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Crum’s theorem in one-dimensional quantum mechanics asserts the existence of an asso-
ciated Hamiltonian system for any given Hamiltonian with the complete set of eigenvalues
and eigenfunctions. The associated system is iso-spectral to the original one except for the
lowest energy state, which is deleted. A modification due to Krein-Adler provides algebraic
construction of a new complete Hamiltonian system by deleting a finite number of energy
levels. Here we present a discrete version of the modification based on Crum’s theorem for
the ‘discrete’ quantum mechanics developed by two of the present authors.

Subject Index: 010, 012, 064

§1. Introduction

Crum’s seminal paper of 19551) has played an essential role in elucidating the
structure of one-dimensional quantum mechanical systems in general and exactly
solvable ones, in particular. Throughout this paper, we mean ‘exact solvability’
in the Schrödinger picture, namely a quantum system is exactly solved when the
complete set of eigenvalues and eigenfunctions are known. Many exactly solvable
quantum mechanical Hamiltonians were constructed and investigated by combining
shape invariance2) and Crum’s theorem,1),3) or the factorisation method4) or the
method of the so-called supersymmetric quantum mechanics.5) It is interesting to
note that most of these shape invariant systems are also solvable in the Heisenberg
picture.6) Exactly solvable quantum mechanical systems of one and many degrees
of freedom are not only important in their own right but also have fundamental
applications in various disciplines of physics/mathematics, e.g. the Fokker-Planck
equations7) and their discretised version, birth and death processes,8) to name a few.

Shape invariance is a sufficient condition for exactly solvable quantum mechan-
ical systems. The number of shape invariant systems, however, was quite limited;
only about a dozen until the recent discovery9)–11) of the several types of infinitely
many shape invariant Hamiltonians12)–16) which led to the infinitely many excep-
tional Laguerre, Jacobi, Wilson and Askey-Wilson polynomials. Many methods were
proposed to derive exactly solvable but non-shape invariant quantum mechanical sys-
tems from known shape invariant ones.17)–21) (We apologise to those whose work
we have missed.) Among them Krein-Adler’s modification18) of Crum’s theorem is
the most comprehensive way to generate infinitely many variants of exactly solvable
Hamiltonians and their eigenfunctions, starting from an exactly solvable one. The
derived system is iso-spectral with the original one except that a finite number of
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energy levels are deleted. If the original system has polynomial eigenfunctions, as
is usually the case, the derived systems have also polynomial eigenfunctions. By
construction, these polynomials constitute a complete set of orthogonal functions.
But they do not qualify to be called exceptional orthogonal polynomials12)–16) since
some members of certain degrees are missing due to the deletion.

The discrete quantum mechanics is a deformation of the ordinary quantum me-
chanics in the sense that the Schrödinger equation is a second order difference equa-
tion instead of differential. In the formulation of Odake and Sasaki,22)–25) the al-
gebraic and analytical structure of quantum mechanics as well as shape invariance
and exact solvability are retained in the discrete version. The eigenfunctions of the
exactly solvable one-dimensional discrete quantum mechanics are the Askey-scheme
of hypergeometric orthogonal polynomials and their q-versions,26)–29) e.g. the con-
tinuous Hahn, the Wilson and the Askey-Wilson polynomials. These examples are
all shape invariant and they are also solvable in the Heisenberg picture.6),22) The
dynamical symmetry algebra of these systems are the Askey-Wilson algebras30),31)

and degenerations, which contain the q-oscillator algebra.32) The discrete version of
Crum’s theorem was also established recently.33),34)

In this paper we present the discrete quantum mechanics version of Adler’s mod-
ification18) of Crum’s theorem. It allows to generate an infinite variety of exactly
solvable discrete quantum Hamiltonian systems. The insight obtained from Crum’s
theorems and their modification, in the ordinary and the discrete quantum mechan-
ics, is essential for the recent derivation of the infinite numbers of shape invariant
systems and the new exceptional orthogonal polynomials.12),13),15) We will discuss
the main results, the specialisation to the cases of polynomial eigenfunctions and
simplest example for various exactly solvable cases; first for the ordinary quantum
mechanics and then for the discrete versions. The reason is two-fold; firstly to intro-
duce appropriate notion and notation in the familiar cases of the ordinary quantum
mechanics. Secondly we choose to reveal the underlying logical processes which are
not easy to fathom in Adler’s paper18) or in Crum’s original article.1) As seen in
the subsequent sections, the logical structures of the associated Hamiltonian systems
and their modification by deletion of energy levels are shared by the ordinary and
the discrete quantum mechanics.

This paper is organised as follows. In §2, Adler’s modification of Crum’s theorem
is recapitulated in appropriate notation for our purposes. The specialisation to the
cases of polynomial eigenfunctions is discussed in some detail. Section 3 provides the
discrete quantum mechanics version of the modification of Crum’s theorem. Again
the specialisation to the cases of polynomial eigenfunctions is mentioned. Appendix
gives the simplest examples of the modified Hamiltonian systems obtained by deleting
the lowest lying � excited states for various exactly solvable Hamiltonians. Appendix
A provides three examples from the ordinary quantum mechanics, the harmonic
oscillator, the radial oscillator, the Darboux-Pöschl-Teller potential. Appendix B
is for the four examples from the discrete quantum mechanics, the Hamiltonians
of the Meixner-Pollaczek, the continuous Hahn, the Wilson and the Askey-Wilson
polynomials,22),25) which are known to reduce to the Hermite, the Laguerre and the
Jacobi polynomials in certain limits, respectively.
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§2. Ordinary quantum mechanics

2.1. Adler’s modification of Crum’s theorem

Let us start with a generic one-dimensional quantum mechanical (QM) system
having discrete semi-infinite energy levels only:

0 = E0 < E1 < E2 < · · · . (2.1)

Here we have chosen the constant part of the Hamiltonian so that the groundstate
energy is zero. Then the Hamiltonian is positive semi-definite and can be factorised,

H = p2 + U(x) = p2 +
(dW(x)

dx

)2
+
d2W(x)
dx2

, p = −i d
dx
, (2.2)

= A†A, A def=
d

dx
− dW(x)

dx
, A† = − d

dx
− dW(x)

dx
. (2.3)

Here a real and smooth function W(x) ∈ C
∞ is called a prepotential and it

parametrises the groundstate wavefunction φ0(x), which has no node and can be
chosen real and positive:

φ0(x) = eW(x). (2.4)

It is trivial to verify
Aφ0(x) = 0 ⇒ Hφ0(x) = 0. (2.5)

In one dimension all the energy levels are non-degenerate. By construction all the
eigenfunctions are square-integrable and orthogonal with each other and form a
complete basis of the Hilbert space:

Hφn(x) = Enφn(x), n ∈ Z+, (2.6)∫ x2

x1

φn(x)∗φm(x)dx = hnδnm, 0 < hn <∞, n,m ∈ Z+, (2.7)

where Z+ is the set of non-negative integers {0, 1, 2, . . .}. It is well-known that
the n-th excited wavefunction φn(x) has n nodes in the interior. For simplicity we
choose all the eigenfunctions to be real. A few exactly solvable examples are given
in Appendix.

Let us choose a set of � distinct non-negative integers D def= {d1, d2, . . . , d�} ⊂ Z+,
satisfying the condition

�∏
j=1

(m− dj) ≥ 0, ∀m ∈ Z+. (2.8)

This condition means that the set D consists of several clusters, each containing an
even number of contiguous integers

dk1 , dk1 + 1, · · · , dk2 ; dk3 , dk3 + 1, · · · , dk4 ; dk5 , dk5 + 1, · · · , dk6 , ; · · · , (2.9)
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where dk2 + 1 < dk3 , dk4 + 1 < dk5 , · · · . If dk1 = 0 for the lowest lying cluster, it
could contain an even or odd number of contiguous integers. The set D specifies the
energy levels to be deleted. This simply reflects the fact that no singularity arises
when two neighbouring levels are deleted. In the ordinary QM, the zeros of the
two neighbouring eigenfunctions φj and φj+1 interlace with each other. This fact is
essential for the non-singularity of the potential after deletion. See Adler’s paper18)

for a proof. The situation is essentially the same in the discrete QM. However,
in the dQM to be discussed in the subsequent section, due to the lack of general
theorem, the interlacing of the zeros of the two neighbouring eigenfunctions φj and
φj+1 must be verified for each specific Hamiltonian. Deleting an arbitrary number
of contiguous energy levels starting from the groundstate (dk1 = 0) is achieved by
the original Crum’s theorem.1)

Next we will construct Hamiltonian systems corresponding to the successive
deletions Hd1... (and Ad1..., A†

d1..., etc.) step by step, algebraically. It should be
noted that some quantities in the intermediate steps could be singular. For given d1

the first Hamiltonian H can be expressed in two different ways:

H = A†A = A†
d1
Ad1 + Ed1 , Ad1φd1 = 0, (2.10)

Ad1

def=
d

dx
− dWd1(x)

dx
, A†

d1

def= − d

dx
− dWd1(x)

dx
, Wd1(x)

def= logφd1(x), (2.11)

U(x) =
(dW(x)

dx

)2
+
d2W(x)
dx2

=
(dWd1(x)

dx

)2
+
d2Wd1(x)
dx2

+ Ed1 . (2.12)

Unless d1 = 0, Wd1(x) is singular due to the zeros of φd1(x). It is very important to
note that A†

d1
in (2.11) is a ‘formal adjoint’ of Ad1 . We stick to this notation, since

the algebraic structure of various expressions appearing in the deletion processes,
from (2.10) to (2.34), are best described by using the ‘formal adjoint’. These define
a new Hamiltonian system

Hd1

def= Ad1A†
d1

+ Ed1 = p2 + Ud1(x), (2.13)

Ud1(x)
def=

(dWd1(x)
dx

)2 − d2Wd1(x)
dx2

+ Ed1 , (2.14)

with the ‘eigenfunctions’

Hd1φd1 n(x) = Enφd1 n(x), φd1 n(x) def= Ad1φn(x), n ∈ Z+\{d1}. (2.15)

Note that the energy level d1 is now deleted, φd1 d1(x) ≡ 0, from the set of ‘eigen-
functions’ {φd1 n(x)} of the new Hamiltonian Hd1 .

