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Abstract: The beneficial role of the Mediterranean diet in the prevention of chronic diseases, including
cardiovascular diseases, diabetes, and obesity, is well-recognized. In this context, Brassicaceae are
considered important vegetables due to several evidences of their health promoting effects that
are associated to bioactive compounds present in the edible parts of the plants. In this review,
the mechanisms of action and the factors regulating the levels of the bioactive compounds in
Brassicaceae have been discussed. In addition, the impact of industrial and domestic processing
on the amount of these compounds have been considered, in order to identify the best conditions
that are able to preserve the functional properties of the Brassicaceae products before consumption.
Finally, the main strategies used to increase the content of health-promoting metabolites in Brassica
plants through biofortification have been analyzed.
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1. Introduction

The Brassicaceae family consists of about 3500 species, and includes 350 genera, such as Brassica,
Camelina, Crambe, Sinapis, and Thlaspi. In particular, the genus Brassica includes some species of
worldwide economic importance, such as Brassica oleracea, Brassica rapa L., and Brassica napus [1].

Several species, which belong to the Brassicaceae family, represent an important part of the human
diet worldwide; indeed, when regularly consumed, they have been found to exert health-promoting
effects, such as a reduction in the risk of chronic diseases, particularly cardio-vascular diseases
and several types of cancer [2,3]. These effects have been linked to the presence in these plants of
phenolics, glucosinolates, carotenoids, tocopherols, and ascorbic acid, well-known antioxidants [4].
In particular, broccoli, white cabbage, and cauliflower are rich in glucosinolates, and, more in detail, in
glucoraphanin, a molecule that is transformed by myrosinase into sulforaphane, that is a compound
endowed with anticarcinogenic properties [5].

In this review, we describe how a reduced risk of chronic diseases development may be a
consequence of Brassicaceae consumption. Furthermore, we analyze the specific mechanisms of action
of the most important bioactive compounds that are present in the genus Brassica. Finally, we debate
on the biotechnological approaches that can be used to enrich the content of antioxidant compounds
in the edible parts of Brassica plants.
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Brassicaceae are usually consumed after cooking; therefore, it is necessary to use appropriate
agronomic techniques combined with proper processing techniques to manage and/or improve the
general quality of the final Brassica product used for consumption [6]. Therefore, here, the impact
of different practices used both pre- and post-harvest and their effects on the amount of bioactive
compounds in Brassicaceae products are also discussed.

2. Bioactive Compounds in Brassicaceae and Their Effects on Chronic Diseases

The Mediterranean diet, which is characterized by a high consumption of plant-based foods,
has been associated with a lower risk of cardiovascular diseases and mortality in different
epidemiological studies. In the last few years, several studies, both in vitro and in vivo, have focused
on the effects of Brassicaceae on chronic diseases and on the bioactive compounds of these plants that
may be responsible for the observed effects [7,8] (Figure 1). It has been discussed that the known
healthy effects of Brassicaceae may be related to the presence of several bioactive compounds in the
edible parts, such as ascorbic acid (AsA), phenolics, carotenoids, and glucosinolates, as summarized in
Table 1 [9,10].
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Table 1. Mechanisms of action of bioactive compounds in Brassicaceae.

Compound Mechanism Reference

Ascorbic acid

ROS reduction and neutralization [12]

Protection against LDL oxidation
[13]

Prevention of oxLDL-induced overexpression of Vascular Endothelial Growth Factor

Phenolics
ROS neutralization

[14]
Chelation of redox-active metal ions and inhibition of LDL-cholesterol oxidation

Carotenoids Radical scavengers and quenches of singlet oxygen [15]

Glucosinolates
Inhibition of the invasive potential of human cancer cell line in vitro [16]

Regulation of the phase I and/or phase II detoxification enzymes activity [17]

