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AN INTEGRAL EXPRESSION OF THE FIRST NONTRIVIAL
ONE-COCYCLE OF THE SPACE OF LONG KNOTS IN R3

KEIICHI SAKAI

Our main object of study is a certain degree-one cohomology class of the
space K3 of long knots in R3. We describe this class in terms of graphs
and configuration space integrals, showing the vanishing of some anomalous
obstructions. To show that this class is not zero, we integrate it over a cycle
studied by Gramain. As a corollary, we establish a relation between this
class and (R-valued) Casson’s knot invariant. These are R-versions of the
results which were previously proved by Teiblyum, Turchin and Vassiliev
over Z/2 in a different way from ours.

1. Introduction

A long knot in Rn is an embedding f : R1 ↪→ Rn that agrees with the standard
inclusion ι(t) = (t, 0, . . . , 0) outside [−1, 1]. We denote by Kn the space of long
knots in Rn equipped with C∞-topology.

In [Cattaneo et al. 2002] a cochain map I : D∗ → �∗DR(Kn) from a certain
graph complex D∗ was constructed for n > 3. The cocycles of Kn corresponding
to trivalent graph cocycles via I generalize an integral expression of finite type
invariants for (long) knots in R3 [Altschuler and Freidel 1997; Bott and Taubes
1994; Kohno 1994; Volić 2007]. In [Sakai 2008] the author found a nontrivalent
graph cocycle 0 ∈ D∗ and proved that, when n > 3 is odd, it gives a nonzero
cohomology class [I (0)] ∈ H 3n−8

DR (Kn). On the other hand, when n = 3, some
obstructions to I being a cochain map (called anomalous obstructions; see for
example [Volić 2007, Section 4.6]) may survive, so even the closedness of I (0)
was not clear. However, the obstructions for trivalent graph cocycles X (of “even
orders”) in fact vanish [Altschuler and Freidel 1997], hence the map I still yields
closed zero-forms I (X) of K3 (they are finite type invariants). This raises our hope
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that all obstructions for any graphs may vanish and hence the map I could be a
cochain map even when n = 3.

In this paper we will show (in Theorem 2.4) that the obstructions for the non-
trivalent graph cocycle 0 mentioned above also vanish, hence the map I yields the
first example of a closed one-form I (0) of K3. To show that [I (0)] ∈ H 1

DR(K3)

is not zero, we will study in part how I (0) fits into a description of the homotopy
type of K3 given in [Budney 2010; 2007; Budney and Cohen 2009]. It is known
that on each component K3( f ) that contains f ∈ K3, there exists a one-cycle G f

called the Gramain cycle [Gramain 1977; Budney 2010; Turchin 2006; Vassiliev
2001]. The Kronecker pairing gives an isotopy invariant V : f 7→ 〈I (0), G f 〉. We
show in Theorem 3.1 that V coincides with Casson’s knot invariant v2, which is
characterized as the coefficient of z2 in the Alexander–Conway polynomial. This
result will be generalized in Theorem 3.6 for one-cycles obtained by using an action
of little two-cubes operad on the space K̃3 of framed long knots [Budney 2007].

Closely related results have appeared in [Turchin 2006; Vassiliev 2001], where
the Z/2-reduction of a cocycle v1

3 of Kn (n ≥ 3), appearing in the E1-term of Vas-
siliev’s spectral sequence [Vassiliev 1992], was studied. A natural quasi-isomor-
phism D∗→ E0 ⊗R maps our cocycle 0 to v1

3 . In this sense, our results can be
seen as “lifts” of those in [Turchin 2006; Vassiliev 2001] to R.

The invariant v2 can also be interpreted as the linking number of colinearity
manifolds [Budney et al. 2005]. Notice that in each formulation (including the one
in this paper) the value of v2 is computed by counting some colinearity pairs on
the knot.

2. Construction of a close differential form

Configuration space integral. We review briefly how we can construct (closed)
forms of Kn from graphs. For full details see [Cattaneo et al. 2002; Volić 2007].

