Pacific Journal of Mathematics

AN INTEGRAL EXPRESSION OF THE FIRST NONTRIVIAL ONE-COCYCLE OF THE SPACE OF LONG KNOTS IN \mathbb{R}^{3}

Keilchi Sakai

AN INTEGRAL EXPRESSION OF THE FIRST NONTRIVIAL ONE-COCYCLE OF THE SPACE OF LONG KNOTS IN \mathbb{R}^{3}

Abstract

Keilchi Sakai

Our main object of study is a certain degree-one cohomology class of the space \mathscr{K}_{3} of long knots in \mathbb{R}^{3}. We describe this class in terms of graphs and configuration space integrals, showing the vanishing of some anomalous obstructions. To show that this class is not zero, we integrate it over a cycle studied by Gramain. As a corollary, we establish a relation between this class and (\mathbb{R}-valued) Casson's knot invariant. These are \mathbb{R}-versions of the results which were previously proved by Teiblyum, Turchin and Vassiliev over $\mathbb{Z} / 2$ in a different way from ours.

1. Introduction

A long knot in \mathbb{R}^{n} is an embedding $f: \mathbb{R}^{1} \hookrightarrow \mathbb{R}^{n}$ that agrees with the standard inclusion $\iota(t)=(t, 0, \ldots, 0)$ outside $[-1,1]$. We denote by \mathscr{K}_{n} the space of long knots in \mathbb{R}^{n} equipped with C^{∞}-topology.

In [Cattaneo et al. 2002] a cochain map $I: \mathscr{D}^{*} \rightarrow \Omega_{D R}^{*}\left(\mathscr{K}_{n}\right)$ from a certain graph complex \mathscr{D}^{*} was constructed for $n>3$. The cocycles of \mathscr{K}_{n} corresponding to trivalent graph cocycles via I generalize an integral expression of finite type invariants for (long) knots in \mathbb{R}^{3} [Altschuler and Freidel 1997; Bott and Taubes 1994; Kohno 1994; Volić 2007]. In [Sakai 2008] the author found a nontrivalent graph cocycle $\Gamma \in \mathscr{D}^{*}$ and proved that, when $n>3$ is odd, it gives a nonzero cohomology class $[I(\Gamma)] \in H_{D R}^{3 n-8}\left(\mathscr{K}_{n}\right)$. On the other hand, when $n=3$, some obstructions to I being a cochain map (called anomalous obstructions; see for example [Volić 2007, Section 4.6]) may survive, so even the closedness of $I(\Gamma)$ was not clear. However, the obstructions for trivalent graph cocycles X (of "even orders") in fact vanish [Altschuler and Freidel 1997], hence the map I still yields closed zero-forms $I(X)$ of \mathscr{K}_{3} (they are finite type invariants). This raises our hope

[^0]that all obstructions for any graphs may vanish and hence the map I could be a cochain map even when $n=3$.

In this paper we will show (in Theorem 2.4) that the obstructions for the nontrivalent graph cocycle Γ mentioned above also vanish, hence the map I yields the first example of a closed one-form $I(\Gamma)$ of \mathscr{K}_{3}. To show that $[I(\Gamma)] \in H_{D R}^{1}\left(\mathscr{K}_{3}\right)$ is not zero, we will study in part how $I(\Gamma)$ fits into a description of the homotopy type of \mathscr{K}_{3} given in [Budney 2010; 2007; Budney and Cohen 2009]. It is known that on each component $\mathscr{K}_{3}(f)$ that contains $f \in \mathscr{K}_{3}$, there exists a one-cycle G_{f} called the Gramain cycle [Gramain 1977; Budney 2010; Turchin 2006; Vassiliev 2001]. The Kronecker pairing gives an isotopy invariant $V: f \mapsto\left\langle I(\Gamma), G_{f}\right\rangle$. We show in Theorem 3.1 that V coincides with Casson's knot invariant v_{2}, which is characterized as the coefficient of z^{2} in the Alexander-Conway polynomial. This result will be generalized in Theorem 3.6 for one-cycles obtained by using an action of little two-cubes operad on the space $\tilde{\mathscr{H}}_{3}$ of framed long knots [Budney 2007].

Closely related results have appeared in [Turchin 2006; Vassiliev 2001], where the $\mathbb{Z} / 2$-reduction of a cocycle v_{3}^{1} of $\mathscr{K}_{n}(n \geq 3)$, appearing in the E_{1}-term of Vassiliev's spectral sequence [Vassiliev 1992], was studied. A natural quasi-isomorphism $\mathscr{D}^{*} \rightarrow E_{0} \otimes \mathbb{R}$ maps our cocycle Γ to v_{3}^{1}. In this sense, our results can be seen as "lifts" of those in [Turchin 2006; Vassiliev 2001] to \mathbb{R}.

The invariant v_{2} can also be interpreted as the linking number of colinearity manifolds [Budney et al. 2005]. Notice that in each formulation (including the one in this paper) the value of v_{2} is computed by counting some colinearity pairs on the knot.

2. Construction of a close differential form

Configuration space integral. We review briefly how we can construct (closed) forms of \mathscr{K}_{n} from graphs. For full details see [Cattaneo et al. 2002; Volić 2007].

Let X be a graph in the sense of those references (see Figure 1 for examples). Let v_{i} and v_{f} be the numbers of the interval vertices (or i-vertices for short; those on the specified oriented line) and the free vertices (or f-vertices; those which are not interval vertices) of X, respectively. With X we associate a configuration space

$$
C_{X}:=\left\{\begin{array}{l|l}
\left(f ; x_{1}, \ldots, x_{v_{i}} ; x_{v_{\mathrm{i}}+1}, \ldots, x_{v_{\mathrm{i}}+v_{\mathrm{f}}}\right) & f\left(x_{i}\right) \neq x_{j} \text { for any } \\
\in \mathscr{K}_{n} \times \operatorname{Conf}\left(\mathbb{R}^{1}, v_{\mathrm{i}}\right) \times \operatorname{Conf}\left(\mathbb{R}^{n}, v_{\mathrm{f}}\right) & 1 \leq i \leq v_{\mathrm{i}}<j \leq v_{\mathrm{i}}+v_{\mathrm{f}}
\end{array}\right\},
$$

where $\operatorname{Conf}(M, k):=M^{\times k} \backslash \bigcup_{1 \leq i<j \leq k}\left\{x_{i}=x_{j}\right\}$ for a space M.
Let e be the number of the edges of X. Define $\omega_{X} \in \Omega_{D R}^{(n-1) e}\left(C_{X}\right)$ as the wedge of closed $(n-1)$-forms $\varphi_{\alpha}^{*} \operatorname{vol}_{S^{n-1}}$, where $\varphi_{\alpha}: C_{X} \rightarrow S^{n-1}$ is the Gauss map, which assigns a unit vector determined by two points in \mathbb{R}^{n} corresponding to the vertices adjacent to an edge α of X (for an i-vertex corresponding to $x_{i} \in \mathbb{R}^{1}$, we
consider the point $\left.f\left(x_{i}\right) \in \mathbb{R}^{n}\right)$. Here we assume that $\operatorname{vol}_{S^{n-1}}$ is "(anti)symmetric", namely $i^{*} \operatorname{vol}_{S^{n-1}}=(-1)^{n} \operatorname{vol}_{S^{n-1}}$ for the antipodal map $i: S^{n-1} \rightarrow S^{n-1}$. Then $I(X) \in \Omega_{D R}^{(n-1) e-v_{\mathrm{i}}-n v_{\mathrm{f}}}\left(\mathscr{K}_{n}\right)$ is defined by

