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Abstract

We propose a mechanism that the soft supersymmetry breaking
masses and µ parameter can be induced from the dynamical rear-
rangement of local U(1) symmetries in a five-dimensional model. It
offers to a solution of µ problem if there is a large hierarchy among
the relevant U(1) charge of Higgsinos and that of hidden fields which
stabilize the extra-dimensional component of U(1) gauge boson.

1 Introduction

The gauge hierarchy problem (naturalness problem) can be solved by the
supersymmetry (SUSY) because SUSY stabilizes the weak scale against ra-
diative corrections from a higher-energy physics.[1] It is also expected that
SUSY can play an essential role in physics at the Planck scale because string
theory is a powerful candidate as an unified theory including quantum grav-
ity and its consistency is deeply related to the worldsheet modular invariance
and SUSY.
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If nature takes advantage of SUSY, SUSY should be broken with soft
SUSY breaking parameters of O(1) TeV because of naturalness and yet-to-be-
discovered superpartners. Then, the origin of soft SUSY breaking terms and
µ term is one of the biggest problem beyond the standard model (SM) based
on SUSY.[2] The minimal SUSY extension of SM is so-called the MSSM. It
is usually expected that a high-energy physics is described by a quantum
field theory (QFT) respecting SUSY, the SUSY is spontaneously broken in
some hidden sector, and soft SUSY breaking terms are induced in our visible
sector by the mediation of some messengers.[3]

Based on the bottom-up approach and the brane world scenario, we
explore a possibility that SUSY is not completely realized in our starting
high-energy QFT. A lesson from the brane world scenario is that symme-
tries are not necessarily realized uniformly over the space-time including ex-
tra dimensions.[4, 5] We present the exotic scenario that SUSY is assumed
to be explicitly broken, at some high energy scale, in the presence of extra
gauge symmetries which interact fields and their superpartners differently
in the bulk, but our brane respects the N = 1 SUSY. The physics on our
brane is described as the MSSM with the soft SUSY breaking terms and
µ term, which are originated from the dynamical rearrangement of broken
gauge symmetries.

The dynamical rearrangement is a part of Hosotani mechanism.[6, 7, 8]
The physical symmetry and spectra are obtained after the determination of
vacuum state via the mechanism. An excellent feature is that the physics is
mostly dictated by the particle contents of the theory including the assign-
ment of gauge quantum numbers. It is interesting to pursue what type of
particle contents and structure of extra dimensions are appropriate to derive
phenomenologically suitable soft SUSY breaking terms and µ term by setting
the gauge invariance above SUSY.

In this paper, we propose a mechanism that the soft SUSY breaking
masses and µ parameter can be induced from the dynamical rearrangement
of local U(1) symmetries on the basis of the above scenario. As a bonus,
it offers to a solution of µ problem if there is a large hierarchy among the
relevant U(1) charge of Higgsinos and that of SM singlet fields which stabilize
the extra-dimensional component of U(1) gauge boson. In the next section,
we elaborate our scenario after explaining our background, and give our setup
on the model building. In section 3, we give a candidate for realizing our
scenario. In the last section, we present conclusions and a discussion.
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2 Our scenario and setup

2.1 Background

First it would be meaningful to explain the relevant preceding study for the
origin of soft SUSY breaking terms from extra dimensions.

Scherk and Schwarz proposed the mechanism that SUSY breaking terms
originate from the different boundary conditions (BCs) between fields and
those superpartners.[9, 10] This is so-called Scherk-Schwarz mechanism. It is
applied to the SUSY SM on the five-dimensional space-time and the MSSM
is derived on the brane.[11, 12, 13] The magnitude of soft SUSY breaking
masses (mSUSY) and µ parameter is O(αl/R) where αl are twisted phases
relating BCs. We refer to them as Scherk-Schwarz phases. Tiny phases of
αl = O(R/TeV−1) are necessary (in the unit of TeV−1 for the radius of extra
dimension R) in order to obtain mSUSY and µ of O(1)TeV. Furthermore the
non-abelian symmetry such as SU(2)R and SU(2)H can be crucial for the
mechanism to work because the Scherk-Schwarz phases are attached to the
doublets of SU(2)R and SU(2)H to generate mSUSY and µ, respectively. Here
SU(2)R is the R symmetry and SU(2)H is the symmetry between two sets
of hypermultiplets.

