
Jattack: a WebRTC load testing tool
A. Amirante∗, T. Castaldi∗, L. Miniero∗, S. P. Romano†∗
∗Meetecho S.r.l., Via C. Poerio 89/a, 80121 Napoli, Italy

{alex, lorenzo, tobia}@meetecho.com
†University of Napoli Federico II, Computer Science Department, Via Claudio 21, 80125 Napoli, Italy

spromano@unina.it

Abstract—We present Jattack, an automated stressing tool for
the analysis of the performance of WebRTC-enabled server-side
components. Jattack has been initially conceived with the primary
objective of performing a thorough scalability analysis of the
well-known Janus WebRTC gateway. As such, it re-uses most of
the Janus core stack components in order to reliably emulate the
behavior of a dynamically adjustable number of WebRTC clients.
The specific testing scenario can indeed be programmatically
reproduced by writing a small “controller” component, which
takes on the responsibility of properly orchestrating the scenario
itself. The general-purpose nature of the tool, together with
its flexibility deriving from the controller-based programmable
approach, makes Jattack also suitable for stress-testing other
WebRTC-enabled servers.

I. INTRODUCTION

The motivation behind this paper stems from the concrete
need for a flexible, lightweight and reliable testing tool for
the assessment of the scalability of WebRTC-enabled servers.
These components definitely represent strategic assets of a
number of Web-based real-time multimedia systems that are
starting to be used at very large scales. The authors of this
paper are the developers of the JanusTM WebRTC gateway [1],
a well-known open source component that is currently lever-
aged by a number of small and medium size enterprises having
in common the need for WebRTC-enabled interaction among
their clients, as well as interoperability with “legacy” real-time
communication frameworks based, e.g., on SIP (Session Ini-
tiation Protocol) [2]. Just to cite a very well-known example,
SlackTM is currently using Janus for the implementation of the
audio call functionality of their application [3].

Given the increasing level of deployment of Janus as a
key backend component of the aforementioned systems, the
need has arisen to properly assess its scalability properties
in a reliable way. When we started to tackle such an issue,
we had to confront ourselves with a number of challenges,
especially when trying to automatically generate a suitable
stress testing load capable to properly mimic the behavior of
real-world WebRTC clients. Indeed, more often than not we
found ourselves struggling with the issue of properly scaling
the client-side of the integrated WebRTC system under test
before being capable of arriving at a load which might be
deemed suitable in order to assess the scalability of even a
single Janus instance. The testing campaigns, most of the times
deployed in the cloud, took us a lot of effort, in terms of both
platform configuration and cost.

We hence decided to work on a suitable load generator
which might be leveraged in a programmatic fashion in order
to rapidly prototype customized testing scenarios involving a
significant number of WebRTC client instances capable to re-
produce the typical behavioral profile of the users of a specific
Janus-enabled framework. The idea was to become able to
keep the load on the client-side as low as possible, hence
moving the bottleneck to the server-side of the integrated
system and allowing us to easily assess the scalability of the
Janus servers residing in the backend.

The tool we devised has been conceived at the outset as
a general purpose one. As it will be explained in the next
sections of the paper, it is made of two main components: (i)
a core implementing the fundamental WebRTC functionality
and related stack; (ii) a programmable controller allowing to
easily build and drive a specific testing scenario. The adoption
of the principle of separation of concerns, with special regard
to the availability of the programmable orchestrating part,
indeed allows to use our stress-testing tool for the assessment
of server-side WebRTC components other than Janus.

II. RELATED WORK

The automated testing of WebRTC applications and services
definitely represents a challenging issue. Being able to design
and execute a stress test campaign can be of paramount
importance when evaluating a new service, a new WebRTC
endpoint or any kind of WebRTC component. Stress testing,
in fact, allows to assess the scalability and the performance of
the target. Lately, there have been several efforts devoted to
this area of research.

