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Hiroshi Ishikawa
Doctor en Informática
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A B S T R A C T

In this thesis different techniques of image processing, machine learning and informa-
tion fusion have been analysed in relation to their applicability to contact-less hand
biometrics. To this end, a modular and configurable system that explodes the multi-
modal nature of the hand to increase its robustness and accuracy have been designed,
implemented and evaluated. Given the fact that different applications have different
accuracy and time performance needs, the evaluation is aimed to provide a fair com-
parative of methods under different environmental conditions that helps to adapt the
system to the specific requirements of a concrete final application.

A correct hand segmentation is necessary to extract reliable and invariant biomet-
ric features. For this reason, a comparative of different segmentation methods that
include well-known methods such as global thresholding and graph cuts as well as a
novelty flooding-based method which combines different image-based segmentation
approaches. These methods have been compared using diverse datasets of images
which cover a wide spectrum of capturing conditions.

On the other hand, a comprehensive evaluation of different palmprint feature ex-
traction methods comprising Gabor and Sobel filters, Local Binary Patterns, Local
Derivative Patterns and Curvelets has been carried out. Different parameter configu-
rations have also been tested with the aim of finding out which arrangement provides
better results for each method. In addition to palmprint, also hand geometry features
have been extracted. This evaluation includes also two different feature matching ap-
proaches: distance-based and Support Vector Machines.

In addition, it has also been evaluated the feasibility of combining different feature
extraction methods to yield into a more precise and robust multimodal solution. Two
different levels for fusing the biometric information have been compared: score-level
and feature-level.

Finally, an evaluation methodology that allows for a fair comparison between differ-
ent methods has been proposed. In particular, an evaluation protocol is offered with
the aim of not only obtaining an extensive evaluation of the complete system under
different environmental conditions, and testing multiple combinations of methods for
each module, but also providing a basis against which to compare future research.

Keywords: Accuracy, Biometrics, Computation Requirements, Configurable, Curve-
lets, Distance, Evaluation, Feature-level fusion, Flooding, Fusion, Gabor, Graph-Cuts,
Hand Geometry, Local Binary Patterns, Local Derivative Patterns, Modular, Multi-
modal, Palmprint, Score-level fusion, Segmentation, Sobel, Support Vector Machines,
Thresholding, Varied Environmental Conditions.
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R E S U M E N

En esta tesis se han analizado diferentes técnicas de procesado de imagen, apren-
dizaje automático y fusión de la información en relación a su aplicabilidad a la
biometrı́a de mano sin contacto. Para ello se ha diseñado, implementado y evalu-
ado un sistema modular y configurable que explota la naturaleza multimodal de la
mano para incrementar su robustez y precisión. Dado el hecho de que no todas las
aplicaciones tienen las mismas necesidades, el propósito principal de esta evaluación
es proporcionar una comparativa objetiva de los distintos métodos bajo diferentes
condiciones ambientales que ayude a adaptar el sistema a los requisitos especı́ficos
de precisión y tiempos de computación de aplicaciones concretas.

Una segmentación correcta de la mano es necesaria para extraer caracterı́sticas
biométricas fiables e invariantes. Por este motivo, se ha realizado una comparativa
de diferentes métodos de segmentación incluyendo enfoques bien conocidos como
la umbralización global o los graph cuts, ası́ como una nueva aproximación basada
en inundación. Estos métodos han sido comparados utilizando diferentes bases de
datos de imágenes que cubren un amplio espectro de condiciones de captura.

Por otro lado, se ha llevado a cabo una completa evaluación de diferentes métodos
de extracción de caracterı́sticas de la huella palmar incluyendo filtrado de Gabor y
Sobel, Patrones Binarios Locales, Patrones Derivativos Locales y Curvelets. Junto a las
caracterı́sticas de palma también se han extraı́do caracterı́sticas de la geometrı́a de la
mano. Ası́ mismo, se han probado también diferentes configuraciones de parámetros
para cada uno de los métodos con el fin de encontrar la configuración que mejor
se ajusta a cada uno de ellos. Además, esta evaluación incluye dos métodos de
comparación de caracterı́sticas: cómputo de distancias y máquinas de vector soporte.

Adicionalmente, en esta tesis también se ha evaluado la viabilidad de combinar
distintos métodos de extracción de caracterı́sticas para conseguir una solución mul-
timodal más precisa y robusta. La fusión de la información ha sido realizada a dos
niveles diferentes: nivel de puntuaciones y nivel de caracterı́sticas, y los resultados
de ambos métodos han sido comparados.

Finalmente, se ha propuesto una metodologı́a de evaluación que permite la com-
paración objetiva entre distintos métodos. En concreto, se ha propuesto un protocolo
de evaluación con el objetivo de no solo realizar una amplia evaluación del sistema
bajo diferentes condiciones ambientales y probar distintas combinaciones de métodos
para cada módulo, si no también proporcionar una base contra la que poder comparar
futuras investigaciones.

Palabras clave: Biometrı́a, Condiciones Ambientales, Configurable, Curvelets, Dis-
tancia, Evaluación, Fusión, Fusión a nivel de caracterı́sticas, Fusión a nivel de pun-
tuación, Gabor, Geometrı́a de Mano, Graph-Cuts, Huella Palmar, Inundacin, Máquinas
de Vector Soporte, Modular, Multimodalidad, Patrones Binarios Locales, Patrones
Derivativos Locales, Precisión, Segmentación, Sobel, Tiempo de computación, Um-
bralización.
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su ayuda con todas esas pequeñas dudas; y a Vainen, por hacer que siempre sean
las 15:30. Gracias también al resto de grupos del CeDInt y empresas colindantes por
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Part I

T H E S I S S TAT E M E N T





1

I N T R O D U C T I O N

The expansion of technology has derived into a great number of applications and
services which requires a non-intrusive but reliable verification of the users’ identity.
Traditional identification methods such as passwords are becoming insecure due to
the ease with which they can be stolen or the difficulty to remember a great amount
of different complicated keys. Biometrics is an active research field in which con-
siderable efforts have been made during the last decades, and that is increasingly
being integrated into current technology as an attractive alternative to conventional
identity verification approaches. Accordingly, it is not difficult to find a large pro-
portion of the population which is familiar with some biometric techniques, such as
fingerprints, voice or face recognition.

In particular, the increase in the use of mobile devices has caused a growing trend
toward touch-less biometrics, where hand-based biometrics have demonstrated to
gave a great potential and are considered as comfortable and secure by users [67].
The evolution from contact systems, where hand pose variations were restricted
[164, 202, 137, 95], to contact-less systems, where fewer collaboration from the user is
required, has led to a wider acceptance but also raised the overall complexity. Since it
is an image-based biometric, in addition to typical trials coming from the properties
of each hand trait, new challenges derived from contact-less nature of the images
have to be addressed. These trials include blurriness, lighting changes, cluttered
backgrounds or intra-class variations due to the absence of constraints in hand pos-
ing, orientation or openness degree. Accordingly, traditional restrictive approaches
have given way to less constraining developments including those where images are
captured under controlled background and lighting conditions but there are not pose
restrictions [27, 104, 133, 150] and those which are able to deal with real life environ-
ments lighting variations or complicated backgrounds [45, 46, 126].

Combining multiple biometric modalities allows to take advantage of the strengths
of each single modality, compensating some of the limitations derived from their in-
trinsic nature, the maturity of the technology and the capturing conditions. The ex-
ploitation of the complementarity between biometric modalities increases the overall
accuracy, improves the performance, reduces the vulnerability and therefore, results
in more robust biometric systems which offer enhanced security against forgeries
[52]. Due to different biometric traits can be extracted from hand images such as
hand geometry [47, 35], palmprint [97] or hand veins [208, 191], hand can be consid-
ered multimodal itself and, thus, it is possible to improve the system performance
by exploiting the information provided by its different traits. In this manner, some
hand multimodal systems have been developed during the last years combining hand
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geometry and palm veins [140], palmprint and palm veins [185, 134], palmprint and
hand geometry [103, 137, 56, 158] or hand geometry, palmprint, knuckleprints and
veins [135] among others.

A comprehensive collection of works made so far organized according to the cap-
turing conditions and the biometric trait employed is shown in Table 1.

Background Lighting
Conditions

Pose
Restrictions

Biometric
Trait

References

Controlled Controlled

Contact, Pegs

Hand Geom. [78, 80, 160, 163,
164, 118, 183, 54]

Palmprint [202, 98, 95, 43, 22,
174, 96, 190, 101, 81,
68, 121, 62, 149, 69,
209, 206, 193, 108,
85, 148, 152, 139, 66,
2, 113]

Palmprint,
Hand Geom.

[110]

Hand Geom.,
Dorsal Veins

[140]

Palmprint, Palm
Veins

[185, 25]

Palmprint,
Knuckleprint

[130]

Palmprint,
Hand Geom.,
Fingerprints

[168]

Contact,
Surface Marks

Hand Geom. [177]
Palmprint [102]

Contact,
Free
Placement

Hand Geom. [189, 65, 51, 72, 11,
195, 194, 5, 200, 58,
55, 54, 128, 3, 39, 87,
6]

Palmprint [70, 27, 111, 100, 8,
196, 101, 209, 108,
169, 205, 139]

Palmprint,
Hand Geom.

[153, 137, 141, 56,
147]

Palmprint, Fin-
ger Texture

[154]

Palmprint,
Knuckleprint

[120]

Finger Geom.,
Finger Texture

[155]
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Background Lighting
Conditions

Pose
Restrictions

Biometric
Trait

References

Controlled Controlled

Contact,
Free
Placement

Palmprint,
Hand Geom.,
Fingerprints

[156, 53, 197]

Palmprint,
Hand Geom.,
Hand Veins

[7]

Contact-less

Hand Geom. [104, 82, 192, 175]
Palmprint [133, 125, 126]
Palmprint,
Hand Geom.

[23, 186, 20]

Palmprint, Palm
veins

[136]

Palmprint,
Hand Geom.,
Finger Surface

[150]

Palmprint,
Hand Geom.,
Veins

[14]

Palmprint,
Hand Geom.,
Knuckleprint,
Palm veins,
Finger veins

[135]

Controlled Indoor Contact,
Surface Marks

Palmprint,
Hand Geom.

[103]

Contact-less
Palmprint [121, 89, 170]
Palmprint, Palm
Veins

[182]

2D Palmprint,
2D Hand Geom.,
2D Finger Tex.,
3D Palmprint,
3D Finger Tex.

[89]

Uncontrolled Indoor Contact-less
Hand Geom. [124, 123, 41, 40, 35]
Palmprint [44, 45, 46, 133, 125,

126, 165]
Palmprint,
Hand Geom.

[157]

Table 1.: Hand biometrics approaches classified according to the nature of the testing
images in terms of environmental conditions and pose restrictions and the
involved traits.
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1.1 thesis motivation and contributions

This thesis is aimed to analyse different techniques of image processing, machine
learning and information fusion for contact-less hand biometrics. To this end, a
contact-less hand biometric system which explodes the multimodal nature of the
hand to increase its robustness and accuracy has been designed, implemented and
evaluated. The system is oriented to deal with all kinds of scenarios including uncon-
strained or adverse environments. In addition, given the large amount and variety
of applications, a modular and configurable design of the system is proposed which
is shown in Figure 1. Accordingly, different methods have been studied for the main
modules with the purpose of obtaining an objective comparison between methods
which can help to adapt the system to the specific needs of a concrete final applica-
tion.

Figure 1.: System structure.

The main contributions of this thesis are stated as follows:

• To conduct a comparative study of different segmentation methods in terms of
both, accuracy and computation time, using diverse datasets of images which
cover a wide spectrum of capturing conditions. These methods include well-
known approaches such as global thresholding and graph cuts as well as a
novel method.

• To propose a competitive flooding-based segmentation method which combines
different image-based segmentation techniques and is oriented to devices with
low-computational resources.

• To provide a comprehensive evaluation of different palmprint feature extrac-
tion methods comprising Gabor and Sobel filters, Local Binary Patterns, Local
Derivative Patterns and Curvelets. Different parameter configurations have also
been tested with the aim of finding out which arrangement provides better re-
sults for each method.

• To compare different matching methods including distance-based approaches
and Support Vector Machines.

• To analyse the feasibility of combining different feature extraction methods at
different levels to yield into a more precise and robust solution.
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• To propose an evaluation methodology based on the definitions suggested by
the ISO/IDE 19795 that allows for a fair comparison between different meth-
ods. An evaluation protocol is offered with the aim of not only obtaining an
extensive evaluation of the complete system under different environmental con-
ditions and testing multiple combinations of methods for each module, but also
providing a basis against which to compare future research.

1.2 thesis contents description

The remainder of this thesis is organized as follows.

• Part ii describes the image acquisition and preprocessing modules.

– Chapter 2 outlines the capturing process where the user presents the hand
to the camera and the image is recorded. In addition, a description of the
databases employed to test the system is provided.

– Chapter 3 contains the description of the segmentation module, aimed
to separate the hand from the background. Here, different segmentation
methods are described and a new method is proposed. In addition, they
are compared in terms of accuracy and computation time.

– Chapter 4 shows how to detect the meaningful points and to extract the
region of interest which will be subsequently used to extract the biometric
features.

• Part iii gives the details about the feature extraction and comparison methods,
together with the fusion of biometrics procedure.

– Chapter 5 details different feature extraction methods for palmprint and
hand geometry.

– Chapter 6 summarises the feature comparison methods included in the
system.

– Chapter 7 outlines the approaches employed for the fusion of biometric
information.

• Part iv presents the evaluation of the biometric system.

– Chapter 8 outlines the evaluation protocol.

– Chapter 9 provides the evaluation of the different modules using a set of
images captured under controlled environmental conditions to provide a
fair technology evaluation.

– Chapter 10 presents the evaluation of the different modules using a set of
images captured under realistic conditions.

– Chapter 11 provides the results obtained when different palmprint and
hand geometry feature extraction methods are combined.

• Part v provides the conclusions and future research lines.





Part II

I M A G E A C Q U I S I T I O N A N D P R E P R O C E S S I N G





2
A C Q U I S I T I O N

2.1 introduction

Image acquisition module is aimed to capture raw data of individuals which will
be subsequently processed to extract biometric information. In the case of hand bio-
metrics, the user presents the hand to the sensor (camera) and an image is recorded.
A correct acquisition is crucial due to it directly conditions the preprocessing mod-
ule, particularly the segmentation process. Segmentation, in turn, can influence the
feature extraction procedure and thus, the final result.

First approaches in hand biometrics made use of voluminous capturing devices
that contain pegs to enforce the user to keep an appropriate position of the hand and
guarantee optimum environmental conditions [164, 202]. This way, the posterior pro-
cessing of the images is eased and the intra-user variability derived from hand pose
variations is reduced. Nevertheless, these capturing devices present some drawbacks
such as shape distortion, discomfort or unnatural posture of the hands [55].

Thus, these capturing devices evolved into scanners which requires the hand to be
in contact with a flat surface but does not restrict the openess degree of the fingers nor
the position [137, 141, 154, 127, 106, 87]. Most of contact-based approaches guarantee
uniform lighting conditions and well contrasted background with the aim of facili-
tating the segmentation process. Nevertheless, when they are used in real scenarios
hygienic and public-health concerns appear [124], reducing the user acceptability.

Accordingly, contact-less approaches have gained ground in the last years. Some of
these works still keep controlled environmental conditions [135, 90], but the natural
trend is toward non-constrained captures [44, 41, 157] where varied illumination and
backgrounds add extra difficulties.

In order to avoid wrong captures as far as possible, a clearly defined image acqui-
sition procedure is necessary. Section 2.2 presents some recommendations for users
that have been found specially relevant for this purpose during the accomplishment
of this thesis. In addition, databases used to evaluate the performance of the system
and its are described down below (Section 2.3).

2.2 image acquisition procedure

To ensure a correct image acquisition the following recommendations should be taken
into consideration:

• The hand should be outstretched, with the palm facing the camera and in a
plane parallel to the camera plane.
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• The whole hand should be contained in the image and as close as possible to
the camera in order to get as most texture details as possible.

• The hand should be centred in the image.

• It is required that no other piece of skin or object with a similar color appears
in the background of the image. Moreover, a non cluttered and well contrasted
background is recommended.

• Constant and neutral illumination is also preferred.

• Most of the rings can cause difficulties to the segmentation algorithms, so users
are requested to remove their rings unless they are thin and similar to the skin
colour (golden rings).

• No restrictions on the use of bracelets or watches are imposed.

2.3 databases

2.3.1 Database 1: The Hong Kong Polytechnic University Contact-free 3D/2D Hand Images
Database (Ver 1.0)

First database used in this thesis is the 2D subset of the Hong Kong Polytechnic
University Contact-free 3D/2D Hand Images Database (Ver 1.0) [89], called 2DHK
database hereafter. Textured 3D and 2D scans of the inner surface (palm-side) of
the hand were recorded in order to establish a large scale hand image database us-
ing completely contact-free imaging setup. It was made freely available1 to the re-
searchers with the objective of promoting the development of more user-friendly and
reliable hand identification systems.

Images were acquired using a commercially available 3D digitizer Minolta VIVID
910 in a process which spanned over 4 months. 2DHK database contains images from
177 volunteers in the age range of 18-50 years with multiple ethnic backgrounds. Im-
ages were recorded in two separated sessions with no fixed lapse between them, from
one week to three months. Five images per session and person were captured. There-
fore, this database includes 3,540 hand images (of 3D and corresponding 2D) that
have a resolution of 640×480 pixels. Together with the 2D and 3D images, the region
of interest of every image is also provided, which includes the most representative
part of the palmprint, properly aligned and cropped.

All the hand images were recorded in an indoor environment, with no restrictions
on the surrounding illumination but controlled constant black background which
strongly contrast with the skin colour to facilitate the segmentation process. In fact,
the data collection process was carried out at three different locations which had
notable variations in surrounding illuminations. During the image acquisition, every
user was requested to hold the right hand in front of the scanner at a distance of about
0.7 m, which empirically maximized the relative size of the hand in the acquired
image, keeping the palm approximately parallel to the image plane of the scanner and

1 http://www.comp.polyu.edu.hk/~csajaykr/myhome/database_request/3dhand/Hand3D.htm

http://www.comp.polyu.edu.hk/~csajaykr/myhome/database_request/3dhand/Hand3D.htm
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inside the imaging area. No additional constraints about hand pose were imposed
nor the users were instructed to remove hand jewellery that they were wearing. In
order to introduce variations in the database, users were asked to change their hand
position after the acquisition of every image.

Figure 2 depicts some sample images of 2DHK database together with their associ-
ated region of interest.

Figure 2.: 2DHK database sample images.

2.3.2 Database 2: gb2s ID Database

Second database used in this thesis is the gb2s ID Database (ver. 2.0)2 [36]. It was
created with the aim of evaluating hand segmentation methods in contact-less semi-
controlled environments and to construct a wider synthetic database.

Images were acquired by the camera of a mobile device, the smartphone HTC De-
sire S, at a resolution of 2592×1552 pixels. gb2s ID Database contains hand captures
of 107 individuals comprised in an age range from 16 to 60 years old with multiple
ethnic backgrounds, and gathering males and females in similar proportion. Images
from both hands were captured in two different sessions separated by 10-15 minutes.
10 images per hand, person and session were recorded.

The acquisition procedure was carried out in an indoor environment under natural
light. Aimed to facilitate the segmentation process and to ensure a proper feature
extraction, well contrasted neutral backgrounds were preferred. Accordingly, the user

2 http://www.gb2s.es

http://www.gb2s.es


44 acquisition

was requested to hold his hand opened naturally with the palm facing to the camera
in a plane parallel to the camera plane at a distance around 10-15 cm. This acquisition
procedure implies no severe lighting conditions, pose or distance to mobile camera
constraints neither requires any removal of rings, bracelets or watches. Consequently,
gb2s ID Database presents a huge variability in terms of size, skin color, orientation,
hand openness and illumination conditions as can be seen at Figure 3.

Figure 3.: gb2s ID Database sample images.

2.3.3 Database 3: gb2s Synthetic Database

The third database used in this thesis is the gb2s Synthetic Database3 [36], created
with the aim of evaluating to what extent segmentation methods can satisfactory
perform a hand isolation from backgrounds of real-life scenarios. In addition, this
database provides automatically segmented ground-truth images.

The creation of the gb2s Synthetic Database considered the hands extracted in
former database (gb2s ID) and a set of textures including carpets, fabrics, glasses,
muds, different objects, papers, parquet, pavements, plastics, skins and furs, skys,
soils, stones, tiles, trees, walls and woods. In particular, each original image from
gb2s ID database was combined with 91 different textures obtained from the website
http://mayang.com/textures/, giving as a result more than 270,000 new synthetic
images. Figure 4 shows some synthetic sample images for the same hand capture.

3 http://www.gb2s.es

http://mayang.com/textures/
http://www.gb2s.es
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Figure 4.: gb2s Synthetic Database sample images.
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2.3.4 Database 4: gb2sµMOD Hand Dataset

Finally, the last database used in this thesis is the gb2sµMOD Hand Dataset, which is
part of the the gb2sµMOD database [157] and was mainly designed to overcome the
absence of hand video databases and the lack of infrared images. In particular, the
subset of visual spectrum images corresponding to the palm side of the hand will be
employed to evaluate the biometric system here presented.

Visible light videos were captured by an e-CAM51 USB that was mounted in a
small electronic board together with one LED. Videos were recorded in “.avi” format
at a resolution of 640×480 px. with no constant frame rate between videos. 60

contributors aged between 20 and 60 years old with different ethnic backgrounds
participated in the database recording process. gb2sµMOD Hand Dataset contains
videos of palm-side and backside of both hands recorded in three separated sessions
in order to capture time variability. Separation between sessions was not predefined
in order to simulate a realistic use of the biometric system and it can vary between a
few days to several weeks. 5 videos per contributor were recorded for sessions 1 and
2 while for session 3 just 4 videos were captured.

gb2sµMOD database was recorded in an indoor environment under varied environ-
mental conditions. Sessions 1 and 2 were recorded under quasi optimum conditions
to allow a better evaluation of the algorithms, and session 3 under realistic extreme
conditions to test the performance of the system in real-world cases. During the first
and second sessions a dark grey shelf was employed as background while for the
third session new elements such as fabrics, photographs, clothes and other decora-
tive elements were introduced in the room to provide new dynamic backgrounds that
change from one participant to another. In similarity with the backgrounds, lighting
conditions were more restricted in the first two sessions in order to obtain samples as
controlled as possible to facilitate evaluation of time influence in both, the biometric
traits and the user’s behaviour when using the biometric system. To this end, all
the samples in sessions 1 and 2 were captured with ceiling indirect lights on and
without direct natural light. To simulate realistic as well as extreme scenarios, four
lighting variations were introduced for the third session: 1) natural illumination,
maintaining ceiling lights off and natural light; 2) severe shadows, covering a sig-
nificant portion of the hand; 3) saturated, lighting hands in excess, and 4) low-light
conditions, generated with shutters down and no artificial light elements.

Regarding hand pose, users were requested to hold the hand outstretched and in
a plane parallel to the camera plane, entirely within the image and as big as possible.
It was also required that no other piece of skin appears in the image. Due to the
use of rings can cause difficulties to the segmentation algorithms, participants were
also asked to remove their rings in case they wore one. No restrictions on the use of
bracelets and watches were imposed.

Figure 5 illustrates some sample images from the same user recorded in different
sessions and lighting conditions.
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(a) Session 1 (b) Session 2

(c) Session 3 - Natural Lighting (d) Session 3 - Severe Shadows

(e) Session 3 - Saturated (f) Session 3 - Low Intensity Illumination

Figure 5.: gb2sµMOD Hand Dataset sample images.
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S E G M E N TAT I O N

3.1 introduction

Image segmentation is considered a classic tough problem in computer vision with
a great number of varied applications (from biometrics or security to medical appli-
cations), and whose solution tightly depends on the sort and the quality of the input
image and the objects to be delineated. In this way, to obtain an accurate and robust
result is a challenging task due to low contrast, noise, occlusions, background clutter,
similarity of intensity distributions and weak edges between adjacent objects, which
could derive in artificial edges, discontinuous contours or overlapping objects. As a
result of decades of researching, a big amount of different algorithms have been de-
veloped, which are typically divided into image based and model based approaches.

Purely image based methods just take into account information coming directly
from the image, deriving into weak results in the presence of noise, poorly dis-
tinguishable tissues, background clutter and object occlusions. These methods can
in turn be divided into boundary-based approaches, which include edge detectors
[64, 17], Active Contours [91], Live wire [49] or Level sets [119, 31] among others,
and region-based approaches, comprising methods such as intensity thresholding
[138, 167], region growing [19], clustering [77, 143], watershed [10, 159], graph cuts
[12, 13] or Fuzzy Connectedness [178].

On the contrary, model based approaches use statistical models previously con-
structed, which usually contains information about the mean shape of the object of
interest and its principal variations and can also encode additional information re-
lated to the appearance of the object. Active Shape Models [30], Active Appearance
Models[28, 29], m-Reps[144] and Atlas-based methods [151] are embraced in this
category. Even though these methods are a really powerful tool capable to obtain
accurate and robust solutions in cases that are well covered by the training set, they
are very sensitive to initialization and generally fail for new images slightly different
to those employed to build the model.

Combination of complementary methods from different categories have recently
attracted a growing interest, aimed to enforce their strengths and to reduce their
weaknesses. Accordingly, it is possible to combine two or more boundary and/or re-
gion methods [129, 50, 26], boundary methods with model-based approaches [114] or
region methods with model-based approaches [162, 24] to arrive at a more powerful
hybrid strategy that can overcome the weakness of the component methods.

49
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Most of the works in hand image segmentation for biometric applications carried
out to the date employ image-based methods. Particularly, global thresholding ap-
proach is clearly the most outstanding method, as can be seen in Table 2. This is
mainly due to in the majority of the cases the images are captured under controlled
environmental conditions [164, 202, 102, 141, 154, 106, 87] to ensure a good contrast
between the hand and the background, which greatly facilitates the segmentation.
Some of these authors, in addition to environmental restrictions also force the posi-
tion of the hand during the capture through the use of pegs [164, 202] or other marks
[104], while others just require the user to freely place the hand on a flat surface
[137, 141, 154, 106, 87] or allow for contactless capturing [104, 150]. When good con-
ditions are guaranteed, simple solutions such as basic clustering [200] or skin colour
modelling as a probability distribution [135] also work fine.

Nevertheless, technology expansion has derived into more complex and chang-
ing scenarios for biometric applications which present new challenges. These diffi-
culties are mainly related to the capturing conditions, especially uncontrolled back-
grounds or lighting conditions, and the use of portable devices which usually offer
computational limited resources. To facilitate the segmentation of images recorded
in non-controlled environments it is possible to use infrared cameras [124, 123, 140].
However, their use is not widespread yet. In these situations, despite some authors
keep using easy methods such as global thresholding [90] or skin colour modelling
as a probability distribution [135, 165], more advanced techniques are usually re-
quired such as advanced graph-based clustering techniques [61, 40, 42] or neural
networks [44, 46]. Although without biometric purposes, other noteworthy meth-
ods including Markov Random Fields (MRF)[181], RCE Neural Networks[199, 173],
Shape Models[30] and hybrid such as the combination of MRF and shape priors [9]
or a set of image-based methods [172] have also been applied for hand image seg-
mentation in non-constrained images.

Table 2 shows a compilation of hand segmentation approaches using visual spec-
trum images for biometrics purposes classified according to the nature of the testing
images in terms of pose restrictions and environmental conditions.

Despite the efforts made up to the moment, segmentation continues to be the weak-
est point of almost every computer vision application. In the specific case of hand
biometrics, it is a critical step due to the quality of the segmentation directly influ-
ences the hand geometry features or the procedure to extract and align the region
of the palm including the most significative palmprint features (Sec. 4). Therefore,
a correct segmentation is mandatory to extract reliable and invariant biometric fea-
tures. In addition, different fields of application have different requirements and
some adjustments in the modules of the biometric system should be made.

For this reason, one of the main contributions of this thesis is a comparative of
different segmentation methods in terms of accuracy and computation time aimed
to obtain objective data which could be used in the future to decide which kind
of segmentation is more suitable for a concrete final application. These methods
include global thresholding, which is the easiest but most extended approach as com-
mented above, and more sophisticated and well known methods such as Graph Cuts.
Thresholding segmentation is a really simple solution which requires low computa-
tional resources but entail very specific capturing conditions to provide a good per-



3.1 introduction 51

Pose
Restrictions

Background Lighting
Conditions

Segmentation
Approach

References

Contact, Pegs Controlled Controlled Thresholding [164, 98, 202, 118, 22,
183, 62, 149, 110, 169,
85]

Contact,
Surface Marks

Controlled Controlled Thresholding [102, 148]

Contact, Free
Placement

Controlled Controlled Thresholding [153, 189, 137, 156,
65, 70, 141, 27, 51,
111, 195, 72, 11, 194,
155, 154, 115, 7, 56, 5,
53, 100, 58, 197, 8, 55,
196, 128, 3, 179, 147,
127, 106, 87]

Contact, Free
Placement

Controlled Controlled Clustering [200, 166]

Contactless Controlled Controlled Thresholding [104, 23, 127, 150]
Contactless Controlled Controlled Skin colour

modelling
[146, 133, 136, 135]

Contact,
Surface Marks

Controlled Indoor Thresholding [103]

Contactless Controlled Indoor Thresholding [88, 89, 90, 182]
Contactless Controlled Indoor Clustering [60, 61, 40]
Contactless Uncontrolled Indoor Skin colour

modelling
[133, 165]

Contactless Uncontrolled Indoor Clustering [36, 40, 38, 37, 42,
157]

Contactless Uncontrolled Indoor Neural
Networks

[44, 45, 46]

Table 2.: Hand segmentation for biometric applications using visual spectrum images
classified according to the nature of the testing images in terms of pose
restrictions and environmental conditions.

formance. On the contrary, Graph cuts is able to handle more complicated situations
but are computationally expensive and sometimes need user collaboration. Aimed
to achieve a compromised solution between accuracy and computational resources,
a novel flooding-based approach which is combination of several image-based meth-
ods has been developed and analysed. All the methods has been tested using images
from the databases described in sec. 2.3 which cover a wide spectrum of capturing
conditions.

Although most of the previous works in hand image segmentation employ RGB
colour space, it is dependent on the capturing device and present high correlation be-
tween the red, green and blue colors [92]. In this thesis CIEL*a*b* (CIE 1976 L*a*b*)
colour space [32, 33] has been selected to represent the images. CIEL*a*b* was cre-
ated to provide a unifying space color reference model which linearly describe color
variations including all perceivable colors by the human eye. It isolates in L channel
the ligthness of the image while use a and b channels to represent red-green and
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yellow-blue colour changes respectively. Previous studies have demonstrated that
CIEL*a*b overcomes other colour spaces for satisfactory representing the skin colour
of individuals [187, 92, 4]. Given the nature of this colour space, L channel contains
higher variation than the remaining two, which provide more distinctive information
about the skin [92, 34]. Accordingly, removing L channel from the representation al-
lows to obtain a more accurate model of the hand reducing the influence of lighting
variations [92].

The remainder of this chapter is organized as follows. Section 3.2, 3.3 and 3.4
provide a description of thresholding, graph cuts and flooding-based adopted ap-
proaches together with theoretical fundamentals when necessary. Section 3.5 shows
the results of each segmentation method in terms of quantitative analysis. Section 3.6
describes the segmentation quality control module.

3.2 threshold based segmentation

Global thresholding segmentation is based on the assumption that the background
is uniform and well contrasted with the element of interest. As presented in Section
3.1, it is the most extended method for hand image segmentation due to its speed,
simplicity and suitability when the input images are captured under controlled illu-
mination conditions and background is uniform and highly contrast with the hand
skin colour.

Accordingly, assuming some cases of use where environmental conditions accom-
plish these requirements, an easy and fast segmentation method based on threshold-
ing has been integrated in the system. To calculate the threshold value, the method
proposed by Otsu[138] has been applied. The binary image is then refined by means
of morphological operations and small regions that correspond to noise are elimi-
nated.

3.2.1 Algorithm Overview

A description of the algorithm can be found below together to an illustration of the
different steps (Figure 6).

1. First, the image is converted from RGB to grayscale CIEL*a*b* space color to
separate lighting from color information. In this case, layer L is selected for bi-
narization due to it contains more colour contrasting features when dark neutral
with low reflections background is assumed (Figure 6b).

2. Next, the threshold value is calculated by means of Otsu’s algorithm [138].

3. Then, the image is thresholded (Figure 6c).

4. Once the image is binarized, opening and closing morphological operations
with disk structural elements of size 5 and 3 respectively are applied (Figure
6d).

5. Finally, the region with the biggest area is selected as hand and the remaining
ones are deleted (Figure 6e).
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(a) Original Image (b) Layer L

(c) Binarized Image (d) Morph. Op. Refinement

(e) Final result

Figure 6.: Threshold based segmentation algorithm overview.

Implementation of the algorithm has been made in C++ and makes use of openCV
library, which contains many useful functionalities for image processing.

3.3 graph cuts segmentation

Aimed to provide the system with a less restrictive segmentation tool regarding back-
ground and lighting conditions, an algorithm build on graph cuts has been integrated
in the system, which is able to deal with certain real life situations. Graph cuts [12, 13]
have become popular in the last decade for a variety of applications in computer vi-
sion such as image restoring, stereo matching or image segmentation, due to their
global performance. This method takes into account both, regional and boundary
information and guarantees a globally optimal solution without initialization require-
ments and allowing interactive guidance when necessary.
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3.3.1 Theoretical Fundamentals

Despite the fact that an in-depth explanation on Graph Cuts is out of the scope of this
thesis, hereafter a briefly description is provided in order to situate the reader and
allow him to familiarize with graph cuts formulation for the segmentation problem.

3.3.1.1 Graph Cuts

Let G = (V , E) be a directed weighted graph consisting of a set of vertices V and a
set of edges E connecting these vertices. Each edge e ∈ E has a non-negative cost
we. The set V consists of two types of nodes: neighbourhood nodes P which corre-
spond to pixels, voxels, or other features and two special vertices called terminals: the
source, s, and the sink, t, which in case of binary segmentation represent “object” and
“background” labels. There are usually two types of edges in the graph: n-links and
t-links. n-links connect pairs of neighbouring pixels or voxels, representing a neigh-
bourhood system in the image which can be 4- or 8-connected for 2D images. The
cost of n-links corresponds to a penalty for discontinuity between the pixels. t-links
connect neighbourhood nodes P with terminal nodes. The cost of a t-link connecting
a pixel and a terminal corresponds to a penalty for assigning the corresponding label
to the pixel.

A cut C ⊂ E is a subset of edges, such that if C is removed from G, then V is
partitioned into two disjoint sets S and T = V −S such that p ∈ S and q ∈ T . There
are no paths from terminal nodes s to terminal nodes t when all edges in the cut are
removed. The cost of the cut C is the sum of its edge weights:

C = ∑
e∈C

we (1)

The minimum cut problem on a graph is to find a cut that has the smallest cost
among all cuts, i.e. min-cut. According to Ford and Fulkerson’s work [57], min-cut
is equivalent to maximum flow and the max-flow/min-cut algorithm can be used to
find the minimum cut in polynomial time.

3.3.1.2 Binary Segmentation using Graph Cuts

Image segmentation can be regarded as a pixel labelling problem that involves as-
signing image pixels a set of labels L [107]. Particularly, segmenting an object from
its background can be formulated as a binary labelling problem, i.e. each pixel in the
image has to be assigned a label from the label set L = {0, 1}, where 0 and 1 stand
for background and object respectively. Let P be the set of all pixels in the image and
let N be the standard 4 or 8-connected neighbourhood system on P , consisting of or-
dered pixel pairs (p, q) where p < q. Let fp ∈ L be the label assigned to pixel p, and
f = { fp|p ∈ P} be the collection of all label assignments. The set P is partitioned
into two subsets, where pixels in one subset are labelled as background and the ones
in the other subset are labelled as object.
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The problem can be solved using an energy minimization framework, where the
labelling corresponding to the minimum energy is chosen as the solution. The energy
function commonly used for image segmentation is defined by eq. 2:

E( f ) = ∑
p∈P

Dp( fp) + λ ∑
(p,q)∈N

Vp,q( fp, fq). (2)

In Eq. 2, the first term is called the regional or data term because it incorporates
regional constraints into the segmentation. Specifically, it measures how well pixels
fit into the object or background models under the labelling f . Dp( f p) is the penalty
for assigning label fp to pixel p. The more likely fp is for p, the smaller is Dp( fp).
The object/background models could be known beforehand, or modelled from the
seeds provided by the user. In case that interactive segmentation is allowed and the
user indicate some seeds, in order to ensure that they are segmented correctly, for
any object seed p, one sets Dp(0) = ∞, and for any background seed p, one sets
Dp(1) = ∞. Typically, data penalties Dp(·) indicate individual label-preferences of
pixels based on observed intensities and pre-specified likelihood function.

Interaction potentials Vp,q encourage spatial coherence by penalizing discontinu-
ities between neighbouring pixels. The second sum in Eq. 2 is called the boundary,
interactive or smoothness term because it incorporates the boundary constraints. A seg-
mentation boundary occurs whenever two neighbouring pixels are assigned different
labels. Vpq( fp, fq) is the penalty for assigning labels fp and fq to neighbouring pixels.
This term is used to incorporate the prior knowledge about most nearby pixels are
expected to have the same label, therefore there is no penalty if neighbouring pixels
have the same label and a penalty otherwise. Typically,

Vpq( fp, fq) = wpq · I( fp 6= fq), (3)

where I(·) is an identity function of a boolean argument defined as

I(·) =
{

1 if fp 6= fq,
0 otherwise.

(4)

To align the segmentation boundary with intensity edges, wpq is typically a non-
increasing function of |Ip − Iq|, where Ii corresponds to the intensity of pixel i. For
instance, one of the most extended functions is [12]:

wpq = e−
(Ip−Iq)2

2σ2 , (5)

where σ represents the camera noise.
Parameter λ ≥ 0 in Eq. 2 weights the relative importance between the regional

and boundary terms. Smaller λ makes regional term more important compared
with the boundary constraint and result in a segmentation which obeys the regional
model more. On the contrary, larger values of λ result in a segmentation with higher
boundary cost, which usually derives into shorter boundary length. Therefore, this
parameter is one of the most important parameters in the graph cut framework, and
the hardest parameter to pick beforehand. Typically, different images have different
optimal values for this parameter.

Finally, it is possible to optimize the energy function in eq. 2 by graph cut method
when Vpq is a submodular function [94]. For the particular case of binary segmenta-
tion the energy is submodular when V(0, 0) + V(1, 1) ≤ V(1, 0) + V(0, 1) is satisfied.
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3.3.2 Algorithm Overview

A description of the algorithm can be found below together to an illustration of the
different steps (Figure 7).

1. First, the image is resized for computational efficiency. The new size is provided
as an input parameter.

2. Second, the pixel intensities are normalized. Assuming that the hand is placed at
the center of the image, a subregion at the center of the image is selected as hand
seed. Color distribution of this target is modelled as a Gaussian distribution and
the image is normalized in terms of the mean of the distribution to reduce the
influence of lighting conditions (Figure 7b).

3. Next, the normalized image is converted from RGB to CIEL*a*b* space color
to separate lighting from color information. In addition, layer b is selected for
binarization due to it contains the bluish hue missing in the skin (Figure 7c).

4. Then, layer b is thresholded by means of Otsu’s algorithm[138](Figure 7d). This
binarization is used to model the intensity of background and foreground pixels.
Gaussian mean of these distributions are used to define first order terms in
equation Eq. 2. In the presented implementation a correction factor has been
applied over these terms which is provided as an input parameter.

5. After that, graph cut segmentation is performed using an 8-connected pixels
neighbourhood (Figure 7e).

6. Finally, holes are filled and opening and closing mophological operations are
applied to refine the result. In addition, in case that more than one region are
present in the image, the blob with the biggest area is selected as hand (Figure
7f).

Implementation of the algorithm has been made in C++ and makes use of openCV
and opengm libraries, where many useful tools for image processing and graph based
applications can be found. Particularly, for graph-cuts optimization the max-flow im-
plementation presented in [13] was used, which was specifically designed for com-
puter vision applications and significantly outperformed the standard techniques be-
cause it has linear time performance.

3.4 flooding based segmentation

In certain scenarios a low computation time prevails over any other feature of the
system. Some cases of use can even sacrifice accuracy to some extent if real-time
computation is achieved. Nevertheless, they have often to deal with non-optimal cap-
turing conditions. With the aim of covering these situations, a simple but fast hybrid
algorithm is proposed in this thesis, which combine several well-known image-based
methods to achieve fair accurate segmentations at daily-life environments and in a
reasonable amount of time.
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(a) Original image (b) Normalized image

(c) Layer B (d) Thresholded image

(e) Graph Cut segmentation (f) Final result

Figure 7.: Graph cuts based segmentation algorithm overview.

3.4.1 Algorithm Overview

The algorithm is described step-by-step under these lines. Main stages of the algo-
rithm are illustrated in Figure 8.

1. First, the pixel intensities are normalized. Assuming that the hand is placed at
the center of the image, a subregion at the center of the image is selected as hand
seed. Color distribution of this target is modelled as a Gaussian distribution and
the image is normalized in terms of the mean of the distribution (Figure 8b) to
reduce the influence of lighting conditions.

2. Next, the normalized image is converted from RGB to CIEL*a*b* space color
to separate lighting from color information. In addition, layer b is selected for
binarization due to it contains the bluish hue missing in the skin (Figure 8c).
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(a) Original Image (b) Normalized image

(c) Layer B (d) Median Filter over Otsu’s bina-
rization result

(e) Canny filter over Layer L (f) Sum of binarized image, Layer L
and Canny filtered image

(g) Flooding based segmentation re-
sult

Figure 8.: Flooding based segmentation algorithm overview.
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3. Then, layer b is thresholded by means of Otsu’s algorithm[138] and a mean filter
is applied to attenuate noise (Figure 8d).

4. After that, Canny filter is applied over layer L which contains more enlightening
border information (Figure 8e).

5. Layer L, the binarized image and the convolved image resulting from the appli-
cation of Canny filter are summed to generate a new image which contains well
defined border for posterior flooding (Figure 8f).

6. Finally, flooding segmentation is performed from the center of this summed im-
age taking as a connectivity criteria that the intensity difference between pixels
does not be higher than the intensity difference between neighbouring pixels
in the hand target extracted at the first step. Then, mean filter is applied to
attenuate noise. Final result can be seen in Figure 8g.

This algorithm has been implemented in C++ and makes use of openCV library.

3.4.2 Flooding based segmentation using graph cuts binarization

A variation of the algorithm aimed to face more extreme situations has been also de-
veloped. Main difference between both approaches resides in the method employed
to obtain the first rough binarization. In this case Graph Cuts are used instead of
simple Otsu’s thresholding. Not unexpectedly, runtime is notably increased in re-
lation to flooding based segmentation using thresholding at the initial step, but it
can be considered as negligible with regard to Graph Cuts segmentation execution
time. Nevertheless, the increase in time is compensated by improved results which
outperform all the methods explained beforehand.

The algorithm is described step-by-step down below. Main steps of the algorithm
are illustrated in Figure 9.

1. First, the pixel intensities are normalized. Assuming that the hand is placed at
the center of the image, a subregion at the center of the image is selected as hand
seed. Color distribution of this target is modelled as a Gaussian distribution and
the image is normalized in terms of the mean of the distribution (Figure 9b) to
reduce the influence of lighting conditions.

2. Next, the normalized image is converted from RGB to CIEL*a*b* space color
to separate lighting from color information. In addition, layer b is selected for
binarization due to it contains the bluish hue missing in the skin (Figure 9c).

3. Then, layer b is thresholded by means of Otsu’s algorithm[138](Figure 9d). This
binarization is used to model the intensity of background and foreground pixels.
Gaussian mean of these distributions after applying a corrector factor are used
to define first order terms in Eq. 2.

4. After that, graph cut segmentation using an 8-connected pixels neighbourhood
is performed (Figure 9e).
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(a) Original Image (b) Normalized image

(c) Layer B (d) Otsu binarization over Layer B

(e) Graph cuts segmentation (f) Filling holes refinement

(g) Sum of graph cuts segmentation re-
sult and layer L

(h) Flooding based segmentation us-
ing graph cuts result

Figure 9.: Flooding based segmentation using graph cuts overview
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5. Holes are filled in the segmented image (Figure 9f) and its complementary im-
age is summed to layer L in order to generate a new image which contains well
defined border for posterior flooding segmentation (Figure 9g).

6. Finally, flooding segmentation is performed from the center of this summed im-
age taking as a connectivity criteria that the intensity difference between pixels
does not be higher than the intensity difference between neighbouring pixels in
the hand target extracted at the first step. In case that more than one region are
present in the image, the blob with a bigger area is selected as hand. Final result
is depicted in Figure 9h.

Similarly, this variation of the algorithm has also been implemented in C++ using
openCV library.

3.5 segmentation evaluation

This chapter is aimed to provide the reader with a complete evaluation of the seg-
mentation methods explained beforehand.

3.5.1 Datasets

To evaluate the methods, images captured under different environmental conditions
have been used. Specifically, a subset of images have been selected from each database
described in sec. 2.3:

• Dataset 1 is composed of a subset of 354 images belonging to Database 1 de-
scribed in sec. 2.3.1, one per user and session. Since these images have a dark
neutral background and controlled lighting conditions, they represent the easi-
est segmentation case.

• Dataset 2 includes 212 images from Database 2 (sec. 2.3.2), one per user and
hand. These images present different almost monochromatic backgrounds and
natural controlled lighting conditions, slightly increasing the difficulty of the
segmentation process.

• Dataset 3 comprises 11.011 images included in Database 3 (sec. 2.3.3), one per
user, hand and texture. The great variety of backgrounds present in this dataset
significantly increases the complexity of the segmentation task.

• Dataset 4 contains 600 images from Database 4. As described in 2.3.4 these
database was captured in three different sessions with different backgrounds
and lighting conditions. First and second sessions include images with mono-
chromatic background and controlled artificial lighting conditions while third
session presents different real-life backgrounds and varied challenging lighting
conditions. To compose this dataset one image per user and hand have been se-
lected from those captured in the first session and one image per user, hand and
lighting condition have been chosen from the third session. The uncontrolled
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(or even adverse) environmental conditions of most of the images derives in a
challenging segmentation dataset.

For every image included in these datasets, a groundtruth image has been manu-
ally delineated. It was a tedious, difficult, subjective and time-consuming work, but
also important because it allows for a reliable evaluation of the segmentation results.

3.5.2 Criteria

A great number of evaluation methods can be found in the literature for image seg-
mentation [74, 122, 180, 203]. Since groundtruth images have been generated for
the datasets used in the evaluation, F-score metric has been selected to measure the
performance of the algorithms presented beforehand.

F-score is defined as the harmonic mean of precision (also named confidence or
positive predictive value) and recall (also named sensitivity or true positive rate):

F = 2 · PR
P + R

(6)

where P and R are given by

P =
TP

TP + FP
R =

TP
TP + FN

(7)

and TP, FP and FN stands for true positive, false positive and false negative, respec-
tively. In binary segmentation true positive are those pixels labelled as object in the
segmented image that match with the ground truth image, false positive are those pix-
els labelled as object but are background indeed, and false negative are those pixels
which are wrongly classified as background. Higher values of the F-score correspond
to better segmentations.

3.5.3 Threshold-based Segmentation Evaluation

Performance of threshold-based segmentation is presented in Table 3 using the datasets
described formerly. It can be seen that very competitive results are achieved by this
method when the capturing conditions are controlled and the hand is placed over a
dark well contrasted background. Nevertheless, performance is drastically decreased
as soon as small variations in the environmental conditions are introduced.

Taking advantage of the fact that Dataset4 was recorded under different lighting
conditions, a disaggregated evaluation of threshold-based segmentation method us-
ing this dataset is presented in table 4 to analyse the influence of illumination. It can
be seen that results are similar in the four cases. Nevertheless, it is worth highlighting
that better results are obtained when a great amount of light is directed to the hand,
saturating it and favouring the segmentation process. On the other hand, contrary
to expectations, the worst results are obtained when the scene is illuminated with
natural light.
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Image Size (px.) F-Score Average time (s)

Dataset1 640x480 0.9860 0.1732

Dataset2 2592x1552 0.3661 1.8567

Dataset2 640x384 0.3664 0.1472

Dataset2 480x287 0.3666 0.0973

Dataset3 2592x1552 0.3659 1.8031

Dataset3 640x384 0.3674 0.1480

Dataset3 480x287 0.3700 0.0970

Dataset4 640x480 0.3641 0.1703

Table 3.: Threshold-based segmentation performance using different datasets.

Lighting Conditions F-Score

Natural 0.3369

Severe Shadows 0.3610

Saturated 0.3939

Low-Intensity 0.3893

Table 4.: Threshold-based segmentation performance under different lighting condi-
tions with daily-life backgrounds.

3.5.4 Graph-Cuts Segmentation Evaluation

Better results of graph-cuts segmentation method are presented in Table 5 for each
dataset together with their parameter configuration. A complete study including
all the parameters configuration evaluated for each dataset can be found in Ap-
pendix A.1. Results show that this method achieve slightly worse performance than
threshold-based segmentation in the case that capturing conditions are controlled.
However, its response to environmental conditions variations is notably better and
performance is gradually decreased in accordance to the increase of the dataset com-
plexity. Regarding the computation time, graph-cuts segmentation is quite more
expensive, augmenting the system response in the order of around 10 times. Never-
theless, reducing the image size by a third can halve the computation time without
loss of accuracy, which is even increased in some cases.

Image Size (px.) Balancing Terms Lambda F-Score Average time (s)

Dataset1 640x480 0 0.15 0.9469 11.2690

Dataset1 480x360 0 0.15 0.9371 6.4866

Dataset2 640x384 0.5 0.5 0.8936 9.5294

Dataset2 480x287 0.5 0.15 0.9013 5.3263

Dataset3 640x384 0.55 0.15 0.7587 9.5423

Dataset3 480x287 0.65 3 0.7621 5.3219

Dataset4 640x480 0.65 0.15 0.6566 11.5392

Dataset4 480x360 0.75 1.5 0.6705 6.4404

Table 5.: Graph Cuts segmentation performance using different datasets.
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Taking advantage of the fact that Dataset4 was recorded under different lighting
conditions, a disaggregated evaluation of threshold-based segmentation method us-
ing this dataset is presented in table 6 to analyse the influence of illumination. It
can be seen that better results are achieved under natural lighting conditions as well
as low intensity illumination, which present quite similar performance. The worst
result is obtained when a great amount of light is directed to the hand. It can be
explained by the adopted colour space, which isolates the lightness component in a
channel which is removed in order to make the algorithm more robust against the
influence of lighting variations.

Lighting Conditions Image Size (px.) Balancing Terms Lambda F-Score

Natural 640x480 0.65 0.15 0.7342

Natural 480x360 0.65 10 0.7563

Severe Shadows 640x480 0.75 1.5 0.6733

Severe Shadows 480x360 0.75 10 0.6701

Saturated 640x480 1 1 0.5922

Saturated 480x360 0.85 0.5 0.5930

Low-Intensity 640x480 0.75 0.5 0.7227

Low-Intensity 480x360 0.75 3 0.7517

Table 6.: Graph Cuts segmentation performance under different lighting conditions
with daily-life backgrounds.

3.5.5 Flooding-based Segmentation Evaluation

Performance of flooding-based segmentation using thresholding as initial binariza-
tion method is presented in Table 7 for each dataset. It can be seen that competitive
results are achieved by this method, which not only present similar performance to
Graph-Cuts but also clearly overcomes it in relation to the computation time. In ad-
dition, obtained results show that image resolution does not influence the accuracy
neither the efficiency of the method.

Image Size (px.) F-Score Average time (s)

Dataset1 640x480 0.9392 1.1408

Dataset2 2592x1552 0.9399 0.4340

Dataset2 640x384 0.8885 0.3057

Dataset2 480x287 0.8774 0.3154

Dataset3 2592x1552 0.7296 0.7197

Dataset3 640x384 0.6827 0.5908

Dataset3 480x287 0.6608 0.5313

Dataset4 640x480 0.6053 0.81684

Table 7.: Flooding-based segmentation performance using different datasets.

Table 8 shows the result of the algorithm variation described in 3.4.2 which uses
Graph Cuts as initial segmentation method. Different parameter configurations have
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been tested, but only the best arrangement for each dataset is presented in Table 8.
For a complete relation of the evaluated configurations and the obtained results the
reader is referred to Appendix A.2. It can be derived from the results that even when
accuracy is improved for some datasets and the best results for Datasets 3 and 4 are
obtained among all the methods, this increase is not large enough to compensate the
computation efficiency decrease introduced by the application of graph-cuts as initial
segmentation method.

Image Size (px.) Balancing Terms Lambda F-Score Average time (s)

Dataset1 640x480 0 0.15 0.9000 9.4472

Dataset1 480x360 0 0.15 0.8969 5.4141

Dataset2 640x384 0.5 3 0.9122 9.8199

Dataset2 480x287 0.55 3 0.9111 5.6760

Dataset3 640x384 0.5 1.5 0.8151 15.0869

Dataset3 480x287 0.5 3 0.8120 5.1747

Dataset4 640x480 0.75 15 0.6047 12.5385

Dataset4 480x360 0.75 10 0.6151 7.4561

Table 8.: Flooding based segmentation performance for different datasets when graph
cuts are used as initial binarization method.

Taking advantage of the fact that Dataset4 was recorded under different lighting
conditions, disaggregated evaluations of flooding based segmentation have been car-
ried out to analyse the influence of illumination. Table 9 presents the results when
thresholding is used as initial binarization while Table 10 shows the results when
graph cuts are applied in this first stage. It can be noted that natural light provides
the better results in the case of thresholding initial binarization, followed closely by
severe shadows and low-intensity lighting conditions, while in the case of applying
graph-cuts as initial binarization, best performance is obtained under low-intensity
and natural lighting conditions. The worst result in both cases is produced when a
great amount of light is directed to the hand. Similarly to graph-cuts approach, it can
be explained by the adopted colour space, which isolates the lightness component in
a channel which is removed in order to make the algorithm more robust against the
influence of lighting variations.

Lighting Conditions F-Score

Natural 0.6567

Severe Shadows 0.6207

Saturated 0.4185

Low-Intensity 0.6171

Table 9.: Flooding-based segmentation performance under different lighting condi-
tions with daily-life backgrounds.
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Lighting Conditions Image Size (px.) Balancing Terms Lambda F-Score

Natural 640x480 0.65 15 0.6505

Natural 480x360 0.65 10 0.6658

Severe Shadows 640x480 0.85 15 0.6157

Severe Shadows 480x360 0.85 10 0.6302

Saturated 640x480 0.85 30 0.5193

Saturated 480x360 1 30 0.6007

Low-Intensity 640x480 0.75 0.75 0.6617

Low-Intensity 480x360 0.75 1.5 0.6818

Table 10.: Flooding-based segmentation performance under different lighting condi-
tions with daily-life backgrounds when graph cuts are used as initial bina-
rization method.

3.6 segmentation quality control

As mentioned at the beginning of this chapter (Sec. 3.1), when images present some
characteristics such as cluttered background, blurriness or difficult lighting condi-
tions the segmentation process became specially challenging. In other cases, difficul-
ties are produced because the user does not follow the recommendations provided
at Section 2.2. Most common errors produced by user’s behaviour are non stretched
and non separated fingers which often lead into segmented hands which only con-
tain four fingers. The four-fingers error is also produced by the use of rings, specially
when rings contrast with the skin colour. In these cases the finger wearing the ring
does not appear in the segmented image. Figure 10 shows some examples of incorrect
segmentations.

A quality control module is necessary to ensure that the segmented image contains
a hand and that it has enough quality to success the complete recognition process.
This way the transfer of segmentation errors to final rates is avoided. When the algo-
rithms fail due to environmental conditions providing a binary image which is almost
totally black or almost totally white, these images are automatically discarded and
a new sample would be required. Those segmentations that do not contain a hand
will raise an error during the Fingers Extraction or Inter-Finger Valleys detection pro-
cedures. These procedures will be explained in Sections 4.2 and 4.3. Finally, those
images in which fingers are not separated enough or the use of rings derives into the
absence of one or more fingers will also be automatically detected during the Fingers
Extraction process.

There are other cases which are more difficult to detect, such as those cases where
shadows are detected as a part of the hand distorting its silhouette. They are not
taken into account by current segmentation quality module and usually produce er-
rors in subsequent steps. Nevertheless, the implementation of a more robust segmen-
tation quality module is out of the scope of this thesis, but it will be recommended
in case a prototype will be put into practice.
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Figure 10.: Images incorrectly segmented.





4

M E A N I N G F U L P O I N T S D E T E C T I O N A N D R E G I O N O F
I N T E R E S T E X T R A C T I O N

4.1 introduction

To extract biometric information of the hand, it is necessary to detect some meaning-
ful points which allows to detect those parts of the hand which contains most charac-
teristic information of the user, such as finger geometry and palm-print features. In
particular, fingertips and valleys between fingers are detected together with the cen-
tral part of the palm, which concentrates the most relevant palm-print information.
This sub-image is commonly named Region of Interest (ROI). Given the contact-less
nature of this trait, to obtain robust and invariant features it is also necessary to align
the ROIs into a common coordinate system to avoid problems related to rotation and
translation movements among hands in different images.

4.2 fingers extraction and classification

First, starting from the binary image resulting from the segmentation process (B),
fingers are isolated by means of morphological operations. Applying an opening
operator with disk structural element, fingers are removed from the segmented image
giving as a result a new image Bp which contains those regions corresponding to the
palm and the arm in case it appears in the segmented image. Given B and Bp the
regions corresponding to the fingers (B f ) are straightforwardly calculated by a simple
operation as defined in eq. 8:

B f = B · Bp (8)

where · is an operator which indicates a logical AND operation between B and the
complementary of Bp. Fingers isolation process is illustrated in Figure 11.

Then, a refinement process is applied in cases that more than 5 regions result from
the previous operations. Small regions, regions in contact with the image borders
and regions that are more separated from the other regions and the center of the
image are removed during this process.

Finally, fingers are identified according to the euclidean distances between their
centroids. Those fingers whose centroids are separated by the biggest distance are
thumb and little fingers. From these two, the one that present a bigger distance to the
remaining fingers is the thumb. Index and ring fingers are identified by proximity to
thumb and little fingers respectively. Middle finger identification is straightforward.
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(a) Original Image (b) Binarized Image

(c) Palm region (d) Fingers

Figure 11.: Fingers isolation process.

4.3 inter-fingers valleys detection

To calculate the inter-finger valleys, the contour and the centroid of the hand are
detected (Fig. 12a). Then, euclidean distances between each contour point and the
centroid of the hand are calculated (Fig. 12b). Those points which are farther from
the centroid corresponds to fingertips and wrist, while those points between tips
and wrist which are closer to the centroid corresponds to interfinger valleys and
the exterior basis of thumb and little fingers. From these six valleys (Fig. 12c), index-
middle (vi,m), middle-ring (vm,r), and ring-little vr,l valleys are selected as those which
are closer to the centroid of the corresponding fingers.