Let X be a graph in the sense of those references (see Figure 1 for examples).
Let vi and vf be the numbers of the interval vertices (or i-vertices for short; those
on the specified oriented line) and the free vertices (or f-vertices; those which are
not interval vertices) of X , respectively. With X we associate a configuration space

CX :=

{
( f ; x1, . . . , xvi; xvi+1, . . . , xvi+vf)

∈ Kn ×Conf (R1, vi)×Conf (Rn, vf)

∣∣∣∣ f (xi ) 6= x j for any
1≤ i ≤ vi < j ≤ vi+ vf

}
,

where Conf (M, k) := M×k
\
⋃

1≤i< j≤k{xi = x j } for a space M .
Let e be the number of the edges of X . Define ωX ∈�

(n−1)e
DR (CX ) as the wedge

of closed (n − 1)-forms ϕ∗αvolSn−1 , where ϕα : CX → Sn−1 is the Gauss map,
which assigns a unit vector determined by two points in Rn corresponding to the
vertices adjacent to an edge α of X (for an i-vertex corresponding to xi ∈ R1, we
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consider the point f (xi ) ∈Rn). Here we assume that volSn−1 is “(anti)symmetric”,
namely i∗volSn−1 = (−1)nvolSn−1 for the antipodal map i : Sn−1

→ Sn−1. Then
I (X) ∈�(n−1)e−vi−nvf

DR (Kn) is defined by

I (X) := (πX )∗ωX ,

the integration along the fiber of the natural fibration πX :CX→Kn . This fiber is a
subspace of Conf (R1, vi)×Conf (Rn, vf). Such integrals converge, since the fiber
can be compactified in such a way that the forms ϕ∗αvolSn−1 are still well-defined on
the compactification [Bott and Taubes 1994, Proposition 1.1]. We extend I linearly
onto D∗, a cochain complex spanned by graphs. The differential δ of D∗ is defined
as a signed sum of graphs obtained by “contracting” the edges one at a time.

One of the results of [Cattaneo et al. 2002] states that I : D∗→ �∗DR(Kn) is a
cochain map if n > 3. The proof is outlined as follows. By the generalized Stokes
theorem, d I (X)=±(π∂X )∗ωX , where π∂X is the restriction of πX to the codimension
one strata of the boundary of the (compactified) fiber of πX . Each codimension
one stratum corresponds to a collision of subconfigurations in CX , or equivalently
to A⊂ V (X)∪{∞} (here V (X) is the set of vertices of X ) with a consecutiveness
property: if two i-vertices p, q are in A, then all the other i-vertices between p and
q are in A. Here “∞∈ A” means that the points xl (l ∈ A) escape to infinity. When
∞ 6∈ A, the interior Int6A of the corresponding stratum 6A to A is described by
the pullback square

(2-1)

Int6A //

��

π
∂A
X

||

B̂A

ρA

��
Kn CX/X A DA

//
πX/X A

oo BA

Here

• X A is the maximal subgraph of X with V (X A) = A, and X/X A is a graph
obtained by collapsing the subgraph X A to a single vertex vA;

• BA = Sn−1 if A contains at least one i-vertex, and BA = {∗} otherwise;

• if A consists of i-vertices i1, . . . , is (s > 0) and f-vertices is+1, . . . , is+t , then

B̂A :=

{
(v; (xi1, . . . , xis ; xis+1, . . . , xis+t ))

∈ Sn−1
×Conf (R1, s)×Conf (Rn, t)

∣∣∣∣ xi pv 6= xiq for any
1≤ p≤ s< q ≤ s+t

}/
∼ ,

where ∼ is defined by(
v; (xi1, . . . , xis ; xis+1, . . . , xis+t )

)
∼(

v; (a(xi1 + r), . . . , a(xis + r); a(xis+1 + rv), . . . , a(xis+t + rv))
)
,
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for any a ∈ R>0 and r ∈ R (if A consists only of t f-vertices, then

B̂A := Conf (Rn, t)/(R1
>0 o Rn),

where R1
>0 o Rn acts on Conf (Rn, t) by scaling and translation);

• ρA is the natural projection;

• when A contains at least one i-vertex, DA : CX/X A → Sn−1 maps ( f ; (xi )) to
f ′(xvA)/| f

′(xvA)|.