According to the Hosotani mechanism, the system with the non-vanishing
vacuum expectation values (VEVs) of Wilson line phases and ordinary peri-
odic BCs is gauge equivalent to that with the vanishing VEVs of Wilson line
phases and twisted BCs via the dynamical rearrangement of relevant gauge
symmetries. Based on this observation, we hit on the idea whether soft SUSY
breaking parameters and µ parameter stem from the Hosotani mechanism.
There are, however, two great barriers. One is that a non-vanishing effective
potential cannot be induced from any global SUSY theory without SUSY
breaking terms. The other is that SU(2)R cannot be a local symmetry in
any global SUSY theory because SU(2)R does not commute with SUSY.

These difficulties can be avoid by extending the framework of theory.
In fact, Gersdorff and Quirós pointed out that the Scherk-Schwarz mech-
anism can be interpreted as the Hosotani mechanism relating to the local
SU(2)R symmetry in the supergravity (SUGRA) on the five-dimensional
space-time including the orbifold S1/Z2 as the extra space.[14] Furthermore
Gersdorff, Quirós and Riotto calculated the effective potential and found
that the Scherk-Schwarz phase is fixed to 0 or π at the one loop level.[15]
Then mSUSY of O(1/R) can be obtained because the normalization of SU(2)R
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charges is fixed from the group theoretical reason. This result is rather ro-
bust in the absence of other SUSY breaking sources because the effective
potential depends on the particle content in the bulk.

In this way, we have arrived the no go theorem that soft SUSY breaking
parameters and µ parameter of O(1)TeV cannot be obtained via the Hosotani
mechanism from any SUSY QFT without SUSY breaking sources and with
flat small extra dimensions.

2.2 Scenario

It is necessary to relax some of assumptions to escape the above no go the-
orem. We adopt the assumption that SUSY in starting QFT is partially
broken by some symmetries. The basic ingredients of our scenario are as
follow.

• The space-time is made from a product of four-dimensional Minkowski
space M4 and the extra space. Our four-dimensional world is a brane
or boundary in the bulk.

• Gauge bosons live in the bulk and the relevant gauge group is GSM×G′.
Here GSM is the SM gauge group GSM = SU(3)C × SU(2)L × U(1)Y

and G′ is an exotic gauge group.

• A same number of bosonic fields and fermionic ones exits, e.g., as a rem-
nant of SUSY at a higher energy scale beyond our starting QFT. The
corresponding partners have a same quantum number under GSM, but
a different quantum number under G′.1 Hence the SUSY is manifestly
broken in the bulk at a turn of the switch of G′.

• The G′ is broken down to its subgroup H ′ on our brane by suitable
BCs relating the extra dimension, which respect the SUSY. Hence the
N = 1 SUSY can be an unbroken symmetry on our brane if all fields
are singlets (or fields and their would-be superpartners have a common
quantum number) under H ′.

1We do not specify the origin of exotic gauge symmetries. As a conjecture, bulk fields
with G′ quantum numbers might be solitonic objects originating from unknown non-
perturbative dynamics on the formation of space-time structure in a more fundamental
theory. Or they might be survivers from SUSY multiplets after decoupling some partners.
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• The MSSM fields come from zero modes of bulk fields and our brane is
described by a SUSY theory with a symmetry such as R parity, which
prevents from decaying a proton rapidly.

• Non-singlet fields under the broken symmetries G′/H ′ can obtain masses
from the dynamical rearrangement of G′/H ′ via the Hosotani mecha-
nism. The mass terms become SUSY breaking ones if the G′/H ′ quan-
tum numbers for fields are different from those of their superpartners.

• The masses are proportional to the charges of G′/H ′ and the VEVs
of extra-dimensional components of broken gauge bosons (Wilson line
phases). Hence the mSUSY and µ of O(1)TeV can be obtained in the
case that the charges of G′/H ′ and/or the VEVs of Wilson line phases
are tiny enough.

2.3 Setup

We consider an extension of MSSM on the five-dimensional space-time M4×
S1/Z2. The coordinates xM (M = 0, 1, 2, 3, 5) are separated into the uncom-
pactified four-dimensional ones xµ (µ = 0, 1, 2, 3) (or x) and the compactified
one x5 (or y). The S1/Z2 is obtained by dividing the circle S1 (with the iden-
tification y ∼ y + 2πR) by the Z2 transformation y → −y, so that the point
y is identified with −y. Then the S1/Z2 is regarded as an interval with
length πR, with R being the S1 radius. Both end points y = 0 and πR are
fixed points under the Z2 transformation. We regard the four-dimensional
hypersurface on y = 0 as our visible world.