Suppose we have determined Hd1 ... ds and φd1 ... ds n(x) with s deletions. They
have the following properties:

Hd1 ... ds

def= Ad1 ... dsA†
d1 ... ds

+ Eds

def= p2 + Ud1 ... ds(x), (2.16)

Wd1 ... ds(x)
def= logφd1 ... ds(x), (2.17)

Ad1 ... ds

def=
d

dx
− dWd1 ... ds(x)

dx
, A†

d1 ... ds

def= − d

dx
− dWd1 ... ds(x)

dx
, (2.18)
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Ud1 ... ds(x)
def=

(dWd1 ... ds(x)
dx

)2 − d2Wd1 ... ds(x)
dx2

+ Eds , (2.19)

φd1 ... ds n(x) def= Ad1 ... dsφd1 ... ds−1 n(x) (n ∈ Z+\{d1, . . . , ds}), (2.20)
Hd1 ... dsφd1 ... ds n(x) = Enφd1 ... ds n(x) (n ∈ Z+\{d1, . . . , ds}). (2.21)

We have also

φd1 ... ds−1 n(x) =
A†

d1 ... ds

En − Eds

φd1 ... ds n(x) (n ∈ Z+\{d1, . . . , ds}). (2.22)

Next we will define a new Hamiltonian system with one more deletion of the level
ds+1. We can show

Hd1 ... ds = A†
d1 ... ds ds+1

Ad1 ... ds ds+1 + Eds+1 , Ad1 ... ds ds+1φd1 ... ds ds+1 = 0, (2.23)

Ad1 ... ds ds+1

def=
d

dx
− dWd1 ... ds ds+1(x)

dx
, A†

d1 ... ds ds+1

def= − d

dx
− dWd1 ... ds ds+1(x)

dx
,

(2.24)

Wd1 ... ds ds+1(x)
def= logφd1 ... ds ds+1(x), (2.25)

Ud1 ... ds(x) =
(dWd1 ... ds ds+1(x)

dx

)2
+
d2Wd1 ... ds ds+1(x)

dx2
+ Eds+1 . (2.26)

These determine a new Hamiltonian system with s+ 1 deletions:

Hd1 ... ds+1

def= Ad1 ... ds+1A†
d1 ... ds+1

+ Eds+1

def= p2 + Ud1 ... ds+1(x), (2.27)

Ud1 ... ds+1(x)
def=

(dWd1 ... ds+1(x)
dx

)2 − d2Wd1 ... ds+1(x)
dx2

+ Eds+1 , (2.28)

φd1 ... ds+1 n(x) def= Ad1 ... ds+1φd1 ... ds n(x) (n ∈ Z+\{d1, . . . , ds+1}), (2.29)
Hd1 ... ds+1φd1 ... ds+1 n(x) = Enφd1 ... ds+1 n(x) (n ∈ Z+\{d1, . . . , ds+1}). (2.30)

After deleting all the D = {d1, · · · , d�} energy levels, the resulting Hamiltonian
system HD ≡ Hd1 ... d�

, AD ≡ Ad1 ... d�
, etc has the following form:

HD
def= ADA†

D + Ed�

def= p2 + UD(x), (2.31)

UD(x) def=
(dWD(x)

dx

)2 − d2WD(x)
dx2

+ Ed�
, WD(x) def= log φd1 ··· d�

(x), (2.32)

φD n(x) def= ADφd1 ··· d�−1 n(x) (n ∈ Z+\D), (2.33)

HDφD n(x) = EnφD n(x) (n ∈ Z+\D). (2.34)

Now that HD has the lowest energy level μ:

μ
def= min{n |n ∈ Z+\D}, (2.35)

with the groundstate wavefunction φ̄μ(x)

φ̄μ(x) def= φD μ(x) ≡ φd1 ··· d� μ(x). (2.36)



6 L.Garćıa-Gutiérrez, S.Odake and R. Sasaki

As usual the Hamiltonian system can be expressed simply in terms of the groundstate
wavefunction φ̄μ(x), which we will denote by new symbols H̄, Ā, etc:

H̄ ≡ HD
def= Ā†Ā + Eμ

def= p2 + Ū(x), (2.37)

Ā ≡ AD μ
def=

d

dx
− dW̄(x)

dx
, Ā† ≡ A†

D μ
def= − d

dx
− dW̄(x)

dx
, (2.38)

Ū(x) ≡ UD μ(x) def=
(dW̄(x)

dx

)2
+
d2W̄(x)
dx2

+ Eμ, W̄(x) ≡ WD μ(x) def= log φ̄μ(x),

(2.39)

H̄φ̄n(x) = Enφ̄n(x), φ̄n(x) ≡ φD n(x) (n ∈ Z+\D). (2.40)

As shown by Krein-Adler,18) the results can be expressed succinctly:

φ̄n(x) =
W[φd1 , φd2 , . . . , φd�

, φn](x)
W[φd1 , φd2 , . . . , φd�

](x)
(n ∈ Z+\D), (2.41)

Ū(x) ≡ Ud1,...,d�
(x) = U(x) − 2

d2

dx2

(
log W [φd1 , φd2 , . . . , φd�

](x)
)

(� ≥ 0), (2.42)

in which the Wronskian determinant is defined by

W [f1, . . . , fn](x) def= det
(dj−1fk(x)

dxj−1

)
1≤j,k≤n

. (2.43)

For n = 0, we set W [·](x) = 1. In deriving the determinant formulas (2.41) and
(2.42) use is made of the properties of the Wronskian

W[gf1, gf2, . . . , gfn](x) = g(x)nW[f1, f2, . . . , fn](x), (2.44)
W

[
W[f1, f2, . . . , fn, g],W[f1, f2, . . . , fn, h]

]
(x)

= W[f1, f2, . . . , fn](x) W[f1, f2, . . . , fn, g, h](x) (n ≥ 0). (2.45)

Let us note that Ud1 ... d�
(x) and φd1,... d� n(x) are symmetric with respect to d1, . . . , d�,

and thus H̄ ≡ Hd1 ... d�
is independent of the order of {dj}.

Let us state Adler’s theorem again; If the set of deleted energy levels d1, . . . , d�

satisfy the condition (2.8), the Hamiltonian H̄ ≡ Hd1 ... d�
= p2 + Ū(x) with (2.42) is

well-defined and hermitian, and its complete set of eigenfunctions (2.40) are given by
(2.41). Crum’s theorem corresponds to the choice {d1, . . . , d�} = {0, 1, . . . , � − 1},
and the resulting lowest energy level is μ = � and there is no deleted energy levels
above the new groundstate.

2.2. Polynomial eigenfunctions

In this subsection we consider the typical case of shape invariant systems in
which the eigenfunctions consist of the orthogonal polynomials {Pn}:

φn(x) = φ0(x)Pn(η(x)), φ0(x) = eW(x), (2.46)

in which η(x) is called the sinusoidal coordinate. As shown in detail in the examples
in Appendix A, η(x) = x for the harmonic oscillator (the Hermite polynomials),
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η(x) = x2 for the radial oscillator (the Laguerre polynomials) and η(x) = cos 2x
for the Darboux-Pöschl-Teller potential (the Jacobi polynomials). The groundstate
wavefunction φ0(x) provides the orthogonality weight function∫ x2

x1

φ0(x)2 Pn(η(x))Pm(η(x))dx = hnδnm, n, m ∈ Z+. (2.47)

In this case, the modification of Crum’s theorem produces the eigenfunctions
{φ̄n(x)} which again consist of polynomials in η(x). By using (2.44) and

f̌j(x)
def= fj(η(x)), W[f̌1, f̌2, . . . , f̌n](x) =

(dη(x)
dx

) 1
2
n(n−1)W[f1, f2, . . . , fn](η(x)),

(2.48)
we obtain a simple expression of the eigenfunctions

φ̄n(x) = φ0(x)
(dη(x)

dx

)� W[Pd1 , Pd2, . . . , Pd�
, Pn](η(x))

W[Pd1, Pd2 , . . . , Pd�
](η(x))

. (2.49)

