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Abstract

A new complete formulation is proposed for the simulation of nonlinear dy-

namic of multibody systems with thermo-mechanical behaviour. The approach is

founded in three main pillars: total Lagrangian formulation, Bubnov-Galerkin dis-

cretization, and meshfree shape functions. Meshfree methods are characterized by

the definition of a set of shape functions in overlapping domains, and a background

grid for integration of the Galerkin discrete equations.

Two different types of shape functions have been chosen as representatives of

interpolation (Radial Basis Functions), and approximation (Moving Least Squares)

families. Their formulation has been adapted to use compatible parameters, and

their lack of predefined connectivity is used to interconnect different domains seam-

lessly, allowing the use of non-conforming meshes.

A generalized formulation for constraints, joints, and contacts is proposed, which

is valid for rigid and flexible solids, being the later discretized using either finite el-

ements (FEM) or meshfree methods. The greatest advantage of this approach is that

makes the domain completely independent of the external links and actions, allow-

ing to even define them outside of the boundary. At the same time, the number of

constraint equations needed for defining realistic joints is minimized.

Validation, examples, and benchmarks are provided for the proposed formula-

tion, demonstrating that the approach is generic and extensible to further problems.

Comparisons with FEM show a much lower error for the same number of nodes,

both for mechanical and thermal analyses. The numerical efficiency is also better

when coarse discretizations are used. A final demonstration to a real problem for

handling massive structures inside of a fusion reactor is presented. It demonstrates

that the application of meshfree methods is feasible and can provide an advantage

towards the definition of nonlinear real-time simulation models.
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Resumen

Esta tesis propone una completa formulación termo-mecánica para la simu-

lación no-lineal de mecanismos flexibles basada en métodos libres de malla. El

enfoque se basa en tres pilares principales: la formulación de Lagrangiano total

para medios continuos, la discretización de Bubnov-Galerkin, y las funciones de

forma libres de malla. Los métodos sin malla se caracterizan por la definición de

un conjunto de funciones de forma en dominios solapados, junto con una malla de

integración de las ecuaciones discretas de balance.

Dos tipos de funciones de forma se han seleccionado como representación de las

familias interpolantes (Funciones de Base Radial) y aproximantes (Mínimos Cuadra-

dos Móviles). Su formulación se ha adaptado haciendo sus parámetros compatibles,

y su ausencia de conectividad predefinida se ha aprovechado para interconectar

múltiples dominios de manera automática, permitiendo el uso de mallas de fondo

no conformes.

Se propone una formulación generalizada de restricciones, juntas y contactos,

válida para sólidos rígidos y flexibles, siendo estos últimos discretizados mediante

elementos finitos (MEF) o libres de malla. La mayor ventaja de este enfoque reside

en que independiza completamente el dominio con respecto de las uniones y ac-

ciones externas a cada sólido, permitiendo su definición incluso fuera del contorno.

Al mismo tiempo, también se minimiza el número de ecuaciones de restricción nece-

sarias para la definición de uniones realistas.

Las diversas validaciones, ejemplos y comparaciones detalladas muestran como

el enfoque propuesto es genérico y extensible a un gran número de sistemas. En

concreto, las comparaciones con el MEF indican una importante reducción del er-

ror para igual número de nodos, tanto en simulaciones mecánicas, como térmicas y

termo-mecánicas acopladas. A igualdad de error, la eficiencia numérica de los méto-

dos libres de malla es mayor que la del MEF cuanto más grosera es la discretización.
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Finalmente, la formulación se aplica a un problema de diseño real sobre el manten-

imiento de estructuras masivas en el interior de un reactor de fusión, demostrando

su viabilidad en análisis de problemas reales, y a su vez mostrando su potencial para

su uso en simulación en tiempo real de sistemas no-lineales.
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Introduction 1
1.1 Motivation

Flexibility in structural dynamics is usually discretized by means of the finite

element method (FEM). In multibody dynamics, the computational cost of mod-

elling a full mechanism considering all parts as continuum flexible bodies is so high

that simplifications are needed for its analysis. In practice, mechanisms are com-

posed of heterogeneous bodies with very different stiffness that justifies the use of

models that consider the deformability of just the most flexible ones. Depending

on the material, geometry, loading and the topology of the kinematic chain, alter-

native discretizations are used. A part can be considered as a fully rigid body, a

body with small deformations with respect to a floating frame or a fully nonlinear

deformable body. The bodies are linked through joints or contact constraints. We

will present how these constraints can be applied between a body discretized using

Galerkin meshfree methods and other parts of a multibody system, emphasizing its

differences with the constraint formulation used in solid FEM discretization.