$$
I(X):=\left(\pi_{X}\right)_{*} \omega_{X}
$$

the integration along the fiber of the natural fibration $\pi_{X}: C_{X} \rightarrow \mathscr{K}_{n}$. This fiber is a subspace of $\operatorname{Conf}\left(\mathbb{R}^{1}, v_{\mathrm{i}}\right) \times \operatorname{Conf}\left(\mathbb{R}^{n}, v_{\mathrm{f}}\right)$. Such integrals converge, since the fiber can be compactified in such a way that the forms $\varphi_{\alpha}^{*} \mathrm{vol}_{S^{n-1}}$ are still well-defined on the compactification [Bott and Taubes 1994, Proposition 1.1]. We extend I linearly onto \mathscr{D}^{*}, a cochain complex spanned by graphs. The differential δ of \mathscr{D}^{*} is defined as a signed sum of graphs obtained by "contracting" the edges one at a time.

One of the results of [Cattaneo et al. 2002] states that $I: \mathscr{D}^{*} \rightarrow \Omega_{D R}^{*}\left(\mathscr{K}_{n}\right)$ is a cochain map if $n>3$. The proof is outlined as follows. By the generalized Stokes theorem, $d I(X)= \pm\left(\pi_{X}^{\partial}\right)_{*} \omega_{X}$, where π_{X}^{∂} is the restriction of π_{X} to the codimension one strata of the boundary of the (compactified) fiber of π_{X}. Each codimension one stratum corresponds to a collision of subconfigurations in C_{X}, or equivalently to $A \subset V(X) \cup\{\infty\}$ (here $V(X)$ is the set of vertices of X) with a consecutiveness property: if two i-vertices p, q are in A, then all the other i-vertices between p and q are in A. Here " $\infty \in A$ " means that the points $x_{l}(l \in A)$ escape to infinity. When $\infty \notin A$, the interior $\operatorname{Int} \Sigma_{A}$ of the corresponding stratum Σ_{A} to A is described by the pullback square

Here

- X_{A} is the maximal subgraph of X with $V\left(X_{A}\right)=A$, and X / X_{A} is a graph obtained by collapsing the subgraph X_{A} to a single vertex v_{A};
- $B_{A}=S^{n-1}$ if A contains at least one i-vertex, and $B_{A}=\{*\}$ otherwise;
- if A consists of i -vertices $i_{1}, \ldots, i_{s}(s>0)$ and f -vertices i_{s+1}, \ldots, i_{s+t}, then $\hat{B}_{A}:=\left\{\begin{array}{l|l}\left(v ;\left(x_{i_{1}}, \ldots, x_{i_{s}} ; x_{i_{s+1}}, \ldots, x_{i_{s+t}}\right)\right) & x_{i_{p}} v \neq x_{i_{q}} \text { for any } \\ \in S^{n-1} \times \operatorname{Conf}\left(\mathbb{R}^{1}, s\right) \times \operatorname{Conf}\left(\mathbb{R}^{n}, t\right) & 1 \leq p \leq s<q \leq s+t\end{array}\right\} / \sim$,
where \sim is defined by

$$
\begin{aligned}
& \left(v ;\left(x_{i_{1}}, \ldots, x_{i_{s}} ; x_{i_{s+1}}, \ldots, x_{i_{s+t}}\right)\right) \sim \\
& \quad\left(v ;\left(a\left(x_{i_{1}}+r\right), \ldots, a\left(x_{i_{s}}+r\right) ; a\left(x_{i_{s+1}}+r v\right), \ldots, a\left(x_{i_{s+t}}+r v\right)\right)\right)
\end{aligned}
$$

for any $a \in \mathbb{R}_{>0}$ and $r \in \mathbb{R}$ (if A consists only of $t \mathrm{f}$-vertices, then

$$
\hat{B}_{A}:=\operatorname{Conf}\left(\mathbb{R}^{n}, t\right) /\left(\mathbb{R}_{>0}^{1} \rtimes \mathbb{R}^{n}\right),
$$

where $\mathbb{R}_{>0}^{1} \rtimes \mathbb{R}^{n}$ acts on $\operatorname{Conf}\left(\mathbb{R}^{n}, t\right)$ by scaling and translation $)$;

- ρ_{A} is the natural projection;
- when A contains at least one i-vertex, $D_{A}: C_{X / X_{A}} \rightarrow S^{n-1}$ maps $\left(f ;\left(x_{i}\right)\right)$ to $f^{\prime}\left(x_{v_{A}}\right) /\left|f^{\prime}\left(x_{v_{A}}\right)\right|$.
We omit the case $\infty \in A$; see [Cattaneo et al. 2002, Appendix].
By properties of fiber integrations and pullbacks, the integration of ω_{X} along Int Σ_{A} can be written as $\left(\pi_{X / X_{A}}\right)_{*}\left(\omega_{X / X_{A}} \wedge D_{A}^{*}\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}\right)$, where $\hat{\omega}_{X_{A}} \in \Omega_{D R}^{*}\left(\hat{B}_{A}\right)$ is defined similarly to $\omega_{X} \in \Omega_{D R}^{*}\left(C_{X}\right)$.

The stratum Σ_{A} is called principal if $|A|=2$, hidden if $|A| \geq 3$, and infinity if $\infty \in A$. Since two-point collisions correspond to contractions of edges, we have $d I(X)=I(\delta X)$ modulo the integrations along hidden and infinity faces. When $n>3$, the hidden/infinity contributions turn out to be zero; in fact $\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}=0$ if $n>3$ and if A is not principal; see [Cattaneo et al. 2002, Appendix] or the next example. This proves that the map I is a cochain map if $n>3$.