We line up a U(1) gauge symmetry as the candidate of broken exotic
symmetry because any tiny U(1) charge is allowed theoretically as far as a
quantization condition is not imposed. Here we have a problem that the fifth
component of extra U(1) gauge boson (A5) has usually Z2 odd parities and
it cannot play the role of Wilson line phase. There are two ways to make Z2

parities of A5 even. One is that we impose the conjugate BCs on fields.[16]
But, this type of BCs are not suitable for the SM gauge bosons and matter
fields because zero modes of the SM gauge bosons are projected out and zero
modes of matter fields possess only real components. The other is that we
use a variant of the diagonal embedding proposed in Ref. [17]. As shown
later, we can impose appropriate BCs on both SM gauge bosons and matter
fields, and the non-abelian structure such as SU(2) can be build by making
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a difference between the eigenstates of U(1) gauge symmetry and those of
BCs. Hence we adopt the latter one.

We consider U(1)(−) as G′ and impose the following BCs on the gauge

boson A
(−)
M ,

A
(−)
M (x, y + 2πR) = A

(−)
M (x, y) , (1)

A(−)
µ (x,−y) = −A(−)

µ (x, y) , A
(−)
5 (x,−y) = A

(−)
5 (x, y) , (2)

A(−)
µ (x, 2πR − y) = −A(−)

µ (x, y) , A
(−)
5 (x, 2πR − y) = A

(−)
5 (x, y) . (3)

From (1) – (3), we find that the U(1)(−) is broken down on our brane because

the massless mode do not appear in A(−)
µ but A

(−)
5 . In this case, H ′ is nothing.

The massless mode of A
(−)
5 is a dynamical field which will play a central role

as the Wilson line phase in the dynamical rearrangement.
Next we consider a pair of fermions Ψk and a pair of complex scalar

bosons Φk whose Lagrangian density is given by

L =
∑

k=1,2

iΨkΓ
MDMΨk +

∑
k=1,2

|DMΦk|2 , (4)

where ΓM is a five-dimensional gamma matrices and DM is the covariant
derivative defined by

DM ≡ ∂M + ig−Q−A
(−)
M + i

3∑
a=1

gaA
a
M . (5)

Here g− and Q− are the gauge coupling and the charge of U(1)(−), and ga

and Aa
M are the gauge couplings and the gauge bosons of GSM. We need a

pair of fields whose U(1)(−) charge has an opposite value, in order to realize
the invariance under the Z2 transformation.

Now we study BCs and one-loop effective potential of A
(−)
5 for fermions

and complex scalar fields in order.

2.3.1 Fermions

We consider a pair of Dirac fermions Ψ1 and Ψ2 whose U(1)(−) charge is
q− and −q−, respectively. The following BCs are compatible with that the
Lagrangian density (4) should be a single-valued function on M4 × S1/Z2,

Ψk(x, y + 2πR) = ηf0Ψk(x, y) (k = 1, 2) , (6)

Ψ1(x,−y) = ηf1γ5Ψ2(x, y) , Ψ1(x, 2πR − y) = ηf2γ5Ψ2(x, y) , (7)
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where ηf1 and ηf2 are intrinsic parities of Z2 reflections whose vaules are +1
or −1, and ηf0 = ηf1ηf2. The Ψ1 and Ψ2 are expanded as

Ψ1(x, y) =
+∞∑

n=−∞
ψn(x) exp

i
n +

1−ηf0

4

R
y

 , (8)

Ψ2(x, y) =
+∞∑

n=−∞
ηf1γ5ψn(x) exp

−i
n +

1−ηf0

4

R
y

 , (9)

respectively. Here and hereafter a common normalization factor is omitted.
The extra-coordinate part of kinetic term is given by

i(Ψ1, Ψ2)Γ
5

(
∂5 + iq−A

(−)
5 0

0 ∂5 − iq−A
(−)
5

)(
Ψ1

Ψ2

)
. (10)

Here and hereafter we omit the SM gauge bosons irrelevant of our discussion
and the gauge coupling of U(1)(−) to avoid a complication.