This simply means that the resulting eigenfunctions are again polynomials in η(x):

φ̄n(x) = ψ̄(x)Pn(η(x)), (2.50)

ψ̄(x) def=
φ0(x)

(dη(x)
dx

)�

W[Pd1, Pd2 , . . . , Pd�
](η(x))

, Pn(η) def= W[Pd1, Pd2 , . . . , Pd�
, Pn](η), (2.51)

satisfying the orthogonality relation∫ x2

x1

ψ̄(x)2 Pn(η(x))Pm(η(x))dx = h̄nδnm, n, m ∈ Z+\D. (2.52)

Let us emphasise that n is not the degree in η and by construction, � members are
missing: Pd1 = Pd2 = · · · = Pd�

≡ 0. Therefore these polynomials cannot be called
exceptional orthogonal polynomials.9),12),15)

§3. ‘Discrete’ quantum mechanics

Let us begin with a few general remarks on the one-dimensional discrete QM with
pure imaginary shifts. See 25) for the general introduction to the discrete quantum
mechanics with pure imaginary shifts and 34) for Crum’s theorem in the discrete
QM. In the discrete QM, the dynamical variables are, as in the ordinary QM, the
coordinate x, which takes value in an infinite or a semi-infinite or a finite range of the
real axis and the canonical momentum p, which is realised as a differential operator
p = −i∂x. Since the momentum operator appears in exponentiated forms e±γp,
γ ∈ R, in a Hamiltonian, it causes finite pure imaginary shifts in the wavefunction
e±γpψ(x) = ψ(x ∓ iγ). This requires the wavefunction as well as other functions
appearing in the Hamiltonian to be analytic in x within a certain complex domain
including the physical region of the coordinate. Let us introduce the ∗-operation on
an analytic function, ∗ : f �→ f∗. If f(x) =

∑
n
anx

n, an ∈ C, then f∗(x) def=
∑
n
a∗nxn,
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in which a∗n is the complex conjugation of an. Obviously f∗∗(x) = f(x) and f(x)∗ =
f∗(x∗). If a function satisfies f∗ = f , we call it a ‘real’ function, for it takes real
values on the real line.

The starting point is again a generic one dimensional discrete quantum mechani-
cal Hamiltonian with discrete semi-infinite energy levels only (2.1). Again we assume
that the groundstate energy is chosen to be zero E0 = 0, so that the Hamiltonian is
positive semi-definite. The generic factorised Hamiltonian reads22),25)

H = A†A =
√
V (x) eγp

√
V ∗(x) +

√
V ∗(x) e−γp

√
V (x) − V (x) − V ∗(x), (3.1)

A def= i
(
e

γ
2
p
√
V ∗(x) − e−

γ
2
p
√
V (x)

)
, A† def= −i(√V (x) e

γ
2
p −

√
V ∗(x) e−

γ
2
p
)
. (3.2)

Since the ∗-operation for Af , A†f and Hf satisfies

(Af)∗(x) = Af∗(x), (A†f)∗(x) = A†f∗(x), (Hf)∗(x) = Hf∗(x), (3.3)

they map a ‘real’ function to a ‘real’ function

f∗ = f ⇒ (Af)∗ = Af, (A†f)∗ = A†f, (Hf)∗ = Hf. (3.4)

By specifying the function V (x), various explicit examples are obtained.6),22),25) A
few exactly solvable examples are given in Appendix. The corresponding Schrödinger
equation Hψ(x) = Eψ(x) is a difference equation√

V (x)V ∗(x− iγ)ψ(x− iγ) +
√
V ∗(x)V (x+ iγ)ψ(x+ iγ)

− (
V (x) + V ∗(x)

)
ψ(x) = Eψ(x), (3.5)

instead of differential in the ordinary QM. Although this equation looks rather com-
plicated, the equation for the polynomial eigenfunctions (3.47) has a familiar form
of difference equations. Again the groundstate wavefunction φ0(x) is determined as
a zero mode of A, Aφ0(x) = 0 (⇒ Hφ0(x) = 0), namely,√

V ∗(x− iγ2 )φ0(x− iγ2 ) −
√
V (x+ iγ2 )φ0(x+ iγ2 ) = 0. (3.6)

This dictates how the ‘phase’ of the potential function V is related to that of the
groundstate wavefunction φ0. Here we also assume that the groundstate wavefunc-
tion φ0(x) has no node and chosen to be real and positive for real x.

Due to the lack of generic theorems in the theory of difference equations, let us
assume that all the energy levels are non-degenerate and that all the eigenfunctions
are square-integrable and orthogonal with each other and form a complete basis of
the Hilbert space:

Hφn(x) = Enφn(x), n ∈ Z+, (3.7)∫ x2

x1

φn(x)∗φm(x)dx = hnδnm, 0 < hn <∞, n,m ∈ Z+. (3.8)

In most explicit examples these statements can be verified straightforwardly. For
simplicity we choose all the eigenfunctions to be real on the real axis φ∗n = φn, which
is made possible by (3.4).
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3.1. Modification of Crum’s theorem

The formulation of the modified Crum’s theorem in the discrete quantum me-
chanics goes almost parallel to that in the ordinary quantum mechanics. Again the
presentation is purely algebraic. Let us note that various quantities in intermediate
steps might have singularities and Hamiltonians might not be hermitian. We choose
a set of distinct non-negative integers D def= {d1, d2, . . . , d�} ⊂ Z+, satisfying the
condition (2.8) as before. First let us note that the Hamiltonian H can be rewritten
by incorporating the level d1 as:

H = A†
d1
Ad1 + Ed1 , Ad1φd1 = 0, (3.9)

Ad1

def= i
(
e

γ
2
p
√
V ∗

d1
(x) − e−

γ
2
p
√
Vd1(x)

)
, A†

d1

def= −i
(√

Vd1(x) e
γ
2
p −

√
V ∗

d1
(x) e−

γ
2
p
)
,

(3.10)

Vd1(x)
def=

√
V (x)V ∗(x− iγ)

φd1(x− iγ)
φd1(x)

. (3.11)

These define a new Hamiltonian system

Hd1

def= Ad1A†
d1

+ Ed1 , (3.12)

Hd1φd1 n(x) = Enφd1 n(x), φd1 n(x) def= Ad1φn(x), n ∈ Z+\{d1}. (3.13)

Note that the energy level d1 is now deleted, φd1 d1(x) ≡ 0, from the set of ‘eigen-
functions’ {φd1 n(x)} of the new Hamiltonian Hd1 .

Suppose we have determined Hd1 ... ds and φd1 ... ds n(x) with s deletions. They
have the following properties

Hd1 ... ds

def= Ad1 ... dsA†
d1 ... ds

+ Eds , (3.14)

Ad1 ... ds

def= i
(
e

γ
2
p
√
V ∗

d1 ... ds
(x) − e−

γ
2
p
√
Vd1 ... ds(x)

)
,

A†
d1 ... ds

def= −i
(√

Vd1 ... ds(x) e
γ
2
p −

√
V ∗

d1 ... ds
(x) e−

γ
2
p
)
, (3.15)

Vd1 ... ds(x)
def=

⎧⎪⎪⎨⎪⎪⎩
√
Vd1 ... ds−1(x− iγ2 )V ∗

d1 ... ds−1
(x− iγ2 )

φd1 ... ds(x− iγ)
φd1 ... ds(x)

(s ≥ 2),√
V (x)V ∗(x− iγ)

φd1(x− iγ)
φd1(x)

(s = 1),

(3.16)

φd1 ... ds n(x) def= Ad1 ... dsφd1 ... ds−1 n(x), φd1 ... ds n(x) = φ∗d1 ... ds n(x), (3.17)
Hd1 ... dsφd1 ... ds n(x) = Enφd1 ... ds n(x), (3.18)

where n ∈ Z+\{d1, . . . , ds}. We have also

φd1 ... ds−1 n(x) =
A†

d1 ... ds

En − Eds

φd1 ... ds n(x) (n ∈ Z+\{d1, . . . , ds}). (3.19)
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Next we will define a new Hamiltonian system with one more deletion of the level
ds+1. We can show the following:

Hd1 ... ds = A†
d1 ... ds ds+1

Ad1 ... ds ds+1 + Eds+1 , Ad1 ... ds ds+1φd1 ... ds ds+1(x) = 0, (3.20)

Ad1 ... ds ds+1

def= i
(
e

γ
2
p
√
V ∗

d1 ... ds ds+1
(x) − e−

γ
2
p
√
Vd1 ... ds ds+1(x)

)
,

A†
d1 ... ds ds+1

def= −i
(√

Vd1 ... ds ds+1(x) e
γ
2
p −

√
V ∗

d1 ... ds ds+1
(x) e−

γ
2
p
)
, (3.21)

Vd1 ... ds,ds+1(x)
def=

√
Vd1 ... ds(x− iγ2 )V ∗

d1 ... ds
(x− iγ2 )

φd1 ... ds ds+1(x− iγ)
φd1 ... ds ds+1(x)

. (3.22)

These determine a new Hamiltonian system with s+ 1 deletions:

Hd1 ... ds+1

def= Ad1 ... ds+1A†
d1 ... ds+1

+ Eds+1 , (3.23)

φd1 ... ds+1 n(x) def= Ad1 ... ds+1φd1 ... ds n(x), φd1 ... ds+1 n(x) = φ∗d1 ... ds+1 n(x), (3.24)

Hd1 ... ds+1φd1 ... ds+1 n(x) = Enφd1 ... ds+1 n(x), (3.25)

where n ∈ Z+\{d1, . . . , ds+1}.