Example 2.1. Here we show one example of vanishing of an integration along a hidden face Σ_{A}. Let X be the seventh graph in Figure 1 and $A:=\{1,4,5\}$. Then in (2-1), $B_{A}=S^{n-1}$ since A contains an i-vertex 1, and

$$
\hat{B}_{A}=\left\{\left(v ; x_{1} ; x_{4}, x_{5}\right) \in S^{n-1} \times \mathbb{R}^{1} \times \operatorname{Conf}\left(\mathbb{R}^{n}, 2\right) \mid x_{1} v \neq x_{4}, x_{5}\right\} / \sim,
$$

where $\left(v ; x_{1} ; x_{4}, x_{5}\right) \sim\left(v ; a\left(x_{1}+r\right) ; a\left(x_{4}+r v\right), a\left(x_{5}+r v\right)\right)$ for any $a>0$ and $r \in \mathbb{R}^{1}$. The subgraph X_{A} consists of three vertices $1,4,5$ and three edges 14,15 and 45. The open face Int Σ_{A}, where three points $f\left(x_{1}\right), x_{4}$ and x_{5} collide with each other, is a hidden face and is described by the square (2-1). Then the integration of ω_{X} along Int Σ_{A} is $\left(\pi_{X / X_{A}}\right)_{*}\left(\omega_{X / X_{A}} \wedge D_{A}^{*}\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}\right)$, where

$$
\begin{gathered}
\hat{\omega}_{X_{A}}=\varphi_{14}^{*} \operatorname{vol}_{S^{n-1}} \wedge \varphi_{15}^{*} \operatorname{vol}_{S^{n-1}} \wedge \varphi_{45}^{*} \operatorname{vol}_{S^{n-1}} \in \Omega_{D R}^{3(n-1)}\left(\hat{B}_{A}\right) \\
\varphi_{1 j}:=\frac{x_{j}-x_{1} v}{\left|x_{j}-x_{1} v\right|}(j=4,5), \quad \varphi_{45}:=\frac{x_{5}-x_{4}}{\left|x_{5}-x_{4}\right|}
\end{gathered}
$$

In this case we can prove that $\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}=0$, hence the integration of ω_{X} along Int Σ_{A} vanishes. Indeed a fiberwise involution $\chi: \hat{B}_{A} \rightarrow \hat{B}_{A}$ defined by

$$
\chi\left(v ; x_{1} ; x_{4}, x_{5}\right):=\left(v ; x_{1} ; 2 x_{1} v-x_{4}, 2 x_{1} v-x_{5}\right)
$$

preserves the orientation of the fiber but $\chi^{*} \hat{\omega}_{X_{A}}=-\hat{\omega}_{X_{A}}$ (here we use that vol ${ }_{S^{n-1}}$ is antisymmetric), hence we have $\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}=-\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}$.

Figure 1. A graph cocycle Γ.

Nontrivalent cocycle. It is shown in [Cattaneo et al. 2002] that, when $n>3$, the induced map I on cohomology restricted to the space of trivalent graph cocycles is injective. In [Sakai 2008], the author gave the first example of a nontrivalent graph cocycle Γ (Figure 1) which also gives a nonzero class $[I(\Gamma)] \in H_{D R}^{3 n-8}\left(\mathscr{K}_{n}\right)$ when $n>3$ is odd.

In Figure 1, nontrivalent vertices and trivalent f-vertices are marked by \times and \bullet, respectively, and other crossings are not vertices. Here we say an i-vertex v is trivalent if there is exactly one edge emanating from v other than the specified oriented line. Each edge $i j(i<j)$ is oriented so that i is the initial vertex.

Remark 2.2. An analogous nontrivalent graph cocycle for the space of embeddings $S^{1} \hookrightarrow \mathbb{R}^{n}$ for even $n \geq 4$ can be found in [Longoni 2004].

If $n=3$, integrations along some hidden faces (called anomalous contributions) might survive, so the map I might fail to be a cochain map. However, nonzero anomalous contributions arise from limited hidden faces.

Theorem 2.3. Let X be a graph and $A \subset V(X) \cup\{\infty\}$ be such that Σ_{A} is not principal. When $n=3$, the integration of ω_{X} along Σ_{A} can be nonzero only if the subgraph X_{A} is trivalent.

Our main theorem is proved by using Theorem 2.3.
Theorem 2.4. $I(\Gamma) \in \Omega_{D R}^{1}\left(\mathscr{K}_{3}\right)$ is a closed form.
Proof. We call the nine graphs in Figure $1 \Gamma_{1}, \ldots, \Gamma_{9}$, respectively. The graphs $\Gamma_{i}, i \neq 3,4,9$, do not contain trivalent subgraphs X_{A} satisfying the consecutive property; see the paragraph just before (2-1). So $d I\left(\Gamma_{i}\right)=I\left(d \Gamma_{i}\right)$ for $i \neq 3,4,9$ by Theorem 2.3.

Possibly the integration of $\omega_{\Gamma_{i}}(i=3,4,9)$ along $\Sigma_{A}(A:=\{2, \ldots, 5\})$ might survive, since the corresponding subgraph X_{A} is trivalent. However, we can prove $\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}=0$ (and hence $\left.d I\left(\Gamma_{i}\right)=I\left(d \Gamma_{i}\right)\right)$ as follows: $\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}=0$ for Γ_{3}, because there is a fiberwise free action of $\mathbb{R}_{>0}$ on \hat{B}_{A} given by translations of x_{2} and x_{4} [Volić 2007, Proposition 4.1] which preserves $\hat{\omega}_{X_{A}}$. Thus $\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}=0$ by dimensional reason. The proof for Γ_{4} has appeared in [Bott and Taubes 1994,
page 5271]; $\hat{\omega}_{X_{A}}=0$ on \hat{B}_{A} since the image of the Gauss map $\varphi: B_{A} \rightarrow\left(S^{2}\right)^{3}$ corresponding to three edges of X_{A} is of positive codimension. As for $\Gamma_{9},\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}=0$ follows from $\operatorname{deg}\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}=4$ which exceeds $\operatorname{dim} B_{A}$ (in fact $B_{A}=\{*\}$ in this case).

Proof of Theorem 2.3. Let A be a subset of $V(X)$ with $|A| \geq 3$ or $\infty \in A$, and X_{A} is nontrivalent. We must show the vanishing of the integrations along the nonprincipal face Σ_{A} of the fiber of $C_{X} \rightarrow \mathscr{K}_{3}$. To do this it is enough to show $\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}=0$. By dimensional arguments [Cattaneo et al. 2002, (A.2)] the contributions of infinite faces vanish. So below we consider the hidden faces Σ_{A} with $|A| \geq 3$.

If X_{A} has a vertex of valence ≤ 2, then $\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}=0$ is proved by dimensional arguments or existence of a fiberwise symmetry of B_{A} which reverses the orientation of the fiber of $\rho_{A}: \hat{B}_{A} \rightarrow B_{A}$ but preserves the integrand $\hat{\omega}_{X_{A}}$ (like χ from Example 2.1, see also [Cattaneo et al. 2002, Lemmas A.7-A.9]).

Next, consider the case that there is a vertex of X_{A} of valence ≥ 4. Let e, s and t be the numbers of the edges, the i-vertices and the f-vertices of X_{A}, respectively. Then $\operatorname{deg} \hat{\omega}_{X_{A}}=2 e$ and the dimension of the fiber of ρ_{A} is $s+3 t-k$, where $k=2$ or 4 according to whether $s>0$ or $s=0$ [Cattaneo et al. 2002, (A.1)]. Thus $\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}} \in \Omega_{D R}^{*}\left(B_{A}\right)$ is of degree $2 e-s-3 t+k$. It is not difficult to see $2 e-s-3 t>0$ because at least one vertex of X_{A} is of valence ≥ 4. Hence $\operatorname{deg}\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}$ exceeds $\operatorname{dim} B_{A}(=0$ or 2$)$ and hence $\left(\rho_{A}\right)_{*} \hat{\omega}_{X_{A}}=0$.