4.4 palm region extraction

As mentioned formerly, to obtain the palmprint features it is necessary to remove
those areas that do not contain relevant information, providing as a result a subimage
commonly named Region of Interest (ROI) which needs to be properly aligned. To
this end, starting from the binary image resulting from the segmentation process and
the inter-finger valleys, the ROI is extracted using a similar method to that proposed
in [27].

Using inter-finger valleys as reference points, two vertex of the ROI (v1 and v2) are
detected. A straight line is traced between vm,r and vi,m and it is extended towards
index finger outer side. v1 corresponds to the middpoint between vi,m and the cut off
point between this line and the hand contour farthest to the vi,m. The same actions are
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(a) Hand contour and centroid
(b) Hand Contour-Centroid Distances

(c) Inter-finger Valleys

Figure 12.: Inter-finger Valleys detection process.

(a) Vertex (b) Alignment

(c) Region of Interest
(d) Cropped and Enhanced ROI

Figure 13.: ROI extraction, alignment and enhancement procedure.
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repeated between vm,r, vr,l , and little finger to obtain v2. This procedure is illustrated
in Figure 13a. Then, these new points are aligned in the vertical axis with the thumb
finger upwards (Figure 13b).

Then, taking as region size (s) the euclidean distance between v1 and v2, the two
segments of size s that are perpendicular to the segment v1v2, start at v1 and v2,
and are closer to the hand centroid, are extracted. The end points of these segments
corresponds to the remaining two vertex of the ROI (Fig. 13c).

Finally, the ROI is enhanced by means of histogram equalization and resized to a
common size of 128× 128 px.

ROI detection and alignment process is strongly dependant on the accuracy of the
segmentation, which also affects the valley detection procedure. When the segmenta-
tion is not precise enough and this lack of accuracy is not detected automatically by
the segmentation quality control module (Sec. 3.6), it can derive into the extraction of
incorrect ROIs. Figure 14 depicts some examples of incorrect ROIs together with their
original and segmented images. Detection of incorrect ROIs is an important step in
order to avoid unexpected behaviour of posterior feature extraction and comparison
modules. The implementation of a ROI quality control module is out of the scope of
this thesis, so a visual supervision has been carried out discard incorrect ROIs but
some ideas will be provided as future lines (Sec. 12.3).
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Figure 14.: Regions of Interest incorrectly detected and aligned together with their
corresponding original images and segmentations.
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5

F E AT U R E E X T R A C T I O N

5.1 introduction

Hand images contain features related to different biometric traits including palm-
print, hand geometry, fingerprints, palm veins or knucleprint among others. This
thesis is focused in two of the most widely extended hand traits: palmprint and hand
geometry. Interest on palmprint and hand geometry biometrics has experimented a
strong growth in the last decades due to its useful characteristics as uniqueness, per-
manence, reliability, user-friendliness, acceptability, non-intrusiveness, and low cost
of the acquisition devices, which make them attractive for civil and commercial ap-
plications.

Palmprint is composed of numerous and stable line features: principal lines, wrin-
kles and ridges. Although the principal lines are genetically dependent, most of the
wrinkles and ridges are not, deriving in a reliable identifier which is exclusive even in
monozygotic twins [99]. Using an image or video stream of their palms, users can be
authenticated by detecting the principal lines and wrinkles, even when the capture
device is a low resolution camera as those integrated in mobile phones.

Palmprint feature extraction methods can be classified into two principal groups:
minutiae-based, that requires high-quality images to locate minutiae points, singular
points and analyse ridges [207, 21, 176, 18, 112, 205], and texture-based, that are able
to deal with low-quality images and are the methods preferred in this thesis. These
methods can also be divided into line-based, subspace and statistical approaches
[97]. The line-based group includes those approaches which take into account the
structural information of the image as morphological operators or edge detectors
like Sobel filter [133], OLOF [126] or Harris corner detector [139]. Those methods
which are based on the appearance of the image (PCA, LDA, FCA) are enclosed in
the subspace group [27, 116]. Finally, the statistical group contains feature descriptors
as Fourier transform [109], Gabor filters [202, 95, 96, 45], Local Binary Patterns [133]
or Local Derivative Patterns [170].

A comprehensive literature review about texture-based palmprint biometric verifi-
cation is detailed in Table 11, where previous works are classified according to the
nature of testing images in terms of environmental conditions and pose restrictions.
In addition, the specific features and the matching method are detailed in each case,
together with the obtained results.
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Background Lighting
Conditions

Pose
Restric.

Features Matching Crew
Size

Results
(%)

Ref.

Controlled Controlled
Contact,
pegs

Gabor
filter

Hamming
Distance

120 5.5 EER [98]

Gabor
filter

Normalized
Hamming
distance

193 0.6 EER [202]

Competitive
Code
(gabor filter)

Angular
distance

193 3×10−6

FAR,
1.6 FRR

[95]

Curvelets Euclidean
Distance

100 6.25 EER [43]

PalmCode Hamming
Distance,
Cohort
information

193 0.15 EER [101]
Competitive
Code

0.17 EER

Ordinal
Code

0.13 EER

Ordinal
Code
(Gabor,
OLOF)

Hamming
Distance

283 0.22 EER [174]

SAX MINDIST 100 1.33 EER [22]
Fusion
Code
(ellip.gabor)

Hamming
Distance

284 1.2×10−5

FAR,
7.7 FRR

[96]

RLOC,
FRAT

Pixel-Area
Matching

193 0.16 EER [81]

Laplacian
Palm

Nearest
Neighbour

120 0.3 EER [185]

Gabor
filter

Hamming
Distance

50 0.47 EER [121]

Circular
Gabor

Normalized
Hamming
distance

193 1.2 FRR, 0

FAR
[62]

BOCV
(gabor filter)

Hamming
distance

193 0.0189

EER
[68]

LBP
multiscale

χ2 distance 100 99.67 RA [69]

Gabor
filter

Normalized
Hamming
Distance

200 0.92 EER [149]

SMCC,
sDoG fil.

Angular
distance

193 0.014 EER [209]

Curvelets RBF-NN 48 0 FAR
7.6 FRR

[193]

MFRAT,
LBP

χ2 distance 193 99.56 Ac. [206]

MFRAT,
LTP

99.82 Ac.
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Background Lighting
Conditions

Pose
Restric.

Features Matching Crew
Size

Results
(%)

Ref.

Controlled Controlled
Contact,
pegs

ICP, Com-
pet. Code

Angular
distance

193 0.0201

EER
[108]

ICP, RLOC 0.0571

EER
Directional
mask

DTW 50 49 Err. [110]

Curvelets Nearest
Neighbour

100 99.9 ARR [113]

Wavelet BP-NN 190 93.3 Ac. [2]
Ridgelet 95.8 Ac.
Bandlet 96.5 Ac.

Controlled Controlled Contact,
Surface
Marks

PalmCode
(gray-level
variations)

Similarity
meassure

40 3.03 EER [102]

Controlled Controlled
Contact,
Free
Place.

Sobel filter Multi-
template
Matching

50 4.5 FRR,
6.7 FAR

[70]

BP-NN 0.6 FRR,
1.79 FAR

Morphol.
Features

Multi-
template
Matching

3.3 FRR,
6.6 FAR

BP-NN 0.5 FRR,
0.96 FAR

FDA Euclidean
distance

50 5.98 FAR,
6 FRR

[137]

Gaussian
mask,
Sobel filter

Euclidean
distance

130 3.80 FAR,
1.40 FRR

[156]

Wavelets,
PCA

Euclidean
distance

75 2.98 EER [27]

Wavelets,
FDA

Euclidean
distance

1.4 EER

Wavelets,
ICA

Cosine dis-
tance

1.9 EER

Gabor
filter

Hamming
distance

109 0.22 EER [56]

Gabor
filter

Hamming
distance

109 0.18 EER [53]

Wavelet Euclidean
distance

98 16 EER [197,
117]

Wavelets,
Zernike
moments

Clustering,
BP-NN

100 2.74 EER [100]

SMCC,
sDoG
filters

Angular
distance

301 0.48 EER [209]
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Background Lighting
Conditions

Pose
Restric.

Features Matching Crew
Size

Results
(%)

Ref.

Controlled Controlled
Contact,
Free
Place.

OLOF Normalized
Hamming
distance

80 0.01 EER [63]

ICP, Com-
pet. Code

Angular
distance

312 0.794 EER [108]

ICP, RLOC 0.814 EER
DCT,
HMM

Viterbi rec-
ognizer

165 1.299 EER [120]

SLG, KLT
operator

LK traking 312 0.29 EER [130]

Controlled Controlled
Contact-
less

Directional
Code
(Wavelet,
Sobel)

Hamming
distance

136 1.97 EER [136]

Competitive
Code

Angular
distance

180 0.0738

EER
[14]

OLOF Normalized
Hamming
distance

235 0.61 EER [125,
126]

OLOF Normalized
Hamming
distance

80 1.07 EER [63]

Directional
Code

Hamming
distance

136 1.97 EER [135]

Controlled Indoor Contact,
Surface
Marks

Directional
Mask

Similarity
meassure

100 4.49 FAR,
2.04 FRR

[103]

Controlled Indoor
Contact-
less

Sobel, LBP χ2 distance 320 1.52 EER [133]
PNN 0.74 EER

Gabor
filter

Hamming
distance

50 8.71 EER [121]

Competitive
code

Hamming
distance

177 1.22 EER [89]

Entropy Canberra
distance

- 15.17 FAR
35 FRR

[182]

Manhattan
distance

14.01 FAR
36 FRR

Lorentzian
distance

15.12 FAR
35.5 FRR

Euclidean
distance

17.41 FAR
36.5 FRR

Uncontrolled Indoor Contact-
less

Gabor
filter

Hamming
distance

16 2.25 EER [44]

Gabor
filters bank

HDE
based on
SVMs

49 1.7 EER [45]

Normalized
Sub-
images

HDE
based on
SVMs

49 1.5 EER [46]
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Background Lighting
Conditions

Pose
Restric.

Features Matching Crew
Size

Results
(%)

Ref.

Uncontrolled Indoor
Contact-
less

OLOF Normalized
Hamming
distance

110 2.25 EER [125]
100 0.98 EER [126]

LBP χ2 distance 20 3.77 EER [165]
LCDP Histogram

Intersec-
tion

200 1.08 EER [170]

Table 11.: Texture-based palmprint Biometric Verification techniques classified accord-
ing to the nature of testing images in terms of environmental conditions
and pose restrictions. The specific features and the matching method are
detailed in each case, together with the obtained results.

On the other side, hand also includes geometric characteristics such as palm and
finger length and widths, inter-finger areas and angles or contour silhouette curva-
tures. These features are easily extractable from the binary image obtained from the
segmentation process and are highly compatible with other features present in the
hand images such as palmprint.

Hand geometry feature extraction methods can be separated into two main streams:
contour-based approaches and distance-based approaches. Former methods anal-
yse the information about the hand shape extracted from the hand contour and
include approaches such as contour alignment [78, 195, 194], contour angles [11],
b-spline curves [118], zernike moments [5], eigenhands [177], independent compo-
nent analysis [200], radon transform [128] or contour curvature and distance to
the centroid [36]. Later methods extract geometrical information about the hand
included in the palm and fingers and are more widespread mainly due to its sim-
plicity. Most simple feature vectors are composed by grayscale profiles [160, 80] or
finger widths [40, 35, 58, 35], finger widths and lengths [124, 123, 55, 54] or finger
widths and lengths together with fingertips information [41, 189]. Other works also
add hand and palm information about size or angles together with finger meassure-
ments [164, 72, 183, 188, 82, 192, 48]. Surface and perimeter information [52, 3] or
even 3D information [175] have also been added to basic measurements to construct
more complex feature vectors. A totally different approach is presented in [6], where
a connected graph is constructed to model the distances between finger tips and
inter-finger valleys. Finally, a hybrid approach is presented in [65] which merge
contour-based information with geometric features.

A comprehensive literature review about hand geometry biometrics is detailed
in Tables 12 and 13, which show contour-based and geometric features-based ap-
proaches for biometric verification purposes respectively. In this tables previous
works are classified according to the nature of testing images in terms of environ-
mental conditions and pose restrictions. In addition, the specific features and the
matching method are detailed in each case, together with the obtained results.
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Background Lighting
Conditions

Pose
Restric.

Features Matching Crew
Size

Results
(%)

Ref.

Controlled Controlled

Contact,
Pegs

Contour
Points

MAE 6 4.17 EER [78]

B-Spline
curves

Curve
fitting

20 5.00 VE [118]

Chain
Code

DTW 50 31 Err [110]

Contact,
Surface
Marks

Eigen
Hand

Euclidean
distance

5 5 FMR [177]

Contact,
Free
Place.

Control
Points

Contour
Alignment

108 2.41 EER [194,
195]

Zernike
Moments

Euclidean
distance

40 2 EER [5]

Contour
Points

ICA 458 1.79 EER [200]

Radon
Transform

Euclidean
distance

18 5.1 EER [128]

Uncontrolled Indoor Contact-
less

Parametric
curves,
Cent-Cont
distances

Fuzzy
Alignment

45 3.70 EER [36]

Table 12.: Contour-based approaches for Hand Geometry Biometric Verification clas-
sified according to the nature of testing images in terms of environmental
conditions and pose restrictions. The specific features and the matching
method are detailed in each case, together with the obtained results.

Background Lighting
Conditions

Pose
Restric.

Features Matching Crew
Size

Results
(%)

Ref.

Controlled Controlled

Contact,
Pegs

FW, FD,
PW, PH,
IFP, An

Euclidean
distance

20 23 FAR,
19 FRR

[163]

Hamming
distance

16 FAR,
9 FRR

Gaussian
Mixture
Models

6.6 FAR,
9 FRR

FL, FW,
PW

Absolute
distance

50 0 FAR,
5 FRR

[160]

FL, FW,
PW

Weighted
Euclidean
distance

50 12 EER [80]

FW, FH,
FD, PW,
An

Euclidean
distance

20 12 EER [164]

Hamming
distance

8 EER

Gaussian
Mixture
Models

6 EER
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Background Lighting
Conditions

Pose
Restric.

Features Matching Crew
Size

Results
(%)

Ref.

Controlled Controlled

Contact,
Pegs

FH, FW,
PW

Euclidean
distance

24 2.1 EER [183]

FC, FL, FW,
An, IFPD

Euclidean
distance

100 1.81 EER [140]

Contact,
Surface
Marks

HG, A, FW,
FW, PW,
PL

Similarity
meassure

100 5.29 FAR
8.24 FRR

[103]

Contact,
Free
Place.

FL, FW,
FTRP

GMM and
Euclidean
distance

29 89 HIT,
2.2 FAR

[189]

FL, FW,
PW

Euclidean
distance

50 4.28 FAR,
4.00 FRR

[137]

FL, FW,
PW, IFPD

Euclidean
distance

130 15.30

FAR,
13.00

FRR

[156]

FL, FW distance 80 2 EER [11]
FL, FW, P MLP 22 4.70 DCF [52]
FL, FW SVMs 109 0.22 EER [56]
FL, FW,
PW, WVD

SVMs 18 92 Ac. [82]

FW Kullback-
Leiber
distance

750 4.19 EER [58]

FL, FW,
IFPD

Euclidean
distance

98 21 EER [197,
117]

FL, FW SVMs 109 0.92 EER [53]
550 0.65 EER [55]
85 99.85 RR [54]

FW, FP, FA Euclidean
distance

50 0.41 EER [3]

Absolute
distance

0.32 EER

FW LS-SVMs 80 0.25 EER [63,
127]

FL, FW,
PW, FR

k-NN 35 5.08 FRR,
4.87 FAR

[188]

Interfinger
Points and
Fingertips
distances
Graph

SVMs 144 0.69 FAR,
2.08 FRR

[6]

Controlled Controlled
Contact-

less

FL, FW, PL,
PW, A, HL,
P, S, E, CA,
Ex, CP

k-NN 100 93.8 Ac. [105]
Naı̈ve
Bayes

94.6 Ac.

SVMs 95 Ac.
FFN 94 Ac.

FL, FW,
PW, FD,
IFVD, An

Euclidean
distance

100 2.04 EER [192]
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Background Lighting
Conditions

Pose
Restric.

Features Matching Crew
Size

Results
(%)

Ref.

Controlled Controlled
Contact-

less

FL, FW,
FD, An, A

Euclidean
distance

180 2.41 EER [14]

FW LS-SVMs 80 0.83 EER [63,
127]

PW, PL,
FW, FL,
CIFPD, An

Euclidean
distance

136 3.61 EER [135]

FL, FW Euclidean
distance

100 95.84 Ac. [84]

FL, FW,
WVD,
3DFW,
ASD,

Mahalanobis
distance

17 1.61 EER [175]

Controlled Indoor
Contact-

less

FL, FW, FA,
P

Euclidean 177 6.3 EER [88]

FL, FW,
PW, FP

Euclidean
distance

177 6.3 EER [89]

Uncontrolled Indoor
Contact-

less

FW SVMs 20 6.3 EER [123]
FW, FL,
FTC

SVMs 50 6 EER [41]

FW SVMs 120 3.8 EER [40]
FW Statistical

Matching
287 1.4 EER [35]

Infrared Contact-
less

FW SVMs 30 4.2 EER [123]

20 3.4 EER [124]

Table 13.: Geometry-based approaches for Hand Geometry Biometric Verification
classified according to the nature of testing images in terms of environmen-
tal conditions and pose restrictions. The specific features and the matching
method are detailed in each case, together with the obtained results. FL,
FW, FH, FD, FP, FA, FR, FC, PL, PH, PW, HL, IFP, IFPD, CIFPD, FTRP,
CP, WVD, An, A, P, S, E, CA, Ex and ASD stands for fingers length, fin-
gers widht(s), fingers height, fingers deviation, fingers perimeter, fingers
area, fingers curvature, ratio between fingers, palm lenght, palm height,
palm width(s), hand length, inter finger points location, inter finger points
distances, centroid - inter finger points distances, fingertips region points,
centroid position, wrist-valleys distance, angles, area, perimeter, solidity,
extent, convex area, excentricity and axis to surface distances respectively.
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5.2 palmprint

5.2.1 Sobel filter

Considering the fact that palmprint features are mainly lines, edge detectors can be
used to describe its texture as demonstrated in [133]. The Sobel operator [171] is a
derivative mask that applied to an image emphasizes the regions which contains bor-
ders by measuring the spatial gradient with respect to a threshold in the appropriate
direction.

In this case, due to the fact that palmprint lines appear in several directions, four
different convolution kernels have been separately applied to measure the response
of the gradient component in orientations 0, 45, 90 and 135 degrees, as shown in
Figure 15.

The feature vector which describes the texture of the palmprint is just a concatena-
tion row by row of the binarized image(s) one after the other. In order to generate a
feature vector having a tractable size in terms of computation efficiency, the original
images are reduced in size before the application of the Sobel filter.

Implementation has been codified in MATLAB.

5.2.2 Zero DC Circular Gabor filter

The Circular Gabor filter is a variation of the traditional Gabor filter which was pro-
posed for rotation invariant texture segmentation [204]. It has been previously ap-
plied to palmprint identification at controlled environments [202, 62].

(a) Palmprint ROI (b) 0
◦ response (c) 45

◦ response

(d) 90
◦ response (e) 135

◦ response

Figure 15.: Original and filtered images using Sobel operator at four different direc-
tions when threshold parameter is set to 0.25.
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The Circular Gabor filter is mathematically defined by the following expression:

G(x, y, σ, F) =
1

2πσ2 e

(
− x2+y2

2σ2

)
e
(

2πiF
(√

x2+y2
))

(9)

where σ is the standard deviation of the gaussian envelope and F is the central
frequency of the Circular Gabor filter.

In the same way that the authors in [202], we removed the DC (direct current)
component from the discrete Circular Gabor Filter to make it more robust against
brightness variability applying the next formula:

G̃(x, y, σ, F) = G(x, y, σ, F)−
∑n

i=−n ∑n
j=−n G(i, j, σ, F)

2(n + 1)2 (10)

where 2(n + 1)2 is the size of the filter.
Choosing the appropriate value of the Gabor filter parameters is crucial to obtain

a descriptive enough result when analysing the texture of the palmprint. To this end,
different values for the central frequency of the Circular Gabor filter, the standard
deviation of the gaussian envelope and the filter size will be tested in Chapter 9 to
decide the best parameter arrangement.

The image containing the preprocessed ROI is convolved with the Zero DC Circu-
lar Gabor filter. The resulting image has two components, the real and the imaginary
parts from which we extract two binary images by thresholding (Figure 16). If the
bit in the imaginary part is major or equal to zero, then a value equal to 1 is as-
signed to the corresponding pixel in the binary image associated to the imaginary
part, otherwise it is set to 0 value. We proceed in the same way for the real part.

Similarly to the Sobel operator approach, the final feature vector is composed by
concatenating row by row the binary images corresponding to the real and the imag-
inary parts of the convolved image.

Implementation has been codified in MATLAB.

5.2.3 Local Binary Pattern

Local Binary Pattern (LBP) operator is a popular texture descriptor presented in [131]
whose robustness, simplicity and good performance in both, accuracy and computa-

(a) Palmprint ROI (b) Real Part (c) Imaginary Part

Figure 16.: Original and filtered images corresponding to the real and imaginary
parts of the convolved image using the Zero DC Circular Gabor filter.
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tion efficiency, make it suitable for many computer vision and image processing ap-
plications, including palmprint recognition using contactless images acquired under
controlled environmental conditions, as demonstrated in [133].

First of all, the LBP code is calculated for every pixel in the image employing the in-
tensities corresponding to that pixel and its neighbours. In the original LBP operator
a 3× 3 neighbourhood is established. To obtain gray-scale invariance, the intensity of
the evaluated pixel (the central pixel) is substracted from the gray value of the neigh-
bours giving as a result a Local Binary Pattern. Then, this pattern is weighted, and
the obtained values are added up to obtain the LBP code which contains information
about the local features of the texture of the image. This process is graphically shown
in Figure 17 and is formally described as:

LBPcode =
P−1

∑
p=0

S(gp − gc)2p (11)

where gp corresponds to the intensity value of the neighboor pixels (p0, ..., pP−1),
gc is the gray value of the central pixel and S is the threshold function defined in
equation 12:

S(x) =

{
1, if x ≥ 0

0, if x < 0
(12)

Then, the texture of the image is commonly represented by the histogram of the
calculated LBP codes.

In 2002, Ojala et al. extended LBP operator definition to neighbourhood of differ-
ent sizes [132]. The original operator is derived to a general case based on circular
symmetry in a region of P neighbour pixels inside a circle of radius R. Following this
principle, the operator is denoted as LBPP,R. This way, LBP operator is defined by
two parameters: P and R, where P represents the number of neighbour pixels and
control the angular space quantification and R corresponds to the radius of the circle
and determines the operator spatial resolution.

In that work Ojala et al. also observed that there are some binary patterns which
occur more frequently in the texture description: the Uniform Binary Patterns [132].
These patterns contains very few spatial transitions, there are no more than two
bitwise 0/1 changes in the pattern when it is traversed circularly: 0000000, 1111111,

Figure 17.: LBP code computation.
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(a) Palmprint ROI (b) LBP features (c) LBPU features

Figure 18.: Features extracted using Local Binary Patterns and Uniform Binary Pat-
terns.

00000111 or 0001100 are examples of uniform binary patterns while 00100110 is not
uniform. In this case, to compute the histogram of the image, a different label is
given to each uniform binary pattern and another one is assigned to the rest of binary
patterns. This way, a shorter texture descriptor is obtained without loosing of relevant
information, and therefore it is representative enough of the distribution of the local
features of the image. Formally:

LBPUcode =

{
∑P−1

p=0 S(gp − gc)2p, if uni f orm

P + 1 otherwise
(13)

Texture features extracted using LBP and LBPU can be seen in be Figure 18.

Although texture histograms could be directly used as the feature vector corre-
sponding to the user of the biometric system, aimed to add some global information,
the image is divided in various regions and a histogram is calculated for each sub-
image. Finally, histograms are concatenated to compose the final biometric feature
vector which describes the palm.

Implementation has been codified in MATLAB and is based on Marko Heikkilä
and Timo Ahonen original implementation1.

5.2.4 Local Derivative Pattern

Local Derivative Pattern (LDP) is a high-order texture descriptor originally proposed
for face recognition with the aim to capture more detailed discriminative information.
LDP encodes directional pattern features based on local (n − 1)th-order derivative
variations based on a binary coding function. As they are high-order local patterns,
they provide a stronger discriminative capability in describing detailed texture infor-
mation than first order local patterns as used in LBP.

1 www.cse.oulu.fi/CMV/Downloads/LBPMatlab

www.cse.oulu.fi/CMV/Downloads/LBPMatlab


5.2 palmprint 89

Figure 19.: 8-neighbourhood around Z0 [201].

Given an image I(Z), let Z0 be a point in I(Z), and Zi, i = 1, .., 8 be the neigh-
bouring point around Z0 as depicted in Figure 19. The nth-order directional LDP in
direction α at Z = Z0 is defined by equation 14:

LDPn
α (Z0) = { f (In−1

α (Z0), In−1
α (Z1)), f (In−1

α (Z0), In−1
α (Z2)),

..., f (In−1
α (Z0), In−1

α (Z8))}
(14)

where f (·, ·) is a binary coding function determining the types of local pattern
transitions and In−1

α (Zj) is the (n − 1)th-order derivative in direction α at Z = Zj
being j = 0, .., 8, and α = 0◦, 45◦, 90◦and135◦.

f (In−1
α (Z0), In−1

α (Zi)) encodes the (n − 1)th-order gradient transitions into binary
patterns and is defined as follows:

f (In−1
α (Z0), In−1

α (Zi)) =

{
0, i f In−1

α (Zi)) · In−1
α (Z0)) > 0

1, i f In−1
α (Zi)) · In−1

α (Z0)) ≤ 0
,

i = 1, .., 8.

(15)

The nth-order LDP is a concatenation of directional LDPs in four directions with a
45 representation resolution defined according to equation 16:

LDPn(Z) = LDPn
α (Z)|α = 0◦, 45◦, 90◦and135◦. (16)

In particular, 2nd-derivative patterns have been used for palmprint features repre-
sentation. In this case, equations 14, 15 and 16 are particularized as follows:

LDP2
α (Z0) = { f (I′α(Z0), I′α(Z1)), f (I′α(Z0), I′α(Z2)),

..., f (I′α(Z0), I′α(Z8))}
(17)

f (I′α(Z0), I′α(Zi)) =

{
0, i f I′α(Zi)) · I′α(Z0)) > 0

1, i f I′α(Zi)) · I′α(Z0)) ≤ 0
, i = 1, .., 8. (18)

LDP2(Z) = LDP2
α (Z)|α = 0◦, 45◦, 90◦and135◦ (19)

and the first derivatives in the mentioned four directions at Z = Z0 are written
according to equation 20:

I′0◦(Z0) = I(Z0)− I(Z4)

I′45◦(Z0) = I(Z0)− I(Z3)

I′90◦(Z0) = I(Z0)− I(Z2)

I′135◦(Z0) = I(Z0)− I(Z1).

(20)
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(a) Palmprint ROI (b) LDP features in
0
◦ direction

(c) LDP features in
45
◦ direction

(d) LDP features in
90
◦ direction

(e) LDP features in
135
◦ direction

Figure 20.: Original ROI and LDP features extracted at four different directions.

Figure 20 depicts the 2nd-order LDP features extracted at 0
◦, 45

◦ , 90
◦ and 135

◦

directions from a Palmprint ROI, and an example about how to compute the 2nd-
order LDP is shown in Figure 21.

Once the patterns are computed, the algorithm works in the same way than LBP
approach and the texture of the image is represented by the histogram of the LDP
codes. Similarly, aimed to add some global information, the image is divided in var-
ious regions and the histogram is calculated for each sub-image. Finally, histograms
are concatenated to compose the final biometric feature vector which describes the
palm.

In addition, aimed to evaluate if some direction (or combination of directions) is
more representative of the palmprint texture, a variant of the algorithm has also
been implemented. In this implementation it is possible to specify the direction(s)
which are involved in the feature extraction process and the biometric feature vector
is computed from the second-order directional LDP in the specified direction(s).

Implementation has been codified in MATLAB based on Marko Heikkilä and Timo
Ahonen original implementation for LBP2.

2 www.cse.oulu.fi/CMV/Downloads/LBPMatlab

www.cse.oulu.fi/CMV/Downloads/LBPMatlab
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Figure 21.: Example to obtain the second-order LDP micropatterns [201].

5.2.5 Curvelet

Curvelet is a mathematical transform proposed by Candes and Donoho [16] to rep-
resent edges and other singularities along curves more efficiently than traditional
transforms. Conceptually, the curvelet transform is a multiscale pyramid with many
directions and positions at each length scale, and needle-shaped elements at fine
scales [15]. In this sense, Curvelet transform can be seen as a generalization of the
Wavelet transform that permits to represent images at different scales and different
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angles, providing rich feature information when applied to image processing. Ac-
cordingly, it is a multi-scale, directionally sensitive and highly anisotropic method
that can well approximate curved singularities with very few coefficients in a non-
adaptive manner.

Given the curved nature of the lines which compose the palmprint, Curvelet trans-
form can be applied to extract palmprint feature information at different scales [43,
113].

The first generation of Curvelet transform[16] is a combination of two-dimension
wavelet transform and the ridgelet transform. Wavelet transform decomposes the
image into scales and blocks in such a way that curved edges are subdivided into
approximate straight lines. Then, each block is analysed by a local ridgelet transform.
It is a complex transform that also present wide data redundancy.

Aimed to make it more understandable as well as to reduce data redundancy,
curvelet transform was redesigned [15]. The second generation of curvelets was
reintroduced as Fast Digital Curvelet Transform and takes on features of faster com-
putation and less redundancy. In particular two new discrete transformations were
proposed: Digital Curvelet Transform via USFFT, and Digital Curvelet Transform via
Wrapping.

These digital transformations are linear and take as input Cartesian arrays of the
form f [t1, t2], 0 ≤ t1, t2 < n, providing as output a collection of coefficients cD(j, l, k)
according to equation 21:

cD(j, l, k) := ∑
0≤t1,t2<n

f [t1, t2]ϕD
j,l,k[t1, t2], (21)

where each ϕD
j,l,k is a digital curvelet waveform.

To provide a detailed mathematical formulation of the transformations and the
computation of coefficients is considered to be beyond the scope of this thesis. The
reader is referred to [15] for a complete description of both implementations of the
Fast Digital Curvelet Transform.

These two implementations essentially differ by the choice of the spatial grid used
to translate curvelets at each scale and angle. In this thesis, Digital Curvelet Trans-
form via Wrapping, that assume a rectangular grid, has been evaluated. As a result
of the transformation, a table of digital curvelets coefficients indexed by a scale pa-
rameter, an orientation parameter, and a spatial location parameter, is obtained. An
example of coefficients extracted from a palmprint image can be seen in Figure 22.

The biometric feature vector is composed by a concatenation of the computed co-
efficients. In the composition of the feature vector one or more frequency bands can
be involved.

Implementation has been implemented in MATLAB and makes use of the code
provided at http://www.curvelet.org/.

http://www.curvelet.org/
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Figure 22.: Digital Curvelet Transform via Wrapping coefficients from a Palmprint
image.

5.3 hand geometry

Given the five regions corresponding to the fingers, the hand contour, the fingertips
and the inter-finger valley points, the hand geometry features are obtained by means
of a fingers width-based approach.

For each finger, its geometrical features are obtained as follows:

1. First, the middle point between the valleys corresponding to the finger is com-
puted. It is named basis point and marked as a pink square in Figure 23.

2. Then the line between fingertip and the basis point is calculated and represents
the finger length.

3. Next, this segment is divided into the number of features per finger specified as
a parameter (green dots in Figure 23).

4. Formerly, a perpendicular line to the finger length line that passes through each
division point is computed and the points where this line cut the contour are
extracted (blue and red dots in Figure 23). Then, the distance between these
points is stored as finger width.

5. Finally, to make the features invariant to changes in scale or size derived from
restriction-free capturing processes, the features are normalized by the length of
the corresponding finger.
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Figure 23.: Finger Geometry Features.

The biometric feature vector is composed by a concatenation of the widths of every
finger.

Implementation has been codified in MATLAB.



6
F E AT U R E M AT C H I N G A N D D E C I S I O N

6.1 introduction

Feature matching (or comparison) and decision are the stages of a biometric system
where a new sample is compared against a biometric template previously stored
in the system in order to evaluate if they belong to the same person or not. Fea-
ture comparison provides the degree of similarity or dissimilarity degree between
the biometric features contained in the new sample and the template stored in the
system during the enrolment stage. Then, based on a decision policy and this simi-
larity value, the system determines if there is a correspondence between the sample
provider and proprietor of the template.

A wide number of different comparison methods have been applied for feature
matching in biometrics, including well-known pattern recognition and classification
techniques such as minimum distance, decision trees, k-nearest neighbours, naı̈ve
Bayes or neural networks. The comparison method is closely related to the feature
extraction approach. Accordingly, the comparison method is selected in such a way
that its compatibility with the extracted features is guaranteed. A comprehensive
literature review of feature matching methods for palmprint and hand geometry bio-
metric verification can be found in Tables 11, 12 and 13, together with the feature
extraction method applied in each case.

In this thesis two different methods have been applied in order to obtain com-
parative results: distance-based and Support Vector Machines (SVMs), detailed in
Sections 6.2 and 6.3 respectively.

6.2 distance-based

Distance-based approach is one of the most extended methods for biometric features
comparison because of its simplicity and low computational requirements. As a re-
sult, it provides a numeric value which represents the difference between two feature
vectors. Accordingly, the decision policy established in the system is to consider the
compared vectors as belonging to the same person if the computed distance is lower
than a previously established threshold.

In particular, three different distances have been included in the system: Euclidean,
χ2 and Histogram Intersection. The former can be applied to all the feature extraction
methods described in Chapter 5, while the latter distances are recommended for
histogram comparison and thus, applied along with LBP and LDP descriptors.

95
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Finally, as the biometric template is composed by different feature vectors, the new
sample is compared against every feature vector in the template and the smaller score
is selected.

6.2.1 Euclidean Distance

Euclidean distance is defined by equation 22:

ED(S, M) =

√
n

∑
i=1

(Si −Mi)2, (22)

where S and M are the feature vectors to compare and n is the length of the vector.

6.2.2 χ2 Distance

χ2 distance is defined by equation 23:

χ2(S, M) =
n

∑
i=1

(Si −Mi)
2

Si + Mi
, (23)

where S and M are the feature vectors to compare and n is the length of the vector.

6.2.3 Histogram Intersection

Histogram intersection distance is defined by equation 24:

HI(S, M) =
n

∑
i=1

min(Si, Mi), (24)

where S and M are the feature vectors to compare and n is the length of the vector.

6.3 support vector machines

Support Vector Machines (SVMs in advance) are binary classifiers that are able to
analyse the biometric features provided during the training phase to learn a model.
In this case, the classification process is based on the search of the hyperplanes which
better differentiate the biometric features belonging to an individual from those corre-
sponding to other people. Two strategies can be followed for the hyperplanes search:
one-against-all or one-against one. Former strategy creates q SVMs with the aim
to differentiate each individual from the remaining, while later creates q(q − 1)/2
SVMs that separate each pair of classes, being q the number of classes or individuals
in the system. In this thesis one-against-all strategy is preferred because of the lineal
complexity in regarding to the number of classes and thus, the lower computational
effort.

Let be x1, x2, ..., xn the training data used to create the SVMs, where each xi corre-
sponds to a biometric feature vector. Each input xi is assigned an output yi ∈ {−1, 1}
where 1 means that the instance belongs to the same user that the trained SVM and
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−1 indicates that the sample belongs to any other person. Assuming that every train-
ing data satisfies the following conditions:

xi · w + b ≥ +1, ∀yi = +1

xi · w + b ≤ −1, ∀yi = −1
(25)

the equation of the hyperplane is defined as follows:

w · x + b = 0 (26)

where w is normal to the hyperplane.
In the case the data are linearly separable, it is possible to find the optimal hyper-

plane which maximizes the margin m = d+ + d−, where d+ is the shortest distance
between the hyperplane and the closest positive sample and d− is de shortest dis-
tance between the hyperplane and the closest negative sample, by minimizing ‖w‖2.
Taking into account the constraint defined in equation 27, which is generated by
combining the conditions presented in Equation 25:

yi(xi · w + b) ≥ 1, ∀i (27)

the problem is equivalent to minimize the quadratic problem defined in equation
28:

1
2
‖w‖2 −

l

∑
i=1

αiyi(xi · w + b) +
l

∑
i=1

αi (28)

where αi are the nonnegative Lagrange multipliers.
Once the equations that characterize the elements of each class are defined, and the

surfaces that correspond to each class are delimited, it is possible to classify a new
vector z by evaluating the function defined as:

f (x) = w · z + b =
s

∑
i=1

αiyi(si · z) + b, (29)

where s is the number of support vectors. In case the sign of Equation 29 is positive,
z belongs to class 1, on the contrary it belongs to class 2.

Nevertheless, data are not always linearly separable and a hyperplane able to sep-
arate the vectors of each class does not exist. In this case, it is necessary to transform
data from the current space to a higher dimensional space, where input data become
separable and the optimal hyperplane can be found. The transformation φ(xi) ap-
plied to every xi is a vectorial product between support vectors and xi. In practice,
to compute this vectorial product given the high dimension of z could be highly ex-
pensive. For this reason, taken into account that if data are previously mapped to
an Euclidean space E by a mapping function Φ, the training would only depend on
functions of the form Φ(xi) · Φ(xj), kernel functions K(xi, xj) = Φ(xi) · Φ(xj) that do
not require knowledge on Φ are introduced.
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In this case equation 29 is redefined as follows:

f (x) = w ·Φ(z) + b =
s

∑
i=1

αiyi(Φ(si) ·Φ(z)) + b =
s

∑
i=1

αiyiK(si, z) + b. (30)

In the same way, if the sign of Equation 29 is positive, z belongs to class 1, on the
contrary it belongs to class 2.
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B I O M E T R I C S F U S I O N

7.1 introduction

In general, the term Biometrics Fusion is considered a synonym of Multimodal Bio-
metrics but, according to [145], it includes two general techniques: Multimodal
Fusion, where the biometric information is obtained from different physical or be-
havioural traits, and Intramodal Fusion where the biometric information is obtained
from the same trait, but using different features, classifiers or sensors. In the partic-
ular case of hand-related biometrics, it is also possible to find to obtain information
related to different traits using the same sensor.

Attending to the module of the system in which the biometric information is com-
bined, it could be distinguished between four data fusion levels [52]: sensor or data,
feature, matching or score and decision. If the sensor signals are comparable then
the raw data can be directly merged. The input signal is the result of sensing the
same biometric characteristic with two or more sensors [1]. The feature level pro-
vides fusion of data obtained from different features of a single biometric trait, or
from different biometric traits [198, 83]. At score level, the fusion system normal-
izes the scores coming from each biometric modality matcher and combine them into
a global score [145, 93, 73, 86]. In the decision level approach the decisions about
the user identity obtained from each trait separately are combined to obtain a final
decision [184].

The effectiveness of a multimodal biometric system generally depends on the level
where the biometric fusion takes place: usually, the earlier the stage the more ef-
fective the system is, because the information about the biometrics of the subject to
be identified decreases significantly with the processing at the different levels [161].
Therefore, although fusion at the feature level is expected to provide better recog-
nition results, integration at this level is difficult to achieve in practice because the
feature sets of the various biometric modalities may not be compatible; for instance,
eigencoefficients of face and air-signature characterization are in both qualitative and
quantitative different spaces (regarding definition intervals, statistical distribution,
etc.). On the other hand, fusion at the decision level is considered to be rigid due
to the extremely limited information available at this stage. Thus, fusion at score
level is usually preferred, as it is relatively easy to obtain and combine the scores
presented by the different modalities. Nonetheless, despite the evidence of this claim
provided by the literature, the authors in [103] describe a hand-based verification sys-
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tem that combines the geometric features of the hand with palmprints at the feature
and matching score levels, resulting in better performance the latter.

In the last decade some works which exploit the information coming from dif-
ferent hand-related biometrics have been developed. These hand multibiometric
approaches include hand geometry and palmveins [140], palmprint and palmveins
[185, 136, 59, 182], palmprint and hand geometry [153, 103, 137, 141, 56, 110, 20], hand
veins, hand geometry and fingerprints [168], palmprint, hand geometry and finger-
prints [7, 53, 197], palmprint, hand geometry and hand veins [71, 14], palmprint and
knucleprint [120, 130] or hand geometry, palmprint, knuckleprint, palm veins and
finger veins [135].

From the point of view of the capturing conditions, even when some of these works
employ contactless images captured by fix devices [134, 23, 135] and/or under semi-
controlled lighting conditions and background [134, 103, 135], most of them work
with images recorded in controlled environments.

Table 14 gathers multimodal hand biometric approaches classified according to the
involved traits, the nature of the testing images in terms of environmental conditions
and pose restrictions, and the level in which the information is fused.

In this thesis the multibiometric nature of the hands will be exploited to improve
the system performance. In particular intramodal fusion will be carried out by fus-
ing palmprint information coming from different algorithms as well as multimodal
fusion, involving hand geometry and palmprint biometrics traits. Fusion will be
performed at feature and score levels, in order to provide a fair comparison.

Biometric Traits Background Lighting
Conditions

Pose
Restrictions

Fusion
Level

References

Hand Geom.,
Palmprint

Controlled Controlled Contact, Pegs
Score
level

[25]

- [110]

Controlled Indoor Contact,
Surface Marks

Score
level

[103]

Controlled Controlled Contact, Free
Placement

Feature
level

[147]

Score
level

[153, 137,
141, 56]

Controlled Controlled Contact-less
Feature
level

[23]

Score
level

[20]

Decision
level

[186]

UncontrolledIndoor Contact-less Feature
level

[44]

- - - Decision
level

[84]



7.1 introduction 101

Biometric Traits Background Lighting
Conditions

Pose
Restrictions

Fusion
Level

References

Hand Geom.,
Dorsal Veins

Controlled Controlled Contact,
Pegs

Score
level

[140]

Palmprint,
Fingerprints

Controlled Controlled Contact, Free
Placement

Feature
level

[117]

Palmprint,
Finger Geom.

Controlled Controlled Contact, Free
Placement

Score
level

[155]

Palmprint,
Palm Veins

Controlled Controlled Contact,
Pegs

Sensor
level

[185]

Controlled Indoor Contact-less Feature
level

[182]

Controlled Controlled Contact-less Score
level

[136]

Palmprint,
Knuckleprint

Controlled Controlled Contact,
Pegs

Score
level

[130]

Controlled Controlled Contact, Free
Placement

Score
level

[120]

Palmprint,
Finger Texture

Controlled Controlled Contact, Free
Placement

Score
level

[154]

Palmprint,
Finger Surface

Controlled Controlled Contact-less Feature
level

[150]

Hand Geom.,
Palmprint,
Fingerprints

Controlled Controlled Contact, Free
Placement

Feature
level

[53]

Controlled Controlled Contact, Free
Placement

Score
level

[53, 197,
117]

Controlled Controlled Contact, Free
Placement

Decision
level

[53]

Hand Geom.,
Palmprint,
Veins

Controlled Controlled Contact, Free
Placement

Decision
level

[7]

Controlled Controlled Contact-less Score
level

[14]

- Controlled - Score
level

[71]

Hand Geom.,
Palmprint,
Finger Geom.

Controlled Controlled Contact, Free
Placement

Score
level

[156]
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Biometric Traits Background Lighting
Conditions

Pose
Restrictions

Fusion
Level

References

Palmprint.,
Hand Geom.,
Finger Geom.

Controlled Controlled Contact-less Score
Level

[63, 127]

Hand Geom.,
Palmprint,
Knuckleprint,
Palm Veins,
Finger Veins

Controlled Controlled Contact-less Score
Level

[135]

2D Palmprint,
2D Hand Geom.,
2D finger texture,
3D Palmprint,
3D Finger Texture

Controlled Indoor Contact-less Score
level

[89]

Table 14.: Multimodal hand biometric approaches classified according to the involved
traits, the nature of the testing images in terms of environmental conditions
and pose restrictions and the level in which the information is fused.

7.2 normalization

Differences between feature spaces can be reflected in the statistical distributions
of the feature vectors in the case of fusion at feature level as well as the statistical
distributions of the distances among features when fusion is performed at score level.
For this reason, both approaches require a normalization step before the fusion.

Normalization involves to change the location and scale parameters of the original
distribution in such a way that data is transformed into a common domain. Normal-
ization can be fixed or adaptive in regarding to the data used to obtain the normaliza-
tion parameters. In the first case a set of training data is analysed to extract a model
that will be used to estimate the normalization parameters, while in the second case
parameters are estimated based on the test sample, presenting a higher capacity to
adapt to variations in the input data such as variable-length feature vectors. In this
thesis fixed approach have been selected given the availability of training data and
the fix length of the feature vectors.

There exist many possible normalization procedures including min-max, decimal
scaling, z-score, median and median absolute deviation, double sigmoid, tanh-estima-
tor or Biweight estimators. In [79] an analysis of these techniques is presented in
terms of performance as well as two statistical properties that should be required for
a correct normalization: robustness and efficiency. Robustness refers to insensitivity
to the presence of extreme values, i.e. values at a significant distance from the set
bounds, whereas efficiency is related to the proximity of the obtained estimates to
the optimal estimates when the distribution of the data is known.
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In this thesis min-max normalization and z-score have been selected because of
their simplicity, good performance, efficiency and widespread use.

7.2.0.1 Min-Max Normalization

Min-max normalization is the best suited for the case where the bounds (maximum
and minimum values) are known. In this case, it is possible to easily transform
the minimum and maximum scores to 0 and 1, respectively. Unfortunately, it is
not possible in real cases since the amount of data is limited and the distributions
not always are bounded. Nevertheless, it is possible to estimate the minimum and
maximum values from the available data and then apply the min-max normalization.
In this sense, let be the data set provided by a certain biometric modality denoted
by Si, where i = 1, ..., N, and N is the number of biometric modalities. Then, the
normalization obeys equation 31:

S̃i =
Si −min(Si

N
i=1)

max(Si
N
i=1)−min(Si

N
i=1)

(31)

It should be noted that, from the mathematical definition of the min-max normal-
ization, it retains the original distribution except for a scaling factor, transforming the
initial data into a common domain [0, 1].

As mentioned above, the min-max normalization is one of the most used normal-
ization procedures due to its simplicity, good performance and efficiency. However,
its major inconvenient is that when the minimum and maximum values are estimated
from the training data, this normalization procedure could not be robust and it is sen-
sitive to the presence of extreme values. Therefore, the employed database should be
exhaustive enough to get a reliable estimation of the scores distribution and thereby
to obtain stable bound values.

7.2.0.2 z-score Normalization

Another commonly used normalization procedure is the z-score normalization, which
uses the mean and standard deviation of the data to shift and scale the initial distribu-
tion of scores into a common domain. When the average and variance of the score dis-
tribution are accessible, the z-score normalization performs properly. However, this
situation is not usual and these parameters must be estimated from the available data.
These estimations of mean and variance are optimal for normal distributions while
when the original distribution is not Gaussian, the z-score transformation could not
preserve the initial distribution. In addition, both parameters mean and std are sen-
sitive to outliers. Accordingly, an extensive enough database of normal distributed
data is required to obtain a reliable z-score normalization.

Given data set provided by the different biometric modalities denoted by Si, where
i = 1, ..., N, and N is the number of biometric modalities, z-score normalization is
defined by equation 32:

S̃i =
Si − µi

σi
(32)

where µi and σi are the arithmetic mean and the standard deviation of the data
provided by the i− th bimoetric modality.
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7.3 score level fusion

Most commonly used approach for biometric fusion is Score-Level fusion due to its
good performance, simplicity and the relative easy access and combination of the
scores provided by different biometric modalities. In this approach after normaliza-
tion, the scores provided by the different biometric techniques are fused to get a
unique score that will be used to reach the final decision about the identity of the
user.

In mathematical terms this means that the scores si, with i = 1, ..., N and N the
number of biometric modalities, are mapped from IRN → IR by a function f to get a
single score S (Eq. 33):

S = f (w1s1, ..., wNsN) (33)

where the factors wi weight the influence of each score in the final fusion. These
weighting factors are optimized by means of a genetic algorithm which starts with
an initial population of 300 individuals and compute 20 generations. This genetic
algorithm also allows to decide which fusion rule has a better performance in case
that more than one rule is used. In this thesis four weighted rules have been tested:
minimum, maximum, sum and product.

7.4 feature level fusion

Fusion of biometric information at feature level can involve features extracted by the
same method from the same biometric trait, typically used to improve or update
the biometric template, features extracted by different methods and belonging to the
same trait or features that correspond to different traits. In the latter cases, the fusion
can present difficulties derived from the lack of knowledge about the relationship be-
tween feature spaces, incompatibility of features or curse-of dimensionality problem,
where increasing the number of features might degrade the system performance in
cases that the number of training samples is small.

Given the normalized feature vectors X = {x1, x2, ..., xm} ∈ IRm and Y = {y1, y2, ...,
yn} ∈ IRn provided by two different biometric sources, the objective of feature level
fusion is to find a new feature vector Z ∈ IRk, with k ≤ m + n, that better represent
the user. This new vector Z is typically generated by the concatenation of the two
original feature vectors X and Y (Eq. 34) followed by a feature selection process.

Z = {x1, x2, ..., xm, y1, y2, ..., yn} ∈ IRm+n (34)

Feature selection is commonly carried out by means of dimensionality reduction
techniques or feature transformation methods. In this case, Principal Component
Analysis (PCA) is applied.
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E VA L U AT I O N P R O T O C O L

8.1 intro

A well defined evaluation methodology allows for a fair comparison between meth-
ods as well as to measure real progress achieved with new research and to pinpoint
unsolved problems [142]. Nevertheless, hand biometrics literature shows a wide va-
riety of evaluation protocols and metrics for results presentation, even when many
authors use the same database.

For this reason, an evaluation protocol is proposed in this thesis to test the per-
formance of different biometric solutions under different environmental conditions,
enabling fair comparison and reproducibility of the results. This evaluation protocol
is based on the definitions suggested by the ISO/IDE 19795 [75, 76], which presents
the requirements and best scientific practices for conducting technical performance
testing, as well as the guidelines provided in [142].

Accordingly, one of the contributions of this thesis is a fair comparison of different
hand biometrics methods using this unified test framework. Particularly, results of
different palmprint and hand geometry recognition monomodal approaches under
different capturing conditions will be provided in terms of accuracy and computa-
tion time. In addition, multimodal results obtained from their fusion will be also
presented.

8.2 iso/ide 19795 definitions

Most important definitions regarding to biometric applications, data, system interac-
tion and evaluation included in the ISO/IDE 19795 norm [75] are provided hereafter.

8.2.1 Biometric applications

• Verification: application in which the user makes a positive claim to an identity
and present the biometric sample to the system. Features derived from the
submitted sample biometric measure are compared to the enrolled template
for the claimed identity, and an accept or reject decision regarding the identity
claim is returned. The claimed identity might be in the form of a name, personal
identification number (PIN), swipe card, or other unique identifier provided to
the system.
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• Identification: application in which the user presents the biometric trait to the
system and a search of the enrolled database is performed. A candidate list of
0, 1 or more identifiers is returned as a result.

• Closed-set identification: identification for which all potential users are enrolled
in the system.

• Open-set identification: identification for which some potential users are not
enrolled in the system.

8.2.2 Biometric data

• Sample: user’s biometric measures as output by the data capture subsystem. In
complex systems the sample may consist of multiple presented characteristics.

• Features: digital representation of the information extracted from a sample (by
the signal processing subsystem) that will be used to construct or compare
against enrolment templates.

• Template or model: user’s stored reference measure based on features extracted
from enrolment samples. The reference measure is often a template comprising
the biometric features for an ideal sample presented by the user. More gener-
ally, the stored reference will be a model representing the potential range of
biometric features for that user.

• Matching score or similarity score: measure of the similarity between features
derived from a sample and a stored template, or a measure of how well these
features fit a user’s reference model. As features derived from a presented
sample become closer to the stored template, similarity scores will increase. A
match or non-match decision may be made according to whether this score
exceeds a decision threshold.

• Verification decision: determination of the probable validity of a user’s claim to
identity in the system.

• Candidate list: set of potential enrolled identifiers for a subject produced by an
identification attempt (or by a pre-selection algorithm).

8.2.3 User interaction with a biometric system

• Presentation: submission of a single biometric sample on the part of a user.

• Attempt: submission of one (or a sequence of) biometric samples to the system.

• Transaction: sequence of attempts on the part of a user for the purpose of bio-
metric transaction. There are three types of transaction: enrolment sequence,
resulting in an enrolment or a failure-to-enrol; a verification sequence resulting
in a verification decision; or identification sequence, resulting in an identifica-
tion decision.
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• Genuine attempt: single good-faith attempt by a user to match their own stored
template.

• Zero-effort impostor attempt: attempt in which an individual submits his/her
own biometric characteristics as if he/she were attempting successful verifica-
tion against his/her own template, but the comparison is made against the
template of another user.

• Active impostor attempt: attempt in which an individual tries to match the
stored template of a different individual by presenting a simulated or repro-
duced biometric sample, or by intentionally modifying his/her own character-
istics.

• Presentation effects: broad category of variables affecting the way in which the
user’s inherent biometric characteristics are displayed to the sensor.

• Channel effects: changes imposed on the presented signal in the transduction
or transmission process due to the sampling, noise and frequency response
characteristics of the sensor and transmission channel.

8.2.4 Personal involved in the evaluation

• User: person presenting biometric sample to the system.

• Test subject: user whose biometric data is intended to be enrolled or compared
as part of the evaluation.

• Crew: set of test subjects gathered for an evaluation.

• Target population: set of users of the application for which performance is
being evaluated.

• Administrator: person performing the testing or enrolment.

• Operator: individual with function in the actual system. Staff conducting enrol-
ment or overseeing verification or identification transactions.

• Observer: test staff member recording test data or monitoring the crew.

• Experimenter: person responsible for defining, designing and analysing the
test.

• Test organization: functional entity under whose auspices the test is conducted.

8.2.5 Types of performance evaluation

Testing a biometric system will involve the collection of input data, which are used
to generate user’s templates during the enrolment and for calculation of matching
scores for verification or identification attempts.
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• Technology evaluation: offline evaluation of one or more algorithms for the
same biometric modality using a pre-existing or specially-collected corpus of
samples, ideally collected by a universal sensor. Nonetheless, performance
against this corpus will depend on both, the environmental conditions and the
population. As the corpus is fixed, the results of technology tests are repeatable.

• Scenario evaluation: evaluation in which the end-to-end system performance
is determined in a prototype or simulated application of a complete system in
an environment that models a real-world target application of interest. Each
tested system will have its own acquisition sensor and so will receive slightly
different data. Consequently, if multiple systems are being compared, care
will be required that data collection across all tested systems is in the same
environment with the same population. Test results will be repeatable only to
the extent that the modelled scenario can be carefully controlled.

• Operational evaluation: evaluation in which the performance of a complete
biometric system is determined in a specific application environment with a
specific target population. In general, operational tests results will not be re-
peatable because of unknown and undocumented differences between opera-
tional environments. Furthermore, ”ground truth” about the authenticity of
the biometric attempt can be difficult to ascertain, particularly if an operational
evaluation is performed under unsupervised conditions without an administra-
tor, operator or observer present.

• Online: pertaining to execution of enrolment and matching at the time of image
or signal submission. Online testing has the advantage that the biometric sam-
ple can be immediately discarded, saving the need for storage and for the sys-
tem to operate in a manner different from usual. However, it is recommended
that images or signals are collected if possible.

• Offline: pertaining to execution of enrolment and matching separately from im-
age or signal submission. Collecting a database of images or signals for offline
enrolment and calculation of matching scores allows greater control over which
attempts and template images are to be used in any transaction. Technology
testing will always involve data storage for later, offline processing. However,
with scenario and operational testing, online transactions might be simpler for
the tester.

8.2.6 Performance measures

• Failure-to-enrol rate (FTE): proportion of the population for whom the system
fails to complete the enrolment process. The observed FTE is measured on test
crew enrolments. The predicted/expected FTE will apply to the entire target
population.

• Failure-to-acquire rate (FTA): proportion of verification or identification attempts
for which the system fails to capture or locate an image or signal of sufficient
quality.
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• False non-match rate (FNMR): proportion of genuine attempt samples falsely
declared not to match the template of the same characteristic from the same
user supplying the same trait.

• False match rate (FMR): proportion of zero-effort impostor attempt samples
falsely declared to match the compared non-self template.

• False reject rate (FRR): proportion of verification transaction with truthful claims
of identity that are incorrectly denied.

• False accept rate (FAR): proportion of verification transaction with wrongful
claims of identity that are incorrectly confirmed.

• (True-positive) identification rate: proportion of identification transactions by
users enrolled in the system in which the user’s correct identifier is among those
returned. This identification rate is dependent on the size of the enrolment
database and a decision threshold for matching scores and/or the number of
matching identifiers returned.

• False-negative identification-error rate (FNIR): proportion of identification trans-
actions by users enrolled in the system in which the user’s correct identifier is
not among those returned.

• False-positive identification-error rate (FPIR): proportion of identification trans-
actions by users not enrolled in the system, where an identifier is returned. So,
with closed-set identification FPIR is not possible, as all users are enrolled. The
FPIR is dependent on the size of the enrolment database and a decision thresh-
old for matching scores and/or the number of matching identifiers returned.

• Pre-selection error: error that occurs when the corresponding enrolment tem-
plate is not in the pre-selected subset of candidates when a sample from the
same biometric characteristic on the same user is given. In binning pre-selection,
pre-selection errors happen when the enrolment template and a subsequent
sample from the same biometric characteristic on the same user are placed in
different partitions.

• Penetration rate: measure of the average number of pre-selected templates as a
fraction of the total number of templates.

• Identification rank: smallest value k for which a user’s correct identifier is in
the top k identifiers returned by an identification system.

8.3 evaluation protocol

In this thesis, a protocol for technology evaluation of different algorithms have been
designed. According to the ISO/IDE 19795 norm [76] technology evaluation presents
the following benefits:

• Ability to conduct full cross-comparison tests: technology evaluation affords
the possibility to use the entire testing population as claimants to the identities
of all other members.
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• Ability to conduct exploratory testing: technology evaluation can be run with
no real-time output demands and is thus well suited to research and develop-
ment. It allows the measurement of the effects of algorithmic improvements,
parameter changes or the use of different image databases.

• Ability to conduct multi-instance and multi-algorithmic testing. By using com-
mon test procedures, interfaces and metrics, technology evaluation affords the
possibility to conduct repeatable evaluations of multi-instance systems and
multi-algoritmic performance, or any combination thereof.

• When the corpus contains appropriate sample data, technology testing is ca-
pable of testing separately all modules subsequent to the human-sensor inter-
face, including: quality control and feedback module(s), signal processing mod-
ule(s), image fusion module(s), feature extraction and normalization module(s),
feature-level fusion module(s), comparison score computation and fusion mod-
ule(s), and score normalization module(s).