The most popular means for testing WebRTC applications
in an automated fashion is by using the well known Selenium
Framework [4], which allows for a complete simulation of a
browser’s behavior. This framework, in fact, allows developers
to remotely control and drive browser instances through soft-
ware modules called “webdrivers”. A controller application,
then, can be written by leveraging different language bindings
(e.g., Java or Python) to decide things like which page to
open, what user input to simulate, and so on. As such, it is
usually fairly easy to deploy headless instances of browsers
(e.g., Chrome, Firefox) on dedicated servers and have them
open and “navigate” properly crafted web pages that allow
for a partial, if not full, automation of a user’s interaction.
When these interactions involve the creation of WebRTC
PeerConnections, this allows for the automated creation of978-1-5090-4248-7/16/$31.00 c©2016 European Union

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Università degli studi di Napoli Federico II

https://core.ac.uk/display/148706583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

multiple WebRTC resources that can be used for the purpose.
The advantage of this solution is that it allows users to re-
use most of the resources already available when designing
a test campaign: in fact, most of the times you can run
tests on the very same pages that would actually be accessed
by users themselves, taking advantage of the scripting and
programmable features of both JavaScript and the language
used in the controlling application. We ourselves have used this
approach repeatedly in our tests, and have shared our results
in a recently published paper [5]. The same approach has been
adopted in [6], where the authors evaluated the performance of
Kurento Media Server [7] in various scenarios. To the best of
our knowledge, Selenium is also the foundation of a popular
WebRTC testing service as well, TestRTC [8]. That said,
while easy and effective, this approach is nonetheless quite
demanding in terms of resources. In fact, this requires actual
browser instances to be deployed on server machines that can
be used for the testing. Since browsers are typically not very
lightweight applications, and given the fact that there is a lot
of overhead in terms of what such browser instances actually
do when opening a target web page, the number of concurrent
PeerConnections that can be established and maintained on a
single machine is limited. This makes it hard to effectively
assess the scalability of a component without an adequate
number of client machines available for testing.

For this reason, when either the availability of resources
is constrained or there is a need for more efficiency, it is
in general advisable to rely on some kind of application
that allows for a better management of resources (e.g., to
only implement the WebRTC communication), while leaving
the rest of the interactions (e.g., authentication, signaling,
automated input, and so on) to other tools. Unfortunately, just
a few tools can satisfy this requirement. In fact, most of the
available automated web tools are specifically targeted at stress
testing the web-based behavior of an application, e.g., in terms
of HTTP and/or WebSocket [9] requests.

One notable exception is Jitsi Hammer[10], a tool devised
and implemented by Jitsi as a traffic generator for their
Videobridge application. This tool is a Java application that
can be configured to connect to a Jitsi-Meet conference, create
fake users, and generate/receive RTP traffic on behalf of the
simulated users within the room [11]. This is a very good
example of how resources can be better managed for the
purpose of assessing the performance of a component. In
fact, while it is true that the same results might be achieved
through the Selenium Framework (e.g., by having multiple
browser instances all access the same web page and provide
credentials in an automated way to join a meeting room), it is
fairly obvious that a dedicated application allows for a much
more optimized management of resources. In this case, the Jitsi
Hammer tool takes care of the interaction with the backend on
its own and, through configurable parameters, can be instructed
to behave in different ways, all using less resources than a full
browser would require. While a very effective tool, though,
to the best of our knowledge Jitsi Hammer is specifically
tailored to the Jitsi Videobridge, which means it cannot be

used, for instance, as a stress testing tool to interact with
different applications, possibly based on different backends.

Finally, there are some commercial solutions for testing
WebRTC services [12], [13]; unfortunately, to the best of our
knowledge, there is no public documentation on the tools they
leverage to do performance evaluation.

These were the considerations that eventually led us to
work on such a tool ourselves. While the main aim was, at
first, an efficient tool we could use to test Janus instances
while managing resources more efficiently, we soon found out
that it could actually be generalized, and used to assess the
performance of any WebRTC application, provided that the
test campaign is designed properly.