We omit the case∞∈ A; see [Cattaneo et al. 2002, Appendix].
By properties of fiber integrations and pullbacks, the integration of ωX along

Int6A can be written as (πX/X A)∗(ωX/X A∧D∗A(ρA)∗ω̂X A), where ω̂X A ∈�
∗

DR(B̂A)

is defined similarly to ωX ∈�
∗

DR(CX ).
The stratum 6A is called principal if |A| = 2, hidden if |A| ≥ 3, and infinity if
∞ ∈ A. Since two-point collisions correspond to contractions of edges, we have
d I (X) = I (δX) modulo the integrations along hidden and infinity faces. When
n > 3, the hidden/infinity contributions turn out to be zero; in fact (ρA)∗ω̂X A = 0
if n > 3 and if A is not principal; see [Cattaneo et al. 2002, Appendix] or the next
example. This proves that the map I is a cochain map if n > 3.

Example 2.1. Here we show one example of vanishing of an integration along a
hidden face 6A. Let X be the seventh graph in Figure 1 and A := {1, 4, 5}. Then
in (2-1), BA = Sn−1 since A contains an i-vertex 1, and

B̂A = {(v; x1; x4, x5) ∈ Sn−1
×R1

×Conf (Rn, 2) | x1v 6= x4, x5}/∼,

where (v; x1; x4, x5) ∼ (v; a(x1 + r); a(x4 + rv), a(x5 + rv)) for any a > 0 and
r ∈ R1. The subgraph X A consists of three vertices 1, 4, 5 and three edges 14, 15
and 45. The open face Int6A, where three points f (x1), x4 and x5 collide with each
other, is a hidden face and is described by the square (2-1). Then the integration
of ωX along Int6A is (πX/X A)∗(ωX/X A ∧ D∗A(ρA)∗ω̂X A), where

ω̂X A = ϕ
∗

14volSn−1 ∧ϕ∗15volSn−1 ∧ϕ∗45volSn−1 ∈�
3(n−1)
DR (B̂A),

ϕ1 j :=
x j − x1v

|x j − x1v|
( j = 4, 5), ϕ45 :=

x5− x4

|x5− x4|
.

In this case we can prove that (ρA)∗ω̂X A = 0, hence the integration of ωX along
Int6A vanishes. Indeed a fiberwise involution χ : B̂A→ B̂A defined by

χ(v; x1; x4, x5) := (v; x1; 2x1v− x4, 2x1v− x5)

preserves the orientation of the fiber but χ∗ω̂X A =−ω̂X A (here we use that volSn−1

is antisymmetric), hence we have (ρA)∗ω̂X A =−(ρA)∗ω̂X A .
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Figure 1. A graph cocycle 0.

Nontrivalent cocycle. It is shown in [Cattaneo et al. 2002] that, when n > 3, the
induced map I on cohomology restricted to the space of trivalent graph cocycles is
injective. In [Sakai 2008], the author gave the first example of a nontrivalent graph
cocycle 0 (Figure 1) which also gives a nonzero class [I (0)] ∈ H 3n−8

DR (Kn) when
n > 3 is odd.

In Figure 1, nontrivalent vertices and trivalent f-vertices are marked by × and
•, respectively, and other crossings are not vertices. Here we say an i-vertex v
is trivalent if there is exactly one edge emanating from v other than the specified
oriented line. Each edge i j (i < j) is oriented so that i is the initial vertex.

Remark 2.2. An analogous nontrivalent graph cocycle for the space of embed-
dings S1 ↪→ Rn for even n ≥ 4 can be found in [Longoni 2004].

If n= 3, integrations along some hidden faces (called anomalous contributions)
might survive, so the map I might fail to be a cochain map. However, nonzero
anomalous contributions arise from limited hidden faces.

Theorem 2.3. Let X be a graph and A ⊂ V (X) ∪ {∞} be such that 6A is not
principal. When n = 3, the integration of ωX along 6A can be nonzero only if the
subgraph X A is trivalent.

Our main theorem is proved by using Theorem 2.3.

Theorem 2.4. I (0) ∈�1
DR(K3) is a closed form.

Proof. We call the nine graphs in Figure 1 01, . . . , 09, respectively. The graphs
0i , i 6= 3, 4, 9, do not contain trivalent subgraphs X A satisfying the consecutive
property; see the paragraph just before (2-1). So d I (0i ) = I (d0i ) for i 6= 3, 4, 9
by Theorem 2.3.

