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Abstract

Multi-indexed orthogonal polynomials describe eigenfunctions of exactly solvable
shape-invariant quantum mechanical systems in one dimension obtained by the method
of virtual states deletion. Multi-indexed orthogonal polynomials are labeled by a set of
degrees of polynomial parts of virtual state wavefunctions. For multi-indexed orthog-
onal polynomials of Laguerre, Jacobi, Wilson and Askey-Wilson types, two different
index sets may give equivalent multi-indexed orthogonal polynomials. We clarify these
equivalences. Multi-indexed orthogonal polynomials with both type I and II indices
are proportional to those of type I indices only (or type II indices only) with shifted
parameters.

1 Introduction

Exactly solvable quantum mechanical systems in one dimension have seen remarkable devel-

opments in recent years [1]–[30]. Important ingredients are new types of orthogonal poly-

nomials; exceptional orthogonal polynomials [1, 3, 23, 25] and its generalization, multi-

indexed orthogonal polynomials [4, 5, 26, 27]. Multi-indexed orthogonal polynomials are

the main parts of eigenfunctions of the shape-invariantly deformed quantum mechanical

systems, which are obtained from the original shape-invariant systems by the method of

virtual states deletion. Multi-index orthogonal polynomials of Laguerre, Jacobi, Wilson,

Askey-Wilson, Racah and q-Racah types have been constructed. They satisfy second order

differential/difference equations and form a complete set. Their degrees start from some

positive integer ℓ and Bochner’s theorem [31] and its generalization are avoided.
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The method of virtual states deletion [5] is a systematic procedure to obtain iso-spectral

exactly solvable quantum mechanical systems from the original exactly solvable systems. It

based on the Darboux-Crum transformation [32, 33] taking virtual state wavefunctions as

seed solutions. The Darboux-Crum transformation in terms of eigenfunctions gives Krein-

Adler transformation [34], by which some eigenstates of the original system are deleted. The

Darboux-Crum transformation in terms of pseudo virtual state wavefunctions [18, 30] gives

a deformed system in which some extra eigenstates are added to the original system. Virtual

and pseudo virtual state wavefunctions are obtained from the eigenfunctions by using the

discrete symmetries of the Hamiltonian [5, 26, 27, 18, 30].

Multi-indexed orthogonal polynomials are labeled by an index set D = {d1, . . . , dM},

where dj is the degree of the polynomial part of the virtual state wavefunction for dele-

tion. For Laguerre, Jacobi, Wilson and Askey-Wilson cases, we have two types of virtual

states, type I and type II [5, 27]. For these cases, it may happen that the deformed system

labeled by an index set D and another deformed system labeled by a different index set

D′ with shifted parameters are equivalent, which means that the corresponding two multi-

indexed orthogonal polynomial labeled by D and D′ (with shifted parameters) are propor-

tional. In [5, 27], we have presented such examples, D = {mI, (m + 1)I, . . . , (m + k − 1)I}

and D′ = {kII, (k + 1)II, . . . , (k + m − 1)II}. A certain extension of this result has been

commented in [18, 30], where Wronskian/Casoratian identities and equivalence of two de-

formed systems are obtained by using the Darboux-Crum transformation in terms of pseudo

virtual state wavefunctions. In this paper we generalize this result. By extending the Wron-

skian/Casoratian identities given in [18, 30], we show that the multi-indexed orthogonal

polynomials with both type I and II indices (2.11) are proportional to those with type I

indices only (4.11) (or type II indices only (4.16)).

This paper is organized as follows. The Darboux-Crum approach to quantum mechanical

systems and the multi-indexed orthogonal polynomials is recapitulated in section 2. After

recalling the Wronskian/Casoratian identities, we extend them in section 3. Section 4 is the

main part of the paper. By using the Wronskian/Casoratian identities obtained in § 3, we

show the equivalence of two deformed systems obtained by the Darboux-Crum transforma-

tion in terms of virtual state wavefunctions; one uses both type I and II virtual states and

the other uses type I only (or type II only) with shifted parameters. This implies that multi-

indexed orthogonal polynomials with both type I and II indices are proportional to those
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with type I indices only (or type II indices only) with shifted parameters. The final section

is for a summary and comments. Various data of quantum mechanical systems described by

Laguerre, Jacobi, Wilson and Askey-Wilson polynomials are presented in Appendix.

2 Quantum Mechanical Systems and Multi-Indexed

Orthogonal Polynomials

Our analysis is based on the quantum mechanical formulation, in which the Schrödinger

equation is a second order differential (oQM, ordinary Quantum Mechanics) or difference

(idQM, discrete Quantum Mechanics with pure imaginary shifts). See, for example, [22]

for the general introduction. Here we recapitulate the Darboux-Crum approach to quantum

mechanical systems with a continuous dynamical variable x and the multi-indexed orthogonal

polynomials [32, 33, 34, 20, 21, 5, 27].

We consider quantum mechanical systems in one dimension (x1 < x < x2),

H = A†A

=

{

p2 + U(x) : oQM
√

V (x) eγp
√

V ∗(x) +
√

V ∗(x) e−γp
√

V (x)− V (x)− V ∗(x) : idQM
, (2.1)

Hφn(x) = Enφn(x) (n ∈ Z≥0), 0 = E0 < E1 < E2 < · · · , (2.2)

(φn, φm)
def
=

∫ x2

x1

dx φn(x)
∗φm(x) = hnδnm (0 < hn <∞), (2.3)

where the momentum operator is p = −i d
dx

and γ is a real number. The explicit forms

of A and A† are given in Appendix. Any solution of the Schrödinger equation Hϕ̃(x) =

Ẽϕ̃(x), which needs not be square integrable, can be used as a seed solution for the Darboux

transformation. The Hamiltonian H can be written as

H = Â†
ϕ̃Âϕ̃ + Ẽ , Âϕ̃ϕ̃(x) = 0, (2.4)

and the Darboux transformation is

H → H′ = Âϕ̃Â
†
ϕ̃ + Ẽ , ψ(x) → ψ′(x) = Âϕ̃ψ(x). (2.5)

Then it is easy to show

Hψ(x) = Eψ(x) ⇒ H′ψ′(x) = Eψ′(x). (2.6)
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Therefore we have H′φ′
n(x) = Enφ

′
n(x). The state corresponding to the used seed solution

is deleted, ϕ̃′(x) = 0. This procedure can be repeated. Problems are (a) the deformed

system H′ is non-singular or not, (b) there exist extra eigenstates other than φ′
n(x) or not.

Under the assumption that the deformed system is non-singular, answer to (b) depends on

the choice of seed solutions. There are three cases: (i)[state deleting] some eigenstates are

deleted, (ii)[state adding] some eigenstates are added, (iii)[iso-spectral] no eigenstates are

deleted or added. We know several types of seed solutions, for example,

ϕ̃(x) = φn(x) : eigenstate ⇒ state deleting,

ϕ̃(x) = φ̃pvs
v (x) : pseudo virtual state ⇒ state adding,

ϕ̃(x) = φ̃vs
v (x) : virtual state ⇒ iso-spectral.