III. A GENERAL-PURPOSE LOAD TESTING TOOL

Jattack (which stands for “Janus Attack”, or the French
“J’attaque”) is a tool we conceived to quickly generate mul-
tiple WebRTC connections, for the purpose of stress testing
WebRTC applications. We took the Janus WebRTC Gateway’s
open source core and slightly modified it for the purpose. As
such, it is mainly composed of the same WebRTC stack of
Janus, with a few differences.

Jattack is supposed to be a generic WebRTC stressing client
tool, thus it is not strictly limited to Janus itself. Given its
programmable nature, with a few customizations it can be
easily fit to interact with different server-side components.

By itself, Jattack does no signaling at all: it only works
when used with a controller that handles that part for it, and
which orchestrates its actions. This means that, in general,
users will have their own application talking to Janus (or their
Janus-based service) and handling the signaling (JSEP [14],
SDP [15], trickle ICE candidates [16]), and then bridging this
info between Janus and Jattack. This allows for the realization
of heterogeneous scenarios: for instance, the controller can or-
chestrate the creation of multiple PeerConnections of different
types to simulate real scenarios (e.g., a multi-party conference,
or a large webinar). Multiple Jattack instances can be used by
the same controller for larger scale scenarios. Furthermore,
multiple PeerConnections can share the same media source in
Jattack, thus allowing for a very lightweight setup of active
sources. It is worth noting that, with this approach, Jattack is
completely relieved of any encoding/decoding burden, which
is known to be the most resource-intensive task a WebRTC
client has to perform.

The Jattack architecture is depicted in Fig. 1.

IV. CONTROLLER: THE BRAIN

Jattack uses WebSockets to connect to the controller, receive
commands, and send responses/events. This means that a
wannabe controller needs to implement the server-side of the
jattack-protocol we conceived.

While we will not delve into the details of the protocol
itself for the sake of brevity, it may be worth summarizing
its syntax, with special regard to the inner workings of the
request/response mechanism, as well as to how asynchronous

Fig. 1: Jattack architecture

notifications can be delivered within the context of an exist-
ing session. Jattack commands (requests) have the following
syntax:
{

jattack: ’<command>’, // Command name, mandatory
transaction: ’<unique ID>’, // Transaction ID, mandatory
id: <session ID>, // Media session ID, optional
body: { // Command specific payload, optional

[..]
}

}

A command, when handled, always results in a response
from Jattack to the controller. Responses are formatted like
this:
{

jattack: ’success|error’, // Command result
transaction: ’<unique ID>’, // Transaction ID, same as request
id: <session ID>, // Media session ID, optional
body: { // Command specific response, optional

[..]
}

}

As anticipated, though, not all the communication between
Jattack and a controller is synchronous. Commands sent to
Jattack can subsequently result in asynchronous events gener-
ated by the tool (e.g., to notify new candidates or ICE state
changes). Events are formatted like this:
{

jattack: ’<event>’, // Event name
id: <session ID>, // Media session ID, optional
body: { // Event specific payload, optional

[..]
}

}

We notice that events do not have a “transaction” field,
as they are, again, asynchronous, and hence never explicitly
related to any command. These events can be quite helpful
to track the “life” of a PeerConnection, and at the same time
collect statistics that can provide valuable information.

For the testing campaign we conducted, we wrote differ-
ent controller logics, all implementing, on the Jattack side,
the above mentioned protocol. Such controller logics han-
dled signaling toward different Janus plugins, e.g., the Janus
Streaming, AudioBridge, VideoRoom and EchoTest plugins.
For the sake of simplicity, we chose to focus on the Janus

Streaming and VideoRoom plugins for this paper, as they
are the most commonly used by developers for their Janus-
based applications. As to the controller implementation, we
chose node.js as the runtime environment, and talked to Janus
through its WebSocket transport module.