AsA and dehydroascorbic acid are known to reduce and neutralize reactive oxygen species
(ROS) [12]. Moreover, AsA is able to protect the myocardium when associated to ferulic acid [18],
and, in association with vitamin E, it can prevent oxLDL-induced overexpression of vascular endothelial
growth factor (VEGF), responsible for atherosclerotic plaque formation [13]. Cultivated broccoli normally
contain high amount of Vitamin C, ranging between 70 and 120 mg/100 g fresh weight (FW) [19].
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However, the content of AsA in Brassica depends on the investigated cultivar, sulfur fertilization, and on
post-harvest handling conditions [20–23]. For example, the microorganism Trichoderma harzianum,
a known biocontrol agent, and its metabolites (harzianum acid and 6-pentyl-a-pyrone) were able to
increase AsA content when used on plants of the ecotype "Friariello" from the Campania region [14].

Phenolic compounds have been studied for their ability to chelate redox-active metal ions,
to inhibit LDL cholesterol oxidation, and to neutralize other processes involving ROS, since they are
efficient free radical scavengers [14]. Moreover, dietary polyphenols may inhibit the growth of adipose
tissue by modulating adipocyte metabolism [24]. It is reported that polyphenols are able to enhance
glucose uptake in adipocytes and muscle cells by GLUT4, a glucose transporter that exerts its action
through the AMP-activated protein kinase pathway [25]. It has also been demonstrated that flavonoids
can normalize blood glucose levels and promote β-cell regeneration in islets of alloxan-treated rats [26],
while epicatechin and quercetin can improve insulin production in isolated rat islets [27]. Turnip leaf
(Brassica rapa) extracts, which are rich in flavonoids and tannins, showed an anti-hyperglycemic activity
in alloxan-induced diabetic rats [28]. In general, different varieties of broccoli may have different
total phenolics content, ranging from 5 up to 8 mg/g dry weight (DW) [19,21]. The amount of total
phenolics in Brassica may be further increased by using specific agronomic techniques, such as sulphur
fertilization and/or light-treatment [4,29].

Carotenoids are pigments precursors of vitamin A (i.e., β-carotene, γ-carotene,
and β-cryptoxanthin), which are characterized by the presence of conjugated double bonds
responsible for the radical scavengers and quenchers of singlet oxygen. It has been reported that
carotenoids level in Brussels sprouts is 6 mg/100 g FW, about 2 mg/100 g FW in broccoli, 0.5 mg/100 g
FW in red cabbage, and 0.26 mg/100 g FW in white cabbage [15]. Higher β-carotene serum levels
have been linked to lower rates of cancer and cardiovascular diseases, as well as to decreased risks of
myocardial infarction. Moreover, serum β-cryptoxanthin and β-carotene amount have been negatively
correlated with metabolic syndrome factors [30].

Glucosinolates represent a group of phytochemicals found in 15 botanical families of the order of
Capparales and are very abundant in Brassicaceae [31]. A very different profile of glucosinolates may be
found in different broccoli extracts [32]. In a recent paper, the most abundant glucosinolates found
in different broccoli samples were glucobrassicin and neoglucobrassicin, followed by glucoraphanin.
Interestingly, glucoraphanin, which is one of the most representative glucosinolates in broccoli,
was completely absent in the ecotype “Friariello” from the Campania region [31]. Also, the content of
glucosinolates may be deeply different in different broccoli varieties. For example, analyses conducted
on a collection of 113 varieties of turnip greens (Brassica rapa L.), cultivated in two different
sites in Spain, showed glucosinolates contents ranging from 12 to 70 µmol/g DW at one site,
and from 7 to 60 µmol/g DW at the other site [32].

Intact glucosinolates are biologically inactive, whereas after the disruption of plant cells, they are
hydrolysed by a β-thioglucosidase enzyme called myrosinase. Among the breakdown products,
the isothiocyanates are associated to important protecting effects [33]. In addition to the prevention
of chronic disease, it is largely reported a strong correlation between the consumption of cruciferous
vegetables and the decreased risk for different types of cancer. Indeed, it has been demonstrated that
extracts of broccoli and watercress inhibit the invasive potential of human breast cancer cell lines
in vitro [31]. This effect may be explained by the ability of glucosinolates-hydrolysis products to
regulate the phase I and/or phase II detoxification enzymes activity [17]. Therefore, isothiocyanates
could be considered as a new class of invasion inhibitors.