Possibly the integration of ω0i (i = 3, 4, 9) along 6A (A := {2, . . . , 5}) might
survive, since the corresponding subgraph X A is trivalent. However, we can prove
(ρA)∗ω̂X A = 0 (and hence d I (0i ) = I (d0i )) as follows: (ρA)∗ω̂X A = 0 for 03,
because there is a fiberwise free action of R>0 on B̂A given by translations of x2

and x4 [Volić 2007, Proposition 4.1] which preserves ω̂X A . Thus (ρA)∗ω̂X A= 0
by dimensional reason. The proof for 04 has appeared in [Bott and Taubes 1994,
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page 5271]; ω̂X A=0 on B̂A since the image of the Gauss map ϕ : BA→ (S2)3 corre-
sponding to three edges of X A is of positive codimension. As for 09, (ρA)∗ω̂X A=0
follows from deg(ρA)∗ω̂X A = 4 which exceeds dim BA (in fact BA = {∗} in this
case). �

Proof of Theorem 2.3. Let A be a subset of V (X) with |A| ≥ 3 or∞∈ A, and X A is
nontrivalent. We must show the vanishing of the integrations along the nonprincipal
face6A of the fiber of CX→K3. To do this it is enough to show (ρA)∗ω̂X A =0. By
dimensional arguments [Cattaneo et al. 2002, (A.2)] the contributions of infinite
faces vanish. So below we consider the hidden faces 6A with |A| ≥ 3.

If X A has a vertex of valence ≤ 2, then (ρA)∗ω̂X A = 0 is proved by dimensional
arguments or existence of a fiberwise symmetry of BA which reverses the orien-
tation of the fiber of ρA : B̂A→ BA but preserves the integrand ω̂X A (like χ from
Example 2.1, see also [Cattaneo et al. 2002, Lemmas A.7–A.9]).

Next, consider the case that there is a vertex of X A of valence ≥ 4. Let e, s and
t be the numbers of the edges, the i-vertices and the f-vertices of X A, respectively.
Then deg ω̂X A = 2e and the dimension of the fiber of ρA is s + 3t − k, where
k = 2 or 4 according to whether s > 0 or s = 0 [Cattaneo et al. 2002, (A.1)].
Thus (ρA)∗ω̂X A ∈ �

∗

DR(BA) is of degree 2e − s − 3t + k. It is not difficult to
see 2e− s − 3t > 0 because at least one vertex of X A is of valence ≥ 4. Hence
deg(ρA)∗ω̂X A exceeds dim BA (= 0 or 2) and hence (ρA)∗ω̂X A = 0.

Thus only the integrations along 6A with X A trivalent can survive. �

Remark 2.5. Every finite type invariant v for long knots in R3 can be written
as a sum of I (0v) (0v is a trivalent graph cocycle) and some “correction terms”
which kill the contributions of hidden faces corresponding to trivalent subgraphs
[Altschuler and Freidel 1997; Bott and Taubes 1994; Kohno 1994; Volić 2007].
So by Theorem 2.3 the problem whether I : D∗→ �∗DR(K3) is a cochain map or
not is equivalent to the problem whether one can eliminate all the correction terms
from integral expressions of finite type invariants.

3. Evaluation on some cycles

Here we will show that [I (0)] ∈ H 1
DR(K3) restricted to some components of K3 is

not zero.
We introduce two assumptions to simplify computations.

Assumption 1. The support of (antisymmetric) volS2 is contained in a sufficiently
small neighborhood of the poles (0, 0,±1) as in [Sakai 2008]. So only the configu-
rations with the images of the Gauss maps lying in a neighborhood of (0, 0,±1) can
nontrivially contribute to various integrals below. Presumably [I (0)] ∈ H 1

DR(K3)

may be independent of choices of volS2 [Cattaneo et al. 2002, Proposition 4.5].
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Assumption 2. Every long knot in R3 is contained in xy-plane except for over-arc
of each crossing, and each over-arc is in {0≤ z ≤ h} for a sufficiently small h > 0
so that the projection onto xy-plane is a regular diagram of the long knot.