V. JATTACK: THE ARM

The actions to undertake in order to create and manage a
Jattack-based testing campaign are briefly listed below:

1) Jattack connects to, and registers at, the controller;
2) the controller properly handles Jattack’s registration re-

quest;
3) one or more media sources are created, if needed (more

on that later);
4) as many sessions as needed get created in a dynamic

fashion (each session will be associated with a Peer-
Connection);

5) one or more Janus instances get contacted and instructed
to create as many PeerConnections as needed with the
available Jattack instances;

6) if Jattack instances need to generate media, a media
source is attached to them;

7) optionally, Jattack instances can be instructed to record
the incoming frames (not mandatory, you can receive
without recording).

The following subsections dig further into the details of the
above mentioned procedures.

A. Registration

Upon connection, Jattack sends a register message to
the controller. This is the only time that Jattack sends an active
command. In general it will always just receive commands,
while sending back responses and/or events.

B. Commands

Jattack can receive the following commands:
• add-media-source: add a new source for active

RTP sessions (e.g., an external GStreamer/FFmpeg script
sending media); such a source can be shared across
multiple sessions at the same time; without a source, a
Jattack session is receive-only;

• remove-media-source: destroy an existing media
source;

• create-session: create a new media session; this is
basically the same as a session+handle in Janus, meaning
that a session is associated with a single PeerConnection;

• destroy-session: destroy an existing media session
(destroys PeerConnection too, if it existed);

• generate-offer: have Jattack generate an offer in a
session to create a new PeerConnection;

• generate-answer: have Jattack generate an answer
in a session to create a new PeerConnection;

• handle-offer: pass a remote offer to Jattack in a
session to create a new PeerConnection;

• handle-answer: pass a remote answer to Jattack in a
session to create a new PeerConnection;

• hangup: hangup an existing PeerConnection;
• get-state: get the internals of an existing session

(very similar to Janus admin API info).
A media source, in Jattack, is whatever can be used to

have Jattack actively generate RTP data. Jattack does not
capture/generate media by itself, meaning it does not access
your microphone, your webcam, a file or anything like that.
The only way to have a Jattack PeerConnection send media
is by creating a media source and attaching it to the session.
A media source listens on a couple of ports, and everything
it receives on them (normally valid RTP) is sent over the
session’s PeerConnection by Jattack. Sending media to such
ports can be achieved through external tools like GStreamer or
FFmpeg. As already anticipated, multiple sessions can share
the same media source in Jattack, which is completely relieved
of any encoding/decoding task.

A Jattack session is the main purpose of Jattack itself. This
is where a media session is created, that is something that will
be strictly associated with a PeerConnection in Jattack itself.
In Janus terms, it can be seen as a condensed session+handle,
i.e., a session that only contains a single handle.

When a session is created, there is no PeerConnection yet.
A PeerConnection becomes only available after a successful
WebRTC negotiation. This involves SDP offers and answers,
trickle ICE candidates, ICE connectivity checks, DTLS hand-
shakes, and so on.

In order to create a PeerConnection in Jattack, and more
specifically within a specific session that has been created,
we need to first decide who will send the offer and who
will instead provide the answer. This typically depends on the
scenario we want to achieve and, in case Janus is involved, on
the plugin that will be used for the purpose. To use either
the Janus EchoTest, or the AudioBridge or even to create
a VideoRoom publisher, for instance, the client is supposed
to send the offer and the target plugin module on the Janus
side to answer back. To create a VideoRoom subscriber or a
Streaming viewer, instead, the offer always has to come from
the Janus plugin, and the client has to answer back. For this
reason, when Jattack acts as the offerer, a generate-offer
command is always followed by a handle-answer; when
the peer is the offerer, instead, a handle-offer is followed
by a generate-answer. In both cases, the result is an
attempted setup of a PeerConnection. This means that Jattack
starts gathering and trickling ICE candidates, tries to send
connectivity checks when it has enough information, starts a
DTLS handshake when ICE is done and exchanges RTP/RTCP
packets when WebRTC is ready. During the negotiation pro-
cess, handle-offer, handle-answer, and responses to
generate-offer and generate-answer have to carry
an SDP body. As anticipated, this negotiation process starts
a chain of activities and events that eventually lead to the
setup of a WebRTC PeerConnection. All these activities will
be notified to the controller via events so that the controller can
use them as appropriate. A notable example of an important
event to handle is trickle, as it is the event used to report
ICE candidates Jattack has gathered for itself: the controller