• Elimination of human-sensor interaction from performance measurement al-
lows for repeatable testing.

• If sample data are available, performance can be measured over large target
populations, utilizing samples acquired over a period of years.

When designing the technology evaluation protocol for biometric verification sys-
tems, some aspects related to evaluation databases as well as biometrics systems
benchmarking have been considered:

• Databases. Different databases will be used to test the algorithms. Their charac-
teristics related not only to the capturing conditions but also to the number of
users, sessions, or the number of images per user and session can vary, so the
evaluation protocol must be flexible enough. An evaluation will be performed
separately for each database.

• Development and test datasets. To ensure non-biased and representative results,
images of every user are divided into two groups: development and test. The
development dataset is used to train and validate the system, adjusting certain
parameters such as the acceptance threshold, while the test dataset is employed
to simulate real accesses into the system which provides a realistic estimation
of its performance.

• Enrolment. To be recognised by the system, a user must be previously regis-
tered. To this end, a subset of each user’s development images is dedicated to
obtain the biometric template required to be enrolled into the system.

• System accesses. During the access stages it is differentiated between genuine
users and impostors to evaluate the response of the system in different scenar-
ios. This way, when a user is considered to be a genuine user, the other users
represent zero-effort impostors.



8.3 evaluation protocol 113

The proposed evaluation protocol is composed of three parts. First of all it is
necessary to separate the original datasets to allow development and evaluation tasks
as previously considered. Next, scores are computed by comparing the biometric
features extracted from enrol samples against those coming from access samples.
Finally, performance metrics are calculated.

8.3.1 Dataset Organization

Accordingly, for each database the images of each user are divided into the following
datasets:

• Development subset, which is in turn divided into training, enrolment and
access samples. First group of samples is used to train those algorithms that
need it, such as PCA or SVMs. Enrolment samples are used to generate the
biometric reference template of each user that allows the registration of the user
into the system. Finally, access samples are employed to simulate the entrance
of the users into the system, which allow to validate the system as well as to
adjust certain parameters like the acceptance threshold.

• Test subset, which contains samples employed to simulate new accesses into
the previously configured system. These accesses allow for the calculation of
more realistic performance rates. According to [142] it is recommendable that
development and evaluation subsets will be disjoints subsets, but because of
the limited number of users and images in some databases it has been decided
that they share the enrolment samples.This approach is justified for verification
applications and identification scenarios in which the number of subjects is
limited and they are always known, such as office-access control systems [75,
76].

8.3.2 Computation of Scores

Once the training, enrolment, and access datasets have been defined, the latter are
divided into genuine and impostor samples corresponding to authentic and forger
users respectively. Then, the following sequence of actions is executed to test or
evaluate the system:

1. The biometric template of each authentic user is created through their enrol-
ment samples.

2. Genuine samples are used to measure whether the algorithm is able to recog-
nize authentic users. In verification processes, these samples of each user will
be compared against their own biometric template, providing a list of scores of
these attempts.

3. Impostor samples are employed to estimate if the algorithm is able to reject
impostors. In verification processes, these samples will be compared against
the biometric template of the users trying to be forced, in this case all the other
users, providing a list of scores.
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4. Both scores are used to obtain certain metrics that provide information about
the performance of the system. The acceptance threshold of the biometric sys-
tem will be selected from the results obtained using the development subset
and remain fixed for the test accesses.

8.3.3 Evaluation

According to the ISO/IDE 19795 - Part1 [75], it is proposed to calculate several metrics
to evaluate the performance of the biometric methods:

• Failure-to-enrol rate (FTE): Proportion of the population for whom the system
fails to complete the enrolment process.

• Failure-to-acquire rate (FTA): Proportion of verification or identification attempts
for which the system fails to capture or locate an image or signal of acceptable
quality.

• False non-match rate (FNMR): Proportion of genuine attempts falsely declared
not to match the template of the same characteristic from the same user supply-
ing the sample.

• False match rate (FMR): Proportion of zero-effort impostor attempt samples
falsely declared to match the compared non-self template.

In addition, for verification systems, the following rates are also proposed:

• False Rejection Rate (FRR): The false rejection rate is the proportion of genuine
verification transactions that will be incorrectly denied. A transaction may con-
sist of one or more genuine attempts depending on the decision policy.

FRR = FTA + FNMR x (1 - FTA)

• False Acceptance Rate (FAR): The false acceptance rate is the expected propor-
tion of zero-effort non-genuine transactions that will be incorrectly accepted.

FAR = FMR x (1 - FTA)

FTE can be considered as a quality measure about how good is the performance of
an algorithm working with a certain sort of images. The False Acceptance Rate and
the False Rejection Rate depend on the acceptance threshold of the biometric system
that is fixed according to a security policy. A very common policy in biometric
systems is to locate the acceptance threshold in the value where FAR and FRR are
equal. This value is usually named as Equal Error Rate (EER) and it is an accepted
metric to quantify and compare the performance of a biometric algorithm.

This way, validation results will be provided in terms of FTA, FTE and EER. Test
results will be provided in terms of FMR and FNMR, keeping as acceptance threshold
the value calculated during the validation stage.
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M O N O M O D A L E VA L U AT I O N U N D E R C O N T R O L L E D
C O N D I T I O N S

9.1 introduction

A complete evaluation of the different monomodal palmprint and hand geometry
feature extraction methods presented in Chapter 5 has been conducted in this thesis
with the aim to provide a fair comparison between them in terms of accuracy and
execution time. In addition, different matching approaches described in Chapter 6

and the influence of the employment of a dimensionality reduction technique have
also been evaluated. Moreover, different parameter configurations for each feature
extraction method has been tested with the aim to find the best arrangement in each
case.

Since the objective is to provide a wide evaluation of different methods, 2DHK
database has been used to this end. As detailed in Section 2.3.1, it provides images
captured under controlled conditions together with the most representative part of
the palmprint properly aligned and cropped, which makes it suitable for a fair anal-
ysis of different feature extraction methods. Provided ground truth palms have been
used for palmprint evaluation. In the case of hand geometry evaluation threshold
based segmentation has been applied to obtain the silhouette of the hands, due to it
provides the best results for 2DHK database.

According to the protocol described in Section 8.3, images of each user are divided
in two subsets: validation and test. Validation samples, in turn, are divided in three
groups: training, enrolment and access. Particularly, as database contains 10 images
per user, training, enrolment, access and test subsets are composed by three, three,
two and two samples respectively. The images intended for each group have been
selected alternatively in such a way that training subset includes samples number 1,
5 and 9, enrolment subset includes samples number 2, 6 and validation access and
test subsets include samples 3 and 7 and 4 and 8 respectively. This division has
been decided to maximize the variability within each subset in order to simulate the
best possible scenario and, consequently, to obtain the best possible results for each
combination of feature extraction and matching methods.

Controlled monomodal evaluation results ordered according to the employed trait
and feature extraction method are presented down below.
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9.2 palmprint

9.2.1 Sobel filter

Different configurations of threshold, image size and angles have been tested for
Sobel filter. When the configuration involves four angles, results applying principal
component analysis (PCA) to reduce the dimensionality of the feature vector are also
included. Euclidean distance and Support Vector Machines (SVMs) have been used
for feature vector comparison.

The analysis of the results show that the image size can notably vary the accuracy
of this feature extraction method. The increase of the image size negatively affects
the results. The influence of threshold parameter is not so strong and no pattern can
be easy derived from the results. When looking to the angles involved in the feature
extraction process, it can be seen that in general 45

o and 135
o provide better results

and that the combination of the four angles also improves the accuracy of the system.
Finally, dimensionality reduction also helps to improve the results.

Regarding to the comparison methods, it can be seen that the use of SVMs clearly
outperforms the use of Euclidean distance for template matching.

Because of the volume of tests made, only the best parameter configuration is
shown in table 15 together with its results, but the entire assortment of test is gathered
in Appendix B.1. The threshold and image size values which provides better results
are 32x32 and 0.1 respectively.

Figure 24 depicts a comparison between the best validation results obtained when
Sobel filter is applied as feature extraction method under controlled conditions. Fig-
ures 24a and 24b compare the results obtained using Euclidean distance while Figures
24c and 24d compare the results obtained employing SVMs. Each graphic compares

Test Configuration
Results

Validation Test
Angles (o) PCA Comparison Method EER (%) FMR (%) FNMR (%)

0 No Euclidean Distance 1.98 1.91 2.26

45 No Euclidean Distance 1.38 1.39 2.54

90 No Euclidean Distance 0.56 0.57 2.54

135 No Euclidean Distance 0.85 0.82 1.41

0,45,90,135 No Euclidean Distance 0.56 0.55 1.41

0,45,90,135 Yes Euclidean Distance 0.56 0.39 0.85

0 No SVMs 0.28 0.56 0.34

45 No SVMs 0.0063 0.28 0.011

90 No SVMs 0.067 0.29 0.10

135 No SVMs 0.28 0.28 0.35

0,45,90,135 No SVMs 0.0048 0.046 0.0096

0,45,90,135 Yes SVMs 0 0.28 0

Table 15.: Best palmprint results using Sobel filter as feature extraction method un-
der controlled conditions. Image size and threshold parameters of feature
extraction algorithm have been set to 32x32 and 0.1 respectively.
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(a) Euclidean Distance. C1: 90
o. C2: 0

o, 45
o,

90
o and 135

o. C3: 0
o, 45

o, 90
o and 135

o +
PCA.

(b) Euclidean Distance (zoomed). C1: 90
o. C2:

0
o, 45

o, 90
o and 135

o. C3: 0
o, 45

o, 90
o and

135
o + PCA.

(c) SVMs. C1: 45
o. C2: 0

o, 45
o, 90

o and 135
o.

C3: 0
o, 45

o, 90
o and 135

o + PCA.
(d) SVMs (zoomed). C1: 45

o. C2: 0
o, 45

o, 90
o

and 135
o. C3: 0

o, 45
o, 90

o and 135
o + PCA.

Figure 24.: Comparison of best palmprint results using Sobel filter as feature extrac-
tion method and different matching approaches under controlled condi-
tions. Each graphic compares different angles configurations and the ap-
plication of PCA. Image size and threshold parameters of feature extrac-
tion algorithm have been set to 32x32 and 0.1 respectively in all the cases.

the results obtained when different angles are involved in the feature extraction pro-
cess as well as the use of PCA in the case that the four angles are employed. Image
size and threshold parameters have been set to 32x32 and 0.1 respectively in all the
cases. Validation and Test results of the best case, which corresponds to image size
equal to 32x32, threshold equal to 0.1 and angles 0

o, 45
o, 90

o and 135
o, PCA and

SVMs, are compared in Figure 25.
Table 16 shows the feature vector size and recognition time for Sobel filter feature

extraction using different combinations of parameters and comparison methods with
and without dimensionality reduction. Regarding to the computation time there is
not a significant difference between Euclidean distance and SVMs during the recog-
nition. However, SVMs need to be trained, increasing the training time per user in
15.597890 seconds when 1 angle is used, 69.929933 seconds when 4 angles are em-
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(a) ROC (b) ROC (zoomed)

Figure 25.: Validation and Test results obtained when features are extracted using
Sobel filter and compared by SVMs and dimensionality reduction is ap-
plied under controlled conditions. Image size, threshold and directions
parameters are set to 32x32, 0.1 and 0

o, 45
o, 90

o and 135
o.

# Angles PCA Comparison Method Feature Vector Length Time (s)

1 No Euclidean Distance 16384 0.160392

4 No Euclidean Distance 65536 1.843417

4 Yes Euclidean Distance 531 1.849234

1 No SVMs 16384 0.017295

4 No SVMs 65536 1.69685

4 Yes SVMs 531 1.692222

Table 16.: Feature vector length and execution time using Sobel filter as feature ex-
traction method under controlled conditions.

ployed and 12.1226727 seconds when the initial feature vector includes 4 angles but
PCA is applied to reduce de dimensionality of the template. In turn, PCA also re-
quires 1.423896 extra seconds for training but in this case the training involves the
whole crew. Nevertheless, training is made only once so this increasing of time is not
really relevant and does not affect the recognition tasks.

In this line, training of PCA and SVMs not only requires additional computation
time but also a training database and it can be more problematic. As mentioned in
Sec. 8.3, results depends on both, the environmental conditions and the population
in which the database is collected. For this reason, a representative enough database
is necessary during the training phase but it is not always easy to obtain. Accordingly,
these methods are more suitable for closed-set applications where all the users are
known and an appropriate training can be made.

9.2.2 Gabor filter

Different configurations of filter size, frequency and standard deviation of the gaus-
sian envelope (σ) have been tested for Gabor filter with and without applying prin-
cipal component analysis (PCA) to reduce the dimensionality of the feature vector.
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Test Configuration
Results

Validation Test
PCA Comparison Method EER (%) FMR (%) FNMR (%)

No Euclidean Distance 0.56 0.55 1.41

Yes Euclidean Distance 0.56 0.39 0.56

No SVMs 0.27 0.31 0.28

Yes SVMs 0.054 0.059 0.56

Table 17.: Best palmprint results using Gabor filter as feature extraction method under
controlled conditions. Filter size, frequency and σ parameters have been set
to 17x17, 0.0916 and 5.16179 respectively.

Euclidean Distance and Support Vector Machines (SVMs) have been used for feature
vectors comparison.

The analysis of the results show that there is not a clear influence of any param-
eter and that results depend on the combination of all of them and the comparison
method. Comparing the matching approaches evaluated, it can be seen that the use
of SVMs outperforms a little bit the use of Euclidean distance for template matching
and that the improvement is higher as worst are the results obtained with Euclidean
distance. Finally, dimensionality reduction also helps to slightly improve the results.

Because of the volume of tests made, only the best parameter configuration is
shown in table 17 together with its results, but the entire assortment of test is gath-
ered in Appendix B.2. The values for filter size, frequency and σ parameters which
provides better results are 17x17, 0.9616 and 6.6179 respectively.

Figure 26 depicts a comparison between the best validation results obtained when
Gabor filter is applied as feature extraction method under controlled conditions. Fig-
ures 26a and 26b compare the results obtained using Euclidean distance while Figures
26c and 26d compare the results obtained employing SVMs. Each graphic compares
the results obtained with and without dimensionality reduction when filter size, fre-
quency and σ parameters are set to 17x17, 0.0916 and 5.16179 respectively. Validation
and Test results of the best case, which are provided by SVMs when PCA is applied,
are compared in Figure 27.

Table 18 shows the feature vector size and recognition time for Gabor filter fea-
ture extraction using different comparison methods with and without dimensional-
ity reduction. Regarding to the computation time there is a small difference between
Euclidean distance and SVMs during the recognition, being smaller the recognition
time when SVMs are used. However, SVMs need to be trained, increasing the train-
ing time per user in 3.710576 seconds over the original templates and 0.076657 when
PCA is applied for dimensionality reduction. In turn, PCA also requires 3.326385

extra seconds for training but in this case the training involves the whole crew. Nev-
ertheless, training is made only once so this increasing of time is not really relevant
and does not affect the recognition tasks.

In this line, as detailed in Section 9.2.1, PCA and SVMs not only requires addi-
tional computation time but also a training database that makes these methods more
suitable for closed-set applications.
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(a) Euclidean distance with (C2) and with-
out(C1) PCA.

(b) Euclidean distance with (C2) and with-
out(C1) PCA (zoomed).

(c) SVMs with (C2) and without(C1) PCA. (d) SVMs with (C2) and without(C1)
(zoomed).

Figure 26.: Best palmprint results using Gabor filter as feature extraction method un-
der controlled conditions. Filter size, frequency and σ parameters have
been set to 17x17, 0.0916 and 5.16179 respectively.

PCA Comparison Method Feature Vector Length Time (s)

No Euclidean Distance 32768 0.188407

Yes Euclidean Distance 531 0.188083

No SVMs 32768 0.07244

Yes SVMs 531 0.052031

Table 18.: Feature vector length and execution time using Gabor filter as feature ex-
traction method under controlled conditions.

9.2.3 Local Binary Patterns

Different configurations of region size, radio, number of neighbours and uniform/non-
uniform patterns parameters have been tested for LBP feature extraction. Results ap-
plying principal component analysis (PCA) to reduce the dimensionality of the fea-
ture vectors are also included. Euclidean distance, χ2 distance, histogram intersection
and Support Vector Machines (SVMs) have been used for feature vectors comparison.
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(a) ROC (b) ROC (zoomed)

Figure 27.: Validation and Test results obtained when features are extracted using Ga-
bor filter and compared by SVMs and dimensionality reduction (PCA) is
applied under controlled conditions. Filter size, frequency and σ parame-
ters have been set to 17x17, 0.0916 and 5.16179 respectively.

The analysis of the results show that the region size can notably vary the accuracy
of this feature extraction method. The increase of the image size negatively affects
the results. The influence of radio parameter is not so strong and no pattern can
be easy derived from the results. If number of neighbours parameter is examined,
it can be seen that 16-neighbourhood provides worst results than 8-neighbourhood.
Looking to uniform/non-uniform patterns parameter it can be seen that there is not
a great difference between them. Generally, non-uniform patterns provide better
results for bigger region sizes, probably because in those cases feature vector dimen-
sion is smaller and it contains little global information and thus it is not descriptive
enough.

Regarding to the comparison methods, it can be seen that the use of methods
oriented to histogram comparison ( χ2 Distance or Histogram Intersection) clearly
outperforms the use of Euclidean distance for template matching. Moreover, results
show that SVMs certainly provide the best results. Finally, it can be seen that dimen-
sionality reduction also helps to improve the results.

Because of the volume of tests made, only the best parameter configuration is
shown in table 19 together with its results, but the entire assortment of test is gath-
ered in Appendix B.3. Although the best result for Euclidean distance is obtained
using 8x8 region size, radio 1, 8-neighbourhood and uniform patterns, when meth-
ods oriented to histogram comparison or more complex approaches are applied the
best parameter configuration is 16x16, 3 and 8 for region size, radio and # of neigh-
bours respectively.

Figure 28 depicts a comparison between the best validation results obtained when
LBP is applied as feature extraction method under controlled conditions. Figures 28a
and 28b compare the results obtained using Euclidean distance, Figures 28c and 28d
compare the results obtained employing χ2 distance, Figures 28e and 28f compare
the results obtained using histogram intersection and Figures 28g and 28h compare
the results obtained employing SVMs. Each graphic compares the results obtained
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by different values of region size and radio parameters. When features are compared
by means of Euclidean distance or SVMs PCA dimensionality reduction is applied.
Validation and Test results of the best case, which corresponds to region size equal to
16x16, radio equal to 3 and SVMs matching, are compared in Figure 29.

Table 20 shows the feature vector size and recognition time for LBP filter feature
extraction using different combinations of parameters and comparison methods with
and without dimensionality reduction. Regarding to the computation time there is
a small difference between Euclidean distance and the remaining methods during
the recognition, needing more time the former. However, SVMs need to be trained,
increasing the training time per user in 1.532363 and 0.436725 seconds for the origi-
nal vectors computed with 8x8 and 16x16 region sizes respectively, or 0.095569 and
0.07963 seconds for 8x8 an 16x16 region sizes when PCA is applied to reduce de di-
mensionality of the template. In turn, PCA also requires 1.749102 and 0.365671 extra
seconds for training vectors with 8x8 and 16x16 values for the region size, but in this
case the training involves the whole crew. Nevertheless, training is made only once
so this increasing of time is not really relevant and does not affect the recognition
tasks.

Test Configuration
Results

Validation Test
Region Size Radio PCA Comparison Method EER (%) FMR (%) FNMR (%)

8x8 1 No Euclidean Distance 2.54 2.50 1.98

8x8 3 No Euclidean Distance 2.91 2.90 2.54

16x16 1 No Euclidean Distance 2.64 2.56 1.98

16x16 3 No Euclidean Distance 2.92 2.78 2.26

8x8 1 Yes Euclidean Distance 1.61 1.32 1.41

8x8 3 Yes Euclidean Distance 4.24 2.79 5.65

16x16 1 Yes Euclidean Distance 2.54 2.41 1.98

16x16 3 Yes Euclidean Distance 2.68 2.25 2.26

8x8 1 No χ2 Distance 0.34 0.32 0.85

8x8 3 No χ2 Distance 1.07 0.98 0.85

16x16 1 No χ2 Distance 0.64 0.62 1.41

16x16 3 No χ2 Distance 0.21 0.20 0.85

8x8 1 No Histogram Intersection 0.51 0.47 0.85

8x8 3 No Histogram Intersection 1.11 1.03 0.85

16x16 1 No Histogram Intersection 0.64 0.61 1.41

16x16 3 No Histogram Intersection 0.28 0.23 0.85

8x8 1 No SVMs 0.0048 0.0048 0.28

8x8 3 No SVMs 0.40 0.45 0.56

16x16 1 No SVMs 0 0.0016 0.85

16x16 3 No SVMs 0 0.0016 0.56

8x8 1 Yes SVMs 0.0032 0.0048 0.56

8x8 3 Yes SVMs 0.56 0.73 0.85

16x16 1 Yes SVMs 0 0.0016 0.85

16x16 3 Yes SVMs 0 0.0032 0.56

Table 19.: Best palmprint results using Local Binary Patterns as feature extraction
method under controlled conditions. Patterns are uniform and #Neigh-
boors parameter is set to 8.
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(a) Euclidean distance. C1:
8x8 r.s. and ra. 1. C2:
16x16 r.s. and ra. 1.

(b) Euclidean distance
(zoom). C1: 8x8 r.s. and
ra. 1. C2: 16x16 r.s. and
ra. 1.

(c) χ2 distance. C1: 8x8 r.s.
and ra. 1. C2: 16x16 r.s.
and ra. 3.

(d) χ2 distance (zoom). C1:
8x8 r.s. and ra. 1. C2:
16x16 r.s. and ra. 3.

(e) Histogram intersection.
C1: 8x8 r.s. and ra. 1. C2:
16x16 r.s. and ra. 3.

(f) Histogram intersection
(zoom). C1: 8x8 r.s. and ra.
1. C2: 16x16 r.s. and ra. 3.

(g) SVMs. C1: 8x8 r.s. and ra.
1. C2: 16x16 r.s. and ra. 3.

(h) SVMs (zoom). C1: 8x8 r.s.
and ra. 1. C2: 16x16 r.s.
and ra. 3.

Figure 28.: Best palmprint results using LBP as feature extraction method under con-
trolled conditions. Each graphic compares different region size (r.s.) and
radio(ra) configurations. Patterns are uniform and #Neighboors parame-
ter is set to 8 in all the cases.

In this line, as detailed in Section 9.2.1, PCA and SVMs not only requires addi-
tional computation time but also a training database that makes these methods more
suitable for closed-set applications.



124 monomodal evaluation under controlled conditions

(a) ROC (b) ROC (zoomed)

Figure 29.: Validation and Test results obtained when features are extracted using
LBP and compared by SVMs and dimensionality reduction is applied un-
der controlled conditions. Patterns are uniform and parameters #Neigh-
boors, region size and radio have been set to 8, 16x16 and 3 respectively.

Region size PCA Comparison Method Feature Vector Length Time (s)

8x8 No Euclidean Distance 14104 0.320847

8x8 Yes Euclidean Distance 531 0.234214

8x8 No χ2 Distance 14104 0.166363

8x8 No Histogram Intersection 14104 0.165858

8x8 No SVMs 14104 0.1979

8x8 Yes SVMs 531 0.175108

16x16 No Euclidean Distance 3776 0.184008

16x16 Yes Euclidean Distance 531 0.191659

16x16 No χ2 Distance 3776 0.053587

16x16 No Histogram Intersection 3776 0.053428

16x16 No SVMs 3776 0.056401

16x16 Yes SVMs 531 0.057513

Table 20.: Feature vector length and execution time using LBP as feature extraction
method under controlled conditions.

9.2.4 Local Derivative Patterns

Different configurations of region size and directions have been tested for LDP filter
with and without applying principal component analysis (PCA) to reduce the dimen-
sionality of the feature vector. Euclidean distance, χ2 distance, histogram intersection
and Support Vector Machines (SVMs) have been used for feature vectors comparison.

The analysis of the results show that even when the best result is obtained with a
region size value of 32x32, in general regions of 16x16 pixels provides better results
and that the increasing of the region sizes negatively influences the results, probably
because of the loss of global information. It can also be seen that when Euclidean
distance is used 8x8 is the best choice for region size parameter but when methods
oriented to histogram comparison ( χ2 distance or histogram intersection) or more
complex approaches (SVMs) are used, the region size which provides better results is
16x16. Looking to the number of directions involved in the feature extraction process
it can be seen that as more directions are used better are the results, but that using
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all the directions introduces some noise and the results are slightly worst than in the
three-directions case.

Regarding to the comparison methods, it can be seen that the use of SVMs clearly
outperforms the use of distance based and histogram intersection approaches for tem-
plate matching. Finally, dimensionality reduction also helps to improve the results.

Because of the volume of tests made, only the best parameter configuration is
shown in table 21 together with its results, but the entire assortment of test is gathered
in Appendix B.4.

Algorithm Parameters
Results

Valid. Test
Region
Size

Directions (o) PCA Comparison Method EER (%) FMR (%) FNMR
(%)

8x8 0 No Euclidean Distance 2.23 2.04 3.11

8x8 45 No Euclidean Distance 2.54 2.55 1.41

8x8 90 No Euclidean Distance 1.69 1.86 2.26

8x8 135 No Euclidean Distance 1.69 1.38 1.69

8x8 0, 45 No Euclidean Distance 1.59 1.51 1.41

8x8 0, 90 No Euclidean Distance 1.69 1.56 1.13

8x8 0, 135 No Euclidean Distance 1.72 1.61 1.98

8x8 45, 90 No Euclidean Distance 1.93 2.03 1.13

8x8 45, 135 No Euclidean Distance 1.13 1.15 1.13

8x8 90, 135 No Euclidean Distance 1.13 1.15 3.11

8x8 0, 45, 90 No Euclidean Distance 1.41 1.34 1.69

8x8 0, 45, 135 No Euclidean Distance 1.41 1.33 1.13

8x8 0, 90, 135 No Euclidean Distance 1.41 1.38 1.69

8x8 45, 90, 135 No Euclidean Distance 1.13 1.17 1.13

8x8 0, 45, 90, 135 No Euclidean Distance 1.13 1.14 0.85

8x8 0 Yes Euclidean Distance 1.98 1.71 1.69

8x8 45 Yes Euclidean Distance 1.98 1.81 1.98

8x8 90 Yes Euclidean Distance 1.69 1.72 1.41

8x8 135 Yes Euclidean Distance 1.69 1.66 3.11

8x8 0, 45 Yes Euclidean Distance 1.69 1.38 1.69

8x8 0, 90 Yes Euclidean Distance 1.67 1.39 0.85

8x8 0, 135 Yes Euclidean Distance 1.41 1.07 1.13

8x8 45, 90 Yes Euclidean Distance 1.40 1.29 1.13

8x8 45, 135 Yes Euclidean Distance 1.13 0.90 0.28

8x8 90, 135 Yes Euclidean Distance 0.97 0.85 1.41

8x8 0, 45, 90 Yes Euclidean Distance 1.43 1.16 1.41

8x8 0, 45, 135 Yes Euclidean Distance 1.41 1.07 0.85

8x8 0, 90, 135 Yes Euclidean Distance 1.13 0.93 0.85

8x8 45, 90, 135 Yes Euclidean Distance 1.00 0.83 0.56

8x8 0, 45, 90, 135 Yes Euclidean Distance 1.38 1.12 0.56

16x16 0 No χ2 Distance 2.26 2.26 3.11

16x16 45 No χ2 Distance 2.26 2.26 1.69

16x16 90 No χ2 Distance 6.34 6.10 7.34

16x16 135 No χ2 Distance 3.95 3.73 5.93

16x16 0, 45 No χ2 Distance 1.30 1.29 0.85

16x16 0, 90 No χ2 Distance 2.20 2.11 1.13

16x16 0, 135 No χ2 Distance 1.02 0.95 0.85

16x16 45, 90 No χ2 Distance 3.22 3.16 2.54

16x16 45, 135 No χ2 Distance 1.95 1.83 1.69

16x16 90, 135 No χ2 Distance 4.24 4.05 5.93

16x16 0, 45, 90 No χ2 Distance 1.98 1.91 1.13

16x16 0, 45, 135 No χ2 Distance 0.99 0.99 0.85
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Algorithm Parameters
Results

Valid. Test
Region
Size

Directions (o) PCA Comparison Method EER (%) FMR (%) FNMR
(%)

16x16 0, 90, 135 No χ2 Distance 1.66 1.56 1.69

16x16 45, 90, 135 No χ2 Distance 2.82 2.68 2.82

16x16 0, 45, 90, 135 No χ2 Distance 1.69 1.62 1.13

16x16 0 No Histogram Intersection 1.24 1.23 1.98

16x16 45 No Histogram Intersection 1.41 1.42 1.13

16x16 90 No Histogram Intersection 2.26 2.13 2.54

16x16 135 No Histogram Intersection 1.69 1.61 3.95

16x16 0, 45 No Histogram Intersection 1.17 1.22 0.85

16x16 0, 90 No Histogram Intersection 1.13 1.17 0.85

16x16 0, 135 No Histogram Intersection 0.63 0.62 1.13

16x16 45, 90 No Histogram Intersection 1.41 1.41 1.13

16x16 45, 135 No Histogram Intersection 1.34 1.27 1.13

16x16 90, 135 No Histogram Intersection 1.69 1.60 3.11

16x16 0, 45, 90 No Histogram Intersection 1.41 1.41 0.85

16x16 0, 45, 135 No Histogram Intersection 0.80 0.80 1.13

16x16 0, 90, 135 No Histogram Intersection 0.85 0.85 1.13

16x16 45, 90, 135 No Histogram Intersection 1.69 1.58 0.85

16x16 0, 45, 90, 135 No Histogram Intersection 1.16 1.15 0.85

16x16 0 No SVMs 0.57 0.70 0

16x16 45 No SVMs 0.25 0.34 0.56

16x16 90 No SVMs 0.56 0.62 0.56

16x16 135 No SVMs 0.28 0.38 0

16x16 0, 45 No SVMs 0.10 0.13 0.56

16x16 0, 90 No SVMs 0.019 0.022 0.56

16x16 0, 135 No SVMs 0.016 0.0096 0.85

16x16 45, 90 No SVMs 0.16 0.18 0.56

16x16 45, 135 No SVMs 0.16 0.20 0.28

16x16 90, 135 No SVMs 0.28 0.32 0

16x16 0, 45, 90 No SVMs 0.035 0.048 0.56

16x16 0, 45, 135 No SVMs 0.0096 0.011 0.28

16x16 0, 90, 135 No SVMs 0.025 0.021 0.28

16x16 45, 90, 135 No SVMs 0.13 0.19 0.28

16x16 0, 45, 90, 135 No SVMs 0.019 0.024 0.28

16x16 0 Yes SVMs 0.56 0.69 0

16x16 45 Yes SVMs 0.28 0.36 0.56

16x16 90 Yes SVMs 0.50 0.57 0.56

16x16 135 Yes SVMs 0.28 0.37 0.28

16x16 0, 45 Yes SVMs 0.18 0.22 0.56

16x16 0, 90 Yes SVMs 0.027 0.035 0.56

16x16 0, 135 Yes SVMs 0.013 0.013 0.85

16x16 45, 90 Yes SVMs 0.16 0.19 0.56

16x16 45, 135 Yes SVMs 0.19 0.22 0.28

16x16 90, 135 Yes SVMs 0.28 0.34 0

16x16 0, 45, 90 Yes SVMs 0.057 0.066 0.56

16x16 0, 45, 135 Yes SVMs 0.011 0.0096 0.28

16x16 0, 90, 135 Yes SVMs 0.033 0.030 0.28

16x16 45, 90, 135 Yes SVMs 0.20 0.27 0.28

16x16 0, 45, 90, 135 Yes SVMs 0.027 0.032 0.28

Table 21.: Best palmprint results using Local Derivative Patterns as feature extraction
method under controlled conditions.



9.2 palmprint 127

Figure 30 depicts a comparison between the best validation results obtained when
LDP is applied as feature extraction method under controlled conditions. Figures 30a
and 30b compare the results obtained using Euclidean distance, Figures 30c and 30d
compare the results obtained employing χ2 distance, Figures 30e and 30f compare
the results obtained using histogram intersection and Figures 30g and 30h compare
the results obtained employing SVMs. Each graphic compares the results obtained
by different configurations of region size and directions parameters. Validation and
Test results of the best case, which corresponds to region size equal to 16x16 and
directions 0

o, 45
o, 90

o and 135
o, are compared in Figure 31.

Table 22 shows the feature vector size and recognition time for LDP feature ex-
traction using different combinations of parameters and comparison methods with
and without dimensionality reduction. Regarding to the computation time there is
a small difference between Euclidean distance and the remaining methods during
the recognition, being Euclidean distance more expensive. However, SVMs need to
be trained, increasing the training time per user. Also, PCA requires extra time for
training, but in this case this time involver the whole crew. Nevertheless, training is
made only once so this increasing of time is not really relevant and does not affect
the recognition tasks. Training times are shown in table 23.

In this line, as detailed in Section 9.2.1, PCA and SVMs not only requires addi-
tional computation time but also a training database that makes these methods more
suitable for closed-set applications.
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(a) Euclidean distance. C1: 8x8

r.s. and dir. 135. C2: 8x8 r.s.
and dirs. 45, 135. C3: 8x8

r.s. and dirs. 45, 90, 135.
C4: 8x8 r.s. and dirs. 0, 45,
90, 135.

(b) Euclidean distance
(zoomed). C1: 8x8 r.s.
and dir. 135. C2: 8x8

r.s. and dirs. 45, 135.
C3: 8x8 r.s. and dirs. 45,
90, 135. C4: 8x8 r.s. and
dirs. 0, 45, 90, 135.

(c) χ2 distance. C1: 16x16

r.s. and dir. 45. C2:
16x16 r.s. and dirs. 0,
135. C3: 16x16 r.s. and
dirs. 0, 45, 135. C4:
16x16 r.s. and dirs. 0, 45,
90, 135.

(d) χ2 distance (zoomed).
C1: 16x16 r.s. and dir.
45. C2: 16x16 r.s. and
dirs. 0, 135. C3: 16x16

r.s. and dirs. 0, 45, 135.
C4: 16x16 r.s. and dirs.
0, 45, 90, 135.

(e) Histogram intersection.
C1: 16x16 r.s. and dir.
0. C2: 16x16 r.s. and
dirs. 0,135. C3: 16x16 r.s.
and dirs. 0, 45, 135. C4:
16x16 r.s. and dirs. 0, 45,
90, 135.

(f) Histogram intersection
(zoomed). C1: 16x16 r.s.
and dir. 0. C2: 16x16

r.s. and dirs. 0,135. C3:
16x16 r.s. and dirs. 0, 45,
135. C4: 16x16 r.s. and
dirs. 0, 45, 90, 135.

(g) SVMs. C1: 16x16 r.s.
and dir. 45. C2: 16x16

r.s. and dirs. 0,135. C3:
16x16 r.s. and dirs. 0, 45,
135. C4: 16x16 r.s. and
dirs. 0, 45, 90, 135.

(h) SVMs (zoomed). C1:
16x16 r.s. and dir. 45.
C2: 16x16 r.s. and dirs.
0,135. C3: 16x16 r.s. and
dirs. 0, 45, 135. C4:
16x16 r.s. and dirs. 0, 45,
90, 135.

Figure 30.: Best palmprint results using LDP as feature extraction method under con-
trolled conditions. Each graphic compares different configurations of re-
gion size (r.s) and directions (dir).
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(a) ROC (b) ROC (zoomed)

Figure 31.: Validation and Test results obtained when features are extracted using
LDP and compared by SVMs under controlled conditions. Region size is
set to 16x16 and the involved directions are 0

o, 45
o, 90

o and 135
o.

Region
size

# Directions PCA Comparison Method Feature Vector
Length

Time (s)

8x8 1 No Euclidean Distance 65536 0.837353

8x8 1 Yes Euclidean Distance 531 0.212729

8x8 2 No Euclidean Distance 131072 0.232084

8x8 2 Yes Euclidean Distance 531 0.244636

8x8 3 No Euclidean Distance 196608 0.2715

8x8 4 Yes Euclidean Distance 531 0.277218

8x8 4 No Euclidean Distance 262144 0.425601

8x8 4 Yes Euclidean Distance 531 0.414895

8x8 1 No χ2 Distance 65536 0.078132

8x8 2 No χ2 Distance 131072 0.103332

8x8 3 No χ2 Distance 196608 0.138133

8x8 4 No χ2 Distance 262144 0.277661

8x8 1 No Histogram Intersection 65536 0.076423

8x8 2 No Histogram Intersection 131072 0.100286

8x8 3 No Histogram Intersection 196608 0.134765

8x8 4 No Histogram Intersection 131072 0.272357

8x8 1 No SVMs 65536 0.102957

8x8 1 Yes SVMs 531 0.083338

8x8 2 No SVMs 262144 0.122016

8x8 2 Yes SVMs 531 0.105701

8x8 3 No SVMs 196608 0.292952

8x8 3 Yes SVMs 531 0.140601

8x8 4 No SVMs 262144 0.46951

8x8 4 Yes SVMs 531 0.27958

16x16 1 No Euclidean Distance 16384 0.16742

16x16 1 Yes Euclidean Distance 531 0.169078

16x16 2 No Euclidean Distance 32768 0.166064

16x16 2 Yes Euclidean Distance 531 0.170412

16x16 3 No Euclidean Distance 49152 0.20289

16x16 4 Yes Euclidean Distance 531 0.190765

16x16 4 No Euclidean Distance 65536 0.208205

16x16 4 Yes Euclidean Distance 531 0.199956
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Region
size

# Directions PCA Comparison Method Feature Vector
Length

Time (s)

16x16 1 No χ2 Distance 16384 0.025788

16x16 2 No χ2 Distance 32768 0.04575

16x16 3 No χ2 Distance 49152 0.047749

16x16 4 No χ2 Distance 65536 0.055594

16x16 1 No Histogram Intersection 16384 0.025271

16x16 2 No Histogram Intersection 32768 0.034189

16x16 3 No Histogram Intersection 49152 0.046025

16x16 4 No Histogram Intersection 65536 0.053861

16x16 1 No SVMs 16384 0.032136

16x16 1 Yes SVMs 531 0.027747

16x16 2 No SVMs 32768 0.056516

16x16 2 Yes SVMs 531 0.037356

16x16 3 No SVMs 49152 0.07844

16x16 3 Yes SVMs 531 0.049583

16x16 4 No SVMs 65536 0.09944

16x16 4 Yes SVMs 531 0.058014

Table 22.: Feature vector length and execution time using LDP as feature extraction
method under controlled conditions.

Region size # Directions Method Training Time (s)

8x8 1 PCA 0.376238

8x8 1 SVMs 3.576165

8x8 1 SVMs+PCA 0.077189

8x8 2 PCA 0.764877

8x8 2 SVMs 9.576692

8x8 2 SVMs+PCA 0.074949

8x8 3 PCA 1.142341

8x8 3 SVMs 13.935649

8x8 3 SVMs+PCA 0.081284

8x8 4 PCA 1.465100

8x8 4 SVMs 20.537271

8x8 4 SVMs+PCA 0.073776

16x16 1 PCA 0.188522

16x16 1 SVMs 1.013252

16x16 1 SVMs+PCA 0.077971

16x16 2 PCA 0.221302

16x16 2 SVMs 2.315133

16x16 2 SVMs+PCA 0.075475

16x16 3 PCA 0.316140

16x16 3 SVMs 3.542661

16x16 3 SVMs+PCA 0.076675

16x16 4 PCA 0.492621

16x16 4 SVMs 4.160861

16x16 4 SVMs+PCA 0.074345

Table 23.: PCA and SVMs training time for LDP feature extraction using different
region sizes and number of directions to compose the template. PCA is
made once over the entire population while SVMs training time provided
is the average time per user. SVMs + PCA indicates that PCA is applied to
the extracted features previously to the SVM training.
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9.2.5 Curvelet

Different combinations of Curvelet bands have been tested with and without apply-
ing principal component analysis (PCA) to reduce the dimensionality of the tem-
plates. Euclidean distance and Support Vector Machines (SVMs) have been used for
feature vector comparison. Table 24 and Table 25 shows the obtained results for
Euclidean distance and SVMs comparison respectively.

It can be seen that the use of SVMs clearly outperforms the use of Euclidean dis-
tance for template matching and that dimensionality reduction also helps to improve
the results. Nevertheless, no pattern can be easy derived about the influence of the
number of bands involved in the template creation neither about which band are
included on it.

Algorithm Parameters
Results

Validation Test
Bands PCA EER (%) FMR (%) FNMR (%)

1 No 8.10 8.11 8.19

2 No 7.67 7.73 11.30

3 No 14.52 14.66 17.80

4 No 13.51 13.63 16.10

1, 2 No 8.13 8.16 8.19

1, 3 No 8.20 8.20 8.19

1, 4 No 8.12 8.13 8.19

2, 3 No 9.32 9.42 12.99

2, 4 No 7.63 7.73 11.30

3, 4 No 14.69 14.76 18.08

1, 2, 3 No 8.14 8.19 8.19

1, 2, 4 No 8.06 8.09 8.19

1, 3, 4 No 8.26 8.26 8.19

2, 3, 4 No 9.11 9.24 13.56

1, 2, 3, 4 No 8.14 8.19 8.47

1 Yes 8.10 8.11 8.19

2 Yes 7.34 7.26 10.73

3 Yes 11.02 10.25 12.71

4 Yes 9.04 8.94 11.02

1, 2 Yes 8.03 8.04 8.19

1, 3 Yes 8.05 8.05 8.19

1, 4 Yes 8.08 8.08 8.19

2, 3 Yes 7.06 6.68 9.60

2, 4 Yes 6.79 6.67 10.17

3, 4 Yes 9.44 8.85 11.30

1, 2, 3 Yes 8.13 8.11 8.19

1, 2, 4 Yes 8.01 8.02 8.47

1, 3, 4 Yes 8.02 7.99 8.19

2, 3, 4 Yes 6.86 6.52 9.04

1, 2, 3, 4 Yes 8.11 8.07 8.47

Table 24.: Palmprint Results using Curvelets to extract features and Euclidean dis-
tance to compare under controlled conditions.
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Figure 32 depicts a comparison between the best validation results obtained when
Curvelet is applied as feature extraction method under controlled conditions. Figures
32a and 32b compare the results obtained using Euclidean distance while Figures 32c
and 32d compare the results obtained employing SVMs. Each graphic compares
the results obtained by different configurations of parameter bands. PCA is applied
for dimensionality reduction. Validation and Test results of the best case, which
corresponds to bands 1, 2, 3 and 4, are compared in Figure 33.

(a) Euclidean distance. C1: band 2. C2: bands
2 and 4. C3: bands 2, 3 and 4. C4: bands
1, 2, 3 and 4.

(b) Euclidean distance (zoomed). C1: band 2.
C2: bands 2 and 4. C3: bands 2, 3 and 4.
C4: bands 1, 2, 3 and 4.

(c) SVMs. C1: band 1. C2: bands 1 and 2. C3:
bands 1, 2 and 4. C4: bands 1, 2, 3 and 4.

(d) SVMs (zoomed). C1: band 1. C2: bands 1

and 2. C3: bands 1, 2 and 4. C4: bands 1,
2, 3 and 4.

Figure 32.: Best palmprint results using Curvelet as feature extraction method and
PCA under controlled conditions. Each graphic compares different con-
figurations of parameter bands.
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(a) ROC (b) ROC (zoomed)

Figure 33.: Validation and Test results obtained when features are extracted using
Curvelet and compared by SVMs under controlled conditions. PCA is
applied and 1, 2, 3 and 4 bands are involved in the feature extraction
process.

Table 26 shows the feature vector size and recognition time for each individual
Curvelet band feature extraction. Time and feature vector size values of the different
combinations of bands is directly proportional to the values of the bands which are
involved in the combination. Regarding to the computation time there is no signifi-
cant difference between using Euclidean distance or SVMs to compare feature vectors.
However, SVMs need to be trained, increasing the training time per user as shown in
Table 27. The use of PCA for dimensionality reduction over the initial feature vector,
notably decreases these training times as can be seen in Table 27. In addition, PCA
also requires extra time for training, but in this case the training involves the whole
crew. Nevertheless, training is made only once so this increasing of time is not really
relevant and does not affect the recognition tasks.

Algorithm Parameters
Results

Validation Test
Bands PCA EER (%) FMR (%) FNMR (%)

1 No 0.53 0.60 0.56

2 No 1.98 2.17 2.54

3 No 5.93 6.21 7.91

4 No 3.23 3.43 4.80

1, 2 No 0.85 0.90 0.28

1, 3 No 0.56 0.63 0.85

1, 4 No 0.56 0.65 0.56

2, 3 No 2.26 2.43 2.26

2, 4 No 1.69 1.82 1.98

3, 4 No 5.05 5.40 6.21

1, 2, 3 No 0.85 0.87 0.28

1, 2, 4 No 0.56 0.60 0.28

1, 3, 4 No 0.56 0.60 0.85

2, 3, 4 No 1.92 2.07 2.26
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Algorithm Parameters
Results

Validation Test
Bands PCA EER (%) FMR (%) FNMR (%)

1, 2, 3, 4 No 0.56 0.54 0.56

1 Yes 0.53 0.59 0.56

2 Yes 1.98 2.18 2.26

3 Yes 5.34 5.57 7.63

4 Yes 3.45 3.59 3.11

1, 2 Yes 0.53 0.56 0.85

1, 3 Yes 0.56 0.60 0.56

1, 4 Yes 0.56 0.63 0.56

2, 3 Yes 2.13 2.40 2.54

2, 4 Yes 1.69 1.93 2.26

3, 4 Yes 4.52 4.81 6.50

1, 2, 3 Yes 0.74 0.78 0.28

1, 2, 4 Yes 0.56 0.58 0.85

1, 3, 4 Yes 0.63 0.70 0.56

2, 3, 4 Yes 2.00 2.26 2.54

1, 2, 3, 4 Yes 0.85 0.90 0.56

Table 25.: Palmprint Results using Curvelets to extract features and SVMs to compare
under controlled conditions.

In this line, as detailed in Section 9.2.1, PCA and SVMs requires additional compu-
tation time but also a training database that makes these methods more suitable for
closed-set applications.

Band PCA Comparison Method Feature Vector Length Time (s)

1 No Euclidean Distance 441 0.000501

1 Yes Euclidean Distance 441 0.000512

2 No Euclidean Distance 5985 0.002523

2 Yes Euclidean Distance 531 0.004260

3 No Euclidean Distance 22881 0.012851

3 Yes Euclidean Distance 531 0.019089

4 No Euclidean Distance 90145 0.100121

4 Yes Euclidean Distance 531 0.123185

1 No SVMs 441 0.003377

1 Yes SVMs 441 0.008258

2 No SVMs 5985 0.007813

2 Yes SVMs 531 0.011654

3 No SVMs 22881 0.024563

3 Yes SVMs 531 0.026040

4 No SVMs 90145 0.146564

4 Yes SVMs 531 0.130335

Table 26.: Feature vector length and execution time using Curvelets as feature extrac-
tion method under controlled conditions.
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Band Method Training Time (s)

1 PCA 0.215955

1 SVMs 0.22164

1 SVMs+PCA 0.028736

2 PCA 1.054606

2 SVMs 0.142791

2 SVMs+PCA 0.028627

3 PCA 3.320489

3 SVMs 0.784237

3 SVMs+PCA 0.027416

4 PCA 14.579065

4 SVMs 4.247650

4 SVMs+PCA 0.028291

Table 27.: PCA and SVMs training time for Curvelets feature extraction using differ-
ent bands to compose the template. PCA is made once over the entire
population while SVMs training time provided is the average time per user.
SVMs + PCA indicates that PCA is applied to the extracted features previ-
ously to the SVM training.

9.3 hand geometry

Different number of features per finger and the inclusion or not of thumb in the
template have been tested for Hand Geometry. Euclidean Distance and Support Vec-
tor Machines (SVMs) have been used for feature vectors comparison. Results are
presented in table 28 and table 29.

It can be seen that the inclusion of thumb in the template influences negatively
the results. It can be a direct consequence of it great mobility, that introduces a high
variability in the template. Looking to the number of features per finger it can be seen
that this parameter does not present a high influence on the results. Finally, regarding
to the comparison methods, it can be seen that the use of SVMs outperforms the use
of Euclidean distance for template matching.

Algorithm Parameters
Results

Validation Test
]Features Thumb EER (%) FMR (%) FNMR (%)

20 No 3.95 3.94 3.95

20 Yes 4.24 4.37 3.95

30 No 3.67 3.65 3.95

30 Yes 4.02 4.02 4.24

40 No 3.67 3.64 3.39

40 Yes 3.96 4.05 4.24

50 No 3.77 3.78 3.95

50 Yes 4.07 4.16 4.24

Table 28.: Hand Geometry Results under controlled conditions using Euclidean Dis-
tance to compare.
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Algorithm Parameters
Results

Validation Test
]Features Thumb EER (%) FMR (%) FNMR (%)

20 No 1.13 0.98 0.85

20 Yes 1.41 1.29 0.85

30 No 1.11 1.02 0.85

30 Yes 1.13 1.02 0.85

40 No 1.13 1.03 0.85

40 Yes 1.46 1.34 0.85

50 No 1.41 1.24 0.56

50 Yes 1.13 1.07 0.85

Table 29.: Hand Geometry Results under controlled conditions using SVMs to com-
pare.

Figure 34 depicts a comparison between the best validation results obtained when
hand geometry features are extracted under controlled conditions. Figures 34a and
34b compare the results obtained using Euclidean distance while Figures 34c and 34d
compare the results obtained employing SVMs. Each graphic compares the results
obtained by different number of features per finger when thumb is not included in
the template. Validation and Test results of the best case, which corresponds to 20

features per finger, are compared in Figure 35.
Concerning template size, when 20, 30, 40 or 50 features per finger are employed,

feature vectors contains 80, 120, 160 or 200 elements respectively in the case that
thumb is excluded of the pattern.

In respect to the execution time, there is not appreciable difference between differ-
ent number of features per finger. Recognition time is on around 1.008704 seconds
for Euclidean distance comparison and 0.045358 for SVMs. SVMs require 1.010324

additional seconds per user for training. Nevertheless, training is made only once so
this increasing of time is not really relevant and does not affect the recognition tasks.
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(a) Euclidean distance. C1: 20 features. C2: 30

features. C3: 40 features. C4: 50 features.
(b) Euclidean distance (zoomed). C1: 20 fea-

tures. C2: 30 features. C3: 40 features. C4:
50 features.

(c) SVMs. C1: 20 features. C2: 30 features.
C3: 40 features. C4: 50 features.

(d) SVMs (zoomed). C1: 20 features. C2: 30

features. C3: 40 features. C4: 50 features.

Figure 34.: Best hand geometry results under controlled conditions. Each graphic
compares different number of features per finger when thumb is excluded.

(a) ROC (b) ROC (zoomed)

Figure 35.: Validation and Test results obtained when hand geometry features are
extracted using 20 features per finger, thumb is excluded, and compared
by SVMs under controlled conditions.
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M O N O M O D A L E VA L U AT I O N U N D E R R E A L I S T I C C O N D I T I O N S

10.1 introduction

This chapter presents an evaluation of the different monomodal palmprint and hand
geometry feature extraction methods described in Chapter 5 under realistic condi-
tions. The aim of this evaluation is to introduce some variability with regard to
environmental conditions and hand pose in order to obtain more realistic results.
Similarly to the evaluation under controlled conditions presented in Chapter 9, dif-
ferent matching approaches described in Chapter 6 and the influence of the employ-
ment of a dimensionality reduction technique have also been evaluated. Considering
the results obtained for the different parameter configurations tested for each fea-
ture extraction method, those configurations which presents better results have been
selected to repeat the experiments under more complex situations.

To this end, gb2s ID database have been selected due to the contact-less pose con-
straint-free nature of its images and background restrictions. Well contrasted neutral
backgrounds ease the segmentation task, which has already been thoroughly evalu-
ated in Chapter 3 and it then is not considered crucial at this point. As described
in Section 2.3.2, gb2s ID database provides indoor images captured by the camera
of a mobile device under natural lighting conditions, which present present huge
variability in terms of size, skin color, orientation, hand openness and illumination
conditions which make it suitable for this evaluation. Flooding based segmentation
using thresholding as initial binarization have been applied to separate the hand from
the background because this method provides results that are comparable to more
complex approaches but consuming considerably less resources.

Although gb2s ID database contains images of both hands, in order to make equi-
table comparisons with the monomodal evaluation under controlled conditions only
one hand is included in this experiments, the left hand. In the same way, a higher
number of images per hand and user are provided by gb2s ID database, but only 10

are randomly selected for the experiments. According to the protocol described in
Section 8.3, these 10 images of each user are divided in two subsets: validation and
test. Validation samples, in turn, are divided in three groups: training, enrolment
and access. Equally to monomodal controlled experiments training, enrolment, ac-
cess and test subsets are composed by three, three, two and two samples respectively.
In this case the images intended for each group have been randomly selected.

Even when well contrasted neutral backgrounds in general ease the segmentation
procedure, some images in gb2s ID database still present challenging characteristics
such as pink background, light reflections or the use of rings that difficult the extrac-

139
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tion of a precise silhouette of the hand or the palmprint ROI detection. As explained
in Chapter 3, these images are discarded by segmentation quality control module or
by visual supervision of the extracted and aligned palmprint ROIs. Those users for
whom there are not enough images for training and enrollment after the supervision
are considered as FTE. In particular, a FTE equal to 6.79 % has been obtained. In
addition, FTA has been calculated over the entire database getting a rate of 18.42 %.
It is more elevated than expected, mainly due to there are some users for whom all
the images are discarded. Nevertheless, as the number of images per user is quite
higher than 10, those users which are not included in the FTE maintain at least 10

images so these FTA rate has not been included in the FMR and FNMR computation.
Monomodal evaluation results under realistic conditions ordered according to the

employed trait and feature extraction method are presented down below followed by
their joint analysis.

10.2 palmprint

10.2.1 Sobel filter

Table 30 presents the results of the evaluation under realistic conditions for Sobel
filter feature extraction.

Figure 36 depicts a comparison between the best validation results obtained when
Sobel filter is applied as feature extraction method under realistic conditions. Figures
36a and 36b compare the results obtained using Euclidean distance while Figures 36c
and 36d compare the results obtained employing SVMs. Each graphic compares the
results obtained when different angles are involved in the feature extraction process

Test Configuration
Results

Validation Test
Angles PCA Comparison Method EER (%) FMR (%) FNMR (%)

0 No Euclidean Distance 2.90 2.88 3.65

45 No Euclidean Distance 3.38 3.28 5.73

90 No Euclidean Distance 4.17 3.84 6.25

135 No Euclidean Distance 2.60 2.73 4.69

0,45,90,135 No Euclidean Distance 2.08 1.97 4.69

0,45,90,135 Yes Euclidean Distance 1.22 1.24 5.73

0 No SVMs 2.08 2.28 3.65

45 No SVMs 1.28 1.42 5.73

90 No SVMs 1.56 1.57 4.69

135 No SVMs 1.04 1.11 5.21

0,45,90,135 No SVMs 1.04 1.21 3.13

0,45,90,135 Yes SVMs 1.04 1.04 4.17

Table 30.: Palmprint results using Sobel filter as feature extraction method under real-
istic conditions. Image size and threshold parameters of feature extraction
algorithm have been set to 32x32 and 0.1 respectively.
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(a) Euclidean Distance. C1: 135
o. C2: 0

o, 45
o,

90
o and 135

o. C3: and 0
o, 45

o, 90
o and 135

o

+ PCA.

(b) Euclidean Distance (zoomed). C1: 135
o.

C2: 0
o, 45

o, 90
o and 135

o. C3: and 0
o, 45

o,
90

o and 135
o + PCA.

(c) SVMs. C1: 135
o. C2: 0

o, 45
o, 90

o and 135
o.

C3: and 0
o, 45

o, 90
o and 135

o + PCA.
(d) SVMs (zoomed). C1: 135

o. C2: 0
o, 45

o, 90
o

and 135
o. C3: and 0

o, 45
o, 90

o and 135
o +

PCA.

Figure 36.: Comparison of best palmprint results using Sobel filter as feature extrac-
tion method and different matching approaches under realistic conditions.
Each graphic compares different angles configurations and the application
of PCA. Image size and threshold parameters of feature extraction algo-
rithm have been set to 32x32 and 0.1 respectively in all the cases.

as well as the use of PCA in the case that the four angles are employed. Image size
and threshold parameters have been set to 32x32 and 0.1 respectively in all the cases.
Validation and Test results of the best case, which corresponds to image size equal
to 32x32, threshold equal to 0.1 and angles 0

o, 45
o, 90

o and 135
o, PCA and SVMs, are

compared in Figure 37.
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(a) ROC (b) ROC (zoomed)

Figure 37.: Validation and Test results obtained when features are extracted under
realistic conditions using Sobel filter and compared by SVMs and dimen-
sionality reduction is applied. Image size, threshold and directions pa-
rameters are set to 32x32, 0.1 and 0

o, 45
o, 90

o and 135
o respectively.

10.2.2 Gabor filter

Table 31 presents the results of the evaluation under realistic conditions for Gabor
filter feature extraction.

Figure 38 depicts a comparison between the best validation results obtained when
Gabor filter is applied as feature extraction method under realistic conditions. Fig-
ures 38a and 38b compare the results obtained using Euclidean distance while Figures
38c and 38d compare the results obtained employing SVMs. Each graphic compares
the results obtained with and without dimensionality reduction when filter size, fre-
quency and σ parameters are set to 17x17, 0.0916 and 5.16179 respectively. Validation
and Test results of the best case, which are provided by SVMs when PCA is applied,
are compared in Figure 39.

Test Configuration
Results

Validation Test
PCA Comparison Method EER (%) FMR (%) FNMR (%)

No Euclidean Distance 2.08 2.02 5.73

Yes Euclidean Distance 1.56 1.47 6.25

No SVMs 1.04 1.13 2.60

Yes SVMs 1.56 1.68 4.17

Table 31.: Palmprint results using Gabor filter as feature extraction method under
realistic conditions. Filter size, frequency and σ parameters have been set
to 17x17, 0.0916 and 5.16179 respectively.
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(a) Euclidean distance with (C2) and
without(C1) PCA.

(b) Euclidean distance with (C2) and
without(C1) PCA (zoomed).

(c) SVMs with (C2) and without(C1)
PCA.

(d) SVMs with (C2) and without(C1)
(zoomed).

Figure 38.: Best palmprint results using Gabor filter as feature extraction method un-
der realistic conditions. Filter size, frequency and σ parameters have been
set to 17x17, 0.0916 and 5.16179 respectively.

(a) ROC (b) ROC (zoomed)

Figure 39.: Validation and Test results obtained when features are extracted using Ga-
bor filter and compared by SVMs and dimensionality reduction (PCA) is
applied under realistic conditions. Filter size, frequency and σ parameters
have been set to 17x17, 0.0916 and 5.16179 respectively.
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10.2.3 Local Binary Patterns

Table 32 presents the results of the evaluation under realistic conditions for LBP
feature extraction.

