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Various examples of exactly solvable ‘discrete’ quantum mechanics are explored explic-
itly with emphasis on shape invariance, Heisenberg operator solutions, annihilation-creation
operators, the dynamical symmetry algebras and coherent states. The eigenfunctions are
the (g-)Askey-scheme of hypergeometric orthogonal polynomials satisfying difference equa-
tion versions of the Schrodinger equation. Various reductions (restrictions) of the symmetry
algebra of the Askey-Wilson system are explored in detail.

§1. Introduction

General theory of exactly solvable ‘discrete’ quantum mechanics of one degree
of freedom systems is presented with all known examples. The ‘discrete’ quantum
mechanics is a simple extension or deformation of quantum mechanics in which the
momentum operator p appears in the Hamiltonian in the exponentiated forms e*P,
~v € R, instead of polynomials in ordinary quantum mechanics. The corresponding
Schrodinger equations are difference equations with imaginary shifts, instead of dif-
ferential. The eigenfunctions of the exactly solvable ‘discrete’ quantum mechanics
of one degree of freedom systems consist of the (g-)Askey-scheme of hypergeomet-
ric orthogonal polynomials,")»?) which are deformations of the classical orthogonal
polynomials, like the Hermite, Laguerre, Jacobi polynomials, etc.,? constituting the
eigenfunctions of exactly solvable ordinary quantum mechanics.*)5) These eigenpoly-
nomials are orthogonal with respect to absolutely continuous measure functions,
which are just the square of the ground state wavefunctions; a familiar situation
in quantum mechanics. For another type of orthogonal polynomials with discrete
measures, )26 see Ref. 7) for a unified theory. Like most exactly solvable quan-
tum mechanics, every example of exactly solvable ‘discrete’ quantum mechanics is
endowed with dynamical symmetry, shape invariance,® which allows to determine
the entire energy spectrum and the corresponding eigenfunctions when combined
with Crum’s theorem? or the factorisation method.*®) In other words, shape in-
variance guarantees exact solvability in the Schrédinger picture.!912) As expected,
exact solvability in the Heisenberg picture also holds for all these examples. The
explicit forms of Heisenberg operator solutions give rise to the explicit expressions
of annihilation/creation operators as the positive/negative frequency parts.!3) The
annihilation/creation operators together with the Hamiltonian constitute the dy-
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namical symmetry algebra. In some cases, the algebras are simple and tangible, like
the oscillator algebra and its g-deformations,' or su(1,1).

The present paper is to supplement or to complete some results in previous pub-
lications.!013) The ‘discrete’ quantum mechanics of the Meixner-Pollaczek, the con-
tinuous Hahn, the continuous dual Hahn, the Wilson and the Askey-Wilson polyno-
mials discussed in Refs. 10)-13) are only for restricted parameter ranges; for example
the angle was ¢ = 7/2 for the Meixner-Pollaczek polynomial and all the parameters
were restricted real for the continuous Hahn, the continuous dual Hahn, the Wil-
son and the Askey-Wilson polynomials. This is due to a historical reason that these
polynomials with the restricted parameter ranges were first recognised by the present
authors as describing the classical equilibrium positions!?)12):15)-17) of multi-particle
exactly solvable dynamical systems of Ruijsenaars-Schneider-van Diejen type.'®)19)
It is a deformation of the classical results dating as far back as Stieltjes,20)22) that
the classical equilibrium positions of multi-particle exactly solvable dynamical sys-
tems of Calogero-Sutherland type®?):2%) are described by the zeros of the classical
orthogonal polynomials (the Hermite, Laguerre and Jacobi). The ‘discrete’ quantum
mechanics was constructed!?12) based on the analogy that these orthogonal poly-
nomials would constitute the eigenfunctions of certain quantum mechanical systems
in the same way as the classical orthogonal polynomials (the Hermite, Laguerre and
Jacobi) do. As will be shown in detail in the main text, these orthogonal polyno-
mials enjoy the exact solvability and related properties for the full ranges of the
parameters. Attempts to further deform these exactly solvable systems have yielded
several examples??)27) of the so-called quasi-exactly solvable systems.2®)29) Another
objective of the present paper is to explore in detail the properties of the systems
obtained by restricting the Askey-Wilson system, treated in §§5.2-5.8.2. Some of
these have interesting and useful forms of the dynamical symmetry algebras or the
explicit forms of coherent state, etc., as evidenced by the g-oscillator algebras re-
alised by the continuous (big) ¢-Hermite polynomial.¥) Aspects of ordinary theory
of orthogonal polynomials are not particularly emphasised.

This paper is organised as follows. In §2, the general setting of the ‘discrete’
quantum mechanics is recapitulated with appropriate notation. Starting with the
parameters in the potential function and the Hamiltonian, various concepts and so-
lution methods are briefly surveyed. Sections 3 to 5 are the main body of the paper,
discussing various examples of exactly solvable ‘discrete’ quantum mechanics. They
are divided into three groups according to the sinusoidal coordinate n(z). Section 3
is for the polynomials in n(z) = z. Section 4 is for the polynomials in n(z) = 2.
Section 5 is for the polynomials in n(x) = cosx. Very roughly speaking, polynomials
in §3 are the deformation of the Hermite polynomial; those in §4 are the deforma-
tion of the Laguerre polynomial and those in §5 are the deformation of the Jacobi
polynomial from the point of view of the sinusoidal coordinates, but not from the
energy spectrum. Section 6 is for a summary and comments. Appendix A provides
a diagrammatic proof of the hermiticity (self-adjointness) of the Hamiltonians of
‘discrete’ quantum mechanics. Appendix B is a collection of the definition of basic
symbols and functions used in this paper for self-containedness.
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§2. General setting

The dynamical variables are the coordinate z (z € R) and the conjugate momen-

tum p, which is realised as a differential operator p = —id/dx. The other parameters
are symbolically denoted as A = (A1, A2,...) on top of ¢ (0 < q <1)and ¢ (¢ € R).
For the g-systems, the parameters are denoted as ¢* = (¢, ¢ o). Complex con-
jugation is denoted by * and the absolute value |f(z)| is |f(x)| = \/ . Here

f(x)* means (f(z))* and f(2)*|s—z+a = f(x + a*)*, since z is real.

Hamiltonian The Hamiltonian has a general form

HE V(@) V() + V() e V() = V(z) = V), (21)

in which v is a real constant. It is either 1 or log ¢. The potential function V' depends
on the parameters, V(z) = V(z; A), whereas the ¢ and ¢ dependence is not explicitly
indicated. The parameter dependence of the Hamiltonian H = H(A) is not explicitly
indicated in most cases.

The eigenvalue problem or the time-independent Schrodinger equation is a dif-
ference equation instead of differential in ordinary quantum mechanics:

Hon(z) = Endn(z) (n=0,1,2,..), Eo<E <E <, (2-2)

in which ¢, (z) = ¢n(x;A) is the eigenfunction belonging to the energy eigenvalue
En = En(A). The difference equation has inherent non-uniqueness of solutions; if
¢(x) is a solution so is ¢(x)Q(x) when Q(x) is any periodic function with the period
iy. This non-uniqueness problem is resolved when the Hilbert space of the state
vectors is specified. See Appendix A.

Factorisation Factorisation of the Hamiltonian is an important property
H=Ty +T-—V(z)-V(z) = (S, - S)(S; —5_) = Al4, (2:3)
in which various quantities Si = Sit(X), Ty = T (N), A = A(X) are defined as

(t denotes the hermitian conjugation with respect to the chosen inner product (2-75)
and (A-1)-(A-3)):

def P2V (), S_ def —vp/2 V(z),

Sjr def V(z) /2, st def V(x)* e /2, (2-4)
T, €518, = V(@) V), T-¥s's = Ve ?/Vix), (25)
AL — 5, AT (st — g, (2:6)

Ground state wavefunction The ground state wavefunction ¢g(z) = ¢o(z; A)
is annihilated by the A operator

Apo(x) =0 = Hepo(z) =0 = & =0, (2:7)
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which is a zero mode of the Hamiltonian. The above equation reads explicitly as

V(z+3) do(z — F) = /V(e+F) dolx+ F). (2:8)

Among possible solutions, we choose a real and nodeless ¢g. As will be shown in
Appendix A, the requirement of the hermiticity (self-adjointness) of the Hamiltonian
H selects a unique solution ¢y, which is given explicitly in each subsection (3-10),
(3-25), (4:7), (4-23), (5-11), (5-38), (5-59), (5:79), (5-97), (5-127) and (5-146).

Similarity transformed Hamiltonian The similarity transformed Hamiltonian
H = H(A) in terms of the ground state wavefunction ¢g (2-8) is

H Y po(z) Lo Hogo(a) =Ty +T- — V(z) — V(z)*

=V(2)e? + V() e —V(z)— V(z)*, (2:9)

in which Cfi are defined as

Ty € go(z) o Ty 0 o) = V(z) e, T L go(x) ™ o T 0 go(x) = V()" ™.