Upon compactification, the following mass terms appear after integrating
on (10) over y,

+∞∑
n=−∞

n +
1−ηf0

4
+ q−β

R

(
ψnL(x)ψnR(x) + ψnR(x)ψnL(x)

)
, (11)

where β ≡ 〈A(−)
5 〉R. Note that the field with n +

1 − ηf0

4
= 0 can also

become massive with β. From (11), the following one-loop effective potential
is obtained

V D
eff [β] = 8C

∞∑
n=1

1

n5
cos

[
2πn

(
1 − ηf0

4
+ q−β

)]
, (12)

where C ≡ 3/(128π6R4). Here and hereafter β independent terms are omit-
ted.

For later convenience, we study the fields defined by Ψ(±) ≡ (Ψ1±Ψ2)/
√

2.
Using Ψ(±), the (6) and (7) are rewritten as

Ψ(±)(x, y + 2πR) = ηf0Ψ
(±)(x, y) , (13)

Ψ(±)(x,−y) = ±ηf1γ5Ψ
(±)(x, y) , (14)

Ψ(±)(x, 2πR − y) = ±ηf2γ5Ψ
(±)(x, y) (15)
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and (10) is rewritten as

i(Ψ
(+)

, Ψ
(−)

)γ5

(
∂5 iq−A

(−)
5

iq−A
(−)
5 ∂5

)(
Ψ(+)

Ψ(−)

)
. (16)

Note that the Ψ(±) are the eigenstates of BCs, but they are not the eigenstates
of extra U(1) symmetry. The non-abelian structure such as SU(2) emerges
in (16).

We consider a pair of symplectic-Majorana fermions Ψ1 and Ψ2 whose
U(1)(−) charge is q− and −q−, respectively. They satisfy the relation such

that Ψi = εijCγ5Ψ
jT

where εij = iσ2 and C is the charge conjugation matrix.

Majorana fermions acquire the mass
∣∣∣∣n +

1 − ηf0

4
+ q−β

∣∣∣∣ /R upon compact-

ification and the following one-loop effective potential is obtained

V M
eff [β] = 4C

∞∑
n=1

1

n5
cos

[
2πn

(
1 − ηf0

4
+ q−β

)]
. (17)

2.3.2 Complex scalar fields

We consider a pair of complex scalar fields Φ1 and Φ2 whose U(1)(−) charge
is q− and −q−, respectively. The following BCs are compatible with that (4)
should be a single-valued function,

Φk(x, y + 2πR) = ηb0Φk(x, y) (k = 1, 2) , (18)

Φ1(x,−y) = ηb1Φ2(x, y) , Φ1(x, 2πR − y) = ηb2Φ2(x, y) , (19)

where ηb1 and ηb2 are intrinsic Z2 parities whose vaules are +1 or −1, and
ηb0 = ηb1ηb2. The Φ1 and Φ2 are expanded as

Φ1(x, y) =
+∞∑

n=−∞
φn(x) exp

(
i
n + 1−ηb0

4

R
y

)
, (20)

Φ2(x, y) =
+∞∑

n=−∞
ηb1φn(x) exp

(
−i

n + 1−ηb0

4

R
y

)
, (21)

respectively. The extra-coordinate part of kinetic term is given by∣∣∣∣∣
(

∂5 + iq−A
(−)
5 0

0 ∂5 − iq−A
(−)
5

)(
Φ1

Φ2

)∣∣∣∣∣
2

. (22)
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Upon compactification, the following mass terms appear

+∞∑
n=−∞

(
n + 1−ηb0

4
+ q−β

R

)2

|φn(x)|2 . (23)

Hence the following one-loop effective potential is induced

V S
eff [β] = −4C

∞∑
n=1

1

n5
cos

[
2πn

(
1 − ηb0

4
+ q−β

)]
. (24)

The fields defined by Φ(±) ≡ (Φ1 ±Φ2)/
√

2 are the eigenstates of BCs as
seen from that the (18) and (19) are rewritten as

Φ(±)(x, y + 2πR) = ηb0Φ
(±)(x, y) , (25)

Φ(±)(x,−y) = ±ηb1Φ
(±)(x, y) , (26)

Φ(±)(x, 2πR − y) = ±ηb2Φ
(±)(x, y) . (27)

On the other hand, the Φ(±) are not the eigenstates of extra U(1) symmetry
as seen from that the (22) is rewritten as

∣∣∣∣∣
(

∂5 iq−A
(−)
5

iq−A
(−)
5 ∂5

)(
Φ(+)

Φ(−)

)∣∣∣∣∣
2

. (28)

3 Our model

We present an explicit model to realize our scenario. Our basic principles
for BCs are that BCs should be compatible with the single-valued behavior
of the Lagrangian density and preserve N = 1 SUSY on the brane at y = 0.
First let us prepare bulk fields whose massless modes at the tree level contain
the MSSM particles and treat them as the eigenstates of BCs. The minimal
sets are given as follows.