Virtual and pseudo virtual state wavefunctions are obtained from eigenfunctions by using the

discrete symmetry of the Hamiltonian. For their definition, see [5, 27, 18, 30]. After multi-

step Darboux transformations, various quantities are expressed in terms of the Wronskian

W[· · · ] or Casoratian Wγ[· · · ],

W[f1, f2, . . . , fn](x)
def
= det

(dj−1fk(x)

dxj−1

)

1≤j,k≤n
, (2.7)

Wγ[f1, f2, . . . , fn](x)
def
= i

1

2
n(n−1) det

(

fk
(

x
(n)
j

)

)

1≤j,k≤n
, x

(n)
j

def
= x+ i(n+1

2
− j)γ, (2.8)

and W[·](x) = Wγ [·](x) = 1 for n = 0. For example, after s-step (seed solutions ϕ̃1(x), . . . ,

ϕ̃s(x) are used in this order), eigenfunctions φ
[s]
n (x) with energy En are

oQM : φ[s]
n (x) =

W[ϕ̃1, . . . , ϕ̃s, φn](x)

W[ϕ̃1, . . . , ϕ̃s](x)
, (2.9)

idQM : φ[s]
n (x) =





√

∏s−1
j=0 V (x+ i( s

2
− j)γ)V ∗(x− i( s

2
− j)γ)

Wγ [ϕ̃1, . . . , ϕ̃s](x− iγ
2
)Wγ[ϕ̃1, . . . , ϕ̃s](x+ iγ

2
)





1

2

×Wγ [ϕ̃1, . . . , ϕ̃s, φn](x). (2.10)

Multi-step Darboux transformation in terms of eigenfunctions only (say case (A)) gives the

Crum’s theorem [33, 20] and its generalization, Krein-Adler transformation [34, 21]. That

of pseudo virtual state wavefunctions only (say case (B)) leads to Wronskian/Casoratian

identities [18, 30], which implies equivalence of case (B) and case (A) with shifted parameters.

That of virtual state wavefunctions only presents the multi-indexed orthogonal polynomials

[5, 27].
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The quantum systems to be considered have some parameters (coupling constants), de-

noted symbolically by λ = (λ1, λ2, . . .), H = H(λ), En = En(λ), φn(x) = φn(x;λ), Pn(η) =

Pn(η;λ), etc. Various data of quantum mechanical systems described by Laguerre(L), Ja-

cobi(J), Wilson(W) and Askey-Wilson(AW) polynomials are given in Appendix.

The multi-indexed orthogonal polynomials of L, J, W and AW types are the main part of

the eigenfunctions of the deformed systems obtained from the original systems by the method

of virtual states deletion. There are two types of virtual states [5, 27], type I φ̃I
v(x) and type II

φ̃II
v (x) (v ∈ Z≥0), which are derived by the discrete symmetries of the original Hamiltonian

and v denotes the degree of polynomial part. The set of virtual state wavefunctions for

deletion is characterized by their degrees:

D = {d1, . . . , dM} = {dI1, . . . , d
I
MI
, dII1 , . . . , d

II
MII

} (MI,MII ≥ 0, M =MI +MII),

(dIj ∈ Z≥0, mutually distinct ; dIIj ∈ Z≥0, mutually distinct), (2.11)

namely we use seed solutions

φ̃I
dI
1

(x;λ), . . . , φ̃I
dI
MI

(x;λ), φ̃II
dII
1

(x;λ), . . . , φ̃II
dII
MII

(x;λ).

The deformed systems are [5, 27]

HD(λ)φD n(x;λ) = En(λ)φD n(x;λ) (n = 0, 1, . . .). (2.12)

Here the Hamiltonians of the deformed systems are

L, J : HD(λ) = p2 + UD(x;λ), UD(x;λ) =
∂2xφD 0(x;λ)

φD 0(x;λ)
, (2.13)

W,AW : HD(λ) =
√

VD(x;λ) e
γp

√

V ∗
D(x;λ) +

√

V ∗
D(x;λ) e

−γp
√

VD(x;λ)

− VD(x;λ)− V ∗
D(x;λ), (2.14)

VD(x;λ) = V (x;λ[MI,MII])
Ξ̌D(x+ iγ

2
;λ)

Ξ̌D(x− iγ
2
;λ)

Ξ̌D(x− iγ;λ+ δ)

Ξ̌D(x;λ + δ)
, (2.15)

and their eigenfunctions are

φD n(x;λ) ∝ ψD(x;λ)P̌D,n(x;λ), (2.16)

ψD(x;λ) = φ0(x;λ
[MI,MII])×

{

Ξ̌D(x;λ)
−1 : L, J

(

Ξ̌D(x− iγ
2
;λ) Ξ̌D(x+ iγ

2
;λ)

)− 1

2 : W,AW
, (2.17)

P̌D,0(x;λ) ∝ Ξ̌D(x;λ+ δ), (2.18)
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where λ
[MI,MII] is

λ
[MI,MII] def

= λ+MIδ̃
I
+MIIδ̃

II
. (2.19)

The shift δ and twisted shifts δ̃
I
, δ̃

II
are given in Appendix for each polynomial. The de-

nominator polynomial Ξ̌D(x;λ)
def
= ΞD

(

η(x);λ
)

and the multi-indexed orthogonal polynomial

P̌D,n(x;λ)
def
= PD,n

(

η(x);λ
)

are polynomials in η(x) and their degrees are generically1 ℓD and

ℓD + n, respectively, in which ℓD is given by

ℓD
def
=

MI
∑

j=1

dIj −
1

2
MI(MI − 1) +

MII
∑

j=1

dIIj −
1

2
MII(MII − 1) +MIMII

=

M
∑

j=1

dj −
1

2
M(M − 1) + 2MIMII. (2.20)

They are the polynomial parts of the Wronskian/Casoratian appearing in the eigenfunctions

(2.9)–(2.10):

Ξ̌D(x;λ) ∝ polynomial part of Wγ[φ̃
I
dI
1

, . . . , φ̃I
dI
MI

, φ̃II
dII
1

, . . . , φ̃II
dII
MII

](x;λ), (2.21)

P̌D,n(x;λ) ∝ polynomial part of Wγ[φ̃
I
dI
1

, . . . , φ̃I
dI
MI

, φ̃II
dII
1

, . . . , φ̃II
dII
MII

, φn](x;λ), (2.22)

for W and AW cases (Wγ[· · · ] are replaced by W[· · · ] for L and J cases). We remark that

the deformed Hamiltonian HD(λ) is independent of the order of dj but the denominator

polynomial ΞD(η;λ) and the multi-indexed orthogonal polynomial PD,n(η;λ) may change

sign under the permutation of dj’s (The set D of ΞD(η;λ) and PD,n(η;λ) is understood as

an ordered set). The explicit forms of ΞD(η;λ) and PD,n(η;λ) are given in Appendix.

The deformed Hamiltonian HD(λ) is non-singular for large enough g (L), large enough g

and h (J), large enough Re aj (∀j) (W) and small enough |aj| (∀j) (AW). For more details,

see [5, 27].