After deleting all the D = {d1, · · · , d�} energy levels, the resulting Hamiltonian
system HD ≡ Hd1 ... d�

, AD ≡ Ad1 ... d�
, etc. has the following form:

HD
def= ADA†

D + Ed�
, (3.26)

AD
def= i

(
e

γ
2
p
√
V ∗
D(x) − e−

γ
2
p
√
VD(x)

)
, A†

D
def= −i

(√
VD(x) e

γ
2
p −

√
V ∗
D(x) e−

γ
2
p
)
,

(3.27)

VD(x) def=
√
Vd1 ... d�−1

(x− iγ2 )V ∗
d1 ... d�−1

(x− iγ2 )
φD(x− iγ)
φD(x)

, (3.28)

φD n(x) def= ADφd1 ... d�−1 n(x), φD n(x) = φ∗D n(x), (n ∈ Z+\D), (3.29)

HDφD n(x) = EnφD n(x) (n ∈ Z+\D). (3.30)

Now that HD has the lowest energy level μ:

μ
def= min{n |n ∈ Z+\D}, (3.31)

with the groundstate wavefunction φ̄μ(x)

φ̄μ(x) def= φD μ(x) ≡ φd1 ··· d� μ(x). (3.32)

Then the Hamiltonian system can be expressed simply in terms of the groundstate
wavefunction φ̄μ(x), which we will denote by new symbols H̄, Ā, etc.:

H̄ ≡ HD
def= Ā†Ā + Eμ, Āφ̄μ(x) = 0, (3.33)

Ā ≡ AD μ
def= i

(
e

γ
2
p
√
V̄ ∗(x) − e−

γ
2
p
√
V̄ (x)

)
,
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Ā† ≡ A†
D μ

def= −i
(√

V̄ (x) e
γ
2
p −

√
V̄ ∗(x) e−

γ
2
p
)
, (3.34)

V̄ (x) ≡ VD μ(x) def=
√
VD(x− iγ2 )V ∗

D(x− iγ2 )
φ̄μ(x− iγ)
φ̄μ(x)

, (3.35)

H̄φ̄n(x) = Enφ̄n(x), φ̄n(x) ≡ φD n(x) (n ∈ Z+\D). (3.36)

The discrete counterpart of the determinant formulas (2.41)–(2.42) requires a
deformation of the Wronskian, the Casorati determinant, which has a good limiting
property:

Wγ [f1, . . . , fn](x) def= i
1
2
n(n−1) det

(
fk(x+ in+1−2j

2 γ)
)

1≤j,k≤n
, (3.37)

lim
γ→0

γ−
1
2
n(n−1)Wγ [f1, f2, . . . , fn](x) = W [f1, f2, . . . , fn](x), (3.38)

(for n = 0, we set Wγ [·](x) = 1.). It satisfies

Wγ [f1, . . . , fn]∗(x) = Wγ [f∗1 , . . . , f
∗
n](x), (3.39)

Wγ [gf1, gf2, . . . , gfn] =
n∏

j=1

g(x+ in+1−2j
2 γ) · Wγ [f1, f2, . . . , fn](x), (3.40)

Wγ

[
Wγ [f1, f2, . . . , fn, g],Wγ [f1, f2, . . . , fn, h]

]
(x)

= Wγ [f1, f2, . . . , fn](x) Wγ [f1, f2, . . . , fn, g, h](x) (n ≥ 0). (3.41)

By using the Casorati determinant we obtain (� ≥ 0)

φ̄n(x) ≡ φd1 ... d� n(x) =

√√√√ �∏
j=1

Vd1 ... dj
(x+ i �+1−j

2 γ)
Wγ [φd1 , . . . , φd�

, φn](x)
Wγ [φd1 , . . . , φd�

](x− iγ2 )
,

(3.42)

V̄ (x) ≡ Vd1 ... d� μ(x) =
√
V (x− i �

2γ)V
∗(x− i �+2

2 γ)

× Wγ [φd1 , . . . , φd�
](x+ iγ2 )

Wγ [φd1 , . . . , φd�
](x− iγ2 )

Wγ [φd1 , . . . , φd�
, φμ](x− iγ)

Wγ [φd1 , . . . , φd�
, φμ](x)

. (3.43)

We also have (� ≥ 0)

�∏
j=1

Vd1 ... dj
(x+ i �+1−j

2 γ)

=

√√√√�−1∏
j=0

V (x+ i �−2j
2 γ)V ∗(x− i �−2j

2 γ)
Wγ [φd1 , . . . , φd�

](x− iγ2 )
Wγ [φd1 , . . . , φd�

](x+ iγ2 )
. (3.44)

Therefore Vd1 ... d�
(x) and φd1,... d� n(x) are symmetric with respect to d1, . . . , d�, and

Hd1 ... d�
is independent of the order of {dj}.

Let us state the discrete QM analogue of Adler’s theorem; If the set of deleted
energy levels D = {d1, . . . , d�} satisfy the condition (2.8), the modified Hamiltonian
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is given by H̄ = Hd1 ... d�
= Ā†Ā+ Eμ with the potential function given by (3.43) and

its eigenfunctions are given by (3.42). The discrete QM version of Crum’s theorem34)

corresponds to the choice {d1, . . . , d�} = {0, 1, . . . , �− 1} and the new groundstate is
at the level μ = � and there is no vacant energy level above that. Due to the lack of
generic theorems in the theory of difference equations, the hermiticity of the resulting
Hamiltonian H̄ and the non-singularity of the eigenfunctions φ̄n(x) cannot be proved
categorically for the discrete QM, even when the condition (2.8) is satisfied by the
deleted levels. See Appendix A of 25) for a detailed discussion of the self-adjointness
of the Hamiltonians in discrete QM. It should be stressed that in most practical
cases, in particular, in the cases of polynomial eigenfunctions, the hermiticity of the
Hamiltonian H̄ and non-singularity of the eigenfunctions {φ̄n(x)} are satisfied.

3.2. Polynomial eigenfunctions

In this subsection we consider the typical case of shape invariant systems in
which the eigenfunctions consist of the orthogonal polynomials {Pn}:

φn(x) = φ0(x)Pn(η(x)), Aφ0(x) = 0, (3.45)

in which η(x) is called the sinusoidal coordinate [see (B.9)]. The groundstate wave-
function φ0(x) provides the orthogonality weight function∫ x2

x1

φ0(x)2 Pn(η(x))Pm(η(x))dx = hnδnm, n, m ∈ Z+. (3.46)

The difference equation for {Pn} looks much simpler than the Schrödinger equation
(3.5):

V (x)
(
Pn(η(x− iγ)) − Pn(η(x))

)
+ V ∗(x)

(
Pn(η(x+ iγ)) − Pn(η(x))

)
= EnPn(η(x)).

(3.47)

For the explicit forms of V (x) [see for example (B.10)], these are the equations that
determine the hypergeometric orthogonal polynomials, e.g. the Meixner-Pollaczek
(MP), the continuous Hahn (cH), the Wilson (W) and the Askey-Wilson (AW) poly-
nomials. In fact, the above form of the difference equation (3.47) is independent of
the fact that Pn is a polynomial or not. It is obtained simply by the similarity
transformation of the Hamiltonian (3.1) in terms of the groundstate wavefunction
φ0(x):

H̃ def= φ0(x)−1 ◦ H ◦ φ0(x) = V (x) eγp + V ∗(x) e−γp − V (x) − V ∗(x). (3.48)

In the case of polynomial eigenfunctions, the modification of Crum’s theorem
produces the eigenfunctions {φ̄n(x)} which again consist of polynomials in η(x). By
using the property (3.40) we have

Wγ [φ1, . . . , φ�](x) =
�∏

j=1

φ0

(
x+ i �+1−2j

2 γ
) · Wγ [P̌1, . . . , P̌�](x), (3.49)

Wγ [φ1, . . . , φ�, φn](x) =
�+1∏
j=1

φ0

(
x+ i �+2−2j

2 γ
) · Wγ [P̌1, . . . , P̌�, P̌n](x), (3.50)
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where P̌n(x) def= Pn(η(x)). Corresponding to the formula (2.48) in the ordinary QM,
we have

f̌j(x)
def= fj(η(x)), fj(η): polynomial in η,

Wγ [f̌1, f̌2, . . . , f̌n](x) = ϕn(x) × (
polynomial in η(x)

)
, (3.51)

in which ϕn(x) is defined in (B.39) (and ϕ(x) is defined in (B.20)).
These simply mean that the resulting eigenfunctions {φ̄n(x)} (3.42) are again

polynomials in η(x):

φ̄n(x) = ψ̄(x)Pn(η(x)), (3.52)

ψ̄(x) def=

√√√√ �∏
j=1

Vd1 ... dj
(x+ i �+1−j

2 γ)
ϕ�+1(x)
ϕ�(x− iγ2 )