(i) The member of would-be MSSM gauge multiplets are (AM , Σ; λ1, λ2)
whose BCs are given by

AM(x, y + 2πR) = AM(x, y) , Σ(x, y + 2πR) = Σ(x, y) ,

λi(x, y + 2πR) = λi(x, y) , (29)
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Aµ(x,−y) = Aµ(x, y) ,

(
A5

Σ

)
(x,−y) = −

(
A5

Σ

)
(x, y) ,

λ1(x,−y) = −γ5λ
1(x, y) , λ2(x,−y) = γ5λ

2(x, y) , (30)

Aµ(x, 2πR − y) = Aµ(x, y) ,

(
A5

Σ

)
(x, 2πR − y) = −

(
A5

Σ

)
(x, y) ,

λ1(x, 2πR − y) = −γ5λ
1(x, y) , λ2(x, 2πR − y) = γ5λ

2(x, y) , (31)

where AM is the five-dimensional SM gauge bosons, Σ is a real scalar field
and (λ1, λ2) are gauginos represented by symplectic-Majorana fermions. The
index indicating the SM gauge group or generators is suppressed. The mass-
less fields come from Aµ and λ1

L. The gauginos can acquire the β-dependent
masses when λ1 and λ2 are regarded as Ψ(+) and Ψ(−), respectively, with
η1f = η2f = −1 and yield to the term (16) with a non-vanishing q−.

(ii) The member of would-be MSSM matter multiplets are (ψi; φi, φci†) whose
BCs are given by

ψi(x, y + 2πR) = ψi(x, y) ,

(
φi

φci†

)
(x, y + 2πR) =

(
φi

φci†

)
(x, y) , (32)

ψi(x,−y) = −γ5ψ
i(x, y) ,

(
φi

φci†

)
(x,−y) =

(
φi

−φci†

)
(x, y) , (33)

ψi(x, 2πR − y) = −γ5ψ
i(x, y) ,

(
φi

φci†

)
(x, 2πR − y) =

(
φi

−φci†

)
(x, y) ,(34)

where ψi are fermions represented by four-component spinors and (φi, φci†)
are complex scalar fields. The index i represents particle species. The mass-
less fields come from ψi

L and φi which are the chiral fermions (quarks and
leptons) and the corresponding scalar bosons (squarks and sleptons), respec-
tively. The scalar bosons acquire the β-dependent masses when φi and φci†

are regarded as Φ(+) and Φ(−), respectively, with η1b = η2b = 1 and yield to
the term (28) with a non-vanishing q−.

(iii) The member of would-be MSSM Higgs multiplets are (h̃; h, hc†) and

(˜̄h; h̄, h̄c†). The MSSM Higgsinos come from the fermions h̃ and ˜̄h. The
MSSM Higgs bosons stem from the complex scalar fields (h, hc) and (h̄, h̄c).
For simplicity, we impose the same type of BCs as (32) – (34) on them by
identifying {h, h̄} and {hc†, h̄c†} as Φ(+) and Φ(−), respectively.
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The above BCs (29) – (34) preserve the N = 1 SUSY on our brane. We
impose the R parity on the model. Then the theory on our brane is described
by the SUSY Lagrangian of the MSSM, using the above particle contents.
The µ term is assumed to be forbidden at the tree level by some symmetry
because there is no reason to let the magnitude of µ to be O(1)TeV. On the
other hand, the physics in the bulk is depicted by the gauge invariant kinetic
terms.