In the last few years, several studies both in vitro and in vivo have been carried out on the effects
of Brassicaceae on chronic diseases [7,8]. By using an obese mouse model, a study demonstrated that the
exposure of mice to ethanolic extracts from Brassica rapa resulted in the expression of lipolysis-related
genes in white adipocytes, in the activation of cyclic AMP-dependent protein kinase, and in the
induction of extracellular signal-regulated kinase, suggesting that Brassicaceae extracts may be used as
safe and effective anti-obesity agents [11].
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In another in vivo study, extracts from Brassica rapa were used for 10 weeks as a part of the
diet of overweight human subjects. At the end of the experiment, a significant increase in the
high-density lipoprotein cholesterol (HLDL-cholesterol) concentration and a significant reduction
in the total cholesterol/HDL-cholesterol ratio, free fatty acid, and adipsin levels were measured [7].
Also, Shah et al. [8] used extracts from Brassica oleracea leaves to analyze its anti-diabetic effect on
rats. After having induced diabetes in rats, animals were fed for 28 days with Brassica oleracea,
and then, a significant improvement in body weight and in water and food intake was observed [8].
In rats fed with an atherogenic diet, the assumption of red cabbage, highly rich in anthocyanins,
was able to increase faecal lipid excretion, with a reduced risk of tissue lipids, hepatic, and cardiac
peroxidation [34]. Moreover, it has been demonstrated that Brassica oleracea kale leaves extracts
can inhibit lipid peroxidation in LDL isolated from human volunteers [35], while extracts from
Brassica rapa L. oleifera can suppress postprandial hypertriglyceridemia in mice due to the presence of
gluconapin and sinigrin [36]. Finally, it has been proved that the combination of Brassica olearaceae L. and
hydrosoluble chitosan was able to reduce triglycerides, serum total cholesterol, and LDL-cholesterol in
rats, and that this combination was much more effective than that obtained by combining chitosan
and Aloe vera extract [37,38]. A further protective effect of Brassicaceae is represented by the inhibition
of mechanisms regulating the development of cancer. Indeed, a 2-pyrrolidinone rich extract from
Brassica oleracea showed in vitro cytotoxicity on HeLa and PC-3 human cancer cell lines, and it also
exhibited antioxidant activity in a cell-free system [39]. Adverse effects of compounds that are present
in Brassicaceae towards metabolic syndromes are also possible. For example, the potential additive
and synergistic effects of flavonoids from Brassicaceae with other molecules could interfere with the
bioavailability of specific drugs with a narrow therapeutic index [9].

3. Biofortification to Optimize the Content of Bioactive Compounds in Brassicaceae

Biofortification is a sustainable approach that is based on the fortification of crops through the
utilization of nutrient-rich fertilizers, breeding or plant engineering strategies in order to produce
and/or accumulate nutritionally important molecules [40]. Among these techniques, conventional
breeding could show some disadvantages since it requires long time to introduce traits of interest into
local varieties, whereas, through genetic engineering, novel genes can be directly introduced into the
genome of transgenic plants. Furthermore, genetic engineering allows for combining several traits in
the same plants and nutritional traits can be targeted to specific plant organs [41,42].