φ0(x+ i �
2γ)

Q(η(x− iγ2 ))

=

√√√√�−1∏
k=0

ϕ(x− ik2γ)
√
V (x+ i �−2k

2 γ) · φ0(x− i �
2γ)

Q(η(x− iγ2 ))

×
√√√√�−1∏

k=0

ϕ(x+ ik2γ)
√
V ∗(x− i �−2k

2 γ) · φ0(x+ i �
2γ)

Q(η(x+ iγ2 ))
, (3.53)

in which Pn(η(x)) and Q(η(x)) are certain polynomials in η(x) defined by

Wγ [P̌d1 , . . . , P̌d�
, P̌n] = ϕ�+1(x) ×Pn(η(x)), Wγ [P̌d1, . . . , P̌d�

] = ϕ�(x) ×Q(η(x)).
(3.54)

The polynomials {Pn} form a complete basis of the Hilbert space and satisfy the
orthogonality relations∫ x2

x1

ψ̄(x)2 Pn(η(x))Pm(η(x))dx = h̄nδnm, n, m ∈ Z+\D. (3.55)

Let us emphasise that n is the level of the original eigenfunction and not the degree in
η. The degree of Pn(η) depends on the set D, and it can be calculated explicitly from
(3.54). By construction � members are missing: Pd1 = Pd2 = · · · = Pd�

≡ 0. There-
fore these polynomials cannot be called exceptional orthogonal polynomials.9),12),15)

§4. Summary and comments

Theory of exactly solvable discrete QM is less developed than that of the ordinary
QM. Up to date, the known exactly solvable discrete quantum systems are all shape
invariant24),25) and in one to one correspondence with the known (q)-hypergeometric
orthogonal polynomials.26)–29) Small progress was made in this direction31) by in-
troducing several new sinusoidal coordinates for the construction of new types of
exactly solvable Hamiltonians. Roughly speaking, this approach attempts to create
the discrete analogues of various Morse type potentials and the soliton potentials. In
this paper we pursue another direction; to construct infinitely many exactly solvable
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quantum systems by deforming the known exactly solvable one. In the ordinary
QM, the modification of Crum’s theorem1) due to Krein-Adler18) allows to produce
an essentially iso-spectral Hamiltonian by deleting a finite number of energy levels
from the original system. The set of deleted levels must satisfy certain condition
(2.8), but there are infinitely many possible deletions leading to infinitely many ex-
actly solvable systems starting from a known one. The discrete analogue of Adler’s
modification is presented in this paper in parallel with the original version, since the
algebraic structure is common. We also comment on the practical cases when the
eigenfunctions consist of orthogonal polynomials. The eigenfunctions of the result-
ing system also consist of orthogonal polynomials. But certain members of these
polynomials are missing due to the deletion.

Very special and simple examples, in which all the excited states from the first to
the �-th are deleted (see Fig. 2), are presented explicitly in Appendix. As will be com-
mented shortly, these examples were instrumental for the discovery of the infinitely
many shape invariant systems and the corresponding infinitely many exceptional
orthogonal polynomials.12),13) In the ordinary QM, the corresponding prepotential
has a very simple form (A.18):

w�(x; λ) = W(x; λ + �δ) + log
1

ξ�(η(x); λ)
,

to be compared with the prepotential for the Hamiltonian of the �-th exceptional
orthogonal polynomial (14) and (28) of 12):

w�(x; λ) = W(x; λ + �δ) + log
ξ�(η(x); λ + δ)
ξ�(η(x); λ)

. (4.1)

In the discrete QM, the corresponding formula is (B.35)

V�(x; λ) = κ� ξ�(η(x+ iγ2 ); λ)
ξ�(η(x− iγ2 ); λ)

V (x; λ + �δ),

to be compared with the corresponding formula for the Hamiltonian of the �-th
exceptional orthogonal polynomial (30) of 13):

V�(x; λ) =
ξ�(η(x− iγ); λ + δ)
ξ�(η(x); λ + δ)

ξ�(η(x+ iγ2 ); λ)
ξ�(η(x− iγ2 ); λ)

V (x; λ + �δ). (4.2)

The addition (multiplication) of the deforming polynomial with the shifted parame-
ters ξ�(η(x); λ+δ) would achieve the shape invariance. Since the harmonic oscillator
has no shiftable parameter, we have ξ�(η(x); λ) = ξ�(η(x); λ+δ). This also ‘explains’
non-existence of exceptional Hermite polynomials. In contrast to the Hermite poly-
nomial, the continuous Hahn polynomial has four real parameters. We can construct
the corresponding exceptional continuous Hahn polynomials with three real parame-
ters, which will be reported elsewhere.

The actual function forms of the deforming polynomial ξ� in Appendix are not
the same as those for the exceptional orthogonal polynomials. For the ordinary QM
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examples, see (A.23) vs (13) and (27) in 12) and for the discrete QM examples, see
(B.41) vs (64) and (78) in 13). But they share some interesting features.

Before closing this section, let us remark that the present modification of Crum’s
theorem is applicable to the Hamiltonian systems of various species of the infinite
family of exceptional orthogonal polynomials,12),13),15) as well as to those of the
classical orthogonal polynomials including the Wilson and the Askey-Wilson poly-
nomials.
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Appendix

In Appendix we present very special and simple examples of an application of Adler’s
theorem, in which the eigenstates φ1, φ2, . . . , φ� are deleted. In other words, D =
{d1, d2, . . . , d�}= {1, 2, . . . , �}, that is, the modified groundstate level is the same as
that of the original theory μ = 0. The situation is illustrated in Fig. 2, which should
be compared with Fig. 1, depicting the generic case discussed in §§2.1 and 3.1.

The black circles denote the energy levels, whereas the white circles denote
deleted energy levels. We write H̄ = H12 ... �, φ̄n = φ12 ... � n, Ā = A12 ... �, V̄ =
V12 ... � etc. as H�, φ�,n, A�, V� etc. This Hamiltonian H� = A†

�A� is non-singular
for even � but may be singular for odd �. Since algebraic formulas such as the

Fig. 1. Generic case. Fig. 2. Special case.
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Wronskians and Casoratians are valid for even and odd �, we present various formulas
without restricting to the even �. The original systems are shape invariant but
the (φ1, . . . , φ�)-deleted systems H� are not. The rightmost vertical line in Fig. 2
corresponds to the Hamiltonian system H′

� = A�A†
�, which is shape invariant and it

is obtained from H� by one more step of Crum’s method. This study helped us to
find the new shape invariant systems and exceptional orthogonal polynomials.12),13)

Appendix A
The Ordinary QM

Here we apply Adler’s theorem to the harmonic oscillator, the radial oscillator
and the Darboux-Pöschl-Teller potential, whose eigenfunctions are described by the
classical orthogonal polynomials. That is, the Hermite, Laguerre and Jacobi poly-
nomials, to be abbreviated as H, L and J, respectively. These original systems are
shape invariant, meaning a very special form of parameter dependence, (A.8), (A.9).
Here we display the parameter dependence explicitly by λ, which represents the set
of the parameters.

A.1. The original systems

Here we summarise various properties of the original Hamiltonian systems to be
compared with the specially modified systems to be presented in A.2. Let us start
with the Hamiltonians, Schrödinger equations and eigenfunctions (x1 < x < x2):

H(λ) def= A(λ)†A(λ), A(λ) def=
d

dx
− dW(x; λ)

dx
, A(λ)† = − d

dx
− dW(x; λ)

dx
, (A.1)

H(λ)φn(x; λ) = En(λ)φn(x; λ) (n = 0, 1, 2, . . .), (A.2)

φn(x; λ) = φ0(x; λ)Pn(η(x); λ), φ0(x; λ) = eW(x;–). (A.3)

Here η(x) is the sinusoidal coordinate, W(x; λ) is the prepotential and En(λ) is the
n-th energy eigenvalue:

η(x) def=

⎧⎨⎩
x, x1 = −∞, x2 = ∞, : H
x2, x1 = 0, x2 = ∞, : L
cos 2x, x1 = 0, x2 = π

2 , : J
, λ

def=

⎧⎨⎩
none : H
g, g > 0 : L
(g, h), g, h > 0 : J

,

(A.4)

W(x; λ) def=

⎧⎨⎩
−1

2x
2 : H

−1
2x

2 + g log x : L
g log sinx+ h log cosx : J

, En(λ) def=

⎧⎨⎩
2n : H
4n : L
4n(n+ g + h) : J

.

