ)
λQ //

νt′ ∼=
²²

πn(F(G/U, (G/K)Q); e ◦ p)
νϕ∼= ²²

Hom((VG)n, Q)
HQ(e

eµ)∗
// Hom(HnQ(Ẽ/M

eu), Q).

in which νt′and νϕ are an isomorphism; see [3, 8.13 Proposition]. There exists an
element [fi] ⊗ q in π∗(G) ⊗ Q which corresponds to the dual element x∗

i via the
isomorphism π∗(G) ⊗ Q ∼= π∗(GQ)

νt′→ Hom((VG)n, Q) for any i = 1, ..., s. The
required map ρ : ×s

j=1S
deg xi → G is defined by the composite of the map ×s

j=1fi

and the product ×s
j=1G → G. ¤



14 KATSUHIKO KURIBAYASHI

The existence of the commutative diagram (3.7) up to homotopy yields the fol-
lowing result.

Theorem 3.3. The DGA map ˜̃µ : Ẽ/M
eu → ∧VG is a model for the map λ : G →

F(G/U,G/K; p), namely a Sullivan representative in the sense of [11, Definition,
page 154].

4. A model for the left translation

In order to prove Theorems 1.2 and 1.5, a more explicit model for the map
λG,M : G → aut1(M) is required. To this end, we refine the model of the left
translation described in the proof of Theorem 3.1.

We first observe that the cohomology H∗(BU ; Q) is isomorphic to a polyno-
mial algebra with finite generators, say H∗(BU ; Q) ∼= Q[h1, ..., hl]. We consider a
commutative diagram of fibrations

G

i ²²

G

²²
G/U G ×U EU'

hoo //

π
²²

EG

π
²²

BU
Bι

// BG

in which h : G×U EU → G/U is a homotopy equivalence defined by h([g, e]) = [g].
This diagram yields a Sullivan model (∧W,d) for G/U which has the form (∧W,d) =
(∧(h1, ..., hl, x1, ..., xk), d) with dxj = (Bι)∗cj ; see [11, Proposition 15.16] for the
details. Moreover we have a model (∧VG, d) for G of the form (∧(x1, ...., xk), 0).
Since h ◦ i is nothing but the projection π : G → G/U , it follows that the natural
projection ρ : (∧(h1, ..., hl, x1, ..., xk), d) → (∧(x1, ...., xk), 0) is a Sullivan model for
the map π.

Let β : G × (G ×U EU ) → G ×U EG be the action of G on G ×U EU . Then
the left translation tr : G × G/U → G/U coincides with β up to the homotopy
equivalence h : (G ×U EU ) → G/U mentioned above. Thus in order to obtain
a model for the linear action, it suffices to construct a model for β. Recall the
fibration G → G ×U EU

π→ BU and the universal fibration G → EG
π→ BG. We

here consider a commutative diagram

(4.1) G × (G ×U EU )
β

ttjjjjjjj
π′

²²

1×f // G × EG

π′

²²

α

xxqqq
qqq

G ×U EU
f //

π

²²

EG

π

²²
BU

Bι
//

=

ttiiiiiiiiiiii BG

=wwooo
ooo

BU
Bι

// BG

in which π′ and π′ are fibrations with the same fibre G × G and the restrictions
α|fibre : G×G → G and β|fibre : G× (G×U EU ) → (G×U EU ) are the multiplication
on G and the action of G, respectively. Let i : (∧VBG, 0) ½ ∧(ṼBU , d) be a Sullivan
model for Bι. In particular, we can choose such a model so that

∧ṼBU = ∧(c1, ...., cm) ⊗ ∧(h1, ..., hl) ⊗ ∧(τ1, ..., τm)
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and d(τi) = Bι(ci) − ci. By the construction of a model for pullback fibration
mentioned in [11, page 205], we obtain a diagram

(4.2) ∧Z ∧W ′v′
oo

∧V

eβ 66llllll
∧V ′voo

eα 55kkkkkk

∧ṼBU

u′OO

∧VBG
ooioo

OO

∧ṼBU

= 77oooo
u

OO

∧VBG
oo

i
oo

=

66mmmmm

OO

in which vertical arrows are Sullivan models for the fibrations in the diagram
(4.1). Observe that squares are commutative except for the top square. Let
Ψ : ∧Z → APL(G × (G ×U EU )) be the Sullivan model with which Sullivan rep-
resentatives in (4.2) are constructed. The argument in [11, page 205] allows us to
choose homotopies, which makes maps v, β̃, v′ and α̃ Sullivan representatives for
the corresponding maps, so that all of them are relative with respect to ∧VBG.
This implies that Ψ ◦ β ◦ v ' Ψ ◦ v′ ◦ α̃ rel ∧VBG. By virtue of Lifting lemma [11,
Proposition 14.6], we have a homotopy H : β̃ ◦ v ' v′ ◦ α̃ rel ∧VBG. Thus we have
a homotopy commutative diagram

∧V ′ ⊗∧VBG ∧ṼBU
u·v //

eα⊗1
²²

∧V

eβ

²²
∧W ′ ⊗∧VBG ∧ṼBU

u′·v′
// ∧Z

in which horizontal arrows are quasi-isomorphisms; see [11, (15.9) page 204]. In fact
the homotopy K : ∧ṼBU ⊗∧VBG ∧V ′ → ∧W ⊗ ∧(t, dt) is given by K = (β̃ ◦ u) · H.
Observe that β̃ ◦ u = u′. Thus we have a model α̃ ⊗ 1 for β̃ and hence for the left
translation.

The model α̃ ⊗ 1 can be replaced by more tractable one. In fact, recalling
the model (ṼBU , d) for BU mentioned above, it is readily seen that the map s :
∧ṼBU → ∧VBU = ∧(h1, ..., hl), which is defined by s(ci) = (Bι)∗(ci), s(hi) = hi and
s(τj) = 0, is a quasi-isomorphism and is compatible with ∧VBG-action. Observe
that the Sullivan representative for Bι : BU → BG is also denoted by (Bι)∗. Thus
we have a commutative diagram

∧V ′ ⊗∧VBG
∧VBU

ζ:=eα⊗1

²²

∧V ′ ⊗∧VBG
∧ṼBU

eα⊗1
²²

1⊗soo

∧W ′ ⊗∧VBG
∧VBU ∧W ′ ⊗∧VBG

∧ṼBU1⊗s
oo

in which the DGA maps 1⊗s are quasi-isomorphisms. As usual, the Lifting lemma
enables us to deduce the following lemma.