We introduce the abelian gauge boson of U(1)(−) whose BCs are given
by (1) – (3).2 Let us assign the “U(1)(−) quantum number” (q−) for the
would-be MSSM fields as shown in Table 1.3 We assume that the U(1)(−)

Table 1: U(1)(−) quantum numbers

(λ1, λ2) (φi, φci†) {h, h̄, hc†, h̄c†}
q− qλ qφi qh

quantum number for other fields are zero. Then the following one-loop effec-
tive potential is induced

V MSSM

eff [β] = −4C
∑

i

∞∑
n=1

1

n5
cos

[
2πnqφiβ

]
+ 4C

∞∑
n=1

1

n5
cos [2πnqλβ] − 8C

∞∑
n=1

1

n5
cos [2πnqhβ] . (35)

If the magnitude of qφi and/or qh is the same order of qλ, the minimum
of V MSSM

eff [β] is given by β = 0 and then soft SUSY breaking terms are not
induced. It is possible to obtain the minimum with qφiβ = 1/2 by changing
BCs with ηb0 = −1, but some fields can acquire heavy masses of O(1/R)

2The would-be superpartner of U(1)(−) gauge boson is also introduced. Although
the massless mode remains at the low-energy scale after compactification, it cannot be
detected directly because it does not interact with the MSSM fields in our assignment of
gauge quantum numbers.

3We use the terminology “U(1)(−) quantum number” throughout this paper, although
it might be unsuitable because Ψ(+) (Φ(+)) and Ψ(−) (Φ(−)) are not eigenstates of U(1)(−)

gauge symmetry. Note that the U(1)(−) gauge boson interacts with Ψ(+) (Φ(+)) and Ψ(−)

(Φ(−)) as understood from (16) for fermions and (28) for scalar fields. We refer to q−
appearing in (16) or (28) as U(1)(−) quantum number.
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comparable to those of Kaluza-Klein modes and the MSSM with soft SUSY
breaking parameters of O(1)TeV and a small extra dimension much less than
O(10−18)m cannot be derived.

Here we list problems including the above one.

(1) How can we obtain the non-vanishing VEV of A
(−)
5 ?

(2) Can the magnitude of soft SUSY breaking masses be O(1)TeV ?

(3) How can we obtain the µ term ?

We introduce extra fields to solve the first problem. A simple one is a
pair of SM singlet complex scalar fields Φ(±) whose BCs are given by (25) –
(27) with ηb0 = −1.4 Let the U(1)(−) quantum number of Φ(+) and Φ(−) be
qΦ. The following one-loop effective potential is induced

V Φ
eff [β] = −4C

∑
i

∞∑
n=1

1

n5
cos

[
2πn

(
1

2
+ qΦβ

)]
(36)

and the minimum of V Φ
eff [β] is given by qΦβ = 1/2. Then the first problem

is solved if the contribution of V Φ
eff [β] dominates over that of V MSSM

eff [β] in the
determination for the minimum of the potential. The intriguing possibility
is that the magnitude of qΦ is much bigger than that of qλ, qφi and qh.

Let the magnitude of qΦ be O(1) and we tackle the second problem. In

this case, the magnitude of 〈A(−)
5 〉 is estimated as O(1/R) and that of soft

SUSY breaking masses is estimated as O(qsp/R) where qλ, qφi and qh are
denoted as qsp as a whole. If 1/R is O(1016)GeV, a tiny charge such that
qsp = O(10−13) is required to obtain masses of O(1)TeV. We find that a large
hierarchy of qsp/qΦ = O(R/TeV−1) is necessary in order to obtain the soft
SUSY breaking masses of O(1)TeV. It is a difficult problem whether such a
tiny charge or a large charge hierarchy is derived naturally. This is one of
problems in our scenario.

Finally we consider the last problem. We introduce another abelian gauge
symmetry denoted as U(1)′(−) and extend the BCs for the member of would-

be MSSM Higgs multiplets. We regard h̃ and ˜̄h as Ψ(+) and Ψ(−), respectively
and impose the same type of BCs as (13) – (15) on them with ηf1 = ηf2 = −1.