3 Pseudo Virtual States and Wronskian/Casoratian

Identities

By using pseudo virtual states which are obtained from eigenstate by using the discrete sym-

metry of the original Hamiltonian, some Wronskian identities [18] and Casoratian identities

[30] are derived. These identities imply the equivalence of two deformed quantum systems

1 For specific values of parameters, the coefficient of the highest power term may vanish, see §A.4.3.
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obtained by Darboux-Crum transformation in terms of pseudo virtual state wavefunctions

and eigenfunctions with shifted parameters. Here we extend these results. The data of

pseudo virtual states are given in Appendix.

First we consider W and AW cases. In [30] the followings are shown. Let a set D and an

integer N be

D = {d1, . . . , dM} (dj ∈ Z≥0, mutually distinct), N ≥ max{d1, . . . , dM}. (3.1)

A set D̄ and λ̄ are defined by

D̄
def
= {0, 1, . . . , N}\{N − d1, . . . , N − dM}

def
= {e1, . . . , eN+1−M}, (3.2)

λ̄
def
= λ− (N + 1)δ. (3.3)

Deform the original systems H(λ) and H(λ̄) by Darboux-Crum transformation with the

following seed solutions:

H(λ) with φ̃
pvs
d1

(x;λ), . . . , φ̃pvs
dM

(x;λ) ⇒ Hpvs
D (λ),

H(λ̄) with φe1(x; λ̄), . . . , φeN+1−M
(x; λ̄) ⇒ HKA

D̄ (λ̄).

The denominator polynomials Ξpvs
D (η;λ) and Ξ̄D̄(η; λ̄) are given by

Ξpvs
D

(

η(x);λ
)

∝ polynomial part of Wγ[φ̃
pvs
d1
, . . . , φ̃

pvs
dM

](x;λ), (3.4)

Ξ̄D̄
(

η(x); λ̄
)

∝ polynomial part of Wγ[φe1 , . . . , φeN+1−M
](x; λ̄). (3.5)

Then we have the Casoratian identity

Ξpvs
D (η;λ) ∝ Ξ̄D̄(η; λ̄), (3.6)

and this implies the equivalence of two deformed systems

Hpvs
D (λ)− E−N−1(λ) = κ−N−1HKA

D̄ (λ̄). (3.7)

These Hamiltonians are non-singular if the index set D̄ satisfies Krein-Adler (KA) condition,
∏N+1−M

j=1 (n− ej) ≥ 0 (∀n ∈ Z≥0) [34, 21]. These relations are based on the energy relation

Ẽpvs
v (λ)− E−N−1(λ) = κ−N−1EN−v(λ̄). (3.8)

The choice of the integer N is not unique and the systems with different N are related by

shape-invariance.
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The spectrum of Hpvs
D (λ) and HKA

D̄ (λ̄) are

Hpvs
D (λ) : Ẽpvs

v (λ) (v ∈ D), En(λ) (n ∈ Z≥0),

HKA
D̄ (λ̄) : EN−v(λ̄) (v ∈ D), EN+1+n(λ̄) (n ∈ Z≥0),

and the energy eigenvalues satisfy

En(λ)− E−N−1(λ) = κ−N−1EN+1+n(λ̄). (3.9)

Therefore we can further perform Darboux-Crum transformation taking these eigenfunc-

tions with energy En(λ) and EN+1+n(λ̄) as seed solutions, which originate from φn(x;λ) and

φN+1+n(x; λ̄), for H
pvs
D (λ) and HKA

D̄ (λ̄) respectively. Let the set of M ′ integers for this extra

deletion be {d′1, . . . , d
′
M ′} (d′j ∈ Z≥0, mutually distinct). Then we have

Hpvs
D (λ) with φ

pvs
D d′

1

(x;λ), . . . , φpvs
D d′

M′

(x;λ) ⇒ Hpvs+es
Dext

(λ),

HKA
D̄ (λ̄) with φKA

D̄N+1+d′
1
(x; λ̄), . . . , φKA

D̄N+1+d′
M′

(x; λ̄) ⇒ HKA
D̄ext

(λ̄),

namely

H(λ) with φ̃
pvs
d1

(x;λ), . . . , φ̃pvs
dM

(x;λ), φd′
1
(x;λ), . . . , φd′

M′
(x;λ) ⇒ Hpvs+es

Dext
(λ),

H(λ̄) with φe1(x; λ̄), . . . , φeN+1−M
(x; λ̄), φN+1+d′

1
(x; λ̄), . . . , φN+1+d′

M′
(x; λ̄) ⇒ HKA

D̄ext
(λ̄),

where

Dext = {d1, . . . , dM , d
′
1, . . . , d

′
M ′}, (3.10)

D̄ext = {e1, . . . , eN+1−M , N + 1 + d′1, . . . , N + 1 + d′M ′}. (3.11)

Since the same procedure is applied to equivalent systems, we have

Hpvs+es
Dext

(λ)− E−N−1(λ) = κ−N−1HKA
D̄ext

(λ̄). (3.12)

These Hamiltonians are non-singular if D̄ext satisfies KA condition. By defining Ξpvs+es
Dext

(η;λ)

and Ξ̄D̄ext
(η; λ̄) as

Ξpvs+es
Dext

(

η(x);λ
)

∝ polynomial part of Wγ[φ̃
pvs
d1
, . . . , φ̃

pvs
dM
, φd′

1
, . . . , φd′

M′
](x;λ), (3.13)

Ξ̄D̄ext

(

η(x); λ̄
)

∝ polynomial part of

Wγ[φe1, . . . , φeN+1−M
, φN+1+d′

1
, . . . , φN+1+d′

M′
](x; λ̄), (3.14)
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we obtain

Ξpvs+es
Dext

(η;λ) ∝ Ξ̄D̄ext
(η; λ̄). (3.15)

This polynomial proportionality (3.15) and equality (3.12) as an algebraic equation are valid

for any parameter ranges (except for the specific values mentioned in footnote 1).

For L and J cases, the above argument is valid by replacing Casoratian Wγ [· · · ] with

Wronskian W[· · · ] and setting κ = 1. Eqs.(3.6) and (3.7) are shown in [18]. Further Darboux-

Crum transformation in terms of eigenfunctions gives (3.12) and (3.15).

4 Equivalence of Multi-Indexed Orthogonal Polynomi-

als

We will show that the deformed system obtained by the Darboux-Crum transformations

in terms of both type I and II virtual state wavefunctions is equivalent to that of type I

only (or type II only) with shifted parameters. This means that multi-indexed orthogonal

polynomials with both type I and II indices are proportional to that of type I only (or type

II only) with shifted parameters. Our starting point is the proportionality of denominator

polynomials (3.15), namely (changing the notation : (dj, d
′
j,M,M ′) → (d′j, d

′′
j ,M

′,M ′′).

N ≥ max{d′1, . . . , d
′
M ′}),

polynomial part of Wγ [φ̃
pvs
d′
1

, . . . , φ̃
pvs
d′
M′

, φd′′
1
, . . . , φd′′

M′′
](x;λ) (4.1)

∝ polynomial part of Wγ [φe1, . . . , φeN+1−M′
, φN+1+d′′

1
, . . . , φN+1+d′′

M′′
]
(

x;λ− (N + 1)δ
)

,

or its Wronskian version. This relation is valid for any parameter ranges (except for specific

parameter values mentioned in footnote 1). Various data are given in Appendix.