Thermal behavior is usually neglected when studying multibody systems, as the

temperature variations are usually limited in magnitude and effect. In the case that

the heat loads affect the global components of the system, or produce intense gradi-

ents, the thermal induced stress and deformations clearly influence the mechanics of

the system. Also, the change in the configuration of the multibody system changes

the thermal equilibrium and heat fluxes, resulting in a complex scenario for study-

ing the temperature evolution inside of the different parts. Both cases can be better

analyzed if the problem is posed using coupled field equations, and also can benefit

from the use of meshfree methods for the spatial discretization of the continuum

and joints.

Finite elements methods are not well suited to problems with extremely large
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2 1.1. Motivation

deformations [8], requiring complex and time consuming re-meshing or refine-

ments during the simulation procedure. Another issue of these methods—due to

the discontinuity of the derivatives of the shape functions—is that the representa-

tion of the stress and strain fields needs post processing techniques for recovering

the continuity through elements. In meshfree methods, as there is no connectivity,

large deformations do not reduce the accuracy of the shape functions’ approxima-

tion. What is more, the influence domains overlap, assuring the continuity of the

derivative fields. The higher precision in computing the stresses is specially mean-

ingful in the boundary facets. On the other side, meshfree methods have a higher

computational cost at equal number of DOFs.

In general, the higher cost of computing the shape functions in a meshfree

method is worthwhile wherever the creation of a finite element mesh is a high time-

consuming task or the problem requires frequent remeshings.

In multibody systems, this situation can appear when the flexible parts experi-

ence very large deformations. In compliant mechanisms, the substitution of discrete

joints by localized ones (i.e. parts with areas that have more flexible behaviour) al-

lows a dramatic reduction in production costs. In Micro-Electro-Mechanical Sys-

tems (MEMS), the flexibility of the parts can be the only way to achieve the desired

kinematics of the mechanism.

In applied engineering problems it is usual to work with complex geometries.

In these cases the creation of a proper mesh involves a very high human workload.

Meshfree methods can give very accurate solutions using Delaunay meshes, which

are guaranteed to exist in R
2. In R

3 robust boundary conforming algorithms are

available for the computation of tetrahedral meshes [67]. In FEM discretization,

poorly shaped elements are usually the main source of numerical errors. In the

methods presented in this paper, the mesh is only used for the numerical integra-

tion, which means that its geometrical characteristics do not affect the quality of the

shape functions.

If low order triangular or tetrahedral FEM elements are used for nearly incom-

pressible materials, numerical locking problems arise. This effect is usually avoided

by means of higher order elements and mixed formulations, increasing the com-

putational cost because of the higher number of degrees of freedom and a more

complex formulation. Meshfree methods are not locking-free but due to the rich-

ness of their support function, it’s so rare to find these kind of effects that the lack

of this property needed to be proven [15].

All of these problems have been found in practical engineering designs and as-

sessments of two different Fusion related projects. The common characteristic be-

tween them is the extremely challenging loads and environment conditions that

the multiple-body systems need to withstand. From small devices subjected to very
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localized heat loads, to large lifting robotic devices handling heavy radioactive com-

ponents with very limited clearances. The analysis of their behaviour has demon-

strated limitations on the usual approach using finite element discretization, which

can be overcome using meshfree interpolation techniques.

1.1.1 DEMO remote handling systems

Fusion reactors are an excellent carbon-free alternative to help meet our future

energy demands. Zero emissions, no long-lived radiation waste, abundant fuel sup-

plies, and inherent safety are the most important advantages of magnetic confine-

ment fusion reactors. On the downside, developing a fusion power plant represents

an extremely challenging task from the physics, material technology, and engineer-

ing perspectives. The damage caused by highly energetic neutrons to the in-vessel

components requires regular maintenance operations for their replacement.

The EU-DEMO (European Union DEMOnstration Power Plant) will be a nuclear

fusion power plant that intended to build upon the scientific results of the ITER

experimental nuclear fusion reactor. The objectives of DEMO lie between those of

ITER and PROTO, which will be the prototype of future commercial power plants.