The Gramain cycle. For any f ∈ K3, we denote by K3( f ) the component of K3

which contains f . Regarding S1
= R/2πZ and fixing f , we define the map

G f : S1
→ K3( f ), called the Gramain cycle, by G f (s)(t) := R(s) f (t), where

R(s) ∈ SO(3) is the rotation by the angle s fixing the “long axis” (the x-axis).
G f generates an infinite cyclic subgroup of π1(K3( f )) if f is nontrivial [Gramain
1977]. The homology class [G f ] ∈ H1(K3( f )) is independent of the choice of
f in the connected component; if ft ∈ K3 (0 ≤ t ≤ 1) is an isotopy connecting
f0 and f1, then G ft : [0, 1] × S1

→ K3 gives a homotopy between G f0 and G f1 .
Therefore the Kronecker pairing gives an isotopy invariant V ( f ) := 〈I (0), G f 〉

for long knots.

Theorem 3.1. The invariant V is equal to Casson’s knot invariant v2.

Corollary 3.2. [I (0)|K3( f )] ∈ H 1
DR(K3( f )) is not zero if v2( f ) 6= 0. �

We will prove two statements that characterize Casson’s knot invariant: V is of
finite type of order two and V (31) = 1, where 31 is the long trefoil knot. To do
this, we will represent G f using a Browder operation, as in [Sakai 2008].

Little cubes action. Let K̃n be the space of framed long knots in Rn (embeddings
f̃ : R1

× Dn−1 ↪→ Rn that are standard outside [−1, 1] × Dn−1). There is a
homotopy equivalence 8 : K̃3 ' K3 × Z [Budney 2007] that maps f̃ to the pair
( f̃ |R1×{(0,0)}, fr f̃ ), where the framing number fr f̃ is defined as the linking number
of f̃ |R1×{(0,0)} with f̃ |R1×{(1,0)}. Since fr f̃ is additive under the connected sum,
8 is a homotopy equivalence of H-spaces. In general, K̃n ' Kn ×�SO(n−1) as
H-spaces, where � stands for the based loop space functor.

In [Budney 2007] an action of the little two-cubes operad on the space K̃n was
defined. Its second stage gives a map S1

× (K̃n)
2
→ K̃n up to homotopy, which

is given as “shrinking one knot f and sliding it along another knot g by using
the framing, and repeating the same procedure with f and g exchanged” [Budney
2007, Figure 2]. Fixing a generator of H1(S1), we obtain the Browder operation
λ : Hp(K̃n)⊗ Hq(K̃n)→ Hp+q+1(K̃n), which is a graded Lie bracket satisfying
the Leibniz rule with respect to the product induced by the connected sum. The
author proved in [Sakai 2008] that 〈I (0), r∗λ(e, v)〉 = 1 when n> 3 is odd, where
r : K̃n → Kn is the forgetting map, e ∈ Hn−3(K̃n) comes from the space of fram-
ings, and v ∈ H2(n−3)(K̃n) is the first nonzero class of Kn represented by a map
(Sn−3)×2

→ Kn (see below).
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Figure 2. The cycles e and v = v(T ).

The case n = 3. In [Sakai 2008] the assumption n > 3 was used only to deduce
the closedness of I (0) from the results of Cattaneo et al. [2002]. The cycles e and
v are defined even when n = 3:

• Under the homotopy equivalence K̃3 ' K3 × Z, the zero-cycle e is given by
(ι, 1) where ι is the trivial long knot (ι(t)= (t, 0, 0) for any t ∈ R1).

• The zero-cycle v = v(T ) is given by
∑

εi=±1 ε1ε2Tε1,ε2 , where T = 31 and
Tε1,ε2 is T with its crossing pi , for i = 1, 2 changed to be positive if εi =+1
and negative if εi =−1 (see Figure 2).

Notice that, for any f ∈ K3 and any pair (p1, p2) of its crossings, an analogous
zero-cycle v = v( f ; p1, p2) can be defined.