4.1 Wilson and Askey-Wilson

First we consider W and AW cases. From the relation between (pseudo) virtual state and

eigenstate

φ̃I
v(x;λ) = φv

(

x; tI(λ)
)

, φ̃II
v (x;λ) = φv

(

x; tII(λ)
)

, φ̃pvs
v (x;λ) = φv

(

x; t(λ)
)

,

and t = t
II ◦ tI, we have

φ̃pvs
v

(

x; tI(λ)
)

= φ̃II
v (x;λ), φ̃pvs

v

(

x; tII(λ)
)

= φ̃I
v(x;λ). (4.2)

9



For the index set D (2.11), we take an integer N and define an index set D̄I

N ≥ dmax
II

def
= max{dII1 , . . . , d

II
MII

} (max{·}
def
= −1), (4.3)

D̄I
def
=

(

{0, 1, . . . , N}\{N − dII1 , . . . , N − dIIMII
}
)

∪ {N + 1 + dI1, . . . , N + 1 + dIMI
}

def
= {eI1, e

I
2, . . . , e

I
N+1−MII+MI

}. (4.4)

Since (4.1) holds for any parameter ranges, let us substitute λ → t
I(λ) in (4.1). Then we

have

polynomial part of Wγ[φ̃
II
dII
1

, . . . , φ̃II
dII
MII

, φ̃I
dI
1

, . . . , φ̃I
dI
MI

](x;λ)

∝ polynomial part of Wγ[φ̃
I
eI
1

, . . . , φ̃I
eI
N+1−MII+MI

]
(

x;λ− (N + 1)δ̃
I)
, (4.5)

where t
I + βδ = t

I(λ+ βδ̃
I
) is used. Therefore the denominator polynomial with both type

I and II indices is proportional to one of type I only,

ΞD(η;λ) ∝ ΞD̄I

(

η;λ− (N + 1)δ̃
I)
. (4.6)

The relation δ̃
II
= −δ̃

I
implies

λ− (N + 1)δ̃
I
+ (N + 1−MII +MI)δ̃

I
= λ

[MI,MII]. (4.7)

By using this, (4.6) and the general formula for potential function (2.15), we can show that

VD(x;λ) = VD̄I

(

x;λ − (N + 1)δ̃
I)
. (4.8)

Namely we obtain the equivalence of two deformed systems, type I and II mixed system and

type I system with shifted parameter,

HD(λ) = HD̄I

(

λ− (N + 1)δ̃
I)
. (4.9)

This equality as an algebraic equation holds for any parameter ranges but this deformed

Hamiltonian is non-singular only for restricted parameter ranges (see the end of § 2). From

the general formula (2.17), we can show

ψD(x;λ) ∝ ψD̄I

(

x;λ− (N + 1)δ̃
I)
. (4.10)

Therefore the general formula for eigenfunctions (2.16) gives

PD,n(η;λ) ∝ PD̄I,n

(

η;λ− (N + 1)δ̃
I)

(n = 0, 1, . . .). (4.11)
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This proportionality is valid for any parameter ranges.

Similarly, by substituting λ → t
II(λ) in (4.1), we can show that a type I and II mixed

system is equivalent to a type II system with shifted parameters. Results are the following:

N ≥ dmax
I

def
= max{dI1, . . . , d

I
MI
}, (4.12)

D̄II
def
=

(

{0, 1, . . . , N}\{N − dI1, . . . , N − dIMI
}
)

∪ {N + 1 + dII1 , . . . , N + 1 + dIIMII
}

def
= {eII1 , e

II
2 , . . . , e

II
N+1−MI+MII

}, (4.13)

ΞD(η;λ) ∝ ΞD̄II

(

η;λ− (N + 1)δ̃
II)
, (4.14)

HD(λ) = HD̄II

(

λ− (N + 1)δ̃
II)
, (4.15)

PD,n(η;λ) ∝ PD̄II,n

(

η;λ− (N + 1)δ̃
II)

(n = 0, 1, . . .). (4.16)

We note that ℓD = ℓD̄I
= ℓD̄II

and the energy eigenvalues are invariant under twisting shifts,

En(λ) = En(λ+ δ̃
I
) = En(λ+ δ̃

II
) and

En(λ) = En
(

λ− (N + 1)δ̃
I)

= En
(

λ− (N + 1)δ̃
II)
. (4.17)

4.2 Jacobi

Next we consider Jacobi case. The argument presented in the previous subsection applies

also to this case. From (4.1) we obtain the proportionality (4.6). By using (4.7), (4.6) and

general formulas (2.13) and (2.16)–(2.18), we can show (4.10) and

φD 0(x;λ) ∝ φD̄I 0

(

x;λ − (N + 1)δ̃
I)
, UD(x;λ) = UD̄I

(

x;λ− (N + 1)δ̃
I)
. (4.18)

Therefore we obtain (4.9) and (4.11). We have also (4.12)–(4.17).

4.3 Laguerre

Lastly we consider Laguerre case. The (pseudo)virtual states are (see Appendix)

φ̃I
v(x;λ) = i−gφv(ix;λ), φ̃II

v (x;λ) = φv

(

x; t(λ)
)

, φ̃pvs
v (x;λ) = ig−1φv

(

ix; t(λ)
)

,

and we have

φ̃pvs
v (ix;λ) ∝ φ̃II

v (x;λ), φ̃pvs
v

(

x; t(λ)
)

∝ φ̃I
v(x;λ).

The property of the Wronskian (fj = fj(x))

W[f1, f2, . . . , fn]
(

g(x)
)

=
(

dg(x)
dx

)− 1

2
n(n−1)

W[F1, F2, . . . , Fn](x), Fj(x)
def
= fj

(

g(x)
)

,
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gives W[f1, . . . , fn](ix) ∝ W[f1(ix), . . . , fn(ix)](x). By using these, (4.1) with the replace-

ment x→ ix leads to (4.6), and (4.1) with the replacement λ → t(λ) leads to (4.14).

Once (4.6) and (4.14) are obtained, the remaining task is the same as Jacobi case. By

using (4.7), (4.6) and general formulas (2.13) and (2.16)–(2.18), we can show (4.10) and

(4.18). Therefore we obtain (4.9) and (4.11). We have also (4.12)–(4.17).

4.4 Zero level deletion

If the degree of virtual state wavefunction for deletion is zero (dj = 0), an M-indexed

orthogonal polynomial reduces to an (M − 1)-indexed orthogonal polynomial [5, 27]:

PD,n(η;λ)
∣

∣

∣

dI
MI

=0
∝ PD′,n(x;λ+ δ̃

I
),

D′ = {dI1 − 1, . . . , dIMI−1 − 1, dII1 + 1, . . . , dIIMII
+ 1}, (4.19)

PD,n(x;λ)
∣

∣

∣

dII
MII

=0
∝ PD′,n(x;λ+ δ̃

II
),

D′ = {dI1 + 1, . . . , dIMI
+ 1, dII1 − 1, . . . , dIIMII−1 − 1}, (4.20)

which are the consequences of shape-invariance. They can be rederived by (4.11) and (4.16).

