
IEEE Communications Magazine • July 2017200 0163-6804/17/$25.00 © 2017 IEEE

Abstract

Real-time communication between browsers
has represented an unprecedented standardiza-
tion effort involving both the IETF and the W3C.
These activities have involved both the real-time
protocol suite and the application-level JavaS-
cript APIs to be offered to developers in order
to allow them to easily implement interoperable
real-time multimedia applications in the web. This
article sheds light on the current status of stan-
dardization, with special focus on the upcoming
final release of the so-called WebRTC-1.0 stan-
dard ecosystem. It takes stock of the situation
with respect to hot topics such as codecs, session
description and stream multiplexing. It also briefly
discusses how standard bodies are dealing with
seamless integration of the initially competing
effort known as “Object Real Time Communica-
tions.”

Background, Rationale and Motivation
Real-time communication in the web has been
the subject of a challenging standardization pro-
cess for the last five years or so. Back in 2011, the
Internet Engineering Task Force (IETF) chartered
the “Real-Time Communication in WEB-brows-
ers” (RTCWEB) Working Group, with the aim of
defining an architecture and a complete suite of
protocols for the support of real-time multimedia
communications directly between browsers. The
RTCWEB WG has since worked on key aspects
like the overall communication infrastructure,
the protocols and API (application programming
interface) requirements, the security model, the
media formats (and related media codecs), as
well as advanced functionality like congestion/
flow control and interworking with legacy VoIP
equipment.

In parallel, the World Wide Web Consortium
(W3C) has conducted an activity defining a set
of APIs exposing functions like exploration and
access to device capabilities, capture of media
from local devices, encoding/processing of
“media streams”, establishment of peer-to-peer
connections between browsers (and web-en-
abled devices in general), decoding/processing
of incoming media streams and delivery of such
streams to the end-user in an HTML5-compliant
fashion.

To date, the two mentioned working groups
have achieved a major milestone in the field
of real-time multimedia communications: the
so-called WebRTC-1.0 standards suite. The idea
behind WebRTC-1.0 is to allow all of the involved
stakeholders (browser vendors, telecommunica-
tion providers, application providers, web devel-
opers, and so on) to converge on a well-defined
set of protocols and APIs to be leveraged in order
to allow widespread deployment on the market
of interoperable products offering end-users a
media-rich, web-enabled, real-time experience.
To achieve this goal, the standardization process
has necessarily had to face a number of obstacles
while trying to strike a balance among diverging
interests and/or viewpoints.

This article will briefly survey the current state
of the art with respect to WebRTC-1.0 completion
and introduce the envisioned work program for
the second generation of the standard. In doing
so, it will touch upon debated topics and illustrate
how the community has successfully coped with
them.

State of the Art
Related Work

In our previous work on the subject [1] we dis-
cussed the evolution of real-time communication
in the web, by highlighting the main steps that
brought the IETF and the W3C to the launch of
the joint standardization initiatives known, respec-
tively, as RTCWEB and WebRTC. At the time of
that writing the standards process had already
reached a good level of maturity, even though
a number of issues were still open (e.g., conges-
tion control, audio and video codec selection,
enhanced use of data channels).

In a subsequent work [2], Jennings et al.,
focused on security challenges and transport
issues, while presenting the solutions and mech-
anisms proposed within both the IETF and the
W3C. They also identified congestion control as
an open research question.

Other authors have focused on specific
aspects of WebRTC, with special reference to
security. Barnes and Thomson [3] provide a thor-
ough description of the security threats associated
with peer-to-peer web-based communications,
and identify the WebRTC security architecture as
a good candidate for the implementation of appli-

How Far Are We from WebRTC-1.0?
An Update on Standards and a

Look at What’s Next
Salvatore Loreto and Simon Pietro Romano

Accepted from Open Call

Real-time communication
between browsers has
represented an unprec-
edented standardization
effort involving both the
IETF and the W3C. These
activities have involved
both the real-time proto-
col suite and the applica-
tion-level JavaScript APIs
to be offered to devel-
opers in order to allow
them to easily implement
interoperable real-time
multimedia applications
in the web. The authors
shed light on the current
status of standardization,
with special focus on the
upcoming final release of
the so-called WebRTC-1.0
standard ecosystem.

Salvatore Loreto is with Ericsson; Simon Pietro Romano is with University of Napoli Federico II.
Digital Object Identifier:
10.1109/MCOM.2017.1600283

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Università degli studi di Napoli Federico II

https://core.ac.uk/display/148706586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE Communications Magazine • July 2017 201

cations that can be secured from tampering by
intermediaries. Similarly, Johnston et al. [4] discuss
issues specific to WebRTC enterprise adoption by
focusing on security, compliance, and interoper-
ation.