Brassicaceae represent an ideal system for studying the genetic factors that are controlling the
accumulation of bioactive compounds. Indeed, up to date, in the Brassicaceae family, the genomes of
ten species have been partially or completely sequenced and the conserved sequence homology to
Arabidopsis thaliana allows for the development of specific genomic resources [43]. Several molecular
markers have been introduced for genetic studies in Brassica plants, such as restriction fragment
length polymorphisms (RFLP), amplified fragment length polymorphisms (AFLP), sequence-related
amplified polymorphisms (SRAP), random amplified polymorphic DNA (RAPD), and simple sequence
repeats (SSR) [44]. Molecular maps and mapping populations have also been developed by using
several varietal groups and subspecies as parents. Quantitative trait loci (QTLs) controlling the
accumulation of bioactive compounds, including carotenoids and glucosinolates, have also been
identified in Brassicaceae [44]. Several studies have been conducted on the structural and regulatory
genes involved in the biosynthesis of bioactive compounds of broccoli. For example, a recent study [45]
reported that the protein phosphatase 2A regulatory subunit B′γ (PP2A-B′γ) physically interacts with
indole glucosinolate methyltransferases. In this way, both the methoxylation of indole glucosinolates
and the synthesis of 4-methoxy-indol-3-yl-methyl glucosinolate in Arabidopsis thaliana leaves are
controlled. These evidences provide a new perspective for metabolic engineering of glucosinolate
metabolism in cruciferous plants.

Obtaining transgenic plants could be a valid alternative strategy to improve the content of specific
molecules by either inactivating or overexpressing genes, or cloning the regulatory factors [46]. In this
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regard, many studies have been conducted in order to increase the content of glucosinolates. In one
study, transgenic Chinese cabbage (Brassica rapa) was obtained by overexpressing the Arabidopsis
genes MAM1, CYP79F1, and CYP83A1. Only in the MAM1 transgenic line, increased levels of
aliphatic glucosinolates, gluconapin, and glucobrassicanapin were observed [47]. Overexpression of
three paralogous BrMYB28 genes in transgenic Chinese cabbage increased the total content of
glucosinolates in homozygous T1 and T2 generation plants [48]. Finally, overexpressing a rolB gene
in Arabidopsis thaliana calli, a 3-folds increase in the levels of indol-3-ylmethyl glucosinolate and
4-methoxy indol-3-ylmethyl glucosinolate was found. This effect was probably due to the ability of the
rolB gene to induce the expression of the transcription factors MYB34, MYB51 and MYB122 [49].

A high level of vitamin E was also achieved in transgenic Brassica napus plant seeds by
overexpressing Arabidopsis genes encoding hydroxyl phenyl pyruvate dioxygenases, alone or
in combination with genes encoding chimeric homogentisate phytyl transferase and tocopherol
cyclase [50]. To enhance the amount of carotenoids in Brassica napus plants, seven key enzyme genes that
are involved in ketocarotenoid synthesis, isolated from the soil bacterium Pantoea ananatis, and from
the marine bacteria Brevundimonas and Paracoccus strain, were expressed in transgenic plants [51].
In another paper, the Arabidopsis regulatory gene Production of Anthocyanin Pigment 1 (AtPAP1) was
expressed in Brassica napus, thus obtaining a significant increase in the levels of the phenolic compounds
cyanidin, pelargonidin, and quercetin [52].

A further possible strategy for the production of healthy compounds, such as glucosinolates and
phenolic compounds in turnip, could be represented by infection with Agrobacterium rhizogenes to
obtain transgenic hairy root cultures [53]. For example, metabolic engineering of indolic glucosinolates
in Chinese cabbage hairy roots was obtained by the overexpression of the Arabidopsis genes CYP79B2,
CYP79B3, and CYP83B1 [54,55].

Finally, another approach to increase the content of bioactive compounds has been recently
considered and is represented by plant cell cultures in vitro. This method offers several advantages
when compared with whole plants. For example, using sterilized containers, pathogens are avoided,
as well as an undesirable distribution of pollen and cross-fertilization. In addition, cultured plant cells
need simple nutrients to grow. Moreover, the purification of the bioactive compound is facilitated
since complex plant fibers are not present with the consequent reduction of production costs [56].
These factors can allow for further optimizing the culture conditions, and, thus, increase the
bioproduction of glucosinolates [57].

4. Effect of Food Processing Techniques on Bioactive Compounds Content

It has been demonstrated that food processing may significantly affect the concentration and
biological activity of the compounds that are present in vegetables. This is an important point, as the
majority of vegetables are consumed after thermal treatment, which can have several effects, some of
which are reported in Table 2.