Thus only the integrations along Σ_{A} with X_{A} trivalent can survive.
Remark 2.5. Every finite type invariant v for long knots in \mathbb{R}^{3} can be written as a sum of $I\left(\Gamma_{v}\right)$ (Γ_{v} is a trivalent graph cocycle) and some "correction terms" which kill the contributions of hidden faces corresponding to trivalent subgraphs [Altschuler and Freidel 1997; Bott and Taubes 1994; Kohno 1994; Volić 2007]. So by Theorem 2.3 the problem whether $I: \mathscr{D}^{*} \rightarrow \Omega_{D R}^{*}\left(\mathscr{K}_{3}\right)$ is a cochain map or not is equivalent to the problem whether one can eliminate all the correction terms from integral expressions of finite type invariants.

3. Evaluation on some cycles

Here we will show that $[I(\Gamma)] \in H_{D R}^{1}\left(\mathscr{K}_{3}\right)$ restricted to some components of \mathscr{K}_{3} is not zero.

We introduce two assumptions to simplify computations.
Assumption 1. The support of (antisymmetric) vol $_{S^{2}}$ is contained in a sufficiently small neighborhood of the poles $(0,0, \pm 1)$ as in [Sakai 2008]. So only the configurations with the images of the Gauss maps lying in a neighborhood of $(0,0, \pm 1)$ can nontrivially contribute to various integrals below. Presumably $[I(\Gamma)] \in H_{D R}^{1}\left(\mathscr{K}_{3}\right)$ may be independent of choices of $\mathrm{vol}_{S^{2}}$ [Cattaneo et al. 2002, Proposition 4.5].

Assumption 2. Every long knot in \mathbb{R}^{3} is contained in $x y$-plane except for over-arc of each crossing, and each over-arc is in $\{0 \leq z \leq h\}$ for a sufficiently small $h>0$ so that the projection onto $x y$-plane is a regular diagram of the long knot.

The Gramain cycle. For any $f \in \mathscr{K}_{3}$, we denote by $\mathscr{K}_{3}(f)$ the component of \mathscr{K}_{3} which contains f. Regarding $S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$ and fixing f, we define the map $G_{f}: S^{1} \rightarrow \mathscr{K}_{3}(f)$, called the Gramain cycle, by $G_{f}(s)(t):=R(s) f(t)$, where $R(s) \in \mathrm{SO}(3)$ is the rotation by the angle s fixing the "long axis" (the x-axis). G_{f} generates an infinite cyclic subgroup of $\pi_{1}\left(\mathscr{K}_{3}(f)\right)$ if f is nontrivial [Gramain 1977]. The homology class $\left[G_{f}\right] \in H_{1}\left(\mathscr{K}_{3}(f)\right)$ is independent of the choice of f in the connected component; if $f_{t} \in \mathscr{K}_{3}(0 \leq t \leq 1)$ is an isotopy connecting f_{0} and f_{1}, then $G_{f_{t}}:[0,1] \times S^{1} \rightarrow \mathscr{K}_{3}$ gives a homotopy between $G_{f_{0}}$ and $G_{f_{1}}$. Therefore the Kronecker pairing gives an isotopy invariant $V(f):=\left\langle I(\Gamma), G_{f}\right\rangle$ for long knots.

Theorem 3.1. The invariant V is equal to Casson's knot invariant v_{2}.
Corollary 3.2. $\left[\left.I(\Gamma)\right|_{\mathscr{K}_{3}(f)}\right] \in H_{D R}^{1}\left(\mathscr{K}_{3}(f)\right)$ is not zero if $v_{2}(f) \neq 0$.
We will prove two statements that characterize Casson's knot invariant: V is of finite type of order two and $V\left(3_{1}\right)=1$, where 3_{1} is the long trefoil knot. To do this, we will represent G_{f} using a Browder operation, as in [Sakai 2008].

Little cubes action. Let $\tilde{\mathscr{H}}_{n}$ be the space of framed long knots in \mathbb{R}^{n} (embeddings $\tilde{f}: \mathbb{R}^{1} \times D^{n-1} \hookrightarrow \mathbb{R}^{n}$ that are standard outside $\left.[-1,1] \times D^{n-1}\right)$. There is a homotopy equivalence $\Phi: \tilde{\mathscr{K}}_{3} \simeq \mathscr{K}_{3} \times \mathbb{Z}$ [Budney 2007] that maps \tilde{f} to the pair $\left(\left.\tilde{f}\right|_{\mathbb{R}^{1} \times\{(0,0)\}}, \mathrm{fr} \tilde{f}\right)$, where the framing number $\mathrm{fr} \tilde{f}$ is defined as the linking number of $\left.\tilde{f}\right|_{\mathbb{R}^{1} \times\{(0,0)\}}$ with $\left.\tilde{f}\right|_{\mathbb{R}^{1} \times\{(1,0)\}}$. Since $\operatorname{fr} \tilde{f}$ is additive under the connected sum, Φ is a homotopy equivalence of H-spaces. In general, $\tilde{\mathscr{K}}_{n} \simeq \mathscr{K}_{n} \times \Omega \mathrm{SO}(n-1)$ as H-spaces, where Ω stands for the based loop space functor.

In [Budney 2007] an action of the little two-cubes operad on the space $\tilde{\mathscr{T}}_{n}$ was defined. Its second stage gives a map $S^{1} \times\left(\tilde{\mathscr{K}}_{n}\right)^{2} \rightarrow \tilde{\mathscr{K}}_{n}$ up to homotopy, which is given as "shrinking one knot f and sliding it along another knot g by using the framing, and repeating the same procedure with f and g exchanged" [Budney 2007, Figure 2]. Fixing a generator of $H_{1}\left(S^{1}\right)$, we obtain the Browder operation $\lambda: H_{p}\left(\tilde{\mathscr{K}}_{n}\right) \otimes H_{q}\left(\tilde{\mathscr{K}}_{n}\right) \rightarrow H_{p+q+1}\left(\tilde{\mathscr{K}}_{n}\right)$, which is a graded Lie bracket satisfying the Leibniz rule with respect to the product induced by the connected sum. The author proved in [Sakai 2008] that $\left\langle I(\Gamma), r_{*} \lambda(e, v)\right\rangle=1$ when $n>3$ is odd, where $r: \tilde{K}_{n} \rightarrow \mathscr{K}_{n}$ is the forgetting map, $e \in H_{n-3}\left(\tilde{\mathscr{H}}_{n}\right)$ comes from the space of framings, and $v \in H_{2(n-3)}\left(\tilde{\mathscr{F}}_{n}\right)$ is the first nonzero class of \mathscr{K}_{n} represented by a map $\left(S^{n-3}\right)^{\times 2} \rightarrow \mathscr{K}_{n}$ (see below).

Figure 2. The cycles e and $v=v(T)$.