The objective of this article is to provide an
up-to-date view of the current status of standard-
ization, while also identifying challenges that the
standardization community will have to tackle
once the first release of the WebRTC standards
suite has been finalized. The WebRTC standard
has in fact had to confront itself with both inner
disputes and alternative views. Among the inner
disputes we can cite the so-called “codec battle”
between the supporters of two prominent can-
didates for the Mandatory To Implement (MTI)
WebRTC video codec, namely H.264 and VP8.
After an unsuccessful consensus call at IETF 88
(held in Vancouver in November 2013), such a
battle ended up with the compromise decision of
indicating both codecs as MTI for WebRTC. A fur-
ther significant issue concerns WebRTC support
within browsers. With respect to this particular
topic, the current situation is that several brows-
er vendors (Chrome, Firefox, Opera, Edge and
Bowser) with differing completion scores,1 are
WebRTC-enabled. An important exception is cur-
rently represented by Safari. Apple, in fact, while
closely following the standardization activities, has
played no active role until now and their browser
has no WebRTC capabilities.

Coming to the alternative views, since the
beginning of 2014, a brand new initiative has
seen the light in the W3C, the ORTC (Object
Real-time Communications) Community Group.
ORTC has indeed taken over from a previous ini-
tiative launched in mid 2013 and called ORCA
(OBJECT-RTC API). Both ORCA and ORTC have
initially been identified as alternatives to WebRTC.
ORCA’s explicit goal was to provide an alternative
to the existing WebRTC API, aimed at allowing
finer grained control to web developers willing
to leverage real-time functionality within brows-
ers. The same holds true for its successor ORTC,
whose mission is to “define object-centric APIs to
enable real-time communications in Web brows-
ers, mobile endpoints, and servers”.

Lately, the standardization community has
agreed to converge to an agreed-upon solution
for the first version of the standard by allowing
the ORTC community to contribute to its finaliza-
tion. At the same time, a common decision has
been taken to adopt key concepts proposed with
ORTC’s low-level object API in the ‘Next Version’
of the standard, which nonetheless has backward
compatibility with the 1.0 release among its foun-
dational requirements.

This is exactly where the community stands
now. A step away from completing WebRTC-1.0,
with all minds already looking at the emerging ini-
tiative informally known as WebRTC Next Version
(WebRTC-NV).

The WebRTC Architecture

WebRTC extends the classic web architecture
semantics by introducing a peer-to-peer com-
munication paradigm between browsers. The
WebRTC architectural model draws its inspiration
from the so-called SIP (Session Initiation Proto-
col) [5] Trapezoid. The most common WebRTC

scenario is indeed one where both browsers are
running the same web application, downloaded
from the same application server. In this case, the
Trapezoid becomes a Triangle, as shown in Fig. 1.
Signaling messages are used to set up and termi-
nate communications. They are transported by
the HTTP or WebSocket protocol via the web
server, which can modify, translate, or manage
them as needed. It is worth noting that the sig-
naling between browser and server is not stan-
dardized in WebRTC, as it is considered to be
part of the application. As to the data path, the
PeerConnection abstraction allows media to flow
directly between browsers without any interven-
ing servers.

A WebRTC web application is typically written
as a mix of HTML and JavaScript. It interacts with
web browsers through the standardized WebRTC
API, as well as other standard APIs, allowing it to
properly exploit and control the real-time browser
function, both proactively (e.g., to query browser
capabilities) and reactively (e.g., to receive brows-
er-generated notifications). The WebRTC API
must hence provide a wide set of functions, like
connection management (in a peer-to-peer fash-
ion), encoding/decoding capabilities negotiation,
selection and control, media control, firewall and
NAT element traversal.

Session description represents an important
piece of information that needs to be exchanged.
It specifies the transport information, as well as
the media type, format, and all associated media
configuration parameters needed to establish the
media path. The IETF is now standardizing the
JavaScript Session Establishment Protocol (JSEP)
[6]. JSEP provides the interface needed by an
application to deal with the negotiated local and
remote session descriptions (with the negotiation
carried out through whatever signaling mecha-
nism might be desired), together with a standard-
ized way of interacting with the ICE (interactive
connectivity establishment) [7] state machine.
The JSEP approach delegates entirely to the appli-
cation the responsibility for driving the signaling
state machine: the application must call the right
APIs at the right times, and convert the session

Figure 1. The WebRTC architecture.

Media path

JS/HTML/CSS JS/HTML/CSS

PeerConnection API

Proprietary over
HTTP/websockets

Proprietary over
HTTP/websockets

Web server

Br
ow

se
rBrowser

1 See http://iswebrt-
creadyyet.com/ for an inter-
esting summarizing table.

IEEE Communications Magazine • July 2017202

descriptions and related ICE information into the
defined messages of its chosen signaling protocol.

It is worth mentioning that JSEP offers the pos-
sibility of manipulating session descriptions con-
tained inside SDP (Session Description Protocol)
messages. This happens within some limits (since
browsers try to limit SDP “munging” to avoid dis-
rupting communications) and at the developer’s
risk.

The W3C WebRTC-1.0 API allows a JavaScript
application to take advantage of the novel brows-
er’s real-time capabilities. The real-time browser
function implemented in the browser core pro-
vides the functionality needed to establish the
necessary audio, video, and data channels. All
media and data streams are encrypted using DTLS
[8] (Datagram Transport Layer Security). DTLS is
actually used for key derivation, while SRTP [9]
(Secure Real-time Transport Protocol) is used on
the wire. So, the audio and video packets on the
wire are sent using SRTP. Data channel packets
are handled by using SCTP [10] encapsulated in
DTLS.