By using (4.11), the following index sets give equivalent multi-indexed orthogonal polyno-

mials:

{dI1, . . . , d
I
MI−1, 0, d

II
1 , . . . , d

II
dMII

} with λ
(

N ≥ max{dII1 , . . . , d
II
MII

}
)

↔
(

{0, . . . , N}\{N − dII1 , . . . , N − dIIMII
}
)

∪ {N + 1 + dI1, . . . , N + 1 + dIMI−1, N + 1}

(all type I) with λ− (N + 1)δ̃
I

=
(

{0, . . . , N + 1}\
{

(N + 1)− (dII1 + 1), . . . , (N + 1)− (dIIMII
+ 1)

}

)

∪
{

(N + 1) + 1 + (dI1 − 1), . . . , (N + 1) + 1 + (dIMI−1 − 1)
}

(all type I)

with λ+ δ̃
I
−
(

(N + 1) + 1
)

δ̃
I (

N + 1 ≥ max{dII1 + 1, . . . , dIIMII
+ 1}

)

↔ {dI1 − 1, . . . , dIMI−1 − 1, dII1 + 1, . . . , dIIdMII

+ 1} with λ+ δ̃
I
,

which means (4.19). Similarly (4.20) is derived by (4.16).

5 Summary and Comments

Multi-indexed orthogonal polynomials of L, J, W and AW types are labeled by an index

set D but different index sets may give the same multi-indexed orthogonal polynomials,
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PD,n(η;λ) ∝ PD′,n(η;λ
′). Based on extensions of Wronskian/Casoratian identities obtained

in [18, 30], we have shown equivalences of two deformed systems, (4.9) and (4.15). One

system has both type I and type II indices and the other has type I indices only (or type II

indices only). These equivalences of two systems imply the proportionalities of multi-indexed

orthogonal polynomials, (4.11) and (4.16). Redundant N -dependence in (4.11) and (4.16)

comes from shape-invariance. Two deformed systems with index sets of the form (2.11)

(with dj > 0) are equivalent, when the corresponding two D̄I (4.4) (or D̄II (4.13)) with the

minimum N are equal as a set (and parameters λ are appropriately shifted).

For the index sets with type I indices only (or type II indices only), are there equivalences

among them? We conjecture that there are no equivalences among them (for generic pa-

rameters). There are accidental coincidences of the denominator polynomials for low degree

cases, for example,

D = {2}, D′ = {1, 2}, ΞD(η;λ) ∝ ΞD′(η;λ′),

type I only : λ
′ =

{

(−2 − g, 4− h) : J
(5
2
− λ1,

5
2
− λ2,−

1
2
− λ3,−

1
2
− λ4) : W,AW

,

type II only : λ
′ =

{

(4− g,−2− h) : J
(−1

2
− λ1,−

1
2
− λ2,

5
2
− λ3,

5
2
− λ4) : W,AW

.

However these proportionalities of the denominator polynomials do not mean those of the

multi-indexed orthogonal polynomials. In fact, we have PD,n(η;λ) ∝ PD′,n(η;λ
′ − 2δ) for

n = 0, 1 but PD,n(η;λ) 6∝PD′,n(η;λ
′ − 2δ) for n ≥ 2.

Corresponding to the three term recurrence relations for ordinary orthogonal polynomials,

M-indexed orthogonal polynomials satisfy 3 + 2M term recurrence relations [28]. When

we calculate multi-indexed orthogonal polynomials explicitly, this 3 + 2M term recurrence

relation provides us more effective calculation method compared to their original definitions

which are expressed in terms of determinant. If the M-indexed orthogonal polynomials

PD,n(η;λ) are equivalent to M ′-indexed one PD′,n(η;λ
′) (M ′ < M), these PD,n(η;λ) also

satisfy 3+2M ′ term recurrence relations. For an index set D (2.11) with parameters λ, this

happens in the following cases (0)–(iv):

(0) dj = 0 : D′ is given by (4.19) or (4.20) (M ′ =M − 1).

In the following we assume dj > 0 and set I1
def
= 2MI − dmax

I − 1 and I2
def
= 2MII − dmax

II − 1.

We present D′ with the minimum M ′. For MI,MII > 0 cases, we have

(i) I1 ≤ 0 < I2 or 0 < I1 ≤ I2 : D′ = D̄I

∣

∣

N=dmax
II

with λ− (dmax
II + 1)δ̃

I
(M ′ =M − I2),
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(ii) I2 ≤ 0 < I1 or 0 < I2 ≤ I1 : D′ = D̄II

∣

∣

N=dmax
I

with λ− (dmax
I + 1)δ̃

II
(M ′ =M − I1).

For MI = 0 or MII = 0 cases, let us assume d1 < · · · < dM and use the formulas in the

opposite direction. Then we have for MII = 0,

(iii) ∃ j s.t. 2j − 1− dj > 0 :

D′ = {(dL+1 −N − 1)I, . . . , (dM −N − 1)I} ∪ {dII1 , . . . , d
II
N+1−L}, N = dL,

with λ+ (dL + 1)δ̃
I (

M ′ =M − (2L− 1− dL)
)

,

where L is j giving the maximum value of 2j − 1 − dj (L may not be unique) and dIIi ’s are

determined by

{0, 1, . . . , N}\{N − dII1 , . . . , N − dIIN+1−L} = {d1, . . . , dL}.

The case MI = 0 is similar,

(iv) ∃ j s.t. 2j − 1− dj > 0 :

D′ = {(dL+1 −N − 1)II, . . . , (dM −N − 1)II} ∪ {dI1, . . . , d
I
N+1−L}, N = dL,

with λ+ (dL + 1)δ̃
II (

M ′ =M − (2L− 1− dL)
)

,

where L is same as (iii) and dIi’s are determined by {0, 1, . . . , N}\{N−dI1, . . . , N−dIN+1−L} =

{d1, . . . , dL}. For illustration we present examples:

(i) : D = {1I, 4I, 1II, 2II} with λ ↔ D′ = {2I, 4I, 7I} with λ− 3δ̃
I
,

(ii) : D = {1I, 2I, 4I, 2II, 3II} with λ ↔ D′ = {1II, 4II, 7II, 8II} with λ− 5δ̃
II
,

(iii) : D = {1I, 2I, 3I, 4I, 5I} with λ ↔ D′ = {5II} with λ+ 6δ̃
I
,

D = {2I, 3I, 4I, 7I} with λ ↔ D′ = {2I, 3II, 4II} with λ+ 5δ̃
I
,

D = {1I, 2I, 5I, 6I} with λ ↔ D′ = {2II, 3II, 6II} with λ+ 7δ̃
I

↔ D′ = {2I, 3I, 2II} with λ+ 3δ̃
I
,

(iv) : D = {1II, 3II, 4II, 5II, 8II} with λ ↔ D′ = {3I, 5I, 2II} with λ+ 6δ̃
II
.