Lemma 4.1. The DGA map ζ := α̃ ⊗ 1 is a Sullivan representative for the left
translation tr : G × G/U → G/U .

In order to construct a model for tr more explicitly, we proceed to construct that
for α.
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Lemma 4.2. There exists a Sullivan representative ψ for α such that a diagram

∧(x1, ..., xl) ⊗ ∧VBG

ψ

²²

= ∧V ′

∧VBG
22

i1 22ffffffffffff
,,

i2
,,XXXXXXXXXXXX

∧(x1, ..., xl) ⊗ ∧(x1, ..., xl) ⊗ ∧VBG = ∧W ′

is commutative and ψ(xi) = xi ⊗ 1 ⊗ 1 + 1 ⊗ xi ⊗ 1 +
∑

n Xn ⊗ X ′
nCn for some

monomials Xn ∈ ∧(x1, ..., xl), X ′
n ∈ ∧+(x1, ..., xl) and monomials Cn ∈ ∧+VBG.

Here i1 and i2 denote Sullivan models for p and p′, respectively.

Proof. We first observe that d(xi ⊗1) = 0 and d(1⊗xi) = ci ∈ ∧(c1, ..., cl) = ∧VBG

in ∧W ′. It follows from [11, 15.9] that there exists a DGA map ψ which makes the
diagram commutative. We write

ψ(xi) = xi ⊗ 1 ⊗ 1 + 1 ⊗ xi ⊗ 1 +
∑

n

Xn ⊗ X ′
nCn +

∑

n

X̃n ⊗ X̃ ′
n +

∑

n

X ′′
n ⊗ C ′′

n

with monomial bases, where Xn, X ′′
n ∈ ∧(x1, ..., xl)⊗1⊗1, X ′

n ∈ 1⊗∧+(x1, ..., xl)⊗
1, X̃n ⊗ X̃ ′

n ∈ ∧(x1, ..., xl) ⊗ ∧(x1, ..., xl) ⊗ 1 and Cn, C ′′
n ∈ ∧+VBG. The map

∧(x1, ..., xl) → ∧(x1, ..., xl) ⊗ ∧(x1, ..., xl) induced by ψ is a Sullivan representa-
tive for the product of G. This allows us to conclude that X̃n and X̃ ′

n are in
∧+(x1, ..., xl). Since ψ is a DGA map, it follows that

dxi = ψ(dxi) = dxi +
∑

n

Xn ⊗ d(X ′
n)Cn +

∑

n

X̃n ⊗ d(X̃ ′
n).

This implies that
∑

n Xn ⊗ d(X ′
n)Cn = 0 and

∑
n X̃n ⊗ d(X̃ ′

n) = 0. Since the
map d : ∧+(x1, ..., xl) → ∧(x1, ..., xl) ⊗ ∧VBG is a monomorphism, it follows that∑

n X̃n ⊗ X̃ ′
n = 0. We write C ′′

n = ckn
in

C̃n, where kn ≥ 1. Define a homotopy

H : ∧(x1, ..., xl) ⊗ ∧VBG → ∧(x1, ..., xl) ⊗ ∧(x1, ..., xl) ⊗ ∧VBG ⊗ ∧(t, dt)

by H(ci) = ci ⊗ 1 and

H(xi) = xi ⊗ 1 ⊗ 1 + 1 ⊗ xi ⊗ 1 +
∑

n

Xn ⊗ X ′
nCn

−
∑

n

X ′′
n ⊗ xin ⊗ ckn−1

in
C̃n ⊗ dt +

∑

n

X ′′
n ⊗ 1 ⊗ ckn

in
C̃n ⊗ t.

Put ψ̃ = (ε0 ⊗ 1) ◦ ψ. We see that ψ̃ ' ψ rel ∧VBG. This completes the proof. ¤

5. Proof of Theorem 1.2

We prove Theorem 1.2 by means of the model for the left translation described
in the previous section.

Proof of Theorem 1.2. We adapt Theorem 3.1. We recall the Sullivan model (∧W,d)
for G/U mentioned in Section 4. Observe that (∧W,d) has the form

(∧W,d) = (∧(h1, ..., hl, x1, ..., xk), d)

with dxj = (Bι)∗cj .
Let l : (H∗(BU), 0) → (∧W,d) be the inclusion and

k : (∧W,d) // (∧(h1, ..., hl)/(dx1, ..., dxl), 0) // // (H∗(G/U), 0)
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the DGA map defined by k(hi) = (−1)τ(|hi|)hi and k(xi) = 0. Recall the DGA
Ẽ = ∧(∧W ⊗ (∧W )∗)/I and the DGA map µ̃ : Ẽ → ∧VG mentioned in Section 3,
where we use the model ζ : ∧W → ∧VG ⊗ ∧W for the action G × G/U → G/U
constructed in Lemmas 4.1 and 4.2 in order to define µ̃; see (3.1). Consider the
composite

θ : (H∗(BU) :H∗(G/U)) = ∧(H∗(BU) ⊗ H∗(G/U))/I

l⊗1−−−−→∧ (∧W ⊗ H∗(G/U))/I
1⊗k]

−−−−→∧ (∧W ⊗ (∧W )∗)/I = Ẽ.

Let ũ : Ẽ → Q be an augmentation defined by ũ = ε ◦ µ̃, where ε : ∧VG → Q is the
augmentation. Then we have θ(Mu) ⊂ M

eu. In fact, since i∗(hi) = (−1)τ(|hi|)k◦l(hi)
and 〈hi, k

]b∗〉 = 〈ζhi, b∗〉 for hi ∈ H∗(BU), it follows that

θ(hi ⊗ b∗ − u(hi ⊗ b∗)) = hi ⊗ k]b∗ − 〈i∗hi, b∗〉
= hi ⊗ k]b∗ − (−1)τ(|h|)〈khi, b∗〉
= hi ⊗ k]b∗ − (−1)τ(|h|)〈ζhi, b∗〉
= hi ⊗ k]b∗ − ũ(hi ⊗ k]b∗).