Figure 2 sketches, at a very high level, the cur-
rent structure of the object oriented WebRTC
framework. As anticipated, low-level components
are for the most part indirectly controlled through
the PeerConnection structure. Only a restricted
form of direct control is allowed for ICE-related
and RTP-related functionality. As shown in the
figure, RTP allows for some form of control over
the behavior of the protocol itself (e.g., for what
concerns bandwidth capping). Coming to ICE,
with the advent of WebRTC we have assisted to
a renewed interest in such a protocol (as well as
in its companion protocols STUN and TURN),
as witnessed by the creation of the tram (TURN
Revised and Modernized) working group within
the IETF.

Identity Management in WebRTC
The WebRTC API also offers methods to enable
verifying user identities. The solution decouples
identity provision from communication providers
via a third-party identity provider (IdP) (supporting
a protocol such as OpenID or BrowserID) that
can be used to demonstrate their identity to other
parties. With this approach, trust between users is
built by relying on an external entity [11].

This separation between identity provision
and signaling is particularly important in feder-
ated scenarios (calls from one domain to anoth-

er) and when calling via untrusted sites such as
when two users who have a relationship via a
given social network want to call each other via
another, untrusted, site. The solution decouples
the browser from any particular identity provider.
The browser only needs to know how to load the
IdP’s JavaScript. Thus, a single browser can sup-
port any number of identity protocols. WebRTC
offers and answers can in this way be authenticat-
ed by using the IdP. The entity sending an offer or
answer acts as the Authenticating Party (AP) and
obtains an identity assertion from the IdP, which
it then attaches to the session description. The
consumer of the session description acts as the
relying party (RP) and verifies the assertion.

Toward a First Release of the Standard:
WebRTC-1.0

In this section we will briefly discuss some rel-
evant features that are going to be part of the
WebRTC-1.0 specification. A non-exhaustive list of
such features is reported in Table 1. For each item
in the table, we provide a short description, as
well as our estimation of its maturity level in terms
of inclusion into the standard specifications. The
following sections delve into some of the details
associated with each of the reported features.

From Legacy JavaScript to ECMAScript Promises

From the programmer’s perspective, an important
update to the WebRTC specification has been
the introduction of Promises. Promises current-
ly represent an advanced way for allowing asyn-
chronous communication when using JavaScript.
In a nutshell, they are similar to event listeners,
but with a couple of fundamental improvements.
First, Promises can succeed or fail only once and
they can never switch between success and fail-
ure states. Second, Promises can be associated
with success and failure callbacks that are trig-
gered independently from the exact time when
the success/failure event has been raised. This
allows applications to react to the outcome of an
event rather than focusing on the exact time such
an event took place.

All WebRTC-related APIs have lately been mod-
ified in order to move from the callback-based
approach to the Promise-based approach, with
the exception of the well known navigator.
getUserMedia() method, which has been left
unchanged for backward compatibility reasons.

From Streams to Tracks

The W3C MediaStream API specified by the
“Media Capture and Streams” WG (and used
within the WebRTC WG as one of its foundation-
al blocks) has recently been modified in order
to increase the level of granularity associated
with the various media managed from within the
browser. Namely, it has moved from streams to
tracks. Streams have initially been interpreted as
the most atomic data structure being transmit-
ted over a PeerConnection. With the evolution
of the specification, they have now been further
described as collections of tracks. In summary,
the current MediaStream objects represent syn-
chronized streams of media that can be recorded
or rendered in a media element. For example,
a stream taken from camera and microphone

Figure 2. WebRTC: coarse-grained logical decom-
position.

Application

Peer connection

ICE
SCTP

RTP
DTLS

From the program-

mer’s perspective, an

important update to the

WebRTC specification

has been the introduc-

tion of Promises. Prom-

ises currently represent

an advanced way for

allowing asynchronous

communication when

using JavaScript. In a

nutshell, they are similar

to event listeners, but

with a couple of funda-

mental improvements.

IEEE Communications Magazine • July 2017 203

inputs has synchronized video and audio tracks
representing synchronized streams of media. Each
track is represented by a MediaStreamTrack. The
main reason behind this increased granularity
resides in the consideration that developers want
to be capable of differentiating stream processing
on a per-track basis, for example, to specify which
codecs must be adopted, as well as the specific
parameters used to configure such codecs. Some
key transport properties can now also be set on a
per track basis. To name just a few examples, we
cite forward error correction (FEC), retransmission
policy and bandwidth capping. All of the men-
tioned configuration actions are actually carried
out by leveraging the brand new RTCRtpSender
and RTCRtpReceiver interfaces, which allow appli-
cations to control how a given MediaStreamTrack
is encoded/decoded and transmitted/received
to/from a remote peer.