Note added: After submitting the manuscript (arXiv:1309.2346[math-ph]), we have noticed

that the proportionalities (4.11) and (4.16) can be directly derived by repeated use of (4.19)

and (4.20), which is an idea of K.Takemura (private communication, [36]).
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A Various Data

For reader’s convenience, we present various data of quantum mechanical systems described

by Laguerre(L), Jacobi(J), Wilson(W) and Askey-Wilson(AW) polynomials [5, 27, 18, 30].

A.1 Original systems

The Hamiltonian and eigenfunctions have the following form

H(λ) = A(λ)†A(λ), (A.1)

φn(x;λ) = φ0(x;λ)P̌n(x;λ), P̌n(x;λ)
def
= Pn

(

η(x);λ
)

, (A.2)

and the systems are shape-invariant

A(λ)A(λ)† = κA(λ+ δ)†A(λ+ δ) + E1(λ), (A.3)

which implies the forward and backward shift relations

A(λ)φn(x;λ) = fn(λ)φn−1(x;λ + δ), A(λ)†φn−1(x;λ+ δ) = bn−1(λ)φn(x;λ), (A.4)

F(λ)P̌n(x;λ) = fn(λ)P̌n−1(x;λ+ δ), B(λ)P̌n−1(x;λ+ δ) = bn−1(λ)P̌n(x;λ), (A.5)

F(λ)
def
= φ0(x;λ+ δ)−1◦ A(λ) ◦ φ0(x;λ), B(λ)

def
= φ0(x;λ)

−1◦ A(λ)† ◦ φ0(x;λ+ δ), (A.6)

with En(λ) = fn(λ)bn−1(λ).

A.1.1 Laguerre and Jacobi

Operators H(λ), A(λ), A(λ)†, F(λ) and B(λ) are

H(λ) = −
d2

dx2
+ U(x;λ), U(x;λ) =

∂2xφ0(x;λ)

φ0(x;λ)
, (A.7)

A(λ)
def
=

d

dx
− ∂x log

∣

∣φ0(x;λ)
∣

∣, A(λ)†
def
= −

d

dx
− ∂x log

∣

∣φ0(x;λ)
∣

∣, (A.8)
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F(λ) =

{

2 d
dη

: L

−4 d
dη

: J
, B(λ) =

{

−2η d
dη

− 2(g + 1
2
− η) : L

(1− η2) d
dη

+ h− g + (g + h + 1)η : J
. (A.9)

Various data of these systems are:

L : 0 < x <∞, λ = g, δ = 1, κ = 1, g > 1
2
,

U(x;λ) = x2 +
g(g − 1)

x2
− (1 + 2g), η(x) = x2,

En(λ) = 4n, fn(λ) = −2, bn−1(λ) = −2n,

φ0(x;λ) = e−
1

2
x2

xg, Pn(η;λ) = L
(g− 1

2
)

n (η),

hn(λ) =
1

2n!
Γ(n+ g + 1

2
), (A.10)

J : 0 < x < π
2
, λ = (g, h), δ = (1, 1), κ = 1, g, h > 1

2
,

U(x;λ) =
g(g − 1)

sin2 x
+
h(h− 1)

cos2 x
− (g + h)2, η(x) = cos 2x,

En(λ) = 4n(n+ g + h), fn(λ) = −2(n + g + h), bn−1(λ) = −2n,

φ0(x;λ) = (sin x)g(cosx)h, Pn(η;λ) = P
(g− 1

2
,h− 1

2
)

n (η),

hn(λ) =
Γ(n+ g + 1

2
)Γ(n+ h + 1

2
)

2n! (2n+ g + h)Γ(n + g + h)
, (A.11)

where L
(α)
n (η) and P

(α,β)
n (η) are the Laguerre and Jacobi polynomials [35] respectively.

A.1.2 Wilson and Askey-Wilson

Operators H(λ), A(λ), A(λ)†, F(λ) and B(λ) are

H(λ) =
√

V (x;λ) eγp
√

V ∗(x;λ) +
√

V ∗(x;λ) e−γp
√

V (x;λ)− V (x;λ)− V ∗(x;λ), (A.12)

A(λ)
def
= i

(

e
γ

2
p
√

V ∗(x;λ)− e−
γ

2
p
√

V (x;λ)
)

,

A(λ)†
def
= −i

(
√

V (x;λ) e
γ

2
p −

√

V ∗(x;λ) e−
γ

2
p
)

, (A.13)

F(λ) = iϕ(x)−1(e
γ

2
p − e−

γ

2
p), B(λ) = −i

(

V (x;λ)e
γ

2
p − V ∗(x;λ)e−

γ

2
p
)

ϕ(x). (A.14)

Various data of these systems are:

W : 0 < x <∞, γ = 1, λ = (a1, a2, a3, a4), δ = (1
2
, 1
2
, 1
2
, 1
2
), κ = 1,

V (x;λ) =

∏4
j=1(aj + ix)

2ix(2ix+ 1)
, η(x) = x2, ϕ(x) = 2x,

En(λ) = n(n+ b1 − 1), b1
def
= a1 + a2 + a3 + a4,

fn(λ) = −n(n + b1 − 1), bn−1(λ) = −1,
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φ0(x;λ) =

√

∏4
j=1 Γ(aj + ix)Γ(aj − ix)

Γ(2ix)Γ(−2ix)
,

P̌n(x;λ) = Pn

(

η(x);λ
)

=Wn

(

η(x); a1, a2, a3, a4
)

= (a1 + a2, a1 + a3, a1 + a4)n 4F3

(−n, n + b1 − 1, a1 + ix, a1 − ix

a1 + a2, a1 + a3, a1 + a4

∣

∣

∣
1
)

,

hn(λ) =
2πn! (n+ b1 − 1)n

∏

1≤i<j≤4 Γ(n+ ai + aj)

Γ(2n+ b1)
, (A.15)

AW : 0 < x < π, γ = log q, qλ = (a1, a2, a3, a4), δ = (1
2
, 1
2
, 1
2
, 1
2
), κ = q−1,

V (x;λ) =

∏4
j=1(1− aje

ix)

(1− e2ix)(1− qe2ix)
, η(x) = cos x, ϕ(x) = 2 sin x,

En(λ) = (q−n − 1)(1− b4q
n−1), b4

def
= a1a2a3a4,

fn(λ) = q
n
2 (q−n − 1)(1− b4q

n−1), bn−1(λ) = q−
n
2 ,

φ0(x;λ) =

√

(e2ix, e−2ix; q)∞
∏4

j=1(aje
ix, aje−ix; q)∞

,

P̌n(x;λ) = Pn

(

η(x);λ
)

= pn
(

η(x); a1, a2, a3, a4|q
)

= a−n
1 (a1a2, a1a3, a1a4; q)n 4φ3

(q−n, b4q
n−1, a1e

ix, a1e
−ix

a1a2, a1a3, a1a4

∣

∣

∣
q ; q

)

,

hn(λ) =
2π(b4q

n−1; q)n(b4q
2n; q)∞

(qn+1; q)∞
∏

1≤i<j≤4(aiajq
n; q)∞

, (A.16)

where Wn(η; a1, a2, a3, a4) and pn(η; a1, a2, a3, a4|q) are the Wilson and the Askey-Wilson

polynomials [35] and qλ stands for q(λ1,λ2,...) = (qλ1 , qλ2 , . . .) and 0 < q < 1. The parameters

are restricted by

{a∗1, a
∗
2, a

∗
3, a

∗
4} = {a1, a2, a3, a4} (as a set); W : Re aj > 0, AW : |aj | < 1. (A.17)

A.2 Virtual state wavefunctions

We have two types of virtual states, type I φ̃I
v(x;λ) and type II φ̃II

v (x;λ) (v ∈ Z≥0).