(2-10)
It acts on the polynomial part of the eigenfunction. Let us write the excited state
eigenfunction ¢, (z) = ¢p(x; ) as

Pn(x;X) = do(z; X) Pa(n(z); N), (2-11)

in which P,(1) = P,(n;\) is a polynomial in the sinusoidal coordinate n(x).'3) Here
n(z) is a real function of x. The sinusoidal coordinate n(z) discussed in this paper
has no A-dependence in contrast to the cases studied in Ref. 7). Then H acts on
Pn(n): _

HA) Pr(n(x); A) = En(A) Pa(n(2) ; A). (2-12)

For all the examples discussed in this paper, H is lower triangular in the special
basis
17 77(95)7 77(95)2, --->77(9U)na ERE) (213)

spanned by the sinusoidal coordinate n(z) (n(x) = z, 22, cos ;1?):10)’13)

HN)n(x)™ = Ey(N)n(x)™ + lower orders in n(x). (2-14)

Shape invariance The factorised Hamiltonian (2-3) has the dynamical symmetry
called shape invariance®) if the following relation holds:

ANAN)T = KA+ 8)TAN +8) + E1(N), (2:15)

in which & is a real positive parameter and & denotes the shift of the parameters and
E1(A) is the eigenvalue of the first excited state. This relation is satisfied by all the
examples discussed in this paper. Shape invariance means that the original Hamil-
tonian H(A) and the associated Hamiltonian A(X)A(X)T in Crum’s? sense (or the
susy partner Hamiltonian in the so-called supersymmetric quantum mechanics4)’5))
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have the same shape up to a multiplicative factor £ and an additive constant £;(\).
In terms of the potential function V(x;A), the above relation reads explicitly as

Ve =250V (@+ 950 =m2V(@; A+ 8)V(z +iv; A+ )", (2-16)
Vie+ 20 +V(+ 20" =s(V(z; A +8) + V(e; A+ 8)") —&(N).  (217)
Among many consequences of shape invariance, we list the most salient ones. All

the eigenvalues are generated by &;(A) and the corresponding eigenfunctions are
generated from the known form of the ground state eigenfunction ¢g (2-7) together

with the multiple action of the successive A" operator:10)-12)
n—1
En(A) =D K EL(A+ 56), (2-18)
s=0

O3 A) o< AN TAN+ 8)TAN+28) - AX+ (n— 1)8) go(a; XA + nd). (2:19)

The latter is related to a Rodrigues type formula for the eigenpolynomials. We
illustrate the shape invariance and Crum’s scheme in Fig. 1 at the end of this section.
The Hilbert space belonging to the Hamiltonian H(A) is denoted as Hy.

Closure relation  Another important symmetry concept of exactly solvable quan-
tum mechanics is the closure relation:™'3)

[H, [H,n]] = n Ro(H) + [H,n] R1(H) + R-1(H). (2-20)

Here n(z) is the sinusoidal coordinate and R;(H) is a polynomial in H. At the
classical mechanics level, it is easy to see that the closure relation means that n(x)
undergoes a sinusoidal motion with frequency y/Ro(€). The closure relation (2-20)
is satisfied by all the examples discussed in this paper and the explicit forms of
R;(H), : = —1,0,1 and &,(A) are given in each subsection. The closure relation
(2-20) enables us to express any multiple commutator [H, [H,-- -, [H,n(x)]-]] as a
linear combination of the operators n(x) and [H,n(z)] with coefficients depending
on the Hamiltonian H only. As we will see shortly, the exact Heisenberg operator
solution and the annihilation/creation operators are obtained as a consequence.”)13)

Let us consider the closure relation (2-20) as an algebraic constraint on n(z) and

the Hamiltonian, for given constants {rl(.j )}. The Lh.s. consists of €27P, e, 1, e P,
e~ 2"  then R; can be parametrised as
2 1 0 1 0 2 1 0
Ro(y) = Py +rVy+10", Riy) =rVy+rl", Roal) =By +rly+ ).
(2-21)
The similarity transformation of (2-20)

[H, [H,n]] = n Ro(H) + [H,n] Ri(H) + R-1(H) (2-22)
gives rise to the following five conditions:

n(z = 2iv) = 2n(x —iv) + n(z) =r
n(x + 2iy) — 2n(x +ivy) + n(x) =7

n(@) + %+ (e —iv) — (),  (223)

n(@) + %+ (e +iv) — (@),  (224)
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(n(x — i) = (@) (V(e —iy) + V(z +iv)" = V(z) = V(2)")
= —(rPn@) + ) (V@ — i) + V(@ +i7)* + V(2) + V(2)")
— V(@ —i7) = (@) (V(z — i7) + V(@ +iv)")

+ (@) + ) + O (- iv) - n(2)), (2:25)
(n(z +iv) — (@) (V(z —iv)* + V(e +iv) — V(z)* — V(z))
(2)

— (@) + ) (V@ — i) + V(e +iv) + V(2)* + V(2))
=i (a4 i) = (@) (V(@ = )" + V(@ + 7))
+ 7“(()1)?7(56) + 7"(,11) + Tgo) (n(m +iy) — n(x)), (2-26)
2(n(z) — n(z — i) V(@)V(z +iv)* + 2(n(z) — n(z +iy))V(z)'V(z + i)

rn@) +rE) (V(@)V (@ + i) + V(@) V(@ + i) + (V) + V())?)

)
rV(n(z —iv) = (@) V@)V (@ +i7)* + Y (n(z +iv) — (@) V(@) V (2 + i)
— (@) + D) (V@) + V(@)*) + 1§ n() + . (2:27)

For real {rz(.J )} (this is indeed the case for all the examples discussed in this paper),
(2-24) and (2-26) are the complex conjugate of (2-23) and (2-25), respectively.

In contrast to the cases of the orthogonal polynomials with discrete measures
discussed in §4 of Ref. 7), the determination of n(z) and the possible forms of V' (x)
is not straightforward due to the ambiguities of periodic functions with iy period.
Here we mention only the basic results. It is easy to see that (2:23)—(2-26) require
r(()Q) = r%l) and r(()l) = 27’50), which is consistent with the hermitian conjugation of
(2-20). With these constraints, the first condition (2-23) reads with x — = + i~y

n(z —iy) = 2+ r{ (@) +n(e +iy) = . (2:28)
Following the arguments given in §4 and Appendix A of Ref. 7), we deduce from
(2-25) and (2-27) the general relationship

(n(z —iv) = n(@)) (n(z +i7) = n(z)) (V(2) + V(2)")
= —ri"n()’ = rn(z) - Ci(a), (2:29)
(n(z = 2iv) — n(@)) (n(z — i7) = n(z + 7)) V(2)V (2 + iv)"
_ (" —inn(@) + U@ — iy) + C1 @) (" n(@ = inn(@) + rin(@) + O (@)
(n(@ —i7) = n(x))’
=1 (e — i) = % (n(@ - i) + n(@)) + Cala), (2:30)
in which Cj(z) (j = 1,2) is an arbitrary function satisfying the periodicity C;(z +
i) = Cj(x). The hermiticity of the Hamiltonian H would restrict Cj(z) severely.

Further analysis of the closure relation (2-23)-(2-27) will be published elsewhere.
Like the cases of discrete measures,”) the dual closure relation

[0, [0, H]] = H RG"™ () + [0, H] R{"™ (n) + R (n) (2-31)
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holds and R?“al are given by

R{™(n (96)) (n(z —iv) —n(x)) + (n(z + i) = n(x)), (2-32)
RG"™(n —(n(z —iv) —n(x)) (n(z + iv) — n(z)), (2:33)
(V(x) + V(2)*) Rg"™ (n(x)). (2-34)

Z‘

Ri‘ial(n(w))

Equations (2-28) and (2-29) imply R{"8!(y) = rg )y—l—r(zl) and R (n(x)) = r%o)n(x)Q—l—
r(_lin(a:) + C1(x).
Auxiliary function ¢ In all the examples discussed in this paper, the ground

state wavefunction with shifted x and parameters ¢o(x — % ;A + 9) is related to its
original value ¢g(x;A) via a real auxiliary function ¢:

do(x — FiA+8) =/V(x;X) oz — F)do(z; N). (2-35)

The auxiliary function gp(x) discussed in this paper has no A-dependence in contrast
to the cases studied in Ref. 7). It is easy to see that (2-35) implies (2-8). The explicit
forms of p(x) are given at the beginning of each section (3-1), (4-1), (5-1).

‘Similarity’ transformation IT  ‘Similarity’ transformed Hamiltonian or that of
Sy, Sjt operators (2-4) take simpler forms with the help of the auxiliary function ¢
(2-35):

do(x; A+ 5)_1 0St(A)ogg(z;A) = go(z:)_l eiwp, (2-36)

V(zs ) e? 2 p(z),

V(z; N)*e P2 p(x). (2:37)

do(; X) " o SL(N) o do(z: A +8) = {

Note that the parameter shifts &40 are properly incorporated.

Forward/Backward shift operators With (2:36)—(2:37) the ‘similarity’ trans-
formed A and AT operators are obtained. They are called the forward/backward
shift operators:

H(A) = BA)F(N), (2:38)
FO) L go(x; 2+ 8) " 0 AN 0 do(z;A) = i p(x) "} (/2 — e #/?), (2:39)
BN = go(z;A) 7" 0 AN 0 go(w ;s X + 8)

= —i(V(z; ) P2V (z; A e_7p/2)90(1:). (2-40)

The action of the forward shift operator F(A) and the backward shift operator B(\)
on the polynomial P, (n; ) are:

FXN)Pu(n3X) = fa(XN) Paz1(n; A+ 0), (2-41)
B()‘) (na)‘+6) =bn ()‘) n+1(77a)‘)7 (2'42)

in which f,,(X) and b, (X) are real constants related to &,(\):
TnA)bn—1(X) = En(A). (2-43)
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For the cases studied in Ref. 7) b, () is actually independent of n, but here it depends
on n. In terms of the forward and backward shift operators, the shape invariance
condition (2-15) reads

FA)B(A) = kBA+3)F(A+9) + E1(N). (2-44)
Corresponding to (2-19), a Rodrigues type formula for the eigenpolynomials is

B(A) BA+8) BA+25) B+ (n—1)95)

PN = 57 ) bua At 8) s+ 26)  bo(A+ (1= 1)9)

(2-45)
where Py(n; A + nd) = 1 for all the examples given in this paper. With these
quantities the action of A(X) and A(M)! on the eigenfunction ¢, can be simply
expressed as

A(A)¢n(x ) )‘) = fn()‘)gbnfl(-r JA T+ 6)5 (2'46)
A()‘)T¢n(x ; A+ 5) = bn(A)d)nJrl(x ; )‘) (2'47)

Three term recurrence relation The polynomial part of the eigenfunction
P,(n) is an orthogonal polynomial with the measure ¢o(x)2. It satisfies three term
recurrence relations.’)'? Let us first write the relation for the monic polynomial
Pmonic(p) — pn4 lower degree in 7:

Pu(n) = caProMe(n), (248)
il () = (0 — ay )P (n) + 0, P (n) =0 (n > 0), (249)

with P™°ni¢(n) = 0. For P,(n) it reads
nNPu(n) = AnPos1(n) + BaPo(n) + CnPr—1(n), (2-50)
Ay=—0 B,=a, C,=-"_pr (2:51)

Cn+1 Cn—1

Sometimes we write the parameter dependence explicitly as P,,(n) = P,(n;X), ai¢ =
afzeC(A)v bfzec = b;ec(}\% Cp = Cn(A)v Ay = An(A)v B, = Bn()‘)a Cn = Cn(}‘)’ fn(}‘)

and b, (A). They are given in each subsection.