Consider an element z := xit ⊗ 1∗ − (−1)τ(|ut∗|)xjt ⊗ k](ut∗) ∈ Q(Ẽ/M
eu). For

any α ∈ ∧W , 〈α, d]k]ut∗〉 = 〈kdα, ut∗〉 = 0. Therefore we see that, in Q(Ẽ/M
eu),

δ0(z) = dxit
⊗1∗−(−1)τ(|ut∗|)dxjt

⊗k](ut∗) = θ((Bι)∗(cit
)⊗1∗−(Bι)∗(cjt

)⊗ut∗) = 0.

The last equality follows from the assumption that (Bι)∗(cit) ⊗ 1∗ ≡ (Bι)∗(cjt) ⊗
ut∗ modulo decomposable elements in (H∗(BU) : H∗(G/U))/Mu. By using the
notation in Lemma 4.2, we see that

H∗Q(˜̃µ)(z) = 〈ζxit , 1∗〉 − 〈ζxjt , k
]ut∗〉

= 〈xit ⊗ 1, 1∗〉 − 〈
∑

Xn ⊗ X ′
nCn, k]ut∗〉

= xit −
∑

Xn〈k(X ′
n)Cn, ut∗〉 = xit .

Observe that k(X ′
n) = 0. By virtue of Theorem 3.1, we have the result. ¤

Remark 5.1. As for the latter half of Theorem 1.2, namely, in the case where
(Bι)∗(ci1), ..., (Bι)∗(cis) are decomposable, we have a very simple proof of the
assertion. In fact, the composite of the evaluation map ev0 : aut1(G/U) → G/U
and the map λ : G → aut1(G/U) is nothing but the projection π : G → G/U .
We consider the model η : (∧W,d) → (∧VG, 0) for π mentioned in the proof of
Theorem 1.2. Then we see that HQ(ρ)(xit) = xit for the map HQ(ρ) : HQ(∧W ) →
HQ(∧VG) = VG. Observe that xit ∈ HQ(∧W ) since (Bι)∗(cit) is decomposable.
The same argument as the proof of Theorem 3.1 enables us to conclude that there
is a map ρ : ×s

t=1S
deg cit−1 → G such that π∗ ◦ ρ∗ : π∗(×s

t=1S
deg cit−1

Q ) → π∗(GQ)
is injective. Thus λ∗ ◦ ρ∗ is injective in the rational homotopy.

Remark 5.2. In the proof of Theorem 1.2, we construct a model for G of the form
(∧(x1, ...., xk), 0). By virtue of [11, Proposition 15.13], we can choose the elements

xj so that σ∗(cj) = xj , where σ∗ : H∗(BG) π∗
// H∗(EG, G) H∗(G)δ

∼=
oo denotes

the cohomology suspension.
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In the rest of this section, we describe a suitable model for F(G/U, (G/K)Q; e◦p)
for proving Theorems 1.5 and 1.6.

Let G be a connected Lie group, U a connected maximal rank subgroup and
K another connected maximal rank subgroup which contains U . We recall from
Section 2 a Sullivan model for the connected component F(G/U, (G/K)Q; e ◦ p)
containing the composite e ◦ p of the function space F(G/U, (G/K)Q), where e :
G/K → (G/K)Q is the localization map.

Let ι1 : K → G and ι2 : U → K be the inclusions and put ι = ι1 ◦ ι2.
Let ϕU : (∧W ′, d) '→ Ω∆(G/U) and ϕK : (∧W̃ , d) '→ Ω∆(G/K) be the Sul-
livan models for G/U and G/K, respectively, mentioned in the proof of Theo-
rem 1.2; that is, (∧W ′, d) = (∧(h1, ..., hl, x1, ..., xk), d) with d(xi) = (Bι)∗(ci) and
(∧W̃ , d) = (∧(e1, ..., es, x1, ..., xk), d) with d(xi) = (Bι1)∗(ci). By applying Lifting
Lemma to the commutative diagram

∧VBK

(Bι2)
∗

//
²²

²²

∧VBU
// // ∧W ′

ϕU

²²
∧W̃ ϕK

// Ω∆(G/K)
Ω∆(p)

// Ω∆(G/U),

we have a diagram

(5.1) H∗(G/U) ∧W ′
'

//k

'
oo Ω∆(G/U)

H∗(G/K)

p∗

OO

∧W̃
' //

ϕ

OO

l

'oo Ω∆(G/K)

Ω∆(p)

OO

in which the right square is homotopy commutative and the left that is strictly
commutative. In particular, k(xi) = 0, l(xi) = 0 and ϕ(ei) = (Bι2)∗ei.

Let w : ∧W → ∧W̃ be a minimal model for (∧W̃ , d) and k] : (H∗(G/U))] →
(∧W ′)] the dual to the map k.

As in Remark 2.5(ii), we construct the DGA E′ by using (∧W ′, d) = (B, dB)
and (∧W,d). Then we have a sequence of quasi-isomorphisms

E′ γ:=1⊗k]

'
// ∧(∧W ⊗ (∧W ′)∗)/I

w⊗1

'
// ∧(∧W̃ ⊗ (∧W ′)∗)/I = Ẽ.

Moreover, we choose a model ζ ′ for the action G × G/U
tr→ G/U

p→ G/K defined

by the composite ζ ′ : ∧W̃
ζ→ ∧VG ⊗ ∧W̃

1⊗ϕ→ ∧VG ⊗ ∧W ′, where ζ is the Sullivan
representative for the left translation tr mentioned in Lemmas 4.1 and 4.2. Then
the map ζ ′ deduces a model

(5.2) ˜̃µ : E′/Mu → ∧VG

for λ : G → F(G/U, (G/K)Q; e ◦ p) as in Theorem 3.1. Observe that

(5.3) µ̃(vi ⊗ ej) = (−1)τ(|ej |)〈(1 ⊗ ϕ)ζw(vi), k]ej〉 and u = ε ◦ µ̃,

where ε : ∧VG → Q denotes the augmentation. In the next section, we shall prove
Theorem 1.5 by using the model ˜̃µ : E′/Mu → ∧VG.
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6. Proof of Theorem 1.5

Let G and U be the Lie group U(m + k) and a maximal rank subgroup of the
form U(m1) × · · · × U(ms) × U(k), respectively. Without loss of generality, we
can assume that m1 ≥ · · · ≥ ms ≥ k. Let K be the subgroup U(m) × U(k)
of U , where m = m1 + · · · + ms. Then the Leray-Serre spectral sequence with
coefficients in the rational field for the fibration p : G/U → G/K with fibre K/U
collapses at the E2-term because the cohomologies of G/K and of K/U are algebras
generated by elements with even degree. Therefore it follows that the induced map
p∗ : H∗(G/K) → H∗(G/U) is a monomorphism. In order to prove Theorem 1.5,
we apply Theorem 3.1 to the function space F(G/U,G/K, p).