Regard f ∈ K3 as a zero-cycle of K̃3 (with fr f = 0) and consider r∗λ(e, f ).
During a knot f “going through” e, f rotates once around the x-axis. Thus the
one-cycle r∗λ(e, f ) is homologous to the Gramain cycle G f . This leads us to
the fact that, for v = v( f ; p1, p2), the one-cycle r∗λ(e, v) is homologous to the
sum

∑
εi=±1 ε1ε2G fε1,ε2 . This is why we can apply the method in [Sakai 2008] to

compute

D2V ( f ) :=
∑

ε j=±1
ε1ε2V ( fε1,ε2)=

∑
ε j=±1

ε1ε2〈I (0), G fε1,ε2 〉=〈I (0), r∗λ(e, v( f ))〉.

Recall that our graph cocycle 0 is a sum of nine graphs 01, . . . , 09 (see Figure 1).
By Assumption 1, the integration 〈I (0i ), G f 〉 can be computed by “counting” the
configurations with all the images of the Gauss maps corresponding to edges of
0i being around the poles of S2. Lemma 3.4 below was proved in such a way in
[Sakai 2008] when n> 3. Since [v( f )] ∈ H0(K3( f )) is independent of small h> 0
(see Assumption 2), we may compute D2V ( f ) in the limit h→ 0.

Definition 3.3. We say that a pair (p1, p2) of crossings of f respects the diagram
if there exist t1 < t2 < t3 < t4 where f (t1) and f (t3) correspond to p1,

while f (t2) and f (t4) correspond to p2. The notion of (p1, p2) respecting
or is defined analogously.

Lemma 3.4 [Sakai 2008]. Suppose that (p1, p2) respects . Then, in the
limit h→ 0, Pi ( f ) :=

∑
ε j=±1ε1ε2〈I (0i ), G fε1,ε2 〉 converges to zero for i 6= 2, and

P2( f ) converges to 1. Thus D2V ( f )= 1.
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Outline of proof. Let Ĉ0i → S1 be the pullback of C0i →K3 via G f , and let Ĝ f :

Ĉ0i →C0i be the lift of G f . By the properties of pullbacks and fiber integrations,

(3-1) Pi ( f )=
∑

εi=±1
ε1ε2

∫
Ĉ0i

Ĝ∗fε1,ε2ω0i .

Let t1 < · · · < t4 be such that f (t1) and f (t3) correspond to p1, while f (t2)
and f (t4) correspond to p2. Define the subspace C ′0i

⊂ Ĉ0i as consisting of
(G f (s); (x j )) (s ∈ S1) such that, for each j =1, 2, there is a pair (l,m) of i-vertices
of 0i such that xl is on the over-arc of p j , xm is on the under-arc of p j , and there
is a sequence of edges in 0i from l to m.

First observation: The integration over Ĉ0i \C ′0i
does not essentially contribute

to Pi ( f ) in the limit h→ 0. This is because, over Ĉ0i \C ′0i
, the integrals in (3-1)

are well defined and continuous even when h = 0 (p j becomes a double point),
so two terms in Pi ( f ) corresponding to ε j = ±1 cancel each other. This implies
limh→0 Pi ( f )= 0 for i = 7, 8, 9, since C ′0i

=∅ if ]{i-vertices} ≤ 3.
Second observation: Consider the configurations (xi ) ∈ C ′0i

such that, for any
pair (l,m) of i-vertices of 0i with xl on the over-arc of p j and xm on the under-arc
of p j , all the points xk (k is in a sequence in 0i from l to m) are not near p j .
Such configurations also do not essentially contribute to Pi ( f ) in the limit h→ 0,
by the same reason as above. This implies limh→0 Pi ( f ) = 0 for i = 4, 5, 6; the
configurations (xl)∈C ′0i

(4≤ i ≤ 6) must be such that the point xl ∈R1 (1≤ l ≤ 4)
is near tl . By the second observation, the “free point” x5 must be near p1 or p2.
But then ω0i =0, since at least one Gauss map ϕl5 has its image outside the support
of volS2 (see Assumption 1). Thus limh→0 Pi ( f )= 0.

Finally consider the Pi ( f ), for i = 1, 2, 3. For i = 1 we have ω01 = 0 over C ′01
,

since the Gauss map corresponding to the edge 12 has its image outside of the
support of volS2 . The same reasoning, using the loop edge 11, shows that ω03 = 0
over C ′03

. Only P2( f ) survives, since the configurations with x1 near t1, x2 near
t2, x3 and x4 near t3, and x5 near t4, contribute nontrivially to the integral [Sakai
2008, Lemma 4.6]. �

Lemma 3.5. If (p1, p2) respects or , then D2V ( f )= 0.