Heisenberg operator and Annihilation and Creation operators The exact
Heisenberg operator solution for 7(x) is easily obtained'®) from the closure relation
(2-20):

eitHn(x)e—itH _ a(+)eia+(H)t + a(—)eia_(H)t - R_l(H)Ro(H)_l, (2 52

ax(H) € L(Ri(H) £ VRi(H)2 + 4Ro(H) ), (2:53)
Ry(H) = a4 (H) +a-(H), Ro(H) = —a (H)a_(H), (2:54)

o E i ([H,n(@)] ~ () + Ry (H)Ro(H) ™ )ag(H) ) (a4 (H) = - (1)) "

(2-55)

— (0 (H) = a-(H)) " (IR n(@)] + ax () (n(w) + R (H)Ro(H) ™) ).
(2:56)
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(£)

The positive/negative frequency parts of the Heisenberg operator solution, a'*/) are
the annihilation and creation operators
a1 =aD gy (2) = Angnii(2),  aDgu(2) = Cugnr(z).  (2:57)
Since
a:l:(gn) = Ept1 — gnv (258)
we obtain
+1 R_1(&n)
B (g) = — = £ —&, 1) Vg (2). (2-59
() = g ([ ()] + (& — Enz)n(e) + =~ Jon(a). (259)

Commutation relations of a(*) and H  Simple commutation relations

H,a®] = aPay(H) (2-60)
follow from (2-55) and (2-20). When applied to ¢,,, we obtain with the help of (2-58),
[H,a®]g, = (Ens1 — En)aP gy (2:61)

Commutation relations of a*) are expressed in terms of the coefficients of the three
term recurrence relation by (2-57):

aa M, = A Criidn =05 160, alPa gy = Crdy_16n = b, (2:62)

= [a7,aMgn = (5% — ). (2:63)
These relations simply mean the operator relations

D) = f(H), (2:64)

aMa=) = g(H), (2-65)

in which f and g are analytic functions of H. In other words, H and a(*) form
a so-called quasi-linear algebra.3?) This is because the definition of the annihila-
tion/creation operators depend only on the closure relation (2-20), without any other
inputs. The situation is quite different from those of the wide variety of proposed
annihilation/creation operators for various quantum systems,31) most of which were
introduced within the framework of ‘algebraic theory of coherent states’. In all these
cases there is no guarantee for symmetry relations like (2-64) and (2-65).

In many cases it is convenient to introduce the ‘number operator’ (or the ‘level
operator’) N/

N¢n d:ef non. (2'66)

For the following types of energy spectra, the number operator N can be expressed
as a function of the Hamiltonian H:

En=an (a>0) = N=a'H, (2-67)
En=n(n+b) (b>0) = N =\/H+ 1b>— 30, (2-68)
En=q"—1 = N =H+1D, (2:69)

En=("-1DA=bg") (0<b<1)= ¢V = %(H+b+1—\/(H+b+1)2—4b).
(2-70)
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Obviously the Hamiltonian is expressed as H = Ex. Then (2-63) can be expressed
simply as

[, at™] = i — b (2:71)
and (2-61) is rewritten as
[H,a®)] = Exa™® —aFEp = o (Ensr — En). (2:72)

With a deformed commutator
def

[A, B]l, = AB — aBA, (2:73)
we have
a0, aM], = B, — ab. (2:74)

Orthogonality and normalisation The scalar product for the elements of the
Hilbert space belonging to the Hamiltonian H is

(0. /)% / dx g(x)" f (), (2:75)

in which the integration range depends on the specific Hamiltonian or the polynomial.
The orthogonality of the eigenvectors {¢, ()}, én(z) = ¢o(x)Pp(n(z)) is:

(¢n, m) = /dfC ¢0(2; X)? Pa(1(2) s )" P (0(2) 3 X) = hin(N) G, (2-76)
in which hy,(A) > 0. The constants hy, ¢, and bi<¢ are related as

2 n
hy
prec = fn—1 (n>1),  hy=hoc2 [[65 (n>0). (2:77)
7j=1

0721 hn—l o

Let us denote the n-th normalised eigenfunction as

) 2 2 do(x;N) ho(X)
On(23A) = Noy(XN)Pu(n(z) s X)do(z3X),  do(z;A) = ——=—=, Nn(A) =
Vho(A) hn(X)
’ (278)

These normalisation constants are given for each polynomial.

Coherent states There are many different and nonequivalent definitions of co-
herent states. Here we adopt the most conventional one, as the eigenvector of the
annihilation operator a(~), (2:57):

aY(a,z) = ap(a, ), o€ C. (2-79)
It is expressed in terms of the coefficient C,, of the three term recurrence relation

(2-50) and (2-51) as'®)

V(o z) =Y(a,z;X) = ¢go(25A) Y == Pu(n(z); A). (2-80)



Ezactly Solvable ‘Discrete’ Quantum Mechanics 673

Thus we obtain one new coherent state for each polynomial; (3-19), (3:39), (4-16),
(4-37), (5-20), (5-51), (5-71), (5-91), (5-118), (5-137) and (5-158). If the sum on the
r.h.s. is expressed by a simple function, it is a generating function of the polynomial
P, (n). In most explicit examples to be discussed in later sections, the potential func-
tions, the Hamiltonians and thus the polynomials themselves are totally symmetric
in the parameters, see for example, the Askey-Wilson polynomial §5.1. The above
coherent state, being totally symmetric, gives the best candidate for a symmetric
generating function. For the polynomials to be discussed in later sections, however,
most of the known generating functions are not totally symmetric.

A-shift operators Let us fix an orthonormal basis {¢,(2; A)} and define a unitary
operator U (UT) as

Udn(2;N) E du(z: A+ 68), Uldn(z; A+ 8) = dulz; ). (2:81)

Then we can define another set of annihilation-creation operators a, a':
a®uta, at=Atu. (2-82)

They satisfy H = afa and their actions on ¢, are derived from (2-46) and (2-47),
adn (23 X) < pp_1(z; ), alpn(z;A) x ¢pr1(z; ). Although this kind of creation
and annihilation operators have been considered in many literature,3?) it should be
stressed that they are formal because U and YT are formal operators. On the other
hand, a®) obtained from the Heisenberg solution are explicitly expressed in terms of
difference operators (differential operators, in ordinary quantum mechanics), (2-55).
Note that the construction method of @ and a' is based on the shape invariance but
that of a(®) is not. The latter is based on the closure relation.
The key point of the construction of @ and a' is the proper shift of the parameters
A, which is achieved by the formal operators & and U4!. We introduce another set of
A-shift operators X and X explicitly in terms of difference operators through the
following relations:
P =AlX, o) =XxTA (2-83)

By using the shape invariance (2-15), we have
Aa) = AATX = (kAN +8)TAN+0) + &)X = (WHA+ ) + &)X, (2:84)
Since KH(A + ) + & is a positive operator, we obtain
X = (WHA+8) + &) " Aa)
= (KHA+8)+&) 1A
x ([ n(@)] = (1(2) + R () Ro(H) o (H)) (. (H) — a— ()

,1.
(2-85)

Similarly XT is expressed as

1

Xt =a DA (KHA+8) + &) . (2-86)
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&s /o
/d)o 25 A+35)
&
Do (2 A+20) (i): a(N), a(N)
(ii): (), a(N)!
(iil): AN)
& (iv): AN
(v): X(A), UN)
(vi): XN, U
&o
Ho H+6) HA+20)  H(+36)
Ha Hxts Hxi26 Hxs3s
Fig. 1. Shape invariance and Crum’s scheme.

Their actions on ¢,, are
Xop(z; ) =

XTp(z;X+8) =

D>

n(A)

ey bz A+ 6), (2-87)
Cn—l—l()‘) . .
FARTEN) On(T; A), (2-88)

and the A-shift without changing the level n is achieved, as expected. The A-shift

operators for the polynomials P, (n(z) ; A) are given by ¢o(z; A +8)~!

and ¢g(z; )71

OXOQZ)O(IE;A)

o Xt ogo(x; A+ 8). The expression of X and X' may be simplified

for some particular cases (see §§3.2, 4.2 and 5.5).

Finally we illustrate the shape invariance and Crum’s scheme in Fig.1.

The

Hilbert space belonging to the Hamiltonian H(A) is denoted as Hy. The action of
various operators and their domains and images are also illustrated in Fig.1:

HA), a®(N), a(A),a(A): Hx — Ha, (2-89)
AN, X(A), U) :Hx — Hxys, (2-90)
AN, XN, U : Hags — Ha. (2-91)
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§3. n(z) ==

From this section to §5, we present various formulas and results specific to each
example of the exactly solvable ‘discrete’ quantum mechanics. These examples are
divided into three groups according to the form of the sinusoidal coordinate; n(z) = x
in this section, n(x) = 2% in §4, n(z) = cosx in §5. The names of the subsections are
taken from the name of the corresponding orthogonal polynomial and the number,
for example, [KS1.4] indicates the corresponding subsection of the review of Koekoek
and Swarttouw.%

In all the examples in this section, we have

n) ==z, —co<z<oo, y=1, k=1 o)=1 (3-1)

3.1. continuous Hahn [KS1.4]

In previous works,'913) the parameters a; and ay were restricted to real, positive
values. Now they are complex with positive real parts.

parameters and potential functions

def

A= (a1,a2), 6= (%, ); Rea; >0; V(x;A) def (a1 + iz)(ag + ix). (3-2)

[N

shape invariance and closure relation

En(A) =n(n+b —1), (3:3)
Ri(y) =2, Ro(y) =4y +bi(br —2), (3-4)
R_1(y) = —i(a1 + ag — ag — aq)y — i(by — 2)(a1a2 — asay), (3-5)
4
b1 S ay (asca0) % (af,a3) or (a3,af). (36)
j=1

These can be rewritten as

En(A) =n(n+ 2Re(ay + a2) — 1), (3-7)
Ro(y) = 4y + 4Re(a1 + az) (Re(a1 + az) — 1), (3-8)
R_1(y) = 2Im(a; + a2)y + 4(Re(a1 + az) — 1)Im(ajaz). (39)
eigenfunctions
o(; A) © |M(ar + ix) T (az + ix)|
= \/I'(a1 +iz)(ag +iz)[(az — iz) T (ag — i), (3-10)

Po(n;A) = pn(7;a1,a2,a3,a4)
d_efin(cn +a3)n(a1 + aq)n 7 (—n, n+ay+as+az+ag— 1, a; +ix ‘ 1)
n! 2 a1 +az, a1 + aq ’

(3-11)
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which are symmetric under a; < ao and asg < a4 separately.