The case $n=3$. In [Sakai 2008] the assumption $n>3$ was used only to deduce the closedness of $I(\Gamma)$ from the results of Cattaneo et al. [2002]. The cycles e and v are defined even when $n=3$:

- Under the homotopy equivalence $\tilde{\mathscr{K}}_{3} \simeq \mathscr{K}_{3} \times \mathbb{Z}$, the zero-cycle e is given by $(\iota, 1)$ where ι is the trivial long $\operatorname{knot}\left(\iota(t)=(t, 0,0)\right.$ for any $\left.t \in \mathbb{R}^{1}\right)$.
- The zero-cycle $v=v(T)$ is given by $\sum_{\varepsilon_{i}= \pm 1} \varepsilon_{1} \varepsilon_{2} T_{\varepsilon_{1}, \varepsilon_{2}}$, where $T=3_{1}$ and $T_{\varepsilon_{1}, \varepsilon_{2}}$ is T with its crossing p_{i}, for $i=1,2$ changed to be positive if $\varepsilon_{i}=+1$ and negative if $\varepsilon_{i}=-1$ (see Figure 2).

Notice that, for any $f \in \mathscr{K}_{3}$ and any pair (p_{1}, p_{2}) of its crossings, an analogous zero-cycle $v=v\left(f ; p_{1}, p_{2}\right)$ can be defined.

Regard $f \in \mathscr{K}_{3}$ as a zero-cycle of $\tilde{\mathscr{K}}_{3}$ (with $\mathrm{fr} f=0$) and consider $r_{*} \lambda(e, f)$. During a knot f "going through" e, f rotates once around the x-axis. Thus the one-cycle $r_{*} \lambda(e, f)$ is homologous to the Gramain cycle G_{f}. This leads us to the fact that, for $v=v\left(f ; p_{1}, p_{2}\right)$, the one-cycle $r_{*} \lambda(e, v)$ is homologous to the $\operatorname{sum} \sum_{\varepsilon_{i}= \pm 1} \varepsilon_{1} \varepsilon_{2} G_{f_{\varepsilon_{1}, \varepsilon_{2}}}$. This is why we can apply the method in [Sakai 2008] to compute
$D^{2} V(f):=\sum_{\varepsilon_{j}= \pm 1} \varepsilon_{1} \varepsilon_{2} V\left(f_{\varepsilon_{1}, \varepsilon_{2}}\right)=\sum_{\varepsilon_{j}= \pm 1} \varepsilon_{1} \varepsilon_{2}\left\langle I(\Gamma), G_{f_{\varepsilon_{1}, \varepsilon_{2}}}\right\rangle=\left\langle I(\Gamma), r_{*} \lambda(e, v(f))\right\rangle$.
Recall that our graph cocycle Γ is a sum of nine graphs $\Gamma_{1}, \ldots, \Gamma_{9}$ (see Figure 1). By Assumption 1, the integration $\left\langle I\left(\Gamma_{i}\right), G_{f}\right\rangle$ can be computed by "counting" the configurations with all the images of the Gauss maps corresponding to edges of Γ_{i} being around the poles of S^{2}. Lemma 3.4 below was proved in such a way in [Sakai 2008] when $n>3$. Since $[v(f)] \in H_{0}\left(\mathscr{H}_{3}(f)\right)$ is independent of small $h>0$ (see Assumption 2), we may compute $D^{2} V(f)$ in the limit $h \rightarrow 0$.

Definition 3.3. We say that a pair (p_{1}, p_{2}) of crossings of f respects the diagram \rightarrow if there exist $t_{1}<t_{2}<t_{3}<t_{4}$ where $f\left(t_{1}\right)$ and $f\left(t_{3}\right)$ correspond to p_{1}, while $f\left(t_{2}\right)$ and $f\left(t_{4}\right)$ correspond to p_{2}. The notion of (p_{1}, p_{2}) respecting $\curvearrowleft \frown$ or \qquad is defined analogously.

Lemma 3.4 [Sakai 2008]. Suppose that $\left(p_{1}, p_{2}\right)$ respects \qquad . Then, in the limit $h \rightarrow 0, P_{i}(f):=\sum_{\varepsilon_{j}= \pm 1} \varepsilon_{1} \varepsilon_{2}\left\langle I\left(\Gamma_{i}\right), G_{f_{\varepsilon_{1}, \varepsilon_{2}}}\right\rangle$ converges to zero for $i \neq 2$, and $P_{2}(f)$ converges to 1 . Thus $D^{2} V(f)=1$.

Outline of proof. Let $\hat{C}_{\Gamma_{i}} \rightarrow S^{1}$ be the pullback of $C_{\Gamma_{i}} \rightarrow \mathscr{K}_{3}$ via G_{f}, and let \hat{G}_{f} : $\hat{C}_{\Gamma_{i}} \rightarrow C_{\Gamma_{i}}$ be the lift of G_{f}. By the properties of pullbacks and fiber integrations,

$$
\begin{equation*}
P_{i}(f)=\sum_{\varepsilon_{i}= \pm 1} \varepsilon_{1} \varepsilon_{2} \int_{\hat{C}_{\Gamma_{i}}} \hat{G}_{f_{\varepsilon_{1}, \varepsilon_{2}}}^{*} \omega_{\Gamma_{i}} \tag{3-1}
\end{equation*}
$$

Let $t_{1}<\cdots<t_{4}$ be such that $f\left(t_{1}\right)$ and $f\left(t_{3}\right)$ correspond to p_{1}, while $f\left(t_{2}\right)$ and $f\left(t_{4}\right)$ correspond to p_{2}. Define the subspace $C_{\Gamma_{i}}^{\prime} \subset \hat{C}_{\Gamma_{i}}$ as consisting of $\left(G_{f}(s) ;\left(x_{j}\right)\right)\left(s \in S^{1}\right)$ such that, for each $j=1,2$, there is a pair (l, m) of i-vertices of Γ_{i} such that x_{l} is on the over-arc of p_{j}, x_{m} is on the under-arc of p_{j}, and there is a sequence of edges in Γ_{i} from l to m.

First observation: The integration over $\hat{C}_{\Gamma_{i}} \backslash C_{\Gamma_{i}}^{\prime}$ does not essentially contribute to $P_{i}(f)$ in the limit $h \rightarrow 0$. This is because, over $\hat{C}_{\Gamma_{i}} \backslash C_{\Gamma_{i}}^{\prime}$, the integrals in (3-1) are well defined and continuous even when $h=0$ (p_{j} becomes a double point), so two terms in $P_{i}(f)$ corresponding to $\varepsilon_{j}= \pm 1$ cancel each other. This implies $\lim _{h \rightarrow 0} P_{i}(f)=0$ for $i=7,8,9$, since $C_{\Gamma_{i}}^{\prime}=\varnothing$ if $\sharp\{$ i-vertices $\} \leq 3$.

Second observation: Consider the configurations $\left(x_{i}\right) \in C_{\Gamma_{i}}^{\prime}$ such that, for any pair (l, m) of i-vertices of Γ_{i} with x_{l} on the over-arc of p_{j} and x_{m} on the under-arc of p_{j}, all the points $x_{k}\left(k\right.$ is in a sequence in Γ_{i} from l to $\left.m\right)$ are not near p_{j}. Such configurations also do not essentially contribute to $P_{i}(f)$ in the limit $h \rightarrow 0$, by the same reason as above. This implies $\lim _{h \rightarrow 0} P_{i}(f)=0$ for $i=4,5,6$; the configurations $\left(x_{l}\right) \in C_{\Gamma_{i}}^{\prime}(4 \leq i \leq 6)$ must be such that the point $x_{l} \in \mathbb{R}^{1}(1 \leq l \leq 4)$ is near t_{l}. By the second observation, the "free point" x_{5} must be near p_{1} or p_{2}. But then $\omega_{\Gamma_{i}}=0$, since at least one Gauss map $\varphi_{l 5}$ has its image outside the support of $\operatorname{vol}_{S^{2}}$ (see Assumption 1). Thus $\lim _{h \rightarrow 0} P_{i}(f)=0$.