Test Configuration
Results

Validation Test
Region Size Uniform PCA Comparison Method EER (%) FMR (%) FNMR (%)

8x8 1 No Euclidean Distance 6.14 6.32 8.33

8x8 3 No Euclidean Distance 8.70 9.34 14.58

16x16 1 No Euclidean Distance 4.69 5.10 7.29

16x16 3 No Euclidean Distance 5.73 5.74 9.38

8x8 1 Yes Euclidean Distance 2.12 2.61 5.73

8x8 3 Yes Euclidean Distance 6.81 8.10 8.33

16x16 1 Yes Euclidean Distance 3.13 3.60 6.77

16x16 3 Yes Euclidean Distance 2.19 2.79 5.73

8x8 1 No χ2 Distance 2.18 2.01 3.13

8x8 3 No χ2 Distance 5.21 5.04 6.77

16x16 1 No χ2 Distance 2.08 2.08 4.69

16x16 3 No χ2 Distance 2.60 2.68 5.73

8x8 1 No SVMs 0.73 0.68 3.13

8x8 3 No SVMs 2.60 2.90 3.65

16x16 1 No SVMs 0.52 0.41 3.13

16x16 3 No SVMs 1.04 0.97 2.08

8x8 1 Yes SVMs 1.04 1.08 3.13

8x8 3 Yes SVMs 3.13 3.18 4.17

16x16 1 Yes SVMs 0.52 0.42 3.13

16x16 3 Yes SVMs 1.04 1.16 2.60

Table 32.: Palmprint results using Local Binary Patterns as feature extraction method
under realistic conditions. Patterns are uniform and #Neighboors parame-
ter is set to 8.

Figure 40 depicts a comparison between the best validation results obtained when
LBP is applied as feature extraction method under realistic conditions. Figures 40a
and 40b compare the results obtained using Euclidean distance, Figures 40c and
40d compare the results obtained employing χ2 distance, and 40f compare the results
obtained using SVMs. Each graphic compares the results obtained by different values
of region size when patterns are uniform and parameters #Neighboors and radio
are set to 8 and 1 respectively. Validation and Test results of the best case, which
corresponds to region size equal to 16x16and SVMs matching, are compared in Figure
41.
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(a) Euclidean distance. C1: 8x8 reg. size.
C2: 16x16 reg.size

(b) Euclidean distance (zoom). C1: 8x8 reg.
size. C2: 16x16 reg. size.

(c) χ2 distance. C1: 8x8 reg. size. C2: 16x16

reg. size.
(d) χ2 distance (zoom). C1: 8x8 reg. size.

C2: 16x16 reg. size.

(e) SVMs. C1: 8x8 reg. size. C2: 16x16 reg.
size.

(f) SVMs (zoom). C1: 8x8 reg. size. C2:
16x16 reg. size.

Figure 40.: Best palmprint results using LBP as feature extraction method under re-
alistic conditions. Each graphic compares different region sizes. Patterns
are uniform and parameters #Neighboors and radio are set to 8 and 1

respectively in all the cases.
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(a) ROC (b) ROC (zoomed)

Figure 41.: Validation and Test results obtained when features are extracted using
LBP and compared by SVMs under realistic conditions. Patterns are uni-
form and parameters #Neighboors, region size and radio have been set to
8, 16x16 and 1 respectively.

10.2.4 Local Derivative Patterns

Table 33 presents the results of the evaluation under realistic conditions for LDP
feature extraction.

Algorithm Parameters
Results

Valid. Test
Region
Size

Directions PCA Comparison
Method

EER
(%)

FMR
(%)

FNMR
(%)

16x16 0 No Euclidean Distance 4.06 4.40 5.73

16x16 45 No Euclidean Distance 3.65 3.74 5.73

16x16 90 No Euclidean Distance 5.07 5.32 7.29

16x16 135 No Euclidean Distance 4.69 5.19 7.81

16x16 0, 45 No Euclidean Distance 3.65 4.16 5.73

16x16 0, 90 No Euclidean Distance 3.85 4.08 5.73

16x16 0, 135 No Euclidean Distance 4.17 4.59 7.29

16x16 45, 90 No Euclidean Distance 4.15 4.30 5.73

16x16 45, 135 No Euclidean Distance 4.69 4.90 6.77

16x16 90, 135 No Euclidean Distance 4.35 4.53 7.29

16x16 0, 45, 90 No Euclidean Distance 4.08 4.35 5.21

16x16 0, 45, 135 No Euclidean Distance 4.17 4.51 6.77

16x16 0, 90, 135 No Euclidean Distance 4.17 4.29 6.77

16x16 45, 90, 135 No Euclidean Distance 4.69 4.96 6.25

16x16 0, 45, 90, 135 No Euclidean Distance 4.42 4.62 6.25

16x16 0 Yes Euclidean Distance 4.09 4.47 5.73

16x16 45 Yes Euclidean Distance 4.17 4.32 5.21

16x16 90 Yes Euclidean Distance 4.76 5.06 7.29

16x16 135 Yes Euclidean Distance 4.69 5.12 7.81
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Algorithm Parameters
Results

Valid. Test
Region
Size

Directions PCA Comparison
Method

EER
(%)

FMR
(%)

FNMR
(%)

16x16 0, 45 Yes Euclidean Distance 3.28 3.70 5.73

16x16 0, 90 Yes Euclidean Distance 3.13 3.41 6.77

16x16 0, 135 Yes Euclidean Distance 4.17 4.58 7.29

16x16 45, 90 Yes Euclidean Distance 3.13 3.23 6.77

16x16 45, 135 Yes Euclidean Distance 4.17 4.24 6.77

16x16 90, 135 Yes Euclidean Distance 4.17 4.38 6.77

16x16 0, 45, 90 Yes Euclidean Distance 3.13 3.31 5.73

16x16 0, 45, 135 Yes Euclidean Distance 3.13 3.50 6.25

16x16 0, 90, 135 Yes Euclidean Distance 3.65 3.85 6.77

16x16 45, 90, 135 Yes Euclidean Distance 3.65 3.78 7.29

16x16 0, 45, 90, 135 Yes Euclidean Distance 3.64 3.93 6.25

16x16 0 No χ2 Distance 10.79 11.04 9.38

16x16 45 No χ2 Distance 5.17 5.30 5.73

16x16 90 No χ2 Distance 6.29 6.21 9.38

16x16 135 No χ2 Distance 4.43 4.17 7.81

16x16 0, 45 No χ2 Distance 6.25 6.32 6.77

16x16 0, 90 No χ2 Distance 5.41 5.64 4.69

16x16 0, 135 No χ2 Distance 2.93 2.66 6.25

16x16 45, 90 No χ2 Distance 4.17 4.33 5.73

16x16 45, 135 No χ2 Distance 2.60 2.51 3.13

16x16 90, 135 No χ2 Distance 4.30 4.13 8.33

16x16 0, 45, 90 No χ2 Distance 5.25 5.58 5.21

16x16 0, 45, 135 No χ2 Distance 2.60 2.45 5.73

16x16 0, 90, 135 No χ2 Distance 3.13 3.00 4.69

16x16 45, 90, 135 No χ2 Distance 2.84 2.87 3.65

16x16 0, 45, 90, 135 No χ2 Distance 2.94 2.81 4.69

16x16 0 No SVMs 1.56 1.58 3.13

16x16 45 No SVMs 1.56 1.51 3.13

16x16 90 No SVMs 1.56 1.45 5.21

16x16 135 No SVMs 2.27 2.30 5.73

16x16 0, 45 No SVMs 1.04 0.83 3.65

16x16 0, 90 No SVMs 1.04 0.91 3.13

16x16 0, 135 No SVMs 1.56 1.51 3.13

16x16 45, 90 No SVMs 1.04 0.87 3.13

16x16 45, 135 No SVMs 1.04 0.97 3.65

16x16 90, 135 No SVMs 1.60 1.44 5.73

16x16 0, 45, 90 No SVMs 1.04 0.93 3.13

16x16 0, 45, 135 No SVMs 1.04 0.94 3.13

16x16 0, 90, 135 No SVMs 1.04 0.82 3.13

16x16 45, 90, 135 No SVMs 1.04 0.90 3.65

16x16 0, 45, 90, 135 No SVMs 1.04 0.88 3.13
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Algorithm Parameters
Results

Valid. Test
Region
Size

Directions PCA Comparison
Method

EER
(%)

FMR
(%)

FNMR
(%)

16x16 0 Yes SVMs 2.05 2.08 4.17

16x16 45 Yes SVMs 1.56 1.39 3.13

16x16 90 Yes SVMs 2.00 1.79 5.21

16x16 135 Yes SVMs 2.24 2.23 5.73

16x16 0, 45 Yes SVMs 1.04 0.89 3.65

16x16 0, 90 Yes SVMs 0.82 0.67 3.13

16x16 0, 135 Yes SVMs 1.56 1.43 4.17

16x16 45, 90 Yes SVMs 1.04 0.88 3.65

16x16 45, 135 Yes SVMs 1.04 0.91 3.65

16x16 90, 135 Yes SVMs 1.86 1.72 5.73

16x16 0, 45, 90 Yes SVMs 0.80 0.57 3.13

16x16 0, 45, 135 Yes SVMs 1.04 0.95 3.13

16x16 0, 90, 135 Yes SVMs 1.04 0.90 3.65

16x16 45, 90, 135 Yes SVMs 1.04 0.98 4.17

16x16 0, 45, 90, 135 Yes SVMs 1.04 0.92 3.13

Table 33.: Palmprint results using Local Derivative Patterns as feature extraction
method under realistic conditions.

Figure 42 depicts a comparison between the best validation results obtained when
LDP is applied as feature extraction method under realistic conditions. Figures 42a
and 42b compare the results obtained using Euclidean distance, Figures 42c and
42d compare the results obtained employing χ2 distance and Figures 42e and 42f
compare the results obtained by means of SVMs. Each graphic compares the results
obtained by different configurations of directions parameter when region size is set
to 16x16. In the cases of Euclidean distance and SVMs comparison PCA is applied
for dimensionality reduction. Validation and Test results of the best case, which
corresponds to region size equal to 16x16, directions 0

o, 45
o, 90

o and 135
o, and SVMs,

are compared in Figure 43.
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(a) Euclidean distance. C1: dir. 0. C2:
dirs. 0,90. C3: dirs. 0, 45, 90. C4:
dirs. 0, 45, 90, 135.

(b) Euclidean distance (zoomed). C1:
dir. 0. C2: dirs. 0,90. C3: dirs. 0,
45, 90. C4: dirs. 0, 45, 90, 135.

(c) χ2 distance. C1: dir. 135. C2: dirs.
45, 135. C3: dirs. 0, 45, 135. C4:
16x16 r.s. and dirs. 0, 45, 90, 135.

(d) χ2 distance (zoomed). C1: dir. 135.
C2: dirs. 45, 135. C3: dirs. 0, 45, 135.
C4: 16x16 r.s. and dirs. 0, 45, 90, 135.

(e) SVMs. C1: dir. 45. C2: dirs. 0,90. C3:
16x16 r.s. and dirs. 0, 45, 90. C4: dirs.
0, 45, 90, 135.

(f) SVMs (zoomed). C1: dir. 45. C2: dirs.
0,90. C3: 16x16 r.s. and dirs. 0, 45, 90.
C4: dirs. 0, 45, 90, 135.

Figure 42.: Best palmprint results using LDP as feature extraction method under real-
istic conditions. Each graphic compares different configurations of direc-
tions (dir) when region size is set to 16x16.
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(a) ROC (b) ROC (zoomed)

Figure 43.: Validation and Test results obtained when features are extracted using
LDP and compared by SVMs under realistic conditions. Region size is set
to 16x16 and the involved directions are 0

o, 45
o, 90

o and 135
o.

10.2.5 Curvelet

In this case, the whole set of experiments have been repeated due to monomodal
results under controlled conditions do not provide a clearly better combination of
bands. Table 34 and Table 35 present the results of the evaluation under realistic
conditions for Curvelet feature extraction when Euclidean distance and SVMs are
employed to compare features respectively.

Algorithm Parameters
Results

Validation Test
Bands PCA EER (%) FMR (%) FNMR (%)

1 No 7.50 8.16 8.33

2 No 16.67 17.19 19.27

3 No 22.64 24.48 20.83

4 No 14.06 14.99 17.19

1, 2 No 8.33 9.06 8.33

1, 3 No 7.81 8.46 8.33

1, 4 No 7.77 8.44 8.33

2, 3 No 18.23 18.98 19.79

2, 4 No 16.67 17.33 17.71

3, 4 No 18.87 20.52 20.31

1, 2, 3 No 8.33 9.07 8.33

1, 2, 4 No 8.33 9.05 8.33

1, 3, 4 No 7.81 8.45 8.33

2, 3, 4 No 17.71 18.66 19.27

1, 2, 3, 4 No 8.33 9.04 8.33

1 Yes 7.51 8.17 8.33

2 Yes 15.63 16.15 16.67
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Algorithm Parameters
Results

Validation Test
Bands PCA EER (%) FMR (%) FNMR (%)

3 Yes 14.01 14.47 14.58

4 Yes 8.18 8.45 11.98

1, 2 Yes 7.77 8.39 8.33

1, 3 Yes 7.30 8.01 8.33

1, 4 Yes 7.45 8.07 8.33

2, 3 Yes 14.39 14.73 15.63

2, 4 Yes 14.12 14.41 17.19

3, 4 Yes 11.24 11.52 15.10

1, 2, 3 Yes 7.55 8.23 8.33

1, 2, 4 Yes 7.64 8.32 8.33

1, 3, 4 Yes 7.29 8.02 8.33

2, 3, 4 Yes 13.54 13.90 15.10

1, 2, 3, 4 Yes 7.48 8.15 5.33

Table 34.: Palmprint Results using Curvelets to extract features and Euclidean dis-
tance to compare under realistic conditions.

Algorithm Parameters
Results

Validation Test
Bands PCA EER (%) FMR (%) FNMR (%)

1 No 1.37 1.34 3.65

2 No 8.04 7.36 12.50

3 No 10.94 9.62 14.58

4 No 6.87 5.64 7.29

1, 2 No 2.26 2.32 3.65

1, 3 No 1.53 1.59 3.65

1, 4 No 1.04 0.98 3.13

2, 3 No 7.81 7.00 11.98

2, 4 No 7.54 6.78 9.90

3, 4 No 9.74 8.33 10.94

1, 2, 3 No 1.79 1.80 4.17

1, 2, 4 No 1.09 1.17 3.13

1, 3, 4 No 1.07 1.06 3.65

2, 3, 4 No 6.77 5.86 11.46

1, 2, 3, 4 No 1.04 1.05 2.60

1 Yes 1.04 1.01 3.65

2 Yes 8.24 7.50 10.94

3 Yes 8.95 7.87 11.98

4 Yes 5.85 4.85 7.81

1, 2 Yes 1.46 1.35 2.08

1, 3 Yes 1.08 1.02 4.17

1, 4 Yes 1.06 1.01 4.17
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Algorithm Parameters
Results

Validation Test
Bands PCA EER (%) FMR (%) FNMR (%)

2, 3 Yes 8.20 7.49 11.46

2, 4 Yes 8.33 7.58 10.94

3, 4 Yes 7.84 6.81 12.50

1, 2, 3 Yes 1.07 1.06 4.17

1, 2, 4 Yes 1.04 1.13 3.13

1, 3, 4 Yes 1.47 1.38 3.13

2, 3, 4 Yes 7.36 6.70 10.94

1, 2, 3, 4 Yes 1.04 0.97 3.13

Table 35.: Palmprint Results using Curvelets to extract features and SVMs to compare
under realistic conditions.

Figure 44 depicts a comparison between the best validation results obtained when
Curvelet is applied as feature extraction method under realistic conditions. Figures
44a and 44b compare the results obtained using Euclidean distance while Figures
44c and 44d compare the results obtained employing SVMs. Each graphic compares
the results obtained by different configurations of parameter bands. PCA is applied
for dimensionality reduction. Validation and Test results of the best case, which
corresponds to bands 1, 2, 3 and 4, are compared in Figure 45.

10.3 hand geometry

Table 36 presents the results of the evaluation under realistic conditions for Hand
Geometry feature extraction.

Figure 46 depicts a comparison between validation results obtained when hand ge-
ometry features are extracted under controlled conditions. 30 features per finger are
extracted and thumb is not included in the pattern. The graphic compares the results
obtained when Euclidean distance and SVMs are used as matching approaches. Val-
idation and Test results of the best case, which corresponds to 30 features per finger
and SVMs, are compared in Figure 47.

Algorithm Parameters
Results

Validation Test
]Features Thumb Comparison Method EER (%) FMR (%) FNMR (%)

30 No Euclidean Distance 12.28 13.02 13.54

30 No SVMs 6.88 6.36 7.29

Table 36.: Hand Geometry Results under realistic conditions.
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(a) Euclidean distance. C1: band 1.
C2: bands 1 and 4. C3: bands 1, 3

and 4. C4: bands 1, 2, 3 and 4.

(b) Euclidean distance (zoomed). C1:
band 1. C2: bands 1 and 4. C3:
bands 1, 3 and 4. C4: bands 1, 2,
3 and 4.

(c) SVMs. C1: band 1. C2: bands 1

and 4. C3: bands 1, 2 and 4. C4:
bands 1, 2, 3 and 4.

(d) SVMs (zoomed). C1: band 1. C2:
bands 1 and 4. C3: bands 1, 2 and
4. C4: bands 1, 2, 3 and 4.

Figure 44.: Best palmprint results using Curvelet as feature extraction method and
PCA under realistic conditions. Each graphic compares different configu-
rations of parameter bands.

(a) ROC (b) ROC (zoomed)

Figure 45.: Validation and Test results obtained when features are extracted using
Curvelet and compared by SVMs under realistic conditions. PCA is ap-
plied and 1, 2, 3 and 4 bands are involved in the feature extraction process.
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(a) Euclidean distance and SVMs comparison. (b) Euclidean distance and SVMs comparison
(zoomed).

Figure 46.: Best hand geometry results under realistic conditions.

(a) ROC (b) ROC (zoomed)

Figure 47.: Validation and Test results obtained when hand geometry features are
extracted using 30 features per finger, thumb is excluded, and compared
by SVMs under realistic conditions.

10.4 analysis of the results

In view of the obtained results, a clear decrease on the performance with respect to
the results under controlled conditions can be appreciated for every feature extraction
independently on the comparison method. This highlights that lighting conditions
not only influences the segmentation but also the feature extraction process.

A decrease on segmentation accuracy directly influences the extraction and align-
ment of the ROI, which is a crucial step for texture-based palmprint recognition.
Most of texture recognition methods are sensitive to small translation and rotation
variations of the analysed region. Even when it is possible to align and crop the
ROI, there are variations in the texture captured by the camera due to illumination
changes which also influences the recognition results.
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As can be expected, hand geometry is more affected than palmprint. In addition
to the problems that affect the segmentation process, which can lead into non-precise
contour detection, it needs to deal with those drawbacks derived from the absence
of pose restrictions during the capture. Small variations on the pose can derive into
considerable variations of the silhouette of the projected hand, producing intra-user
variations that clearly reduce the hand geometry recognition accuracy.
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M U LT I M O D A L E VA L U AT I O N U N D E R R E A L I S T I C C O N D I T I O N S

11.1 introduction

This chapter presents an evaluation of different fusions of palmprint and hand geom-
etry feature extraction methods presented in Chapter 5. The aim of this evaluation is
to check to what extent the combination of multiple biometric modalities allows to in-
crease the overall accuracy taking advantage of the strengths of each single modality,
compensating the limitations derived from their nature and the capturing conditions.

Two fusion levels have been implemented in this thesis, as described in Chapter
7: score-level fusion and feature-level fusion. Scores as well as features need to be
normalized previously to the fusion. To this end, min-max and z-score normaliza-
tions have been applied and compared. In addition, four rules have been tested for
score-level fusion: min, max, sum and product. Moreover, for each fusion level two
kinds of multibiometrics have been considered depending on the trait(s) involved in
the fusion. On the one hand, some of the palmprint methods have been combined
two-by-two to obtain different palmprint multibiometric approaches that allows for
the evaluation of the intra-modal fusion. On the other hand, one or more palmprint
methods have been fused with the hand geometry approach to evaluate different
hand multibiometric solutions.

It has been decided to evaluate the multibiometric solutions under realistic condi-
tions due to it is more challenging than the evaluation under controlled conditions,
which already presents very good accuracy rates. To this end, gb2s ID database have
been employed keeping the same division of samples than monomodal evaluation
under realistic conditions in order to make equitable comparisons. Each method in-
volved in the fusion has been configured with the parameters that provides better
results during the monomodal evaluation. In those cases that more than one parame-
ter configuration provide the best accuracy, faster parameter combinations have been
chosen. Particularly, images have been resized to 32 × 32 px. and threshold has been
established into 0.1 for Sobel filter. In the case of Gabor filter, the values for filter size,
frequency and σ parameters are 17 × 17, 0.0916 and 5.6179 respectively. Unary pat-
terns, 8-neighbourhood and radio equal to 1 are employed for LBP feature extraction,
while region size parameter takes value 8×8 when LBP is combined with distance-
based matching and value 16×16 when SVMs are used for comparison. In the case of
LDP, region size parameter is set to 16×16 and directions 0, 45 and 90 are involved in
the feature extraction process. When Curvelets are combined with Euclidean distance
just band 1 information is included in the feature vector, while band 3 information is

157
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also added in the case that SVMs are used for feature matching. Finally, 30 widths
per finger excluding the thumb are extracted for hand geometry recognition.

Multimodal evaluation results under realistic conditions are presented below.

11.2 score level fusion

11.2.1 Palmprint multibiometrics

11.2.1.1 Sobel and Gabor Score-Level fusion

Table 37 and Table 38 show the results of fusing Sobel and Gabor filter at score level
when Euclidean distance and SVMs are used to obtain the matching scores respec-
tively. In general, a small improvement can be seen in relation to monomodal results
when Euclidean distance is employed, while SVMs almost maintain the accuracy of
the best monomodal method. More in detail, results show that the rule which pro-
vides better results for Sobel and Gabor fusion is the min rule. In addition, it can
be seen that both normalization techniques provide very similar results, which are
almost identical in the case of Euclidean distance comparison.

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.4111 0.6323 1.23 0 32.29

min-max product 0.6955 0.7852 1.56 1.58 4.69

min-max min 0.1652 0.5676 1.15 1.16 5.73

min-max max 0.4174 0.3809 1.56 0.96 5.73

z-score sum 0.3911 0.0630 1.23 0 28.13

z-score product 0.6955 0.7852 1.56 2.40 4.17

z-score min 0.2902 0.8894 1.15 3.53 3.13

z-score max 0.7730 0.7513 1.56 2.64 4.69

Table 37.: Palmprint multibiometrics fusing Sobel and Gabor feature extraction meth-
ods at score level when Euclidean distance is used to compare. w1 and w2

stands for the weights given to Sobel and Gabor methods respectively.

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.8825 0.8265 1.04 95.33 0

min-max product 0.4285 0.5767 1.04 1.12 5.21

min-max min 0.5816 0.9843 1.04 1.04 4.17

min-max max 0.8181 0.8178 1.04 13.24 4.17

z-score sum 0.4190 0.2917 1.04 15.73 1.56

z-score product 1.8646 0.5927 1.92 2.01 6.25

z-score min 0.0615 0.0329 1.02 0.21 5.21

z-score max 0.5208 0.6600 1.04 2.91 1.56

Table 38.: Palmprint multibiometrics fusing Sobel and Gabor feature extraction meth-
ods at score level when SVMs are used to compare. w1 and w2 stands for
the weights given to Sobel and Gabor methods respectively.
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(a) Min rule and Euclidean
distance

(b) Min rule and Euclidean
distance (zoomed)

(c) Min rule and SVMs (d) Min rule and SVMs (zoomed)

Figure 48.: Best score level fusion results involving Sobel (Bio1) and Gabor (Bio2)
feature extraction methods when min-max normalization is applied.

Figure 48 depicts the best validation results of Sobel and Gabor fusion at score level
when Euclidean distance and SVMs are used to obtain the matching scores and min-
max normalization is applied. In addition, the corresponding monomodal results can
also be seen in the figure.

11.2.1.2 LBP and LDP Score-level fusion

Table 39 and Table 40 show the results of LBP and LDP fusion at score level when
Euclidean distance and SVMs are used to obtain the matching scores respectively. In
general, a small improvement can be seen in relation to monomodal results when
Euclidean distance is employed for some rules, while accuracy is maintained or de-
creased for SVMs. More in detail, sum and min are the rules that allows for certain
improvement. In addition, it can be seen that both normalization techniques pro-
vide very similar results, which are almost identical in the case of Euclidean distance
comparison.

Figure 49 shows the best validation results of LBP and LDP fusion at score level
when Euclidean distance and SVMs are used to obtain the matching scores and min-
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max normalization is applied. In addition, the corresponding monomodal results can
also be seen in the figure.

(a) Min rule and Euclidean
distance

(b) Min rule and Euclidean
distance (zoomed)

(c) Product rule and SVMs (d) Product rule and SVMs (zoomed)

Figure 49.: Best score level fusion results involving LBP (Bio1) and LDP (Bio2) feature
extraction methods when min-max normalization is applied.

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.9625 0.4159 2.08 0.005 27.60

min-max product 0.7353 0.4709 2.36 2.62 6.77

min-max min 0.3145 0.3091 2.08 2.49 5.73

min-max max 0.7499 0.6162 2.15 0.09 9.90

z-score sum 0.9625 0.4159 2.08 0.005 28.13

z-score product 0.9871 0.8807 2.36 2.07 6.77

z-score min 0.1959 0.2123 2.08 1.73 6.25

z-score max 0.7143 0.6451 2.14 0.05 10.42

Table 39.: Palmprint multibiometrics fusing LBP and LDP feature extraction methods
at score level when Euclidean distance is used to compare. w1 and w2

stands for the weights given to LBP and LDP methods respectively.



11.2 score level fusion 161

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.6569 0.0422 0.52 95.50 0

min-max product 0.0054 0.4813 0.52 0.38 3.13

min-max min 0.0192 0.1746 0.52 0.43 3.13

min-max max 0.5244 0.4237 0.52 39.91 2.60

z-score sum 0.3329 0.4994 0.52 11.00 1.56

z-score product 0.3916 0.3418 1.04 1.00 3.65

z-score min 0.3129 0.4272 0.52 0.37 3.13

z-score max 0.2971 0.0641 0.52 9.89 2.60

Table 40.: Palmprint multibiometrics fusing LBP and LDP feature extraction methods
at score level when SVMs are used to compare. w1 and w2 stands for the
weights given to LBP and LDP methods respectively.

11.2.1.3 Sobel and Curvelets Score-Level fusion

Table 41 and Table 42 show the results of fusing Sobel filter and Curvelets at score
level when Euclidean distance and SVMs are used to obtain the matching scores re-
spectively. In general, a small improvement can be seen in relation to monomodal
results for some rules when Euclidean distance is employed, while SVMs almost
maintain the accuracy of the best monomodal method. Regarding normalization ap-
proaches, it can be seen that both normalization techniques provide very similar re-
sults, which are almost identical in the case of Euclidean distance comparison. More
in detail, for Euclidean distance comparison sum as well as min rules improve the
monomodal results. When scores are obtained by means of SVMs certain improve-
ment is obtained with min rule and z-score normalization.

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.9775 0.0030 1.16 0 32.81

min-max product 0.0460 0.9075 1.99 2.05 5.21

min-max min 0.0720 0.9975 1.15 1.16 5.73

min-max max 0.3923 0.9091 1.56 0 11.46

z-score sum 0.6825 0.0047 1.16 0 26.56

z-score product 0.2803 0.0296 1.99 7.66 3.65

z-score min 0.0241 0.6855 1.15 3.56 3.13

z-score max 0.0933 0.5220 1.56 0 8.85

Table 41.: Palmprint multibiometrics fusing Sobel and Curvelets feature extraction
methods at score level when Euclidean distance is used to compare. w1

and w2 stands for the weights given to Sobel and Curvelets methods re-
spectively.

Figure 50 illustrates the best validation results of Sobel and Curvelets fusion at
score level when Euclidean distance and SVMs are used to obtain the matching scores
and min-max normalization is applied. In addition, the corresponding monomodal
results can also be seen in the figure.
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Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.3873 0.5523 1.04 99.23 0

min-max product 0.8259 0.6410 1.04 1.11 4.17

min-max min 0.7364 0.3841 1.04 1.00 3.65

min-max max 0.6291 0.6860 1.04 82.07 0

z-score sum 0.0804 0.0994 1.04 16.77 1.04

z-score product 0.4861 0.2186 1.20 1.10 6.25

z-score min 0.6677 0.1364 0.90 0.71 3.65

z-score max 0.5282 0.3085 1.04 0.42 1.04

Table 42.: Palmprint multibiometrics fusing Sobel and Curvelets feature extraction
methods at score level when SVMs are used to compare. w1 and w2 stands
for the weights given to Sobel and Curvelets methods respectively.

(a) Min rule and Euclidean
distance

(b) Min rule and Euclidean
distance (zoomed)

(c) Min rule and SVMs (d) Min rule and SVMs (zoomed)

Figure 50.: Best score level fusion results involving Sobel (Bio1) and Curvelets (Bio2)
feature extraction methods when min-max normalization is applied.

11.2.1.4 LBP and Curvelets Score-level fusion

Table 43 and Table 44 show the results of fusing LBP and Curvelets at score level
when Euclidean distance and SVMs are used to obtain the matching scores respec-
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tively. In general, a small improvement can be seen in relation to monomodal results
when Euclidean distance is employed for some rules, while accuracy is maintained or
decreased for SVMs. More in detail, results show that sum and min are the rules that
allows for certain improvement. In addition, it can be seen that both normalization
techniques provide very similar results.

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.7919 0.1155 2.08 0.005 28.65

min-max product 0.9381 0.4128 3.61 3.76 5.21

min-max min 0.0100 0.3518 2.32 2.81 5.21

min-max max 0.4554 0.5422 2.83 0 11.46

z-score sum 0.4616 0.1000 2.08 0.005 28.65

z-score product 0.9381 0.4128 3.61 7.83 3.65

z-score min 0.0100 0.3518 2.32 2.63 5.73

z-score max 0.4477 0.9888 3.20 0.25 10.42

Table 43.: Palmprint multibiometrics fusing LBP and Curvelets feature extraction
methods at score level when Euclidean distance is used to compare. w1

and w2 stands for the weights given to LBP and Curvelets methods respec-
tively.

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.9016 0.0582 0.52 96.09 0

min-max product 0.8886 0.6128 0.52 0.47 2.60

min-max min 0.2813 0.6164 0.52 0.43 3.13

min-max max 0.6472 0.1242 0.52 97.11 0.52

z-score sum 0.4506 0.6345 0.52 12.46 1.04

z-score product 0.4672 0.5607 1.20 1.16 4.17

z-score min 0.0308 0.9327 0.52 0.25 3.13

z-score max 0.8220 0.2909 0.52 0.24 2.60

Table 44.: Palmprint multibiometrics fusing LBP and Curvelets feature extraction
methods at score level when SVMs are used to compare. w1 and w2 stands
for the weights given to LBP and Curvelets methods respectively.

Figure 51 depicts the best validation results of LBP and Curvelets fusion at score
level when Euclidean distance and SVMs are used to obtain the matching scores
and min-max normalization is applied. In addition, the corresponding monomodal
results can also be seen in the figure.
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(a) Sum rule and Euclidean
distance

(b) Sum rule and Euclidean
distance (zoomed)

(c) Min rule and SVMs (d) Min rule and SVMs (zoomed)

Figure 51.: Best score level fusion results involving LBP (Bio1) and Curvelets (Bio2)
feature extraction methods when min-max normalization is applied.

11.2.1.5 Sobel and LBP Score-Level fusion

Table 45 and Table 46 show the results of Sobel filter and LBP fusion at score level
when Euclidean distance and SVMs are used to obtain the matching scores respec-
tively. In general, a small improvement can be seen in relation to monomodal results
when Euclidean distance is employed in combination with some rules, while accuracy
is maintained or decreased for SVMs. In addition, it can be seen that both normal-
ization techniques provide very similar results, which are almost identical in the case
of Euclidean distance comparison. More in detail, table 45 results show that sum as
well as min and max rules allows to improve monomodal results when Euclidean
distance is used for scores calculation.

Figure 52 shows the best validation results of Sobel and LBP fusion at score level
when Euclidean distance and SVMs are used to obtain the matching scores and min-
max normalization is applied. In addition, the corresponding monomodal results can
also be seen in the figure.
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(a) Max rule and Euclidean
distance

(b) Max rule and Euclidean
distance (zoomed)

(c) Min rule and SVMs (d) Min rule and SVMs (zoomed)

Figure 52.: Best score level fusion results involving Sobel (Bio1) and LBP (Bio2) fea-
ture extraction methods when min-max normalization is applied.

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.9679 0.7942 1.04 0 31.25

min-max product 0.3774 0.2892 1.25 1.50 5.73

min-max min 0.1556 0.2602 1.04 1.29 6.25

min-max max 0.5368 0.7413 1.04 0 7.29

z-score sum 0.0732 0.1652 1.04 0 26.56

z-score product 0.3774 0.2892 1.25 2.27 4.17

z-score min 0.2777 0.8658 1.04 1.98 4.69

z-score max 0.3731 0.8794 1.04 6.08 6.77

Table 45.: Palmprint multibiometrics fusing Sobel and LBP feature extraction meth-
ods at score level when Euclidean distance is used to compare. w1 and w2

stands for the weights given to Sobel and LBP methods respectively.



166 multimodal evaluation under realistic conditions

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.0194 0.2527 0.52 95.35 0

min-max product 0.8298 0.1680 1.04 0.94 3.13

min-max min 0.4965 0.1402 0.52 0.43 3.13

min-max max 0.6223 0.9190 0.87 33.43 1.56

z-score sum 0.0752 0.9943 0.52 10.78 2.60

z-score product 0.1835 0.9888 1.04 0.96 4.17

z-score min 0.3125 0.0824 0.52 0.40 3.13

z-score max 0.1019 0.3389 0.62 7.07 2.60

Table 46.: Palmprint multibiometrics fusing Sobel and LBP feature extraction meth-
ods at score level when SVMs are used to compare. w1 and w2 stands for
the weights given to Sobel and LBP methods respectively.

11.2.2 Hand multibiometrics

11.2.2.1 Sobel and Hand Geometry Score-level fusion

Table 47 and Table 48 show the results of fusing palmprint information extracted by
means of Sobel filter and Hand Geometry at score level when Euclidean distance and
SVMs are used to obtain the matching information respectively. In general, a small
improvement can be seen in relation to monomodal results for some rules when
Euclidean distance is employed, while SVMs almost maintain the accuracy of the
best monomodal method. More in detail, for Euclidean distance comparison sum as
well as min rules improve the monomodal results. In addition, it can be seen that
both normalization techniques provide very similar results in most of the cases and
that these results are almost identical in the case of Euclidean distance comparison.

Figure 53 shows the best validation results of Sobel and Hand Geometry fusion at
score level when Euclidean distance and SVMs are used to obtain the matching scores
and min-max normalization is applied. In addition, the corresponding monomodal
results can also be seen in the figure.

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.7655 0.1078 1.10 0 32.29

min-max product 0.8663 0.3459 5.62 6.01 3.65

min-max min 0.0355 0.7720 0.96 0.95 3.13

min-max max 0.8526 0.0110 1.36 0 32.29

z-score sum 0.9593 0.3439 1.10 0 28.65

z-score product 0.8663 0.3459 5.62 0.14 13.54

z-score min 0.0166 0.9038 0.96 2.91 3.13

z-score max 0.7478 0.0110 1.38 0 26.04

Table 47.: Hand multibiometrics fusing Sobel and Hand Geometry feature extraction
methods at score level when Euclidean distance is used to compare. w1

and w2 stands for the weights given to Sobel and Hand Geometry methods
respectively.
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Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.6059 0.2155 1.04 99.73 0

min-max product 0.8753 0.0621 1.04 1.07 3.65

min-max min 0.2656 0.2965 1.04 1.05 4.17

min-max max 0.7016 0.4906 1.04 58.26 0

z-score sum 0.6605 0.3109 1.04 14.47 1.04

z-score product 0.7273 0.9029 4.89 4.02 4.69

z-score min 0.0585 0.9837 4.01 0.13 7.29

z-score max 0.4596 0.5196 1.56 18.31 0

Table 48.: Hand multibiometrics fusing Sobel and Hand Geometry feature extraction
methods at score level when SVMs are used to compare. w1 and w2 stands
for the weights given to Sobel and Hand Geometry methods respectively.

(a) Min rule and Euclidean
distance

(b) Min rule and Euclidean
distance (zoomed)

(c) Product rule and SVMs (d) Product rule and SVMs (zoomed)

Figure 53.: Best score level fusion results involving Sobel (Bio1) and Hand Geom.
(Bio2) feature extraction methods when min-max normalization is used.
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11.2.2.2 Gabor and Hand Geometry Score-level fusion

Table 49 and Table 50 show the results of fusing palmprint information extracted
by means of Gabor filter and hand geometry information at score level when Eu-
clidean distance and SVMs are used to obtain the matching scores respectively. In
general, a small improvement can be seen in relation to monomodal results for some
rules. Comparing both normalization techniques it can be seen that both approaches
provide very similar results in most of the cases and that these results are almost
identical in the case of Euclidean distance comparison. More in detail, for Euclidean
distance comparison min rule improve the monomodal results while for SVMs the
rule which improves the results for both normalizations is the sum rule. In addition,
it can be seen that results are also improved when z-score normalization and max
rule are applied in the case of SVMs comparison.

Figure 54 shows the best validation results of Gabor and Hand Geometry fusion at
score level when Euclidean distance and SVMs are used to obtain the matching scores
and min-max normalization is applied. In addition, the corresponding monomodal
results can also be seen in the figure.

(a) Min rule and Euclidean
distance

(b) Min rule and Euclidean
distance (zoomed)

(c) Product rule and SVMs (d) Product rule and SVMs (zoomed)

Figure 54.: Best score level fusion results involving Gabor (Bio1) and Hand Geom.
(Bio2) feature extraction methods when min-max normalization is used.
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Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.8032 0.1463 1.56 0 34.90

min-max product 0.7458 0.0945 5.86 6.09 4.17

min-max min 0.0374 0.6839 1.04 1.01 3.65

min-max max 0.5197 0.1747 2.08 0 31.77

z-score sum 0.8032 0.1453 1.56 0 36.46

z-score product 0.8950 0.2604 5.86 0.04 16.67

z-score min 0.0196 0.8580 1.04 0.66 7.29

z-score max 0.7669 0.6333 2.80 0 31.77

Table 49.: Hand multibiometrics fusing Gabor and Hand Geometry feature extraction
methods at score level when Euclidean distance is used to compare. w1 and
w2 stands for the weights given to Gabor and Hand Geometry methods
respectively.

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.2917 0.9915 1.19 1 0

min-max product 0.2946 0.1521 1.56 1.70 3.65

min-max min 0.4033 0.8553 1.56 1.63 4.17

min-max max 0.7364 0.4766 1.56 57.87 0

z-score sum 0.8715 0.8622 1.19 14.76 0

z-score product 0.4736 0.1332 4.64 4.16 4.69

z-score min 0.0476 0.4644 4.01 0.67 6.77

z-score max 0.1520 0.1853 1.40 43.84 0.52

Table 50.: Hand multibiometrics fusing Gabor and Hand Geometry feature extraction
methods at score level when SVMs are used to compare. w1 and w2 stands
for the weights given to Gabor and Hand Geometry methods respectively.

11.2.2.3 LBP and Hand Geometry Score-level fusion

Table 51 and Table 52 show the results of fusing palmprint information extracted
by means of LBP and hand geometry information at score level when Euclidean
distance and SVMs are used to obtain the matching scores respectively. In general,
a small improvement can be seen in relation to monomodal results when Euclidean
distance is employed in combination with some rules, while accuracy is maintained
or decreased for SVMs. More in detail, sum and min are the rules that improve
the results when Euclidean distance is used. In addition, it can be seen that both
normalization techniques provides very similar results in most of the cases and that
these results are almost identical in the case of Euclidean distance comparison.

Figure 55 illustrates the best validation results of LBP and Hand Geometry fusion at
score level when Euclidean distance and SVMs are used to obtain the matching scores
and min-max normalization is applied. In addition, the corresponding monomodal
results can also be seen in the figure.
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(a) Min rule and Euclidean
distance

(b) Min rule and Euclidean
distance (zoomed)

(c) Product rule and SVMs (d) Product rule and SVMs (zoomed)

Figure 55.: Best score level fusion results involving LBP (Bio1) and Hand Geom.
(Bio2) feature extraction methods when min-max normalization is used.

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.3312 0.0399 2.08 0.0055 28.65

min-max product 0.2917 0.3756 5.70 6.30 3.13

min-max min 0.0775 0.7524 2.01 2.51 3.65

min-max max 0.6387 0.0885 2.08 3.09 26.04

z-score sum 0.4630 0.0862 2.08 0 31.77

z-score product 0.4753 0.0594 5.70 0.16 11.98

z-score min 0.0147 0.2216 2.01 2.28 5.73

z-score max 0.9088 0.1995 2.08 3.23 26.04

Table 51.: Hand multibiometrics fusing LBP and Hand Geometry feature extraction
methods at score level when Euclidean distance is used to compare. w1

and w2 stands for the weights given to LBP and Hand Geometry methods
respectively.
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Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.7749 0.3219 0.52 99.85 0

min-max product 0.7052 0.7012 0.52 0.42 3.13

min-max min 0.0129 0.2168 0.52 0.43 3.13

min-max max 0.9870 0.2186 0.52 20.27 0.52

z-score sum 0.8004 0.4435 0.52 9.12 2.08

z-score product 0.2985 0.7625 4.39 2.98 5.21

z-score min 0.0444 0.7310 3.54 0.44 5.21

z-score max 0.5024 0.1750 0.52 20.53 2.60

Table 52.: Hand multibiometrics fusing LBP and Hand Geometry feature extraction
methods at score level when SVMs are used to compare. w1 and w2 stands
for the weights given to LBP and Hand Geometry methods respectively.

11.2.2.4 LDP and Hand Geometry Score-level fusion

Table 53 and Table 54 show the results of fusing palmprint information extracted by
means of LDP and hand geometry information at score level when Euclidean distance
and SVMs are used to obtain the matching scores respectively. In general, a small
improvement can be seen in relation to monomodal results for some rules and both
comparison methods. In addition, it can be seen that both normalization techniques
provide very similar results in most of the cases and that these results are almost
identical in the case of Euclidean distance comparison. More in detail, sum and min
are the rules that improve the results when Euclidean distance is used to compute
the scores while improvement in the case of SVMs depends on the normalization
approach. In the case of SVMs and min-max normalization all the rules produce
certain increase of the results, while for z-score normalization improvements are only
obtained when sum and max rules are applied.

Figure 56 depicts the best validation results of LDP and Hand Geometry fusion at
score level when Euclidean distance and SVMs are used to obtain the matching scores

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.8711 0.1611 2.94 0 29.69

min-max product 0.7054 0.8319 6.11 6.09 4.69

min-max min 0.1361 0.6212 2.60 2.72 3.65

min-max max 0.9891 0.1991 3.14 0.027 25.00

z-score sum 0.8015 0.2095 2.94 0 36.46

z-score product 0.2661 0.5064 6.11 0.14 14.58

z-score min 0.1529 0.9864 2.60 0.33 9.38

z-score max 0.9490 0.2703 3.14 0.03 27.08

Table 53.: Hand multibiometrics fusing LDP and Hand Geometry feature extraction
methods at score level when Euclidean distance is used to compare. w1

and w2 stands for the weights given to LDP and Hand Geometry methods
respectively.
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and min-max normalization is applied. In addition, the corresponding monomodal
results can also be seen in the figure.

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.3507 0.4719 0.52 1 0

min-max product 0.8922 0.0369 0.52 0.38 3.13

min-max min 0.7487 0.7075 0.52 0.53 3.65

min-max max 0.7324 0.0374 0.52 0.027 0

z-score sum 0.5160 0.1846 0.52 10.65 1.04

z-score product 0.6556 0.4643 4.62 3.97 4.17

z-score min 0.0589 0.9393 3.55 0.98 4.69

z-score max 0.7879 0.1115 0.54 2.22 1.04

Table 54.: Hand multibiometrics fusing LDP and Hand Geometry feature extraction
methods at score level when SVMs are used to compare. w1 and w2 stands
for the weights given to LDP and Hand Geometry methods respectively.

(a) Min rule and Euclidean
distance

(b) Min rule and Euclidean
distance (zoomed)

(c) Product rule and SVMs (d) Product rule and SVMs (zoomed)

Figure 56.: Best score level fusion results involving LDP (Bio1) and Hand Geom.
(Bio2) feature extraction methods when min-max normalization is used.
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11.2.2.5 Curvelets and Hand Geometry Score-level fusion

Table 55 and Table 56 show the results of fusing palmprint information extracted by
means of Curvelets and hand geometry information at score level when Euclidean
distance and SVMs are used to obtain the matching scores respectively. In general,
a small improvement can be seen in relation to monomodal results for some rules
and both comparison methods. In addition, it can be seen that both normalization
techniques provide very similar results in most of the cases and that these results
are almost identical in the case of Euclidean distance comparison. More in detail,
sum and min are the rules that improve the results when Euclidean distance is used
to compute the scores while improvement in the case of SVMs depends on the nor-
malization approach. In the case of SVMs and min-max normalization all the rules
produce an increase of the results, while for z-score normalization improvements are
only obtained when sum and max rules are employed.

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.4756 0.2688 6.94 0 23.44

min-max product 0.6908 0.1869 8.24 7.81 3.65

min-max min 0.5359 0.8924 5.98 6.45 4.17

min-max max 0.6937 0.0642 8.80 3.17 22.92

z-score sum 0.4267 0.2551 6.94 0 38.02

z-score product 0.5626 0.7165 8.24 0.79 11.98

z-score min 0.4693 0.8340 5.98 12.19 5.73

z-score max 0.4237 0.0412 8.81 0.82 13.02

Table 55.: Hand multibiometrics fusing Curvelets and Hand Geometry feature extrac-
tion methods at score level when Euclidean distance is used to compare.
w1 and w2 stands for the weights given to Curvelets and Hand Geometry
methods respectively.

Normalization Rule Fusion Rule w1 w2

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.5020 0.8106 0.71 1 0

min-max product 0.4138 0.8475 0.81 0.77 2.08

min-max min 0.2075 0.2459 1.04 1.04 2.06

min-max max 0.4623 0.0825 1.02 98.27 0

z-score sum 0.9454 0.4452 0.71 13.85 0.52

z-score product 0.9303 0.9751 4.62 3.84 3.13

z-score min 0.0667 0.5978 3.09 2.38 3.65

z-score max 0.4172 0.1798 0.74 35.22 1.56

Table 56.: Hand multibiometrics fusing Curvelets and Hand Geometry feature extrac-
tion methods at score level when SVMs are used to compare. w1 and w2

stands for the weights given to Curvelets and Hand Geometry methods
respectively.



174 multimodal evaluation under realistic conditions

(a) Min rule and Euclidean
distance

(b) Min rule and Euclidean
distance (zoomed)

(c) Sum rule and SVMs (d) Sum rule and SVMs (zoomed)

Figure 57.: Best score level fusion results involving Curvelets (Bio1) and Hand Geom.
(Bio2) feature extraction methods when min-max normalization is used.

Figure 57 shows the best validation results of Curvelets and Hand Geometry fu-
sion at score level when Euclidean distance and SVMs are used to obtain the match-
ing scores and min-max normalization is applied. In addition, the corresponding
monomodal results can also be seen in the figure.

11.2.2.6 Sobel, Gabor and Hand Geometry Score-Level fusion

Table 57 and Table 58 show the results of fusing palmprint information extracted by
means of Sobel filter and Gabor filter together with hand geometry information at
score level when Euclidean distance and SVMs are used to obtain the matching scores
respectively. In general, a small improvement can be seen in relation to monomodal
results for some rules when Euclidean distance is employed, while SVMs maintain
or decrease the accuracy of the best monomodal method. In addition, it can be seen
that results provided by Sobel-Gabor or Sobel-Geom fusions are in general equalled
or decreased, while Gabor-Geom fusion results are slightly improved. It can also be
seen that both normalization techniques provide practically identical results. More
in detail, for Euclidean distance comparison sum as well as min rules improve the
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Normalization Rule Fusion Rule w1 w2 w3

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.1455 0.9841 0.0133 1.11 0 72.92

min-max product 0.3881 0.0634 0.4907 3.41 3.37 2.08

min-max min 0.2478 0.0120 0.0949 0.96 7.70 1.56

min-max max 0.0003 0.7975 0.7260 1.56 0 19.79

z-score sum 0.3804 0.9937 0.0170 1.12 0 75

z-score product 0.5945 0.3510 0.4332 3.41 0.13 6.77

z-score min 0.2135 0.0036 0.0137 0.96 48.02 0.52

z-score max 0.0187 0.9626 0.9358 1.56 0 17.71

Table 57.: Hand multibiometrics fusing Sobel, Gabor and Hand Geometry feature ex-
traction methods at score level when Euclidean distance is used to compare.
w1, w2 and w3 stands for the weights given to Sobel, Gabor and Hand Ge-
ometry methods respectively.

Normalization Rule Fusion Rule w1 w2 w3

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.2360 0.6793 0.2450 1.04 99.98 0

min-max product 0.7181 0.1905 0.7659 1.27 1.28 3.13

min-max min 0.5973 0.4868 0.7226 1.04 0.31 6.77

min-max max 0.3802 0.5352 0.4711 1.08 99.99 0

z-score sum 0.5147 0.7578 0.2088 1.04 39.28 1.04

z-score product 0.0892 0.3751 0.5263 1.27 21.45 3.13

z-score min 0.6231 0.6053 0.8808 1.04 7.54 4.17

z-score max 0.4104 0.5914 0.5473 1.08 49.84 0

Table 58.: Hand multibiometrics fusing Sobel, Gabor and Hand Geometry feature
extraction methods at score level when SVMs are used to compare. w1, w2

and w3 stands for the weights given to Sobel, Gabor and Hand Geometry
methods respectively.

monomodal results and Sobel-Gabor fusion while product rule improves Sobel-Geom
fusion result. Gabor-Geom results are improved for all the possible comparison
method and fusion rule combinations.

Figure 58 depicts the best validation results of Sobel, Gabor and Hand Geome-
try fusion at score level when Euclidean distance and SVMs are used to obtain the
matching scores and min-max normalization is applied. In addition, the correspond-
ing monomodal results can also be seen in the figure.

11.2.2.7 LBP, LDP and Hand Geometry Score-level fusion

Table 59 and Table 60 show the results of fusing palmprint information extracted by
means of LBP and LBP together with hand geometry information at score level when
Euclidean distance and SVMs are used to obtain the matching scores respectively. In
general, a small improvement can be seen in relation to monomodal results for some
rules when Euclidean distance is employed, while SVMs maintain the accuracy of
the best monomodal method. In addition, a small improvement can also be seen
for some rules in relation to the results provided by two-by-two fusions. Regarding
normalization techniques, it can be seen that both approaches provide practically
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(a) Min rule and Euclidean
distance

(b) Min rule and Euclidean
distance (zoom)

(c) Min rule and SVMs (d) Min rule and SVMs (zoom)

Figure 58.: Best score level fusion results involving Sobel (Bio1), Gabor (Bio2), and
Hand Geometry (Bio3) feature extraction methods when min-max nor-
malization is applied.

identical results. More in detail, for Euclidean distance comparison sum and min
rules improve the monomodal and LBP-LDP fusion results. The four rules obtain
better results when compared to LBP-Geom and LDP-Geom fusions. In the case
of SVMs and z-score normalization product rule obtains better results than LBP-LDP,
LBP-Geom, LDP-Geom fusions; min rule improves the results achieved by LBP-Geom
and LDP-Geom, and max-rule overcome LDP-Geom fusion results.

Figure 59 depicts the best validation results of LBP, LDP and Hand Geometry fu-
sion at score level when Euclidean distance and SVMs are used to obtain the match-
ing scores and min-max normalization is applied. In addition, the corresponding
monomodal results can also be seen in the figure.
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Normalization Rule Fusion Rule w1 w2 w3

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.0898 0.7723 0.6547 1.94 0 33.85

min-max product 0.0957 0.2528 0.8683 4.43 4.69 3.13

min-max min 0.8218 0.0902 0.0909 1.56 87.82 0

min-max max 0.1948 0.9346 0.7394 2.40 0.049 15.63

z-score sum 0.1771 0.9493 0.8823 1.93 0 42.19

z-score product 0.4723 0.3174 0.8200 4.43 0.27 8.33

z-score min 0.9602 0.0747 0.0925 1.56 45.08 1.04

z-score max 0.3208 0.9549 0.8333 2.38 0.049 18.23

Table 59.: Hand multibiometrics fusing LBP, LDP and Hand Geometry feature extrac-
tion methods at score level when Euclidean distance is used to compare.
w1, w2 and w3 stands for the weights given to LBP, LDP and Hand Geom-
etry methods respectively.

Normalization Rule Fusion Rule w1 w2 w3

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.7587 0.5469 0.1000 0.52 99.91 0

min-max product 0.3997 0.2900 0.2811 0.52 0.44 3.13

min-max min 0.7163 0.6484 0.8077 0.52 3.40 2.60

min-max max 0.2628 0.8419 0.4974 0.52 99.97 0

z-score sum 0.1924 0.5382 0.6439 0.52 35.30 0

z-score product 0.8722 0.4411 0.4709 0.52 16.60 3.13

z-score min 0.7425 0.2398 0.8492 0.52 9.67 4.69

z-score max 0.6640 0.9920 0.0054 0.52 33.53 1.04

Table 60.: Hand multibiometrics fusing LBP, LDP and Hand Geometry feature extrac-
tion methods at score level when SVMs are used to compare. w1, w2 and
w3 stands for the weights given to LBP, LDP and Hand Geometry methods
respectively.

11.2.2.8 Sobel, Curvelets and Hand Geometry Score-Level fusion

Table 61 and Table 62 show the results of fusing palmprint information extracted by
means of Sobel filter and Curvelets together with hand geometry information at score
level when Euclidean distance and SVMs are used to obtain the matching scores re-
spectively. In general, a small improvement can be seen in relation to monomodal
results or two-by-two fusions is obtained for some rules when Euclidean distance
and SVMs are employed. Regarding normalization techniques, it can be seen that
both approaches provide quite similar results. More in detail, when compared to
monomodal biometrics and Sobel-Curvelets fusion it can be seen that sum rule pro-
vides better results for SVMs as well as Euclidean distance comparison, and that
also min rule improves the results in the latter case. When compared to Sobel-Geom
results it can be seen better results when product rule and Euclidean distance are
applied. In the case of SVMs comparison Sobel-Geom results are improved by sum
rule in the case of min-max normalization and the four rules if scores are normalized
by z-score approach. Finally, it can be seen that results obtained using Euclidean
distance comparison improve Curvelets-Geom fusion results. In the case of SVMs
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comparison Curvelets-Geom results are also improved by prod and min rules when
z-score is employed and by sum rule independently of the normalization approach.

Normalization Rule Fusion Rule w1 w2 w3

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.1200 0.8576 0.0079 1.10 4.63 4.17

min-max product 0.5677 0.4406 0.6445 4.51 4.78 2.60

min-max min 0.5005 0.0229 0.7913 0.96 94.01 1.04

min-max max 0.0280 0.4811 0.9641 1.56 28.46 7.29

z-score sum 0.3228 0.7360 0.0637 1.10 0 10.94

z-score product 0.8915 0.4269 0.8585 4.51 0.69 4.17

z-score min 0.2695 0.0047 0.5393 0.96 1 0

z-score max 0.0581 0.1716 0.5968 1.56 0 0.1563

Table 61.: Hand multibiometrics fusing Sobel, Curvelets and Hand Geometry feature
extraction methods at score level when Euclidean distance is used to com-
pare. w1, w2 and w3 stands for the weights given to Sobel, Curvelets and
Hand Geometry methods respectively.

(a) Min rule and Euclidean
distance

(b) Min rule and Euclidean
distance (zoomed)

(c) Product rule and SVMs (d) Product rule and SVMs (zoomed)

Figure 59.: Best score level fusion results involving LBP (Bio1), LDP (Bio2), and Hand
Geometry (Bio3) feature extraction methods when min-max normalization
is applied.
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Figure 60 depicts the best validation results of Sobel, Curvelets and Hand Geom-
etry fusion at score level when Euclidean distance and SVMs are used to obtain the
matching scores and min-max normalization is applied. In addition, the correspond-
ing monomodal results can also be seen in the figure.

Normalization Rule Fusion Rule w1 w2 w3

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.8612 0.0696 0.5347 0.68 1 0

min-max product 0.5132 0.2635 0.6493 1.04 1.06 3.13

min-max min 0.9460 0.6887 0.7179 1.04 58.15 1.04

min-max max 0.6908 0.9739 0.0901 1.04 99.19 0

z-score sum 0.6243 0.0487 0.3951 0.70 32.94 1.04

z-score product 0.1172 0.2967 0.9752 1.04 13.40 3.65

z-score min 0.6946 0.7383 0.3852 1.03 2.66 6.25

z-score max 0.4917 0.6926 0.1165 1.04 47.06 0

Table 62.: Hand multibiometrics fusing Sobel, Curvelets and Hand Geometry feature
extraction methods at score level when SVMs are used to compare. w1,
w2 and w3 stands for the weights given to Sobel, Curvelets and Hand
Geometry methods respectively.

(a) Min rule and Euclidean
distance

(b) Min rule and Euclidean
distance (zoomed)

(c) Sum rule and SVMs (d) Sum rule and SVMs (zoomed)

Figure 60.: Best score level fusion results involving Sobel (Bio1), Curvelets (Bio2), and
Hand Geometry (Bio3) feature extraction methods when min-max normal-
ization is applied.
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11.2.2.9 LBP, Curvelets and Hand Geometry Score-level fusion

Table 63 and Table 64 show the results of fusing palmprint information extracted by
means of LBP and Curvelets together with hand geometry information at score level
when Euclidean distance and SVMs are used to obtain the matching scores respec-
tively. In general, a small improvement can be seen in relation to monomodal results
is obtained for some rules when Euclidean distance is applied while SVMs maintain
the same performance. In adition, it can be seen than two-by-two fusions are also
improved by some rules. Regarding normalization techniques, it can be seen that
both approaches provide quite similar results. In particular, sum and min rules over-
come monomodal results when Euclidean distance is used to compare features. In
addition, results provided by LBP-Curvelets fusion are improved by min rule when
scores are obtained by Euclidean distance and by product rule when scores are calcu-
lated by SVMs and z-scrore normalization is applied. When compared to LBP-Geom
fusion results, certain improvement can be seen when product and min rules are
used to fuse scores provided by SVMs in combination with z-score normalization. Fi-
nally, Curvelets-Geom results are improved by all the rule, comparison method and
normalization approach possible combinations.