— 1),
= M’ (3-12)
n!
rec i<a (n+by—1)(n+ a1 +a3)(n+a; +aq)
= 1 —

(2n + b1 — 1)(2n + bl)

nn+az+as—1)(n+az+ag—1)
3-13
L O T S G a— ’ (3:13)
e _ n(n+ b —2) [[72 [Ties(n + a; + ax — 1) 314
" (2n4b —3)2n+b —2)2(2n+ by — 1)
faA)=n+b -1, by(A)=n+1 (3-15)
annihilation/creation operators and commutation relations
ar(H)=1+2VH, H €H+10,—1)2 (3-16)
N=vVH -1 —1) (for by > 1), (3-17)
(H,a®)] = a® 1+ 2VH). (3-18)

The annihilation/creation operators (2-55) and their commutation relation (2-63) are
not so simplified because b;7¢; — by = (quartic polynomial in n)/(cubic polynomial

in n) has a lengthy expression.

coherent state

oo

(b1)2n ™
a, ;) = T
u )= ol )HZ:?‘) T2 [Ties (@) + ar)n

The r.h.s is symmetric under a; < ag and as < a4 separately. We are not aware
if a concise summation formula exists or not. Several non-symmetric generating
functions for the continuous Hahn polynomial are given in Ref. 6).

Pa(n(z) 5 A). (3-19)

orthogonality
< 151 [Tes D0+ aj + a)
X)2Py(n: A)P(n; N)dz = 2 J= - Srms (3-20
[ ol NP NP A = 2 S (320
1 B F(bl) ho()\) B b1 +2n—1 n! (bl)n
hoN)  2n [0 [lhes D(ag +ar)” An(A) bi+n—1 I3 TTies(a; + an)n
(3-21)

3.2. Meizner-Pollaczek [KS1.7]

In previous works,10):13):32)

most general case 0 < ¢ < 7.

the parameter ¢ was fixed to m/2. Here we treat the

parameters and potential function

AL =1 ¢ (0<dp<m); a>0, V(z;A) LGN a+tin). (322
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shape invariance and closure relation

En(A) = 2nsin @, (3-23)
Ri(y) =0, Ro(y) =4sin®¢, R_i(y) = 2ycos ¢+ 2asin 2. (3-24)
eigenfunctions
go(z3 A) @D\ P(a + ix)], (3:25)
) = pla) (. gy def (20)n oind —n, a+ix ’ _ —2i¢ .
Pa(niA) = P (s 0) & St ity (T 1T 1) (3.20)
(2sing)” L. n+a e N(n+2a—1)

n — = - 3 = . ) -2
¢ n! n tan ¢ bn (2sin ¢)? (3:27)
fa(A) =2sin¢, by(A) =n+1. (3-28)

The polynomial has the following symmetry Pé“) (x;—¢) = Bga)(—:c ;).

annihilation/creation operators and commutation relations

. 1
ar(H) = +2sin¢g, N = QSingZ)H’ (3-29)
+1 1 cos ¢ .
) — :
a 451n¢[H ]+ 2n+4sin2¢(H+2asm¢), (3-30)
n+a
rec . prec _ 3.31
n+1 n 28i1’l2 d)a ( )
[H,a™®)] = £2sin ¢ a*), (3-32)
(@), aP)] = T ¢(H + 2asin ¢). (3-33)
1
.ok o (+) 3 _ :
su(1,1) algebra: J 2sin¢g a'>, J 2sin¢>(H + 2asin ¢),
(I3, 0% = +J%, [J7, 0T =23 (3-34)

The su(1,1) or sl(2,R) algebra reported before®):32) is a special case of the present
one.

A-shift operators For the special case of ¢ = 7/2 the annihilation/creation
operators are closely related to the A and A" operators:

=ATX, X =15, +5-), (3-35)
a) = xTA, xt=1(sT 457 (3-36)
Po(z; X +8)7FX(A) o3 ) - Pu(n; A) = 5Pl A+ 9), (3:37)

o(a; )7 XN go(2: A +8) - Pa(n; A+ 8) = j(n +2a) Pa(n; N). (3-38)
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coherent state The coherent state gives a simple generating function, which
generalises the previous result:'?)

Blonai N) = gl N) S EID Y by

n=0 <2a)n
— . ia(1—e?i®) a+ix ’ i s 2 .
do(z;A)e 1F1< o 4iasin d)). (3-39)
orthogonality
I'(n+ 2a)
A)2 P (17 A) P (17 ; N = 2 —— 24 5 4
[ nla s NP AP My = 27 (3-40)

1 (2sing)**  ho(A) _ n!
ho(A)  27l(2a) * hn(A)  (2a),

(3-41)

The exact solvability of the continuous Hahn and Meixner-Pollaczek polynomials
for the full parameters are discussed in Ref. 27) in connection with their further
deformation to give another example of quasi exactly solvable system.

§4. n(z) = a?

In all the examples in this section, we have

2

@) =a? 0<w<oo, y=1, k=1, ¢)=2z. (41)

4.1. Wilson [KS1.1]

The Wilson polynomial is the most general one in this category. The parameters
ai,..., as were restricted to real positive values in previous works.!9)13) The generic
situation to be discussed in this paper is

{al,a5,a3,a3} = {a1,a2,a3,a4} (asaset), Rea; >0 (1<i<4). (4-2)

parameters and potential function

def def (a1 + ix)(az +ix)(az + ix)(aq + iz)
A2 o= (1 1 1 1y. A E .
(a17a27a37a4)7 (2,27252)a V(l‘, ) 2Zl‘(2l.1‘—|—1)
(4-3)
shape invariance and closure relation
ExA) =n(n+b —1), (4-4)
Ri(y) =2, Ro(y) =4y +bi(b1—2), R_1(y) = =2y + (b1 — 2ba)y + (2 — b1)bs,
(4-5)

ef ef ef
bld—Za], by & Z a;ay, by < Z a;aRa. (4-6)

1<j<k<4 1<j<k<l<4
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eigenfunctions
4 .
def Hj:l I'(aj + ix)
¢0($a ) F(Q’L.%') ) ( )
Pn(77 ; A) = Wn(x2 a1, a2,0a3, CL4)
ef
E (a1 + az)n(a1 + az)n(ar + an)n
4 . .
X4F3<fn,n+2j:1aj—1,a1+m,a1—z:c‘1>? (4-8)
ai +az, a1 +az, ar + aq
which are symmetric under the permutations of (a1, az, as, a4).
en=(=1)"(n+b; — 1), (4-9)
ree (n+b—1) H?ZQ(n + a1 + aj) nH2§j<k§4(n +aj+a,p—1) 2 (410)
no (2n+b; —1)(2n + by) (2n+b; —2)(2n+ b, — 1) D
rec _ n(n+ by —2) H1§j<k§4(n+aj+ak—1) (411)
" (2n4+b —3)(2n+ by —2)2(2n+ by — 1)
faoA) =—n(n+b —1), by(X)=-1. (4-12)
annihilation/creation operators and commutation relations
ar(H) = 1£2VH, H =H+ 1 - 12 (413)
N =VH -1 —1) (for by > 1), (4-14)
[H,a®)] = a®) (1 + 2vH)). (4-15)

The annihilation/creation operators (2-55) and their commutation relation (2-63) are
not so simplified because the expression b;7¢; —bj;° = (a degree 10 polynomial in n)/

(a degree 7 polynomial in n) is quite complicated.

coherent state

(e 9]

Yla, w3 A) = do(z;A) ) (=1)"(b1)2n "

= !  i<jenca(as + ap)n

Pa(n(z); A). (4-16)

The r.h.s. is symmetric under the permutations of (a1, as, as, as). It is not known to
us if a concise summation formula exists or not. Several non-symmetric generating
functions for the Wilson polynomial are given in Ref. 6).

orthogonality

/0 " b0 N Pa(n: ) Pon (3 N

[licjckca I'(n+aj + ay)
I'(2n+ b1) e
L I'(b) ho(A) b1 +2n—1 (b1)n
ho(A) 21 [Li<jepca (g +ar) ™ ha(N) b +n-—1 ! [1i<jcnea(a; +ag)n
(4-18)

=2mn!(n+b; — 1),

(4-17)
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4.2, continuous dual Hahn [KS1.3|

This is a restricted case of the Wilson polynomial with ay = 0. In previous
works,1913) the parameters a;, as and as were real and positive. Now they are
{a}, a5, a5} = {a1,a2,a3}, as a set and Rea; > 0. This is dual to the continuous
Hahn §3.1 in the sense that the roles of n(x) and &, are interchanged. For the
continuous Hahn, n(z) = = and &, is quadratic in n, whereas n(x) is quadratic in
z and &, = n for the dual Hahn. The duality has sharper meaning for polynomials
with discrete orthogonality measures, see for example Ref. 7).