SDP “Bundling”
Session negotiation is an important part of
WebRTC. This calls into play the well known Ses-
sion Description Protocol (SDP). SDP provides
multimedia applications with a standard means to
describe a session, in terms of connectivity (i.e.,
IP addresses and ports), codecs, media attributes,
and so on. As part of the SDP specification, it is
possible to leverage a quite recent feature called
BUNDLE [12], which refers to the transmission of
multiple media flows (i.e., a ‘bundle’) using a sin-
gle 5-tuple, that is to say, a single combination of
a sending “IP address/port” pair, a receiving “IP
address/port” pair, and a specific transport pro-
tocol (e.g., RTP). Within the context of WebRTC,
the use of this technique has since the outset
been encouraged, since it makes it possible to
both save port numbers and reduce the number

of ICE (Interactive Connectivity Establishment)
protocol candidates. The latter point is particularly
important since it dramatically reduces session
setup time.

Bundling can be properly configured, at the
API level, through an ad hoc defined parameter
called RTCConfiguration, which contains, among
other things, a property called bundlePoli-
cy. Such a property can assume one of the fol-
lowing values: “Max-bundle”, “Max-compat”, or
“Balanced.”

The basic idea is that a WebRTC device will
always try to use the bundle mechanism when
negotiating a session with another peer. If the
remote peer does not support bundle, then the
aforementioned policy property comes into
play. More precisely, “max-bundle” will instruct
the WebRTC device to select a single media
flow (among those that had to be bundled) and
negotiate such a flow via SDP. If “max-compat”
is selected, it will instead negotiate all of the
flows separately, just as if bundle had never been
introduced. This second approach is indeed the
optimal one in case of backward compatibility
with legacy (i.e., not aware of the bundle feature)
devices. Finally, “balanced” refers to the interme-
diate approach of choosing two tracks (one audio
track and one video track) to be negotiated sepa-
rately via SDP.

Somehow related to the bundling mechanism
is a further feature called “streams multiplexing,”
which is the possibility of adding multiple streams
of the same type (either audio or video) to a single
PeerConnection. BUNDLE indeed describes how
to transmit/receive audio and video together, but
does not explicitly deal with multiple instances of
the same media type. This has been the subject of
long discussions within RTCWEB, often referred

Table 1. WebRTC-1.0 Features and timeline.

Feature Function Expected timeline

Promises
Use of ECMAScript promises in the API. No
more callback-based methods exist

Certainly part of the WebRTC-1.0 spec

MediaStreamTrack
objects

Allow developers to differentiate stream pro-
cessing on a per-track basis

Certainly part of the WebRTC-1.0 spec

SDP bundling
Transmission of multiple media flows using a
single 5-tuple

Details still under discussion, but most probably
part of WebRTC-1.0

Codec priority
reordering

Allow codecs to be reordered at the API level Certainly part of the WebRTC-1.0 spec

RTCP multiplexing
Send both RTP and related RTCP data over a
single port

Certainly part of the WebRTC-1.0 spec

Simulcasting
Send the same video stream at multiple resolu-
tions and/or rates

Details still under discussion, but most probably
part of WebRTC-1.0

Forward error
correction (FEC)

Add redundancy to the encoded information
and allow the receiver to compensate for partial
data losses

Preliminary discussions ongoing (requirements
draft under evaluation in RTCWEB)

Early media
Send media to the remote party before emit-
ting an answer to an already received SDP offer

Certainly part of the WebRTC-1.0 spec

Screen sharing
Capture a user’s screen and send it to a remote
side in the form of a video stream

Details still under discussion, but certainly part
of WebRTC-1.0

Session negotiation is

an important part of

WebRTC. This calls into

play the well-known

Session Description

Protocol (SDP). SDP

provides multimedia

applications with a

standard means to

describe a session, in

terms of connectivity

(i.e., IP addresses and

ports), codecs, media

attributes, and so on.

IEEE Communications Magazine • July 2017204

to as the “Plan B vs. Unified Plan” debate, which
eventually saw Unified Plan prevailing and being
merged in the JSEP specification. The so called
MSID (Media Stream Identification) draft [13] in
the MMUSIC WG is targeted at allowing this to
work, by specifying an SDP grouping mechanism
for RTP media streams that can be used to indi-
cate relations between media streams.

Playing with Codec Priority at the API Level

SDP makes it possible, among other things, to
specify, for each media stream, the list of sup-
ported codecs. Upon session negotiation, the two
peers agree on a set of codecs that is computed
as the largest subset of common codecs signaled
by the two parties. Such a subset is ordered as a
list, and the first element is selected as the default
codec to be used during the session. All other
elements in the subset have to be supported by
both parties (since they were advertised in the
respective SDPs upon session setup time). Hence,
the SDP specification allows for a peer to change
codec during the session (provided that the new
one belongs in the agreed-upon list of supported
options) with no need to renegotiate the session
itself.

Given this assumption, the WebRTC specifica-
tion now makes it possible to programmatically
select the desired codec for a PeerConnection
with no need to edit the original SDP. More pre-
cisely, the API currently makes it possible to:
•	 Gain access to the bundle of parameters

associated with an RTP sender (through
the RTCRtpSender.getParameters()
method).

•	 Select, within such a structure, the “codecs”
property, which is basically an array of sup-
ported codecs related to that sender.

•	 Reorder (or even remove) information con-
tained in the codecs list.

•	 Commit changes to the RTP sender object
(through the setParameters() method).