Normalization Rule Fusion Rule w1 w2 w3

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.1143 0.6728 0.2078 2.08 0.022 16.67

min-max product 0.2840 0.1241 0.4174 6.81 7.17 3.13

min-max min 0.5962 0.0613 0.5023 2.01 82.51 0.52

min-max max 0.1880 0.6441 0.9219 3.10 14.55 7.81

z-score sum 0.1403 0.5638 0.2424 2.08 0.011 21.88

z-score product 0.3227 0.4458 0.2577 6.81 1.20 4.69

z-score min 0.9329 0.0615 0.9006 2.01 93.53 1.04

z-score max 0.0596 0.2407 0.4348 2.72 0.071 20.83

Table 63.: Hand multibiometrics fusing LBP, Curvelets and Hand Geometry feature
extraction methods at score level when Euclidean distance is used to com-
pare. w1, w2 and w3 stands for the weights given to LBP, Curvelets and
Hand Geometry methods respectively.

Normalization Rule Fusion Rule w1 w2 w3

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.5905 0.7743 0.6236 0.52 1 0

min-max product 0.3257 0.7191 0.2553 0.52 0.49 2.60

min-max min 0.9800 0.0667 0.7027 0.52 92.71 0

min-max max 0.3260 0.5847 0.3736 0.52 97.24 0

z-score sum 0.6522 0.3448 0.1912 0.52 35.11 0.52

z-score product 0.9528 0.6122 0.0738 0.52 12.96 4.17

z-score min 0.7415 0.0344 0.1377 0.52 11.03 4.17

z-score max 0.2697 0.9537 0.3450 0.52 49.16 0

Table 64.: Hand multibiometrics fusing LBP, Curvelets and Hand Geometry feature
extraction methods at score level when SVMs are used to compare. w1, w2

and w3 stands for the weights given to LBP, Curvelets and Hand Geometry
methods respectively.
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(a) Min rule and Euclidean
distance

(b) Min rule and Euclidean
distance (zoomed)

(c) Product rule and SVMs (d) Product rule and SVMs (zoomed)

Figure 61.: Best score level fusion results involving LBP (Bio1), Curvelets (Bio2), and
Hand Geometry (Bio3) feature extraction methods when min-max normal-
ization is applied.

Figure 61 depicts the best validation results of LBP, Curvelets and Hand Geome-
try fusion at score level when Euclidean distance and SVMs are used to obtain the
matching scores and min-max normalization is applied. In addition, the correspond-
ing monomodal results can also be seen in the figure.

11.2.2.10 Sobel, LBP and Hand Geometry Score-Level fusion

Table 65 and Table 66 show the results of fusing palmprint information extracted by
means of Sobel filter and LBP together with hand geometry information at score level
when Euclidean distance and SVMs are used to obtain the matching scores respec-
tively. In general, a small improvement can be seen in relation to monomodal and
two-by-two fusions results when Euclidean distance is applied, while SVMs accuracy
is maintained or decreased. Regarding normalization techniques, it can be seen that
both approaches provide quite similar results. More in detail, when results are com-
pared to monomodal results improvements are obtained by sum, min and max rules
when Euclidean distance is applied to calculate the scores. In the case of comparison
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with Sobel-LBP fusion, min distance is able to improve the results when Euclidean
distance is used to compute the scores. If results are compared to Sobel-Geom fusion
results, certain improvement can be seen for all the rules, comparison methods and
normalization approaches with the exception of product rule when SVMs are em-
ployed to obtain the scores that are normalized by min-max method. Finally, when
compared to LBP-Geom fusion improvements can be seen for all the rules when
scores are computed by means of Euclidean distance as well as for product rule and
min rule when scores are provided by SVMs and normalized by z-score.

Figure 62 depicts the best validation results of Sobel, LBP and Hand Geometry
fusion at score level when Euclidean distance and SVMs are used to obtain the
matching scores and min-max normalization applied. In addition, the correspond-
ing monomodal results can also be seen in the figure.

Normalization Rule Fusion Rule w1 w2 w3

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.0106 0.9261 0.3516 1.04 0.011 15.63

min-max product 0.1640 0.0462 0.4371 3.41 3.03 2.08

min-max min 0.9295 0.0570 0.1120 0.52 90.10 0

min-max max 0.0964 0.6693 0.8977 1.07 4.23 4.69

z-score sum 0.2083 0.3795 0.5346 1.04 0 29.69

z-score product 0.6421 0.2277 0.5537 3.41 0.19 6.77

z-score min 0.6464 0.0139 0.0429 0.52 96.88 0

z-score max 0.1808 0.3897 0.9160 1.13 8.62 6.25

Table 65.: Hand multibiometrics fusing Sobel, LBP and Hand Geometry feature ex-
traction methods at score level when Euclidean distance is used to com-
pare. w1, w2 and w3 stands for the weights given to Sobel, LBP and Hand
Geometry methods respectively.

Normalization Rule Fusion Rule w1 w2 w3

Validation Test
EER (%) FMR (%) FNMR (%)

min-max sum 0.4061 0.2037 0.3916 0.52 1 0

min-max product 0.4697 0.9411 0.8113 1.04 0.94 2.60

min-max min 0.9306 0.7652 0.4589 0.52 78.91 0

min-max max 0.4355 0.5784 0.7379 0.91 1 0

z-score sum 0.3375 0.0842 0.4026 0.52 35.21 0

z-score product 0.8721 0.1202 0.0704 1.04 18.92 3.13

z-score min 0.5115 0.2107 0.0986 0.52 6.64 5.21

z-score max 0.0568 0.0137 0.6362 0.52 62.44 0.52

Table 66.: Hand multibiometrics fusing Sobel, LBP and Hand Geometry feature ex-
traction methods at score level when SVMs are used to compare. w1, w2

and w3 stands for the weights given to Sobel, LBP and Hand Geometry
methods respectively.
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(a) Min rule and Euclidean
distance

(b) Min rule and Euclidean
distance (zoomed)

(c) Min rule and SVMs (d) Min rule and SVMs (zoomed)

Figure 62.: Best score level fusion results involving Sobel (Bio1), LBP (Bio2), and
Hand Geometry (Bio3) feature extraction methods when min-max nor-
malization is applied.

11.3 feature level fusion

11.3.1 Palmprint multibiometrics

11.3.1.1 Sobel and Gabor Feature-Level fusion

Table 67 shows the results of fusing the features extracted by Sobel and Gabor filters
after z-score normalization. Opposite to expected, it cannot be seen any improvement
of the recognition accuracy and the result is equal to the worst monomodal biometrics.
This behaviour can be explained because there is a substantial difference in the length
of the feature vectors extracted by Sobel and Gabor filters and results could be biased
towards Gabor filter because its feature vector is longer. Accordingly, it can be stated
that Sobel and Gabor filters are not compatible for feature level fusion.
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Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 1.56 1.56 5.73

Support Vector Machines 1.56 1.67 3.65

Table 67.: Palmprint multibiometrics fusing features extracted by Sobel and Gabor
filters. z-score normalization is applied to the features previously to the
fusion.

Figure 63 depicts the best validation results of Sobel and Gabor fusion at feature
level when Euclidean distance and SVMs are used to obtain the matching scores and
z-score normalization is applied. In addition, the corresponding monomodal results
can also be seen in the figure.

(a) Euclidean distance (b) Euclidean distance(zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 63.: Best feature level fusion results involving Sobel (Bio1) and Gabor (Bio2)
methods. z-score normalization is applied to the features previously to
the fusion.

11.3.1.2 LBP and LDP Feature-level fusion

Table 68 shows the results of fusing the features extracted by LBP and LDP after z-
score normalization. It can be seen that a little improvement is obtained with this
fusion in relation to the results of the monomodal biometrics when Euclidean dis-
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tance is used for comparison. On the contrary, no improvements are achieved in
the case of SVMs comparison, although the obtained result is really close to the best
of the monomodal biometrics. It could be explained because LBP and LDP are tex-
ture descriptors that share a common basis and the models learned by SVMs in this
case cannot extract additional information from the combination of features. Figure
64 shows the best validation results of LBP and LDP fusion at feature level when
Euclidean distance and SVMs are used to obtain the matching scores and z-score nor-
malization is applied. In addition, the corresponding monomodal results can also be
seen in the figure.

Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 2.08 2.65 5.21

Support Vector Machines 0.54 0.44 3.13

Table 68.: Palmprint multibiometrics fusing features extracted by LBP and LDP. z-
score normalization is applied to the features previously to the fusion.

(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 64.: Best feature level fusion results involving LBP (Bio1) and LDP (Bio2) meth-
ods. z-score normalization is applied to the features previously to the
fusion.
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11.3.1.3 Sobel and Curvelets Feature-Level fusion

Table 69 shows the results of fusing the features extracted by Sobel filter and Curvelets
after z-score normalization. In this case, it cannot be seen any improvement on the
results. In addition, it can be seen that for Euclidean distance comparison the ob-
tained accuracy is slightly worse than the best monomodal result while for SVMs
matching the best monomodal result is equalled. It could be derived that features
extracted by Curvelets are introducing some noise that SVMs are able to manage but
not Euclidean distance. Accordingly, it can be stated that Sobel and Curvelets are not
compatible for feature level fusion.

Figure 65 depicts the best validation results of Sobel and Curvelets fusion at feature
level when Euclidean distance and SVMs are used to obtain the matching scores and
z-score normalization is applied. In addition, the corresponding monomodal results
can also be seen in the figure.

Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 1.56 1.56 4.69

Support Vector Machines 1.04 1.24 4.17

Table 69.: Palmprint multibiometrics fusing features extracted by Sobel and Curvelets.
z-score normalization is applied to the features previously to the fusion.

(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 65.: Best feature level fusion results involving Sobel (Bio1) and Curvelets (Bio2)
methods. z-score normalization is applied to the features previously to the
fusion.
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11.3.1.4 LBP and Curvelets Feature-level fusion

Table 70 shows the results of fusing the features extracted by LBP and Curvelets after
z-score normalization. It can be seen that a little improvement is obtained fusing LBP
and Curvelets in relation to the results of the monomodal biometrics when Euclidean
distance is used for comparison. On the contrary, no improvements are achieved in
the case of SVMs comparison that equals the result of the best monomodal biomet-
ric. It could be explained because LBP extract more representative features and the
models learned by SVMs in this case cannot extract additional information from the
combination of features.

Figure 66 depicts the best validation results of LBP and Curvelets fusion at feature
level when Euclidean distance and SVMs are used to obtain the matching scores and
z-score normalization is applied. In addition, the corresponding monomodal results
can also be seen in the figure.

Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 2.08 2.58 4.69

Support Vector Machines 0.52 0.56 2.60

Table 70.: Palmprint multibiometrics fusing features extracted by LBP and Curvelets.
z-score normalization is applied to the features previously to the fusion.

(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 66.: Best feature level fusion results involving LBP (Bio1) and Curvelets (Bio2)
methods. z-score normalization is applied to the features previously to
the fusion.
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11.3.1.5 Sobel and LBP Feature-level fusion

Table 71 shows the results of fusing the features extracted by Sobel filter and LBP
after z-score normalization. In this case, it cannot be seen any improvement on the
results. In addition, it can be seen that for Euclidean distance comparison the ob-
tained accuracy is slightly worst than the best monomodal result while for SVMs
matching the best monomodal result is equalled. It could be derived that features
extracted by LBPs are more representative and are biasing the results. Accordingly,
it can be stated that Sobel and LBP are not compatible for feature level fusion.

Figure 67 depicts the best validation results of Sobel and LBP fusion at feature
level when Euclidean distance and SVMs are used to obtain the matching scores and
z-score normalization is applied. In addition, the corresponding monomodal results
can also be seen in the figure.

Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 1.56 2.01 4.69

Support Vector Machines 1.04 1.06 2.60

Table 71.: Palmprint multibiometrics fusing features extracted by Sobel and LBP. z-
score normalization is applied to the features previously to the fusion.

(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 67.: Best feature level fusion results involving Sobel (Bio1) and LBP (Bio2)
methods. z-score normalization is applied to the features previously to
the fusion.
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11.3.2 Hand multibiometrics

11.3.2.1 Sobel and Hand Geometry Feature-level fusion

Table 72 shows the results of fusing the palmprint features extracted by Sobel filter
and hand geometry features after z-score normalization. It can be seen that a little
improvement is obtained fusing Sobel and hand geometry features in relation to the
results of the monomodal biometrics when Euclidean distance is used for comparison.
On the contrary, no improvements are achieved in the case of SVMs comparison that
equals the result of the best of the monomodal biometrics. It could be derived that
Sobel filter extract more representative features and the models learned by SVMs in
this case cannot extract additional information from the combination of features.

Figure 68 illustrates the best validation results of Sobel and Hand Geometry fusion
at feature level when Euclidean distance and SVMs are used to obtain the match-
ing scores and z-score normalization is applied. In addition, the corresponding
monomodal results can also be seen in the figure.

(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 68.: Best feature level fusion results involving Sobel (Bio1) and Hand Geome-
try (Bio2) methods. z-score normalization is applied to the features previ-
ously to the fusion.
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Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 1.09 1.16 5.73

Support Vector Machines 1.04 1.05 3.65

Table 72.: Hand multibiometrics fusing palmprint features extracted by Sobel filter
together with hand geometry features. z-score normalization is applied to
the features previously to the fusion.

11.3.2.2 Gabor and Hand Geometry Feature-level fusion

Table 73 shows the results of fusing the palmprint features extracted by Gabor filter
and hand geometry features after z-score normalization. It can be seen that the results
of the best monomodal method is maintained for both Euclidean distance and SVMs
comparison. It could be derived that features extracted by Gabor filter are more
representative than the features provided by hand geometry method. Accordingly,
it can be stated that Gabor and hand geometry are not compatible for feature level
fusion.

Figure 69 shows the best validation results of Gabor and Hand Geometry fusion
at feature level when Euclidean distance and SVMs are used to obtain the match-
ing scores and z-score normalization is applied. In addition, the corresponding
monomodal results can also be seen in the figure.

(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 69.: Best feature level fusion results involving Gabor (Bio1) and Hand Geome-
try (Bio2) methods. z-score normalization is applied to the features previ-
ously to the fusion.
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Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 1.56 1.52 6.25

Support Vector Machines 1.56 1.69 4.17

Table 73.: Hand multibiometrics fusing palmprint features extracted by Gabor filter
together with hand geometry features. z-score normalization is applied to
the features previously to the fusion.

11.3.2.3 LBP and Hand Geometry Feature-level fusion

Table 74 shows the results of fusing the palmprint features extracted by LBP and hand
geometry features after z-score normalization. It can be seen that a little improvement
is obtained with the fusion of LBP and hand geometry features in relation to the
results of the monomodal biometrics when Euclidean distance is used for comparison.
On the contrary, no improvements are achieved in the case of SVMs matching that
equals the result of the best of the monomodal biometrics. It could be explained
because LBP extract more representative features and the models learned by SVMs
in this case cannot extract additional information from the combination of features.

Figure 70 illustrates the best validation results of LBP and Hand Geometry fusion
at feature level when Euclidean distance and SVMs are used to obtain the match-
ing scores and z-score normalization is applied. In addition, the corresponding
monomodal results can also be seen in the figure.

(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 70.: Best feature level fusion results involving LBP (Bio1) and Hand Geometry
(Bio2) methods. z-score normalization is applied to the features previ-
ously to the fusion.
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Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 2.08 2.56 5.21

Support Vector Machines 0.52 0.36 3.13

Table 74.: Hand multibiometrics fusing palmprint features extracted by LBP together
with hand geometry features. z-score normalization is applied to the fea-
tures previously to the fusion.

11.3.2.4 LDP and Hand Geometry Feature-level fusion

Table 75 shows the results of fusing the palmprint features extracted by LDP and
hand geometry features after z-score normalization. Results show a small decrease
of the accuracy in relation to monomodal biometrics when Euclidean distance is used
to compare features. On the contrary, little improvement can be seen when SVMs are
used for the comparison. Accordingly, it could be stated that LDP and hand geometry
extract complementary features that requires from machine learning techniques to be
found.

Figure 71 shows the best validation results of LDP and Hand Geometry fusion
at feature level when Euclidean distance and SVMs are used to obtain the match-
ing scores and z-score normalization is applied. In addition, the corresponding
monomodal results can also be seen in the figure.

(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 71.: Best feature level fusion results involving LDP (Bio1) and Hand Geome-
try (Bio2) methods. z-score normalization is applied to the features previ-
ously to the fusion.
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Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 3.53 3.71 5.21

Support Vector Machines 0.74 0.60 3.13

Table 75.: Hand multibiometrics fusing palmprint features extracted by LDP together
with hand geometry features. z-score normalization is applied to the fea-
tures previously to the fusion.

11.3.2.5 Curvelets and Hand Geometry Feature-level fusion

Table 76 shows the results of fusing the palmprint features extracted by Curvelets and
hand geometry features after z-score normalization. Results show that there is a small
decrease of the accuracy when compared with the monomodal results. Nevertheless,
they keep close to the best monomodal biometric. Accordingly, it can be stated that
Curvelets and hand geometry are not compatible for feature level fusion.

Figure 72 depicts the best validation results of Curvelets and Hand Geometry
fusion at feature level when Euclidean distance and SVMs are used to obtain the
matching scores and z-score normalization is applied. In addition, the correspond-
ing monomodal results can also be seen in the figure.

(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 72.: Best feature level fusion results involving Curvelets (Bio1) and Hand Ge-
ometry (Bio2) methods. z-score normalization is applied to the features
previously to the fusion.
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Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 8.02 8.57 6.25

Support Vector Machines 1.56 1.24 2.60

Table 76.: Hand multibiometrics fusing palmprint features extracted by Curvelets to-
gether with hand geometry features. z-score normalization is applied to
the features previously to the fusion.

11.3.2.6 Sobel, Gabor and Hand Geometry Feature-Level fusion

Table 77 shows the results of fusing the palmprint features extracted by Sobel and
Gabor filters together with hand geometry features after z-score normalization. It
can be seen that no improvements are made when fusion results are compared to
the best monomodal biometric neither when the comparison is made with the two-
by-two fusions. In addition, it seems that results are biased by the features extracted
by Gabor filter. It could be a consequence of a higher representativeness of Gabor
features or the difference of the feature vectors length. In any case, it could be stated
that Sobel, Gabor and hand geometry methods seems not to be compatible for feature
level fusion.

Figure 73 depicts the best validation results of Sobel, Gabor and Hand Geometry
fusion at feature level when Euclidean distance and SVMs are used to obtain the
matching scores and z-score normalization is applied. In addition, the corresponding
monomodal results can also be seen in the figure together with the results of the two-
by-two fusions.

Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 1.56 1.56 5.73

Support Vector Machines 1.56 1.69 3.65

Table 77.: Hand multibiometrics fusing palmprint features extracted by Sobel and
Gabor filters together with hand geometry features. z-score normalization
is applied to the features previously to the fusion.



11.3 feature level fusion 195

(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 73.: Best feature level fusion results involving Sobel (Bio1), Gabor (Bio2) and
Hand Geometry (Bio3) methods. z-score normalization is applied to the
features previously to the fusion.

11.3.2.7 LBP, LDP and Hand Geometry Feature-level fusion

Table 78 shows the results of fusing the palmprint features extracted by LBP and
LDP together with hand geometry features after z-score normalization. It can be seen
a little improvement of the best monomodal result when features are compared by
means of Euclidean distance, while a light decrease is obtained for SVMs comparison.
In addition, it can be seen that the results of better two-by-two fusions (LBP-LDP and
LBP-Geom) are almost maintained. Accordingly, it can be stated that the fusion of
LBP, LDP and Hand Geometry features is not an alternative to increase the overall
performance.

Figure 74 shows the best validation results of LBP, LDP and Hand Geometry fusion
at feature level when Euclidean distance and SVMs are used to obtain the match-
ing scores and z-score normalization is applied. In addition, the corresponding
monomodal results can also be seen in the figure together with the results of the
two-by-two fusions.
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(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 74.: Best feature level fusion results involving LBP (Bio1), LDP (Bio2) and
Hand Geometry (Bio3) methods. z-score normalization is applied to the
features previously to the fusion.

Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 2.08 2.59 4.69

Support Vector Machines 0.53 0.46 3.13

Table 78.: Hand multibiometrics fusing palmprint features extracted by LBP and LDP
together with hand geometry features. z-score normalization is applied to
the features previously to the fusion.

11.3.2.8 Sobel, Curvelets and Hand Geometry Feature-Level fusion

Table 79 shows the results of fusing the palmprint features extracted by Sobel fil-
ter and Curvelets together with hand geometry features after z-score normalization.
When the obtained results are compared to monomodal results as well as the best
two-by-two fusion (Sobel-Hand Geometry) it can be observed that the accuracy is
decreased if Euclidean distance is used for feature matching while it is maintained in
the case of SVMs comparison. Accordingly, it can be stated that the fusion of Sobel,
Curvelets and Hand Geometry features is not an alternative to increase the overall
performance.

Figure 75 shows the best validation results of Sobel, Curvelets and Hand Geometry
fusion at feature level when Euclidean distance and SVMs are used to obtain the
matching scores and z-score normalization is applied. In addition, the corresponding
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(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 75.: Best feature level fusion results involving Sobel (Bio1), Curvelets (Bio2)
and Hand Geometry (Bio3) methods. z-score normalization is applied to
the features previously to the fusion.

Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 1.56 1.60 3.65

Support Vector Machines 1.04 1.25 3.65

Table 79.: Hand multibiometrics fusing palmprint features extracted by Sobel filter
and Curvelets together with hand geometry features. z-score normalization
is applied to the features previously to the fusion.

monomodal results can also be seen in the figure together with the results of the two-
by-two fusions.

11.3.2.9 LBP, Curvelets and Hand Geometry Feature-level fusion

Table 80 shows the results of fusing the palmprint features extracted by LBP and
Curvelets together with hand geometry features after z-score normalization. It can
be seen a little improvement of the best monomodal result when features are com-
pared by means of Euclidean distance, while performance is maintained for SVMs
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comparison. In addition it can be seen that the results of the best two-by-two fusions
are also maintained. Accordingly, it can be stated that the fusion of LBP, Curvelets
and Hand Geometry features is not an alternative to increase the overall performance.

Figure 76 shows the best validation results of LBP, Curvelets and Hand Geometry
fusion at feature level when Euclidean distance and SVMs are used to obtain the
matching scores and z-score normalization is applied. In addition, the corresponding
monomodal results can also be seen in the figure together with the results of the two-
by-two fusions.

(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 76.: Best feature level fusion results involving LBP (Bio1), Curvelets (Bio2) and
Hand Geometry (Bio3) methods. z-score normalization is applied to the
features previously to the fusion.

Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 2.08 2.55 4.69

Support Vector Machines 0.52 0.60 2.60

Table 80.: Hand multibiometrics fusing palmprint features extracted by LBP and
Curvelets together with hand geometry features. z-score normalization
is applied to the features previously to the fusion.
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11.3.2.10 Sobel, LBP and Hand Geometry Feature-Level fusion

Table 81 shows the results of fusing the palmprint features extracted by Sobel filter
and LBP together with hand geometry features after z-score normalization. A de-
crease of the accuracy can be observed when the results provided by this fusion are
compared to the best monomodal results as well as two-by-two fusions. Accordingly,
it can be stated that the fusion of Sobel, LBP and Hand Geometry features is not an
alternative to increase the overall performance.

Figure 77 shows the best validation results of Sobel, LBP and Hand Geometry
fusion at feature level when Euclidean distance and SVMs are used to obtain the
matching scores and z-score normalization is applied. In addition, the corresponding
monomodal results can also be seen in the figure together with the results of the two-
by-two fusions.

(a) Euclidean distance (b) Euclidean distance (zoomed)

(c) SVMs (d) SVMs (zoomed)

Figure 77.: Best feature level fusion results involving Sobel (Bio1), LBP (Bio2) and
Hand Geometry (Bio3) methods. z-score normalization is applied to the
features previously to the fusion.

Comparison Method
Validation Test
EER (%) FMR (%) FNMR (%)

Euclidean Distance 1.56 2.02 4.17

Support Vector Machines 1.04 1.02 2.08

Table 81.: Hand multibiometrics fusing palmprint features extracted by Sobel filter
and LBP together with hand geometry features. z-score normalization is
applied to the features previously to the fusion.
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C O N C L U S I O N S A N D F U T U R E R E S E A R C H L I N E S

12.1 conclusions

In this thesis different techniques of image processing, machine learning and infor-
mation fusion have been analysed in relation to their applicability to contact-less
biometrics. To this end, a modular and configurable system that explodes the multi-
modal nature of the hand to increase its robustness and accuracy have been designed,
implemented and evaluated. The evaluation is aimed to provide a fair comparative
of methods under different environmental conditions that helps to adapt the system
to the specific requirements of a concrete final application. Special attention have
been paid to segmentation, feature extraction, comparison and information fusion
modules, which gather the main contributions of this thesis.

First contribution of this thesis is a comparative study of different segmentation
methods that include well-known methods such as global thresholding and graph
cuts as well as a novelty flooding-based method which combines different image-
based segmentation approaches and is presented as the second contribution of this
thesis. These methods have been compared in terms of accuracy and computation
time using diverse datasets of images which cover a wide spectrum of capturing
conditions. To this end, a subset of each dataset have been manually segmented
in order to have a real ground-truth against which to compare the results of the
segmentation algorithms. It is worth noting that one of the employed datasets, the
gb2sµMOD database, have been recorded during this thesis aimed to cover the lack
of datasets captured in real and adverse environments.

Results show that when the images are captured under uniform lighting conditions
and present dark well-contrasted background, global thresholding method, which is
the simplest and fasted method included in the system, achieves the best results.
Nevertheless, as soon as little difficulties are introduced the precision of this method
drastically falls and more complex methods are required. On the other hand, it can be
appreciated a similar performance between the remaining methods in almost every
situation, being the flooding method proposed in this thesis considerably faster than
the other one (Graph Cuts).

Regarding the capturing conditions, it can be seen that illumination and back-
ground are the leading causes of the loss of accuracy in the segmented contour.
Cluttered background, blurriness or difficult lighting conditions makes the segmen-
tation process specially challenging. Lighting conditions also vary the quality of the
captured image. Accordingly, if the image is highly or poorly illuminated texture
details are indistinguishable because the hand seems saturated or almost uniformly
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black, which directly impact on palmprint recognition results. On the other hand,
difficulties can be also produced because the user does not follow the provided rec-
ommendations for the capturing process. Most common errors produced by user’s
behaviour are non centred hand as well as non stretched and non separated fingers.
Given the assumptions made by some of the segmentation approaches, the position
of the hand directly influences the result, diminishing their accuracy when the hand
is not located in the centre of the image. Wrong fingers positioning often lead into
segmented hands that only contain four fingers. The four-fingers error is also pro-
duced by the use of rings, specially when rings contrast with the skin colour. In these
cases the finger wearing the ring does not appear in the segmented image.

Third contribution presented in this thesis is a comprehensive evaluation of differ-
ent palmprint feature extraction methods comprising Gabor and Sobel filters, Local
Binary Patterns, Local Derivative Patterns and Curvelets. Different parameter con-
figurations have also been tested with the aim of finding out which arrangement
provides better results for each method. Obtained results under controlled capturing
conditions are very promising, even when the methods are simple, easy to imple-
ment and low-resource consuming, with the exception of Curvelets from which a
higher performance was expected because its higher complexity. On the contrary, a
clear decrease of the performance can be appreciated when realistic environmental
conditions are introduced. Most of texture recognition methods are sensitive to small
translation and rotation variations of the analysed region such as those produced by
misalignment of ROIs derived from non-accurate segmentations. Variations in the
texture captured by the camera due to illumination changes also influences the recog-
nition results. Nevertheless, these results are acceptable for a wide number of mobile
phone applications.

In addition to palmprint, also hand geometry features have been extracted. Results
show low discriminative ability of this biometric trait when compared to palmprint
methods performance. It can be seen that hand geometry is more affected than
palmprint by environmental conditions. In addition to the problems that affect the
segmentation process which can lead into non-precise contour detection, it needs
to deal with those drawbacks derived from the absence of pose restrictions during
the capture. Nevertheless, its simplicity and rapidness make it a good candidate to
complement other techniques.

Fourthly, distance-based and Support Vector Machine methods have been com-
pared for feature matching as another contribution of this thesis. As might be ex-
pected, SVMs outperform distance based approach, specially when combined with
PCA to select the most representative features, getting results near to 0 for some
feature extraction methods. Nevertheless, computational cost is higher than distance-
based approach because of the training, although this time increase can be partially
compensated if dimensionality reduction is applied. In addition, SVMs requires inter-
class data to construct the model, which involves data from various individuals and
make them more suitable for closed-environments.

Fifth contribution of this thesis is the evaluation of the feasibility of combining
different feature extraction methods at different levels to yield into a more precise and
robust solution under semi-controlled environmental conditions. When biometric
information is fused at score level, a improvement of the results is obtained when
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compared against monomodal result. This increase on the accuracy is larger for
euclidean distance than SVMs comparison and for those biometrics which present
worse monomodal results. Nevertheless, there is not very significant increase in any
case, probably due to the fact that monomodal results were quite good. In addition,
it can be also appreciated that in general mean-std normalization provides better
results and that the best rules to fuse the information are min and sum. On the
other hand, results obtained from the fusion of biometric information at feature level
show very little improvement regarding to monomodal results and are quite similar
to the best monomodal result. It can also be seen that fusing more than two feature
extraction approaches in general do not provide any increase on the accuracy of the
final result. Finally, when two fusions levels are compared it can be stated that score
level generally outperforms the results, what is explained because of the difficulty to
find compatible features.

Last but not least, an evaluation methodology that allows for a fair comparison
between different methods has been proposed as a contribution of this thesis. In
particular, an evaluation protocol is offered with the aim of not only obtaining an ex-
tensive evaluation of the complete system under different environmental conditions,
and testing multiple combinations of methods for each module, but also providing a
basis against which to compare future methods.

12.2 diffusion of the results

Partial results of this thesis have been published in some national and international
conferences as well as a journal.

Contributions to conferences are presented here below:

• Belén Rı́os-Sánchez, Miguel Viana-Matesanz and Carmen Sánchez-Ávila. Multi-
biometrı́a de huella palmar y geometrı́a de mano para un sistema sin con-
tacto orientado a dispositivos móviles. XXI Simposium Nacional de la Unión
Cientı́fica Internacional de Radio. Madrid, Spain. 5-7 Sept. 2016.

In this conference paper a contactless hand multibiometric system oriented to
mobile devices was presented. The system fuses information coming from
palmprint and hand geometry at score level.

• Javier Guerra-Casanova, Belén Rı́os-Sánchez, Miguel Viana-Matesanz, Gonzalo
Bailador, Carmen Sánchez-Ávila and Marı́a José Melcón de Giles. Comfort and
Security Perception of Biometrics in Mobile Phones with Widespread Sensors.
Workshop on Mobility and Cloud Security & Privacy. In conjunction with 35th
IEEE Symposium on Reliable Distributed Systems (SRDS). Budapest, Hungary.
Sept, 2016.

This conference paper presents an evaluation of different biometric modalities
including hand in terms of user perception about comfort and security.

• Belén Rı́os-Sánchez, Miguel Viana-Matesanz, Carmen Sánchez-Ávila and Marı́a
José Melcón de Giles. A Configurable multibiometric system for authentica-
tion at different security levels using mobile devices. Workshop on Mobility
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and Cloud Security & Privacy. In conjunction with 35th IEEE Symposium on
Reliable Distributed Systems (SRDS). Budapest, Hungary. Sept, 2016.

In this conference paper a configurable multibiometric system for user authen-
tication at different security levels using mobile devices was presented. The sys-
tem include hand, face and in-air signature biometrics and became more robust
as more modalities are involved in the authentication by means of biometric
fusion at score level. In addition, hand scores was obtained from a previous
fusion of palmprint and hand geometry biometrics.

The contribution of this thesis presented in an international journal (JCR) is de-
tailed hereafter:

• Belén Rı́os-Sánchez, Miguel F. Arriaga-Gomez, Javier Guerra-Casanova, Daniel
de Santos-Sierra, Ignacio de Mendizabal-Vázquez, Gonzalo Bailador, Carmen
Sánchez-Ávila. gb2sµMOD: A MUltiMODal biometric video database using
visible and IR light. Information Fusion Journal, vol 32, PartB, pp. 64-79. Nov.
2016.

This article presents a multimodal biometric database including face, hand and
iris images aimed to overcome the absence of hand videos and the lack of in-
frared images in multimodal databases, as well as to provide touch-less realistic
images captured under different environmental conditions.

12.3 future research lines

This thesis leaves open several research lines on the image segmentation, feature
extraction and matching and information fusion fields that could be of great interest
for the improvement of contact-less biometric recognition techniques under different
usability conditions.

It has been demonstrated that a precise segmentation is crucial for a reliable ex-
traction of the biometric information because it directly influences the detection of
characteristic points such as inter-finger valleys and fingertips, as well as the extrac-
tion of the region of interest which contains most of the relevant information about
the palmprint. Given the results obtained in this thesis, it can be stated that segmen-
tation it is the bottleneck of the system. With the aim to improve segmentation results
more complex methods such as deep learning or statistical shape models combined
with graph cuts could be an alternative in those cases where computational resources
and large population are available. In other cases, to warrant that the hand is centred
in the image and the fingers are stretched, it will be possible to add some guidance
such as a generic hand in the centre of screen to help the user to place the hand
during the capturing process

Regarding segmentation failures, it should be interesting to improve the quality
control module in such a way that it will be able to detect more inaccuracies and to
repair them when feasible. For instance, it could be possible to repair those images
that split one finger because of the use of rings. In addition, an automatic module to
discard incorrect ROIs could be included. It is possible to implement some mecha-
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nism that discard ROIs which greatly differ from a set of properly extracted ROIs by
comparing against the mean and standard deviation of this training set.

In relation to meaningful points detection and ROI extraction, given the fact that it
is a sensitive stage, it also will be interesting to carry out a deep study and evaluation
of different methods as performed for segmentation, feature extraction, matching and
fusion stages. To this end, a reference dataset where the points of interest are known
should be labelled.

On the other hand, given the modular design of the system, new methods at each
stage are easy to introduce. Accordingly, more elaborated hand geometry features
or more complex classifiers such as neural networks, as well as new normalization
techniques, could improve the system performance.

In relation to multibiometrics, results have showed that higher improvement is
achieved when the fused biometric techniques presented lower monomodal perfor-
mance. This hypothesis could be tested by extending the experiments to adverse
environmental situations as those presented by gb2sµMOD database.

Liveness detection is an important research topic that should be taken into ac-
count. Infrared cameras are able to capture hand veins information and thus, could
became a reference tool to fight against spoofing attacks. Infrared images provided
by gb2sµMOD database can be used to this end as well as to fuse information of the
same individuals captured with different devices.

Concerning the biometric application, identification is also an important modality
with a wide application field. An extension of the proposed evaluation protocol as
well as the evaluation of the combination of different methods for this purpose seems
to be interesting.

Finally, with the objective of putting into practice all the knowledge generated
throughout the development of this thesis, the different modules of the proposed
system could be assembled into a prototype including desktop and mobile phone in-
terfaces. Accordingly, scenario, or even operational, evaluation could be performed.





Appendices

209





A
G R A P H C U T S R E S U LT S U S I N G D I F F E R E N T PA R A M E T E R
C O N F I G U R AT I O N S

a.1 graph cuts segmentation

A complete evaluation of different parameter configurations for Graph Cuts segmen-
tation has been conducted with the aim to find the best arrangement. Obtained
results are shown hereafter for each dataset.

a.1.1 Dataset1

Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0 0.15 0.9469 11.2690

640x480 0 0.5 0.9425 11.0902

640x480 0 0.75 0.9392 11.3982

640x480 0 1 0.9374 11.4650

640x480 0 1.5 0.9347 11.4887

640x480 0 3 0.9308 11.4741

640x480 0 10 0.9230 11.4997

640x480 0 15 0.9197 11.5866

640x480 0 30 0.9132 11.5834

640x480 0.15 0.15 0.9436 11.6023

640x480 0.15 0.5 0.9421 11.8347

640x480 0.15 0.75 0.9408 11.5939

640x480 0.15 1 0.9398 11.5216

640x480 0.15 1.5 0.9369 11.5400

640x480 0.15 3 0.9317 11.9287

640x480 0.15 10 0.9222 11.0797

640x480 0.15 15 0.9200 11.0526

640x480 0.15 30 0.9144 11.2587

640x480 0.25 0.15 0.9389 11.9172

640x480 0.25 0.5 0.9382 11.9033

640x480 0.25 0.75 0.9370 11.7950

640x480 0.25 1 0.9363 11.0622

640x480 0.25 1.5 0.9341 11.7568

640x480 0.25 3 0.9293 11.8013
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Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.25 10 0.9178 11.6135

640x480 0.25 15 0.9149 11.6330

640x480 0.25 30 0.9103 11.6146

640x480 0.35 0.15 0.9336 11.8315

640x480 0.35 0.5 0.9327 12.1231

640x480 0.35 0.75 0.9323 11.9960

640x480 0.35 1 0.9316 11.7867

640x480 0.35 1.5 0.9305 12.0411

640x480 0.35 3 0.9255 11.9126

640x480 0.35 10 0.9120 11.6159

640x480 0.35 15 0.9089 11.6154

640x480 0.35 30 0.9035 11.6266

640x480 0.45 0.15 0.9272 11.9726

640x480 0.45 0.5 0.9265 11.8843

640x480 0.45 0.75 0.9250 11.9253

640x480 0.45 1 0.9238 11.9806

640x480 0.45 1.5 0.9229 11.8102

640x480 0.45 3 0.9193 12.4471

640x480 0.45 10 0.9037 11.6333

640x480 0.45 15 0.8996 11.7434

640x480 0.45 30 0.8936 11.6604

640x480 0.5 0.15 0.9225 11.7873

640x480 0.5 0.5 0.9217 12.4093

640x480 0.5 0.75 0.9210 12.0484

640x480 0.5 1 0.9204 11.8543

640x480 0.5 1.5 0.9190 12.3863

640x480 0.5 3 0.9149 11.6998

640x480 0.5 10 0.8987 11.6298

640x480 0.5 15 0.8945 11.7001

640x480 0.5 30 0.8883 11.6051

640x480 0.55 0.15 0.9195 12.0149

640x480 0.55 0.5 0.9189 12.1307

640x480 0.55 0.75 0.9179 11.9725

640x480 0.55 1 0.9167 11.8874

640x480 0.55 1.5 0.9152 12.3101

640x480 0.55 3 0.9110 12.2222

640x480 0.55 10 0.8928 11.8693

640x480 0.55 15 0.8871 11.8200

640x480 0.55 30 0.8806 11.8145

640x480 0.65 0.15 0.9090 11.7489

640x480 0.65 0.5 0.9091 12.4287

640x480 0.65 0.75 0.9082 12.2613

640x480 0.65 1 0.9078 11.7698

640x480 0.65 1.5 0.9059 12.1212
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Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.65 3 0.9002 11.9916

640x480 0.65 10 0.8778 11.7497

640x480 0.65 15 0.8722 11.8246

640x480 0.65 30 0.8654 11.5928

640x480 0.75 0.15 0.8952 11.8450

640x480 0.75 0.5 0.8935 11.9395

640x480 0.75 0.75 0.8923 11.8119

640x480 0.75 1 0.8918 11.8197

640x480 0.75 1.5 0.8900 12.8844

640x480 0.75 3 0.8858 11.7446

640x480 0.75 10 0.8624 11.6734

640x480 0.75 15 0.8537 11.6383

640x480 0.75 30 0.8438 11.6299

640x480 0.85 0.15 0.8505 11.8060

640x480 0.85 0.5 0.8493 11.8215

640x480 0.85 0.75 0.8488 11.8179

640x480 0.85 1 0.8480 11.7822

640x480 0.85 1.5 0.8466 11.8779

640x480 0.85 3 0.8389 11.7683

640x480 0.85 10 0.8163 11.6602

640x480 0.85 15 0.8063 11.6501

640x480 0.85 30 0.7945 11.6291

640x480 1 0.15 0.2854 11.7535

640x480 1 0.5 0.2852 11.8427

640x480 1 0.75 0.2852 11.8995

640x480 1 1 0.2855 11.7964

640x480 1 1.5 0.2846 11.7867

640x480 1 3 0.2789 11.8192

640x480 1 10 0.2672 11.6642

640x480 1 15 0.2634 11.6715

640x480 1 30 0.2631 11.6309

480x360 0 0.15 0.9371 6.4866

480x360 0 0.5 0.9319 6.4763

480x360 0 0.75 0.9296 6.4613

480x360 0 1 0.9276 6.4708

480x360 0 1.5 0.9238 6.4596

480x360 0 3 0.9193 6.4590

480x360 0 10 0.9106 6.4783

480x360 0 15 0.9076 6.4803

480x360 0 30 0.9014 6.5236

480x360 0.15 0.15 0.9317 6.5371

480x360 0.15 0.5 0.9302 6.5131

480x360 0.15 0.75 0.9295 6.4765

480x360 0.15 1 0.9285 6.4793
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Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.15 1.5 0.9263 6.4717

480x360 0.15 3 0.9215 6.4537

480x360 0.15 10 0.9115 6.4494

480x360 0.15 15 0.9080 6.4732

480x360 0.15 30 0.9023 6.4554

480x360 0.25 0.15 0.9279 6.4997

480x360 0.25 0.5 0.9265 6.5259

480x360 0.25 0.75 0.9256 6.4916

480x360 0.25 1 0.9251 6.4879

480x360 0.25 1.5 0.9236 6.4780

480x360 0.25 3 0.9190 6.5010

480x360 0.25 10 0.9071 6.4716

480x360 0.25 15 0.9036 6.4677

480x360 0.25 30 0.8988 6.4712

480x360 0.35 0.15 0.9226 6.4869

480x360 0.35 0.5 0.9221 6.4735

480x360 0.35 0.75 0.9210 6.5613

480x360 0.35 1 0.9204 6.4939

480x360 0.35 1.5 0.9193 6.4870

480x360 0.35 3 0.9152 6.4755

480x360 0.35 10 0.9020 6.4714

480x360 0.35 15 0.8990 6.4622

480x360 0.35 30 0.8915 6.4698

480x360 0.45 0.15 0.9151 6.4957

480x360 0.45 0.5 0.9146 6.4837

480x360 0.45 0.75 0.9139 6.4695

480x360 0.45 1 0.9136 6.4844

480x360 0.45 1.5 0.9126 6.4802

480x360 0.45 3 0.9086 6.4590

480x360 0.45 10 0.8939 6.4628

480x360 0.45 15 0.8886 6.4678

480x360 0.45 30 0.8816 6.4608

480x360 0.5 0.15 0.9100 6.5945

480x360 0.5 0.5 0.9094 6.6032

480x360 0.5 0.75 0.9094 6.5529

480x360 0.5 1 0.9089 6.5095

480x360 0.5 1.5 0.9078 6.4822

480x360 0.5 3 0.9037 6.4890

480x360 0.5 10 0.8887 6.4842

480x360 0.5 15 0.8836 6.4801

480x360 0.5 30 0.8764 6.4813

480x360 0.55 0.15 0.9061 6.4801

480x360 0.55 0.5 0.9053 6.5078

480x360 0.55 0.75 0.9047 6.4889
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Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.55 1 0.9036 6.4795

480x360 0.55 1.5 0.9026 6.4902

480x360 0.55 3 0.8981 6.4641

480x360 0.55 10 0.8832 6.4473

480x360 0.55 15 0.8774 6.4506

480x360 0.55 30 0.8711 6.4456

480x360 0.65 0.15 0.8925 6.4617

480x360 0.65 0.5 0.8920 6.4701

480x360 0.65 0.75 0.8916 6.5445

480x360 0.65 1 0.8915 6.4965

480x360 0.65 1.5 0.8901 6.5792

480x360 0.65 3 0.8872 6.5157

480x360 0.65 10 0.8726 6.4934

480x360 0.65 15 0.8667 6.5014

480x360 0.65 30 0.8570 6.4571

480x360 0.75 0.15 0.8763 6.4665

480x360 0.75 0.5 0.8758 6.5786

480x360 0.75 0.75 0.8760 6.4822

480x360 0.75 1 0.8757 6.4829

480x360 0.75 1.5 0.8752 6.4892

480x360 0.75 3 0.8718 6.4668

480x360 0.75 10 0.8552 6.4694

480x360 0.75 15 0.8482 6.4692

480x360 0.75 30 0.8377 6.4603

480x360 0.85 0.15 0.8405 6.4862

480x360 0.85 0.5 0.8409 6.4849

480x360 0.85 0.75 0.8406 6.4814

480x360 0.85 1 0.8400 6.4870

480x360 0.85 1.5 0.8393 6.4810

480x360 0.85 3 0.8351 6.4718

480x360 0.85 10 0.8173 6.4746

480x360 0.85 15 0.8079 6.4820

480x360 0.85 30 0.7952 6.4653

480x360 1 0.15 0.3188 6.4806

480x360 1 0.5 0.3186 6.4941

480x360 1 0.75 0.3182 6.4797

480x360 1 1 0.3176 6.5005

480x360 1 1.5 0.3167 6.4740

480x360 1 3 0.3132 6.4792

480x360 1 10 0.2988 6.4771

480x360 1 15 0.2930 6.4675

480x360 1 30 0.2865 6.4624

Table 82.: Graph Cuts segmentation results using Dataset1 and multiple parameter
configurations.
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a.1.2 Dataset2

Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0 0.15 0.8801 9.0712

640x480 0 0.5 0.8797 9.0851

640x480 0 0.75 0.8793 9.2987

640x480 0 1 0.8788 9.4978

640x480 0 1.5 0.8778 9.4962

640x480 0 3 0.8739 9.5142

640x480 0 10 0.8644 9.5141

640x480 0 15 0.8594 9.5164

640x480 0 30 0.8552 9.5381

640x480 0.15 0.15 0.8877 9.5141

640x480 0.15 0.5 0.8869 9.5140

640x480 0.15 0.75 0.8869 9.5176

640x480 0.15 1 0.8868 9.5239

640x480 0.15 1.5 0.8868 9.5183

640x480 0.15 3 0.8841 9.5432

640x480 0.15 10 0.8759 9.5144

640x480 0.15 15 0.8743 9.5229

640x480 0.15 30 0.8751 9.5140

640x480 0.25 0.15 0.8867 9.4878

640x480 0.25 0.5 0.8867 9.4881

640x480 0.25 0.75 0.8867 9.4958

640x480 0.25 1 0.8867 9.5314

640x480 0.25 1.5 0.8867 9.4987

640x480 0.25 3 0.8863 9.5184

640x480 0.25 10 0.8840 9.5105

640x480 0.25 15 0.8795 9.5278

640x480 0.25 30 0.8806 9.5282

640x480 0.35 0.15 0.8913 9.5227

640x480 0.35 0.5 0.8913 9.5126

640x480 0.35 0.75 0.8913 9.5286

640x480 0.35 1 0.8913 9.5175

640x480 0.35 1.5 0.8912 9.5230

640x480 0.35 3 0.8911 9.5122

640x480 0.35 10 0.8864 9.5090

640x480 0.35 15 0.8850 9.5048

640x480 0.35 30 0.8817 9.5526

640x480 0.45 0.15 0.8923 9.5189

640x480 0.45 0.5 0.8924 9.5172

640x480 0.45 0.75 0.8925 9.5148

640x480 0.45 1 0.8925 9.5260

640x480 0.45 1.5 0.8925 9.5422

640x480 0.45 3 0.8922 9.5141



A.1 graph cuts segmentation 217

Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.45 10 0.8880 9.5242

640x480 0.45 15 0.8867 9.5178

640x480 0.45 30 0.8833 9.5147

640x480 0.5 0.15 0.8920 9.5305

640x480 0.5 0.5 0.8936 9.5294

640x480 0.5 0.75 0.8936 9.5278

640x480 0.5 1 0.8935 9.5225

640x480 0.5 1.5 0.8934 9.5115

640x480 0.5 3 0.8932 9.5103

640x480 0.5 10 0.8894 9.5109

640x480 0.5 15 0.8880 9.5170

640x480 0.5 30 0.8819 9.5162

640x480 0.55 0.15 0.8866 9.5137

640x480 0.55 0.5 0.8865 9.5731

640x480 0.55 0.75 0.8865 9.5400

640x480 0.55 1 0.8877 9.5345

640x480 0.55 1.5 0.8877 9.5388

640x480 0.55 3 0.8875 9.5415

640x480 0.55 10 0.8836 9.5292

640x480 0.55 15 0.8827 9.5360

640x480 0.55 30 0.8784 9.5290

640x480 0.65 0.15 0.8780 9.5325

640x480 0.65 0.5 0.8780 9.5361

640x480 0.65 0.75 0.8778 9.5201

640x480 0.65 1 0.8778 9.5071

640x480 0.65 1.5 0.8777 9.5345

640x480 0.65 3 0.8774 9.5197

640x480 0.65 10 0.8756 9.4979

640x480 0.65 15 0.8742 9.5029

640x480 0.65 30 0.8708 9.5171

640x480 0.75 0.15 0.8769 9.5100

640x480 0.75 0.5 0.8764 9.5352

640x480 0.75 0.75 0.8763 9.5582

640x480 0.75 1 0.8758 9.5387

640x480 0.75 1.5 0.8752 9.5411

640x480 0.75 3 0.8751 9.5936

640x480 0.75 10 0.8734 9.5343

640x480 0.75 15 0.8719 9.5182

640x480 0.75 30 0.8670 9.5250

640x480 0.85 0.15 0.8115 9.5302

640x480 0.85 0.5 0.8110 9.5266

640x480 0.85 0.75 0.8109 9.5241

640x480 0.85 1 0.8108 9.5124

640x480 0.85 1.5 0.8107 9.5228



218 graph cuts results using different parameter configurations

Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.85 3 0.8103 9.5295

640x480 0.85 10 0.8075 9.5207

640x480 0.85 15 0.8062 9.5618

640x480 0.85 30 0.8028 9.5422

640x480 1 0.15 0.6349 9.5482

640x480 1 0.5 0.6349 9.5360

640x480 1 0.75 0.6349 9.5157

640x480 1 1 0.6348 9.5220

640x480 1 1.5 0.6347 9.5414

640x480 1 3 0.6344 9.5291

640x480 1 10 0.6319 9.5196

640x480 1 15 0.6306 9.5129

640x480 1 30 0.6247 9.5042

480x360 0 0.15 0.8862 5.2988

480x360 0 0.5 0.8854 5.2961

480x360 0 0.75 0.8845 5.3003

480x360 0 1 0.8822 5.3019

480x360 0 1.5 0.8798 5.2977

480x360 0 3 0.8757 5.3015

480x360 0 10 0.8657 5.3043

480x360 0 15 0.8628 5.3066

480x360 0 30 0.8564 5.3017

480x360 0.15 0.15 0.8922 5.2986

480x360 0.15 0.5 0.8921 5.2972

480x360 0.15 0.75 0.8920 5.3030

480x360 0.15 1 0.8918 5.3000

480x360 0.15 1.5 0.8890 5.3061

480x360 0.15 3 0.8873 5.3085

480x360 0.15 10 0.8807 5.3055

480x360 0.15 15 0.8783 5.3156

480x360 0.15 30 0.8747 5.3085

480x360 0.25 0.15 0.8935 5.3061

480x360 0.25 0.5 0.8934 5.3077

480x360 0.25 0.75 0.8934 5.3118

480x360 0.25 1 0.8933 5.3098

480x360 0.25 1.5 0.8932 5.3094

480x360 0.25 3 0.8929 5.3011

480x360 0.25 10 0.8859 5.3024

480x360 0.25 15 0.8836 5.2972

480x360 0.25 30 0.8806 5.2973

480x360 0.35 0.15 0.8993 5.2959

480x360 0.35 0.5 0.8993 5.2996

480x360 0.35 0.75 0.8995 5.2983

480x360 0.35 1 0.8994 5.2824



A.1 graph cuts segmentation 219

Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.35 1.5 0.8993 5.2972

480x360 0.35 3 0.8996 5.2926

480x360 0.35 10 0.8918 5.2987

480x360 0.35 15 0.8886 5.2959

480x360 0.35 30 0.8813 5.2978

480x360 0.45 0.15 0.9006 5.2991

480x360 0.45 0.5 0.9005 5.2989

480x360 0.45 0.75 0.9004 5.2978

480x360 0.45 1 0.9004 5.3171

480x360 0.45 1.5 039002 5.3109

480x360 0.45 3 0.8998 5.3043

480x360 0.45 10 0.8937 5.3039

480x360 0.45 15 0.8918 5.3113

480x360 0.45 30 0.8848 5.3061

480x360 0.5 0.15 0.9013 5.3062

480x360 0.5 0.5 0.9011 5.3263

480x360 0.5 0.75 0.9011 5.3080

480x360 0.5 1 0.9010 5.3032

480x360 0.5 1.5 0.9009 5.3238

480x360 0.5 3 0.9007 5.3077

480x360 0.5 10 0.8965 5.3065

480x360 0.5 15 0.8938 5.3073

480x360 0.5 30 0.8870 5.3071

480x360 0.55 0.15 0.9009 5.3067

480x360 0.55 0.5 0.9010 5.3167

480x360 0.55 0.75 0.9010 5.3163

480x360 0.55 1 0.9010 5.3011

480x360 0.55 1.5 0.9009 5.3216

480x360 0.55 3 0.8981 5.3027

480x360 0.55 10 0.8972 5.3283

480x360 0.55 15 0.8951 5.3091

480x360 0.55 30 0.8881 5.2929

480x360 0.65 0.15 0.8972 5.2954

480x360 0.65 0.5 0.8981 5.3214

480x360 0.65 0.75 0.8981 5.3141

480x360 0.65 1 0.8979 5.3072

480x360 0.65 1.5 0.8977 5.3151

480x360 0.65 3 0.8968 5.3075

480x360 0.65 10 0.8899 5.3105

480x360 0.65 15 0.8881 5.3165

480x360 0.65 30 0.8837 5.3079

480x360 0.75 0.15 0.8933 5.3198

480x360 0.75 0.5 0.8930 5.3194

480x360 0.75 0.75 0.8927 5.3143



220 graph cuts results using different parameter configurations

Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.75 1 0.8929 5.3074

480x360 0.75 1.5 0.8927 5.3072

480x360 0.75 3 0.8920 5.3081

480x360 0.75 10 0.8893 5.3168

480x360 0.75 15 0.8910 5.3152

480x360 0.75 30 0.8851 5.3118

480x360 0.85 0.15 0.8634 5.3147

480x360 0.85 0.5 0.8633 5.3199

480x360 0.85 0.75 0.8631 5.3152

480x360 0.85 1 0.8629 5.3079

480x360 0.85 1.5 0.8631 5.3096

480x360 0.85 3 0.8615 5.3048

480x360 0.85 10 0.8571 5.2980

480x360 0.85 15 0.8547 5.3032

480x360 0.85 30 0.8533 5.2953

480x360 1 0.15 0.7488 5.2926

480x360 1 0.5 0.7488 5.2973

480x360 1 0.75 0.7487 5.3050

480x360 1 1 0.7487 5.3040

480x360 1 1.5 0.7485 5.3007

480x360 1 3 0.7473 5.2958

480x360 1 10 0.7430 5.3040

480x360 1 15 0.7409 5.3067

480x360 1 30 0.7314 5.3157

Table 83.: Graph Cuts segmentation results using Dataset2 and multiple parameter
configurations.