During cooking, qualitative changes, antioxidant degradation, and release into surrounding water
may affect the antioxidant activity of vegetables. As for Brassicaceae, it has been reported that boiling
determined losses of 97, 74, and 87% in flavonoids, sinapic acid derivatives, and caffeoylquinic acid
derivatives, respectively [58]. Losses were reduced to 20–30% by steaming cooking, revealing that this
is the optimal method to safeguard secondary metabolites in Brassica crops [59].

After boiling and steaming, a loss in AsA content of 34% and 22% was reported for broccoli,
while microwaving and pressure-cooking, caused more than 90% retention [60] and conversion of AsA
to dehydroascorbic acid (DHAA) was observed after the thermal treatments for 15 min of crushed
broccoli at 30 ◦C up to 60 ◦C [61]. Thermal treatment, such as steaming, is associated to the inactivation
of myrosinases enzymes, resulting in low loss of glucosinolates. When compared to steaming, a higher
reduction of glucosinolates was observed during boiling and microwave cooking since glucosinolates
leach into the boiling water due to their highwater solubility, while around 90% of glucosinolates is
lost in cooking water [62]. Glucosinolates were reduced by 55%, 54%, 60%, and 41%, in stir-fried,
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stir-fried/boiled, microwaved, and boiled broccoli, respectively [63]. The majority of domestic
cooking causes myrosinase denaturation, while glucosinolates remain intact. Blanching cruciferous
vegetables prior to freezing may denature myrosinase, thus whole glucosinolates are consumed [64].
Also, storage at a low temperature has an effect on the antioxidant activity, as chilling at 6 ◦C for 35
days determined sulforaphane loss of 29%, while storage at −18 ◦C for 60 days resulted in loss mainly
attributed to the blanching step [61].

Modified atmosphere packaging (MAP) also may exert an effect on the content of glucosinolates of
broccoli florets. MAP treatment reduced the decreasing levels rates of individual, indole glucosinolates
and total aliphatic in broccoli florets when compared to those in the control, during 23 days of storage
at 4 ◦C or five days of storage at 20 ◦C [65].

On the other side, cooking of vegetables can enhance the bioavailability of some bioactive
molecules. A study investigated the extractability of carotenoids, flavonoids, phenolic compounds,
and chlorophylls in cooked broccoli and cauliflower, and found that cooking can, in some cases,
improve the extractability of bioactive compounds in vegetables [66].

Table 2. Summary of impact of domestic and industrial processing on the nutritional quality of Brassicaceae.

Treatment Effect on Nutritional Quality Reference

High pressure boiling Degradation of hydroxycinnamic acids and flavonoids [60]
Glucosinolates hydrolysis causing the formation of isothiocyanates [62]

Steaming cooking Reduction of phenolic degradation [59]
Inactivation of myrosinase and low loss of glucosinolates [62]

Microwaving- pressure cooking Low loss of AsA and carotenoids [60]

MAP treatment Good preservation of glucosinolates [65]

5. Conclusions

A variety of vegetables belong to the family of Brassicaceae that are considered among the
most important weeds in the world. These vegetables provide dietary fiber, vitamins, anti-cancer
glucosinolates, dietary flavonols, and anthocyanins. The content of these compounds in Brassica food
is affected by genetic background, climatic conditions, crop management strategies, time, and other
conditions of storage, characterizing the time from harvest to initial processing in the industry or
retailer, as well as the methods that are adopted for cooking and consumption at home [67].

Bioavailability of antioxidants and glucosinolates are also related to the association with other
food constituents. The bioavailability of glucosinolates and their breakdown products depends also by
the inactivation or not of myrosinases. Further investigations are desirable in order to deeply analyze
the impact of each agronomic parameter on the accumulation and synthesis of these compounds in the
different crops belonging to Brassicaceae. In addition, further genetic studies are needed to identify
the genetic determinants that control the accumulation of bioactive compounds in these vegetables.
These studies will help to obtain novel plant lines that will be able to accumulate higher levels of
bioactive compounds, through conventional breeding programs, or, in alternative, through more
efficient metabolic engineering approaches.
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