Let P = {S1, ..., Sn} be a family consisting of subsets of the finite ordered set
{1, ..., s} which satisfies the condition that x < y whenever x ∈ Si and y ∈ Si+1.
Define ]lP to be the number of elements of the set {Sj ∈ P | |Sj | = l}. Let k
be a fixed integer. We call such the family P a (i1, ..., ik)-type block partition of
{1, ..., s} if ]lP = il for 1 ≤ l ≤ k. Let Q

(s)
i1,...,ik

denote the number of (i1, ..., ik)-type
block partitions of {1, ..., s}.

We construct a minimal model explicitly for the homogeneous space U(m +
k)/U(m) × U(k). Assume that m ≥ k. As in the proof of Theorem 1.2, we have a
Sullivan model for U(m + k)/U(m) × U(k) of the form

(∧W̃ , d) = (∧(τ1, ...., τm+k, c1, ..., ck, c′1, ..., c
′
m), d)

with dτl =
∑

i+j=l c
′
icj .

Lemma 6.1. There exists a sequence of quasi-isomorphisms

∧W̃ ∧W(1)
'oo · · ·'oo ∧W(s)

'oo · · ·'oo ∧W(m)
'oo

in which, for any s, (∧W(s), d(s)) is a DGA of the form

∧W(s) = ∧(τs+1, ...., τm+k, c1, ..., ck, c′s+1, ..., c
′
m) with

d(s)τl = c′l + c′l−1c1 + · · · + c′s+1cl−(s+1)

+
∑

i1+2i2+···+kik=s

(−1)i1+···+ikQ
(s)
i1,...,ik

ci1
1 · · · cik

k cl−s

+
∑

i1+2i2+···+kik=s−1

(−1)i1+···+ikQ
(s−1)
i1,...,ik

ci1
1 · · · cik

k cl−(s−1)

+ · · · + (−c1)cl−1 + cl

for s + 1 ≤ l ≤ m + k, where ci = 0 for i < 0 or i > k.

Proof. We shall prove this lemma by induction on the integer s. We first observe
that dτ2 = c′2−c1c1+c2 in ∧W(1) because Q

(1)
i1

= 1. Define a map ϕ : ∧W(1) → ∧W̃
by ϕ(ci) = ci, ϕ(c′j) = c′j and ϕ(τ2) = τ2 − τ1c1. Since dτ1 = c′1 + c1 in ∧W , it
follows that ϕ is a well-defined quasi-isomorphism. Suppose that (∧W(s), d(s)) in
the lemma can be constructed for some s ≤ m − 1. In particular, we have

d(s)τs+1 = c′s+1 +
∑

0≤j≤s

∑

i1+2i2+···+kik=j

(−1)i1+···+ikQ
(j)
i1,...,ik

ci1
1 · · · + cik

k cs+1−j .

Claim 1.

Q
(s+1)
i1,...,ik

= Q
(s)
i1−1,i2,...,ik

+ Q
(s−1)
i1,i2−1,...,ik

+ · · · + Q
(s+1−k)
i1,...,ik−1.
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Claim 1 implies that

d(s)τs+1 = c′s+1 −
∑

i1+2i2+···+kik=s+1

(−1)i1+···+ikQ
(s+1)
i1,...,ik

ci1
1 · · · cik

k .

We define d(s+1)τl+1 in ∧W(s+1) by replacing the factor c′s+1 which appears in
d(s)τl+1 with c′s+1 − d(s)τs+1, namely,

d(s+1)τl+1 = c′l+1 + c′lc1 + · · · + c′s+2c(l+1)−(s+2)

+
∑

i1+2i2+···+kik=s+1

(−1)i1+···+ikQ
(s+1)
i1,...,ik

ci1
1 · · · cik

k cl−s

+ · · · + (−c1)cl + cl+1.

Moreover define a map ϕ : ∧W(s+1) → ∧W(s) by ϕ(ci) = ci, ϕ(c′j) = c′j and
ϕ(τl+1) = τl+1 − τs+1cl+1−(s+1). It is readily seen that ϕ is a well-defined DGA
map. The usual spectral sequence argument enables us to deduce that ϕ is a quasi-
isomorphism. This finishes the proof. ¤
Proof of Claim 1. Let {Pl} denote the family of all (i1, ..., ik)-type block partitions

of {1, ..., s + 1}. We write Pl = {S(l)
1 , ..., S

(l)
n(l)}. Then {Pl} is represented as the

disjoint union of the families of (i1, ..., ik)-type block partitions whose last sets S
(l)
n(l)

consist of j elements, namely, {Pl} = q1≤j≤k{Pl | |Sn(l)| = j}. It follows that
∣∣∣{Pl | |Sn(l)| = j}

∣∣∣ = Q
(s+1−j)
i1,...,ij−1,ij−1,ij+1,...,ik

.

We have the result. ¤
Recall the minimal model (∧W(m), d) for G/K in Lemma 6.1. We see that

deg dτm+1 = deg cm
1 c1 = 2(m + 1) and that dα = 0 for any element α with deg α ≤

2m + 1. This yields that cm
1 6= 0 in H∗(G/K; Q). As mentioned before Lemma

6.1, the induced map p∗ : H∗(G/K) → H∗(G/U) is injective. Therefore we have
(p∗c1)s 6= 0 for s ≤ m.

Let ˜̃µ : Ẽ/Mu → ∧VG be the model for the map λ : G → F(G/U, (G/K)Q; e ◦ p)
mentioned in the previous section; see (5.2) and (5.3). The following four lemmas
are keys to proving Theorem 1.5. The proofs are deferred to the end of this section.

Lemma 6.2. δ0(τm+(m−s+1) ⊗ ((p∗c1)m)∗) = (−1)mcm−s+1 if m 6= s.