(A.5)

The eigenfunction consists of an orthogonal polynomial Pn(η; λ), a polynomial of
degree n in η, (Pn(η; λ) = 0 for n < 0):

Pn(η; λ) def= cn(λ)Pmonic
n (η; λ), (A.6)
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Pn(η; λ) def=

⎧⎪⎪⎨⎪⎪⎩
Hn(η) : H

L
(g− 1

2
)

n (η) : L

P
(g− 1

2
,h− 1

2
)

n (η) : J

, cn(λ) def=

⎧⎪⎨⎪⎩
2n : H
(−1)n

n! : L
(n+g+h)n

2nn! : J
, (A.7)

in which (a)n is the Pochhammer symbol. Shape invariance means

A(λ)A(λ)† = A(λ + δ)†A(λ + δ) + E1(λ), δ
def=

⎧⎨⎩
none : H
1 : L
(1, 1) : J

, (A.8)

or equivalently,(dW(x; λ)
dx

)2 − d2W(x; λ)
dx2

=
(dW(x; λ + δ)

dx

)2
+
d2W(x; λ + δ)

dx2
+ E1(λ). (A.9)

The action of A(λ) and A(λ)† on the eigenfunction is:

A(λ)φn(x; λ) = fn(λ)φn−1

(
x; λ + δ

)
, A(λ)†φn−1

(
x; λ + δ

)
= bn−1(λ)φn(x; λ).

(A.10)
Here the coefficients fn(λ) and bn−1(λ) are the factors of En(λ):

fn(λ) def=

⎧⎨⎩
2n : H
−2 : L
−2(n+ g + h) : J

, bn−1(λ) def=
{

1 : H
−2n : L, J , (A.11)

En(λ) = fn(λ)bn−1(λ).

The forward and backward shift operators, F(λ) and B(λ), are defined by:

F(λ) def= φ0(x; λ + δ)−1 ◦ A(λ) ◦ φ0(x; λ) =
φ0(x; λ)

φ0(x; λ + δ)
d

dx
, (A.12)

B(λ) def= φ0(x; λ)−1 ◦ A(λ)† ◦ φ0(x; λ + δ)

= −φ0(x; λ + δ)
φ0(x; λ)

( d

dx
+ ∂x

(W(x; λ) + W(x; λ + δ)
))
, (A.13)

and their action on the polynomial is:

F(λ)Pn(η(x); λ) = fn(λ)Pn−1(η(x); λ + δ), (A.14)
B(λ)Pn−1(η(x); λ + δ) = bn−1(λ)Pn(η(x); λ). (A.15)

Note that F(λ) and B(λ) can also be expressed in terms of η only.16) The orthogo-
nality reads ∫ x2

x1

φ0(x; λ)2 Pn(η(x); λ)Pm(η(x); λ)dx = hn(λ)δnm, (A.16)

hn(λ) def=

⎧⎪⎪⎨⎪⎪⎩
2nn!

√
π : H

1
2 n!Γ (n+ g + 1

2) : L
Γ (n+g+ 1

2
)Γ (n+h+ 1

2
)

2 n!(2n+g+h)Γ (n+g+h) : J

. (A.17)
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A.2. The (φ1, . . . , φ�)-deleted systems

The prepotential of the modified system is obtained from (2.51) up to an additive
constant:

w�(x; λ) def= logφ�,0(x) = W(x; λ + �δ) − log ξ�(η(x); λ). (A.18)

It is a polynomial (ξ�(η(x); λ)) deformation of the shape invariant one W(x; λ+ �δ).
Note that the normalization of ξ� does not affect the Hamiltonian. The explicit
forms of the deforming polynomial ξ�(η; λ) will be given in (A.23). For even �, the
polynomial ξ�(η(x); λ) has no zero in the range of x and the modified Hamiltonian
system is hermitian, which reads:

A�(λ) def=
d

dx
− dw�(x; λ)

dx
, A�(λ)† = − d

dx
− dw�(x; λ)

dx
, (A.19)

H�(λ) def= A�(λ)†A�(λ), (A.20)
H�(λ)φ�,n(x; λ) = En(λ)φ�,n(x; λ) (n = 0, �+ 1, �+ 2, . . .). (A.21)

This system is not shape invariant. As mentioned in §4, the above form of the
deformed prepotential (A.18) is closely related to that of the exceptional Laguerre
and Jacobi polynomials.

A degree � polynomial in η, ξ�(η; λ) is defined by

W[P1, . . . , P�](η; λ) def=
�∏

k=1

k! ck(λ) · ξ�(η; λ), (A.22)

and the explicit forms are:

ξ�(η; λ) =

⎧⎪⎪⎨⎪⎪⎩
1

2��! i�
H�(iη) : H

L
(−g−�− 1

2
)

� (−η) : L
(−2)�

(g+h+1)�
P

(−g−�− 1
2
,−h−�− 1

2
)

� (η) : J

. (A.23)

The eigenfunctions are

φ�,0(x; λ) def= ew�(x;–) =
φ0(x; λ + �δ)
ξ�

(
η(x); λ

) , φ�,n(x; λ) = φ�,0(x; λ)P�,n

(
η(x); λ

)
, (A.24)

W[P1, . . . , P�, Pn](η; λ) def=
�∏

k=1

k! ck(λ) · (−1)�P�,n(η; λ)
(⇒ P�,0(η; λ) = 1

)
. (A.25)

Note that P�,n(η; λ) is a polynomial of degree n in η and P0,n(η; λ) = Pn(η; λ) and
P�,n(η; λ)= 0 for 1 ≤ n ≤ �. We set P�,n(η; λ) = 0 for n < 0. For even �, the
eigenpolynomial P�,n(η(x); λ) (n ≥ � + 1) has n − � zeros in the range of x. The
operators A�(λ) and A�(λ)† connect the modified system H�(λ) = A�(λ)†A�(λ) to
the shape invariant system H′

�(λ) = A�(λ)A�(λ)† with the parameters λ + (�+ 1)δ,
which is denoted by the rightmost vertical line in Fig. 2. The n-th level (n ≥ �+ 1)
of the modified system H� is iso-spectral with the n− �− 1-th level of the new shape
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invariant system H′
�:

A�(λ)φ�,n(x; λ) = f�,n(λ)φn−�−1

(
x; λ + (�+ 1)δ

)
, (A.26)

A�(λ)†φn−�−1

(
x; λ + (�+ 1)δ

)
= b�,n−1(λ)φ�,n(x; λ). (A.27)

Here f�,n(λ) and b�,n−1(λ) are defined by

f�,n(λ) def= fn(λ) ×A,

b�,n−1(λ) def= bn−1(λ) ×A−1,
A =

⎧⎨⎩
(−2)�(n− �)� : H
1 : L
(−2)−�(n+ g + h+ 1)� : J

, (A.28)

and they factorise En(λ), En(λ) = f�,n(λ)b�,n−1(λ). The forward and backward shift
operators F�(λ) and B�(λ), which act on the polynomial eigenfunctions, are defined
by:

F�(λ) def= φ0

(
x; λ + (�+ 1)δ

)−1 ◦ A�(λ) ◦ φ�,0(x; λ)

=
φ0(x; λ + �δ)

φ0(x; λ + (�+ 1)δ)
1

ξ�(η(x); λ)
d

dx
, (A.29)

B�(λ) def= φ�,0(x; λ)−1 ◦ A�(λ)† ◦ φ0

(
x; λ + (�+ 1)δ

)
= −φ0(x; λ + (�+ 1)δ)

φ0(x; λ + �δ)
ξ�(η(x); λ)

×
( d

dx
+ ∂x

(W(x; λ + �δ) + W(x; λ + (�+ 1)δ)
) − ∂xξ�(η(x); λ)

ξ�(η(x); λ)

)
.

(A.30)

Their action on the polynomials is (n ≥ �+ 1):

F�(λ)P�,n(η(x); λ) = f�,n(λ)Pn−�−1

(
η(x); λ + (�+ 1)δ

)
, (A.31)

B�(λ)Pn−�−1

(
η(x); λ + (�+ 1)δ

)
= b�,n−1(λ)P�,n(η(x); λ). (A.32)

Note that F�(λ) and B�(λ) can be expressed in terms of η.16) For n ≥ �+1, the above
relation (A.32) provides a simple formula of the modified eigenpolynomial P�,n(η; λ)
in terms of ξ�(η; λ) and the original eigenpolynomial Pn(η; λ):

b�,n−1(λ)fn−�(λ + �δ)P�,n(η; λ)
= En−�(λ + �δ)ξ�(η; λ)Pn−�(η; λ + �δ) + 4c2(η)∂ηξ�(η; λ) ∂ηPn−�(η; λ + �δ),

(A.33)

in which the coefficient c2(η) is given by

c2(η)
def=

⎧⎨⎩
1
4 : H
η : L
1 − η2 : J

. (A.34)

The orthogonality relation for even � is:∫ x2

x1

φ�,0(x; λ)2 P�,n(η(x); λ)P�,m(η(x); λ)dx = h�,n(λ)δnm, (A.35)
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h�,n(λ) def= (n− �)� hn(λ) ×
⎧⎨⎩

2� : H
1 : L
4−�(n+ g + h+ 1)� : J

, (n = 0, n ≥ �+ 1).

(A.36)

A few historical remarks are in order. Dubov et al.17) derived in 1992 an exactly
solvable Hamiltonian system of a deformed harmonic oscillator, which corresponds
to the � = 2 case of this appendix. Their paper, written about two years before
Adler’s, relied on rather heuristic arguments. Recently Quesne11) derived exactly
solvable and non-shape invariant systems of deformed radial oscillator and deformed
DPT potential, both are called type III. These results again correspond to the � = 2
cases of the radial oscillator and the DPT potential of this appendix.