A.2.1 Laguerre and Jacobi

L1 : φ̃I
v(x;λ)

def
= i−gφv

(

ix; tI(λ)
)

, ξIv(η;λ)
def
= Pv

(

−η; tI(λ)
)

,

t
I def
= id, δ̃

I def
= 1, Ẽ I

v(λ) = −4(g + v + 1
2
), (A.18)

L2 : φ̃II
v (x;λ)

def
= φv

(

x; tII(λ)
)

, ξIIv (η;λ)
def
= Pv

(

η; tII(λ)
)

,

t
II(λ)

def
= 1− g, δ̃

II def
= −1, Ẽ II

v (λ) = −4(g − v− 1
2
), (A.19)
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J1 : φ̃I
v(x;λ)

def
= φv

(

x; tI(λ)
)

, ξIv(η;λ)
def
= Pv

(

η; tI(λ)
)

,

t
I(λ)

def
= (g, 1− h), δ̃

I def
= (1,−1), Ẽ I

v(λ) = −4(g + v + 1
2
)(h− v− 1

2
), (A.20)

J2 : φ̃II
v (x;λ)

def
= φv

(

x; tII(λ)
)

, ξIIv (η;λ)
def
= Pv

(

η; tII(λ)
)

,

t
II(λ)

def
= (1− g, h), δ̃

II def
= (−1, 1), Ẽ II

v (λ) = −4(g − v− 1
2
)(h+ v + 1

2
). (A.21)

We have changed the signs of δ̃
I
and δ̃

II
from those in [5].

A.2.2 Wilson and Askey-Wilson

type I : φ̃I
v(x;λ)

def
= φv

(

x; tI(λ)
)

, ξIv(η;λ)
def
= Pv

(

η; tI(λ)
)

, ξ̌Iv(x;λ)
def
= ξIv

(

η(x);λ
)

,

t
I(λ)

def
= (1− λ1, 1− λ2, λ3, λ4), δ̃

I def
= (−1

2
,−1

2
, 1
2
, 1
2
), (A.22)

Ẽ I
v(λ) =

{

−(a1 + a2 − v− 1)(a3 + a4 + v) : W
−(1− a1a2q

−v−1)(1− a3a4q
v) : AW

, αI(λ) =

{

1 : W
a1a2q

−1 : AW
,

type II : φ̃II
v (x;λ)

def
= φv

(

x; tII(λ)
)

, ξIIv (η;λ)
def
= Pv

(

η; tII(λ)
)

, ξ̌IIv (x;λ)
def
= ξIIv

(

η(x);λ
)

,

t
II(λ)

def
= (λ1, λ2, 1− λ3, 1− λ4), δ̃

II def
= (1

2
, 1
2
,−1

2
,−1

2
), (A.23)

Ẽ II
v (λ) =

{

−(a3 + a4 − v− 1)(a1 + a2 + v) : W
−(1− a3a4q

−v−1)(1− a1a2q
v) : AW

, αII(λ) =

{

1 : W
a3a4q

−1 : AW
.

A.3 Pseudo virtual state wavefunctions

The twist operation t is defined by

t
def
= t

II ◦ tI
(

⇒ t = t
I ◦ tII

)

, (A.24)

and the energy of pseudo virtual state φ̃pvs
v (x;λ) (v ∈ Z≥0) is

Ẽpvs
v (λ) = E−v−1(λ). (A.25)

A.3.1 Laguerre and Jacobi

L : φ̃pvs
v (x;λ)

def
= ig−1φv

(

ix; t(λ)
)

, ξpvsv (η;λ)
def
= Pv

(

−η; t(λ)
)

, t(λ) = 1− g, (A.26)

J : φ̃pvs
v (x;λ)

def
= φv

(

x; t(λ)
)

, ξpvsv (η;λ)
def
= Pv

(

η; t(λ)
)

, t(λ) = (1− g, 1− h). (A.27)

A.3.2 Wilson and Askey-Wilson

φ̃pvs
v (x;λ)

def
= φv

(

x; t(λ)
)

, ξpvsv (η;λ)
def
= Pv

(

η; t(λ)
)

,

t(λ) = (1− λ1, 1− λ2, 1− λ3, 1− λ4). (A.28)
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A.4 Multi-indexed orthogonal polynomials

The set D is given in (2.11). The eigenfunctions φD n(x;λ) of the deformed system HD(λ)

have the form (2.16)–(2.19). The denominator polynomial ΞD(η;λ) and the multi-indexed

orthogonal polynomial PD,n(η;λ) are polynomials in η and their degree are generically ℓD

and ℓD + n, respectively (ℓD is given by (2.20)).

A.4.1 Laguerre and Jacobi

ΞD(η;λ)
def
= W[µ1, . . . , µMI

, ν1, . . . , νMII
](η)

×

{

e−MIη η(MI+g− 1

2
)MII : L

(

1−η

2

)(MI+g− 1

2
)MII

(

1+η

2

)(MII+h− 1

2
)MI : J

, (A.29)

PD,n(η;λ)
def
= W[µ1, . . . , µMI

, ν1, . . . , νMII
, Pn](η)

×

{

e−MIη η(MI+g+ 1

2
)MII : L

(

1−η

2

)(MI+g+ 1

2
)MII

(

1+η

2

)(MII+h+ 1

2
)MI : J

, (A.30)

µj = ξI
dIj
(η;λ)×

{

eη : L
(

1+η

2

)
1

2
−h

: J
, νj = ξII

dIIj
(η;λ)×

{

η
1

2
−g : L

(

1−η

2

)
1

2
−g

: J
. (A.31)

A.4.2 Wilson and Askey-Wilson

Ξ̌D(x;λ)
def
= ΞD

(

η(x);λ
)

, P̌D,n(x;λ)
def
= PD,n

(

η(x);λ
)

, (A.32)

Ξ̌D(x;λ)
def
= A−1ϕM(x)−1 i

1

2
M(M−1)

∣

∣

∣

~X
(M)

dI
1

· · · ~X
(M)

dI
MI

~Y
(M)

dII
1

· · · ~Y
(M)

dII
MII

∣

∣

∣
,

A =























∏

k=3,4

∏MI−1
j=1 (ak −

M−1
2

+ ix, ak −
M−1
2

− ix)j

×
∏

k=1,2

∏MII−1
j=1 (ak −

M−1
2

+ ix, ak −
M−1
2

− ix)j : W
∏

k=3,4

∏MI−1
j=1 a

−j
k q

1

4
j(j+1)(akq

−M−1

2 eix, akq
−M−1

2 e−ix; q)j

×
∏

k=1,2

∏MII−1
j=1 a

−j
k q

1

4
j(j+1)(akq

−M−1

2 eix, akq
−M−1

2 e−ix; q)j : AW

, (A.33)