A.1 graph cuts segmentation 221

a.1.3 Dataset3

Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0 0.15 0.6807 9.5554

640x480 0 0.5 0.6800 9.5347

640x480 0 0.75 0.6803 9.5309

640x480 0 1 0.6786 9.5355

640x480 0 1.5 0.6813 9.5420

640x480 0 3 0.6826 9.5457

640x480 0 10 0.6866 9.5858

640x480 0 15 0.6874 9.5609

640x480 0 30 0.6880 9.6248

640x480 0.15 0.15 0.7080 9.5469

640x480 0.15 0.5 0.7073 9.5360

640x480 0.15 0.75 0.7071 9.5328

640x480 0.15 1 0.7072 9.5091

640x480 0.15 1.5 0.7069 9.5382

640x480 0.15 3 0.7069 9.5346

640x480 0.15 10 0.7084 9.5432

640x480 0.15 15 0.7096 9.5577

640x480 0.15 30 0.7113 9.5527

640x480 0.25 0.15 0.7269 9.5551

640x480 0.25 0.5 0.7262 9.5350

640x480 0.25 0.75 0.7260 9.5503

640x480 0.25 1 0.7260 9.5529

640x480 0.25 1.5 0.7258 9.5293

640x480 0.25 3 0.7251 9.5322

640x480 0.25 10 0.7253 9.5622

640x480 0.25 15 0.7258 9.5711

640x480 0.25 30 0.7270 9.5494

640x480 0.35 0.15 0.7415 9.5400

640x480 0.35 0.5 0.7407 9.5431

640x480 0.35 0.75 0.7405 9.5341

640x480 0.35 1 0.7405 9.5350

640x480 0.35 1.5 0.7403 9.5669

640x480 0.35 3 0.7400 9.5540

640x480 0.35 10 0.7403 9.5481

640x480 0.35 15 0.7404 9.5470

640x480 0.35 30 0.7408 9.5496

640x480 0.45 0.15 0.7526 9.5308

640x480 0.45 0.5 0.7520 9.5621

640x480 0.45 0.75 0.7519 9.5564

640x480 0.45 1 0.7517 9.5486

640x480 0.45 1.5 0.7517 9.5384

640x480 0.45 3 0.7517 9.5396



222 graph cuts results using different parameter configurations

Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.45 10 0.7521 9.5417

640x480 0.45 15 0.7521 9.5383

640x480 0.45 30 0.7513 9.5318

640x480 0.5 0.15 0.7569 9.5334

640x480 0.5 0.5 0.7562 9.5423

640x480 0.5 0.75 0.7560 9.5304

640x480 0.5 1 0.7559 9.5574

640x480 0.5 1.5 0.7558 9.5349

640x480 0.5 3 0.7559 9.5669

640x480 0.5 10 0.7555 9.5398

640x480 0.5 15 0.7554 9.5463

640x480 0.5 30 0.7545 9.5420

640x480 0.55 0.15 0.7587 9.5423

640x480 0.55 0.5 0.7581 9.5416

640x480 0.55 0.75 0.7579 9.5447

640x480 0.55 1 0.7578 9.5434

640x480 0.55 1.5 0.7577 9.5394

640x480 0.55 3 0.7574 9.5246

640x480 0.55 10 0.7567 9.5425

640x480 0.55 15 0.7566 9.5242

640x480 0.55 30 0.7555 9.5235

640x480 0.65 0.15 0.7556 9.5667

640x480 0.65 0.5 0.7552 9.5463

640x480 0.65 0.75 0.7550 9.5445

640x480 0.65 1 0.7548 9.5544

640x480 0.65 1.5 0.7545 9.5565

640x480 0.65 3 0.7541 9.5660

640x480 0.65 10 0.7535 9.5494

640x480 0.65 15 0.7531 9.5530

640x480 0.65 30 0.7519 9.5389

640x480 0.75 0.15 0.7409 9.5341

640x480 0.75 0.5 0.7406 9.5284

640x480 0.75 0.75 0.7405 9.5212

640x480 0.75 1 0.7404 9.5557

640x480 0.75 1.5 0.7403 9.5475

640x480 0.75 3 0.7397 9.5201

640x480 0.75 10 0.7383 9.5450

640x480 0.75 15 0.7379 9.5434

640x480 0.75 30 0.7347 9.5435

640x480 0.85 0.15 0.7027 9.5456

640x480 0.85 0.5 0.7024 9.5958

640x480 0.85 0.75 0.7023 9.5374

640x480 0.85 1 0.7021 9.5518

640x480 0.85 1.5 0.7017 9.5349



A.1 graph cuts segmentation 223

Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.85 3 0.7009 9.5474

640x480 0.85 10 0.6998 9.5502

640x480 0.85 15 0.6987 9.5339

640x480 0.85 30 0.6950 9.5419

640x480 1 0.15 0.5903 9.5312

640x480 1 0.5 0.5901 9.5118

640x480 1 0.75 0.5899 9.5289

640x480 1 1 0.5896 9.5404

640x480 1 1.5 0.5890 9.5236

640x480 1 3 0.5873 9.5470

640x480 1 10 0.5836 9.5422

640x480 1 15 0.5823 9.5662

640x480 1 30 0.5768 9.5493

480x360 0 0.15 0.6850 5.3306

480x360 0 0.5 0.6871 5.3182

480x360 0 0.75 0.6875 5.3157

480x360 0 1 0.6879 5.3179

480x360 0 1.5 0.6886 5.3239

480x360 0 3 0.6910 5.3193

480x360 0 10 0.6930 5.3359

480x360 0 15 0.6933 5.3907

480x360 0 30 0.6919 5.3567

480x360 0.15 0.15 0.5624 5.3219

480x360 0.15 0.5 0.5588 5.3241

480x360 0.15 0.75 0.5583 5.3228

480x360 0.15 1 0.5579 5.3187

480x360 0.15 1.5 0.5574 5.3164

480x360 0.15 3 0.7105 5.3600

480x360 0.15 10 0.7132 5.3151

480x360 0.15 15 0.7139 5.3237

480x360 0.15 30 0.7149 5.3229

480x360 0.25 0.15 0.5860 5.3033

480x360 0.25 0.5 0.5837 5.3244

480x360 0.25 0.75 0.5818 5.3192

480x360 0.25 1 0.5811 5.3575

480x360 0.25 1.5 0.5809 5.3192

480x360 0.25 3 0.7211 5.3221

480x360 0.25 10 0.7284 5.3286

480x360 0.25 15 0.7291 5.3314

480x360 0.25 30 0.7298 5.3375

480x360 0.35 0.15 0.6062 5.5515

480x360 0.35 0.5 0.6044 5.3690

480x360 0.35 0.75 0.6035 5.3338

480x360 0.35 1 0.6026 5.3335



224 graph cuts results using different parameter configurations

Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.35 1.5 0.6021 5.3315

480x360 0.35 3 0.7410 5.3244

480x360 0.35 10 0.7422 5.3232

480x360 0.35 15 0.7424 5.3578

480x360 0.35 30 0.7426 5.3364

480x360 0.45 0.15 0.6210 5.3213

480x360 0.45 0.5 0.6190 5.3227

480x360 0.45 0.75 0.6187 5.3293

480x360 0.45 1 0.6184 5.3305

480x360 0.45 1.5 0.6177 5.3359

480x360 0.45 3 0.7539 5.3189

480x360 0.45 10 0.7540 5.3251

480x360 0.45 15 0.7538 5.3150

480x360 0.45 30 0.7530 5.3678

480x360 0.5 0.15 0.6236 5.3198

480x360 0.5 0.5 0.6232 5.3273

480x360 0.5 0.75 0.6224 5.3214

480x360 0.5 1 0.6222 5.3177

480x360 0.5 1.5 0.6226 5.3183

480x360 0.5 3 0.7587 5.3197

480x360 0.5 10 0.7584 5.3221

480x360 0.5 15 0.7581 5.3284

480x360 0.5 30 0.7567 5.3260

480x360 0.55 0.15 0.6205 5.3258

480x360 0.55 0.5 0.6199 5.3295

480x360 0.55 0.75 0.6193 5.3256

480x360 0.55 1 0.6193 5.3205

480x360 0.55 1.5 0.6189 5.3312

480x360 0.55 3 0.7614 5.3353

480x360 0.55 10 0.7612 5.3275

480x360 0.55 15 0.7606 5.3182

480x360 0.55 30 0.7591 5.3276

480x360 0.65 0.15 0.6232 5.3322

480x360 0.65 0.5 0.6221 5.3400

480x360 0.65 0.75 0.6216 5.3252

480x360 0.65 1 0.6220 5.3251

480x360 0.65 1.5 0.6214 5.3368

480x360 0.65 3 0.7621 5.3219

480x360 0.65 10 0.7616 5.3136

480x360 0.65 15 0.7608 5.3158

480x360 0.65 30 0.7592 5.3148

480x360 0.75 0.15 0.6215 5.3132

480x360 0.75 0.5 0.6197 5.3157

480x360 0.75 0.75 0.6195 5.3224



A.1 graph cuts segmentation 225

Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.75 1 0.6196 5.3000

480x360 0.75 1.5 0.6208 5.3243

480x360 0.75 3 0.7532 5.3372

480x360 0.75 10 0.7520 5.3262

480x360 0.75 15 0.7507 5.3229

480x360 0.75 30 0.7477 5.3063

480x360 0.85 0.15 0.5853 5.3275

480x360 0.85 0.5 0.5843 5.3182

480x360 0.85 0.75 0.5838 5.3088

480x360 0.85 1 0.5844 5.3234

480x360 0.85 1.5 0.5842 5.3229

480x360 0.85 3 0.7296 5.3168

480x360 0.85 10 0.7277 5.3357

480x360 0.85 15 0.7258 5.3270

480x360 0.85 30 0.7213 5.3233

480x360 1 0.15 0.5376 5.3303

480x360 1 0.5 0.5373 5.3278

480x360 1 0.75 0.5364 5.3298

480x360 1 1 0.5360 5.3313

480x360 1 1.5 0.5354 5.3181

480x360 1 3 0.6519 5.3337

480x360 1 10 0.6484 5.3228

480x360 1 15 0.6465 5.3189

480x360 1 30 0.6400 5.3181

Table 84.: Graph Cuts segmentation results using Dataset3 and multiple parameter
configurations.



226 graph cuts results using different parameter configurations

a.1.4 Dataset4

Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0 0.15 0.5833 11.6030

640x480 0 0.5 0.5812 11.5914

640x480 0 0.75 0.5803 11.5872

640x480 0 1 0.5792 11.5919

640x480 0 1.5 0.5774 11.5778

640x480 0 3 0.5735 11.5760

640x480 0 10 0.5673 11.5876

640x480 0 15 0.5684 11.5858

640x480 0 30 0.5652 11.6107

640x480 0.15 0.15 0.6033 11.5759

640x480 0.15 0.5 0.6032 11.5956

640x480 0.15 0.75 0.6028 11.6104

640x480 0.15 1 0.6003 11.5834

640x480 0.15 1.5 0.5997 11.5794

640x480 0.15 3 0.5985 11.5711

640x480 0.15 10 0.5966 11.5762

640x480 0.15 15 0.5933 11.5786

640x480 0.15 30 0.5909 11.6517

640x480 0.25 0.15 0.6195 11.6027

640x480 0.25 0.5 0.6194 11.5872

640x480 0.25 0.75 0.6195 11.5996

640x480 0.25 1 0.6190 11.5751

640x480 0.25 1.5 0.6189 11.6186

640x480 0.25 3 0.6172 11.5887

640x480 0.25 10 0.6131 11.5883

640x480 0.25 15 0.6108 11.6008

640x480 0.25 30 0.6081 11.6316

640x480 0.35 0.15 0.6303 11.6133

640x480 0.35 0.5 0.6295 11.6120

640x480 0.35 0.75 0.6299 11.6075

640x480 0.35 1 0.6298 11.6483

640x480 0.35 1.5 0.6291 11.6051

640x480 0.35 3 0.6282 11.5833

640x480 0.35 10 0.6267 11.5707

640x480 0.35 15 0.6233 11.5843

640x480 0.35 30 0.6215 11.5942

640x480 0.45 0.15 0.6432 11.6043

640x480 0.45 0.5 0.6426 11.6135

640x480 0.45 0.75 0.6428 11.5964

640x480 0.45 1 0.6432 11.6134

640x480 0.45 1.5 0.6432 11.6187

640x480 0.45 3 0.6428 11.6013



A.1 graph cuts segmentation 227

Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.45 10 0.6394 11.6461

640x480 0.45 15 0.6366 11.6285

640x480 0.45 30 0.6342 11.5549

640x480 0.5 0.15 0.6480 11.5442

640x480 0.5 0.5 0.6476 11.5757

640x480 0.5 0.75 0.6463 11.5329

640x480 0.5 1 0.6464 11.5408

640x480 0.5 1.5 0.6463 11.5730

640x480 0.5 3 0.6484 11.5684

640x480 0.5 10 0.6430 11.5528

640x480 0.5 15 0.6420 11.5945

640x480 0.5 30 0.6373 11.5692

640x480 0.55 0.15 0.6505 11.6206

640x480 0.55 0.5 0.6497 11.5752

640x480 0.55 0.75 0.6497 11.5501

640x480 0.55 1 0.6498 11.5481

640x480 0.55 1.5 0.6496 11.5575

640x480 0.55 3 0.6507 11.5249

640x480 0.55 10 0.6478 11.5227

640x480 0.55 15 0.6475 11.5376

640x480 0.55 30 0.6452 11.5457

640x480 0.65 0.15 0.6566 11.5392

640x480 0.65 0.5 0.6551 11.5701

640x480 0.65 0.7 0.6549 11.5489

640x480 0.65 1 0.6549 11.5577

640x480 0.65 1.5 0.6544 11.5402

640x480 0.65 3 0.6540 11.5686

640x480 0.65 10 0.6552 11.5544

640x480 0.65 15 0.6529 11.5709

640x480 0.65 30 0.6521 11.5587

640x480 0.75 0.15 0.6539 11.5420

640x480 0.75 0.5 0.6539 11.5555

640x480 0.75 0.75 0.6534 11.5939

640x480 0.75 1 0.6537 11.5692

640x480 0.75 1.5 0.6534 11.5938

640x480 0.75 3 0.6533 11.5713

640x480 0.75 10 0.6524 11.5696

640x480 0.75 15 0.6511 11.6380

640x480 0.75 30 0.6450 11.5847

640x480 0.85 0.15 0.6330 11.5667

640x480 0.85 0.5 0.6329 11.5690

640x480 0.85 0.75 0.6328 11.5931

640x480 0.85 1 0.6324 11.5692

640x480 0.85 1.5 0.6322 11.5424
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Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.85 3 0.6326 11.5503

640x480 0.85 10 0.6396 11.5353

640x480 0.85 15 0.6292 11.5543

640x480 0.85 30 0.6226 11.5536

640x480 1 0.15 0.5708 11.5525

640x480 1 0.5 0.5706 11.5643

640x480 1 0.75 0.5706 11.5518

640x480 1 1 0.5706 11.5426

640x480 1 1.5 0.5709 11.5559

640x480 1 3 0.5702 11.5717

640x480 1 10 0.5680 11.5638

640x480 1 15 0.5651 11.5642

640x480 1 30 0.5598 11.6328

480x360 0 0.15 0.5886 6.4387

480x360 0 0.5 0.5862 6.4439

480x360 0 0.75 0.5836 6.4374

480x360 0 1 0.5826 6.4478

480x360 0 1.5 0.5820 6.4448

480x360 0 3 0.5780 6.4633

480x360 0 10 0.5735 6.4562

480x360 0 15 0.5726 6.4494

480x360 0 30 0.5709 6.4628

480x360 0.15 0.15 0.6057 6.4452

480x360 0.15 0.5 0.6040 6.4811

480x360 0.15 0.75 0.6040 6.4455

480x360 0.15 1 0.6042 6.4404

480x360 0.15 1.5 0.6048 6.4371

480x360 0.15 3 0.6030 6.4433

480x360 0.15 10 0.5984 6.4500

480x360 0.15 15 0.5966 6.4547

480x360 0.15 30 0.5925 6.4514

480x360 0.25 0.15 0.6198 6.4478

480x360 0.25 0.5 0.6180 6.4411

480x360 0.25 0.75 0.6182 6.4437

480x360 0.25 1 0.6181 6.4494

480x360 0.25 1.5 0.6170 6.4368

480x360 0.25 3 0.6169 6.4409

480x360 0.25 10 0.6148 6.4390

480x360 0.25 15 0.6116 6.4285

480x360 0.25 30 0.6089 6.4369

480x360 0.35 0.15 0.6326 6.4397

480x360 0.35 0.5 0.6332 6.4520

480x360 0.35 0.75 0.6323 6.4398

480x360 0.35 1 0.6318 6.4415



A.1 graph cuts segmentation 229

Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.35 1.5 0.6326 6.4426

480x360 0.35 3 0.6332 6.4336

480x360 0.35 10 0.6304 6.4364

480x360 0.35 15 0.6278 6.4385

480x360 0.35 30 0.6241 6.4417

480x360 0.45 0.15 0.6445 6.4341

480x360 0.45 0.5 0.6438 6.4353

480x360 0.45 0.75 0.6437 6.4400

480x360 0.45 1 0.6440 6.4342

480x360 0.45 1.5 0.6451 6.4398

480x360 0.45 3 0.6470 6.4511

480x360 0.45 10 0.6435 6.4328

480x360 0.45 15 0.6416 6.4295

480x360 0.45 30 0.6353 6.4360

480x360 0.5 0.15 0.6464 6.4465

480x360 0.5 0.5 0.6478 6.4446

480x360 0.5 0.75 0.6477 6.4356

480x360 0.5 1 0.6478 6.4369

480x360 0.5 1.5 0.6481 6.4433

480x360 0.5 3 0.6508 6.4481

480x360 0.5 10 0.6484 6.4300

480x360 0.5 15 0.6460 6.4538

480x360 0.5 30 0.6410 6.4707

480x360 0.55 0.15 0.6548 6.4504

480x360 0.55 0.5 0.6538 6.4498

480x360 0.55 0.75 0.6539 6.4482

480x360 0.55 1 0.6545 6.4516

480x360 0.55 1.5 0.6546 6.4590

480x360 0.55 3 0.6571 6.4401

480x360 0.55 10 0.6546 6.4406

480x360 0.55 15 0.6534 6.4624

480x360 0.55 30 0.6480 6.4456

480x360 0.65 0.15 0.6679 6.4436

480x360 0.65 0.5 0.6677 6.4402

480x360 0.65 0.75 0.6678 6.4417

480x360 0.65 1 0.6674 6.4427

480x360 0.65 1.5 0.6669 6.4441

480x360 0.65 3 0.6680 6.4388

480x360 0.65 10 0.6661 6.4430

480x360 0.65 15 0.6633 6.4414

480x360 0.65 30 0.6595 6.4383

480x360 0.75 0.15 0.6699 6.4302

480x360 0.75 0.5 0.6694 6.4377

480x360 0.75 0.75 0.6692 6.4399
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Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.75 1 0.6691 6.4476

480x360 0.75 1.5 0.6705 6.4404

480x360 0.75 3 0.6705 6.4426

480x360 0.75 10 0.6701 6.4413

480x360 0.75 15 0.6679 6.4449

480x360 0.75 30 0.6615 6.4390

480x360 0.85 0.15 0.6543 6.4488

480x360 0.85 0.5 0.6546 6.4498

480x360 0.85 0.75 0.6539 6.4441

480x360 0.85 1 0.6536 6.4478

480x360 0.85 1.5 0.6538 6.4442

480x360 0.85 3 0.6523 6.4512

480x360 0.85 10 0.6507 6.4441

480x360 0.85 15 0.6480 6.4661

480x360 0.85 30 0.6399 6.4533

480x360 1 0.15 0.5949 6.4351

480x360 1 0.5 0.5948 6.4377

480x360 1 0.75 0.5949 6.4308

480x360 1 1 0.5949 6.4524

480x360 1 1.5 0.5950 6.4377

480x360 1 3 0.5942 6.4441

480x360 1 10 0.5929 6.4473

480x360 1 15 0.5900 6.4481

480x360 1 30 0.5856 6.4509

Table 85.: Graph Cuts segmentation results using Dataset4 and multiple parameter
configurations.
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0 0.15 0.6762

640x480 0 0.5 0.6725

640x480 0 0.75 0.6709

640x480 0 1 0.6704

640x480 0 1.5 0.6725

640x480 0 3 0.6728

640x480 0 10 0.6699

640x480 0 15 0.6786

640x480 0 30 0.6716

640x480 0.15 0.15 0.6975

640x480 0.15 0.5 0.6957

640x480 0.15 0.75 0.6952

640x480 0.15 1 0.6933

640x480 0.15 1.5 0.6914

640x480 0.15 3 0.6905

640x480 0.15 10 0.6891

640x480 0.15 15 0.6894

640x480 0.15 30 0.6909

640x480 0.25 0.15 0.7062

640x480 0.25 0.5 0.7064

640x480 0.25 0.75 0.7058

640x480 0.25 1 0.7054

640x480 0.25 1.5 0.7026

640x480 0.25 3 0.7019

640x480 0.25 10 0.7019

640x480 0.25 15 0.7017

640x480 0.25 30 0.7062

640x480 0.35 0.15 0.7169

640x480 0.35 0.5 0.7174

640x480 0.35 0.75 0.7179

640x480 0.35 1 0.7175

640x480 0.35 1.5 0.7157

640x480 0.35 3 0.7121

640x480 0.35 10 0.7114

640x480 0.35 15 0.7080

640x480 0.35 30 0.7123

640x480 0.45 0.15 0.7258

640x480 0.45 0.5 0.7251

640x480 0.45 0.75 0.7254

640x480 0.45 1 0.7254

640x480 0.45 1.5 0.7252

640x480 0.45 3 0.7280

640x480 0.45 10 0.7221

640x480 0.45 15 0.7220
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.45 30 0.7276

640x480 0.5 0.15 0.7217

640x480 0.5 0.5 0.7214

640x480 0.5 0.75 0.7213

640x480 0.5 1 0.7211

640x480 0.5 1.5 0.7202

640x480 0.5 3 0.7336

640x480 0.5 10 0.7197

640x480 0.5 15 0.7171

640x480 0.5 30 0.7235

640x480 0.55 0.15 0.7238

640x480 0.55 0.5 0.7226

640x480 0.55 0.75 0.7228

640x480 0.55 1 0.7228

640x480 0.55 1.5 0.7230

640x480 0.55 3 0.7290

640x480 0.55 10 0.7185

640x480 0.55 15 0.7170

640x480 0.55 30 0.7227

640x480 0.65 0.15 0.7342

640x480 0.65 0.5 0.7324

640x480 0.65 0.75 0.7322

640x480 0.65 1 0.7320

640x480 0.65 1.5 0.7319

640x480 0.65 3 0.7292

640x480 0.65 10 0.7330

640x480 0.65 15 0.7335

640x480 0.65 30 0.7324

640x480 0.75 0.15 0.7173

640x480 0.75 0.5 0.7175

640x480 0.75 0.75 0.7173

640x480 0.75 1 0.7176

640x480 0.75 1.5 0.7167

640x480 0.75 3 0.7166

640x480 0.75 10 0.7160

640x480 0.75 15 0.7154

640x480 0.75 30 0.7113

640x480 0.85 0.15 0.6765

640x480 0.85 0.5 0.6766

640x480 0.85 0.75 0.6766

640x480 0.85 1 0.6763

640x480 0.85 1.5 0.6760

640x480 0.85 3 0.6762

640x480 0.85 10 0.6730
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.85 15 0.6720

640x480 0.85 30 0.6681

640x480 1 0.15 0.5927

640x480 1 0.5 0.5926

640x480 1 0.75 0.5927

640x480 1 1 0.5927

640x480 1 1.5 0.5925

640x480 1 3 0.5923

640x480 1 10 0.5887

640x480 1 15 0.5871

640x480 1 30 0.5821

480x360 0 0.15 0.6693

480x360 0 0.5 0.6670

480x360 0 0.75 0.6657

480x360 0 1 0.6647

480x360 0 1.5 0.6652

480x360 0 3 0.6615

480x360 0 10 0.6634

480x360 0 15 0.6641

480x360 0 30 0.6602

480x360 0.15 0.15 0.6884

480x360 0.15 0.5 0.6848

480x360 0.15 0.75 0.6877

480x360 0.15 1 0.6878

480x360 0.15 1.5 0.6871

480x360 0.15 3 0.6840

480x360 0.15 10 0.6828

480x360 0.15 15 0.6837

480x360 0.15 30 0.6840

480x360 0.25 0.15 0.6945

480x360 0.25 0.5 0.6940

480x360 0.25 0.75 0.6929

480x360 0.25 1 0.6920

480x360 0.25 1.5 0.6946

480x360 0.25 3 0.6947

480x360 0.25 10 0.6982

480x360 0.25 15 0.6912

480x360 0.25 30 0.6940

480x360 0.35 0.15 0.7093

480x360 0.35 0.5 0.7089

480x360 0.35 0.75 0.7096

480x360 0.35 1 0.7080

480x360 0.35 1.5 0.7098

480x360 0.35 3 0.7001
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.35 10 0.7141

480x360 0.35 15 0.7116

480x360 0.35 30 0.7058

480x360 0.45 0.15 0.7240

480x360 0.45 0.5 0.7245

480x360 0.45 0.75 0.7243

480x360 0.45 1 0.7242

480x360 0.45 1.5 0.7305

480x360 0.45 3 0.7316

480x360 0.45 10 0.7280

480x360 0.45 15 0.7284

480x360 0.45 30 0.7247

480x360 0.5 0.15 0.7255

480x360 0.5 0.5 0.7269

480x360 0.5 0.75 0.7269

480x360 0.5 1 0.7271

480x360 0.5 1.5 0.7272

480x360 0.5 3 0.7309

480x360 0.5 10 0.7299

480x360 0.5 15 0.7318

480x360 0.5 30 0.7268

480x360 0.55 0.15 0.7270

480x360 0.55 0.5 0.7265

480x360 0.55 0.75 0.7284

480x360 0.55 1 0.7286

480x360 0.55 1.5 0.7289

480x360 0.55 3 0.7317

480x360 0.55 10 0.7291

480x360 0.55 15 0.7300

480x360 0.55 30 0.7268

480x360 0.65 0.15 0.7548

480x360 0.65 0.5 0.7532

480x360 0.65 0.75 0.7532

480x360 0.65 1 0.7532

480x360 0.65 1.5 0.7535

480x360 0.65 3 0.7561

480x360 0.65 10 0.7563

480x360 0.65 15 0.7538

480x360 0.65 30 0.7454

480x360 0.75 0.15 0.7335

480x360 0.75 0.5 0.7333

480x360 0.75 0.75 0.7322

480x360 0.75 1 0.7322

480x360 0.75 1.5 0.7383
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.75 3 0.7385

480x360 0.75 10 0.7404

480x360 0.75 15 0.7179

480x360 0.75 30 0.7267

480x360 0.85 0.15 0.6944

480x360 0.85 0.5 0.6950

480x360 0.85 0.75 0.6942

480x360 0.85 1 0.6942

480x360 0.85 1.5 0.6942

480x360 0.85 3 0.6884

480x360 0.85 10 0.6890

480x360 0.85 15 0.6882

480x360 0.85 30 0.6849

480x360 1 0.15 0.6113

480x360 1 0.5 0.6104

480x360 1 0.75 0.6103

480x360 1 1 0.6104

480x360 1 1.5 0.6103

480x360 1 3 0.6098

480x360 1 10 0.6083

480x360 1 15 0.6057

480x360 1 30 0.6021

Table 86.: Graph Cuts segmentation results using multiple parameter configurations
and the subset of images from Dataset4 which were captured with natural
lighting conditions.
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0 0.15 0.5953

640x480 0 0.5 0.5969

640x480 0 0.75 0.5965

640x480 0 1 0.5951

640x480 0 1.5 0.5916

640x480 0 3 0.5826

640x480 0 10 0.5753

640x480 0 15 0.5723

640x480 0 30 0.5699

640x480 0.15 0.15 0.6149

640x480 0.15 0.5 0.6798

640x480 0.15 0.75 0.6195

640x480 0.15 1 0.6181

640x480 0.15 1.5 0.6206

640x480 0.15 3 0.6183

640x480 0.15 10 0.6132

640x480 0.15 15 0.6094

640x480 0.15 30 0.6034

640x480 0.25 0.15 0.6327

640x480 0.25 0.5 0.6332

640x480 0.25 0.75 0.6334

640x480 0.25 1 0.6334

640x480 0.25 1.5 0.6374

640x480 0.25 3 0.6398

640x480 0.25 10 0.6315

640x480 0.25 15 0.6301

640x480 0.25 30 0.6280

640x480 0.35 0.15 0.6472

640x480 0.35 0.5 0.6447

640x480 0.35 0.75 0.6459

640x480 0.35 1 0.6459

640x480 0.35 1.5 0.6460

640x480 0.35 3 0.6507

640x480 0.35 10 0.6481

640x480 0.35 15 0.6441

640x480 0.35 30 0.6398

640x480 0.45 0.15 0.6546

640x480 0.45 0.5 0.6531

640x480 0.45 0.75 0.6540

640x480 0.45 1 0.6560

640x480 0.45 1.5 0.6568

640x480 0.45 3 0.6549

640x480 0.45 10 0.6552

640x480 0.45 15 0.6467
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.45 30 0.6442

640x480 0.5 0.15 0.6627

640x480 0.5 0.5 0.6623

640x480 0.5 0.75 0.6557

640x480 0.5 1 0.6567

640x480 0.5 1.5 0.6573

640x480 0.5 3 0.6563

640x480 0.5 10 0.6601

640x480 0.5 15 0.6602

640x480 0.5 30 0.6421

640x480 0.55 0.15 0.6567

640x480 0.55 0.5 0.6564

640x480 0.55 0.75 0.6560

640x480 0.55 1 0.6561

640x480 0.55 1.5 0.6557

640x480 0.55 3 0.6562

640x480 0.55 10 0.6599

640x480 0.55 15 0.6651

640x480 0.55 30 0.6515

640x480 0.65 0.15 0.6727

640x480 0.65 0.5 0.6721

640x480 0.65 0.75 0.6723

640x480 0.65 1 0.6725

640x480 0.65 1.5 0.6721

640x480 0.65 3 0.6729

640x480 0.65 10 0.6729

640x480 0.65 15 0.6711

640x480 0.65 30 0.6673

640x480 0.75 0.15 0.6697

640x480 0.75 0.5 0.6696

640x480 0.75 0.75 0.6688

640x480 0.75 1 0.6727

640x480 0.75 1.5 0.6733

640x480 0.75 3 0.6731

640x480 0.75 10 0.6721

640x480 0.75 15 0.6706

640x480 0.75 30 0.6634

640x480 0.85 0.15 0.6640

640x480 0.85 0.5 0.6642

640x480 0.85 0.75 0.6639

640x480 0.85 1 0.6641

640x480 0.85 1.5 0.6643

640x480 0.85 3 0.6653

640x480 0.85 10 0.6633
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.85 15 0.6641

640x480 0.85 30 0.6520

640x480 1 0.15 0.6061

640x480 1 0.5 0.6061

640x480 1 0.75 0.6059

640x480 1 1 0.6058

640x480 1 1.5 0.6082

640x480 1 3 0.6079

640x480 1 10 0.6027

640x480 1 15 0.5985

640x480 1 30 0.5913

480x360 0 0.15 0.6050

480x360 0 0.5 0.6004

480x360 0 0.75 0.5958

480x360 0 1 0.5925

480x360 0 1.5 0.5904

480x360 0 3 0.5904

480x360 0 10 0.5774

480x360 0 15 0.5745

480x360 0 30 0.5761

480x360 0.15 0.15 0.6169

480x360 0.15 0.5 0.6193

480x360 0.15 0.75 0.6200

480x360 0.15 1 0.6223

480x360 0.15 1.5 0.6233

480x360 0.15 3 0.6193

480x360 0.15 10 0.6142

480x360 0.15 15 0.6126

480x360 0.15 30 0.6043

480x360 0.25 0.15 0.6366

480x360 0.25 0.5 0.6363

480x360 0.25 0.75 0.6404

480x360 0.25 1 0.6412

480x360 0.25 1.5 0.6408

480x360 0.25 3 0.6421

480x360 0.25 10 0.6324

480x360 0.25 15 0.6295

480x360 0.25 30 0.6249

480x360 0.35 0.15 0.6487

480x360 0.35 0.5 0.6474

480x360 0.35 0.75 0.6471

480x360 0.35 1 0.6471

480x360 0.35 1.5 0.6509

480x360 0.35 3 0.6558
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.35 10 0.6444

480x360 0.35 15 0.6401

480x360 0.35 30 0.6376

480x360 0.45 0.15 0.6587

480x360 0.45 0.5 0.6577

480x360 0.45 0.75 0.6578

480x360 0.45 1 0.6590

480x360 0.45 1.5 0.6589

480x360 0.45 3 0.6684

480x360 0.45 10 0.6632

480x360 0.45 15 0.6550

480x360 0.45 30 0.6410

480x360 0.5 0.15 0.6546

480x360 0.5 0.5 0.6622

480x360 0.5 0.75 0.6621

480x360 0.5 1 0.6621

480x360 0.5 1.5 0.6625

480x360 0.5 3 0.6680

480x360 0.5 10 0.6712

480x360 0.5 15 0.6599

480x360 0.5 30 0.6515

480x360 0.55 0.15 0.6680

480x360 0.55 0.5 0.6657

480x360 0.55 0.75 0.6664

480x360 0.55 1 0.6684

480x360 0.55 1.5 0.6684

480x360 0.55 3 0.6738

480x360 0.55 10 0.6760

480x360 0.55 15 0.6756

480x360 0.55 30 0.6634

480x360 0.65 0.15 0.6804

480x360 0.65 0.5 0.6810

480x360 0.65 0.75 0.6812

480x360 0.65 1 0.6809

480x360 0.65 1.5 0.6805

480x360 0.65 3 0.6800

480x360 0.65 10 0.6804

480x360 0.65 15 0.6790

480x360 0.65 30 0.6711

480x360 0.75 0.15 0.6996

480x360 0.75 0.5 0.6992

480x360 0.75 0.75 0.6985

480x360 0.75 1 0.6985

480x360 0.75 1.5 0.6996
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.75 3 0.6994

480x360 0.75 10 0.7013

480x360 0.75 15 0.6991

480x360 0.75 30 0.6918

480x360 0.85 0.15 0.6948

480x360 0.85 0.5 0.6944

480x360 0.85 0.75 0.6942

480x360 0.85 1 0.6940

480x360 0.85 1.5 0.6939

480x360 0.85 3 0.6925

480x360 0.85 10 0.6954

480x360 0.85 15 0.6926

480x360 0.85 30 0.6853

480x360 1 0.15 0.6332

480x360 1 0.5 0.6329

480x360 1 0.75 0.6334

480x360 1 1 0.6333

480x360 1 1.5 0.6324

480x360 1 3 0.6321

480x360 1 10 0.6350

480x360 1 15 0.6291

480x360 1 30 0.6249

Table 87.: Graph Cuts segmentation results using multiple parameter configurations
and the subset of images from Dataset4 which were captured with severe
shadows on the hand.
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0 0.15 0.5270

640x480 0 0.5 0.5229

640x480 0 0.75 0.5200

640x480 0 1 0.5185

640x480 0 1.5 0.5173

640x480 0 3 0.5103

640x480 0 10 0.4994

640x480 0 15 0.4984

640x480 0 30 0.4980

640x480 0.15 0.15 0.5495

640x480 0.15 0.5 0.5488

640x480 0.15 0.75 0.5478

640x480 0.15 1 0.5473

640x480 0.15 1.5 0.5446

640x480 0.15 3 0.5424

640x480 0.15 10 0.5365

640x480 0.15 15 0.5293

640x480 0.15 30 0.5261

640x480 0.25 0.15 0.5593

640x480 0.25 0.5 0.5585

640x480 0.25 0.75 0.5580

640x480 0.25 1 0.5585

640x480 0.25 1.5 0.5569

640x480 0.25 3 0.5517

640x480 0.25 10 0.5487

640x480 0.25 15 0.5446

640x480 0.25 30 0.5374

640x480 0.35 0.15 0.5097

640x480 0.35 0.5 0.5688

640x480 0.35 0.75 0.5687

640x480 0.35 1 0.5686

640x480 0.35 1.5 0.5677

640x480 0.35 3 0.5626

640x480 0.35 10 0.5601

640x480 0.35 15 0.5569

640x480 0.35 30 0.5540

640x480 0.45 0.15 0.5875

640x480 0.45 0.5 0.5864

640x480 0.45 0.75 0.5861

640x480 0.45 1 0.5861

640x480 0.45 1.5 0.5856

640x480 0.45 3 0.5819

640x480 0.45 10 0.5781

640x480 0.45 15 0.5754
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.45 30 0.5691

640x480 0.5 0.15 0.5881

640x480 0.5 0.5 0.5877

640x480 0.5 0.75 0.5878

640x480 0.5 1 0.5882

640x480 0.5 1.5 0.5885

640x480 0.5 3 0.5875

640x480 0.5 10 0.5790

640x480 0.5 15 0.5776

640x480 0.5 30 0.5745

640x480 0.55 0.15 0.5911

640x480 0.55 0.5 0.5889

640x480 0.55 0.75 0.5891

640x480 0.55 1 0.5893

640x480 0.55 1.5 0.5885

640x480 0.55 3 0.5892

640x480 0.55 10 0.5832

640x480 0.55 15 0.5799

640x480 0.55 30 0.5753

640x480 0.65 0.15 0.5875

640x480 0.65 0.5 0.5872

640x480 0.65 0.75 0.5866

640x480 0.65 1 0.5866

640x480 0.65 1.5 0.5856

640x480 0.65 3 0.5847

640x480 0.65 10 0.5791

640x480 0.65 15 0.5775

640x480 0.65 30 0.5714

640x480 0.75 0.15 0.5888

640x480 0.75 0.5 0.5884

640x480 0.75 0.75 0.5874

640x480 0.75 1 0.5870

640x480 0.75 1.5 0.5866

640x480 0.75 3 0.5851

640x480 0.75 10 0.5851

640x480 0.75 15 0.5831

640x480 0.75 30 0.5716

640x480 0.85 0.15 0.5885

640x480 0.85 0.5 0.5883

640x480 0.85 0.75 0.5882

640x480 0.85 1 0.5877

640x480 0.85 1.5 0.5876

640x480 0.85 3 0.5861

640x480 0.85 10 0.5826
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.85 15 0.5804

640x480 0.85 30 0.5726

640x480 1 0.15 0.5922

640x480 1 0.5 0.5919

640x480 1 0.75 0.5918

640x480 1 1 0.5922

640x480 1 1.5 0.5914

640x480 1 3 0.5858

640x480 1 10 0.5853

640x480 1 15 0.5774

640x480 1 30 0.5679

480x360 0 0.15 0.5195

480x360 0 0.5 0.5150

480x360 0 0.75 0.5121

480x360 0 1 0.5116

480x360 0 1.5 0.5102

480x360 0 3 0.5039

480x360 0 10 0.4996

480x360 0 15 0.5017

480x360 0 30 0.4998

480x360 0.15 0.15 0.5424

480x360 0.15 0.5 0.5401

480x360 0.15 0.75 0.5389

480x360 0.15 1 0.5376

480x360 0.15 1.5 0.5394

480x360 0.15 3 0.5368

480x360 0.15 10 0.5238

480x360 0.15 15 0.5195

480x360 0.15 30 0.5167

480x360 0.25 0.15 0.5511

480x360 0.25 0.5 0.5502

480x360 0.25 0.75 0.5495

480x360 0.25 1 0.5486

480x360 0.25 1.5 0.5496

480x360 0.25 3 0.5501

480x360 0.25 10 0.5430

480x360 0.25 15 0.5397

480x360 0.25 30 0.5335

480x360 0.35 0.15 0.5639

480x360 0.35 0.5 0.5626

480x360 0.35 0.75 0.5626

480x360 0.35 1 0.5618

480x360 0.35 1.5 0.5600

480x360 0.35 3 0.5593
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.35 10 0.5571

480x360 0.35 15 0.5541

480x360 0.35 30 0.5483

480x360 0.45 0.15 0.5771

480x360 0.45 0.5 0.5758

480x360 0.45 0.75 0.5746

480x360 0.45 1 0.5747

480x360 0.45 1.5 0.5744

480x360 0.45 3 0.5741

480x360 0.45 10 0.5659

480x360 0.45 15 0.5655

480x360 0.45 30 0.5588

480x360 0.5 0.15 0.5776

480x360 0.5 0.5 0.5770

480x360 0.5 0.75 0.5758

480x360 0.5 1 0.5768

480x360 0.5 1.5 0.5777

480x360 0.5 3 0.5772

480x360 0.5 10 0.5709

480x360 0.5 15 0.5684

480x360 0.5 30 0.5631

480x360 0.55 0.15 0.5826

480x360 0.55 0.5 0.5825

480x360 0.55 0.75 0.5809

480x360 0.55 1 0.5817

480x360 0.55 1.5 0.5822

480x360 0.55 3 0.5807

480x360 0.55 10 0.5742

480x360 0.55 15 0.5706

480x360 0.55 30 0.5662

480x360 0.65 0.15 0.5841

480x360 0.65 0.5 0.5845

480x360 0.65 0.75 0.5843

480x360 0.65 1 0.5838

480x360 0.65 1.5 0.5830

480x360 0.65 3 0.5818

480x360 0.65 10 0.5840

480x360 0.65 15 0.5687

480x360 0.65 30 0.5646

480x360 0.75 0.15 0.5881

480x360 0.75 0.5 0.5866

480x360 0.75 0.75 0.5867

480x360 0.75 1 0.5860

480x360 0.75 1.5 0.5864
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.75 3 0.5851

480x360 0.75 10 0.5824

480x360 0.75 15 0.5792

480x360 0.75 30 0.5708

480x360 0.85 0.15 0.5920

480x360 0.85 0.5 0.5930

480x360 0.85 0.75 0.5924

480x360 0.85 1 0.5914

480x360 0.85 1.5 0.5920

480x360 0.85 3 0.5904

480x360 0.85 10 0.5842

480x360 0.85 15 0.5778

480x360 0.85 30 0.5607

480x360 1 0.15 0.5895

480x360 1 0.5 0.5892

480x360 1 0.75 0.5892

480x360 1 1 0.5895

480x360 1 1.5 0.5879

480x360 1 3 0.5863

480x360 1 10 0.5806

480x360 1 15 0.5791

480x360 1 30 0.5700

Table 88.: Graph Cuts segmentation results using multiple parameter configurations
and the subset of images from Dataset4 which were captured under highly
brilliant lighting conditions.
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0 0.15 0.6108

640x480 0 0.5 0.6090

640x480 0 0.75 0.6093

640x480 0 1 0.6090

640x480 0 1.5 0.6047

640x480 0 3 0.6058

640x480 0 10 0.5999

640x480 0 15 0.6016

640x480 0 30 0.5993

640x480 0.15 0.15 0.6289

640x480 0.15 0.5 0.6271

640x480 0.15 0.75 0.6273

640x480 0.15 1 0.6248

640x480 0.15 1.5 0.6248

640x480 0.15 3 0.6250

640x480 0.15 10 0.6283

640x480 0.15 15 0.6255

640x480 0.15 30 0.6249

640x480 0.25 0.15 0.6538

640x480 0.25 0.5 0.6538

640x480 0.25 0.75 0.6543

640x480 0.25 1 0.6528

640x480 0.25 1.5 0.6526

640x480 0.25 3 0.6483

640x480 0.25 10 0.6508

640x480 0.25 15 0.6498

640x480 0.25 30 0.6476

640x480 0.35 0.15 0.6596

640x480 0.35 0.5 0.6603

640x480 0.35 0.75 0.6604

640x480 0.35 1 0.6604

640x480 0.35 1.5 0.6604

640x480 0.35 3 0.6607

640x480 0.35 10 0.6623

640x480 0.35 15 0.6618

640x480 0.35 30 0.6605

640x480 0.45 0.15 0.6874

640x480 0.45 0.5 0.6865

640x480 0.45 0.75 0.6865

640x480 0.45 1 0.6866

640x480 0.45 1.5 0.6864

640x480 0.45 3 0.6873

640x480 0.45 10 0.6873

640x480 0.45 15 0.6855
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.45 30 0.6818

640x480 0.5 0.15 0.7038

640x480 0.5 0.5 0.7029

640x480 0.5 0.75 0.7029

640x480 0.5 1 0.7021

640x480 0.5 1.5 0.7018

640x480 0.5 3 0.7020

640x480 0.5 10 0.6954

640x480 0.5 15 0.6953

640x480 0.5 30 0.6932

640x480 0.55 0.15 0.7101

640x480 0.55 0.5 0.7085

640x480 0.55 0.75 0.7086

640x480 0.55 1 0.7089

640x480 0.55 1.5 0.7091

640x480 0.55 3 0.7094

640x480 0.55 10 0.7103

640x480 0.55 15 0.7094

640x480 0.55 30 0.7086

640x480 0.65 0.15 0.7152

640x480 0.65 0.5 0.7092

640x480 0.65 0.75 0.7092

640x480 0.65 1 0.7093

640x480 0.65 1.5 0.7085

640x480 0.65 3 0.7107

640x480 0.65 10 0.7198

640x480 0.65 15 0.7122

640x480 0.65 30 0.7196

640x480 0.75 0.15 0.7222

640x480 0.75 0.5 0.7227

640x480 0.75 0.75 0.7226

640x480 0.75 1 0.7206

640x480 0.75 1.5 0.7206

640x480 0.75 3 0.7221

640x480 0.75 10 0.7205

640x480 0.75 15 0.7183

640x480 0.75 30 0.7130

640x480 0.85 0.15 0.6591

640x480 0.85 0.5 0.6592

640x480 0.85 0.75 0.6592

640x480 0.85 1 0.6592

640x480 0.85 1.5 0.6592

640x480 0.85 3 0.6621

640x480 0.85 10 0.6614
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.85 15 0.6618

640x480 0.85 30 0.6608

640x480 1 0.15 0.5240

640x480 1 0.5 0.5239

640x480 1 0.75 0.5239

640x480 1 1 0.5239

640x480 1 1.5 0.5239

640x480 1 3 0.5262

640x480 1 10 0.5258

640x480 1 15 0.5258

640x480 1 30 0.5228

480x360 0 0.15 0.6372

480x360 0 0.5 0.6382

480x360 0 0.75 0.6362

480x360 0 1 0.6374

480x360 0 1.5 0.6355

480x360 0 3 0.6324

480x360 0 10 0.6287

480x360 0 15 0.6263

480x360 0 30 0.6246

480x360 0.15 0.15 0.6565

480x360 0.15 0.5 0.6571

480x360 0.15 0.75 0.6547

480x360 0.15 1 0.6546

480x360 0.15 1.5 0.6560

480x360 0.15 3 0.6570

480x360 0.15 10 0.6565

480x360 0.15 15 0.6537

480x360 0.15 30 0.6499

480x360 0.25 0.15 0.6723

480x360 0.25 0.5 0.6706

480x360 0.25 0.75 0.6692

480x360 0.25 1 0.6700

480x360 0.25 1.5 0.6681

480x360 0.25 3 0.6674

480x360 0.25 10 0.6700

480x360 0.25 15 0.6686

480x360 0.25 30 0.6680

480x360 0.35 0.15 0.6838

480x360 0.35 0.5 0.6861

480x360 0.35 0.75 0.6861

480x360 0.35 1 0.6861

480x360 0.35 1.5 0.6859

480x360 0.35 3 0.6857
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.35 10 0.6855

480x360 0.35 15 0.6844

480x360 0.35 30 0.6829

480x360 0.45 0.15 0.6891

480x360 0.45 0.5 0.6890

480x360 0.45 0.75 0.6890

480x360 0.45 1 0.6890

480x360 0.45 1.5 0.6889

480x360 0.45 3 0.6893

480x360 0.45 10 0.6923

480x360 0.45 15 0.6929

480x360 0.45 30 0.6898

480x360 0.5 0.15 0.7009

480x360 0.5 0.5 0.6996

480x360 0.5 0.75 0.7000

480x360 0.5 1 0.7001

480x360 0.5 1.5 0.7004

480x360 0.5 3 0.7063

480x360 0.5 10 0.7032

480x360 0.5 15 0.7049

480x360 0.5 30 0.7037

480x360 0.55 0.15 0.7129

480x360 0.55 0.5 0.7109

480x360 0.55 0.75 0.7099

480x360 0.55 1 0.7100

480x360 0.55 1.5 0.7098

480x360 0.55 3 0.7185

480x360 0.55 10 0.7149

480x360 0.55 15 0.7164

480x360 0.55 30 0.7153

480x360 0.65 0.15 0.7400

480x360 0.65 0.5 0.7396

480x360 0.65 0.75 0.7392

480x360 0.65 1 0.7381

480x360 0.65 1.5 0.7379

480x360 0.65 3 0.7426

480x360 0.65 10 0.7435

480x360 0.65 15 0.7387

480x360 0.65 30 0.7410

480x360 0.75 0.15 0.7491

480x360 0.75 0.5 0.7490

480x360 0.75 0.75 0.7490

480x360 0.75 1 0.7493

480x360 0.75 1.5 0.7492
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.75 3 0.7517

480x360 0.75 10 0.7500

480x360 0.75 15 0.7479

480x360 0.75 30 0.7410

480x360 0.85 0.15 0.7058

480x360 0.85 0.5 0.7056

480x360 0.85 0.75 0.7055

480x360 0.85 1 0.7057

480x360 0.85 1.5 0.7057

480x360 0.85 3 0.7081

480x360 0.85 10 0.7075

480x360 0.85 15 0.7047

480x360 0.85 30 0.7022

480x360 1 0.15 0.5955

480x360 1 0.5 0.5956

480x360 1 0.75 0.5956

480x360 1 1 0.5956

480x360 1 1.5 0.5986

480x360 1 3 0.5972

480x360 1 10 0.5943

480x360 1 15 0.5935

480x360 1 30 0.5910

Table 89.: Graph Cuts segmentation results using multiple parameter configurations
and the subset of images from Dataset4 which were captured under low
intensity lighting conditions.
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a.2 graph cuts for flooding-based segmentation

A complete evaluation of different parameter configurations for Graph Cuts segmen-
tation has been conducted with the aim to find the best arrangement when used as
initial segmentation for flooding-based segmentation. Obtained results are shown
hereafter for each dataset.

a.2.1 Dataset1

Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0 0.15 0.9000 9.4472

640x480 0 0.5 0.8980 9.1262

640x480 0 0.75 0.8952 9.1248

640x480 0 1 0.8941 9.1244

640x480 0 1.5 0.8932 9.1271

640x480 0 3 0.8916 9.1308

640x480 0 10 0.8864 9.1521

640x480 0 15 0.8824 9.1640

640x480 0 30 0.8799 9.1793

640x480 0.15 0.15 0.8952 9.2143

640x480 0.15 0.5 0.8925 9.1629

640x480 0.15 0.75 0.8916 9.1518

640x480 0.15 1 0.8918 9.1400

640x480 0.15 1.5 0.8900 9.1775

640x480 0.15 3 0.8868 9.1947

640x480 0.15 10 0.8814 9.2031

640x480 0.15 15 0.8798 9.9337

640x480 0.15 30 0.8774 9.8597

640x480 0.25 0.15 0.8895 9.6151

640x480 0.25 0.5 0.8887 9.9812

640x480 0.25 0.75 0.8874 9.8161

640x480 0.25 1 0.8769 9.5414

640x480 0.25 1.5 0.8862 9.2339

640x480 0.25 3 0.8825 9.2924

640x480 0.25 10 0.8744 9.3085

640x480 0.25 15 0.8730 9.3138

640x480 0.25 30 0.8696 9.3200

640x480 0.35 0.15 0.8811 9.3820

640x480 0.35 0.5 0.8828 9.3545

640x480 0.35 0.75 0.8817 9.3469

640x480 0.35 1 0.8813 9.3365

640x480 0.35 1.5 0.8810 9.3249

640x480 0.35 3 0.8772 9.3147

640x480 0.35 10 0.8684 9.3336

640x480 0.35 15 0.8662 9.3392
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Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.35 30 0.8599 9.3354

640x480 0.45 0.15 0.8726 9.3894

640x480 0.45 0.5 0.8726 9.2890

640x480 0.45 0.75 0.8709 9.2687

640x480 0.45 1 0.8713 9.2676

640x480 0.45 1.5 0.8708 9.2522

640x480 0.45 3 0.8669 9.2051

640x480 0.45 10 0.8576 9.2344

640x480 0.45 15 0.8547 9.2447

640x480 0.45 30 0.8500 9.2510

640x480 0.5 0.15 0.8664 9.2990

640x480 0.5 0.5 0.8657 9.2858

640x480 0.5 0.75 0.8637 9.2844

640x480 0.5 1 0.8655 9.2748

640x480 0.5 1.5 0.8650 9.2878

640x480 0.5 3 0.8619 9.2458

640x480 0.5 10 0.8513 9.2628

640x480 0.5 15 0.8488 9.2646

640x480 0.5 30 0.8460 9.2719

640x480 0.55 0.15 0.8620 9.2825

640x480 0.55 0.5 0.8617 9.2695

640x480 0.55 0.75 0.8612 9.2615

640x480 0.55 1 0.8617 9.2752

640x480 0.55 1.5 0.8596 9.2671

640x480 0.55 3 0.8561 9.2544

640x480 0.55 10 0.8439 9.2587

640x480 0.55 15 0.8413 9.2629

640x480 0.55 30 0.8377 9.2694

640x480 0.65 0.15 0.8481 9.3199

640x480 0.65 0.5 0.8480 9.2932

640x480 0.65 0.75 0.8467 9.3035

640x480 0.65 1 0.8461 9.2967

640x480 0.65 1.5 0.8461 9.2886

640x480 0.65 3 0.8424 9.2696

640x480 0.65 10 0.8266 9.2751

640x480 0.65 15 0.8255 9.2789

640x480 0.65 30 0.8230 9.2860

640x480 0.75 0.15 0.8317 9.3339

640x480 0.75 0.5 0.8312 9.3249

640x480 0.75 0.75 0.8301 9.3254

640x480 0.75 1 0.8298 9.3156

640x480 0.75 1.5 0.8287 9.3089

640x480 0.75 3 0.8244 9.2895

640x480 0.75 10 0.8100 9.2980
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Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.75 15 0.8055 9.3028

640x480 0.75 30 0.8003 9.3098

640x480 0.85 0.15 0.7966 9.3737

640x480 0.85 0.5 0.7964 9.3654

640x480 0.85 0.75 0.7957 9.3615

640x480 0.85 1 0.7938 9.3555

640x480 0.85 1.5 0.7902 9.3484

640x480 0.85 3 0.7817 9.3353

640x480 0.85 10 0.7656 9.3275

640x480 0.85 15 0.7611 9.3319

640x480 0.85 30 0.7579 9.3317

640x480 1 0.15 0.2935 9.4441

640x480 1 0.5 0.2919 9.4559

640x480 1 0.75 0.2902 9.4475

640x480 1 1 0.2884 9.4438

640x480 1 1.5 0.2882 9.4382

640x480 1 3 0.2922 9.4196

640x480 1 10 0.2847 9.4034

640x480 1 15 0.2837 9.4081

640x480 1 30 0.2832 9.4121

480x360 0 0.15 0.8969 5.4141

480x360 0 0.5 0.8973 5.4109

480x360 0 0.75 0.8961 5.4110

480x360 0 1 0.8945 5.4146

480x360 0 1.5 0.8936 5.4233

480x360 0 3 0.8900 5.4190

480x360 0 10 0.8852 5.4226

480x360 0 15 0.8844 5.4245

480x360 0 30 0.8765 5.4345

480x360 0.15 0.15 0.8913 5.4458

480x360 0.15 0.5 0.8898 5.4440

480x360 0.15 0.75 0.8911 5.4428

480x360 0.15 1 0.8913 5.4386

480x360 0.15 1.5 0.8899 5.4307

480x360 0.15 3 0.8877 5.4363

480x360 0.15 10 0.8817 5.4390

480x360 0.15 15 0.8794 5.4459

480x360 0.15 30 0.8751 5.4490

480x360 0.25 0.15 0.8859 5.4522

480x360 0.25 0.5 0.8853 5.4551

480x360 0.25 0.75 0.8852 5.4553

480x360 0.25 1 0.8857 5.4526

480x360 0.25 1.5 0.8848 5.4560

480x360 0.25 3 0.8803 5.4551
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Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.25 10 0.8758 5.4553

480x360 0.25 15 0.8746 5.4603

480x360 0.25 30 0.8686 5.4684

480x360 0.35 0.15 0.8796 5.4679

480x360 0.35 0.5 0.8803 5.4634

480x360 0.35 0.75 0.8824 5.4564

480x360 0.35 1 0.8822 5.4608

480x360 0.35 1.5 0.8803 5.4602

480x360 0.35 3 0.8742 5.6584

480x360 0.35 10 0.8682 5.8028

480x360 0.35 15 0.8671 5.8401

480x360 0.35 30 0.8607 5.64505

480x360 0.45 0.15 0.8726 5.9464

480x360 0.45 0.5 0.8713 5.8235

480x360 0.45 0.75 0.8707 5.8727

480x360 0.45 1 0.8707 5.8092

480x360 0.45 1.5 0.8723 5.5171

480x360 0.45 3 0.8663 5.8168

480x360 0.45 10 0.8589 5.8564

480x360 0.45 15 0.8544 5.5614

480x360 0.45 30 0.8472 5.5589

480x360 0.5 0.15 0.8672 5.5600

480x360 0.5 0.5 0.8662 5.5675

480x360 0.5 0.75 0.8660 5.5576

480x360 0.5 1 0.8658 5.5688

480x360 0.5 1.5 0.8645 5.5578

480x360 0.5 3 0.8609 5.5651

480x360 0.5 10 0.8520 5.5844

480x360 0.5 15 0.8481 5.5782

480x360 0.5 30 0.8409 5.5862

480x360 0.55 0.15 0.8622 5.5709

480x360 0.55 0.5 0.8589 5.5741

480x360 0.55 0.75 0.8591 5.5736

480x360 0.55 1 0.8578 5.5728

480x360 0.55 1.5 0.8567 5.5680

480x360 0.55 3 0.8552 5.5735

480x360 0.55 10 0.8454 5.5170

480x360 0.55 15 0.8401 5.5170

480x360 0.55 30 0.8377 5.5199

480x360 0.65 0.15 0.8454 5.5181

480x360 0.65 0.5 0.8420 5.5173

480x360 0.65 0.75 0.8422 5.5208

480x360 0.65 1 0.8418 5.8703

480x360 0.65 1.5 0.8425 5.5512
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Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.65 3 0.8401 5.6479

480x360 0.65 10 0.8319 5.6353

480x360 0.65 15 0.8273 5.6728

480x360 0.65 30 0.8209 5.66085

480x360 0.75 0.15 0.8242 5.5914

480x360 0.75 0.5 0.8210 5.6328

480x360 0.75 0.75 0.8209 5.7065

480x360 0.75 1 0.8208 5.6327

480x360 0.75 1.5 0.8213 5.6475

480x360 0.75 3 0.8190 6.8284

480x360 0.75 10 0.8113 7.1818

480x360 0.75 15 0.8072 6.0312

480x360 0.75 30 0.7986 6.1076

480x360 0.85 0.15 0.7855 6.1264

480x360 0.85 0.5 0.7840 6.0489

480x360 0.85 0.75 0.7836 5.7990

480x360 0.85 1 0.7831 5.8174

480x360 0.85 1.5 0.7819 5.7986

480x360 0.85 3 0.7819 5.6364

480x360 0.85 10 0.7684 5.6529

480x360 0.85 15 0.7592 5.6764

480x360 0.85 30 0.7516 5.6501

480x360 1 0.15 0.3215 5.7392

480x360 1 0.5 0.3246 5.7405

480x360 1 0.75 0.3241 5.7358

480x360 1 1 0.3218 5.7379

480x360 1 1.5 0.3215 5.7406

480x360 1 3 0.3144 5.7074

480x360 1 10 0.3060 5.6902

480x360 1 15 0.2997 5.7286

480x360 1 30 0.3059 5.7403

Table 90.: Flooding based segmentation results using Graph Cuts as initial segmenta-
tion and multiple parameter configurations over Dataset1.
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a.2.2 Dataset2

Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0 0.15 0.8934 9.5611

640x480 0 0.5 0.8934 9.6802

640x480 0 0.75 0.8932 9.7355

640x480 0 1 0.8929 9.7273

640x480 0 1.5 0.8880 9.7401

640x480 0 3 0.8872 9.7523

640x480 0 10 0.8837 9.7502

640x480 0 15 0.8839 9.7375

640x480 0 30 0.8810 9.7460

640x480 0.15 0.15 0.9026 9.7663

640x480 0.15 0.5 0.9017 9.7895

640x480 0.15 0.75 0.9017 9.7874

640x480 0.15 1 0.9019 10.5735

640x480 0.15 1.5 0.9018 9.7487

640x480 0.15 3 0.9021 10.3902

640x480 0.15 10 0.8997 9.7472

640x480 0.15 15 0.8989 9.7454

640x480 0.15 30 0.8965 9.7434

640x480 0.25 0.15 0.9041 9.7648

640x480 0.25 0.5 0.9041 9.8057

640x480 0.25 0.75 0.9041 9.8410

640x480 0.25 1 0.9040 9.8357

640x480 0.25 1.5 0.9040 9.8089

640x480 0.25 3 0.9041 11.1102

640x480 0.25 10 0.9024 10.8051

640x480 0.25 15 0.9011 11.3709

640x480 0.25 30 0.8988 11.2345

640x480 0.35 0.15 0.9072 10.5827

640x480 0.35 0.5 0.9072 10.6757

640x480 0.35 0.75 0.9072 10.5332

640x480 0.35 1 0.9071 10.8905

640x480 0.35 1.5 0.9071 10.7931

640x480 0.35 3 0.9068 11.2117

640x480 0.35 10 0.9055 9.8653

640x480 0.35 15 0.9045 10.3245

640x480 0.35 30 0.9025 11.3028

640x480 0.45 0.15 0.9088 9.7528

640x480 0.45 0.5 0.9088 9.7779

640x480 0.45 0.75 0.9090 9.7628

640x480 0.45 1 0.9090 9.7795

640x480 0.45 1.5 0.9090 9.7707

640x480 0.45 3 0.9087 9.7749
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Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.45 10 0.9076 9.7791