Lemma 6.3. ˜̃µ(τm+(m−s+1) ⊗ ((p∗c1)m)∗) = 0 if m 6= s.

Lemma 6.4. δ0(τm+1 ⊗ ((p∗c1)s)∗) = (−1)sscm−s+1.

Lemma 6.5. ˜̃µ(τm+1 ⊗ ((p∗c1)s)∗) = τm−s+1.

Proof of Theorem 1.5. By virtue of Lemmas 6.2, 6.3, 6.4 and 6.5, we have

δ0((−1)mτm+(m−s+1) ⊗ ((p∗c1)m)∗ −
(−1)s

s
τm+1 ⊗ ((p∗c1)s)∗)

= (−1)m(−1)mcm−s+1 −
(−1)s

s
(−1)sscm+s−1 = 0 and

˜̃µ((−1)mτm+(m−s+1) ⊗ ((p∗c1)m)∗ −
(−1)s

s
τm+1 ⊗ ((p∗c1)s)∗)

= − (−1)s

s
τm−s+1,
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where s ≤ m − 1. Theorem 3.1 implies that

(λQ)i : πi(GQ) → πi(F(G/U, (G/K)Q, e ◦ p))

is injective for i = deg τ1, ...,deg τm. Since dτl =
∑

i+j c′icj in (∧W ), it follows that
dτl is decomposable for l ≥ M + 1. Therefore Theorem 1.2 yields that (λQ)i is also
injective for i = deg τm+1, ...,deg τm+k.

The latter half of Theorem 1.5 is obtained by comparing the dimension of rational
homotopy groups. In fact, it follows from the rational model for aut1(CPm−1)
mentioned in Example 2.4 that

π∗(aut1(CPm−1) ⊗ Q)] ∼= H∗(Q(Ẽ/Mu), δ0)
∼= Q{y ⊗ 1∗, y ⊗ (x1)∗, ..., y ⊗ (xm−2)∗}.

This implies that dimπi(aut1(CPm−1)) ⊗ Q = 1 = dimπi(SU(m)) ⊗ Q for i =
3, ..., 2m − 1. The result follows from the first assertion. This completes the proof.

¤
We conclude this section with proofs of Lemmas 6.2, 6.3, 6.4 and 6.5.

Proof of Lemma 6.2. We regard the free algebra ∧(c1, ..., cl) as a primitively gener-
ated Hopf algebra. Observe that (cs

i )∗ = 1
s! ((ci)∗)s. Recall the 0-simplex u in ∆E′

mentioned in (5.3). We have u(cj ⊗ (p∗c1)∗) = 0 if j 6= 1 and

u(c1 ⊗ (p∗c1)∗) = (−1)τ(|p∗(c1)|)k](p∗(c1)∗)(ϕ ◦ w(c1))
= (−1)((p∗(c1)∗)k ◦ ϕ ◦ w(c1) = (−1)((p∗(c1)∗)p∗c1) = −1.

For the map k and q, see the diagram (5.1) and the ensuing paragraph. Thus it
follows that

δ0(τm+(m−s+1) ⊗ ((p∗c1)m)∗)

= cm
1 cm−s+1 · D(m)(p∗cm

1 )∗ = cm
1 cm−s+1 ·

1
m!

D(m)(p∗c1)m
∗

=
1
m!

cm
1 cm−s+1 ·

(
(p∗c1)∗ ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗ (p∗c1)∗ ⊗ 1 ⊗ · · · ⊗ 1

+ · · · + 1 ⊗ · · · ⊗ 1 ⊗ (p∗c1)∗
)m

=
1
m!

cm
1 cm−s+1 · (· · · + m!(p∗c1)∗ ⊗ · · · ⊗ (p∗c1)∗ ⊗ 1 + · · · )

= u(c1 ⊗ (p∗c1)∗) · · ·u(c1 ⊗ (p∗c1)∗)cm−s+1 = (−1)mcm−s+1.

¤

Proof of Lemma 6.3. Recall the quasi-isomorphism ϕs+1 : ∧W(s+1) → ∧W(s) in
the proof of Lemma 6.1 which is defined by ϕ(τl+1) = τs+1 − τl+1cl+1−(s+1). Let w

denote the composite ϕ1 ◦ · · · ◦ ϕm : ∧W = ∧W(m) → ∧W̃ . It is readily seen that
w(τm+(m−s+1)) does not have the element cm

1 as a factor if s 6= m. Hence using the
DGA map ζ ′ in Lemma 4.1, we have

˜̃µ(τm+(m−s+1)⊗((p∗c1)m)∗) = (−1)τ(|p∗cm
1 |)〈(1⊗ϕ)ζw(τm+(m−s+1)), k](p∗cm

1 )∗〉 = 0.

See (5.1) for the notations. Observe that H∗(G/K) ∼= H∗(∧W ) ∼= Q[c1, ..., ck] for
∗ ≤ 2m. This completes the proof. ¤
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Proof of Lemma 6.4. From Lemma 6.1, we see that in ∧W(m),

dτm+1 =
∑

i1+2i2+···+kik=m

(−1)i1+···+ikQ
(m)
i1,...,ik

ci1
1 · · · cik

k c1

+
∑

i1+2i2+···+kik=m−1

(−1)i1+···+ikQ
(m−1)
i1,...,ik

ci1
1 · · · cik

k c2

+ · · · +
∑

i1+2i2+···+kik=l

(−1)i1+···+ikQ
(l)
i1,...,ik

ci1
1 · · · cik

k cm−l+1

+ · · ·
Suppose that ci1

1 · · · cik

k cm−l+1 ⊗ ((p∗c1)s)∗ 6= 0 in Q(Ẽ/Mu), where i1 + 2i2 +
· · · kik = l. Then we have
(1) l = m and ci1

1 · · · cik

k = cs−1
1 cm−s+1 or

(2) l 6= m, l = s and ci1
1 · · · cik

k = cs
1.