RTCP Multiplexing

The standard way of streaming real-time media
across the Internet envisages the use of RTP
(Real-time Transport Protocol) for application-lev-
el framing of media samples, in conjunction with
the companion RTCP protocol used to carry both
feedback and minimal session control information
back and forth between the two peers. Usually,
RTP and RTCP are associated with different ports
(e.g., if 2n is an even port used for RTP, then 2n + 1
will be an odd port associated with RTCP control
information). With RTCP multiplexing (also known
as RTCP MUX), we refer to a way of sending both
RTP and related RTCP data over a single port. The
idea of leveraging such a function is, once again,
to both save allocated port numbers and reduce
ICE setup time.

After a good deal of discussions on whether
or not to specify RTCP MUX support as optional
for WebRTC, there currently seems to be con-
sensus around making it mandatory at least in
those cases in which the peers are also using SDP
bundle. At recent IETF meetings, a further step
was done along the same lines and two major
WebRTC browser vendors (namely, Google and
Firefox) have clearly stated their will to allow
WebRTC endpoints to simply reject legacy (i.e.,

non multiplexed) RTCP sessions. This resolution,
while simplifying things a lot for WebRTC-capa-
ble devices, clearly calls for the introduction of
a proxying function (provided by some sort of
WebRTC gateway intervening along the data
path) if the need arises to interact with any legacy
application still relying on two different ports for
RTP and RTCP.

Simulcasting

Simulcast is a relatively new function that draws
inspiration from stream multiplexing, that is, a
technique whereby a media source simultane-
ously sends multiple different encoded streams
toward a specific destination, for example, the
same video source encoded with different video
encoder types or image resolutions. It can be
somehow associated with Scalable Video Cod-
ing (SVC), namely the mechanisms by which a
single encoded video stream can be organized in
layers and each participant is allowed to receive
(and decode) only the layers that they are able
to process. The WebRTC community has long
since identified a number of use cases for simul-
cast. One interesting example is represented by
conferencing scenarios involving the presence of
a so-called selective forwarding unit (SFU). In the
mentioned scenario, the clients send to the SFU
(which is acting as a conference focus) multiple
video streams, each associated with exactly the
same scene, but at different resolutions. The SFU
can hence properly select the specific incoming
stream that has to be forwarded to the other par-
ticipants. As an example, the SFU might forward
a high resolution version of the stream only when
the client in question is playing an active role in
the conference (e.g., they are currently holding
the floor), while relying on the lower resolution
version while they are not actively participating in
the discussion. Other, more complex, forwarding
choices can obviously be applied once the gener-
al mechanism described above is available. Just to
cite one, the SFU might let the choice depend on
considerations associated with optimizing overall
bandwidth consumption, while at the same time
offering a good-enough service to the end-users in
terms of quality of experience (QoE).

Coming to the technical details, until recently,
there has been a lack of uniformity in the way
simulcasting has been deployed in the wild. The
basic mechanism leveraged by all implementa-
tions is represented by the insertion of multiple
m (i.e., media) lines of the same media type (e.g.,
audio, video, and so on) inside the SDP body.
What was lacking in this case was a means to
signal to the other party that those m-lines were
indeed all associated with a single source. A
recent proposal from Google seems to have filled
exactly this gap and has gained consensus with-
in the IETF community. In a nutshell, the idea is
to add a new identifier in SDP, namely a source
stream identifier, that can be leveraged to differ-
entiate sets of media attribute lines.

As a result of this approach, the W3C has
allowed some form of manipulation of simulcast
streams at the API level. More precisely, within
the context of the newly defined RTCRtpTrans-
ceiver interface (which is basically a combination
of an RtpSender and an RtpReceiver associated
with the same SDP media identifier) it is possible

Simulcast is a relatively

new function that draws

inspiration from stream

multiplexing, that is, a

technique whereby a

media source simulta-

neously sends multiple

different encoded

streams towards a

specific destination,

for example, the same

video source encoded

with different video

encoder types or image

resolutions.

IEEE Communications Magazine • July 2017 205

to refer to a property called “rid,” which is noth-
ing but a copy of the above mentioned source
stream identifier. This structure, combined with a
new feature called “scaleDownResolutionBy” indi-
cating a scaling down factor relative to the max-
imum resolution available for the stream, allows
the developer to explicitly choose the desired
quality of a signaled simulcast stream.

Forward Error Correction

One interesting topic of discussion at recent IETF
meetings has been the introduction (and config-
uration) of forward error correction (FEC) [14]
capabilities inside WebRTC endpoints. Opus,
which is one of the “MTI” (mandatory to imple-
ment) codecs for audio, does provide in-band
support for it.

FEC is a generic mechanism for the protection
of media streams against packet corruption due,
for example, to the presence of one or more lossy
links along the end-to-end communication path. It
adds some level of redundancy inside the encod-
ed information, so to allow the receiving peer to
properly compensate for partial data loss with no
need for retransmissions.