Then the massless fields in h̃ and ˜̄h obtain the masses such as q′
h̃
〈A′(−)

5 〉 from

4A fermion with Q− = 0 is assumed to be present to keep the N = 1 SUSY on the
brane.
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the term (16) where q′
h̃

and A′(−)
5 are the “U(1)′(−) quantum number” of h̃

and ˜̄h and the U(1)′(−) gauge boson, respectively.
Before studying the Higgs bosons, we consider a quartet of complex scalar

fields Φ1, Φ2, Φ3 and Φ4 whose U(1)(−)×U(1)′(−) quantum numbers are given
by (q−, q′−), (−q−,−q′−), (−q−, q′−) and (q−,−q′−). The BCs of (Φ1, Φ2) are
given by (18) – (19) with ηb1 = ηb2 = 1 and those of (Φ3, Φ4) are the same.
Let us compose the eigenstates of BCs as

Φ(+) = c(Φ1 + Φ2) + s(Φ3 + Φ4) , Φ′(+) = −s(Φ1 + Φ2) + c(Φ3 + Φ4) , (37)

Φ(−) = c(Φ1 − Φ2) + s(Φ3 − Φ4) , Φ′(−) = −s(Φ1 − Φ2) + c(Φ3 − Φ4) ,(38)

up to a normalization factor. Here c and s are defined as c ≡ cos θ and
s ≡ sin θ, using a mixing angle θ. The (Φ(+), Φ′(+)) and (Φ(−), Φ′(−)) satisfy
the same type of BCs as (25) – (27) with ηb1 = ηb2 = 1. Using them, the
extra-coordinate part of kinetic term is given by

∣∣∣∣∣∣∣∣∣


∂5 0 N ′ N
0 ∂5 N N ′

N ′ N ∂5 0
N N ′ 0 ∂5




Φ(+)

Φ′(+)

Φ(−)

Φ′(−)


∣∣∣∣∣∣∣∣∣

2

, (39)

where N and N ′ are defined by

N ≡ 2iscq−A
(−)
5 , N ′ ≡ i(c2 − s2)q−A

(−)
5 + iq′−A′(−)

5 . (40)

The fields with n = 0 appear in Φ(+) and Φ′(+) and the mass-squared matrix
of them is given by (

m2
D m2

O

m2
O m2

D

)
, (41)

where m2
D and m2

O are

m2
D = 4s2c2

(
q−〈A(−)

5 〉
)2

+
[
(c2 − s2)q−〈A(−)

5 〉 + q′−〈A′(−)
5 〉

]2
, (42)

m2
O = 4scq−〈A(−)

5 〉
[
(c2 − s2)q−〈A(−)

5 〉 + q′−〈A′(−)
5 〉

]
, (43)

respectively. Note that the above mentioned BCs respect the N = 1 SUSY on
the brane when (Φ(±), Φ′(±)) and Ψ(±) make up two sets of hypermultiplets.
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From the above observation, the fields with n = 0 in Φ(+) and Φ′(+) can
be identified by two Higgs doublets hu and h†

d, respectively. For simplicity,
we choose θ = π/4. Then we obtain the mass-squared matrix such that

(
q−〈A(−)

5 〉
)2

+
(
q′−〈A′(−)

5 〉
)2

2q−q′−〈A
(−)
5 〉〈A′(−)

5 〉
2q−q′−〈A

(−)
5 〉〈A′(−)

5 〉
(
q−〈A(−)

5 〉
)2

+
(
q′−〈A′(−)

5 〉
)2

 . (44)

In this case,
(
q−〈A(−)

5 〉
)2

is the soft SUSY breaking scalar mass, q′−〈A′(−)
5 〉

is the µ parameter if q′− = q′
h̃
, and 2q−q′−〈A

(−)
5 〉〈A′(−)

5 〉 is the B parameter
(Bµ).

The remainig problems are how the non-vanishing γ ≡ 〈A′(−)
5 〉R can be

obtained and whether the magnitude of µ can be O(1)TeV. We introduce
a pair of Dirac fermions Ψ(±) with ηf1 = ηf2 = 1.5 Let the U(1)′(−) quan-
tum number of Ψ(+) and Ψ(−) be q′Ψ. Then the following one-loop effective
potential is induced

V Ψ
eff [γ] = 8C

∑
i

∞∑
n=1

1

n5
cos [2πnq′Ψγ] . (45)

The minimum of V Ψ
eff [γ] is given by q′Ψγ = 1/2. If the magnitude of q′Ψ is much

bigger than that of qh and q′
h̃
, the contribution of V Ψ

eff [γ] dominates over others

in the determination of γ and then 〈A′(−)
5 〉 stabilizes as q′Ψγ = 1/2.