It follows that (−1)i1+···+ikQ
(m)
i1,...,ik

cs−1
1 cm−s+1c1 = (−1)s−1+1(s − 1)cs

1cm−s+1 if

(i1, ..., ik) = (s− 1, 0, ..., 0, 1, 0, ..., 0) with im−s+1 = 1 and that Q
(s)
i1,...,ik

cs
1cm−s+1 =

(−1)s · 1 · cs
1cm−s+1 if (i1, ..., ik) = (s, 0, ..., 0). This fact allows us to conclude that

δ0(τm+1 ⊗ ((p∗c1)s)∗) = (−1)s(s − 1)cm−s+1 + (−1)scm−s+1 = (−1)sscm−s+1. We
have the result. ¤
Proof of Lemma 6.5. In order to compute ˜̃µ, we determine 〈(1⊗ϕ)ζw(τm+1), k](p∗cs

1)∗〉.
With the the same notation as in the proof of Lemma 6.3, we have w(τm+1) =
· · · + (−1)sτm−s+1c

s
1 + · · · . Lemmas 4.1 and 4.2 imply that

ζ(τm−s+1c
s
1) = ψ ⊗ 1(τm−s+1 ⊗ cs

1)

= (τm−s+1 ⊗ 1 ⊗ 1 + 1 ⊗ τm−s+1 ⊗ 1 +
∑

n

Xn ⊗ X ′
nCn)cs

1.

Thus it follows that
˜̃µ(τm+1 ⊗ ((p∗c1)s)∗) = (−1)τ(|p∗cs

1|)〈(1 ⊗ ϕ)ζw(τm+1), k](p∗cs
1)∗〉

= (−1)s+s〈(1 ⊗ ϕ)ζ(τm−s+1c
s
1), k

](p∗cs
1)∗〉

= τm−s+1〈ϕ(cs
1), k

](p∗cs
1)∗〉 + 〈ϕ(τm−s+1c

s
1), k

](p∗cs
1)∗〉

+
∑

n

Xn〈ϕ(X ′
nCncs

1), k
](p∗cs

1)∗〉

= τm−s+1〈kϕ(cs
1), (p

∗cs
1)∗〉 + 〈kϕ(τm−s+1c

s
1), (p

∗cs
1)∗〉

+
∑

n

Xn〈kϕ(X ′
nCncs

1), (p
∗cs

1)∗〉

= τm−s+1.

The last equality is extracted from the commutativity of the diagram (5.1). This
completes the proof. ¤

7. Proof of Theorem 1.7.

This section is devoted to proving Theorem 1.7. The inclusion ι : aut1(X) →
HH,X induces the map Bι : Baut1(X) → BHH,X with Bι◦BλG,X = Bψ. Therefore
if Bψ is injective on homology, then so is BλG,X .

We shall prove the “only if” part by using the general categorical construction
of a classifying space due to May [24, Section 12] and by applying a part of the
argument in the proof of [25, Theorem 3.2] to our case.
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We here recall briefly the notion of a O-graph; see [25, page 68] for more detail.
Let O be a discrete topological space. Define a O-graph to be a space A together
with maps S : A → O and T : A → O. The space O itself is regarded as O-graph
with arrows S and T the identity map. Let OGr be the category of O-graphs whose
morphisms are maps h : A → A′ compatible with maps S and T . Observe that the
pullback construction with respect to S and T makes OGr a monoidal category. In
fact, for O-graphs A and A′, A2A′ is defined by {(a, a′) ∈ A×A′|Sa = Ta′}. Let
X and Y be a left O-graph and a right O-graph, respectively; that is, X is a space
with a map T : X → O and the space Y admits only a map S : Y → O.

Let M be a monoid in OGr the category of O-graphs and B(Y,M,X ) denote
the two-sided bar construction in the sense of May [24, Section 12], which is the
geometric realization of the simplicial space B∗ with Bj = Y2M2j2X . We regard
a topological monoid G as that in OGr with O = {x} the space of a point. Then the
classifying space BG we consider here is regarded as the bar construction B(x,G, x).

Proof of the “only if” part of Theorem 1.7. Let ι′ : HH,X → F(X, X) be the
inclusion and e∗ : F(X,X) → F(X, XQ) the map induced by the localization
e : X → XQ. Since X is an F0-space or a space having the rational homotopy
type of the product of odd dimensional spheres by assumption, it follows from
[2, 3.6 Corollary] and [11, Proposition 32.16] that the natural map [X, XQ] →
Hom(H∗(XQ; Q), H∗(X; Q)) is bijective. We see that e ◦ ϕ ' e for any ϕ ∈
HH,X Therefore the composite e∗ ◦ ι′ factors through the connected component
F(X, XQ; e) of F(X, XQ). We have a commutative diagram

HH,X e∗◦ι′

**VVVVVV

F(X, XQ; e) aut1(XQ)e∗

'
oo

aut1(X) e∗

44hhhhh
ι

OO

in which the induced map e∗ is a homotopy equivalence.
Define O to be the discrete space with two points x and y. Let M be the

monoid in OGr defined by M(x, x) = aut1(X), M(y, y) = aut1(XQ) and M(x, y) =
F(X, XQ; e) with M(y, x) empty. Arrows S, T : M(a, b) → O are defined by
S(z) = a and T (z) = b for z ∈ M(a, b). Moreover we define another monoid M′

in OGr by M′(x, x) = HH,X , M′(y, y) = aut1(XQ), M′(x, y) = F(X,XQ; e) and
M′(y, x) = φ with arrows defined immediately as mentioned above.

The inclusions i : aut1(X) → M, j : aut1(XQ) → M, i′ : HH,X → M′ and
j′ : aut1(XQ) → M′ induce the maps between classifying spaces which fit into the
commutative diagram

(7.1) BHH,X
Bi′ // B(O,M′,O)

BG

Bψ 66lllll

BλG,X

((RRRRR Baut1(XQ),
'
Bj′kkVVVV

'
Bj

tthhhh

Baut1(X)
Bi

//

Bι

OO

B(O,M,O)

Beι

OO

where ι̃ : M → M′ is the morphism of monoids in OGr induced by the inclusion
ι : aut1(X) → HH,X . The proof of [25, Theorem 3.2] enables us to conclude
that maps Bj and Bj′ are homotopy equivalences. The map Ω((Bj)−1 ◦ (Bi))
coincides with the composite (e∗)−1 ◦ e∗ : aut1(X) → F(X, XQ; e) → aut1(XQ) up
to weak equivalence; see [25, Theorem 3.2(i)]. Moreover the map e∗ : aut1(X) →
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F(X, XQ; e) is a localization; see [16]. These facts yield that π∗(ΩBi) ⊗ Q is an
isomorphism and hence so is π∗(Bi) ⊗ Q. Thus the localized map (Bi)Q is a weak
equivalence. This implies that (Bi)∗ : H∗(Baut1(X); Q) → H∗(B(O,M,O); Q)
is an isomorphism. The commutative diagram (7.1) enables us to conclude that
H∗(Bψ; Q) is injective if so is H∗(BλG,X ; Q). This completes the proof. ¤

As we pointed out in the introduction, [18, Proposition 4.8] follows from The-
orems 1.5 and 1.7. In fact, suppose that M is the flag manifold U(m)/U(m1) ×
· · · × U(ml) and G = SU(m). Then as is seen in Remark 7.1 below (λG,M )∗ :
π∗(BG)⊗Q → π∗(Baut1(M))⊗Q is injective if and only if (BλG,M )∗ : H∗(BG) →
H∗(Baut1(M)) is surjective.