As it always happens when redundant encod-
ing is introduced, the advanced reconstruction
capabilities at the receiving side are paid in terms
of increased network overhead. Hence, the chal-
lenge in these cases is to try to strike an optimal
balance between robustness to packet corrup-
tions and increased bandwidth consumption. This
holds particularly true in all those cases in which
the network does not provide any form of con-
gestion control. In such cases, indeed, the issue is
congestion rather than lossy communication, and
the use of FEC can only make things worse as it
contributes to increasing congestion due to the
overhead it unavoidably introduces.

Within the standardization community, work
is currently in progress in order to allow WebRTC
implementations to fine-tune the configuration of
FEC parameters (as allowed by the RTP specifica-
tion), to enforce a fair behavior on the side of the
applications. At recent meetings there has also
been some preliminary discussion on whether or
not to allow such tuning knobs to surface at the
JavaScript API level.

With reference to congestion control, it
is instead worth mentioning the ongoing work
within both the AVTCORE and RMCAT Working
Groups within the IETF, with special regard to the
so called Circuit Breakers [15] document, which is
soon to become an RFC.

Allowing Early Media

Early media is a well-known term in VoIP networks,
referring to the capability of sending some media
to the other party before emitting an answer to an
already received SDP offer. While this might seem
awkward, it is a very useful mechanism that real-
time applications are used to leverage in order to
provide an enriched end-user experience through,
for example, playing music while the user is wait-
ing for a call to be connected.

WebRTC has since long looked at early media
as a desired functionality, both to seamlessly inter-
act with legacy VoIP applications that already rely
on it and to bring its benefits to the WebRTC eco-
system itself. Recently, this function has been stan-

dardized. More precisely, it has been specified
that an end-point that receives media before get-
ting the answer to its own offer can accept such
media provided that:
•	 It is consistent with the emitted SDP offer (in

terms of codecs and other media attributes).
•	 The end-point in question (i.e., the emitter

of the SDP offer) has already created an
instance of the RTCRtpReceiver object that
is to be associated, upon successful comple-
tion of the session setup procedures, with
the incoming media stream.
The mentioned requirements have been

provided through minor modifications to the
WebRTC-1.0 specification. Fundamentally, a
change was made as to when tracks are creat-
ed for the offerer. This can now happen either
as a result of a call to the setLocalDescrip-
tion method, or as soon as media packets are
received. The mentioned modifications ensure
that these objects can be created and connect-
ed to media elements for play-out when needed.
Without digging in too much detail, we just men-
tion as a side note that, in order to prevent poten-
tial security breaches, early media cannot happen
‘earlier’ than the remote DTLS (Datagram Trans-
port Layer Security) fingerprint has been received.

Screen Sharing

Within the context of WebRTC, screen shar-
ing refers to the capability of capturing a user’s
screen (all or in part) and sending it to a remote
side (across a PeerConnection) in the form of a
video stream. Such a function leverages an ad
hoc defined extension to the Media Capture API,
which defines a new method called getDis-
playMedia. Such a method allows for the acqui-
sition of different types of captures, in terms of
both the “portion” of the screen one is interested
in sharing and the type of display “surface.” With
respect to this last term, a distinction is made
between a logical surface and a visible one. The
former refers to an entire application window,
independently from the fact that part of such a
window might be covered by another applica-
tion’s window; the latter is instead associated with
the part of the window that is visible on the user’s
side, that is, that is not covered by any other win-
dow that is not being shared. As to the portion of
the screen that is going to be shared, the follow-
ing choices are available:
•	 Monitor: one or more physical displays (con-

nected to a user’s computer).
•	 Window: a single application window.
•	 Application: all of the windows associated

with a specific application.
•	 Browser: a single browser window (or Tab).

Inherently, screen sharing poses a number of
security and privacy concerns. The most intuitive
risk is related to the fact that users might inad-
vertently share content that they did not wish to
share. A less obvious risk is also associated with
display capture. Namely, this new function might
weaken the cross site request forgery protections
that should be guaranteed by the browser sand-
box. As an example, sharing of a window contain-
ing a canvas might circumvent standard controls
on such an object that do not allow sampling or
even conversion to any accessible form if it is not
“origin-clean.”

Within the standardiza-

tion community, work is

currently in progress in

order to allow WebRTC

implementations to fine-

tune the configuration

of FEC parameters (as

allowed by the RTP

specification), so to

enforce a fair behavior

on the side of the appli-

cations. There has also

been preliminary dis-

cussion on whether or

not to allow such tuning

knobs to surface at the

JavaScript API level.

IEEE Communications Magazine • July 2017206

This and other related issues are currently
under discussion within the RTCWEB working
group, which has taken at the outset the respon-
sibility of defining the overall security architecture
for web real-time communications. With respect
to the aforementioned cross-origin protection
capabilities, it is strongly advised that users are
asked to exhibit elevated permissions before
being allowed to access any available display sur-
face.