Finally consider the $P_{i}(f)$, for $i=1,2,3$. For $i=1$ we have $\omega_{\Gamma_{1}}=0$ over $C_{\Gamma_{1}}^{\prime}$, since the Gauss map corresponding to the edge 12 has its image outside of the support of $\mathrm{vol}_{S^{2}}$. The same reasoning, using the loop edge 11, shows that $\omega_{\Gamma_{3}}=0$ over $C_{\Gamma_{3}}^{\prime}$. Only $P_{2}(f)$ survives, since the configurations with x_{1} near t_{1}, x_{2} near t_{2}, x_{3} and x_{4} near t_{3}, and x_{5} near t_{4}, contribute nontrivially to the integral [Sakai 2008, Lemma 4.6].

Lemma 3.5. If $\left(p_{1}, p_{2}\right)$ respects $\cap \cap$ or \cap, then $D^{2} V(f)=0$.
Proof. For $i=4, \ldots, 9$, we see in the same way as in Lemma 3.4 that $P_{i}(f)$ approaches 0 as $h \rightarrow 0$. That $\lim _{h \rightarrow 0} P_{i}(f)$ for $i=2,3$ and the \rightarrow-case for $i=1$ is proved by the first observation in the proof of Lemma 3.4.

In the $\frown \frown$-case for $P_{1}(f)$ over $C_{\Gamma_{1}}^{\prime}$ only the configurations with x_{j} near t_{j}, with $j=1,2,3$, and x_{5} near t_{4} may essentially contribute to $P_{1}(f)$; in this case the edges 12 and 35 join the over/under arcs of p_{1} and p_{2} respectively. However, the Gauss map φ_{14} cannot have its image in the support of $\operatorname{vol}_{S^{2}}$, so $\omega_{\Gamma_{1}}$ vanishes.

Proof of Theorem 3.1. For three crossings $\left(p_{1}, p_{2}, p_{3}\right)$ of $f \in \mathscr{K}_{3}$, consider the third difference

$$
D^{3} V(f):=\sum_{\varepsilon_{j}= \pm 1} \varepsilon_{1} \varepsilon_{2} \varepsilon_{3} V\left(f_{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}}\right)=D^{2} V\left(g_{+1}\right)-D^{2} V\left(g_{-1}\right)
$$

where $g_{ \pm 1}:=f_{+1,+1, \pm 1}$ and $D^{2} V\left(g_{ \pm 1}\right)$ are taken with respect to $\left(p_{1}, p_{2}\right)$. Since the pair $\left(p_{1}, p_{2}\right)$ of g_{+1} respects the same diagram as $\left(p_{1}, p_{2}\right)$ of g_{-1}, we have $D^{2} V\left(g_{+1}\right)=D^{2} V\left(g_{-1}\right)$ by the above Lemmas 3.4, 3.5. Thus $D^{3} V=0$ and hence V is finite type of order two. Moreover $V(\iota)=0$ for the trivial long knot ι since $\mathscr{K}_{3}(\iota)$ is contractible [Hatcher 1983]; therefore $G_{\iota} \sim 0$, and $V\left(3_{1}\right)=1$ by Lemma 3.4 and $V(\iota)=0$. These properties uniquely characterize Casson's knot invariant v_{2}.

The Browder operations. We denote a framed long knot corresponding to (f, k) under the equivalence $\tilde{\mathscr{K}}_{3} \simeq \mathscr{K}_{3} \times \mathbb{Z}$ by $f^{k} \in \tilde{\mathscr{H}}_{3}$ (unique up to homotopy). As mentioned above, the Gramain cycle can be written as $\left[G_{f}\right]=\left[r_{*} \lambda\left(f^{k}, \iota^{1}\right)\right](k$ may be arbitrary). Below we will evaluate $I(\Gamma)$ on more general cycles $r_{*} \lambda\left(f^{k}, g^{l}\right)$ of \mathscr{K}_{3} for any nontrivial $f, g \in \mathscr{K}_{3}$ and $k, l \in \mathbb{Z}$. This generalizes Theorem 3.1.
Theorem 3.6. We have $\left\langle I(\Gamma), r_{*} \lambda\left(f^{k}, g^{l}\right)\right\rangle=l v_{2}(f)+k v_{2}(g)$ for any $f, g \in \mathscr{K}_{3}$ and $k, l \in \mathbb{Z}$.

Corollary 3.7. If at least one of $v_{2}(f)$ and $v_{2}(g)$ is not zero, then

$$
\left[\left.I(\Gamma)\right|_{\mathscr{K}_{3}(f \sharp g)}\right] \in H_{D R}^{1}\left(\mathscr{K}_{3}(f \sharp g)\right) \neq 0,
$$

where \sharp stands for the connected sum.
Proof. This is because $r_{*} \lambda\left(f^{k}, g^{l}\right)$ is a one-cycle of $\mathscr{K}_{3}(f \sharp g)$ for any $k, l \in \mathbb{Z}$. Since $v_{2}(f)$ or $v_{2}(g)$ is not zero, there exist some k, l such that $l v_{2}(f)+k v_{2}(g) \neq 0$, so $\left\langle I(\Gamma), r_{*} \lambda\left(f^{k}, g^{l}\right)\right\rangle \neq 0$ by Theorem 3.6.

Remark 3.8. If $v_{2}(f)=-v_{2}(g)$, then $v_{2}(f \sharp g)=0$ since it is known that v_{2} is additive under \sharp. Hence we cannot deduce $\left[\left.I(\Gamma)\right|_{\mathscr{H}_{3}(f \sharp g)}\right] \neq 0$ from Corollary 3.2. Moreover if $v_{2}(f)=-v_{2}(g) \neq 0$, then Corollary 3.7 implies $\left[\left.I(\Gamma)\right|_{\mathscr{K}_{3}(f \sharp g)}\right] \neq 0$.

To prove Theorem 3.6, first we remark that $f^{m} \sim f^{0} \sharp l^{m}$. Since λ satisfies the Leibniz rule, $\lambda\left(f^{k}, g^{l}\right)$ is homologous to

$$
\lambda\left(f^{0}, g^{0}\right) \sharp l^{k+l}+\lambda\left(f^{0}, l^{l}\right) \sharp g^{k}+\lambda\left(l^{k}, g^{0}\right) \sharp f^{l}+\lambda\left(l^{k}, l^{l}\right) \sharp f^{0} \sharp g^{0} .
$$

Since by definition $r_{*} \lambda\left(f^{k}, \iota^{m}\right) \sim m G_{f}(k, m \in \mathbb{Z})$ and $G_{\iota} \sim 0$,

$$
\begin{equation*}
r_{*} \lambda\left(f^{k}, g^{l}\right) \sim r_{*} \lambda\left(f^{0}, g^{0}\right)+l G_{f} \sharp g+k f \sharp G_{g} . \tag{3-2}
\end{equation*}
$$

Notice that \sharp makes \mathscr{K}_{3} an H-space and induces a coproduct Δ on $H_{D R}^{*}\left(\mathscr{K}_{3}\right)$.
Lemma 3.9. $\Delta([I(\Gamma)])=1 \otimes[I(\Gamma)]+[I(\Gamma)] \otimes 1 \in H_{D R}^{*}\left(\mathscr{H}_{3}\right)^{\otimes 2}$.