Remark 7.1. Suppose that M is a homogeneous space of the form G/H for which
rank G = rank H. The main theorem in [35] due to Shiga and Tezuka implies
that π2i(aut1(M)) ⊗ Q = 0 for any i. Thus H∗(Baut1(M); Q) is a polynomial
algebra generated by the graded vector space (sV )], where (sV )l = πl−1(aut1(M)).
Therefore the dual map to the Hurewicz homomorphism Ξ] : H∗(Baut1(M); Q) →
Hom(π∗(Baut1(M)), Q) induces an isomorphism on the vector space of indecom-
posable elements; see [11, page 173] for example. Thus the commutative diagram

H∗(BG; Q)

Ξ]

²²

H∗(Baut1(M); Q)
(BλG,M )∗oo

Ξ]

²²
Hom(π∗(BG), Q) Hom(π∗(Baut1(M)), Q)

((BλG,M )∗)]

oo

yields that the map (BλG,M )∗ is surjective if G is rationally visible in aut1(M).
We also see that the induced map (Bψ)∗ : Hj(BG) → Hj(BHH,G/U ) is injective
for each triple (G,U, i) in Tables 1 and 2 if j ∈ vd(G,G/U).

8. The sets vd(G,G/U) of visible degrees in Tables 1 and 2

In this section, we deal with the visible degrees described in Tables 1 and 2 in
Introduction.

For the case where the homogeneous space G/U has the rational homotopy type
of the sphere, the assertions on the visible degrees follow from the latter half of
Theorem 1.2. In fact, the argument in Example 1.4 does work well to obtain such
results. The details are left to the reader. The results for (11) and for (17) follow
from Theorems 1.5 and 1.6, respectively. We are left to verify the visible degrees
for the cases (1), (5), (6), (6)’ (16) and (19).

(1). It is well-known that (Bι)∗(pi) = (−1)i(χ2p′i−1 + p′i) for the induced map
(Bι)∗ : H∗(BSO(2m + 1)) → H∗(B(SO(2) × SO(2m − 1)), where p′i is the ith
Pontrjagin class in H∗(B(SO(2m − 1)) ∼= Q[p′1, ..., p

′
m−1]; see [30].

We can construct a Sullivan model (∧W,d) for the Grassmann manifold M :=
SO(2m + 1)/SO(2)×SO(2m− 1) for which ∧W = ∧(χ, p′1, ..., p

′
m−1, τ2, τ4, ..., τ2m)

and d(τ2i) = (−1)i(χ2p′i−1 + p′i) for 1 ≤ i ≤ m. We see that there exists a quasi-
isomorphism w : (∧(χ, τ2m), dτ2m = −χ2m) → (∧W,d) such that w(χ) = χ and

w(τ2m) = χ2(m−1)τ2 + · · · + χ2τ2(m−1) + τ2m.



RATIONAL VISIBILITY OF A LIE GROUP 25

In view of the rational model ˜̃µ : E′/Mu → ∧VG for λG,M : SO(2m+1) → aut1(M)
mentioned in (5.2) and Theorem 3.3, it follows from Lemma 4.2 that

˜̃µ(τ2m ⊗ (χ2l)∗)) = (−1)τ(|χ2l|)〈ζ ◦ w(τ2m), (χ2l)∗〉
= 〈χ2(m−1)τ2 + · · · + χ2τ2(m−1) + τ2m, (χ2l)∗〉
= τ2(m−l),

where ζ is the Sullivan representative for the action SO(2m−1)×M → M described
in Lemma 4.1. We have the result.

The same argument does work well to prove the result for the case (16).
(19). Let ι : Spin(9) → F4 be the inclusion map. Without loss of generality, we

can assume that the induce map

(Bι)∗ : H∗(BF4; Q) = Q[y4, y12, y16, y24] → H∗(BSpin(9); Q) = Q[y4, y8, y12, y16]

satisfies the condition that (Bι)∗(yi) = yi for i = 4, 12, 16 and (Bι)∗(y24) = y3
8 ,

where deg yi = i. This fact follows from a usual argument with the Eilenberg-Moore
spectral sequence for the fibration LP 2 → BSpin(9) Bι→ BF4. By virtue of Lemmas
4.1 and 4.2, we see that there exists a model for the linear action F4 ×LP 2 → LP 2

of the form

ζ : (∧(x′
23) ⊗ ∧(y8), d) → (∧(x3, x11, x15, x23) ⊗ ∧(x′

23 ⊗ ∧(y8), d′)

with ζ(x′
23) = x23 ⊗ 1 ⊗ 1 + 1 ⊗ x′

23 ⊗ 1, where d(x′
23) = y3

8 , d′(xj) = 0 for
j = 3, 11, 15, 23. In fact, for dimensional reasons, we write ζ(x′

23) = 1 ⊗ x′
23 ⊗

1 + x23 ⊗ 1⊗ 1 + cx15 ⊗ 1⊗ y8 with a rational number c. By definition, we see that
ζ = ψ ⊗ 1, where ψ denotes the DGA map in Lemma 4.2. Since the image of each
element with degree less than 24 by (Bι)∗ does not have the element y8 as a factor,
it follows that c = 0. Observe that ∧VBF4-action on ∧VBSpin(9) is induced by the
map (Bι)∗. The dual to the map (λ∗)i : πi(F4) ⊗ Q → πi(aut1(F4/Spin(9))) ⊗ Q
is regarded as the induced map