Bringing ORTC Concepts into WebRTC
Seminal work behind Object Real-Time Commu-
nications (ORTC) stemmed from the consider-
ation that the SDP-based offer/answer paradigm
embraced by the WebRTC API did not fit well
the emerging real-time communication models
(with special reference to peer-to-peer systems).
The core of ORTC is represented by a JavaScript
API designed within the ORTC W3C Community
Group. Such an API aims at offering finer-grained
control over how a real-time web application is
implemented, by exposing to the surface most
of the objects that the standard WebRTC API
typically controls as a single pipelined unit of
elaboration through a higher-level configuration
interface. Since the outset, the idea has been to
allow the coexistence between the SDP-based
Offer/Answer approach proposed by WebRTC
and the low-level ORTC API. This is achieved
thanks to the superposition, on top of the ORTC
API, of a WebRTC-compliant shim library. With
this approach, programmers can choose between
ORTC-style raw control of the real-time commu-
nications engine on one side and WebRTC-style
SDP-based negotiation on the other.

A rough comparison between Figs. 2 and 3 allows
us to highlight the major difference between the
WebRTC and the ORTC approach. Namely, the
two models work, at the lowest layer, with the
same set of objects. WebRTC-1.0 relies on the
PeerConnection abstraction as a glueing com-
ponent that somehow orchestrates the overall
behavior of a peer. ORTC, on the other hand,
allows the programmer to gain full direct control
over the set of available objects and optionally
enables the use of the PeerConnection as an API
facility that is provided through the above men-
tioned shim adapter library.

Based on the considerations above, it is fair
to claim that ORTC is not to be considered as a
competitor to WebRTC. Full compatibility with
the WebRTC-1.0 API is guaranteed by the devel-
opment of the aforementioned SDP-based Java-
Script shim on top of ORTC. Such a library takes
on the responsibility of ensuring that SDP parsing

and negotiation features are identical and work
on top of the ORTC primitives. Compatibility is
to be thoroughly checked via unit testing proce-
dures. This is expected to foster interoperability
among heterogeneous implementations. A fur-
ther reason why ORTC supporters proposed a
lower-level API concerns the implementation of
advanced functionality like simulcasting and scal-
able video coding (SVC), which both benefit from
the possibility of gaining direct access to the basic
building blocks of the media pipeline.

It is important to stress the consideration that,
since its foundation as a W3C community group,
ORTC has never been really conceived as a com-
petitor to WebRTC. As already anticipated, it has
rather been seen as an alternative, yet compliant,
approach that can be leveraged by those develop-
ers who are targeting scenarios different than the
“standard” Offer/Answer based ones. The efforts
that have been devoted to the design of the shim
library allowing for the seamless operation of a
WebRTC application on top of the pipeline-based
ORTC framework can indeed be seen as a real
added value to the overall WebRTC ecosystem.

The above statement is so true that during
a recent WebRTC charter renewal process, key
representatives of the ORTC community group
have been formally invited to join the WebRTC
effort. More precisely, one of the founders of the
ORTC initiative has joined the WebRTC chairs,
while another ORTC representative has become
a member of the WebRTC-1.0 editing team. It
has also been decided that all future standard-
ization work in WebRTC will take place within
the WebRTC Working Group, while the ORTC
community group will fade away and its contrib-
utors will join the WebRTC effort. Finally, once
done with the WebRTC-1.0 milestone, all energies
will be devoted to a brand new initiative called
WebRTC-NV, as discussed in the next section.

Discussion and Directions of
Future Work

In this article we presented the current state of
the art in the field of standardization of web-
based real-time communications. We focused
on the upcoming new standard known as
WebRTC-1.0, by briefly describing both the gen-
esis of this challenging initiative and its evolu-
tion toward an agreed upon final specification.
We also discussed in some detail the relationship
between WebRTC-1.0 and the companion initia-
tive known as Object Real Time Communications
(ORTC), which has brought a new perspective
on how to properly look at and manage the
entire media pipeline associated with real-time
interaction among web-based devices. Finally,
we have highlighted how the two initiatives have
eventually converged into a unified effort that
has contributed to finalizing the WebRTC-1.0
specification.

The term WebRTC-NV refers to the upcoming
‘next version’ of the WebRTC standard, which
has been on purpose called neither WebRTC-1.1
(as proposed by those who are in favor of apply-
ing only minor changes to the current spec) nor
WebRTC-2.0 (indicating a major departure from
the agreed-upon 1.0 version). At the time of this
writing, there is indeed no official decision about

Figure 3. The ORTC architecture.

Application

ICE
SCTP

DTLS
RTP

A further reason why

ORTC supporters pro-

posed a lower-level API

concerns the imple-

mentation of advanced

functionality like simul-

casting and Scalable

Video Coding (SVC),

which both benefit from

the possibility of gaining

direct access to the

basic building blocks of

the media pipeline.

IEEE Communications Magazine • July 2017 207

the direction that will be followed for this new
initiative. Unofficial rumors state that the NV initia-
tive will continue to work on ORTC-style low-level
controls while maintaining interoperability with
WebRTC-1.0. This means that the most important
building blocks of the WebRTC-1.0 architecture
(SRTP, RTCP, SCTP over DTLS, and so on) will be
supported. Similarly to ORTC, SDP support will
not be mandatory at all, and the proposed API
will offer direct control over the various compo-
nents of the media pipeline. Apart from this basic
set of requirements, discussions are still ongoing
as to whether or not the scope of the working
group should be expanded in order to cover all or
some of the hot topics we mentioned in the arti-
cle, for example, simulcast, Scalable Video Cod-
ing, Forward Error Correction. Finally, contributors
will continue to focus on security and privacy as
key areas of interest for the working group.