parameters and potential function

def (a1 +iz)(az +iz)(as + ix)

def
(a17a27a3)7 (Qagag)a V($, ) 2il‘(2i$+1) ( 9)
shape invariance and closure relation
En(X) =n, (4-20)
Ri(y) =0, Ro(y)=1, R-i(y)=—2y>+ (1—2b1)y — by, (4-21)
by dzef a1 +as+az, by d:ef aias + araz + azas. (4-22)
eigenfunctions
3 .
def H =1 F(CL]' + ’Ll‘)
) € J 4.2
QZ)O(‘T’ ) F(Qil‘) ’ ( 3)
Pn(77 ; )‘) = Sn('xQ ; a1, a2, (13)
def —-n, a1 +1x, ap — 1x
Lo 2 ( : : ‘ 1), 424
(a1 + az)n(ar +az)n 33 a1 + ag, ay + as ( )
which are symmetric under the permutations of (ai, az,as).
e = (—1)", (4-25)
a’® = (n+ a1 +az)(n+ay +az) +n(n+ax +az —1) —a?, (4-26)
b = H (n+aj +ap — 1), (4-27)
1<j<k<3
fa(X) =—n, by(X)=-1. (4-28)
annihilation/creation operators and commutation relations
ar(H) = +1, N ="H, (4-29)
ol = £3[H.n] + 30— H? — (b — 5)H — 30, (4:30)

:Le_ic_l — b;lec = 4n3 + 3<2b1 — 1)n2 + (2[)1(1)1 — 1) + 2by + 1)n + bi1by — ajasas.
(4-31)
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The interesting algebra, reported in Ref. 13), with H? non-linearity on the r.h.s. of
(4-33) is valid for the full parameter range:

[H,a®)] = +a®), (4-32)
[, a ™)) = 4H3 + 3(2b1 — 1)HZ + (261(b1 — 1) + 2by + 1)H + bibs — arazas.
(4-33)

A-shift operators

3
. S (24 — 1
X = —i8i Ty + (2 = V(@ - )" _¢M)5+

81+ 22)
FiS.T. + (x +iV(e— 1) +i %)&, (4-34)
$o(z; A+ 8) "1 X(A) Go(x;A) - Pu(1; ) = Pu(n; A+ 6), (4-35)
do(x; N) LX) go(@; A+ 8) - Po(n; X+ 8) :KEQ@ +aj +ag) - Pu(n; ). (4-36)
coherent state
Ponain) = ool NS VO payy )

n:071!I11§j<k§3(aj‘+'ak)n

The r.h.s. is symmetric under the permutations of (ai,az,a3). We are not aware
if a concise summation formula exists or not. Several non-symmetric generating
functions for the continuous dual Hahn polynomial are given in Ref. 6).

orthogonality

/ d0(z; X)2 Py (03 X) Pra(n; N)da = 27n! H I'(n+aj+ag) - 6nm, (4-38)
0
1

1<j<k<3
_ 1 . hoN) ! . (4-39)
ho(A) 27 [T <jcpes I'(aj + ak) hn(X) ! ]<jcpes(a; + ag)n
§5. m(x) = cosz
In all the examples in this section, we have*)
n(z) =cosx, 0<z<m, ~y=logq, kK=q ', o(x)=2sinz. (5-1)

Throughout this paper ¢ is always in the range 0 < ¢ < 1 and this will not be
indicated. It is convenient to introduce a complex variable z = e"*. Then the shift
operator €7’ can be written as

P = ¢~ = s (5:2)

*) We have changed the sign of ¢(z) from Ref. 13).
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whose action on a function of x can be expressed as z — gz:

Of(x) = fla—iv) = ¢ [(2) = flgz), with f(2) = F(2).
Note that v < 0.
5.1. Askey- Wilson [KS3.1]

The Askey-Wilson polynomial is the most general one with the maximal num-
ber of parameters, four. All the other polynomials in this section are obtained by
restricting the parameters aj,...,aq, in one way or another. In previous publica-
tions!®)13) these restricted polynomials were not discussed individually, since their
exact solvability is a simple corollary of that of the Askey-Wilson. However, the
simpler structure of the restricted ones would give rise to simple energy spectrum
and interesting and tractable forms of the dynamical symmetry algebras and coher-
ent states, etc., as exemplified by the continuous g-Hermite polynomial §5.5, which
has a1 = a2 = az = a4 = 0. It gives a most natural realisation of the g-oscillator
algebra.'4)

parameters and potential function

def
q>\ = (a17a2>a3>a4)7 = (%7%7%5%)7 q; (53)
(

Vi def 0= alz)((ll a;;)((llqajg) l—az) e (5-4)

The parameters have to satisfy the conditions

{a},a5,a3,a}} = {a1,a9,a3,a4} (as a set), la;| <1, i=1,...,4. (55)

10)-13)

In previous works only the real parameters a; € R were discussed.

shape invariance and closure relation

EnX) = (7" = 1)(1 = bag" 1), (5-6)
_1 1 def _
Ri(y)= (a2 —q2)%, ¥ Sy+1+q by, (5-7)
Ro(y) = (472 —¢2)*(y'* — (1 + ¢~ 1)%by), (5-8)
1 1
Rog(y)=—3(q72 —q2)*((br + g 'b3)y' — (L+ ¢ )(bs +q 'bibs)),  (59)
def def def
bl = Zaj, b3 = Z ajakal, b4 = a1asas3a4. (5'10)
j=1 1<j<k<l<4
eigenfunctions
2ix
def (& ;4 )0
dofars x) 4 | (730 ' (5:11)

PH(TI ) A) = pn(COSI' ;ai,az,as, a‘4|‘])
T —ix

- -1
def _p . q ", arazaza4q™ ", a1€'”, are
= (a1a2,a1a3,a1a47q)n X 4¢3

CHQ);

(5-12)

aiaz, a1a3, 4104
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which are symmetric under the permutations of (a1, ag, as, a4).

(b1g" "5 @, (5-13)

= on
— 4
ree 1 L (= bag" D (1 — araiq")
= 5\* + a4

an =
a1 (1 — bgg® 1) (1 — byg®?)

(1= ") [Tocjenea(l — ajarg™™) (5-14)
(1 _ b4q2n72)(1 _ b4q2n71) ’
prec _ (1—¢")(1 —big"™?) H1§j<k§4(1 _ ajakq"_l) (5-15)
4(1 _ b4q2”_3)(1 _ b4q2n—2)2(1 _ b4q2n—1) )
n, _n n— _ntl
frN) =q2(¢7" —1)(1 —bsg™ ), b(A)=¢q 2. (5-16)

annihilation/creation operators and commutation relations

ar(H) =32 —2)*H £ g ' —)V/H? =4 by, H =H+1+q ‘b,
(5-17)

N =L <H1_\/H/2_—4q—1b4) (for 0 < by < q), (5:18)

2by

H,a®)] = %a&)((q*% @2 )?H £ (¢! — ) /H2 - 4q—1b4). (5-19)

The annihilation/creation operators (2-55) and their commutation relation (2-63)
are not simplified at all. The expression b;7f; — b;7° = ¢" x(a degree 12 polynomial

in ¢") /(a degree 6 polynomial in ¢*") is very complicated.

coherent state

Blo a5 A) = bz A) Z “(ba; @)ana” Pan(z):A).  (5:20)

— (4;9)n H1<j<k<4(a]ak7Q)

The r.h.s. is symmetric under the permutations of (ay, az, as, as). We are not aware
if a concise summation formula exists or not. Several non-symmetric generating
functions for the Askey-Wilson polynomial are given in Ref. 6).

orthogonality
(04g" "5 @)n (046" ;@)oo
do(z; X)2Py(n; XN) Pra(n; N)da = 27 Snm,s
/ (@5 @)oo [T1<jen<al@jang™; @)oo
(5-21)
1 . (7;9) 0 H1§j<k§4(ajak§Q)oo
ho(A) 2m(ba3q)oo ’
ho(A 1 — byg®nt by qQ)n

hn(A) © 1= by (25 9)n H1§j<k§4(ajak ' On
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5.1.1. Askey-Wilson — Wilson

The Wilson polynomial is obtained from the Askey-Wilson polynomial by a ¢ T 1
limit. Here we present a dictionary of the correspondence for future reference. Let
us first introduce a new coordinate ' for the Wilson polynomial as the rescaled one
of the variable z (0 < z < 7) of the Askey-Wilson polynomial:

L
x = ;x, <:> 0<z' <L, p= %p), y=— A = (a},ay, al,al), (523)

T
L7
in which L is related to ¢ as ¢ = e~™/£. This entails

P = (5-24)

and the following limit formulas as L — oo or ¢ — 1: (The superscript w denotes
the corresponding quantity for the Wilson polynomial.)

Vixz;A)

Jim v VWi N, (5-25)
i T ), P — ) (5-26)
Jim (5% (- 0% on@ix) = o @i, gim EE W) ()
Jim TS P Yl ), (528)
i (1= AN =~ FV ), Jim LV, (5:29)
Jim (189(1))3 =BV, dim ba(A) = Y (). (5-30)

5.2. continuous dual q-Hahn [KS3.3]

The continuous dual g-Hahn polynomial is obtained by restricting a4 = 0 in
the Askey-Wilson polynomial §5.1. This restriction renders the energy spectrum to
a simple form &, = ¢7" — 1 for all the restricted polynomials in §5 except for the
continuous g-Jacobi polynomial §5.6 and the continuous ¢g-Hahn polynomial §5.8.1.
For these the commutation relations of H and a*) is the same (5-47), (5-66), (5-86),
(5-104) and (5-153). They can be expressed as g-deformed commutators (5-49),
(5-68), (5-88), (5-106) and (5-155). The commutation relation [a{~),a(*)] or its de-
formation becomes drastically simpler, as the number of parameters decreases.

parameters and potential function

def
q>\ = (ala az, a3)7 6= (%7 %a %)7 q; (531)

Vi def 0= Czllzz(;;(cltzj) ;;; a7) g, (5-32)
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The parameters have to satisfy the conditions