H(Q(˜̃µ)) : H∗(Q(Ẽ/Mu), δ0) → VG = Q{x3, x11, x15, x23}

in Theorem 3.1. We see that Q(Ẽ/Mu) = Q{y8⊗1∗, x′
23⊗1∗, x′

23⊗(y8)∗, x′
23⊗(y2

8)∗},
δ0(x′

23 ⊗ (y2
8)∗) = 3y8 ⊗ 1∗, δ0(x′

23 ⊗ 1∗) = δ0(x′
23 ⊗ (y1

8)∗) = 0; see Example 2.4.
Moreover the direct computation with (3.1) shows that Q(˜̃µ)(x′

23 ⊗1∗) = ±x23 and
Q(˜̃µ)(x′

23 ⊗ (y8)∗) = 0. This implies that vd(F4,LP 2) = {23}.
(5). The inclusion ι : SO(4) → G2 induces the ring homomorphism

(Bι)∗ : H∗(BG2) ∼= Q[y4, y12] → H∗(BSO(4)) ∼= Q[p1, χ],

where deg p1 = 4 and deg χ = 4. It is immediate that (Bι)∗(y12) is decomposable
for dimensional reasons. Form Example 2.4, we see that π∗(aut1(HP 2)) ∼= Q{y ⊗
1∗, y⊗(x1)∗}, where deg y⊗1∗ = 11 and deg y⊗(x1)∗ = 7. It follows from Theorem
1.2 that vd(G2, G2/SO(4)) = {11}.

(6). Let T 2 be the standard maximal torus of U(2). We assume that G2 ⊃
U(2) ⊃ T 2 without loss of generality. Then the inclusion W (G2) ⊃ W (U(2)) of
Weyl groups gives the inclusions

Q[t1, t2]W (G2) // // Q[t1, t2]W (U(2)) // // Q[t1, t2]

H∗(BG2)

∼=
OO

H∗(BU(2))

∼=
OO

H∗(BT 2).

∼=
OO
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The result [36, page 212, Example 3] implies that there exist generators y4, y12 of
H(BG2) such that H(BG2) ∼= Q[y4, y12] and y4 = t21− t1t2 + t22, y12 = (t1t22− t21t2)

2

in Q[t1, t2]W (G2). Since the Chern classes c1, c2 ∈ H∗(BU(2)) are regarded as t1+t2
and t1t2, respectively in Q[t1, t2]W (U(2)), it follows that

(Bι)∗(y4) = c2
1 − 3c2 and (Bι)∗(y12) = c2

1c
2
2 − 4c3

2,

where ι : U(2) → G2 is the inclusion. Put c̃2 = −1
3c2

1 + c2. Then we see that
(Bι)∗(−1

3y4) = c̃2 and

(Bι)∗(y12) = − 1
27

c6
1 −

2
3
c4
1c̃2 − 3c2

1c̃
2
2 − 4c̃3

2.

By the direct computation implies that

(Bι)∗(−1
3
y4) ⊗ 1∗ − (Bι)∗(y12) ⊗ (−3

2
)(c4

1)∗

= c̃2 ⊗ 1∗ +
3
2
(
− 1

27
c6
1 −

2
3
c4
1c̃2 − 3c2

1c̃
2
2 − 4c̃3

2

)
⊗ (c4

1)∗

≡ c̃2 ⊗ 1∗ − c̃2 ⊗ 1∗ ≡ 0

modulo decomposable elements in (H∗(BU(2)) : H∗(G2/U(2)))/Mu. It is im-
mediate that (Bι)∗(y12) is decomposable. By virtue of Theorem 1.2, we have
vd(G2, G2/U(2)) = {3, 11}. The same argument works well to obtain the result
for the case (6)’.
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Masaki Kameko for valuable comments on this work and to Hiroo Shiga for drawing
my attention to this subject. I thank the anonymous referee of a previous version
of this paper for showing me a very simple proof of the latter half of Theorem 1.2,
which is described in Remark 5.1.

9. Appendix. Extensions of characteristic classes

For a space X, let Xδ denote the space with the discrete topology whose un-
derlying set is the same as that of X. Let M be a homogeneous space admitting
an action of a connected Lie group G. In this section, we consider cohomology
classes of B(Diff1(M))δ as well as those of B(aut1(M))δ, which detect familiar
characteristic classes via the induced map

(Bλ)∗ : H∗(B(Diff1(M))δ; Q) → H∗(BGδ; Q).

Let G be a real semi-simple connected Lie group with finitely many components
and h : G → GC the complexification of G. One has a commutative diagram

H∗(BGC) h∗
// H∗(BG)

j∗
// H∗(B(Gδ))

H∗(Baut1(G/U))
Bλ∗

44iiiiiiiiiiii
// H∗(BDiff1(G/U))

OO

// H∗(B(Diff1(G/U))δ) ,

OO

where j : Gδ → G stands for the natural map. The result [27, THEOREM 2] asserts
that the kernel of j∗ is equal to the ideal generated by the positive dimensional
elements in Imh∗.

As an example, we consider the case where G = SL(2m; R) and U is a max-
imal rank subgroup of SO(2m) with (QH∗(BU ; Q))2m = 0, for example U is
a maximal torus of SO(2m). Observe that G ∼= SO(2m) and GC ∼= SU(2m).
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Then Milnor’s result mentioned above allows us to conclude that the Euler class
χ of H∗(BSL(2m; R)) survives in H∗(B(Gδ)); see [29]. Moreover Theorem 1.2
yields that (Bλ)∗ : Hi(Baut1(G/U)) → Hi(BG) is surjective for i = 2m; see
also Remark 7.1. Thus the class χ ∈ H∗(B(G)δ) is extendable to an element χ̃
of H∗(B(Diff1(G/U))δ). Let pm be the mth Pontjagin class. Then we see that
h∗(c2m) = pm and pm = χ2; see [30]. This yields that χ2 = 0 in H∗(B(Gδ)). It
remains to show whether χ̃2 is zero in H∗(B(Diff1(G/U))δ).

Remark 9.1. The result [27, Corollary] yields that the induced homomorphism
(Bj)∗ : H∗(BG; Z) → H∗(BGδ; Z) is injective. Thus the same argument as above
does work well to find a nontrivial element in the cohomology H∗(B(Diff1(G/U))δ)
for an appropriate subgroup U of G if H∗(BG; Z) is torsion free.
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