must forward those trickle candidates to the peer, or the
WebRTC connectivity will most likely fail.

A PeerConnection stays alive until we destroy the session
or simply hangup. Destroying the session means we would
have to create a new one if we wanted to create a new
PeerConnection, while only hanging it up allows us to re-use
the existing session for a new PeerConnection. Tearing down
a PeerConnection results in events sent to the controller.

In order to check the internal state of a Jattack session,
including the state of the associated WebRTC PeerConnection,
we introduced an ad-hoc request called get-state, which
acts like the Janus admin API and returns similar info.

C. Events

Jattack can generate several different events towards the
controller at any time. These include events related to any
change in the state of the PeerConnection, the health of the
media session, etc.. No action is needed from the controller
when an event is received: it just needs to be prepared to
receive and optionally handle them.

The events Jattack can generate are the following:

• source-done: a previously created source is over;
• trickle: Jattack gathered a new candidate in a session

(the controller must forward it);
• ice-state: the ICE state of a Jattack session PeerCon-

nection changed;
• selected-pair: an ICE pair was selected in a Jattack

session PeerConnection;
• webrtcup: a PeerConnection in Jattack has just become

active;
• media: Jattack started/stopped receiving media from the

peer;
• recording: a Jattack recording state changed

(started/completed);
• hangup: a PeerConnection in Jattack was just closed;
• destroyed: a Jattack session was just destroyed.

All these events can be very helpful to follow the evolution
of an existing PeerConnection, and controllers may choose to
save/store them in a structured way for offline evaluations.

VI. J’ATTAQUE! A CAMPAIGN AGAINST THE JANUS
WEBRTC GATEWAY

In this section we show the results of the testing campaign
we conducted against Janus. Our objective was to assess the
performance of both Janus and Jattack itself. The primary pa-
rameters we took into account are the CPU and memory loads
on both ends. We also leveraged the information provided by
Jattack’s get-state command in order to roughly estimate
the quality perceived by the simulated users, more specifi-
cally by analyzing the number of negative acknowledgments
(NACKs) sent/received on each PeerConnection. NACKs, in
fact, are used to inform a sender of the loss of particular RTP
packets, and thus represent a quality indicator of the media
streams flowing across a PeerConnection.

A. The testbed

The testbed we set up uses Docker containers [17] in
order to isolate the single functions described in the previous
sections. Namely, we made use of docker-compose to
build a microservices-oriented architecture. The testbed was
deployed on a machine equipped with 8 Intel Core i7-4770S
CPUs @ 3.10GHz and 16 GB of RAM. All containers
are based upon the Ubuntu 16.04 OS. We also leveraged
the Docker’s cpuset option to dedicate different CPUs to
different containers, so that the performance statistics of Janus
were not impacted by Jattack, and vice-versa. Specifically, we
assigned 4 cores to Janus, 3 cores to Jattack and 1 core to the
controller.

We note that Janus, Jattack and the controller all ran on the
same physical host, so all network communication happened
in localhost. We did this on purpose, as we did not want
network performance and congestion to affect the results of our
analysis. Our aim was twofold: (i) evaluate the performance
of the Jattack tool itself; (ii) spot any performance issue that
strictly depends on the Janus source code, which can then be
fixed/optimized.