Appendix B
The Discrete QM

Here we apply Adler’s theorem to the shape invariant, therefore solvable, systems
whose eigenfunctions are described by the orthogonal polynomials; the Meixner-
Pollaczek (we set the parameter φ = π

2 ), continuous Hahn, Wilson and Askey-Wilson
polynomials,29) to be abbreviated as MP, cH, W and AW, respectively. See 22) and
25) for the discrete QM treatment of these polynomials.

B.1. The original systems

Here we summarise various properties of the original Hamiltonian systems to be
compared with the specially modified systems to be presented in B.2. Let us start
with the Hamiltonians, Schrödinger equations and eigenfunctions (x1 < x < x2):

A(λ) def= i
(
e

γ
2
p
√
V ∗(x; λ) − e−

γ
2
p
√
V (x; λ)

)
,

A(λ)† def= −i(√V (x; λ) e
γ
2
p −

√
V ∗(x; λ) e−

γ
2
p
)
, (B.1)

H(λ) def= A(λ)†A(λ), (B.2)
H(λ)φn(x; λ) = En(λ)φn(x; λ) (n = 0, 1, 2, . . .), (B.3)
φn(x; λ) = φ0(x; λ)Pn(η(x); λ). (B.4)

The set of parameters λ are

MP : λ
def= a, a > 0, (B.5)

cH : λ
def= (a1, a2), Re ai > 0 (i = 1, 2), (B.6)

W : λ
def= (a1, a2, a3, a4), Re ai > 0 (i = 1, . . . , 4),

{a∗1, a∗2, a∗3, a∗4} = {a1, a2, a3, a4} (as a set), (B.7)

AW : q– def= (a1, a2, a3, a4), |ai| < 1, (i = 1, . . . , 4), 0 < q < 1,
{a∗1, a∗2, a∗3, a∗4} = {a1, a2, a3, a4} (as a set), (B.8)
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where q(λ1,λ2,...) def= (qλ1 , qλ2 , . . .). The the sinusoidal coordinate η(x) is,

η(x) def=

⎧⎨⎩
x, x1 = −∞, x2 = ∞, γ = 1 : MP, cH
x2, x1 = 0, x2 = ∞, γ = 1 : W
cosx, x1 = 0, x2 = π, γ = log q : AW

. (B.9)

The potential function V (x; λ) and energy eigenvalue En(λ) are

V (x; λ) def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a+ ix : MP
(a1 + ix)(a2 + ix) : cH(
2ix(2ix+ 1)

)−1 ∏4
j=1(aj + ix) : W(

(1 − e2ix)(1 − qe2ix)
)−1 ∏4

j=1(1 − aje
ix) : AW

, (B.10)

En(λ) def=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2n : MP

n(n+ b1 − 1), b1
def= a1 + a2 + a∗1 + a∗2 : cH

n(n+ b1 − 1), b1
def= a1 + a2 + a3 + a4 : W

(q−n − 1)(1 − b4q
n−1), b4

def= a1a2a3a4 : AW

. (B.11)

The eigenfunction is described by the orthogonal polynomial Pn(η; λ), a polynomial
of degree n in η:

Pn(η; λ) def= cn(λ)Pmonic
n (η; λ), (B.12)

Pn(η; λ) def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P

(a)
n (η; π

2 ) : MP
pn(η; a1, a2, a

∗
1, a

∗
2) : cH

Wn(η; a1, a2, a3, a4) : W
pn(η; a1, a2, a3, a4|q) : AW

, cn(λ) def=

⎧⎪⎪⎨⎪⎪⎩
1
n! 2n : MP
1
n! (n+ b1 − 1)n : cH
(−1)n(n+ b1 − 1)n : W
2n(b4qn−1 ; q)n : AW

,

(B.13)

in which (a; q)n is the q-Pochhammer symbol. We set Pn(η; λ) = 0 for n < 0. The
shape invariance relations involve one more parameter κ:

A(λ)A(λ)† = κA(λ + δ)†A(λ + δ) + E1(λ), (B.14)

δ
def=

⎧⎨⎩
1
2 : MP
(1
2 ,

1
2) : cH

(1
2 ,

1
2 ,

1
2 ,

1
2) : W,AW

, κ
def=

{
1 : MP, cH, W
q−1 : AW , (B.15)

or equivalently,

V (x− iγ2 ; λ)V ∗(x− iγ2 ; λ) = κ2 V (x; λ + δ)V ∗(x− iγ; λ + δ), (B.16)
V (x+ iγ2 ; λ) + V ∗(x− iγ2 ; λ) = κ

(
V (x; λ + δ) + V ∗(x; λ + δ)

) − E1(λ). (B.17)

The groundstate wavefunction φ0(x; λ) is determined by√
V ∗(x− iγ2 ; λ)φ0(x− iγ2 ; λ) =

√
V (x+ iγ2 ; λ)φ0(x+ iγ2 ; λ), (B.18)
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and its explicit forms are:

φ0(x; λ) def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
Γ (a+ ix)Γ (a− ix) : MP√
Γ (a1 + ix)Γ (a2 + ix)Γ (a∗1 − ix)Γ (a∗2 − ix) : cH√
(Γ (2ix)Γ (−2ix))−1

∏4
j=1 Γ (aj + ix)Γ (aj − ix) : W√

(e2ix ; q)∞(e−2ix ; q)∞
∏4

j=1(ajeix ; q)−1∞ (aje−ix ; q)−1∞ : AW

.

(B.19)
We introduce an auxiliary function ϕ(x) with the properties:

ϕ(x) def=

⎧⎨⎩
1 : MP, cH
2x : W
2 sinx : AW

, (B.20)

φ0(x; λ + δ) = ϕ(x)
√
V (x+ iγ2 ; λ)φ0(x+ iγ2 ; λ), (B.21)

V (x; λ + δ) = κ−1ϕ(x− iγ)
ϕ(x)

V (x− iγ2 ; λ). (B.22)

The sinusoidal coordinate η(x) has the following properties:

η(x− ikγ
2 ) − η(x+ ikγ

2 ) = −iϕ(x) ×
{
k : MP, cH, W
sinh −kγ

2 : AW
, (B.23)

η(x− ikγ
2 ) + η(x+ ikγ

2 ) =

⎧⎨⎩
2η(x) : MP, cH
2η(x) − 1

2k
2 : W

2η(x) cosh kγ
2 : AW

, (B.24)

η(x− ikγ
2 )η(x+ ikγ

2 ) =

⎧⎪⎨⎪⎩
η(x)2 + 1

4k
2 : MP, cH(

η(x) + 1
4k

2
)2 : W

η(x)2 + sinh2 kγ
2 : AW

. (B.25)

These mean that for a polynomial P (η) in η, iϕ(x)−1
(
P (η(x− ikγ

2 ))−P (η(x+ ikγ
2 ))

)
is another polynomial in η(x). The action of A(λ) and A(λ)† on the eigenfunctions
is

A(λ)φn(x; λ) = fn(λ)φn−1

(
x; λ + δ

)
, A(λ)†φn−1

(
x; λ + δ

)
= bn−1(λ)φn(x; λ).

(B.26)
The factors of the energy eigenvalue, fn(λ) and bn−1(λ), En(λ) = fn(λ)bn−1(λ), are
given by

fn(λ) def=

⎧⎪⎪⎨⎪⎪⎩
2 : MP
n+ b1 − 1 : cH
−n(n+ b1 − 1) : W
q

n
2 (q−n − 1)(1 − b4q

n−1) : AW

, bn−1(λ) def=

⎧⎨⎩
n : MP, cH
−1 : W
q−

n
2 : AW

.

(B.27)
The forward and backward shift operators F(λ) and B(λ) are defined by

F(λ) def= φ0(x; λ + δ)−1 ◦ A(λ) ◦ φ0(x; λ) = iϕ(x)−1(e
γ
2
p − e−

γ
2
p), (B.28)
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B(λ) def= φ0(x; λ)−1 ◦ A(λ)† ◦ φ0(x; λ + δ) = −i(V (x; λ)e
γ
2
p − V ∗(x; λ)e−

γ
2
p
)
ϕ(x),
(B.29)

and their action on the polynomials is

F(λ)Pn(η(x); λ) = fn(λ)Pn−1(η(x); λ + δ), (B.30)
B(λ)Pn−1(η(x); λ + δ) = bn−1(λ)Pn(η(x); λ). (B.31)

The orthogonality relation is∫ x2

x1

φ0(x; λ)2 Pn(η(x); λ)Pm(η(x); λ)dx = hn(λ)δnm, (B.32)

hn(λ) def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2π Γ (n+ 2a)

(
n! 22a

)−1 : MP
2π

∏2
i,j=1 Γ (n+ ai + a∗j ) ·

(
n!(2n+ b1 − 1)Γ (n+ b1 − 1)

)−1 : cH
2πn! (n+ b1 − 1)n

∏
1≤i<j≤4 Γ (n+ ai + aj) · Γ (2n+ b1)−1 : W

2π(b4qn−1; q)n(b4q2n; q)∞(qn+1; q)−1∞
∏

1≤i<j≤4(aiajq
n; q)−1∞ : AW

.