{a],a3,a3} = {a1,a2,a3} (as a set), la;] <1, 1=1,2,3. (5-33)

shape invariance and closure relation

En(N)=q¢ " -1, (5-34)
_ (1 L1y2, 0 7 def _ -1 1y2 /2
Ri(y)=(a2—¢2)%, ¥ =y+1, Roly)=(¢2—-q2)y", (5-35)
_1 1 _ _
Roi(y) =—3(¢72 —q2)*((bs + ¢ 'b3)y' — (1 + ¢ ")b3), (5-36)
b ar+as+as, by aras+aras +azas, by L arasas. (5:37)
eigenfunctions
def (62ix ; Q)oo
do(z;A) = : , (5-38)
Pn(n;A) = pp(cosz a1, az, as|q)
def _p —n? a ez’r7 a e—ir
= a; "(a1a2,a1a3;q)n 3¢2(q alclm alalg q; q), (5-39)
which are symmetric under the permutations of (ai, az,as).
Cn =2, (5-40)
arc = %(al + afl — afl(l —a1a2q")(1 — ajaszq™) —ai (1 —q")(1 — agagq”_l)),
(5-41)
=301-¢") J[ (-aag™™), (5-42)
1<j<k<3
no, o _n _ntl
faX)=q2(¢7" =1), ba(A)=q = . (5-43)
annihilation/creation operators and commutation relations
ar(H) = (@ -DH+1), M =mH+1)7, (5-44)
+1 _
0 = (s + (1= ) (0= (o +a7")
+30+g Db+ 1)) )(H+ 1), (5:45)
i = bt = —1(a™ = Dab3g™ + (a7 — Dba(bs + gbr)g™"
— 3(a72 = D)(bibs + gba)g™ + §(a7" — 1)(b2 + q)g", (5-46)
[H,a®)] = (7" = Da® (H+1), (5:47)

(@7, = —3(¢™" = DK + 1) + (a7% = ba(by + gb1)(H+ 1)~
1
1

(5-48)
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The r.h.s. of the above commutation relation is a quartic polynomial in qN . In terms
of a deformed commutator we have:

Ha® — ¢ a®BH = (T —1)a®), namely, [H, a(i)]qm = (¢ = 1D)a®). (5-49)
The following relation:

e — g = — (1 — q)bs(bs + qb1)¢®" + 1 (1 — ¢*)(bibs + gbo)g™"
T =) b2+ q)q" + (1 — ¢ (5-50)

means that [a(~),a(*)] 4 is a cubic polynomial in Vv

q4
coherent state

nn

a

(o, ;X)) = go(x; A) Py(n(z); A). (5-51)
nzo (¢:@n H1<j<k<3(a]ak7Q)
orthogonality
T 1
do(z; X)2Py(0; XN) Pra(n; N)da = 27 Snms
/0 (@ @)oo [T1<jcn<s(@iand™ s @)oo
(5-52)
1 1 ho(\) 1
= 5-(0:9) (@jan ;@)oo s =
ho(A) 2 1§J-1:£§3 g hn(X) (€5 0)n H1§j<k§3(ajak’ P q)n
(5-53)

5.3.  Al-Salam-Chihara [KS3.8]

This is a further restriction of the continuous dual g-Hahn polynomial §5.2 with
a3 = 0. The dynamical symmetry algebra is further simplified and [a(7),a(?)] is a
quadratic polynomial in ¢". The coherent state gives an explicit generating function
with symmetry a; < ag (5-71).

parameters and potential function

def .
q}\ = (a17a2)7 é= (%7 %)7 q; {Gj{,a;} = {a17a2} (as a Set)a |al| < 17 v = ]-727

(5-54)
def (1 —a12)(1 — a2z) ,
N A = = Z:E. .
Viz;A) A= )(1= ) z=ce (5-55)
shape invariance and closure relation
En(N)=¢ " -1, (5-56)
_1 1 def _1 1
Rily) =2 —q)%, v =y+1, Roly) =(g7—q?)%7, (5:57)
Roi(y) = —4(q72 — ¢2)%(a1 + az)y. (5-58)
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eigenfunctions
23
def e
do(z;A) = 2( q2°° , (5-59)
[Tj=1(a;€" ;q)oo
def —n7 a 62’17 a e—iz
Pa(ni ) = Qu(cos;ar, asla) & a7 (@raz 3 hnstn (171 0 | g1q), (560)
aiag, 0
which are symmetric under the permutations of (a1, a2).
e =2" a=1(a1+a)q", b=21(1-¢")(1—araq" "), (5-61)
no,o_ _ntl
faA) =q2(¢7" = 1), ba(A)=¢ 2. (5-62)

annihilation/creation operators and commutation relations

ar(H)= (" = 1)(H+1), M=H+1) (5:63)
a®) = q;ﬂ . ([H, Mg+ (1 =g (n—(ar + ag)))(H +1)7L (564)

e — b = (g = 1) (= (1 + @)araxq® + (ara2 + 9)q"), (5-65)
[H,a®)] = (¢! — 1)a® (H + 1), (5-66)
@7, aM) = (g7 = D) (=1 + Qaraa(H+ 1) + (mas + )(H+ 1)), (5:67)

The r.h.s. is a quadratic polynomial in ¢V. The deformed commutators are:
Ha®) —¢Fla™®H = (¢F' = 1)a™®), namely, [H, a(i)]qm = (¢T'=1)a™). (5-68)

Other interesting quantities are:

oy — gby® = (1= @)(1 — arazq™), (5-69)
e — ? b = 11— q) (1 + ¢ — (a1a2 + 9)q"). (5-70)

These mean that [a(™), a(*)], and [a(7), a(+)]qz take simple forms and, in particular,
the latter is linear in qN . As we will see in another example, the continuous g¢-
Laguerre §5.7, these are special to the restricted Askey-Wilson polynomials with a
quadratic polynomial (1 — a;z)(1 — agz) in the numerator of the potential function
V(x) (see (5-156)—(5-157)).

coherent state

o0

Pla,zsA) = do(z;A) Y

n=0

2™
(g,a1a2;q)n

1 é <alem, ase
(2ae™ 5 q) oo 2 ayag

Pu(n(x); )

T

= ¢o(r; A)

a; 2ae*ix> , (5-71)

which is obviously symmetric in a1 < a2 and listed in Ref. 6).
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orthogonality
4 1
TiA ’p, NPy (n; Ndx =27 Onims 572
| 0l 22PN Pt s My = 27 (572)
1 1 ho(A) 1
=—(q,0102:q) o0, = ) 5-73
o)~ 22 M0 ) T iaa(marian (5:73)

5.4. continuous big q-Hermite [KS3.18]

This is a further restriction of the Al-Salam-Chihara polynomial §5.3 with ay = 0.
The continuous big g-Hermite gives another simple realisation of the g-oscillator
algebra (5-90).

parameters and potential function

e def a, 6=1%1, ¢ -l<a<l (5-74)
Ve ¥ gy 1 o)

shape invariance and closure relation
En(A)=q¢ " -1, (5-76)
Ri(y) = (a2 — 2%, v Ey+1, Roly)=(g"% —q2)%' (577)
Roi(y) = —4(a7% — ¢*)%ay’. (5-78)

eigenfunctions
of | (¥ 5 @)oo

dulars ) | | (579)
Pa(n; A) = Hy(cosx;alg) € a*”3¢2<q_n’ agm(; “ g q)7 (5-80)
e =2" a¥®=2aq", b°=1(1- q,”), (5-81
=i =1, b =g (5:82)

annihilation/creation operators and commutation relations

ar(H)= (@™ - DH+1), N=H+1, (5-83)
0 = (Pl + (=)= 30) 0+ D7 58)
wir— bt = 1(1—q)q", (5-85)
H,a®] = (¢7F = 1)a™® (H + 1), (5-86)
[, aP] =11 - g)(H+ 1) (5-87)

The deformed commutator makes (5-86) simpler

Ha®) —¢Fla®H = (¢F' = 1)a™®), namely, [H, a(i)]qm = (¢T'=1)a™®). (5-88)
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The relation
Wi — byt = (1 —q), (5-89)

implies another realisation of the g-oscillator

a'a®) — gaMa) = 1(1—g), namely, (@), M), = 1(1—q). (5-90)

coherent state (2-80) reads with the help of [KS(3.18.13)]

3 Ly N 2Ma” y) . (2003 )00

(e, w3 A) = g3 A) Z_;) o D@ X) = doles ) o T

(5-91)
orthogonality
g 1

[ 0@ NP N P N = 27 B, (5:92)

1, hoA) 1 _
o)~ Y ) T @ (93

5.5. continuous q-Hermite [KS3.26]

The continuous ¢-Hermite polynomial has been discussed in some detail in
Ref. 14) as the simplest dynamical system realising the g-oscillator algebra in two
different ways (5-108) and (5-117). Here we recapitulate some formulas to make
this paper complete. Like the Hermite polynomial, the continuous ¢g-Hermite has no
parameter other than gq.

parameters and potential function

VoA % = 22)11 2= (5:94)

shape invariance and closure relation

En(N)=q¢ " -1, (5-95)

i1 / r def _1 1i9 /2

Ri(y)=(a"2—q2)%, ¥ Sy+1, Ro(y)=(a2—-¢2)%? R_(y)=0.
(5-96)
eigenfunctions
def z:r
do(;A) = (€75 )0, (5-97)
'mz —n 0 n —2ix

Pa(n: A) = Hy(coszlg) & e y00 (T 7 | qiqme ), (5:98)
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annihilation/creation operators and commutation relations

ax(H) = (F' = )(H+1), =H+17, (5-101)

+1 _
o = S (ol + (= ) (1) (5:102)
i1 — bt = 3(1—a)q", (5-103)
H,a®] = (¢ = 1)aP(H + 1), (5-104)
[0, a M) =11 - g)(H+1)7! (5-105)

The formula (5-104) can be simplified as a deformed commutator:
Ha® —¢Fla®H = (¢F'-1)a™®), namely, [H,aP] 7 = (¢T' —1)a®). (5:106)

The following relation:
o — e = 31— q), (5:107)
means a g-oscillator algebra:

alTa ) — gaPa) = 1(1—¢q), namely, (a7, a)], = H(1-q). (5108)
A-shift operators Since the theory has no parameter A, A" and A work as the

creation and annihilation operators. Thus a(*) and A" (a{~) and A) are closely
related:

o) = At X, (5-109)
At — —i( V@) P2 _ \/We—wﬂ)’ (5-110)
x & _%q(z V(z)e™®? — 21 /V(a) e P2 (H+1)7 (5-111)