P̌D,n(x;λ)
def
= B−1ϕM+1(x)

−1

× i
1

2
M(M+1)

∣

∣

∣

~X
(M+1)

dI
1

· · · ~X
(M+1)

dI
MI

~Y
(M+1)

dII
1

· · · ~Y
(M+1)

dII
MII

~Z
(M+1)
n

∣

∣

∣
,

B =























∏

k=3,4

∏MI

j=1(ak −
M
2
+ ix, ak −

M
2
− ix)j

×
∏

k=1,2

∏MII

j=1(ak −
M
2
+ ix, ak −

M
2
− ix)j : W

∏

k=3,4

∏MI

j=1 a
−j
k q

1

4
j(j+1)(akq

−M
2 eix, akq

−M
2 e−ix; q)j

×
∏

k=1,2

∏MII

j=1 a
−j
k q

1

4
j(j+1)(akq

−M
2 eix, akq

−M
2 e−ix; q)j : AW

, (A.34)
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where

(

~X(M)
v

)

j
= rIIj (x

(M)
j ;λ,M)ξ̌Iv(x

(M)
j ;λ), (1 ≤ j ≤M),

(

~Y (M)
v

)

j
= rIj(x

(M)
j ;λ,M)ξ̌IIv (x

(M)
j ;λ),

(

~Z(M)
n

)

j
= rIIj (x

(M)
j ;λ,M)rIj(x

(M)
j ;λ,M)P̌n(x

(M)
j ;λ), (A.35)

and x
(n)
j = x+ i(n+1

2
− j)γ and

rIj(x
(M)
j ;λ,M) = αI

(

λ+ (M − 1)δ̃
I)− 1

2
(M−1)

κ
1

2
(M−1)2−(j−1)(M−j) (A.36)

×















∏

k=1,2

(ak −
M−1
2

+ ix)j−1(ak −
M−1
2

− ix)M−j : W

eix(M+1−2j)
∏

k=1,2

(akq
−M−1

2 eix; q)j−1(akq
−M−1

2 e−ix; q)M−j : AW
,

rIIj (x
(M)
j ;λ,M) = αII

(

λ+ (M − 1)δ̃
II)− 1

2
(M−1)

κ
1

2
(M−1)2−(j−1)(M−j) (A.37)

×















∏

k=3,4

(ak −
M−1
2

+ ix)j−1(ak −
M−1
2

− ix)M−j : W

eix(M+1−2j)
∏

k=3,4

(akq
−M−1

2 eix; q)j−1(akq
−M−1

2 e−ix; q)M−j : AW
.

The auxiliary function ϕM(x) is defined by

ϕM(x)
def
= ϕ(x)[

M
2
]
M−2
∏

k=1

(

ϕ(x− ik
2
γ)ϕ(x+ ik

2
γ)
)[M−k

2
]
, (A.38)

and ϕ0(x) = ϕ1(x) = 1, see [21]. Here [x] denotes the greatest integer not exceeding x.

A.4.3 coefficients of the highest degree terms

The coefficients of the highest degree term of the polynomials ΞD and PD,n are

ΞD(η;λ) = cΞD(λ)η
ℓD + (lower order terms),

PD(η;λ) = cPD,n(λ)η
ℓD+n + (lower order terms), (A.39)

cΞD(λ) =

MI
∏

j=1

cI
dIj
(λ) ·

MII
∏

j=1

cII
dIIj
(λ)

×











∏

1≤j<k≤MI

(dIk − dIj) ·
∏

1≤j<k≤MII

(dIIk − dIIj ) : L, J,W

∏

1≤j<k≤MI

1
2
q

1

2
(dIj−dI

k
)(1− qd

I
k
−dIj ) ·

∏

1≤j<k≤MII

1
2
q

1

2
(dIIj −dII

k
)(1− qd

II
k
−dIIj ) : AW
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×























(−1)MIMII : L
∏MI

j=1

∏MII

k=1
1
4
(g − h + dIj − dIIk ) : J

∏MI

j=1

∏MII

k=1(−a3 − a4 − dIj + a1 + a2 + dIIk ) : W
∏MI

j=1

∏MII

k=1
2√

a1a2a3a4
qj+k−2− 1

2
(dIj+dII

k
)(a3a4q

dIj − a1a2q
dII
k ) : AW

, (A.40)

cPD,n(λ) = cΞD(λ)cn(λ)

×







































(−1)MI
∏MII

j=1(g + n− dIIj − 1
2
) : L

∏MI

j=1
1
2
(h+ n− dIj −

1
2
) ·

∏MII

j=1
−1
2
(g + n− dIIj − 1

2
) : J

∏MI

j=1(−a1 − a2 − n + dIj + 1) ·
∏MII

j=1(−a3 − a4 − n+ dIIj + 1) : W

q2MIMII
∏MI

j=1(a1a2)
− 1

2 q
1

2
(dIj+1−n)(1− a1a2q

n−dIj−1)

×
∏MII

j=1(a3a4)
− 1

2 q
1

2
(dIIj +1−n)(1− a3a4q

n−dIIj −1) : AW

, (A.41)

where cn, c
I
n and cIIn are

Pn(η;λ) = cn(λ)η
n + (lower order terms), (A.42)

cn(λ) =











(−1)n

n!
: L

(n+ g + h)n
2n n!

: J
, cn(λ) =

{

(−1)n(n+ b1 − 1)n : W

2n(b4q
n−1; q)n : AW

, (A.43)

cIv(λ)
def
=

{

(−1)vcv(λ) : L

cv
(

t
I(λ)

)

: J,W,AW
, cIIv (λ)

def
= cv

(

t
II(λ)

)

: L, J,W,AW. (A.44)
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Teller potentials with continuous ℓ,” J. Phys. A44 (2011) 195203 (14pp), arXiv:1007.

3800[math-ph].

[16] Y.Grandati, “Solvable rational extensions of the isotonic oscillator,” Ann. Phys. 326

(2011) 2074-2090, arXiv:1101.0055[math-ph]; “Multistep DBT and regular rational

extensions of the isotonic oscillator,” Ann. Phys. 327 (2012) 2411-2431, arXiv:1108.

4503[math-ph].

[17] C-L.Ho, “Prepotential approach to solvable rational potentials and exceptional orthogo-

nal polynomials,” Prog. Theor. Phys. 126 (2011) 185-201, arXiv:1104.3511[math-ph].

[18] S.Odake and R. Sasaki, “Krein-Adler transformations for shape-invariant potentials and

pseudo virtual states,” J. Phys. A46 (2013) 245201 (24pp), arXiv:1212.6595[math-

ph].

[19] S.Odake and R. Sasaki, “Extensions of solvable potentials with finitely many discrete

eigenstates,” J. Phys. A46 (2013) 235205 (15pp), arXiv:1301.3980[math-ph].

[20] S.Odake and R. Sasaki, “Crum’s theorem for ‘discrete’ quantum mechanics,” Prog.

Theor. Phys. 122 (2009) 1067-1079, arXiv:0902.2593[math-ph].
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