(B.33)

B.2. The (φ1, . . . , φ�)-deleted systems

The potential function, the Hamiltonian and the Schrödinger equation of the
modified system are:

V�(x; λ) def=
ϕ(x− i �+1

2 γ)ϕ(x− i �
2γ)

ϕ(x)ϕ(x− iγ2 )
ξ�(η(x+ iγ2 ); λ)
ξ�(η(x− iγ2 ); λ)

V (x− i �
2γ; λ) (B.34)

= κ� ξ�(η(x+ iγ2 ); λ)
ξ�(η(x− iγ2 ); λ)

V (x; λ + �δ), (B.35)

A�(λ) def= i
(
e

γ
2
p
√
V ∗

� (x; λ) − e−
γ
2
p
√
V�(x; λ)

)
,

A�(λ)† def= −i(√V�(x; λ) e
γ
2
p −

√
V ∗

� (x; λ) e−
γ
2
p
)
, (B.36)

H�(λ) def= A�(λ)†A�(λ), (B.37)
H�(λ)φ�,n(x; λ) = En(λ)φ�,n(x; λ) (n = 0, �+ 1, �+ 2, . . .). (B.38)

The explicit forms of the deforming polynomial ξ�(η; λ) will be given in (B.41). For
even �, ξ�(η(x); λ) has no zero in the rectangular domain in the complex x plane,
x1 ≤ Rex ≤ x2, |Imx| ≤ 1

2 |γ|. Note that the normalization of ξ� does not affect H�.
This system is not shape invariant. The second line of the expression for V�(x; λ),
(B.35), is obtained from the first line (B.34) by repeated use of the formula (B.22)
of the auxiliary function ϕ. As mentioned in §4, this form of the deformed potential
function (B.35) is closely related to that of the exceptional Wilson and Askey-Wilson
polynomials.

It is convenient to introduce an auxiliary function ϕ�(x):

ϕ�(x)
def= ϕ(x)[

�
2
]
�−2∏
k=1

(
ϕ(x− ik2γ)ϕ(x+ ik2γ)

)[ �−k
2

]
, (B.39)
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where [x] denotes the greatest integer not exceeding x. Note that [ �
2 ]+2

∑�−2
k=1[

�−k
2 ] =

1
2�(�− 1). The deforming polynomial ξ�(η; λ) is defined by

Wγ [P̌1, . . . , P̌�](x; λ)
(
P̌n(x; λ) def= Pn(η(x); λ)

)
def=

�∏
k=1

ck(λ) · ϕ�(x)ξ�(η(x); λ) ×
{ ∏�

k=1 k! : MP, cH, W∏�
k=1

∏k
j=1 sinh −jγ

2 : AW
. (B.40)

As in the ordinary QM cases (A.23), it is expressed in terms of the polynomial P� of
the original system with shifted parameters:

ξ�(η; λ) =
P�(η;−λ∗ − (�− 1)δ)
c�(−λ∗ − (�− 1)δ)

×
{

(�!)−1 : MP, cH, W
(
∏�

j=1 sinh −jγ
2 )−1 : AW

. (B.41)

Note that Pn(η; λ∗) = Pn(η; λ) and cn(λ∗) = cn(λ) for the MP, W and AW cases.
The eigenfunctions are

φ�,0(x; λ) def=
(−1)�κ

1
4
�(�−1)φ0(x; λ + �δ)√

ξ�(η(x− iγ2 ); λ)ξ�(η(x+ iγ2 ); λ)
, φ�,n(x; λ) = φ�,0(x; λ)P�,n

(
η(x); λ

)
,

(B.42)

Wγ [P̌1, . . . , P̌�, P̌n](x; λ) def=
�∏

k=1

ck(λ) · ϕ�+1(x)(−1)�P�,n(η(x); λ)

×
{ ∏�

k=1 k! : MP, cH, W∏�
k=1

∏k
j=1 sinh −jγ

2 : AW
(⇒ P�,0(η; λ) = 1

)
. (B.43)

For even �, P�,n(η(x); λ) (n ≥ � + 1) has n − � zeros in the range of x. Note that
P�,n(η; λ) is a polynomial of degree n in η and P0,n(η; λ) = Pn(η; λ) and P�,n(η; λ) =
0 for 1 ≤ n ≤ �. We set P�,n(η; λ) = 0 for n < 0. The operators A�(λ) and A�(λ)†

connect the modified system H�(λ) = A�(λ)†A�(λ) to the shape invariant system
H′

�(λ) = A�(λ)A�(λ)† with the parameters λ + (� + 1)δ, which is denoted by the
rightmost vertical line in Fig. 2. The n-th level (n ≥ � + 1) of the modified system
H� is iso-spectral with the n− �− 1-th level of the new shape invariant system H′

�:

A�(λ)φ�,n(x; λ) = f�,n(λ)φn−�−1

(
x; λ + (�+ 1)δ

)
, (B.44)

A�(λ)†φn−�−1

(
x; λ + (�+ 1)δ

)
= b�,n−1(λ)φ�,n(x; λ). (B.45)

Here, f�,n(λ) and b�,n−1(λ) are the factors of the energy eigenvalue, En(λ) = f�,n(λ)×
b�,n−1(λ), and are defined by

f�,n(λ) def= fn(λ) ×A,

b�,n−1(λ) def= bn−1(λ) ×A−1,
A =

⎧⎪⎪⎨⎪⎪⎩
2� : MP
(b1 + n)� : cH
(−1)�(n− �)�(b1 + n)� : W
q−

1
2
�n(qn−�; q)�(b4qn; q)� : AW

. (B.46)
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The forward and backward shift operators F�(λ) and B�(λ) which act on the poly-
nomial eigenfunctions, are defined by:

F�(λ) def= φ0

(
x; λ + (�+ 1)δ

)−1 ◦ A�(λ) ◦ φ�,0(x; λ) =
(−1)�κ

1
4
�(�+1)

ϕ(x)ξ�(η(x); λ)
i
(
e

γ
2
p − e−

γ
2
p
)
,

(B.47)

B�(λ) def= φ�,0(x; λ)−1 ◦ A�(λ)† ◦ φ0

(
x; λ + (�+ 1)δ

)
= (−1)�κ−

1
4
�(�−3)(−i)

(
V (x; λ + �δ)ξ�(η(x+ iγ2 ); λ)e

γ
2
p

− V ∗(x; λ + �δ)ξ�(η(x− iγ2 ); λ)e−
γ
2
p
)
ϕ(x), (B.48)

and their action on the polynomials is

F�(λ)P�,n(η(x); λ) = f�,n(λ)Pn−�−1

(
η(x); λ + (�+ 1)δ

)
, (B.49)

B�(λ)Pn−�−1

(
η(x); λ + (�+ 1)δ

)
= b�,n−1(λ)P�,n(η(x); λ). (B.50)

For n ≥ � + 1, the above formula (B.50) provides a simple formula of the modi-
fied eigenpolynomial P�,n(η; λ) in terms of ξ�(η; λ) and the original eigenpolynomial
Pn(η; λ):

(−1)�κ
1
4
�(�−3)b�,n−1(λ)P�,n(η; λ)

= −i
(
V (x; λ + �δ)ξ�(η(x+ iγ2 ); λ)ϕ(x− iγ2 )Pn−�−1(η(x− iγ2 ); λ + (�+ 1)δ)

− V ∗(x; λ + �δ)ξ�(η(x− iγ2 ); λ)ϕ(x+ iγ2 )Pn−�−1(η(x+ iγ2 ); λ + (�+ 1)δ)
)
.

(B.51)

The orthogonality relation for even � is:∫ x2

x1

φ�,0(x; λ)2 P�,n(η(x); λ)P�,m(η(x); λ)dx = h�,n(λ)δnm, (B.52)

h�,n(λ) def= hn(λ) ×
⎧⎨⎩

(n− �)�2� : MP
(n− �)�(b1 + n)� : cH,W
q−�n(qn−�; q)�(b4qn; q)� : AW

, (n = 0, n ≥ �+ 1).

(B.53)
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9) D. Gómez-Ullate, N. Kamran and R. Milson, J. Approx. Theory 162 (2010), 987,
arXiv:0805.3376; J. Math. Anal. Appl. 359 (2009), 352, arXiv:0807.3939; arXiv:1002.2666.

10) C. Quesne, J. of Phys. A 41 (2008), 392001, arXiv:0807.4087.
B. Bagchi, C. Quesne and R. Roychoudhury, Pramana J. Phys. 73 (2009), 337,
arXiv:0812.1488.

11) C. Quesne, SIGMA 5 (2009), 084, arXiv:0906.2331.
12) S. Odake and R. Sasaki, Phys. Lett. B 679 (2009), 414, arXiv:0906.0142.
13) S. Odake and R. Sasaki, Phys. Lett. B 682 (2009), 130, arXiv:0909.3668.
14) S. Odake and R. Sasaki, J. Math. Phys. 51 (2010), 053513, arXiv:0911.1585.
15) S. Odake and R. Sasaki, Phys. Lett. B 684 (2010), 173, arXiv:0911.3442.
16) C.-L. Ho, S. Odake and R. Sasaki, arXiv:0912.5447.
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