Figure 3. Graph cocycles Γ^{\prime} and $\Gamma^{\prime \prime}$.

Proof. \mathscr{D} also admits Δ defined as a "separation" of the graphs by removing a point from the specified oriented line [Cattaneo et al. 2005, Section 3.2]. Theorem 6.3 of [Cattaneo et al. 2005] shows, without using $n>3$, that $(I \otimes I) \Delta(X)=\Delta I(X)$ if X satisfies $d I(X)=I(\delta X)$.

As for our graphs in Figure $1, \Delta \Gamma_{i}=1 \otimes \Gamma_{i}+\Gamma_{i} \otimes 1(i \neq 3,4)$ and

$$
\Delta\left(\Gamma_{3}-\Gamma_{4}\right)=1 \otimes\left(\Gamma_{3}-\Gamma_{4}\right)+\left(\Gamma_{3}-\Gamma_{4}\right) \otimes 1+\Gamma^{\prime} \otimes \Gamma^{\prime \prime}+\Gamma^{\prime \prime} \otimes \Gamma^{\prime}
$$

where Γ^{\prime} and $\Gamma^{\prime \prime}$ are as shown in Figure 3. Thus

$$
\Delta I(\Gamma)=1 \otimes I(\Gamma)+I(\Gamma) \otimes 1+I\left(\Gamma^{\prime}\right) \otimes I\left(\Gamma^{\prime \prime}\right)+I\left(\Gamma^{\prime \prime}\right) \otimes I\left(\Gamma^{\prime}\right)
$$

But in fact $\Gamma^{\prime}=\delta \Gamma_{0}$ where $\Gamma_{0}=\longrightarrow$, and $I\left(\Gamma^{\prime}\right)=d I\left(\Gamma_{0}\right)$ since there is no hidden face in the boundary of the fiber of $\pi_{\Gamma_{0}}$.

By (3-2), Lemma 3.9 and Theorem 3.1,

$$
\left\langle I(\Gamma), r_{*} \lambda\left(f^{k}, g^{l}\right)\right\rangle=\left\langle I(\Gamma), r_{*} \lambda\left(f^{0}, g^{0}\right)\right\rangle+l v_{2}(f)+k v_{2}(g)
$$

Thus it suffices to prove Theorem 3.6 in the case $k=l=0$.
Proof of Theorem 3.6. Fix g and regard $\left\langle I(\Gamma), r_{*} \lambda\left(f^{0}, g^{0}\right)\right\rangle$ as an invariant $V_{g}(f)$ of f. We choose two crossings p_{1} and p_{2} from the diagram of f in $x y$-plane, and compute $D^{2} V_{g}(f):=\sum_{\varepsilon_{1}, \varepsilon_{2}} \varepsilon_{1} \varepsilon_{2}\left\langle I(\Gamma), r_{*} \lambda\left(f_{\varepsilon_{1}, \varepsilon_{2}}^{0}, g^{0}\right)\right\rangle$ in the limit $h \rightarrow 0$ as on page 414 . If this is zero for any (p_{1}, p_{2}), then the arguments similar to that in the proof of Theorem 3.1 show that V_{g} is of order two and takes the value zero for the trefoil knot, thus identically $V_{g}=0$ for any g. This will complete the proof.

We will compute each $P_{i}^{\prime}:=\sum_{\varepsilon= \pm 1}\left\langle I\left(\Gamma_{i}\right), r_{*} \lambda\left(f_{\varepsilon_{1}, \varepsilon_{2}}^{0}, g^{0}\right)\right\rangle(1 \leq i \leq 9)$ in the limit $h \rightarrow 0$. The two observations appearing in the proof of Lemma 3.4 allow us to conclude $P_{i}^{\prime} \rightarrow 0$ for $4 \leq i \leq 9$ in the same way as before, so we compute P_{i}^{\prime} for $i=1,2$, 3 below. We may concentrate on the integration over $C_{\Gamma_{i}}^{\prime}$ by the first observation. Recall $C_{\Gamma_{i}}^{\prime} \subset S^{1} \times \operatorname{Conf}\left(\mathbb{R}^{1}, s\right) \times \operatorname{Conf}\left(\mathbb{R}^{3}, t\right)$ by definition. We take the S^{1}-parameter $\alpha \in S^{1}=\mathbb{R}^{1} / 2 \pi \mathbb{Z}$ so that g goes through f during $0 \leq \alpha \leq \pi$, and f goes through g during $\pi \leq \alpha \leq 2 \pi$.

First consider the integration over $0 \leq \alpha \leq \pi$. We may shrink g sufficiently small. Then the sliding of g through f does not affect the integration, so almost all the integrations converge to zero for the same reasons as in Lemmas 3.4 and 3.5. Only the configurations $\left(x_{i}\right) \in C_{\Gamma_{1}}^{\prime}$ with x_{1} and x_{2} near p_{1} may essentially contribute to P_{1}^{\prime} when g comes around p_{1}; the form $\varphi_{12}^{*} \mathrm{vol}_{S^{2}}$ may detect the knotting of g. However, the two terms for $\varepsilon_{1}= \pm 1$ cancel each other.

Figure 4. When f comes near an under-arc of g.

Next consider the integration over $\pi \leq \alpha \leq 2 \pi$. There may be two types of contributions to P_{i}^{\prime}. One type comes from the configurations in which all the points on the knot concentrate in a neighborhood of f. Such a contribution depends only on the framing number $\operatorname{fr} g$ of g, not on the global knotting of g. Since $\operatorname{fr} g^{0}=0$ here, such configurations do not essentially contribute to P_{i}^{\prime}.

The other possible contributions arise when f comes near the crossings of g. For example, consider the case that (p_{1}, p_{2}) respects \qquad . When f comes near a crossing of g, a configuration $\left(x_{1}, \ldots, x_{5}\right) \in C_{\Gamma_{1}}$ as in Figure 4 is certainly in $C_{\Gamma_{1}}^{\prime}$, so it may contribute to P_{1}^{\prime}.

However, such contributions converge to zero in the limit $h \rightarrow 0$, because x_{1} cannot be near p_{1} (see the second observation in the proof of Lemma 3.4). For Γ_{3}, we should take the configuration $\left(x_{1}, \ldots, x_{5}\right)$ with $x_{j}(2 \leq j \leq 5)$ near t_{j-1} into account; but in this case the Gauss map φ_{11} cannot have the image in the support of $\mathrm{vol}_{S^{2}}$. In such ways we can check that all such contributions of $\Gamma_{i}(i=1,2,3)$ can be arbitrarily small.