Proof. For i = 4, . . . , 9, we see in the same way as in Lemma 3.4 that Pi ( f )
approaches 0 as h→ 0. That limh→0 Pi ( f ) for i = 2, 3 and the -case for
i = 1 is proved by the first observation in the proof of Lemma 3.4.

In the -case for P1( f ) over C ′01
only the configurations with x j near t j ,

with j = 1, 2, 3, and x5 near t4 may essentially contribute to P1( f ); in this case the
edges 12 and 35 join the over/under arcs of p1 and p2 respectively. However, the
Gauss map ϕ14 cannot have its image in the support of volS2 , so ω01 vanishes. �
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Proof of Theorem 3.1. For three crossings (p1, p2, p3) of f ∈ K3, consider the
third difference

D3V ( f ) :=
∑

ε j=±1
ε1ε2ε3V ( fε1,ε2,ε3)= D2V (g+1)− D2V (g−1),

where g±1 := f+1,+1,±1 and D2V (g±1) are taken with respect to (p1, p2). Since
the pair (p1, p2) of g+1 respects the same diagram as (p1, p2) of g−1, we have
D2V (g+1)=D2V (g−1) by the above Lemmas 3.4, 3.5. Thus D3V =0 and hence V
is finite type of order two. Moreover V (ι)= 0 for the trivial long knot ι since K3(ι)

is contractible [Hatcher 1983]; therefore Gι∼ 0, and V (31)= 1 by Lemma 3.4 and
V (ι)= 0. These properties uniquely characterize Casson’s knot invariant v2. �

The Browder operations. We denote a framed long knot corresponding to ( f, k)
under the equivalence K̃3 ' K3 × Z by f k

∈ K̃3 (unique up to homotopy). As
mentioned above, the Gramain cycle can be written as [G f ]= [r∗λ( f k, ι1)] (k may
be arbitrary). Below we will evaluate I (0) on more general cycles r∗λ( f k, gl) of
K3 for any nontrivial f, g ∈ K3 and k, l ∈ Z. This generalizes Theorem 3.1.

Theorem 3.6. We have 〈I (0), r∗λ( f k, gl)〉 = lv2( f )+ kv2(g) for any f, g ∈ K3

and k, l ∈ Z.

Corollary 3.7. If at least one of v2( f ) and v2(g) is not zero, then

[I (0)|K3( f ]g)] ∈ H 1
DR(K3( f ]g)) 6= 0,

where ] stands for the connected sum.

Proof. This is because r∗λ( f k, gl) is a one-cycle of K3( f ]g) for any k, l ∈Z. Since
v2( f ) or v2(g) is not zero, there exist some k, l such that lv2( f )+ kv2(g) 6= 0, so
〈I (0), r∗λ( f k, gl)〉 6= 0 by Theorem 3.6. �

Remark 3.8. If v2( f ) = −v2(g), then v2( f ]g) = 0 since it is known that v2 is
additive under ]. Hence we cannot deduce [I (0)|K3( f ]g)] 6= 0 from Corollary 3.2.
Moreover if v2( f )=−v2(g) 6= 0, then Corollary 3.7 implies [I (0)|K3( f ]g)] 6= 0.

To prove Theorem 3.6, first we remark that f m
∼ f 0]ιm . Since λ satisfies the

Leibniz rule, λ( f k, gl) is homologous to

λ( f 0, g0)]ιk+l
+ λ( f 0, ιl)]gk

+ λ(ιk, g0)] f l
+ λ(ιk, ιl)] f 0]g0.

Since by definition r∗λ( f k, ιm)∼ mG f (k,m ∈ Z) and Gι ∼ 0,

(3-2) r∗λ( f k, gl)∼ r∗λ( f 0, g0)+ lG f ]g+ k f ]Gg.

Notice that ] makes K3 an H-space and induces a coproduct 1 on H∗DR(K3).

Lemma 3.9. 1([I (0)])= 1⊗[I (0)] + [I (0)]⊗ 1 ∈ H∗DR(K3)
⊗2.
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Figure 3. Graph cocycles 0′ and 0′′.