The similarity transformed quantities are:

it = A'X, (5-112)

A o)™ o Al du(e) = (g 2 4 g ), (5-113)

< de _ 1 1
X (@)™ 0 X 0 golw) = 5a¥

1 ~
L e—wﬂ) (H+1)"L (5114)

As there is no A to be shifted, we have AT = B(A) (2:40) and A = F(A) (2-39). The
X and A’ operators work as

XP,(z) = %anan(:c), AP, (z) = q_nTanH(:c) (5-115)

and X satisfies the relation

1 1 2
vp/2 —yp/2
(1—,226 Jr1—,2*26 >

=V(z)e? +V(x)e ™ -V(z)—V(z)" +1

= H +1. (5-116)

(2q—%)~((ﬁ+ 1))2
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It is easy to verify that the shape invariance relation (2-15) itself implies a realisation
of the g-oscillator algebra with A and Af:1%)

AAT — 7" ATA = ¢t — 1, namely, [A AT, 1 =¢" 1 (5-117)

coherent state (2-80) reads with the help of [KS(3.26.11)]

B0, 8) = dufai0) D o Paln(a) i) = dofrs N :

“ (¢:0)n (2ae™, 2067 5 q) o
(5-118)
orthogonality
1
(13 XN) Pr(n;N)dx = 27 —————— Opm, 5-119
| o P A) e (5119)
1 ho(X) 1
q;4)c0 = . 5-120
W0 E O ) (o120
5.6. continuous q-Jacobi [KS3.10]
parameters and potential function
def 1
A= ( ﬁ)) 0= (L 1) N _53 (5121)

e (1= gH D)1 = Do) (14 gH D214 20D
(1—22)(1—qz?)

(5-122)
shape invariance and closure relation
En(A) = (¢ = 1)(1 — g"TotFth), (5-123)
Ri(y)= (72 — )%/, ¥ Ey+1+¢, (5-124)
Ro(y) = (g% — q%)Q( — (14 q)%¢™"), (5-125)
1 1 1
Ro(y) = —5(¢7% — ¢2)2q7 (1 + ¢2)(¢2* — ¢2%) (1 — 2D (yf + (1 + q)g2 ).
(5-126)
eigenfunctions
def GRS
A 5-127
Po(w;A) = (q%(a%)ez’z’_q%(ﬁ%)em;q%)oo ’ ( )
Pa(11;A) = P (cos zlg) (5-128)
def (qa-i-l . n+a+p+1 qz(o‘+ ) el qQ(a—&- )g—it

),

;q) s (q ' q
. N 493
(Qa(I)n qa+17 —q2 (a+ﬁ+l)7 _q2(a+5+2)
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1

2nq%(o¢+5)n (g"TetBtL: ),

5-129
%(a+ﬂ+1)’ ,q%(a+ﬁ+2) ; Q)n7 ( )

(q,—q
ax;Lec _ l<q;(a+;) + qf%(aJr%)
2

(1 — gnrathy(1 — gntathti)(] 4 qn+%(a+6+1))(1 + qn+%(a+6+2))

q%(a+l)(1 — q2n+a+ﬁ+1)(1 _ q2n+a+ﬁ+2)

q%(aJr (1 —q )(1 _ qn—l—ﬁ)(l + qn+ (aJrﬁ))(l + qn+é(a+ﬂ+1))>
1 )

(1 — gZntath)(1 — g2ntathtl)
(5-130)
bt = (1 —¢") (1= ¢"")(1 = ¢"*7)(1 — g™Ftr)
(1_'_qn-&-%(oﬁ-ﬁ—l))(l+qn+%(a+ﬁ))2(1 +qn+%(a+ﬁ+l))

4(1 _ q2n+a+ﬁ—1)(1 _ q2n+a+ﬁ)2(1 _ q2n+o¢+ﬁ+1) ’ (5131)

s@+3) —n(] — gntatBtl
fa(A) = q2 l(i+qg+1() q l(a+g+)2) 7 (5-132)

(14q2 )(1+¢q2 )

bn(A) _ qf%(a+g)qn+1(qf(n+1) _ 1)(1 + q%(aJrﬁJrl))(l + q%(a+5+2))' (5133)

annihilation/creation operators and commutation relations

ar(H) = 3(q72 — ¢2)?H £ L(q7 = Q) VH'Z — 4qotBT, o Ly 41 4 gt

(5-134)
¢V =3P H — H2 - 4qa+ﬁ+1) (for 0 < ¢®P*+ < 1), (5-135)
[H,a®)] = %a(i)<(q_l g2)PH £ (¢ = VH? - 4qa+ﬂ+1)_ (5-136)

The annihilation/creation operators (2-55) and their commutation relation (2-63) are
not so simplified because b;¢; — b’° = ¢" x (a degree 9 polynomial in ¢")/ (a degree

11 polynomial in ¢™) has a lengthy expression.

coherent state We are not aware if a simple summation formula exists for the
coherent state:

(22T )n(ga(etAHL ga), o/n
(g*t, ¢+ q)n

Y @A) = do(a; N) Z Po(n(z);A). (5-137)

n=0

orthogonality

AN AIEN BN

1 .
o (L= (@ g0 2 )y

q
(1 — @2rtotf+1)(g, go+h+1, 7q%(a+6+1) O

(qQ(oe—H@—I—Q) q2(a+ﬁ+3) ,Q)

1
(q,qo+1, gP+1, —q2 (@B _ga(otB42) . gy

Sy (5-138)
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B+1 (oz-i-ﬁ-i—l) (O¢+ﬁ+2)
L O R e Q)oo7 (5139)
ho(X) 27r(q2 (a+ﬂ+2)7 q§(0f+5+3) )
1 — g2nta+8+1 atB+l L(a+B+1) .
ho(A) — (1—¢ )(q,q —q2 s On atbn, (5140)
hn(X) (1 — gortBH1)(gortl, gB+L, _qQ(a+B+3) :q)n

5.7. continuous q-Laguerre [KS3.19]

This is a further restriction (8 — oo or ¢” — 0) of the continuous g-Jacobi
polynomial §5.6. Many formulas are drastically simplified.

parameters and potential function

e 1
A, 6=1, ¢ a> 5 (5-141)
1 1 3
gy det (1= q7F2)2)(1 — g2 (072)z) i
V(z; ) 0= (1= g7 , z=¢€". (5-142)
shape invariance and closure relation
En(N)=¢ " -1, (5-143)
_1 1 def _1 1
Ri(y)=(2—-¢)%, ¥ Sy+1l, Rly)=(q2—-¢)%"  (5144)
Roi(y) = —3(q7% — q7)%2 D (1 4 g2)y. (5-145)
eigenfunction
¥ @)oo
do(x;N) T ( T ,) — | (5-146)
(qz(a+2)ezx qz)oo
a+1. -n a+l) iz L(a+l) —ix
vy _ pla) def (4“7 5 n (q , q2\0T2)e g2l )e )
PTL(T]7A) - Pn (COS.’,U|q) - (q’q)n 3¢2 qa+1, O Q3q 9
(5-147)
1
on §(a+2)n 1 1 rec n o
= = T (L gh), W = {1 g1 g, (51149)
FaX) = q2@FDg b (A) = g 2OFDgrt (g (D) ), (5-149)

annihilation/creation operators and commutation relations

ar(H) = (¢FH = 1) (H + 1), =(H+1)"1, (5-150)
a® = q(H Mgt + (1= ¢ (n - %q%<0‘+%)(1+q%)))(7{+1)*1

(5-151)

i = = 11— ) (=(1+ 9)q"¢™" + (14 ¢*)q"), (5-152)

[H,a®)] = (7' = D@ (H +1), (5:153)

(@7, aM) =11 =) (-1 + " (H+ )2 + (1 + ) (H+ 1)), (5:154)
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Again (5-153) can be written as g-deformed commutators:
Ha®) —¢Fla®@H = (¢T1=1)a™®), namely, [H, a(i)]qq:l = (¢"'=1)a®). (5-155)

The following mean that [a(~),a(*)], and [a(7), a(*)] 2 take simple forms, see (5-69)-
(5-70):

Wi — bt = (1 — ) (1 — g, (5-156)
Wi by = i1 =) (L g — (Lg% ). (5-157)

coherent state (2-80) reads with the help of [KS(3.19.12)]

(67

> -5 oz—i—l) n,/n
B(al, 23 8) = do(; A) Z g Pali()i N

1 1 . 1 .
1 qi(a+§)6m7 qi(a—l—Q)em i
:QZ)O(TE;)\)mQCM( qa-i-l q,2o/e )
(5-158)
orthogonality
(qa+17Q)n ( +l) 1
oo( x)\ A AN dr =2r — ¢\,
/ " Fali; M En(ni %) (45 0)n (2,45 @)oo
(5-159)
1 1 h ()‘) (q'Q)n - 1
atl, oA = (a+3)n, 5-160
o) 2n B0 e ) T e, (5-160)

5.8. Comments on the two polynomials with n(x) = cos(x + ¢)

In the review of Koekoek and Swarttouw,%) two polynomials, the continuous g-
Hahn [KS3.4] and the ¢-Meixner-Pollaczek [KS3.9] are listed as having n(z) = cos(z+
¢), with non-vanishing angle ¢ appearing in the definition of polynomials. In fact,
the continuous ¢g-Hahn polynomial is the same as the Askey-Wilson polynomial §5.1
and the g-Meixner-Pollaczek polynomial is proportional to the Al-Salam-Chihara
polynomial §5.3 with degree- or n- dependent coefficients. Therefore we will not
treat them as independent ‘discrete’ quantum mechanical systems.