B. Stressing the VideoRoom plugin

Fig. 2 shows the CPU evolution of both Janus and Jattack
in the presence of 10 publishers and 90 subscribers. In this
experiment we had Jattack generate clients with a frequency
of 10 per second, starting with the publishers and then al-
locating viewers. As the VideoRoom plugin implements the
Selective Forwarding Unit (SFU) logic, we had a total number
of 1000 PeerConnnections maintained by Janus and Jattack;
furthermore, as each client has to establish 10 PeerConnections
when it connects to Janus, we were approximatively generating
one PeerConnection per second. We observe the CPU levels
are very similar to each other, as we expected since Jattack
has been built upon the Janus core. Such a scenario took up
to 200% of CPU on the Janus’ side, and slightly more on
the Jattack’s side. We recall that Janus was running on four
dedicated cores, while Jattack on three. Hence, Janus could
take up to a value of 400% and Jattack up to 300%.

Fig. 3 shows the memory load, which proved to be very
low in both cases.

Fig. 4 depicts the CPU load when there was only one
publisher and 1000 viewers, i.e., 1000 PeerConnections main-
tained by Janus and Jattack. It is very similar to the one
attained in the scenario envisaging 10 publishers and 90
viewers, as the overall number of PeerConnections is the same.

During the campaign described above, we periodically
issued get-state requests to Jattack in order to retrieve
information about the health state of each PeerConnection.
Fig. 5 shows a client’s perspective with respect to negative ac-
knowledgments (NACKs) sent. We notice that no NACKs were
sent/received until the overall number of PeerConnections
approached 800. Then, NACKs started flowing, indicating a
degradation of the quality perceived by the simulated users.
One of the possible causes might be the inability for the
media router to enqueue, on that specific instance, 800 packets

Fig. 2: VideoRoom CPU with 10 publishers and 90 viewers.

Fig. 3: VideoRoom RAM with 10 publishers and 90 viewers.

Fig. 4: VideoRoom CPU with 1 publisher and 1000 viewers.

Fig. 5: Number of NACKs sent over a PeerConnection

for delivery to different recipients in the short time between
two packets. Another possible cause might be ascribed to the
significant number of CPU context switches: at the time of this
writing, in fact, Janus spawns a dedicated thread to transmit
packets to each receiver. We have already started investigating
solutions to this problem. One possible approach, which we are
working on in a development branch of Janus, is to delegate
the one-to-many routing job within the Janus plugin to helper
threads, which can then alleviate the burden a single thread
has to bear right now. An alternative approach might be to
leverage a pool of sender threads handling multiple recipients
each.

C. Stressing the Streaming plugin

When we addressed our testing campaign towards the
Streaming plugin, we obtained the very same results discussed
in the previous subsection about the VideoRoom plugin when
a single publisher was envisaged. So, we do not present any
new chart regarding these specific experiments.

VII. CONSIDERATIONS AND FUTURE WORK

We introduced a general-purpose WebRTC stressing tool
called Jattack. We explained the motivations that led us to
design and implement such a tool, and also described some
sample test campaigns, aimed at assessing the performance
of our Janus WebRTC server. In this context, we focused our
attention on both the performance of the target (Janus) and the
stressing tool (Jattack), in order to evaluate the effectiveness
of Jattack as a tool for performance assessment purposes.

We were delighted to find out that Jattack behaved exactly
as we hoped it would, and that it was actually able to
simulate the activities of multiple (both passive and active)
WebRTC sessions. The greatest result was probably in terms
of resources needed on the client side to implement the test
campaign. While implementing a Jattack controller required
some more complexity in terms of managing signaling and
out-of-band communication with the target, when compared
to implementing a Selenium controller (where, as anticipated,
you typically can re-use existing web pages and JavaScript
code), in order to set up 1000 PeerConnections we needed
more than 10 servers when using Selenium. We only needed
a single one to setup the same number of PeerConnections on

Jattack, instead, and it was not even the maximum number of
sessions it could create on the server we hosted it on. This
whole order of magnitude can prove extremely helpful when
it is time to scale up the number of tests and start simulating
hundreds of thousands of users, as in this case you can leverage
multiple Jattack instances, each of which can support a very
high number of sessions.