References
[1] S. Loreto and S. P. Romano, “Real-Time Communications in

the Web: Issues, Achievements, and Ongoing Standardiza-
tion Efforts,” IEEE Internet Computing, vol. 16, no. 5, Sept.-
Oct. 2012, pp. 68–73, DOI: 10.1109/MIC.2012.115

[2] C. Jennings, T. Hardie, and M. Westerlund, “Real-time
Communications for the Web,” IEEE Commun. Mag.,
vol. 51, no. 4, April 2013, pp. 20–26, DOI: 10.1109/
MCOM.2013.6495756

[3] R. L. Barnes and M. Thomson, “Browser-to-Browser Security
Assurances for WebRTC,” IEEE Internet Computing, vol. 18, no.
6, Nov.-Dec. 2014, pp. 11–17, DOI: 10.1109/MIC.2014.106.

[4] A. Johnston, J. Yoakum, and K. Singh, “Taking on WebRTC
in an Enterprise,” IEEE Commun. Mag., vol. 51, no. 4, April
2013, pp. 48–54, DOI: 10.1109/MCOM.2013.6495760

[5] J. Rosenberg et al., “SIP: Session Initiation Protocol,” Request
for Comments (RFC) 3261, Internet Engineering Task Force
(IETF).

[6] J. Uberti, C. Jennings, and E. Rescorla, “Javascript Session
Establishment Protocol,” Internet Draft (work in progress),
draft-ietf-rtcweb-jsep-17.txt, expires: April 24, 2017, Internet
Engineering Task Force (IETF).

[7] J. Rosenberg, “Interactive Connectivity Establishment (ICE):
A Protocol for Network Address Translator (NAT) Traversal
for Offer/Answer Protocols,” Request for Comments (RFC)
5245, Internet Engineering Task Force (IETF).

[8] E. Rescorla and N. Modadugu, “Datagram Transport Layer
Security Version 1.2,” Request for Comments (RFC) 6347,
Internet Engineering Task Force (IETF).

[9] M. Baugher et al., “The Secure Real-time Transport Protocol
(SRTP),” Request for Comments (RFC) 3711, Internet Engi-
neering Task Force (IETF).

[10] R. Stewart (Ed.), “Stream Control Transmission Protocol,”
Request for Comments (RFC) 4960, Internet Engineering
Task Force (IETF).

[11] E. Rescorla, “WebRTC Security Architecture,” Internet
Draft (work in progress), draft-ietf-rtcweb-security-arch-12.
txt, expires: Dec. 10, 2016, Internet Engineering Task Force
(IETF).

[12] C. Holmberg, H. Alvestrand, and C. Jennings, “Negotiating
Media Multiplexing Using the Session Description Protocol
(SDP),” Internet Draft (work in progress), draft-ietf-mmu-
sic-sdp-bundle-negotiation-36.txt, expires: Apr. 30, 2017,
Internet Engineering Task Force (IETF)

[13] H. Alvestrand, “WebRTC MediaStream Identification in the
Session Description Protocol,” Internet Draft (work in prog-
ress), draft-ietf-mmusic-msid-15.txt, expires: Jan. 8, 2017,
Internet Engineering Task Force (IETF)

[14] S. Holmer, M. Shemer, and M. Paniconi, “Handling Pack-
et Loss in WebRTC,” 2013 IEEE Int’l. Conf. Image Process-
ing, Melbourne, VIC, 2013, pp. 1860–64, DOI: 10.1109/
ICIP.2013.6738383

[15] C. Perkins and V. Singh, “Multimedia Congestion Control:
Circuit Breakers for Unicast RTP Sessions,” Internet Draft
(work in progress), draft-ietf-avtcore-rtp-circuit-breakers-18.
txt, expires: February 19, 2017, Internet Engineering Task
Force (IETF).

Biographies
Simon Pietro Romano is an associate professor in the Depart-
ment of Electrical Engineering and Information Technology
(DIETI) at the University of Napoli. He teaches computer net-
works, network security, and telematics applications. He is also
the co-founder of Meetecho, a startup and University spin-off
dealing with WebRTC-based unified collaboration. He actively
participates in IETF standardization activities, mainly in the appli-
cations and real time (ART) area.

Salvatore Loreto works for Ericsson Research in Sweden. He is
product manager for the MediaFirst Video Delivery end to end
solution, the Operator holistic CDN solution including cloud
services like transcoding, repackaging and storage. He is also
driving and executing the strategy evolution and technology
roadmap toward the 5G networks of Media Delivery business
line. He works on standardization, both as an IETF working
group chair and as an active participant, mainly in the applica-
tions and real time (ART) area.

It has been decided that

all future standardiza-

tion work in WebRTC

will take place within

the WebRTC Working

Group, while the ORTC

community group will

fade away and its con-

tributors will join the

WebRTC effort. Finally,

once done with the

WebRTC-1.0 milestone,

all energies will be

devoted to a brand new

initiative called

WebRTC-NV.