640x480 0.45 15 0.9076 9.7868

640x480 0.45 30 0.9043 9.7887

640x480 0.5 0.15 0.9095 9.7828

640x480 0.5 0.5 0.9114 9.7794

640x480 0.5 0.75 0.9115 9.7734

640x480 0.5 1 0.9115 9.7847

640x480 0.5 1.5 0.9114 9.7937

640x480 0.5 3 0.9122 9.8199

640x480 0.5 10 0.9099 9.8023

640x480 0.5 15 0.9083 9.7886

640x480 0.5 30 0.9052 9.7969

640x480 0.55 0.15 0.9036 9.7985

640x480 0.55 0.5 0.9049 9.7883

640x480 0.55 0.75 0.9048 10.2877

640x480 0.55 1 0.9048 10.8265

640x480 0.55 1.5 0.9047 11.3334

640x480 0.55 3 0.9044 11.3159

640x480 0.55 10 0.9033 11.5653

640x480 0.55 15 0.9022 10.7665

640x480 0.55 30 0.8997 10.3259

640x480 0.65 0.15 0.9030 10.0063

640x480 0.65 0.5 0.9029 9.8503

640x480 0.65 0.75 0.9029 10.1301

640x480 0.65 1 0.9028 9.8327

640x480 0.65 1.5 0.9027 10.7660

640x480 0.65 3 0.9023 11.6473

640x480 0.65 10 0.9001 11.6250

640x480 0.65 15 0.8989 11.7554

640x480 0.65 30 0.8947 10.1274

640x480 0.75 0.15 0.8851 9.9342

640x480 0.75 0.5 0.8847 9.9113

640x480 0.75 0.75 0.8847 9.9199

640x480 0.75 1 0.8846 9.8954

640x480 0.75 1.5 0.8849 9.8916

640x480 0.75 3 0.8848 9.9016

640x480 0.75 10 0.8822 9.8982

640x480 0.75 15 0.8808 9.8918

640x480 0.75 30 0.8777 9.8861

640x480 0.85 0.15 0.8341 11.2415

640x480 0.85 0.5 0.8334 11.3565

640x480 0.85 0.75 0.8337 10.1059

640x480 0.85 1 0.8337 10.6384

640x480 0.85 1.5 0.8336 10.7300
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Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.85 3 0.8334 10.0954

640x480 0.85 10 0.8334 10.0943

640x480 0.85 15 0.8331 10.1007

640x480 0.85 30 0.8267 11.3902

640x480 1 0.15 0.7491 11.3475

640x480 1 0.5 0.7491 10.3036

640x480 1 0.75 0.7491 10.2797

640x480 1 1 0.7490 35.9366

640x480 1 1.5 0.7489 11.7524

640x480 1 3 0.7487 10.9261

640x480 1 10 0.7469 10.3100

640x480 1 15 0.7465 10.2669

640x480 1 30 0.7416 10.2869

480x360 0 0.15 0.8962 6.1629

480x360 0 0.5 0.8958 5.7087

480x360 0 0.75 0.8953 5.6953

480x360 0 1 0.8949 5.6149

480x360 0 1.5 0.8946 5.6184

480x360 0 3 0.8927 5.6188

480x360 0 10 0.8842 5.6192

480x360 0 15 0.8822 5.6085

480x360 0 30 0.8808 5.6104

480x360 0.15 0.15 0.9036 5.6348

480x360 0.15 0.5 0.9034 5.6289

480x360 0.15 0.75 0.9033 5.6271

480x360 0.15 1 0.9032 5.6292

480x360 0.15 1.5 0.9031 5.6270

480x360 0.15 3 0.9029 5.6261

480x360 0.15 10 0.8998 5.6312

480x360 0.15 15 0.8982 5.6312

480x360 0.15 30 0.8950 5.6312

480x360 0.25 0.15 0.9056 5.6354

480x360 0.25 0.5 0.9053 5.6407

480x360 0.25 0.75 0.9053 5.6351

480x360 0.25 1 0.9061 5.6389

480x360 0.25 1.5 0.9054 5.6403

480x360 0.25 3 0.9052 5.6424

480x360 0.25 10 0.9031 5.6456

480x360 0.25 15 0.9016 5.6550

480x360 0.25 30 0.8985 5.6414

480x360 0.35 0.15 0.9082 5.6453

480x360 0.35 0.5 0.9082 5.6450

480x360 0.35 0.75 0.9083 5.6468

480x360 0.35 1 0.9082 5.6482
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Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.35 1.5 0.9081 5.6456

480x360 0.35 3 0.9077 5.6457

480x360 0.35 10 0.9054 5.6475

480x360 0.35 15 0.9050 5.6380

480x360 0.35 30 0.9019 5.6444

480x360 0.45 0.15 0.9094 5.6525

480x360 0.45 0.5 0.9094 5.6485

480x360 0.45 0.75 0.9093 5.6632

480x360 0.45 1 0.9093 5.6649

480x360 0.45 1.5 0.9092 5.6643

480x360 0.45 3 0.9088 5.6654

480x360 0.45 10 0.9065 5.6610

480x360 0.45 15 0.9051 5.6562

480x360 0.45 30 0.9017 5.6512

480x360 0.5 0.15 0.9105 5.6625

480x360 0.5 0.5 0.9104 5.6673

480x360 0.5 0.75 0.9103 5.7548

480x360 0.5 1 0.9102 5.7725

480x360 0.5 1.5 0.9101 5.6719

480x360 0.5 3 0.9098 5.6659

480x360 0.5 10 0.9093 5.6685

480x360 0.5 15 0.9065 5.6669

480x360 0.5 30 0.9038 5.6646

480x360 0.55 0.15 0.9087 5.6780

480x360 0.55 0.5 0.9106 5.6737

480x360 0.55 0.75 0.9106 5.6824

480x360 0.55 1 0.9105 5.6781

480x360 0.55 1.5 0.9105 5.6760

480x360 0.55 3 0.9111 5.6750

480x360 0.55 10 0.9094 5.6789

480x360 0.55 15 0.9077 5.6788

480x360 0.55 30 0.9044 5.6748

480x360 0.65 0.15 0.9064 5.7036

480x360 0.65 0.5 0.9063 5.7114

480x360 0.65 0.75 0.9063 5.7088

480x360 0.65 1 0.9062 5.7106

480x360 0.65 1.5 0.9061 5.7091

480x360 0.65 3 0.9052 5.7080

480x360 0.65 10 0.9031 5.7265

480x360 0.65 15 0.8994 5.7071

480x360 0.65 30 0.8960 5.6881

480x360 0.75 0.15 0.8983 5.7950

480x360 0.75 0.5 0.8982 5.7343

480x360 0.75 0.75 0.8984 5.7275
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Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.75 1 0.8982 5.7278

480x360 0.75 1.5 0.8981 5.7312

480x360 0.75 3 0.8975 5.7275

480x360 0.75 10 0.8950 5.7319

480x360 0.75 15 0.8924 5.7360

480x360 0.75 30 0.8881 5.7312

480x360 0.85 0.15 0.8558 5.8282

480x360 0.85 0.5 0.8558 5.8302

480x360 0.85 0.75 0.8557 5.8405

480x360 0.85 1 0.8556 5.8352

480x360 0.85 1.5 0.8560 5.8320

480x360 0.85 3 0.8569 5.8362

480x360 0.85 10 0.8550 5.8398

480x360 0.85 15 0.8535 5.8385

480x360 0.85 30 0.8508 5.8370

480x360 1 0.15 0.8026 5.9631

480x360 1 0.5 0.8026 5.9652

480x360 1 0.75 0.8021 5.9666

480x360 1 1 0.8020 5.9706

480x360 1 1.5 0.8019 5.9619

480x360 1 3 0.8014 5.9565

480x360 1 10 0.7996 5.9634

480x360 1 15 0.7993 5.9621

480x360 1 30 0.7948 5.9701

Table 91.: Flooding based segmentation results using Graph Cuts as initial segmenta-
tion and multiple parameter configurations over Dataset2.
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a.2.3 Dataset3

Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0 0.15 0.7631 9.5945

640x480 0 0.5 0.7323 10.1590

640x480 0 0.75 0.7624 9.2242

640x480 0 1 0.7621 12.6461

640x480 0 1.5 0.7630 10.6195

640x480 0 3 0.7642 15.0753

640x480 0 10 0.7668 15.1436

640x480 0 15 0.7677 15.2305

640x480 0 30 0.7669 15.2305

640x480 0.15 0.15 0.7846 14.7104

640x480 0.15 0.5 0.7842 14.6424

640x480 0.15 0.75 0.7839 14.6532

640x480 0.15 1 0.7839 14.6585

640x480 0.15 1.5 0.7838 14.6672

640x480 0.15 3 0.7838 14.6733

640x480 0.15 10 0.7835 14.6865

640x480 0.15 15 0.7841 14.7033

640x480 0.15 30 0.7845 14.7831

640x480 0.25 0.15 0.7979 14.8354

640x480 0.25 0.5 0.7975 15.0942

640x480 0.25 0.75 0.7973 14.8632

640x480 0.25 1 0.7973 14.8647

640x480 0.25 1.5 0.7970 14.9285

640x480 0.25 3 0.7970 14.9872

640x480 0.25 10 0.7955 14.7683

640x480 0.25 15 0.7958 14.7856

640x480 0.25 30 0.7964 14.8362

640x480 0.35 0.15 0.8075 14.8185

640x480 0.35 0.5 0.8074 14.7956

640x480 0.35 0.75 0.8074 14.9589

640x480 0.35 1 0.8074 14.8864

640x480 0.35 1.5 0.8074 14.9543

640x480 0.35 3 0.8071 14.9117

640x480 0.35 10 0.8054 14.9151

640x480 0.35 15 0.8054 14.8531

640x480 0.35 30 0.8050 14.8938

640x480 0.45 0.15 0.8147 14.8757

640x480 0.45 0.5 0.8146 14.9307

640x480 0.45 0.75 0.8146 14.9410

640x480 0.45 1 0.8146 14.9718

640x480 0.45 1.5 0.8146 14.9742

640x480 0.45 3 0.8143 14.9967
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Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.45 10 0.8124 14.9950

640x480 0.45 15 0.8108 15.1228

640x480 0.45 30 0.8089 15.1189

640x480 0.5 0.15 0.8145 15.2039

640x480 0.5 0.5 0.8146 15.1192

640x480 0.5 0.75 0.8147 15.1448

640x480 0.5 1 0.8148 15.0852

640x480 0.5 1.5 0.8151 15.0869

640x480 0.5 3 0.8148 15.0464

640x480 0.5 10 0.8121 15.0933

640x480 0.5 15 0.8112 15.1123

640x480 0.5 30 0.8093 15.1108

640x480 0.55 0.15 0.8129 13.4528

640x480 0.55 0.5 0.8128 13.4472

640x480 0.55 0.75 0.8128 13.4462

640x480 0.55 1 0.8127 13.4583

640x480 0.55 1.5 0.8127 13.6249

640x480 0.55 3 0.8122 13.4716

640x480 0.55 10 0.8103 13.4690

640x480 0.55 15 0.8094 13.4603

640x480 0.55 30 0.8079 13.4639

640x480 0.65 0.15 0.8033 13.4528

640x480 0.65 0.5 0.8033 13.4472

640x480 0.65 0.75 0.8033 13.4462

640x480 0.65 1 0.8032 13.4583

640x480 0.65 1.5 0.8031 13.6249

640x480 0.65 3 0.8026 13.7416

640x480 0.65 10 0.8009 13.4690

640x480 0.65 15 0.8002 13.4603

640x480 0.65 30 0.7986 13.4639

640x480 0.75 0.15 0.7834 13.7013

640x480 0.75 0.5 0.7833 13.5736

640x480 0.75 0.75 0.7833 13.5715

640x480 0.75 1 0.7831 13.5724

640x480 0.75 1.5 0.7832 13.5823

640x480 0.75 3 0.7829 13.5807

640x480 0.75 10 0.7816 13.7416

640x480 0.75 15 0.7800 13.5966

640x480 0.75 30 0.7776 13.6417

640x480 0.85 0.15 0.7444 13.7597

640x480 0.85 0.5 0.7443 13.7933

640x480 0.85 0.75 0.7442 13.7633

640x480 0.85 1 0.7441 13.8040

640x480 0.85 1.5 0.7440 13.7668
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Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.85 3 0.7432 13.7795

640x480 0.85 10 0.7421 13.8067

640x480 0.85 15 0.7401 13.7525

640x480 0.85 30 0.7363 13.7505

640x480 1 0.15 0.6408 13.9801

640x480 1 0.5 0.6407 14.0079

640x480 1 0.75 0.6406 13.9960

640x480 1 1 0.6405 14.1738

640x480 1 1.5 0.6401 14.0259

640x480 1 3 0.6393 14.0570

640x480 1 10 0.6364 14.0074

640x480 1 15 0.6352 14.0392

640x480 1 30 0.6315 14.0254

480x360 0 0.15 0.7604 6.2487

480x360 0 0.5 0.7608 6.4849

480x360 0 0.75 0.7613 6.0273

480x360 0 1 0.7612 5.6648

480x360 0 1.5 0.7611 6.2391

480x360 0 3 0.7629 5.5624

480x360 0 10 0.7632 5.4941

480x360 0 15 0.7627 5.4298

480x360 0 30 0.7606 5.3267

480x360 0.15 0.15 0.6566 5.2729

480x360 0.15 0.5 0.6539 5.4385

480x360 0.15 0.75 0.6544 5.3259

480x360 0.15 1 0.6536 5.4628

480x360 0.15 1.5 0.6524 5.5300

480x360 0.15 3 0.7788 5.7401

480x360 0.15 10 0.7797 5.7067

480x360 0.15 15 0.7802 5.5674

480x360 0.15 30 0.7805 5.5667

480x360 0.25 0.15 0.6737 5.5621

480x360 0.25 0.5 0.6705 5.6507

480x360 0.25 0.75 0.6701 5.6418

480x360 0.25 1 0.6695 6.5981

480x360 0.25 1.5 0.6695 6.4710

480x360 0.25 3 0.7923 5.3020

480x360 0.25 10 0.7911 5.2937

480x360 0.25 15 0.7921 6.2078

480x360 0.25 30 0.7921 6.6490

480x360 0.35 0.15 0.6880 5.2024

480x360 0.35 0.5 0.6876 5.1660

480x360 0.35 0.75 0.6872 5.2019

480x360 0.35 1 0.6875 5.2080
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Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.35 1.5 0.6857 5.2048

480x360 0.35 3 0.8028 5.1480

480x360 0.35 10 0.8013 5.2307

480x360 0.35 15 0.8012 5.1826

480x360 0.35 30 0.8002 5.1452

480x360 0.45 0.15 0.7028 5.1550

480x360 0.45 0.5 0.7024 5.1837

480x360 0.45 0.75 0.7013 5.1591

480x360 0.45 1 0.6995 5.1537

480x360 0.45 1.5 0.6993 5.1542

480x360 0.45 3 0.8106 5.1683

480x360 0.45 10 0.8082 5.1747

480x360 0.45 15 0.8078 5.2289

480x360 0.45 30 0.8053 5.2386

480x360 0.5 0.15 0.7043 5.2002

480x360 0.5 0.5 0.7016 5.1902

480x360 0.5 0.75 0.7013 5.2056

480x360 0.5 1 0.7007 5.1960

480x360 0.5 1.5 0.6996 5.1799

480x360 0.5 3 0.8120 5.1747

480x360 0.5 10 0.8094 5.2002

480x360 0.5 15 0.8085 5.1970

480x360 0.5 30 0.8065 5.2289

480x360 0.55 0.15 0.6958 5.2276

480x360 0.55 0.5 0.6964 5.2502

480x360 0.55 0.75 0.6949 5.2401

480x360 0.55 1 0.6944 5.2365

480x360 0.55 1.5 0.6945 5.2294

480x360 0.55 3 0.8114 5.2214

480x360 0.55 10 0.8094 5.2367

480x360 0.55 15 0.8080 5.2139

480x360 0.55 30 0.8060 5.2405

480x360 0.65 0.15 0.6905 5.3006

480x360 0.65 0.5 0.6892 5.3103

480x360 0.65 0.75 0.6897 5.2875

480x360 0.65 1 0.6893 5.2732

480x360 0.65 1.5 0.6873 5.2885

480x360 0.65 3 0.8059 5.2677

480x360 0.65 10 0.8042 5.2750

480x360 0.65 15 0.8030 5.2718

480x360 0.65 30 0.8010 5.3086

480x360 0.75 0.15 0.6781 5.3420

480x360 0.75 0.5 0.6764 5.3308

480x360 0.75 0.75 0.6764 5.3069
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Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.75 1 0.6773 5.3192

480x360 0.75 1.5 0.6734 5.3101

480x360 0.75 3 0.7920 5.3186

480x360 0.75 10 0.7897 5.3319

480x360 0.75 15 0.7878 5.3351

480x360 0.75 30 0.7847 5.3182

480x360 0.85 0.15 0.6296 5.4071

480x360 0.85 0.5 0.6288 5.4246

480x360 0.85 0.75 0.6266 5.4059

480x360 0.85 1 0.6252 5.4276

480x360 0.85 1.5 0.6241 5.4060

480x360 0.85 3 0.7669 5.3988

480x360 0.85 10 0.7635 5.4178

480x360 0.85 15 0.7613 5.4262

480x360 0.85 30 0.7571 5.4135

480x360 1 0.15 0.5671 5.5514

480x360 1 0.5 0.5670 5.5122

480x360 1 0.75 0.5664 5.5250

480x360 1 1 0.5661 5.5247

480x360 1 1.5 0.5658 5.5003

480x360 1 3 0.6988 5.4872

480x360 1 10 0.6957 5.5149

480x360 1 15 0.6937 5.5331

480x360 1 30 0.6899 5.5133

Table 92.: Flooding based segmentation results using Graph Cuts as initial segmenta-
tion and multiple parameter configurations over Dataset3.
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a.2.4 Dataset4

Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0 0.15 0.5502 12.7085

640x480 0 0.5 0.5505 12.5533

640x480 0 0.75 0.5506 12.5937

640x480 0 1 0.5505 12.5619

640x480 0 1.5 0.5504 12.5494

640x480 0 3 0.5501 12.5541

640x480 0 10 0.5490 12.5559

640x480 0 15 0.5490 12.5597

640x480 0 30 0.5484 12.7931

640x480 0.15 0.15 0.5618 12.7728

640x480 0.15 0.5 0.5620 12.2424

640x480 0.15 0.75 0.5622 12.1539

640x480 0.15 1 0.5624 12.4423

640x480 0.15 1.5 0.5626 12.5529

640x480 0.15 3 0.5631 12.5456

640x480 0.15 10 0.5633 12.5518

640x480 0.15 15 0.5631 12.5493

640x480 0.15 30 0.5627 12.5404

640x480 0.25 0.15 0.5706 12.5398

640x480 0.25 0.5 0.5708 12.5811

640x480 0.25 0.75 0.5709 12.5390

640x480 0.25 1 0.5711 12.5222

640x480 0.25 1.5 0.5713 12.5291

640x480 0.25 3 0.5718 12.5264

640x480 0.25 10 0.5725 12.5125

640x480 0.25 15 0.5725 12.5223

640x480 0.25 30 0.5722 12.5250

640x480 0.35 0.15 0.5760 12.5187

640x480 0.35 0.5 0.5762 12.5440

640x480 0.35 0.75 0.5764 12.5131

640x480 0.35 1 0.5765 12.5171

640x480 0.35 1.5 0.5768 14.8339

640x480 0.35 3 0.5774 12.6477

640x480 0.35 10 0.5785 14.2229

640x480 0.35 15 0.5787 15.5507

640x480 0.35 30 005788 14.7068

640x480 0.45 0.15 0.5859 14.9660

640x480 0.45 0.5 0.5861 14.3942

640x480 0.45 0.75 0.5863 14.7251

640x480 0.45 1 0.5864 15.4286

640x480 0.45 1.5 0.5867 14.5070

640x480 0.45 3 0.5872 12.9714
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Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.45 10 0.5884 13.8318

640x480 0.45 15 0.5885 12.7667

640x480 0.45 30 0.5885 12.5442

640x480 0.5 0.15 0.5891 12.5474

640x480 0.5 0.5 0.5893 14.4069

640x480 0.5 0.75 0.5895 15.7388

640x480 0.5 1 0.5896 12.7004

640x480 0.5 1.5 0.5899 12.6175

640x480 0.5 3 0.5905 12.9887

640x480 0.5 10 0.5916 13.8670

640x480 0.5 15 0.5918 14.4771

640x480 0.5 30 0.5918 14.3951

640x480 0.55 0.15 0.5911 14.3848

640x480 0.55 0.5 0.5913 15.2052

640x480 0.55 0.75 0.5915 14.1069

640x480 0.55 1 0.5916 13.8463

640x480 0.55 1.5 0.5919 14.4827

640x480 0.55 3 0.5925 13.0389

640x480 0.55 10 0.5936 12.9825

640x480 0.55 15 0.5939 14.7365

640x480 0.55 30 0.5941 14.6152

640x480 0.65 0.15 0.5980 13.8788

640x480 0.65 0.5 0.5981 14.8040

640x480 0.65 0.75 0.5982 12.5426

640x480 0.65 1 0.5983 12.5633

640x480 0.65 1.5 0.5985 12.5460

640x480 0.65 3 0.5990 12.5349

640x480 0.65 10 0.5999 12.5268

640x480 0.65 15 0.6001 12.5397

640x480 0.65 30 0.6003 12.5342

640x480 0.75 0.15 0.6030 12.5407

640x480 0.75 0.5 0.6032 12.5449

640x480 0.75 0.75 0.6033 12.5504

640x480 0.75 1 0.6034 12.5307

640x480 0.75 1.5 0.6036 12.5571

640x480 0.75 3 0.6039 12.5362

640x480 0.75 10 0.6046 12.5370

640x480 0.75 15 0.6047 12.5385

640x480 0.75 30 0.6046 12.5406

640x480 0.85 0.15 0.5947 12.5661

640x480 0.85 0.5 0.5948 12.5224

640x480 0.85 0.75 0.5949 12.5137

640x480 0.85 1 0.5949 12.7208

640x480 0.85 1.5 0.5951 12.5076
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Image Size (px.) Balancing Terms Lambda F-Score Average time

640x480 0.85 3 0.5954 12.5116

640x480 0.85 10 0.5961 12.5210

640x480 0.85 15 0.5963 12.5285

640x480 0.85 30 0.5962 12.5188

640x480 1 0.15 0.5598 12.4826

640x480 1 0.5 0.5598 12.4851

640x480 1 0.75 0.5598 12.4782

640x480 1 1 0.5598 12.4723

640x480 1 1.5 0.5598 12.4868

640x480 1 3 0.5598 12.4885

640x480 1 10 0.5595 12.4704

640x480 1 15 0.5592 12.4704

640x480 1 30 0.5582 12.4785

480x360 0 0.15 0.5579 7.4426

480x360 0 0.5 0.5583 7.4906

480x360 0 0.75 0.5584 7.4539

480x360 0 1 0.5584 7.4499

480x360 0 1.5 0.5584 7.4439

480x360 0 3 0.5581 7.4617

480x360 0 10 0.5571 7.4576

480x360 0 15 0.5567 7.4660

480x360 0 30 0.5560 7.4649

480x360 0.15 0.15 0.5697 7.4597

480x360 0.15 0.5 0.5700 7.4429

480x360 0.15 0.75 0.5702 7.4416

480x360 0.15 1 0.5704 7.4503

480x360 0.15 1.5 0.5707 7.4515

480x360 0.15 3 0.5712 7.4577

480x360 0.15 10 0.5715 7.4558

480x360 0.15 15 0.5714 7.4606

480x360 0.15 30 0.5709 7.4693

480x360 0.25 0.15 0.5770 7.4541

480x360 0.25 0.5 0.5772 7.4468

480x360 0.25 0.75 0.5774 7.4451

480x360 0.25 1 0.5775 7.4493

480x360 0.25 1.5 0.5778 7.4518

480x360 0.25 3 0.5784 7.4556

480x360 0.25 10 0.5794 7.4543

480x360 0.25 15 0.5795 7.4547

480x360 0.25 30 0.5795 7.4722

480x360 0.35 0.15 0.5847 7.4483

480x360 0.35 0.5 0.5750 7.4499

480x360 0.35 0.75 0.5752 7.4562

480x360 0.35 1 0.5853 7.4592
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Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.35 1.5 0.5855 7.4567

480x360 0.35 3 0.5855 7.4629

480x360 0.35 10 0.5861 7.4616

480x360 0.35 15 0.5875 7.4599

480x360 0.35 30 0.5877 7.4578

480x360 0.45 0.15 0.5939 7.4533

480x360 0.45 0.5 0.5941 7.4592

480x360 0.45 0.75 0.5942 7.4528

480x360 0.45 1 0.5943 7.4534

480x360 0.45 1.5 0.5945 7.4493

480x360 0.45 3 0.5950 7.4437

480x360 0.45 10 0.5963 7.4451

480x360 0.45 15 0.5966 7.4577

480x360 0.45 30 0.5967 7.4540

480x360 0.5 0.15 0.5977 7.4632

480x360 0.5 0.5 0.5980 7.4649

480x360 0.5 0.75 0.5981 7.4645

480x360 0.5 1 0.5982 7.4513

480x360 0.5 1.5 0.5985 7.4488

480x360 0.5 3 0.5990 7.4500

480x360 0.5 10 0.6002 7.4441

480x360 0.5 15 0.6005 7.4445

480x360 0.5 30 0.6007 7.4583

480x360 0.55 0.15 0.6013 7.4512

480x360 0.55 0.5 0.6015 7.4516

480x360 0.55 0.75 0.6017 7.4567

480x360 0.55 1 0.6018 7.4558

480x360 0.55 1.5 0.6020 7.4582

480x360 0.55 3 0.6025 7.4531

480x360 0.55 10 0.6037 7.4558

480x360 0.55 15 0.6039 7.4640

480x360 0.55 30 0.6041 7.4606

480x360 0.65 0.15 0.6103 7.4672

480x360 0.65 0.5 0.6104 7.4648

480x360 0.65 0.75 0.6105 7.4707

480x360 0.65 1 0.6106 7.4636

480x360 0.65 1.5 0.6108 7.4844

480x360 0.65 3 0.6111 7.4786

480x360 0.65 10 0.6119 7.6496

480x360 0.65 15 0.6121 7.4644

480x360 0.65 30 0.6121 7.4672

480x360 0.75 0.15 0.6140 7.4616

480x360 0.75 0.5 0.6142 7.4568

480x360 0.75 0.75 0.6143 7.4672
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Image Size (px.) Balancing Terms Lambda F-Score Average time

480x360 0.75 1 0.6143 7.4584

480x360 0.75 1.5 0.6145 7.4834

480x360 0.75 3 0.6147 7.4578

480x360 0.75 10 0.6151 7.4581

480x360 0.75 15 0.6151 7.4561

480x360 0.75 30 0.6151 7.4622

480x360 0.85 0.15 0.6069 7.4487

480x360 0.85 0.5 0.6070 7.4443

480x360 0.85 0.75 0.6070 7.4435

480x360 0.85 1 0.6070 7.4471

480x360 0.85 1.5 0.6071 7.4330

480x360 0.85 3 0.6072 7.4284

480x360 0.85 10 0.6077 7.4259

480x360 0.85 15 0.6078 7.4310

480x360 0.85 30 0.6077 7.4309

480x360 1 0.15 0.5765 7.4023

480x360 1 0.5 0.5765 7.4036

480x360 1 0.75 0.5765 7.4039

480x360 1 1 0.5765 7.3931

480x360 1 1.5 0.5765 7.3986

480x360 1 3 0.5764 7.3983

480x360 1 10 0.5759 7.4000

480x360 1 15 0.5755 7.3953

480x360 1 30 0.5746 7.3952

Table 93.: Flooding based segmentation results using Graph Cuts as initial segmenta-
tion and multiple parameter configurations over Dataset4.
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0 0.15 0.6133

640x480 0 0.5 0.6136

640x480 0 0.75 0.6136

640x480 0 1 0.6137

640x480 0 1.5 0.6139

640x480 0 3 0.6136

640x480 0 10 0.6123

640x480 0 15 0.6119

640x480 0 30 0.6111

640x480 0.15 0.15 0.6254

640x480 0.15 0.5 0.6255

640x480 0.15 0.75 0.6256

640x480 0.15 1 0.6257

640x480 0.15 1.5 0.6259

640x480 0.15 3 0.6263

640x480 0.15 10 0.6267

640x480 0.15 15 0.6264

640x480 0.15 30 0.6258

640x480 0.25 0.15 0.6314

640x480 0.25 0.5 0.6317

640x480 0.25 0.75 0.6319

640x480 0.25 1 0.6320

640x480 0.25 1.5 0.6323

640x480 0.25 3 0.6329

640x480 0.25 10 0.6339

640x480 0.25 15 0.6341

640x480 0.25 30 0.6338

640x480 0.35 0.15 0.6358

640x480 0.35 0.5 0.6361

640x480 0.35 0.75 0.6364

640x480 0.35 1 0.6366

640x480 0.35 1.5 0.6369

640x480 0.35 3 0.6377

640x480 0.35 10 0.6388

640x480 0.35 15 0.6391

640x480 0.35 30 0.6390

640x480 0.45 0.15 0.6454

640x480 0.45 0.5 0.6455

640x480 0.45 0.75 0.6457

640x480 0.45 1 0.6458

640x480 0.45 1.5 0.6460

640x480 0.45 3 0.6465

640x480 0.45 10 0.6476

640x480 0.45 15 0.6478
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.45 30 0.6476

640x480 0.5 0.15 0.6470

640x480 0.5 0.5 0.6471

640x480 0.5 0.75 0.6472

640x480 0.5 1 0.6473

640x480 0.5 1.5 0.6475

640x480 0.5 3 0.6479

640x480 0.5 10 0.6488

640x480 0.5 15 0.6490

640x480 0.5 30 0.6488

640x480 0.55 0.15 0.6463

640x480 0.55 0.5 0.6465

640x480 0.55 0.75 0.6467

640x480 0.55 1 0.6468

640x480 0.55 1.5 0.6471

640x480 0.55 3 0.6477

640x480 0.55 10 0.6488

640x480 0.55 15 0.6490

640x480 0.55 30 0.6490

640x480 0.65 0.15 0.6489

640x480 0.65 0.5 0.6490

640x480 0.65 0.75 0.6490

640x480 0.65 1 0.6491

640x480 0.65 1.5 0.6491

640x480 0.65 3 0.6495

640x480 0.65 10 0.6503

640x480 0.65 15 0.6505

640x480 0.65 30 0.6504

640x480 0.75 0.15 0.6453

640x480 0.75 0.5 0.6454

640x480 0.75 0.75 0.6456

640x480 0.75 1 0.6457

640x480 0.75 1.5 0.6459

640x480 0.75 3 0.6464

640x480 0.75 10 0.6476

640x480 0.75 15 0.6480

640x480 0.75 30 0.6481

640x480 0.85 0.15 0.6307

640x480 0.85 0.5 0.6307

640x480 0.85 0.75 0.6308

640x480 0.85 1 0.6308

640x480 0.85 1.5 0.6309

640x480 0.85 3 0.6312

640x480 0.85 10 0.6316
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.85 15 0.6317

640x480 0.85 30 0.6315

640x480 1 0.15 0.5799

640x480 1 0.5 0.5799

640x480 1 0.75 0.5799

640x480 1 1 0.5799

640x480 1 1.5 0.5798

640x480 1 3 0.5797

640x480 1 10 0.5790

640x480 1 15 0.5784

640x480 1 30 0.5769

480x360 0 0.15 0.6116

480x360 0 0.5 0.6117

480x360 0 0.75 0.6119

480x360 0 1 0.6120

480x360 0 1.5 0.6120

480x360 0 3 0.6115

480x360 0 10 0.6101

480x360 0 15 0.6094

480x360 0 30 0.6088

480x360 0.15 0.15 0.6245

480x360 0.15 0.5 0.6247

480x360 0.15 0.75 0.6247

480x360 0.15 1 0.6248

480x360 0.15 1.5 0.6249

480x360 0.15 3 0.6253

480x360 0.15 10 0.6254

480x360 0.15 15 0.6251

480x360 0.15 30 0.6242

480x360 0.25 0.15 0.6309

480x360 0.25 0.5 0.6312

480x360 0.25 0.75 0.6313

480x360 0.25 1 0.6315

480x360 0.25 1.5 0.6317

480x360 0.25 3 0.6323

480x360 0.25 10 0.6334

480x360 0.25 15 0.6335

480x360 0.25 30 0.6330

480x360 0.35 0.15 0.6384

480x360 0.35 0.5 0.6388

480x360 0.35 0.75 0.6390

480x360 0.35 1 0.6392

480x360 0.35 1.5 0.6394

480x360 0.35 3 0.6400
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.35 10 0.6409

480x360 0.35 15 0.6412

480x360 0.35 30 0.6409

480x360 0.45 0.15 0.6504

480x360 0.45 0.5 0.6504

480x360 0.45 0.75 0.6505

480x360 0.45 1 0.6506

480x360 0.45 1.5 0.6507

480x360 0.45 3 0.6511

480x360 0.45 10 0.6520

480x360 0.45 15 0.6521

480x360 0.45 30 0.6515

480x360 0.5 0.15 0.6527

480x360 0.5 0.5 0.6531

480x360 0.5 0.75 0.6532

480x360 0.5 1 0.6534

480x360 0.5 1.5 0.6537

480x360 0.5 3 0.6542

480x360 0.5 10 0.6551

480x360 0.5 15 0.6551

480x360 0.5 30 0.6547

480x360 0.55 0.15 0.6558

480x360 0.55 0.5 0.6561

480x360 0.55 0.75 0.6563

480x360 0.55 1 0.6565

480x360 0.55 1.5 0.6567

480x360 0.55 3 0.6572

480x360 0.55 10 0.6579

480x360 0.55 15 0.6580

480x360 0.55 30 0.6576

480x360 0.65 0.15 0.6652

480x360 0.65 0.5 0.6653

480x360 0.65 0.75 0.6653

480x360 0.65 1 0.6654

480x360 0.65 1.5 0.6654

480x360 0.65 3 0.6656

480x360 0.65 10 0.6658

480x360 0.65 15 0.6656

480x360 0.65 30 0.6649

480x360 0.75 0.15 0.6614

480x360 0.75 0.5 0.6615

480x360 0.75 0.75 0.6616

480x360 0.75 1 0.6617

480x360 0.75 1.5 0.6618
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.75 3 0.6619

480x360 0.75 10 0.6621

480x360 0.75 15 0.6618

480x360 0.75 30 0.6610

480x360 0.85 0.15 0.6437

480x360 0.85 0.5 0.6438

480x360 0.85 0.75 0.6438

480x360 0.85 1 0.6438

480x360 0.85 1.5 0.6439

480x360 0.85 3 0.6439

480x360 0.85 10 0.6441

480x360 0.85 15 0.6439

480x360 0.85 30 0.6432

480x360 1 0.15 0.5980

480x360 1 0.5 0.5979

480x360 1 0.75 0.5979

480x360 1 1 0.5979

480x360 1 1.5 0.5977

480x360 1 3 0.5975

480x360 1 10 0.5963

480x360 1 15 0.5954

480x360 1 30 0.5935

Table 94.: Flooding based segmentation results using Graph Cuts as initial segmenta-
tion and multiple parameter configurations over the subset of images from
Dataset4 which were captured with natural lighting conditions.
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0 0.15 0.5281

640x480 0 0.5 0.5286

640x480 0 0.75 0.5288

640x480 0 1 0.5287

640x480 0 1.5 0.5287

640x480 0 3 0.5286

640x480 0 10 0.5279

640x480 0 15 0.5276

640x480 0 30 0.5278

640x480 0.15 0.15 0.5432

640x480 0.15 0.5 0.5436

640x480 0.15 0.75 0.5438

640x480 0.15 1 0.5441

640x480 0.15 1.5 0.5444

640x480 0.15 3 0.5449

640x480 0.15 10 0.5453

640x480 0.15 15 0.5452

640x480 0.15 30 0.5450

640x480 0.25 0.15 0.5553

640x480 0.25 0.5 0.5557

640x480 0.25 0.75 0.5559

640x480 0.25 1 0.5562

640x480 0.25 1.5 0.5567

640x480 0.25 3 0.5575

640x480 0.25 10 0.5582

640x480 0.25 15 0.5582

640x480 0.25 30 0.5577

640x480 0.35 0.15 0.5644

640x480 0.35 0.5 0.5647

640x480 0.35 0.75 0.5650

640x480 0.35 1 0.5652

640x480 0.35 1.5 0.5657

640x480 0.35 3 0.5666

640x480 0.35 10 0.5679

640x480 0.35 15 0.5682

640x480 0.35 30 0.5682

640x480 0.45 0.15 0.5744

640x480 0.45 0.5 0.5747

640x480 0.45 0.75 0.5749

640x480 0.45 1 0.5751

640x480 0.45 1.5 0.5755

640x480 0.45 3 0.5764

640x480 0.45 10 0.5776

640x480 0.45 15 0.5777
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.45 30 0.5778

640x480 0.5 0.15 0.5768

640x480 0.5 0.5 0.5774

640x480 0.5 0.75 0.5777

640x480 0.5 1 0.5779

640x480 0.5 1.5 0.5784

640x480 0.5 3 0.5794

640x480 0.5 10 0.5811

640x480 0.5 15 0.5814

640x480 0.5 30 0.5715

640x480 0.55 0.15 0.5808

640x480 0.55 0.5 0.5811

640x480 0.55 0.75 0.5814

640x480 0.55 1 0.5816

640x480 0.55 1.5 0.5821

640x480 0.55 3 0.5831

640x480 0.55 10 0.5848

640x480 0.55 15 0.5853

640x480 0.55 30 0.5855

640x480 0.65 0.15 0.5947

640x480 0.65 0.5 0.5951

640x480 0.65 0.75 0.5953

640x480 0.65 1 0.5956

640x480 0.65 1.5 0.5959

640x480 0.65 3 0.5968

640x480 0.65 10 0.5981

640x480 0.65 15 0.5982

640x480 0.65 30 0.5981

640x480 0.75 0.15 0.6050

640x480 0.75 0.5 0.6054

640x480 0.75 0.75 0.6056

640x480 0.75 1 0.6058

640x480 0.75 1.5 0.6061

640x480 0.75 3 0.6068

640x480 0.75 10 0.6077

640x480 0.75 15 0.6077

640x480 0.75 30 0.6075

640x480 0.85 0.15 0.6136

640x480 0.85 0.5 0.6138

640x480 0.85 0.75 0.6140

640x480 0.85 1 0.6141

640x480 0.85 1.5 0.6143

640x480 0.85 3 0.6148

640x480 0.85 10 0.6156
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.85 15 0.6157

640x480 0.85 30 0.6154

640x480 1 0.15 0.5809

640x480 1 0.5 0.5810

640x480 1 0.75 0.5810

640x480 1 1 0.5810

640x480 1 1.5 0.5811

640x480 1 3 0.5812

640x480 1 10 0.5808

640x480 1 15 0.5803

640x480 1 30 0.5791

480x360 0 0.15 0.5408

480x360 0 0.5 0.5412

480x360 0 0.75 0.5414

480x360 0 1 0.5414

480x360 0 1.5 0.5415

480x360 0 3 0.5414

480x360 0 10 0.5409

480x360 0 15 0.5408

480x360 0 30 0.5410

480x360 0.15 0.15 0.5545

480x360 0.15 0.5 0.5550

480x360 0.15 0.75 0.5553

480x360 0.15 1 0.5556

480x360 0.15 1.5 0.5559

480x360 0.15 3 0.5564

480x360 0.15 10 0.5569

480x360 0.15 15 0.5568

480x360 0.15 30 0.5563

480x360 0.25 0.15 0.5637

480x360 0.25 0.5 0.5640

480x360 0.25 0.75 0.5643

480x360 0.25 1 0.5645

480x360 0.25 1.5 0.5648

480x360 0.25 3 0.5654

480x360 0.25 10 0.5664

480x360 0.25 15 0.5665

480x360 0.25 30 0.5665

480x360 0.35 0.15 0.5739

480x360 0.35 0.5 0.5742

480x360 0.35 0.75 0.5744

480x360 0.35 1 0.5746

480x360 0.35 1.5 0.5749

480x360 0.35 3 0.5755
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.35 10 0.5769

480x360 0.35 15 0.5769

480x360 0.35 30 0.5768

480x360 0.45 0.15 0.5854

480x360 0.45 0.5 0.5858

480x360 0.45 0.75 0.5860

480x360 0.45 1 0.5861

480x360 0.45 1.5 0.5865

480x360 0.45 3 0.5872

480x360 0.45 10 0.5886

480x360 0.45 15 0.5887

480x360 0.45 30 0.5884

480x360 0.5 0.15 0.5905

480x360 0.5 0.5 0.5909

480x360 0.5 0.75 0.5911

480x360 0.5 1 0.5913

480x360 0.5 1.5 0.5917

480x360 0.5 3 0.5925

480x360 0.5 10 0.5940

480x360 0.5 15 0.5941

480x360 0.5 30 0.5941

480x360 0.55 0.15 0.5962

480x360 0.55 0.5 0.5965

480x360 0.55 0.75 0.5967

480x360 0.55 1 0.5969

480x360 0.55 1.5 0.5974

480x360 0.55 3 0.5983

480x360 0.55 10 0.6000

480x360 0.55 15 0.6002

480x360 0.55 30 0.6003

480x360 0.65 0.15 0.6116

480x360 0.65 0.5 0.6119

480x360 0.65 0.75 0.6120

480x360 0.65 1 0.6122

480x360 0.65 1.5 0.6124

480x360 0.65 3 0.6130

480x360 0.65 10 0.6139

480x360 0.65 15 0.6141

480x360 0.65 30 0.6136

480x360 0.75 0.15 0.6222

480x360 0.75 0.5 0.6225

480x360 0.75 0.75 0.6226

480x360 0.75 1 0.6227

480x360 0.75 1.5 0.6229
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.75 3 0.6234

480x360 0.75 10 0.6240

480x360 0.75 15 0.6239

480x360 0.75 30 0.6233

480x360 0.85 0.15 0.6295

480x360 0.85 0.5 0.6296

480x360 0.85 0.75 0.6296

480x360 0.85 1 0.6297

480x360 0.85 1.5 0.6298

480x360 0.85 3 0.6300

480x360 0.85 10 0.6302

480x360 0.85 15 0.6301

480x360 0.85 30 0.6297

480x360 1 0.15 0.6029

480x360 1 0.5 0.6029

480x360 1 0.75 0.6029

480x360 1 1 0.6030

480x360 1 1.5 0.6030

480x360 1 3 0.6029

480x360 1 10 0.6022

480x360 1 15 0.6016

480x360 1 30 0.6002

Table 95.: Flooding based segmentation results using Graph Cuts as initial segmenta-
tion and multiple parameter configurations over the subset of images from
Dataset4 which were captured with severe shadows on the hand.
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0 0.15 0.4700

640x480 0 0.5 0.4705

640x480 0 0.75 0.4708

640x480 0 1 0.4709

640x480 0 1.5 0.4711

640x480 0 3 0.4715

640x480 0 10 0.4728

640x480 0 15 0.4733

640x480 0 30 0.4748

640x480 0.15 0.15 0.4768

640x480 0.15 0.5 0.4772

640x480 0.15 0.75 0.4774

640x480 0.15 1 0.4775

640x480 0.15 1.5 0.4778

640x480 0.15 3 0.4783

640x480 0.15 10 0.4792

640x480 0.15 15 0.4795

640x480 0.15 30 0.4801

640x480 0.25 0.15 0.4804

640x480 0.25 0.5 0.4806

640x480 0.25 0.75 0.4808

640x480 0.25 1 0.4809

640x480 0.25 1.5 0.4812

640x480 0.25 3 0.4819

640x480 0.25 10 0.4832

640x480 0.25 15 0.4837

640x480 0.25 30 0.4844

640x480 0.35 0.15 0.4850

640x480 0.35 0.5 0.4851

640x480 0.35 0.75 0.4852

640x480 0.35 1 0.4854

640x480 0.35 1.5 0.4856

640x480 0.35 3 0.4863

640x480 0.35 10 0.4878

640x480 0.35 15 0.4884

640x480 0.35 30 0.4893

640x480 0.45 0.15 0.4918

640x480 0.45 0.5 0.4920

640x480 0.45 0.75 0.4922

640x480 0.45 1 0.4923

640x480 0.45 1.5 0.4926

640x480 0.45 3 0.4932

640x480 0.45 10 0.4948

640x480 0.45 15 0.4954
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.45 30 0.4964

640x480 0.5 0.15 0.4938

640x480 0.5 0.5 0.4943

640x480 0.5 0.75 0.4945

640x480 0.5 1 0.4947

640x480 0.5 1.5 0.4951

640x480 0.5 3 0.4960

640x480 0.5 10 0.4978

640x480 0.5 15 0.4984

640x480 0.5 30 0.4992

640x480 0.55 0.15 0.4959

640x480 0.55 0.5 0.4962

640x480 0.55 0.75 0.4963

640x480 0.55 1 0.4965

640x480 0.55 1.5 0.4968

640x480 0.55 3 0.4974

640x480 0.55 10 0.4991

640x480 0.55 15 0.4998

640x480 0.55 30 0.5009

640x480 0.65 0.15 0.5006

640x480 0.65 0.5 0.5008

640x480 0.65 0.75 0.5011

640x480 0.65 1 0.5013

640x480 0.65 1.5 0.5016

640x480 0.65 3 0.5022

640x480 0.65 10 0.5037

640x480 0.65 15 0.5041

640x480 0.65 30 0.5049

640x480 0.75 0.15 0.5081

640x480 0.75 0.5 0.5084

640x480 0.75 0.75 0.5085

640x480 0.75 1 0.5086

640x480 0.75 1.5 0.5089

640x480 0.75 3 0.5093

640x480 0.75 10 0.5105

640x480 0.75 15 0.5109

640x480 0.75 30 0.5118

640x480 0.85 0.15 0.5165

640x480 0.85 0.5 0.5167

640x480 0.85 0.75 0.5167

640x480 0.85 1 0.5168

640x480 0.85 1.5 0.5170

640x480 0.85 3 0.5173

640x480 0.85 10 0.5183
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.85 15 0.5187

640x480 0.85 30 0.5193

640x480 1 0.15 0.5157

640x480 1 0.5 0.5157

640x480 1 0.75 0.5157

640x480 1 1 0.5158

640x480 1 1.5 0.5158

640x480 1 3 0.5158

640x480 1 10 0.5159

640x480 1 15 0.5160

640x480 1 30 0.5160

480x360 0 0.15 0.4663

480x360 0 0.5 0.4671

480x360 0 0.75 0.4675

480x360 0 1 0.4677

480x360 0 1.5 0.4682

480x360 0 3 0.4690

480x360 0 10 0.4710

480x360 0 15 0.4721

480x360 0 30 0.4734

480x360 0.15 0.15 0.4738

480x360 0.15 0.5 0.4741

480x360 0.15 0.75 0.4744

480x360 0.15 1 0.4746

480x360 0.15 1.5 0.4749

480x360 0.15 3 0.4756

480x360 0.15 10 0.4768

480x360 0.15 15 0.4773

480x360 0.15 30 0.4784

480x360 0.25 0.15 0.4781

480x360 0.25 0.5 0.4783

480x360 0.25 0.75 0.4785

480x360 0.25 1 0.4787

480x360 0.25 1.5 0.4790

480x360 0.25 3 0.4800

480x360 0.25 10 0.4817

480x360 0.25 15 0.4827

480x360 0.25 30 0.4840

480x360 0.35 0.15 0.4848

480x360 0.35 0.5 0.4851

480x360 0.35 0.75 0.4853

480x360 0.35 1 0.4855

480x360 0.35 1.5 0.4858

480x360 0.35 3 0.4866
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.35 10 0.4887

480x360 0.35 15 0.4893

480x360 0.35 30 0.4905

480x360 0.45 0.15 0.4894

480x360 0.45 0.5 0.4896

480x360 0.45 0.75 0.4897

480x360 0.45 1 0.4898

480x360 0.45 1.5 0.4902

480x360 0.45 3 0.4909

480x360 0.45 10 0.4930

480x360 0.45 15 0.4939

480x360 0.45 30 0.4951

480x360 0.5 0.15 0.4920

480x360 0.5 0.5 0.4923

480x360 0.5 0.75 0.4924

480x360 0.5 1 0.4925

480x360 0.5 1.5 0.4928

480x360 0.5 3 0.4934

480x360 0.5 10 0.4953

480x360 0.5 15 0.4961

480x360 0.5 30 0.4974

480x360 0.55 0.15 0.4970

480x360 0.55 0.5 0.4972

480x360 0.55 0.75 0.4973

480x360 0.55 1 0.4974

480x360 0.55 1.5 0.4977

480x360 0.55 3 0.4982

480x360 0.55 10 0.5002

480x360 0.55 15 0.5010

480x360 0.55 30 0.5020

480x360 0.65 0.15 0.5018

480x360 0.65 0.5 0.5023

480x360 0.65 0.75 0.5025

480x360 0.65 1 0.5027

480x360 0.65 1.5 0.5030

480x360 0.65 3 0.5034

480x360 0.65 10 0.5053

480x360 0.65 15 0.5059

480x360 0.65 30 0.5071

480x360 0.75 0.15 0.5083

480x360 0.75 0.5 0.5084

480x360 0.75 0.75 0.5085

480x360 0.75 1 0.5086

480x360 0.75 1.5 0.5088
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.75 3 0.5092

480x360 0.75 10 0.5106

480x360 0.75 15 0.5110

480x360 0.75 30 0.5121

480x360 0.85 0.15 0.5187

480x360 0.85 0.5 0.5189

480x360 0.85 0.75 0.5189

480x360 0.85 1 0.5189

480x360 0.85 1.5 0.5191

480x360 0.85 3 0.5194

480x360 0.85 10 0.5203

480x360 0.85 15 0.5206

480x360 0.85 30 0.5213

480x360 1 0.15 0.5218

480x360 1 0.5 0.5218

480x360 1 0.75 0.5218

480x360 1 1 0.5218

480x360 1 1.5 0.5218

480x360 1 3 0.5218

480x360 1 10 0.5220

480x360 1 15 0.5223

480x360 1 30 0.5227

Table 96.: Flooding based segmentation results using Graph Cuts as initial segmenta-
tion and multiple parameter configurations over the subset of images from
Dataset4 which were captured under highly brilliant lighting conditions.
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0 0.15 0.5769

640x480 0 0.5 0.5771

640x480 0 0.75 0.5771

640x480 0 1 0.5771

640x480 0 1.5 0.5769

640x480 0 3 0.5764

640x480 0 10 0.5742

640x480 0 15 0.5731

640x480 0 30 0.5715

640x480 0.15 0.15 0.5889

640x480 0.15 0.5 0.5891

640x480 0.15 0.75 0.5893

640x480 0.15 1 0.5895

640x480 0.15 1.5 0.5897

640x480 0.15 3 0.5903

640x480 0.15 10 0.5911

640x480 0.15 15 0.5909

640x480 0.15 30 0.5902

640x480 0.25 0.15 0.6012

640x480 0.25 0.5 0.6014

640x480 0.25 0.75 0.6015

640x480 0.25 1 0.6017

640x480 0.25 1.5 0.6019

640x480 0.25 3 0.6023

640x480 0.25 10 0.6033

640x480 0.25 15 0.6034

640x480 0.25 30 0.6031

640x480 0.35 0.15 0.6049

640x480 0.35 0.5 0.6050

640x480 0.35 0.75 0.6051

640x480 0.35 1 0.6053

640x480 0.35 1.5 0.6056

640x480 0.35 3 0.6063

640x480 0.35 10 0.6083

640x480 0.35 15 0.6087

640x480 0.35 30 0.6091

640x480 0.45 0.15 0.6200

640x480 0.45 0.5 0.6202

640x480 0.45 0.75 0.6203

640x480 0.45 1 0.6205

640x480 0.45 1.5 0.6207

640x480 0.45 3 0.6212

640x480 0.45 10 0.6224

640x480 0.45 15 0.6227
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.45 30 0.6225

640x480 0.5 0.15 0.6261

640x480 0.5 0.5 0.6262

640x480 0.5 0.75 0.6262

640x480 0.5 1 0.6263

640x480 0.5 1.5 0.6265

640x480 0.5 3 0.6269

640x480 0.5 10 0.6281

640x480 0.5 15 0.6285

640x480 0.5 30 0.6285

640x480 0.55 0.15 0.6279

640x480 0.55 0.5 0.6280

640x480 0.55 0.75 0.6281

640x480 0.55 1 0.6282

640x480 0.55 1.5 0.6283

640x480 0.55 3 0.6289

640x480 0.55 10 0.6301

640x480 0.55 15 0.6303

640x480 0.55 30 0.6306

640x480 0.65 0.15 0.6454

640x480 0.65 0.5 0.6455

640x480 0.65 0.75 0.6456

640x480 0.65 1 0.6456

640x480 0.65 1.5 0.6457

640x480 0.65 3 0.6460

640x480 0.65 10 0.6466

640x480 0.65 15 0.6467

640x480 0.65 30 0.6171

640x480 0.75 0.15 0.6616

640x480 0.75 0.5 0.6617

640x480 0.75 0.75 0.6617

640x480 0.75 1 0.6617

640x480 0.75 1.5 0.6617

640x480 0.75 3 0.6616

640x480 0.75 10 0.6611

640x480 0.75 15 0.6606

640x480 0.75 30 0.6596

640x480 0.85 0.15 0.6302

640x480 0.85 0.5 0.6301

640x480 0.85 0.75 0.6302

640x480 0.85 1 0.6302

640x480 0.85 1.5 0.6303

640x480 0.85 3 0.6306

640x480 0.85 10 0.6316
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Image Size (px.) Balancing Terms Lambda F-Score

640x480 0.85 15 0.6321

640x480 0.85 30 0.6326

640x480 1 0.15 0.5626

640x480 1 0.5 0.5626

640x480 1 0.75 0.5625

640x480 1 1 0.5625

640x480 1 1.5 0.5625

640x480 1 3 0.5624

640x480 1 10 0.5618

640x480 1 15 0.5612

640x480 1 30 0.5596

480x360 0 0.15 0.5940

480x360 0 0.5 0.5944

480x360 0 0.75 0.5945

480x360 0 1 0.5945

480x360 0 1.5 0.5945

480x360 0 3 0.5939

480x360 0 10 0.5915

480x360 0 15 0.5900

480x360 0 30 0.5879

480x360 0.15 0.15 0.6074

480x360 0.15 0.5 0.6078

480x360 0.15 0.75 0.6081

480x360 0.15 1 0.6084

480x360 0.15 1.5 0.6087

480x360 0.15 3 0.6093

480x360 0.15 10 0.6096

480x360 0.15 15 0.6092

480x360 0.15 30 0.6080

480x360 0.25 0.15 0.6164

480x360 0.25 0.5 0.6167

480x360 0.25 0.75 0.6169

480x360 0.25 1 0.6170

480x360 0.25 1.5 0.6173

480x360 0.25 3 0.6178

480x360 0.25 10 0.6190

480x360 0.25 15 0.6190

480x360 0.25 30 0.6184

480x360 0.35 0.15 0.6252

480x360 0.35 0.5 0.6254

480x360 0.35 0.75 0.6256

480x360 0.35 1 0.6257

480x360 0.35 1.5 0.6258

480x360 0.35 3 0.6264
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.35 10 0.6277

480x360 0.35 15 0.6281

480x360 0.35 30 0.6282

480x360 0.45 0.15 0.6327

480x360 0.45 0.5 0.6328

480x360 0.45 0.75 0.6328

480x360 0.45 1 0.6329

480x360 0.45 1.5 0.6330

480x360 0.45 3 0.6335

480x360 0.45 10 0.6352

480x360 0.45 15 0.6357

480x360 0.45 30 0.6361

480x360 0.5 0.15 0.6390

480x360 0.5 0.5 0.6392

480x360 0.5 0.75 0.6393

480x360 0.5 1 0.6394

480x360 0.5 1.5 0.6396

480x360 0.5 3 0.6104

480x360 0.5 10 0.6417

480x360 0.5 15 0.6423

480x360 0.5 30 0.6425

480x360 0.55 0.15 0.6431

480x360 0.55 0.5 0.6433

480x360 0.55 0.75 0.6435

480x360 0.55 1 0.6436

480x360 0.55 1.5 0.6438

480x360 0.55 3 0.6445

480x360 0.55 10 0.6461

480x360 0.55 15 0.6464

480x360 0.55 30 0.6466

480x360 0.65 0.15 0.6674

480x360 0.65 0.5 0.6675

480x360 0.65 0.75 0.6675

480x360 0.65 1 0.6676

480x360 0.65 1.5 0.6677

480x360 0.65 3 0.6678

480x360 0.65 10 0.6683

480x360 0.65 15 0.6682

480x360 0.65 30 0.6675

480x360 0.75 0.15 0.6813

480x360 0.75 0.5 0.6816

480x360 0.75 0.75 0.6817

480x360 0.75 1 0.6817

480x360 0.75 1.5 0.6818
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Image Size (px.) Balancing Terms Lambda F-Score

480x360 0.75 3 0.6817

480x360 0.75 10 0.6810

480x360 0.75 15 0.6806

480x360 0.75 30 0.6801

480x360 0.85 0.15 0.6596

480x360 0.85 0.5 0.6596

480x360 0.85 0.75 0.6595

480x360 0.85 1 0.6595

480x360 0.85 1.5 0.6594

480x360 0.85 3 0.6594

480x360 0.85 10 0.6597

480x360 0.85 15 0.6600

480x360 0.85 30 0.6601

480x360 1 0.15 0.6045

480x360 1 0.5 0.6045

480x360 1 0.75 0.6044

480x360 1 1 0.6044

480x360 1 1.5 0.6044

480x360 1 3 0.6042

480x360 1 10 0.6033

480x360 1 15 0.6027

480x360 1 30 0.6007

Table 97.: Flooding based segmentation results using Graph Cuts as initial segmenta-
tion and multiple parameter configurations over the subset of images from
Dataset4 which were captured under low intensity lighting conditions.



B
PA L M P R I N T R E S U LT S U S I N G D I F F E R E N T PA R A M E T E R
C O N F I G U R AT I O N S U N D E R C O N T R O L L E D C O N D I T I O N S

A complete evaluation of different parameter configurations for feature extraction
using different monomodal feature extraction methods has been conducted with the
aim to find the best arrangement for each of them. Different comparison methods
and a dimensionality reduction technique (PCA) have also been included in this eval-
uation.