That said, there is room for improvement. In fact, as
anticipated, we currently only tested Jattack to test the Janus
server. Considering they share most of the same code-base in
terms of WebRTC stack, it might be actually more interesting
to start using it in different contexts as well. This includes
using it both in purely peer-to-peer scenarios (i.e., to browsers
directly) and to interact with third-party components, as a tool
to help assess the performance of those as well.

Another interesting use case for Jattack is actually not
related to stress testing, but to WebRTC clients implementation
in general. In fact, the configurable nature of Jattack and the
fact that it can relay plain RTP media via WebRTC on behalf
of a programmable controller means it can also be used as a
simple, while effective, client-side WebRTC gateway.

REFERENCES

[1] A. Amirante, T. Castaldi, L. Miniero and S.P. Romano, Janus, a general
purpose WebRTC gateway, Proceedings of the Conference on Principles,
Systems and Applications of IP Telecommunications, IPTComm ’14,
2014

[2] J. Rosenberg, H. Schulzrinne, G. Camarillo et al. SIP: Session Initiation
Protocol. RFC 3261, RFC Editor, June 2002. URL http://tools.ietf.org/
html/rfc3261.

[3] Faraz Khan, Calls: Is it you or is it me?. URL https://slack.engineering/
calls-is-it-you-or-is-it-me-f5d36749e8ed.

[4] SeleniumHQ web site, http://www.seleniumhq.org/
[5] A. Amirante, T. Castaldi, L. Miniero and S.P. Romano, Performance

Analysis of the Janus WebRTC Gateway, Proceedings of the 1st Workshop
on All-Web Real-Time Systems, AWeS ’15, 2015

[6] C. C. Spoiala, A. Calinciuc, C. O. Turcu and C. Filote, Performance
comparison of a WebRTC server on Docker versus virtual machine,
2016 International Conference on Development and Application Systems
(DAS), Suceava, Romania, 2016, pp. 295-298.

[7] Kurento Media Server web site, http://www.kurento.org/
[8] TestRTC web site, http://www.testrtc.com
[9] Alexey Melnikov and Ian Fette, The WebSocket Protocol, RFC 6455,

RFC Editor, Oct. 2015. URL https://rfc-editor.org/rfc/rfc6455.txt.
[10] Jitsi Hammer project page, https://github.com/jitsi/jitsi-hammer
[11] Grozev, Boris and Marinov, Lyubomir and Singh, Varun and Ivov, Emil,

Last N: Relevance-based Selectivity for Forwarding Video in Multimedia
Conferences, Proceedings of the 25th ACM Workshop on Network and
Operating Systems Support for Digital Audio and Video, NOSSDAV ’15,
2015.

[12] Valid8 WebRTC load tester web site, https://valid8.com/WebRTC Load
Tester.html

[13] Load Multiplier web site, https://loadmultiplier.com/
[14] Justin Uberti and Cullen Jennings and Eric Rescorla, Javascript Session

Establishment Protocol, draft-ietf-rtcweb-jsep-15, July 2016 (work in
progress). URL https://tools.ietf.org/html/draft-ietf-rtcweb-jsep-15.

[15] J. Rosenberg and H. Schulzrinne. An Offer/Answer Model with the
Session Description Protocol (SDP). RFC 3264, RFC Editor, June 2002.
URL http://tools.ietf.org/html/rfc3264.

[16] E. Ivov, E. Rescorla,J. Uberti, P. Saint-Andre. Trickle ICE: Incremental
Provisioning of Candidates for the Interactive Connectivity Establishment
(ICE) Protocol draft-ietf-ice-trickle-03, July 2016 (work in progress).
URL https://tools.ietf.org/html/draft-ietf-ice-trickle-03

[17] Docker web site, http://www.docker.com