5.8.1. continuous ¢-Hahn [KS3.4]

A simple comparison of the normalised three term recurrence relation for the
continuous g-Hahn polynomial (KS3.4.4) with that for the Askey-Wilson polynomial
(KS3.1.5) reveals that they are one and the same polynomial after the identification
of the parameters (in the notation of Ref. 6))

AW

AWV e, VAWV S pe?, AV S cem® AW e, (5-161)

in which the superscript Aw indicates the quantity of the Askey-Wilson polynomial.
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5.8.2. g¢-Meixner-Pollaczek [KS3.9]

Likewise, the normalised three term recurrence relation for the ¢-Meixner-
Pollaczek polynomial PMP (1) (KS3.9.4) is the same as that for the Al-Salam-
Chihara polynomial PS€(n) (KS3.8.4) after the identification

a5 S ae?, pASC - g e, a?SC = 5% eC, a>0, (5-162)
in which the superscript Asc denotes the quantity of the Al-Salam-Chihara polyno-

mial. These two polynomials are different only by a multiplicative constant:

POy up .
(GO B ). (5-163)

§6. Summary and comments

Known examples of exactly solvable ‘discrete’ quantum mechanics of one de-
gree of freedom are discussed in detail and in full generality. The shape invariance
property, the exact solutions in the Schrodinger and Heisenberg pictures, the annihi-
lation/creation operators together with their symmetry algebra, the coherent state
as the eigenvector of the annihilation operator, the ground state wavefunction giv-
ing the orthogonality measure of the eigenpolynomial are given explicitly for each
system, which is named after the corresponding orthogonal polynomial. The present
paper supplements the earlier results.”):19-13) The main focus is the polynomials
obtained by restricting the Askey-Wilson polynomials. In general, they have sim-
ple and tractable symmetry algebras, some of them are the g-oscillator algebra.'4)
Another main feature is the coherent states. As many as eleven new and exact co-
herent states are presented (3-19), (3-39), (4-16), (4-37), (5-20), (5-51), (5-71), (5-91),
(5-118), (5-137) and (5-158) as the eigenvectors of the annihilation operators for the
‘discrete’ quantum mechanical systems. These coherent states are by construction
totally symmetric in the symmetric parameters of the Hamiltonians. In other words,
they realise the dynamically favourable generating functions of the eigenpolynomi-
als. Like the standard coherent state of the harmonic oscillator, these new coherent
states are expected to find various applications in many branches of physical sciences,
in particular, quantum optics and quantum information. It would be interesting to
investigate if and to what extent these new coherent states share the remarkable
properties of the standard coherent state of the harmonic oscillator.

One interesting future task is to solve the closure relations (2-23)—(2-27) alge-
braically to determine all the possible forms of the sinusoidal coordinate n(x) and the
potential function V' (z). For the ordinary quantum mechanics and for the orthogo-
nal polynomials of discrete measures, this task was done in Appendix A of Ref. 13)
and Appendix A of Ref. 7). The present case is more complicated than these due to
the presence of arbitrary periodic functions with period 7. It is interesting to see
if difference equation versions of the soliton potential, i.e. 1/ cosh? z potential in or-
dinary quantum mechanics (see, for example, §3.1.3 of Ref. 13)) with n(z) = sinhz,
and the Morse potential with n(z) = e™ (see §3.1.4 of Ref. 13)) are contained as
solutions or not.
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Appendix A
—— Diagrammatic Proof of the Hermiticity of the Hamiltonian

Here we give a diagrammatic proof of the hermiticity (self-adjointness) of the
Hamiltonian (2-1) for the three different cases of the sinusoidal coordinates corre-
sponding to §§3-5. A less detailed proof of the hermiticity can be found in Ref. 26).
The hermiticity or self-adjointness of the Hamiltonian H means (g, Hf) = (Hg, f)
for a given inner product (g, f) (2-75) for arbitrary elements f and g of the appro-
priate Hilbert space. It is necessary and sufficient to show that in a certain dense
subspace of the Hilbert space. The obvious choice for such a subspace is spanned by
the ground state wavefunction ¢, which is given in each subsection (3-10), (3-25),
(4-7), (4-23), (5-11), (5-38), (5-59), (5-79), (5-97), (5-127), (5-146), times the eigen-
polynomials P, (n(zx)). The types of the polynomials are:

(a) : polynomials in n(x) = x for the Hamiltonians in §3,
(9, f) = /_ g9(@)" f(x)dx, f(z)= do(x)P(x), g(x)= do(2)Q(z), (A-1)
(b) : polynomials in 7(x) = 22 for the Hamiltonians in §4,

(97f)=/ooog(ﬂf)*f(w)d% f(z) = do(x) P(z?), g(z) =do(2)Q(a%),  (A2)

(¢) : polynomials in 7(x) = cosz for the Hamiltonians in §5,

(6, f) = / " g(e) f@)dr, f(z) = golx)Plcosz), g(x) = do(z)Q(cosz). (A-3)

This clearly removes the non-uniqueness of the eigenfunctions, which was mentioned
in §2. For the Hamiltonian (2-3) H = T4 +T- — V (z) — V(x)*, it is obvious that the
function part —V (z) — V(x)* is hermitian by itself. When T = \/V (z) e??/V (z)*
acts on f, the argument of f is shifted from x to x — iy. With the compensating
change of integration variable from = to x + iy one can formally show (g,T}f) =
(T'+g, f) in a straightforward way. Similarly we have (g, 7_f) = (T_g, f) by another
change of integration variable x to x — iy. This is the ‘formal hermiticity’.

In reality, the shift of integration variable, to be realised by the Cauchy integral,
would involve additional integration contours:

(a) : (—o0,+i —0), (400,+i+00) for the Hamiltonians in §3, (A-4)
(b) : (0,%1), (4o00,%i+ c0) for the Hamiltonians in §4, (A-5)
(A-6)

It is easy to verify that all the singularities arising from V' and V* in cases (b) and
(c) are cancelled by the zeros coming from the ground state wavefunctions ¢y and

(c):(0,%xilogq), (m,m=+ilogq) for the Hamiltonians in §5.
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~R 0 © -R 0 R

Fig. 2. Integration contours in complex z plane. The endpoint R = oo for cases (a) and (b), R=7
for case (¢). (For case (c), ¢y is in the lower half plane because of v =loggq < 0.)

¢4, and the Cauchy integration formula applies in all cases. As can be seen from the
diagrams in Fig. 2 the contribution of the additional contour integrals (A-4)—(A-6)
cancels with each other and the shifts of integration variables are justified and the
hermiticity is established.

First, the contribution from the contours at infinity in (a) vanishes identically
due to the strong damping by ¢¢ and ¢ (see (3-10) and (3-25)). This establishes
the hermiticity in the case (a). Next let us discuss the case (b) in detail. In this case

~v = 1. The integrand of (g, T f) are
G T f = do(2)" Q@) V(@) V(z+ i) do(x —)P((x — 1)) € F(z), (A
G T_f = ¢o(2)*Q(22)* V(@) V/V(z + i)do(z + i) P((z +)?) ¥ G(z). (A

Due to the evenness of the eigenfunctions, ¢o(—z) = ¢o(z), P((—2)?) = P(z?),
Q((—z)?) = Q(a:Q) and V(x)* = V(—x*), we have

G(x) = ¢o(—x VV (=) V(=2 + i) ¢o(—z — i) P((—x — i)?)
= F(—x ). (A-9)

On the other hand, the integrand of (T'+g, f) are
(T19) f = V(@) V/V (& +i)go(x — i) Q((x — i)*)*do(2) P(a?)

= F(x+1), (A-10)
(T-g)*f = V'V (2)\/V (2 +1i)*¢o(a + )" Q(x +1)*) do(2) P(z?)
=G(x—1)=F(—z+1), (A-11)

in which (A-9) is used for the last equality. Since the integrands are analytic in x
and there is no pole within the contours (see Fig. 2), we have

F(x)dx =0, G(x)dx = F(—x)dx = j{ F(x)dx = 0. (A-12)
Cq Co C2 5
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Combining them, we obtain

0= }é Flz)dz + f; Fla)dz = j{cﬁcéF(x)dx

:/OO F(q:)dx/oo F(:c+i)dx+/at+oﬁo’(x)dx+/l F(o)de.  (A13)

—00 —o0 ) at—oo

The contribution from the contours at infinity in the case (b) vanishes identically
due to the strong damping by ¢¢ and ¢f (see (4-7) and (4-23)). Thus (A-13) implies
[Z F(z)dx = [ F(x + i)dz. The Lh.s. is

| F@de+ [ e = 0. 70) + 0.1, (A14)
0 0
The r.h.s. is
/OO F(x+i)dz + /OO Gz —i)dx = (Tyg, f) + (T—g, ). (A-15)
0 0

Thus the hermiticity of the Hamiltonians for the case (b) is proved. The hermiticity of
the Hamiltonians for the case (¢) is proved in a similar way together with the evenness
and the 27 periodicity of the ground state wavefunction ¢g(z), the sinusoidal coor-
dinate n(z) = cos z and the potential function V(x); ¢po(—z) = ¢o(x), n(—x) = n(x),
V(z)* =V(=2%), ¢o(x + 27) = ¢(x), n(z + 27) = n(z), V(z+27) = V(x).

Appendix B
—— Some Definitions Related to the Hypergeometric and q-Hypergeometric
Functions

Here we collect several definitions related to the (¢-)hypergeometric functions®

for self-containedness.
o Pochhammer symbol (a),

:eli[cﬁ-k:—l —a(a+1)---(a+n—1):F?(Z)n) (B-1)
o g-Pochhammer symbol (a;q),
D[ - e ) = (1)1 —ag)--(1—ag™Y).  (B2)

k=1

o hypergeometric series ,Fy :
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def
where (a1, -+, ar)n = [[j=1(a)n = (@1)n - (ar)n-
o g-hypergeometric series (the basic hypergeometric series) ,¢s :
a1 a dof (a ar;q) Z"
y 2ty A . def L 585 9)n  \(14+s—r)n (1+s—r)n(n—1)/2
q; Z) = 1 q )
Tqbs(bl,-'wbs %(bla"'abs;Q)n( ) (@:0)n
(B-4)
def
where (a1, -+, ar;Qn = [[j1(a5;On = (a1;@)n -~ (ar;@)n-
o g-gamma function I;(z):
def (q;Q)oo 1-2z :
I,(z) = ———(1—q , lim I,(z) = I'(2). B-5
() S D= (gl 1) = 1) (B:5)
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