In the case with qΦβ = 1/2, q′Ψγ = 1/2 and θ = π/4, the µ and B
parameters are given by

µ = q′
h̃
〈A′(−)

5 〉 =
1

2R

q′
h̃

q′Ψ
, Bµ = qhq

′
h̃
〈A(−)

5 〉〈A′(−)
5 〉 =

1

4R2

qh

qΦ

q′
h̃

q′Ψ
, (46)

respectively. If we require that µ = O(1)TeV and Bµ = O(1)TeV2, we need
a large hierarchy of q′

h̃
/q′Ψ = O(R/TeV−1) and qh/qΦ = O(R/TeV−1).

In this way, the following soft SUSY breaking mass terms and µ term are
derived,

Lsoft = −
(

1

2

∑
a

Ma
λλaλa + h.c.

)
−

∑
i

m2
i |φi|2

− m2
hu
|hu|2 − m2

hd
|hd|2 − Bµ (huhd + h.c.) , (47)

Lµ = −µ2
(
|hu|2 + |hd|2

)
−

(
µh̃uh̃d + h.c.

)
, (48)

5Two pairs of complex scalar fields with vanishing U(1)′(−) charge are assumed to be
present to keep the N = 1 SUSY on the brane.
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where Mλa = qλa〈A(−)
5 〉, m2

i =
(
qφi〈A(−)

5 〉
)2

, m2
hu

= m2
hd

=
(
qh〈A(−)

5 〉
)2

, Bµ =

qhq
′
h̃
〈A(−)

5 〉〈A′(−)
5 〉 and µ = q′

h̃
〈A′(−)

5 〉 for θ = π/4. Here λa are the MSSM

gauginos whose U(1)(−) quantum number is assigned by qλa , φi are the MSSM
sfermions and (hu, hd) and (h̃u, h̃d) are the MSSM Higgs bosons and Higgsi-
nos. We find that the breakdown of electroweak symmetry can occur radia-
tively using the same analysis in [12].

Our model does not suffer from the SUSY CP problem because all soft
SUSY breaking masses and µ parameter are real-valued. The flavor changing
neutral current (FCNC) processes can be suppressed enough if the U(1)(−)

quantum number of the relevant sfermions has a common value.
Our scenario can be applied to the SUSY SU(5) orbifold GUT.[18, 19]

By the introduction of the following matrices (P0, P1) relating Z2 reflections
under y = 0 and y = πR to the BCs of two sets of Higgs multiplets,

P0 = diag(1, 1, 1, 1, 1) , P1 = diag(−1,−1,−1, 1, 1) , (49)

the triplet-doublet splittings are realized elegantly.

4 Conclusions and discussion

We have proposed the mechanism that the soft SUSY breaking masses and
µ parameter can be induced from the dynamical rearrangement of the local
symmetries such as U(1)(−)×U(1)′(−) in a five-dimensional model. It offers to
a solution of µ problem if there is a large hierarchy among the relevant U(1)
charge of Higgsinos and the SM singlets which stabilize the extra-dimensional
coordinate of U(1) gauge boson.

Our proposal is regarded as a loophole from the no go theorem that soft
SUSY breaking parameters and µ parameter of O(1)TeV cannot be obtained
via the Hosotani mechanism from any SUSY QFT without SUSY breaking
sources and with flat small extra dimensions. We have relaxed the assumption
that the SUSY in starting QFT is partially broken by introducing exotic U(1)
gauge symmetries. It is possible to generate mass parameters with approriate
size by choosing U(1) charges with a suitable magnitude. Furthermore it
is possible to build the non-abelian structure such as SU(2) by using the
difference between the eigenstates of U(1) gauge symmetries and those of
BCs.
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The big problem in our scenario is the origin of exotic U(1) symmetries.
The exoitics come from the following three features. Different quantum num-
bers are assigned for bosons and fermions in (would-be) SUSY multiplets.
The eigenstates of gauge symmetries are mixtures of chiral SUSY multiplets
and anti-chiral ones, though the eigenstates of BCs are chiral SUSY mul-
tiplets and anti-chiral ones in themselves. The magnitude of exotic U(1)
charges is extremely small of O(R/TeV−1). From the third feature, we fancy
a strange possibility that such U(1) symmetries come from non-abelian gauge
groups and U(1) charged fields are solitons appearing on the breakdown of
gauge symmetry. This idea has stemed from by reference to the Witten
effect.[20] There, however, remain open questions whether a similar effect
can occur in a higher-dimensional SUSY theory and the masslessness of U(1)
charged fields is guaranteed by any reason.
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