Since the objective is to provide a wide evaluation of different feature extraction
methods, 2DHK database has been used to this end. As detailed in Sec. 2.3.1, it
provides images captured under controlled conditions together with the most repre-
sentative part of the palmprint properly aligned and cropped that makes it suitable
for a fair analysis of different feature extraction methods.

b.1 sobel filter

b.1.1 Sobel filter and Euclidean Distance

Algorithm Parameters
Results

Validation Test
Imsize Threshold Angles EER (%) FMR (%) FNMR (%)

32x32 0.1 0 1.98 1.91 2.26

32x32 0.1 45 1.38 1.39 2.54

32x32 0.1 90 0.56 0.57 2.54

32x32 0.1 135 0.85 0.82 1.41

32x32 0.1 0, 45, 90, 135 0.56 0.55 1.41

32x32 0.25 0 1.69 1.57 2.54

32x32 0.25 45 1.85 1.77 2.82

32x32 0.25 90 1.98 2.02 2.26

32x32 0.25 135 1.13 1.11 1.69

32x32 0.25 0, 45, 90, 135 0.94 0.90 1.41

32x32 0.35 0 1.69 1.59 1.69

32x32 0.35 45 1.98 1.78 3.95

32x32 0.35 90 2.72 2.69 3.95

32x32 0.35 135 1.13 1.15 1.98

32x32 0.35 0, 45, 90, 135 1.17 1.09 1.41

32x32 0.50 0 1.61 1.65 2.26

32x32 0.50 45 3.11 2.97 5.37

32x32 0.50 90 6.40 6.47 6.78
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Algorithm Parameters
Results

Validation Test
Imsize Threshold Angles EER (%) FMR (%) FNMR (%)

32x32 0.50 135 2.56 2.64 3.39

32x32 0.50 0, 45, 90, 135 1.41 1.40 2.82

64x64 0.1 0 3.16 3.14 4.24

64x64 0.1 45 1.98 1.99 3.67

64x64 0.1 90 1.69 1.65 3.11

64x64 0.1 135 1.69 1.63 2.26

64x64 0.1 0, 45, 90, 135 1.41 1.32 3.11

64x64 0.25 0 2.64 2.53 3.67

64x64 0.25 45 4.39 4.35 6.78

64x64 0.25 90 5.45 5.30 7.91

64x64 0.25 135 2.82 2.85 3.11

64x64 0.25 0, 45, 90, 135 2.66 2.53 4.8
64x64 0.35 0 3.62 3.45 3.95

64x64 0.35 45 9.52 9.59 9.89

64x64 0.35 90 10.37 10.05 11.86

64x64 0.35 135 4.52 4.54 7.34

64x64 0.35 0, 45, 90, 135 4.52 4.31 6.78

64x64 0.50 0 6.44 6.19 6.78

64x64 0.50 45 18.13 18.01 20.34

64x64 0.50 90 18.33 18.37 20.62

64x64 0.50 135 9.75 10.00 10.73

64x64 0.50 0, 45, 90, 135 10.45 10.47 14.41

128x128 0.1 0 5.39 5.28 9.04

128x128 0.1 45 6.21 6.17 7.06

128x128 0.1 90 4.49 4.46 7.06

128x128 0.1 135 2.34 2.48 3.95

128x128 0.1 0, 45, 90, 135 3.39 3.33 5.37

128x128 0.25 0 10.81 10.48 13.56

128x128 0.25 45 17.81 17.17 20.34

128x128 0.25 90 17.59 17.54 20.62

128x128 0.25 135 9.16 9.52 11.58

128x128 0.25 0, 45, 90, 135 12.43 12.27 16.10

128x128 0.35 0 17.57 17.21 21.47

128x128 0.35 45 26.89 26.02 30.51

128x128 0.35 90 26.24 26.00 28.53

128x128 0.35 135 17.89 18.51 22.60

128x128 0.35 0, 45, 90, 135 20.92 20.86 20.53

128x128 0.50 0 27.97 27.59 29.38

128x128 0.50 45 35.03 34.12 35.03

128x128 0.50 90 34.75 34.96 35.59

128x128 0.50 135 30.57 30.79 32.49

128x128 0.50 0, 45, 90, 135 30.79 30.82 32.77

Table 98.: Palmprint Results using Sobel filter to extract features and Euclidean dis-
tance to compare.
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b.1.2 Sobel filter, PCA and Euclidean Distance

Algorithm Parameters
Results

Validation Test
Imsize Threshold Angles EER (%) FMR (%) FNMR (%)

32x32 0.1 0, 45, 90, 135 0.56 0.39 0.85

32x32 0.25 0, 45, 90, 135 0.28 0.19 0.85

32x32 0.35 0, 45, 90, 135 0.49 0.37 0.85

32x32 0.50 0, 45, 90, 135 0.92 0.73 0.56

64x64 0.1 0, 45, 90, 135 0.56 0.34 0.85

64x64 0.25 0, 45, 90, 135 0.85 0.56 1.13

64x64 0.35 0, 45, 90, 135 1.03 0.72 1.69

64x64 0.50 0, 45, 90, 135 2.27 1.73 3.11

128x128 0.1 0, 45, 90, 135 1.41 0.99 1.69

128x128 0.25 0, 45, 90, 135 1.60 1.11 2.82

128x128 0.35 0, 45, 90, 135 3.13 2.21 6.21

128x128 0.50 0, 45, 90, 135 8.48 6.64 10.73

Table 99.: Palmprint Results using Sobel filter and PCA to extract features and Eu-
clidean distance to compare.

b.1.3 Sobel filter and Support Vector Machines

Algorithm Parameters
Results

Validation Test
Imsize Threshold Angles EER (%) FMR (%) FNMR (%)

32x32 0.1 0 0.28 0.56 0.34

32x32 0.1 45 0.0063 0.28 0.011

32x32 0.1 90 0.067 0.29 0.10

32x32 0.1 135 0.28 0.28 0.35

32x32 0.1 0, 45, 90, 135 0.0048 0.046 0.0096

32x32 0.25 0 0.28 0.28 0.37

32x32 0.25 45 0.13 0.28 0.17

32x32 0.25 90 0.11 0.50 0.14

32x32 0.25 135 0.28 0.28 0.35

32x32 0.25 0, 45, 90, 135 0.0016 0.24 0.0016

32x32 0.35 0 0.28 0.32 0.36

32x32 0.35 45 0.56 0.28 0.68

32x32 0.35 90 0.56 0.56 0.59

32x32 0.35 135 0.28 0.31 0.30

32x32 0.35 0, 45, 90, 135 0.0095 0.28 0.0080

32x32 0.50 0 0.28 0.17 0.33

32x32 0.50 45 0.82 0.56 0.96

32x32 0.50 90 0.96 0.78 1.01

32x32 0.50 135 0.56 0.56 0.65

32x32 0.50 0, 45, 90, 135 0.089 0.20 0.11

64x64 0.1 0 0.35 0.85 0.39

64x64 0.1 45 0.033 0.64 0.043

64x64 0.1 90 0.28 0.28 0.35
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Algorithm Parameters
Results

Validation Test
Imsize Threshold Angles EER (%) FMR (%) FNMR (%)

64x64 0.1 135 0.40 0.28 0.49

64x64 0.1 0, 45, 90, 135 0.019 0.083 0.022

64x64 0.25 0 0.25 0.56 0.31

64x64 0.25 45 0.28 0.56 0.33

64x64 0.25 90 0.28 0.56 0.30

64x64 0.25 135 0.28 0.28 0.36

64x64 0.25 0, 45, 90, 135 0.11 0.28 0.14

64x64 0.35 0 0.67 0.84 0.76

64x64 0.35 45 0.28 0.85 0.36

64x64 0.35 90 0.66 0.56 0.70

64x64 0.35 135 0.33 0.56 0.40

64x64 0.35 0, 45, 90, 135 0.23 0.56 0.40

64x64 0.50 0 1.41 0.85 1.55

64x64 0.50 45 1.01 1.13 1.15

64x64 0.50 90 1.98 1.41 2.11

64x64 0.50 135 0.56 1.13 0.69

64x64 0.50 0, 45, 90, 135 0.56 0.28 0.69

128x128 0.1 0 0.28 0.57 0.33

128x128 0.1 45 0.50 0.85 0.64

128x128 0.1 90 0.56 0.62 0.61

128x128 0.1 135 0.77 0.28 0.97

128x128 0.1 0, 45, 90, 135 0.24 0.28 0.31

128x128 0.25 0 1.13 0.88 1.20

128x128 0.25 45 0.29 0.13 0.37

128x128 0.25 90 0.88 1.13 0.95

128x128 0.25 135 1.13 0.80 1.29

128x128 0.25 0, 45, 90, 135 0.28 0.28 0.32

128x128 0.35 0 2.53 2.54 2.71

128x128 0.35 45 1.07 1.70 1.22

128x128 0.35 90 1.69 1.78 1.13

128x128 0.35 135 1.13 1.30 1.41

128x128 0.35 0, 45, 90, 135 0.85 0.30 0.95

128x128 0.50 0 3.81 4.11 5.65

128x128 0.50 45 2.25 2.48 3.67

128x128 0.50 90 3.37 3.52 3.67

128x128 0.50 135 2.26 2.47 2.54

128x128 0.50 0, 45, 90, 135 0.86 1.02 1.13

Table 100.: Palmprint Results using Sobel filter to extract features and SVMs to com-
pare.
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b.1.4 Sobel filter, PCA and Support Vector Machines

Algorithm Parameters
Results

Validation Test
Imsize Threshold Angles EER (%) FMR (%) FNMR (%)

32x32 0.1 0, 45, 90, 135 0 0.28 0

32x32 0.25 0, 45, 90, 135 0 0.28 0.0016

32x32 0.35 0, 45, 90, 135 0.0048 0.28 0.0032

32x32 0.50 0, 45, 90, 135 0.0032 0.28 0.0064

64x64 0.1 0, 45, 90, 135 0.018 0.28 0.022

64x64 0.25 0, 45, 90, 135 0.025 0.28 0.045

64x64 0.35 0, 45, 90, 135 0.092 0.41 0.13

64x64 0.50 0, 45, 90, 135 0.28 0.56 0.37

128x128 0.1 0, 45, 90, 135 0.052 0.10 0.088

128x128 0.25 0, 45, 90, 135 0.093 0.37 0.15

128x128 0.35 0, 45, 90, 135 0.42 0.56 0.59

128x128 0.50 0, 45, 90, 135 1.16 1.52 0.85

Table 101.: Palmprint Results using Sobel filter and PCA to extract features and SVMs
to compare.
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b.2 zero dc circular gabor filter

b.2.1 Gabor filter and Euclidean Distance

Algorithm Parameters
Results

Validation Test
Filter
Size

Frequency σ EER (%) FMR (%) FNMR (%)

9x9 0.0916 1.4045 0.56 0.56 1.41

9x9 0.0916 2.8090 1.13 1.16 1.98

9x9 0.0916 5.6179 0.74 0.77 1.13

9x9 0.1833 1.4045 0.56 0.58 1.69

9x9 0.1833 2.8090 1.07 1.11 1.41

9x9 0.1833 5.6179 3.95 3.94 5.08

9x9 0.3666 1.4045 0.64 0.68 2.82

9x9 0.3666 2.8090 1.13 1.13 1.69

9x9 0.3666 5.6179 4.53 4.70 5.08

17x17 0.0916 1.4045 0.73 0.77 2.26

17x17 0.0916 2.8090 0.97 0.99 1.98

17x17 0.0916 5.6179 0.56 0.55 1.41

17x17 0.1833 1.4045 0.75 0.77 2.26

17x17 0.1833 2.8090 0.85 0.90 1.98

17x17 0.1833 5.6179 3.81 3.90 5.37

17x17 0.3666 1.4045 1.13 1.20 3.67

17x17 0.3666 2.8090 1.98 2.04 3.95

17x17 0.3666 5.6179 8.46 8.52 8.47

35x35 0.0916 1.4045 1.92 1.88 2.82

35x35 0.0916 2.8090 2.10 2.02 3.11

35x35 0.0916 5.6179 0.85 0.87 1.98

35x35 0.1833 1.4045 2.12 2.06 2.82

35x35 0.1833 2.8090 1.98 1.97 2.82

35x35 0.1833 5.6179 5.08 5.04 6.21

35x35 0.3666 1.4045 4.71 4.71 4.52

35x35 0.3666 2.8090 5.91 6.00 7.34

35x35 0.3666 5.6179 13.77 13.90 14.69

Table 102.: Palmprint Results using Gabor filter to extract features and Euclidean dis-
tance to compare.
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b.2.2 Gabor filter, PCA and Euclidean Distance

Algorithm Parameters
Results

Validation Test
Filter
Size

Frequency σ EER (%) FMR (%) FNMR (%)

9x9 0.0916 1.4045 0.56 0.36 0.28

9x9 0.0916 2.8090 1.41 1.02 1.69

9x9 0.0916 5.6179 0.56 0.37 0.56

9x9 0.1833 1.4045 0.85 0.60 0.28

9x9 0.1833 2.8090 1.42 0.97 1.98

9x9 0.1833 5.6179 5.08 3.43 7.63

9x9 0.3666 1.4045 1.13 0.77 1.69

9x9 0.3666 2.8090 0.93 0.59 1.13

9x9 0.3666 5.6179 4.63 3.44 6.78

17x17 0.0916 1.4045 0.37 0.35 1.41

17x17 0.0916 2.8090 0.56 0.45 1.13

17x17 0.0916 5.6179 0.56 0.39 0.56

17x17 0.1833 1.4045 0.42 0.37 1.13

17x17 0.1833 2.8090 0.85 0.58 1.69

17x17 0.1833 5.6179 2.90 2.11 3.95

17x17 0.3666 1.4045 0.56 0.43 1.13

17x17 0.3666 2.8090 0.56 0.47 0.85

17x17 0.3666 5.6179 3.92 3.37 5.37

35x35 0.0916 1.4045 1.13 0.94 1.98

35x35 0.0916 2.8090 1.13 0.93 1.98

35x35 0.0916 5.6179 0.56 0.44 0.56

35x35 0.1833 1.4045 1.13 0.99 1.98

35x35 0.1833 2.8090 1.41 0.98 1.98

35x35 0.1833 5.6179 2.54 1.82 3.95

35x35 0.3666 1.4045 1.13 0.97 1.98

35x35 0.3666 2.8090 0.85 0.75 1.69

35x35 0.3666 5.6179 1.98 1.70 2.26

Table 103.: Palmprint Results using Gabor filter and PCA to extract features and Eu-
clidean distance to compare.
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b.2.3 Gabor filter and Support Vector Machines

Algorithm Parameters
Results

Validation Test
Filter
Size

Frequency σ EER (%) FMR (%) FNMR (%)

9x9 0.0916 1.4045 0.28 0.32 0.56

9x9 0.0916 2.8090 0.85 1.01 0.85

9x9 0.0916 5.6179 0.28 0.34 0.28

9x9 0.1833 1.4045 0.28 0.32 0.56

9x9 0.1833 2.8090 0.85 0.98 0.85

9x9 0.1833 5.6179 2.74 3.08 4.24

9x9 0.3666 1.4045 0.28 0.31 0.85

9x9 0.3666 2.8090 0.46 0.49 0.85

9x9 0.3666 5.6179 1.69 1.68 1.98

17x17 0.0916 1.4045 0.28 0.35 0.56

17x17 0.0916 2.8090 0.28 0.35 0.28

17x17 0.0916 5.6179 0.27 0.31 0.28

17x17 0.1833 1.4045 0.28 0.35 0.56

17x17 0.1833 2.8090 0.28 0.36 0.85

17x17 0.1833 5.6179 1.80 2.10 2.26

17x17 0.3666 1.4045 0.28 0.34 0.85

17x17 0.3666 2.8090 0.28 0.32 0.85

17x17 0.3666 5.6179 1.01 1.01 0.85

35x35 0.0916 1.4045 0.28 0.33 0.56

35x35 0.0916 2.8090 0.28 0.32 0.56

35x35 0.0916 5.6179 0.28 0.33 0.56

35x35 0.1833 1.4045 0.28 0.32 0.56

35x35 0.1833 2.8090 0.28 0.39 0.56

35x35 0.1833 5.6179 1.41 1.70 1.41

35x35 0.3666 1.4045 0.28 0.34 0.85

35x35 0.3666 2.8090 0.28 0.28 0.56

35x35 0.3666 5.6179 0.56 0.60 0.85

Table 104.: Palmprint Results using Gabor filter to extract features and SVMs to com-
pare.
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b.2.4 Gabor filter, PCA and Support Vector Machines

Algorithm Parameters
Results

Validation Test
Filter
Size

Frequency σ EER (%) FMR (%) FNMR (%)

9x9 0.0916 1.4045 0.28 0.35 0.56

9x9 0.0916 2.8090 0.85 1.04 0.85

9x9 0.0916 5.6179 0.24 0.34 0.28

9x9 0.1833 1.4045 0.25 0.30 0.56

9x9 0.1833 2.8090 0.78 0.92 0.28

9x9 0.1833 5.6179 4.45 5.23 4.80

9x9 0.3666 1.4045 0.28 0.37 0.56

9x9 0.3666 2.8090 0.49 0.57 0.85

9x9 0.3666 5.6179 2.00 2.04 2.26

17x17 0.0916 1.4045 0.045 0.047 1.13

17x17 0.0916 2.8090 0.039 0.059 1.13

17x17 0.0916 5.6179 0.054 0.059 0.56

17x17 0.1833 1.4045 0.027 0.026 1.13

17x17 0.1833 2.8090 0.22 0.28 0.28

17x17 0.1833 5.6179 1.38 1.74 1.98

17x17 0.3666 1.4045 0.022 0.022 1.13

17x17 0.3666 2.8090 0.033 0.027 1.13

17x17 0.3666 5.6179 0.65 0.64 0.85

35x35 0.0916 1.4045 0.28 0.36 0.56

35x35 0.0916 2.8090 0.28 0.34 0.56

35x35 0.0916 5.6179 0.024 0.019 0.85

35x35 0.1833 1.4045 0.28 0.35 0.56

35x35 0.1833 2.8090 0.071 0.11 0.56

35x35 0.1833 5.6179 1.13 1.39 1.98

35x35 0.3666 1.4045 0.22 0.25 0.56

35x35 0.3666 2.8090 0.28 0.32 0.56

35x35 0.3666 5.6179 0.31 0.29 1.13

Table 105.: Palmprint Results using Gabor filter and PCA to extract features and
SVMs to compare.
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b.3 local binary pattern

b.3.1 Local Binary Pattern and Euclidean Distance

Algorithm Parameters
Results

Validation Test
Region
Size

Radio ]Neighboors Uniform EER (%) FMR
(%)

FNMR
(%)

8x8 1 8 Yes 2.54 2.50 1.98

8x8 1 8 No 2.54 2.56 2.54

8x8 2 8 Yes 2.82 2.69 3.11

8x8 2 8 No 2.93 2.76 3.11

8x8 2 16 Yes 4.06 3.75 4.80

8x8 3 8 Yes 2.91 2.90 2.54

8x8 3 8 No 3.12 3.10 2.54

8x8 3 16 Yes 6.21 6.67 7.06

16x16 1 8 Yes 2.64 2.56 1.98

16x16 1 8 No 2.62 2.55 1.98

16x16 2 8 Yes 2.66 2.58 1.98

16x16 2 8 No 3.03 2.96 2.26

16x16 2 16 Yes 3.11 3.00 2.82

16x16 3 8 Yes 2.92 2.78 2.26

16x16 3 8 No 3.39 3.18 2.26

16x16 3 16 Yes 3.23 3.03 3.39

32x32 1 8 Yes 3.39 3.41 2.54

32x32 1 8 No 3.39 3.41 2.82

32x32 2 8 Yes 3.06 2.90 3.11

32x32 2 8 No 3.11 3.01 3.39

32x32 2 16 Yes 3.28 3.14 3.39

32x32 3 8 Yes 3.39 3.12 2.26

32x32 3 8 No 3.20 3.09 2.82

32x32 3 16 Yes 3.14 3.02 3.11

64x64 1 8 Yes 4.68 4.80 3.95

64x64 1 8 No 4.52 4.66 3.67

64x64 2 8 Yes 4.02 3.97 3.67

64x64 2 8 No 4.24 4.33 4.24

64x64 2 16 Yes 5.37 5.38 5.08

64x64 3 8 Yes 4.52 4.36 2.82

64x64 3 8 No 4.24 4.13 3.95

64x64 3 16 Yes 5.51 5.60 4.52

128x128 1 8 Yes 7.01 7.26 4.80

128x128 1 8 No 7.01 7.30 4.80

128x128 2 8 Yes 6.78 7.25 4.52

128x128 2 8 No 5.93 6.46 4.52

128x128 2 16 Yes 8.05 8.30 8.47

128x128 3 8 Yes 6.50 6.73 4.52

128x128 3 8 No 6.86 6.86 5.08

128x128 3 16 Yes 9.98 10.38 9.60

Table 106.: Palmprint Results using Local Binary Pattern to extract features and Eu-
clidean distance to compare.
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b.3.2 Local Binary Pattern, PCA and Euclidean Distance

Algorithm Parameters
Results

Validation Test
Region
Size

Radio ]Neighboors Uniform EER (%) FMR
(%)

FNMR
(%)

8x8 1 8 Yes 1.61 1.32 1.41

8x8 1 8 No 1.69 1.42 1.41

8x8 2 8 Yes 2.52 1.77 2.26

8x8 2 8 No 2.67 1.84 2.26

8x8 2 16 Yes 2.62 1.96 2.54

8x8 3 8 Yes 4.24 2.79 5.65

8x8 3 8 No 4.32 2.80 7.63

8x8 3 16 Yes 3.67 2.46 4.80

16x16 1 8 Yes 2.54 2.41 1.98

16x16 1 8 No 2.39 2.28 1.98

16x16 2 8 Yes 2.82 2.60 1.98

16x16 2 8 No 2.82 2.64 2.54

16x16 2 16 Yes 2.82 2.57 1.98

16x16 3 8 Yes 2.68 2.25 2.26

16x16 3 8 No 2.82 2.39 2.54

16x16 3 16 Yes 2.54 2.26 2.26

32x32 1 8 Yes 3.39 3.42 2.54

32x32 1 8 No 3.39 3.41 3.11

32x32 2 8 Yes 3.00 2.86 3.11

32x32 2 8 No 3.11 3.01 3.39

32x32 2 16 Yes 3.37 3.28 3.67

32x32 3 8 Yes 3.39 3.09 2.26

32x32 3 8 No 3.11 2.91 3.39

32x32 3 16 Yes 2.82 2.64 3.39

64x64 1 8 Yes 4.68 4.80 3.95

64x64 1 8 No 4.52 4.66 3.67

64x64 2 8 Yes 4.02 3.97 3.67

64x64 2 8 No 4.24 4.34 4.24

64x64 2 16 Yes 5.37 5.40 5.65

64x64 3 8 Yes 4.52 4.36 2.82

64x64 3 8 No 4.24 4.14 3.95

64x64 3 16 Yes 5.50 5.59 4.52

128x128 1 8 Yes 7.01 7.26 4.80

128x128 1 8 No 7.01 7.30 4.80

128x128 2 8 Yes 6.78 7.25 4.52

128x128 2 8 No 5.93 6.46 4.52

128x128 2 16 Yes 8.05 8.30 8.47

128x128 3 8 Yes 6.50 6.73 4.52

128x128 3 8 No 6.86 6.86 5.08

128x128 3 16 Yes 9.98 10.38 9.60

Table 107.: Palmprint Results using Local Binary Pattern and PCA to extract features
and Euclidean distance to compare.
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b.3.3 Local Binary Pattern and Chi-Square Distance

Algorithm Parameters
Results

Validation Test
Region
Size

Radio ]Neighboors Uniform EER (%) FMR
(%)

FNMR
(%)

8x8 1 8 Yes 0.34 0.32 0.85

8x8 1 8 No 0.30 0.31 0.85

8x8 2 8 Yes 0.28 0.28 1.41

8x8 2 8 No 0.61 0.57 1.69

8x8 2 16 Yes 1.41 1.38 0.85

8x8 3 8 Yes 1.07 0.98 0.85

8x8 3 8 No 1.40 1.29 1.98

8x8 3 16 Yes 1.41 1.38 0.85

16x16 1 8 Yes 0.64 0.62 1.41

16x16 1 8 No 0.28 0.28 1.13

16x16 2 8 Yes 0.28 0.26 1.13

16x16 2 8 No 0.075 0.059 0.85

16x16 2 16 Yes 0.28 0.26 0.85

16x16 3 8 Yes 0.21 0.20 0.85

16x16 3 8 No 0.043 0.0334 1.13

16x16 3 16 Yes 0.28 0.26 0.85

32x32 1 8 Yes 2.18 2.08 1.69

32x32 1 8 No 1.69 1.60 1.41

32x32 2 8 Yes 1.69 1.66 1.41

32x32 2 8 No 1.13 1.12 1.41

32x32 2 16 Yes 1.13 1.15 1.41

32x32 3 8 Yes 1.41 1.36 1.41

32x32 3 8 No 0.69 0.70 1.13

32x32 3 16 Yes 1.03 0.97 1.41

64x64 1 8 Yes 3.67 3.73 3.11

64x64 1 8 No 3.39 3.42 2.26

64x64 2 8 Yes 2.82 2.87 1.98

64x64 2 8 No 2.26 2.36 1.98

64x64 2 16 Yes 2.57 2.57 1.98

64x64 3 8 Yes 2.54 2.50 1.69

64x64 3 8 No 1.71 1.78 1.41

64x64 3 16 Yes 2.29 2.33 1.41

128x128 1 8 Yes 5.08 5.36 4.24

128x128 1 8 No 4.61 4.88 3.95

128x128 2 8 Yes 4.40 4.70 3.39

128x128 2 8 No 3.90 4.22 3.11

128x128 2 16 Yes 4.29 4.50 2.82

128x128 3 8 Yes 4.25 4.31 3.67

128x128 3 8 No 3.44 3.36 2.54

128x128 3 16 Yes 4.01 4.02 3.11

Table 108.: Palmprint Results using Local Binary Pattern to extract features and Chi-
Square distance to compare.
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b.3.4 Local Binary Pattern and Histogram Intersection

Algorithm Parameters
Results

Validation Test
Region
Size

Radio ]Neighboors Uniform EER (%) FMR
(%)

FNMR
(%)

8x8 1 8 Yes 0.51 0.47 0.85

8x8 1 8 No 0.28 0.28 1.13

8x8 2 8 Yes 0.53 0.50 0.85

8x8 2 8 No 0.56 0.55 1.98

8x8 2 16 Yes 1.38 1.32 0.56

8x8 3 8 Yes 1.11 1.03 0.85

8x8 3 8 No 1.27 1.14 1.98

8x8 3 16 Yes 3.67 4.11 4.52

16x16 1 8 Yes 0.64 0.61 1.41

16x16 1 8 No 0.30 0.29 1.41

16x16 2 8 Yes 0.53 0.49 1.13

16x16 2 8 No 0.14 0.12 0.85

16x16 2 16 Yes 0.28 0.28 1.13

16x16 3 8 Yes 0.28 0.23 0.85

16x16 3 8 No 0.079 0.074 1.13

16x16 3 16 Yes 0.85 0.76 1.13

32x32 1 8 Yes 1.73 1.64 1.41

32x32 1 8 No 1.41 1.33 1.41

32x32 2 8 Yes 1.50 1.46 1.41

32x32 2 8 No 1.13 1.14 1.41

32x32 2 16 Yes 1.41 1.39 1.41

32x32 3 8 Yes 1.69 1.61 1.41

32x32 3 8 No 0.85 0.89 1.13

32x32 3 16 Yes 1.69 1.62 1.41

64x64 1 8 Yes 3.67 3.70 3.39

64x64 1 8 No 3.11 3.12 2.82

64x64 2 8 Yes 2.80 2.80 1.69

64x64 2 8 No 1.98 2.08 1.69

64x64 2 16 Yes 2.60 2.59 1.98

64x64 3 8 Yes 2.54 2.56 1.69

64x64 3 8 No 1.98 2.00 1.41

64x64 3 16 Yes 2.82 2.85 1.69

128x128 1 8 Yes 5.37 5.63 5.08

128x128 1 8 No 5.06 5.34 3.95

128x128 2 8 Yes 4.68 4.90 3.67

128x128 2 8 No 4.19 4.45 2.82

128x128 2 16 Yes 4.91 5.16 4.52

128x128 3 8 Yes 4.80 4.84 4.24

128x128 3 8 No 3.75 3.72 2.82

128x128 3 16 Yes 5.08 5.14 4.24

Table 109.: Palmprint Results using Local Binary Pattern to extract features and His-
togram Intersection to compare.
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b.3.5 Local Binary Pattern and Support Vector Machines

Algorithm Parameters
Results

Validation Test
Region
Size

Radio ]Neighboors Uniform EER (%) FMR
(%)

FNMR
(%)

8x8 1 8 Yes 0.0048 0.0048 0.28

8x8 1 8 No 0.0064 0.0064 0.28

8x8 2 8 Yes 0.083 0.083 0.28

8x8 2 8 No 0.10 0.10 0.28

8x8 2 16 Yes 0.28 0.30 0.28

8x8 3 8 Yes 0.40 0.45 0.56

8x8 3 8 No 0.28 0.35 0.56

8x8 3 16 Yes 0.85 0.97 0.28

16x16 1 8 Yes 0 0.0016 0.85

16x16 1 8 No 0 0.0016 0.85

16x16 2 8 Yes 0 0.0016 0.56

16x16 2 8 No 0 0 0.56

16x16 2 16 Yes 0.0031 0 1.13

16x16 3 8 Yes 0 0.0016 0.56

16x16 3 8 No 0 0.0016 0.56

16x16 3 16 Yes 0 0 1.13

32x32 1 8 Yes 0.28 0.31 0.28

32x32 1 8 No 0.21 0.22 0.28

32x32 2 8 Yes 0.14 0.12 0.85

32x32 2 8 No 0.23 0.24 0

32x32 2 16 Yes 0.17 0.19 0.85

32x32 3 8 Yes 0.21 0.20 0.85

32x32 3 8 No 0.055 0.055 0.28

32x32 3 16 Yes 0.24 0.23 0.85

64x64 1 8 Yes 1.13 1.05 1.41

64x64 1 8 No 0.85 0.83 1.41

64x64 2 8 Yes 0.85 0.84 1.13

64x64 2 8 No 0.85 0.92 0.85

64x64 2 16 Yes 1.13 1.15 1.13

64x64 3 8 Yes 0.85 0.79 1.13

64x64 3 8 No 0.85 0.84 0.85

64x64 3 16 Yes 0.90 0.85 1.13

128x128 1 8 Yes 4.78 4.51 5.93

128x128 1 8 No 4.24 3.86 5.93

128x128 2 8 Yes 2.26 2.17 4.24

128x128 2 8 No 1.41 1.36 4.80

128x128 2 16 Yes 2.26 2.24 1.98

128x128 3 8 Yes 1.69 1.75 1.69

128x128 3 8 No 1.41 1.50 1.69

128x128 3 16 Yes 1.69 1.61 1.41

Table 110.: Palmprint Results using Local Binary Pattern to extract features and SVMs
to compare.
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b.3.6 Local Binary Pattern, PCA and Support Vector Machines

Algorithm Parameters
Results

Validation Test
Region
Size

Radio ]Neighboors Uniform EER (%) FMR
(%)

FNMR
(%)

8x8 1 8 Yes 0.0032 0.0048 0.56

8x8 1 8 No 0.0078 0.0048 0.56

8x8 2 8 Yes 0.056 0.095 0.56

8x8 2 8 No 0.078 0.13 0.56

8x8 2 16 Yes 0.28 0.35 0.56

8x8 3 8 Yes 0.56 0.73 0.85

8x8 3 8 No 0.66 0.85 0.85

8x8 3 16 Yes 1.13 1.28 1.13

16x16 1 8 Yes 0 0.0016 0.85

16x16 1 8 No 0 0.0032 1.41

16x16 2 8 Yes 0 0.0016 0.56

16x16 2 8 No 0 0.0016 0.56

16x16 2 16 Yes 0.0016 0 0.85

16x16 3 8 Yes 0 0.0032 0.56

16x16 3 8 No 0 0 0.56

16x16 3 16 Yes 0 0 1.13

32x32 1 8 Yes 0.28 0.31 0.28

32x32 1 8 No 0.27 0.29 0.28

32x32 2 8 Yes 0.17 0.15 0.85

32x32 2 8 No 0.28 0.27 0

32x32 2 16 Yes 0.25 0.29 0.85

32x32 3 8 Yes 0.23 0.22 0.85

32x32 3 8 No 0.070 0.061 0.28

32x32 3 16 Yes 0.20 0.20 0.85

64x64 1 8 Yes 1.13 1.05 1.41

64x64 1 8 No 0.85 0.83 1.41

64x64 2 8 Yes 0.85 0.84 1.13

64x64 2 8 No 0.85 0.91 1.13

64x64 2 16 Yes 1.13 1.16 1.13

64x64 3 8 Yes 0.85 0.80 1.13

64x64 3 8 No 0.85 0.84 0.85

64x64 3 16 Yes 1.04 0.96 1.13

128x128 1 8 Yes 4.78 4.51 5.93

128x128 1 8 No 4.24 3.86 5.93

128x128 2 8 Yes 2.26 2.17 4.24

128x128 2 8 No 1.41 1.36 4.80

128x128 2 16 Yes 2.26 2.24 1.98

128x128 3 8 Yes 1.69 1.75 1.69

128x128 3 8 No 1.41 1.50 1.69

128x128 3 16 Yes 1.69 1.60 1.41

Table 111.: Palmprint Results using Local Binary Pattern and PCA to extract features
and SVMs to compare.
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b.4 local derivative pattern

b.4.1 Local Derivative Pattern and Euclidean Distance

Algorithm Parameters
Results

Validation Test
Region Size Directions EER (%) FMR (%) FNMR (%)

8x8 0 2.23 2.04 3.11

8x8 45 2.54 2.55 1.41

8x8 90 1.69 1.86 2.26

8x8 135 1.69 1.38 1.69

8x8 0, 45 1.59 1.51 1.41

8x8 0, 90 1.69 1.56 1.13

8x8 0, 135 1.72 1.61 1.98

8x8 45, 90 1.93 2.03 1.13

8x8 45, 135 1.13 1.15 1.13

8x8 90, 135 1.13 1.15 3.11

8x8 0, 45, 90 1.41 1.34 1.69

8x8 0, 45, 135 1.41 1.33 1.13

8x8 0, 90, 135 1.41 1.38 1.69

8x8 45, 90, 135 1.13 1.17 1.13

8x8 0, 45, 90, 135 1.13 1.14 0.85

16x16 0 1.98 1.82 2.54

16x16 45 2.82 2.69 1.69

16x16 90 2.89 2.87 2.26

16x16 135 1.75 1.75 3.11

16x16 0, 45 2.54 2.36 1.41

16x16 0, 90 1.98 1.88 1.41

16x16 0, 135 1.45 1.37 1.98

16x16 45, 90 2.54 2.44 1.69

16x16 45, 135 2.14 2.06 1.69

16x16 90, 135 1.92 1.95 1.98

16x16 0, 45, 90 2.26 2.13 1.41

16x16 0, 45, 135 1.97 1.87 1.14

16x16 0, 90, 135 1.41 1.33 1.41

16x16 45, 90, 135 2.23 2.21 1.69

16x16 0, 45, 90, 135 2.26 2.24 1.41

32x32 0 2.54 2.65 4.24

32x32 45 3.67 3.53 3.67

32x32 90 3.39 3.30 3.67

32x32 135 2.54 2.82 4.52

32x32 0, 45 2.93 2.91 2.54

32x32 0, 90 2.82 2.90 2.26

32x32 0, 135 1.98 2.25 3.11

32x32 45, 90 3.94 3.83 2.82



B.4 local derivative pattern 307

Algorithm Parameters
Results

Validation Test
Region Size Directions EER (%) FMR (%) FNMR (%)

32x32 45, 135 2.82 2.83 2.26

32x32 90, 135 3.11 3.27 3.11

32x32 0, 45, 90 3.11 3.07 2.54

32x32 0, 45, 135 2.54 2.63 1.98

32x32 0, 90, 135 2.72 2.86 2.54

32x32 45, 90, 135 3.11 3.13 2.82

32x32 0, 45, 90, 135 2.82 2.90 2.54

64x64 0 7.63 7.72 8.19

64x64 45 6.50 6.33 7.34

64x64 90 6.86 6.80 6.50

64x64 135 6.57 6.86 8.19

64x64 0, 45 5.69 5.69 5.08

64x64 0, 90 4.52 4.70 4.24

64x64 0, 135 3.95 4.19 5.08

64x64 45, 90 5.94 5.99 5.08

64x64 45, 135 5.08 5.17 4.24

64x64 90, 135 5.16 5.35 4.52

64x64 0, 45, 90 5.13 5.18 4.24

64x64 0, 45, 135 4.52 4.61 3.67

64x64 0, 90, 135 4.24 4.45 4.52

64x64 45, 90, 135 4.80 4.91 4.24

64x64 0, 45, 90, 135 4.52 4.69 3.95

128x128 0 14.68 14.89 17.80

128x128 45 15.80 16.26 15.25

128x128 90 14.91 15.34 13.84

128x128 135 13.87 14.05 14.69

128x128 0, 45 9.99 10.25 11.30

128x128 0, 90 9.73 10.11 9.04

128x128 0, 135 8.78 8.76 9.32

128x128 45, 90 12.79 13.12 9.04

128x128 45, 135 8.76 8.92 9.04

128x128 90, 135 9.86 9.97 9.04

128x128 0, 45, 90 8.93 9.29 8.47

128x128 0, 45, 135 7.10 7.18 7.63

128x128 0, 90, 135 7.77 7.95 7.63

128x128 45, 90, 135 8.55 8.85 7.91

128x128 0, 45, 90, 135 7.34 7.49 6.78

Table 112.: Palmprint Results using Local Derivative Pattern to extract features and
Euclidean distance to compare.
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b.4.2 Local Derivative Pattern, PCA and Euclidean Distance

Algorithm Parameters
Results

Validation Test
Region Size Directions EER (%) FMR (%) FNMR (%)

8x8 0 1.98 1.71 1.69

8x8 45 1.98 1.81 1.98

8x8 90 1.69 1.72 1.41

8x8 135 1.69 1.66 3.11

8x8 0, 45 1.69 1.38 1.69

8x8 0, 90 1.67 1.39 0.85

8x8 0, 135 1.41 1.07 1.13

8x8 45, 90 1.40 1.29 1.13

8x8 45, 135 1.13 0.90 0.28

8x8 90, 135 0.97 0.85 1.41

8x8 0, 45, 90 1.43 1.16 1.41

8x8 0, 45, 135 1.41 1.07 0.85

8x8 0, 90, 135 1.13 0.93 0.85

8x8 45, 90, 135 1.00 0.83 0.56

8x8 0, 45, 90, 135 1.38 1.12 0.56

16x16 0 1.98 1.82 2.54

16x16 45 2.82 2.67 1.69

16x16 90 2.82 2.77 2.26

16x16 135 1.88 1.94 2.82

16x16 0, 45 2.54 2.34 1.41

16x16 0, 90 1.98 1.87 1.41

16x16 0, 135 1.69 1.62 1.98

16x16 45, 90 2.54 2.39 1.69

16x16 45, 135 2.03 1.91 1.69

16x16 90, 135 2.03 2.07 1.98

16x16 0, 45, 90 2.55 2.37 1.69

16x16 0, 45, 135 1.70 1.59 1.41

16x16 0, 90, 135 1.41 1.32 1.41

16x16 45, 90, 135 2.26 2.18 1.69

16x16 0, 45, 90, 135 2.17 2.10 1.41

32x32 0 2.54 2.66 4.24

32x32 45 3.67 3.53 3.67

32x32 90 3.39 3.30 3.67

32x32 135 2.54 2.82 4.52

32x32 0, 45 3.00 2.96 2.54

32x32 0, 90 2.82 2.89 2.26

32x32 0, 135 1.98 2.25 3.11

32x32 45, 90 3.95 3.83 2.82

32x32 45, 135 2.82 2.82 2.26
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Algorithm Parameters
Results

Validation Test
Region Size Directions EER (%) FMR (%) FNMR (%)

32x32 90, 135 3.11 3.28 3.11

32x32 0, 45, 90 3.11 3.06 2.54

32x32 0, 45, 135 2.56 2.63 1.98

32x32 0, 90, 135 2.71 2.85 2.54

32x32 45, 90, 135 3.11 3.13 2.82

32x32 0, 45, 90, 135 2.82 2.89 2.54

64x64 0 7.63 7.73 8.47

64x64 45 6.49 6.33 7.34

64x64 90 6.88 6.81 6.50

64x64 135 6.50 6.80 8.19

64x64 0, 45 5.82 5.85 5.08

64x64 0, 90 4.52 4.69 4.24

64x64 0, 135 3.95 4.19 5.65

64x64 45, 90 6.01 6.06 5.08

64x64 45, 135 5.08 5.18 4.24

64x64 90, 135 5.22 5.42 4.52

64x64 0, 45, 90 5.15 5.22 4.52

64x64 0, 45, 135 4.52 4.62 3.95

64x64 0, 90, 135 4.24 4.45 4.52

64x64 45, 90, 135 4.88 4.98 4.24

64x64 0, 45, 90, 135 4.52 4.69 3.95

128x128 0 14.68 14.89 17.80

128x128 45 15.80 16.26 15.25

128x128 90 14.91 15.34 13.84

128x128 135 13.87 14.05 14.69

128x128 0, 45 9.99 10.25 11.30

128x128 0, 90 9.73 10.11 9.04

128x128 0, 135 8.78 8.76 9.32

128x128 45, 90 12.79 13.12 9.04

128x128 45, 135 8.76 8.92 9.04

128x128 90, 135 9.86 9.97 9.04

128x128 0, 45, 90 8.94 9.31 8.47

128x128 0, 45, 135 7.06 7.15 7.91

128x128 0, 90, 135 7.79 7.97 7.63

128x128 45, 90, 135 8.48 8.77 7.91

128x128 0, 45, 90, 135 7.39 7.54 6.78

Table 113.: Palmprint Results using Local Derivative Pattern and PCA to extract fea-
tures and Euclidean distance to compare.
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b.4.3 Local Derivative Pattern and Chi-Square Distance

Algorithm Parameters
Results

Validation Test
Region Size Directions EER (%) FMR (%) FNMR (%)

8x8 0 5.08 4.87 6.50

8x8 45 3.39 3.39 5.65

8x8 90 8.10 8.09 11.58

8x8 135 10.00 10.07 11.02

8x8 0, 45 2.54 2.47 3.95

8x8 0, 90 3.34 3.20 4.80

8x8 0, 135 3.28 3.16 3.39

8x8 45, 90 5.00 4.98 5.93

8x8 45, 135 3.93 3.82 5.65

8x8 90, 135 8.15 8.21 9.32

8x8 0, 45, 90 3.17 3.09 4.24

8x8 0, 45, 135 2.54 2.40 3.67

8x8 0, 90, 135 3.53 3.45 4.52

8x8 45, 90, 135 4.80 4.70 6.78

8x8 0, 45, 90, 135 3.10 2.96 4.80

16x16 0 2.26 2.26 3.11

16x16 45 2.26 2.26 1.69

16x16 90 6.34 6.10 7.34

16x16 135 3.95 3.73 5.93

16x16 0, 45 1.30 1.29 0.85

16x16 0, 90 2.20 2.11 1.13

16x16 0, 135 1.02 0.95 0.85

16x16 45, 90 3.22 3.16 2.54

16x16 45, 135 1.95 1.83 1.69

16x16 90, 135 4.24 4.05 5.93

16x16 0, 45, 90 1.98 1.91 1.13

16x16 0, 45, 135 0.99 0.99 0.85

16x16 0, 90, 135 1.66 1.56 1.69

16x16 45, 90, 135 2.82 2.68 2.82

16x16 0, 45, 90, 135 1.69 1.62 1.13

32x32 0 3.11 3.30 1.98

32x32 45 1.88 2.09 1.41

32x32 90 3.92 4.01 3.95

32x32 135 3.11 3.07 3.39

32x32 0, 45 1.65 1.80 1.13

32x32 0, 90 1.69 1.84 1.13

32x32 0, 135 1.58 1.52 1.13

32x32 45, 90 1.98 2.16 1.98

32x32 45, 135 1.69 1.73 1.41
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Algorithm Parameters
Results

Validation Test
Region Size Directions EER (%) FMR (%) FNMR (%)

32x32 90, 135 2.46 2.53 2.54

32x32 0, 45, 90 1.41 1.56 0.85

32x32 0, 45, 135 1.69 1.72 0.85

32x32 0, 90, 135 1.41 1.51 1.13

32x32 45, 90, 135 2.02 2.08 1.69

32x32 0, 45, 90, 135 1.43 1.55 0.85

64x64 0 5.20 5.41 5.37

64x64 45 4.24 4.55 4.24

64x64 90 3.53 3.80 4.24

64x64 135 4.91 5.22 5.37

64x64 0, 45 3.67 3.95 3.39

64x64 0, 90 3.11 3.30 3.67

64x64 0, 135 3.67 3.83 3.67

64x64 45, 90 3.11 3.38 2.82

64x64 45, 135 3.19 3.34 2.26

64x64 90, 135 2.82 3.08 3.11

64x64 0, 45, 90 3.11 3.38 2.82

64x64 0, 45, 135 3.22 3.40 2.54

64x64 0, 90, 135 3.30 3.49 2.54

64x64 45, 90, 135 2.83 3.01 1.98

64x64 0, 45, 90, 135 2.97 3.16 3.11

128x128 0 9.35 9.59 9.32

128x128 45 9.13 9.32 7.63

128x128 90 9.01 8.99 11.58

128x128 135 9.13 9.65 10.45

128x128 0, 45 7.86 8.28 6.50

128x128 0, 90 6.24 6.61 6.78

128x128 0, 135 6.37 6.55 7.34

128x128 45, 90 7.06 7.26 7.06

128x128 45, 135 5.93 6.03 6.21

128x128 90, 135 5.75 5.98 9.04

128x128 0, 45, 90 6.46 6.78 5.65

128x128 0, 45, 135 5.68 5.94 6.21

128x128 0, 90, 135 5.37 5.66 6.50

128x128 45, 90, 135 5.42 5.57 6.78

128x128 0, 45, 90, 135 5.33 5.52 6.21

Table 114.: Palmprint Results using Local Derivative Pattern to extract features and
Chi-Square distance to compare.
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b.4.4 Local Derivative Pattern and Histogram Intersection

Algorithm Parameters
Results

Validation Test
Region Size Directions EER (%) FMR (%) FNMR (%)

8x8 0 4.31 3.98 4.52

8x8 45 3.39 3.38 5.08

8x8 90 6.71 6.72 8.19

8x8 135 8.22 8.33 7.91

8x8 0, 45 2.25 2.24 3.67

8x8 0, 90 2.26 2.20 4.24

8x8 0, 135 2.45 2.40 3.39

8x8 45, 90 4.52 4.45 4.80

8x8 45, 135 3.44 3.36 5.08

8x8 90, 135 6.50 6.46 7.06

8x8 0, 45, 90 2.82 2.74 3.67

8x8 0, 45, 135 2.09 2.02 3.39

8x8 0, 90, 135 2.91 2.78 4.24

8x8 45, 90, 135 4.50 4.39 5.37

8x8 0, 45, 90, 135 2.54 2.43 4.24

16x16 0 1.24 1.23 1.98

16x16 45 1.41 1.42 1.13

16x16 90 2.26 2.13 2.54

16x16 135 1.69 1.61 3.95

16x16 0, 45 1.17 1.22 0.85

16x16 0, 90 1.13 1.17 0.85

16x16 0, 135 0.63 0.62 1.13

16x16 45, 90 1.41 1.41 1.13

16x16 45, 135 1.34 1.27 1.13

16x16 90, 135 1.69 1.60 3.11

16x16 0, 45, 90 1.41 1.41 0.85

16x16 0, 45, 135 0.80 0.80 1.13

16x16 0, 90, 135 0.85 0.85 1.13

16x16 45, 90, 135 1.69 1.58 0.85

16x16 0, 45, 90, 135 1.16 1.15 0.85

32x32 0 2.26 2.39 1.69

32x32 45 2.26 2.37 1.41

32x32 90 1.98 1.92 1.98

32x32 135 2.54 2.64 2.26

32x32 0, 45 1.54 1.58 1.13

32x32 0, 90 1.41 1.42 0.85

32x32 0, 135 0.86 0.89 1.69

32x32 45, 90 1.98 2.00 1.13

32x32 45, 135 1.41 1.42 1.41
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Algorithm Parameters
Results

Validation Test
Region Size Directions EER (%) FMR (%) FNMR (%)

32x32 90, 135 1.52 1.57 1.69

32x32 0, 45, 90 1.48 1.47 1.13

32x32 0, 45, 135 1.18 1.16 1.13

32x32 0, 90, 135 1.13 1.18 1.13

32x32 45, 90, 135 1.69 1.74 1.13

32x32 0, 45, 90, 135 1.32 1.35 1.13

64x64 0 5.65 5.66 4.52

64x64 45 4.24 4.42 4.24

64x64 90 4.70 4.96 4.24

64x64 135 4.42 4.69 5.37

64x64 0, 45 3.70 3.81 3.95

64x64 0, 90 3.45 3.66 3.11

64x64 0, 135 3.39 3.54 2.54

64x64 45, 90 3.93 4.07 2.54

64x64 45, 135 3.11 3.21 1.98

64x64 90, 135 3.12 3.41 3.95

64x64 0, 45, 90 2.82 2.97 3.11

64x64 0, 45, 135 3.00 3.17 2.54

64x64 0, 90, 135 2.88 3.07 2.54

64x64 45, 90, 135 2.78 2.96 2.82

64x64 0, 45, 90, 135 3.03 3.21 2.26

128x128 0 10.55 10.38 11.58

128x128 45 10.08 10.26 9.04

128x128 90 10.51 10.65 9.32

128x128 135 8.53 9.03 11.86

128x128 0, 45 7.06 7.25 6.78

128x128 0, 90 6.62 7.03 7.06

128x128 0, 135 6.13 6.16 6.50

128x128 45, 90 8.31 8.53 5.93

128x128 45, 135 6.19 6.44 5.37

128x128 90, 135 6.83 6.92 5.93

128x128 0, 45, 90 6.29 6.61 6.50

128x128 0, 45, 135 5.37 5.54 4.80

128x128 0, 90, 135 5.28 5.43 5.08

128x128 45, 90, 135 6.04 6.26 5.08

128x128 0, 45, 90, 135 5.16 5.28 5.65

Table 115.: Palmprint Results using Local Derivative Pattern to extract features and
Histogram Intersection to compare.
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b.4.5 Local Derivative Pattern and Support Vector Machines

Algorithm Parameters
Results

Validation Test
Region Size Directions EER (%) FMR (%) FNMR (%)

8x8 0 0.87 0.96 1.13

8x8 45 1.13 1.29 0.28

8x8 90 0.56 0.63 0.56

8x8 135 0.28 0.30 1.41

8x8 0, 45 0.58 0.68 0.56

8x8 0, 90 0.071 0.077 0

8x8 0, 135 0.0095 0.0096 0.85

8x8 45, 90 0.79 0.92 0.28

8x8 45, 135 0.10 0.12 0.28

8x8 90, 135 0.17 0.22 0.28

8x8 0, 45, 90 0.28 0.30 0

8x8 0, 45, 135 0.088 0.099 0.28

8x8 0, 90, 135 0.0079 0.013 0.85

8x8 45, 90, 135 0.089 0.10 0

8x8 0, 45, 90, 135 0.059 0.056 0

16x16 0 0.57 0.70 0

16x16 45 0.25 0.34 0.56

16x16 90 0.56 0.62 0.56

16x16 135 0.28 0.38 0

16x16 0, 45 0.10 0.13 0.56

16x16 0, 90 0.019 0.022 0.56

16x16 0, 135 0.016 0.0096 0.85

16x16 45, 90 0.16 0.18 0.56

16x16 45, 135 0.16 0.20 0.28

16x16 90, 135 0.28 0.32 0

16x16 0, 45, 90 0.035 0.048 0.56

16x16 0, 45, 135 0.0096 0.011 0.28

16x16 0, 90, 135 0.025 0.021 0.28

16x16 45, 90, 135 0.13 0.19 0.28

16x16 0, 45, 90, 135 0.019 0.024 0.28

32x32 0 0.56 0.56 0.56

32x32 45 1.11 1.15 1.13

32x32 90 0.97 1.00 0.85

32x32 135 0.82 0.82 1.98

32x32 0, 45 0.12 0.18 1.69

32x32 0, 90 0.13 0.15 01.69

32x32 0, 135 0.027 0.0096 1.41

32x32 45, 90 0.28 0.36 1.69

32x32 45, 135 0.032 0.026 1.13
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Algorithm Parameters
Results

Validation Test
Region Size Directions EER (%) FMR (%) FNMR (%)

32x32 90, 135 0.28 0.28 0.28

32x32 0, 45, 90 0.066 0.080 1.69

32x32 0, 45, 135 0.0064 0.0032 2.26

32x32 0, 90, 135 0.014 0.0064 1.98

32x32 45, 90, 135 0.074 0.077 0.56

32x32 0, 45, 90, 135 0.013 0.0080 2.26

64x64 0 3.74 3.62 3.11

64x64 45 2.49 2.42 2.82

64x64 90 3.16 3.01 1.98

64x64 135 3.48 3.37 5.65

64x64 0, 45 1.69 1.67 1.98

64x64 0, 90 2.26 2.09 1.98

64x64 0, 135 1.98 1.78 2.54

64x64 45, 90 1.65 1.67 2.54

64x64 45, 135 1.98 1.94 3.11

64x64 90, 135 1.41 1.38 3.67

64x64 0, 45, 90 1.55 1.52 1.69

64x64 0, 45, 135 1.27 1.24 2.26

64x64 0, 90, 135 1.13 1.04 3.39

64x64 45, 90, 135 1.38 1.36 2.82

64x64 0, 45, 90, 135 1.13 1.14 1.98

128x128 0 10.89 11.17 11.02

128x128 45 10.39 10.35 13.28

128x128 90 11.60 11.33 13.28

128x128 135 13.29 13.32 13.84

128x128 0, 45 5.97 5.86 5.93

128x128 0, 90 5.59 5.45 6.21

128x128 0, 135 5.54 5.45 7.91

128x128 45, 90 6.14 5.91 4.80

128x128 45, 135 5.24 5.10 5.65

128x128 90, 135 5.90 5.78 7.34

128x128 0, 45, 90 4.50 4.20 4.52

128x128 0, 45, 135 3.36 3.19 5.65

128x128 0, 90, 135 4.09 3.86 5.65

128x128 45, 90, 135 4.21 4.03 5.37

128x128 0, 45, 90, 135 3.29 3.07 4.80

Table 116.: Palmprint Results using Local Derivative Pattern to extract features and
SVMs to compare.
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b.4.6 Local Derivative Pattern, PCA and Support Vector Machines

Algorithm Parameters
Results

Validation Test
Region Size Directions EER (%) FMR (%) FNMR (%)

8x8 0 0.85 0.94 1.13

8x8 45 1.13 1.36 0.56

8x8 90 0.56 0.59 0.56

8x8 135 0.28 0.31 1.41

8x8 0, 45 0.56 0.66 0.56

8x8 0, 90 0.079 0.10 0

8x8 0, 135 0.019 0.019 0.85

8x8 45, 90 0.78 0.85 0.28

8x8 45, 135 0.093 0.11 0

8x8 90, 135 0.12 0.14 0.28

8x8 0, 45, 90 0.39 0.40 0

8x8 0, 45, 135 0.12 0.16 0

8x8 0, 90, 135 0.0080 0.018 0

8x8 45, 90, 135 0.12 0.14 0

8x8 0, 45, 90, 135 0.076 0.095 0

16x16 0 0.56 0.69 0

16x16 45 0.28 0.36 0.56

16x16 90 0.50 0.57 0.56

16x16 135 0.28 0.37 0.28

16x16 0, 45 0.18 0.22 0.56

16x16 0, 90 0.027 0.035 0.56

16x16 0, 135 0.013 0.013 0.85

16x16 45, 90 0.16 0.19 0.56

16x16 45, 135 0.19 0.22 0.28

16x16 90, 135 0.28 0.34 0

16x16 0, 45, 90 0.057 0.066 0.56

16x16 0, 45, 135 0.011 0.0096 0.28

16x16 0, 90, 135 0.033 0.030 0.28

16x16 45, 90, 135 0.20 0.27 0.28

16x16 0, 45, 90, 135 0.027 0.032 0.28

32x32 0 0.56 0.56 3.39

32x32 45 1.13 1.20 1.13

32x32 90 1.00 1.04 1.13

32x32 135 0.88 0.88 1.98

32x32 0, 45 0.19 0.26 1.41

32x32 0, 90 0.28 0.34 0.85

32x32 0, 135 0.060 0.049 0.85

32x32 45, 90 0.50 0.56 1.13

32x32 45, 135 0.037 0.037 0.85
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Algorithm Parameters
Results

Validation Test
Region Size Directions EER (%) FMR (%) FNMR (%)

32x32 90, 135 0.28 0.29 0.28

32x32 0, 45, 90 0.14 0.19 1.13

32x32 0, 45, 135 0.0048 0.0048 1.98

32x32 0, 90, 135 0.033 0.029 1.13

32x32 45, 90, 135 0.14 0.17 0.28

32x32 0, 45, 90, 135 0.022 0.013 1.69

64x64 0 3.90 3.82 2.82

64x64 45 2.52 2.47 2.82

64x64 90 3.25 3.10 2.26

64x64 135 3.68 3.54 5.65

64x64 0, 45 1.98 1.96 1.98

64x64 0, 90 2.28 2.15 1.98

64x64 0, 135 1.98 1.80 2.82

64x64 45, 90 1.72 1.74 2.54

64x64 45, 135 2.17 2.15 3.11

64x64 90, 135 1.56 1.51 3.67

64x64 0, 45, 90 1.69 1.62 1.98

64x64 0, 45, 135 1.51 1.46 2.26

64x64 0, 90, 135 1.41 1.34 3.11

64x64 45, 90, 135 1.41 1.39 2.82

64x64 0, 45, 90, 135 1.34 1.33 2.82

128x128 0 10.88 11.16 11.02

128x128 45 10.39 10.34 13.28

128x128 90 11.60 11.33 13.28

128x128 135 13.30 13.34 13.84

128x128 0, 45 6.03 5.91 5.65

128x128 0, 90 5.50 5.38 7.68

128x128 0, 135 5.54 5.45 7.91

128x128 45, 90 6.14 5.92 4.80

128x128 45, 135 5.06 4.96 6.21

128x128 90, 135 5.90 5.79 7.34

128x128 0, 45, 90 4.29 4.04 4.52

128x128 0, 45, 135 3.40 3.26 5.65

128x128 0, 90, 135 4.40 4.18 5.37

128x128 45, 90, 135 4.18 4.00 5.37

128x128 0, 45, 90, 135 3.58 3.33 4.24

Table 117.: Palmprint Results using Local Derivative Pattern and PCA to extract fea-
tures and SVMs to compare.
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[155] S. Ribarić and I. Fratri’c. An online biometric authentication system based on
eigenfingers and finger-geometry. In 13th European Signal Processing Conference,
pages 1–4, Sept 2005.

[156] S. Ribaric, D. Ribaric, and N. Pavesic. Multimodal biometric user-identification
system for network-based applications. IEEE Proceedings on Vision, Image and
Signal Processing, 150(6):409–416, Dec 2003.
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I. de Mendizábal-Vázquez, G. Bailador, and C. Sánchez-Ávila. gb2sµMOD: A
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