References

[Altschuler and Freidel 1997] D. Altschuler and L. Freidel, "Vassiliev knot invariants and ChernSimons perturbation theory to all orders", Comm. Math. Phys. 187:2 (1997), 261-287. MR 99c: 57008 Zbl 0949.57012
[Bott and Taubes 1994] R. Bott and C. Taubes, "On the self-linking of knots", J. Math. Phys. 35:10 (1994), 5247-5287. MR 95g:57008 Zbl 0863.57004
[Budney 2007] R. Budney, "Little cubes and long knots", Topology 46:1 (2007), 1-27. MR 2008c: 55015 Zbl 1114.57003
[Budney 2010] R. Budney, "Topology of knot spaces in dimension 3", Proc. Lond. Math. Soc. (3) 101:2 (2010), 477-496. MR 2679699 Zbl 1201.57021
[Budney and Cohen 2009] R. Budney and F. Cohen, "On the homology of the space of knots", Geom. Topol. 13:1 (2009), 99-139. MR 2009k:55029 Zbl 1163.57027
[Budney et al. 2005] R. Budney, J. Conant, K. P. Scannell, and D. Sinha, "New perspectives on self-linking", Adv. Math. 191:1 (2005), 78-113. MR 2005h:57013 Zbl 1078.57011
[Cattaneo et al. 2002] A. S. Cattaneo, P. Cotta-Ramusino, and R. Longoni, "Configuration spaces and Vassiliev classes in any dimension", Algebr. Geom. Topol. 2 (2002), 949-1000. MR 2004a: 57014 Zbl 1029.57009
[Cattaneo et al. 2005] A. S. Cattaneo, P. Cotta-Ramusino, and R. Longoni, "Algebraic structures on graph cohomology", J. Knot Theory Ramifications 14:5 (2005), 627-640. MR 2006g:58021 Zbl 1091.57008
[Gramain 1977] A. Gramain, "Sur le groupe fundamental de l'espace des noeuds", Ann. Inst. Fourier (Grenoble) 27:3 (1977), 29-44. MR 57 \#1552
[Hatcher 1983] A. E. Hatcher, "A proof of the Smale conjecture, $\operatorname{Diff}\left(S^{3}\right) \simeq \mathrm{O}(4)$ ", Ann. of Math. (2) 117:3 (1983), 553-607. MR 85c:57008 Zbl 0531.57028
[Kohno 1994] T. Kohno, "Vassiliev invariants and de Rham complex on the space of knots", pp. 123-138 in Symplectic geometry and quantization (Sanda and Yokohama, 1993), edited by Y. Maeda et al., Contemp. Math. 179, Amer. Math. Soc., Providence, RI, 1994. MR 96g:57010 Zbl 0876.57009
[Longoni 2004] R. Longoni, "Nontrivial classes in $H^{*}\left(\operatorname{Imb}\left(S^{1}, \mathbb{R}^{n}\right)\right)$ from nontrivalent graph cocycles", Int. J. Geom. Methods Mod. Phys. 1:5 (2004), 639-650. MR 2005k:57026 Zbl 1069.81037
[Sakai 2008] K. Sakai, "Nontrivalent graph cocycle and cohomology of the long knot space", Algebr. Geom. Topol. 8:3 (2008), 1499-1522. MR 2009h:58023 Zbl 1151.57012
[Turchin 2006] V. Turchin, "Calculating the first nontrivial 1-cocycle in the space of long knots", Mathematical Notes 80 (2006), 101-108. Zbl 1143.57007
[Vassiliev 1992] V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Transl. Math. Monographs 98, Amer. Math. Soc., Providence, RI, 1992. MR 94i:57020
[Vassiliev 2001] V. A. Vassiliev, "Combinatorial formulas for cohomology of knot spaces", Mosc. Math. J. 1:1 (2001), 91-123. MR 2002g:55028 Zbl 1015.57003
[Volić 2007] I. Volić, "A survey of Bott-Taubes integration", J. Knot Theory Ramifications 16:1 (2007), 1-42. MR 2008f:57022 Zbl 1128.57013

Received April 29, 2010.
Keilchi Sakai
Department of Mathematical Sciences
Shinshu University
3-1-1 Asahi, Matsumoto 390-8621

JAPAN

ksakai@ math.shinshu-u.ac.jp
http://math.shinshu-u.ac.jp/~ksakai/index.html

PACIFIC JOURNAL OF MATHEMATICS

http://www.pjmath.org
Founded in 1951 by
E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS
V. S. Varadarajan (Managing Editor)

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
pacific@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics University of California Riverside, CA 92521-0135 chari@math.ucr.edu

Robert Finn

Department of Mathematics Stanford University Stanford, CA 94305-2125
finn@math.stanford.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Darren Long
Department of Mathematics University of California
Santa Barbara, CA 93106-3080 long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhlu@maths.hku.hk
Alexander Merkurjev
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu
Jonathan Rogawski
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
jonr@math.ucla.edu

PRODUCTION

pacific@math.berkeley.edu
Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH UNIV. OF WASHINGTON WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or www.pjmath.org for submission instructions.
The subscription price for 2011 is US $\$ 420 /$ year for the electronic version, and $\$ 485 /$ year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company, 11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.
The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\text {TM }}$ from Mathematical Sciences Publishers.
PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840
A NON-PROFIT CORPORATION
Typeset in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$
Copyright ©2011 by Pacific Journal of Mathematics

PACIFIC JOURNAL OF MATHEMATICS

Volume 250 No. 2 April 2011
Realizing profinite reduced special groups 257
Vincent Astier and Hugo Mariano
On fibered commensurability 287
Danny Calegari, Hongbin Sun and Shicheng Wang
On an overdetermined elliptic problem 319
Laurent Hauswirth, Frédéric Hélein and Frank Pacard
Minimal sets of a recurrent discrete flow 335
Hattab Hawete
Trace-positive polynomials 339
Igor Klep
Remarks on the product of harmonic forms 353
Liviu Ornea and Mihaela Pilca
Steinberg representation of GSp(4): Bessel models and integral 365 representation of L-functionsAmeya Pitale
An integral expression of the first nontrivial one-cocycle of the space of 407
long knots in \mathbb{R}^{3}
Keilchi Sakai
Burghelea-Haller analytic torsion for twisted de Rham complexes 421 GuangXiang Su
$K(n)$-localization of the $K(n+1)$-local E_{n+1}-Adams spectral sequences 439
Takeshi Torii
Thompson's group is distorted in the Thompson-Stein groups 473
Claire Wladis
Parabolic meromorphic functions 487
Zheng Jian-Hua

[^0]: The author is partially supported by Grant-in-Aid for Young Scientists (B) 21740038, the Sumitomo Foundation, the Iwanami Fujukai Foundation, and a Research Fellowship for Young Scientists (228006) from the Japan Society for the Promotion of Science Research.

 MSC2000: primary 58D10; secondary 55P48, 57M25, 57M27, 81Q30.
 Keywords: the space of long knots, configuration space integrals, nontrivalent graphs, an action of little cubes, Gramain cycles, Casson's knot invariant.