Proof. D also admits1 defined as a “separation” of the graphs by removing a point
from the specified oriented line [Cattaneo et al. 2005, Section 3.2]. Theorem 6.3
of [Cattaneo et al. 2005] shows, without using n > 3, that (I ⊗ I )1(X)=1I (X)
if X satisfies d I (X)= I (δX).

As for our graphs in Figure 1, 10i = 1⊗0i +0i ⊗ 1 (i 6= 3, 4) and

1(03−04)= 1⊗ (03−04)+ (03−04)⊗ 1+0′⊗0′′+0′′⊗0′,

where 0′ and 0′′ are as shown in Figure 3. Thus

1I (0)= 1⊗ I (0)+ I (0)⊗ 1+ I (0′)⊗ I (0′′)+ I (0′′)⊗ I (0′).

But in fact 0′ = δ00 where 00 = , and I (0′) = d I (00) since there is no
hidden face in the boundary of the fiber of π00 . �

By (3-2), Lemma 3.9 and Theorem 3.1,

〈I (0), r∗λ( f k, gl)〉 = 〈I (0), r∗λ( f 0, g0)〉+ lv2( f )+ kv2(g).

Thus it suffices to prove Theorem 3.6 in the case k = l = 0.

Proof of Theorem 3.6. Fix g and regard 〈I (0), r∗λ( f 0, g0)〉 as an invariant Vg( f )
of f . We choose two crossings p1 and p2 from the diagram of f in xy-plane, and
compute D2Vg( f ) :=

∑
ε1,ε2

ε1ε2〈I (0), r∗λ( f 0
ε1,ε2

, g0)〉 in the limit h→ 0 as on
page 414. If this is zero for any (p1, p2), then the arguments similar to that in the
proof of Theorem 3.1 show that Vg is of order two and takes the value zero for the
trefoil knot, thus identically Vg = 0 for any g. This will complete the proof.

We will compute each P ′i :=
∑

ε=±1〈I (0i ), r∗λ( f 0
ε1,ε2

, g0)〉 (1 ≤ i ≤ 9) in the
limit h→ 0. The two observations appearing in the proof of Lemma 3.4 allow us
to conclude P ′i → 0 for 4 ≤ i ≤ 9 in the same way as before, so we compute P ′i
for i = 1, 2, 3 below. We may concentrate on the integration over C ′0i

by the first
observation. Recall C ′0i

⊂ S1
×Conf (R1, s)×Conf (R3, t) by definition. We take

the S1-parameter α ∈ S1
= R1/2πZ so that g goes through f during 0 ≤ α ≤ π ,

and f goes through g during π ≤ α ≤ 2π .
First consider the integration over 0≤α≤π . We may shrink g sufficiently small.

Then the sliding of g through f does not affect the integration, so almost all the
integrations converge to zero for the same reasons as in Lemmas 3.4 and 3.5. Only
the configurations (xi ) ∈ C ′01

with x1 and x2 near p1 may essentially contribute
to P ′1 when g comes around p1; the form ϕ∗12volS2 may detect the knotting of g.
However, the two terms for ε1 =±1 cancel each other.
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Figure 4. When f comes near an under-arc of g.

Next consider the integration over π ≤ α ≤ 2π . There may be two types of
contributions to P ′i . One type comes from the configurations in which all the points
on the knot concentrate in a neighborhood of f . Such a contribution depends only
on the framing number fr g of g, not on the global knotting of g. Since fr g0

= 0
here, such configurations do not essentially contribute to P ′i .

The other possible contributions arise when f comes near the crossings of g.
For example, consider the case that (p1, p2) respects . When f comes
near a crossing of g, a configuration (x1, . . . , x5) ∈ C01 as in Figure 4 is certainly
in C ′01

, so it may contribute to P ′1.
However, such contributions converge to zero in the limit h → 0, because x1

cannot be near p1 (see the second observation in the proof of Lemma 3.4). For 03,
we should take the configuration (x1, . . . , x5) with x j (2 ≤ j ≤ 5) near t j−1 into
account; but in this case the Gauss map ϕ11 cannot have the image in the support
of volS2 . In such ways we can check that all such contributions of 0i (i = 1, 2, 3)
can be arbitrarily small. �
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