Whereas ITER’s goal is to produce 500 megawatts of fusion power (a source of heat)

for at least 500 seconds, the goal of DEMO will be to produce at least four times that

much fusion power on a much longer pulses, allowing to reach steady-state condi-

tions of the tokamak. Moreover, while ITER’s goal is to produce 10 times as much

power as is required for breakeven, DEMO’s goal is to produce 25 times as much

power. DEMO’s 2 to 3 gigawatts of thermal output will be on the scale of a modern

electric power plant. Also, DEMO is notably intended to be the first fusion reactor

to generate electrical power. Earlier experiments, such as ITER, merely dissipate

the thermal power they produce into the atmosphere as steam and use stored tri-

tium for fueling the tokamak, along with deuterium to generate the fusion plasma

mix. Tritium is a very rare and expensive isotope, which shall be generated using

the fusion neutrons for sustaining the reaction, dispensing with the fission reactor

currently used for this purpose. DEMO will close both thermodynamic and fueling

loops, demonstrating the overall feasibility of all the systems required for running

a Fusion power plant.

To achieve its goals, DEMO must have linear dimensions about 15% larger than

ITER and a plasma density about 30% greater than ITER. The European Roadmap

to Fusion Energy [17] states the goal for DEMO of providing fusion energy to the

grid by 2045. Subsequent commercial fusion reactors could be built for nearly a

quarter of the cost of DEMO if things go according to plan.

While fusion reactors like ITER and DEMO will produce neither transuranic nor

fission product wastes, which together make up the bulk of the nuclear wastes pro-
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Figure 1.1: Sectioned baseline model of the European DEMO tokamak.

duced by fission reactors, the in-vessel components of the ITER and DEMO reactors

will become radioactive due to neutrons impinging upon them. Plasma facing low

activation materials, such as Eurofer, are in development so that wastes produced

in this way will have much shorter half lives than the waste from fission reactors.

The aim is to produce radioactive waste which remain harmful for less than one

century. Qualification of these materials is the prime purpose of the International

Fusion Materials Irradiation Facility.

During the shutdown of the reactor, the activated materials decay emitting gamma

radiation. This ionizing field, along with the risk of contamination from activated

dust, makes the use of remote handling equipment for all the in-vessel maintenance

operations mandatory. Even for these mechatronic devices, the extremely high ra-

diation fields in the range of kGy/h represents a huge constraint on their design

[4]. The survival of their components is usually estimated by a simplistic approach.

The maximum level of absorbed dose, along with the intervention time, gives an

upper bound to the total damage. This has been sufficient for present experimental
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Figure 1.2: Active blanket segment handling with remote handling equipment in yellow.

reactors, such as JET, as the radiation levels are orders of magnitude below those

expected for future power plants. What is more, heavily radiated assemblies need

to cope also with the thermal effects arising from the surface and volumetric heat

generation.

Semi-automated remote handling systems will be in charge of removing the

in-vessel components (IVC) once their service life expires [16]. Breeding blanket

segments correspond to the most massive and challenging IVC to be handled, be-

ing around 10 m tall, weighting up to 80 t, and having only 20 mm gaps between

them–which in fact is less than the expected structural deformation under their own

weight. Their replacement with new segments will be a critical operation. Old seg-

ments will be highly active with a decay heat of several kW each, rising their bulk

temperature over 100◦C. The handling system will need to cope also with perma-

nent deformations and unexpected changes in the structural behaviour [33]. Any

failure will increase the downtime of the reactor, resulting in a very important loss

of revenue. But, most importantly, all safety cases shall be studied to ensure that any

scenario does not jeopardize the future operation of the plant. Credible demonstra-

tions of these cases will be required by the Regulator for licensing the plant prior to

the operations, which will involve analysing complex dynamic, nonlinear, thermo-

mechanical, and radiation behaviours of the mechatronic systems while handling

those massive components.
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1.1.2 IFMIF accelerator beam facing components

The International Fusion Materials Irradiation Facility, also known as IFMIF, is

a projected materials test facility in which candidate materials for the use in an

energy producing fusion reactor can be fully qualified. IFMIF is an accelerator-

based neutron source that produces, using deuterium-lithium nuclear reactions, a

large neutron flux with a spectrum similar to that expected at the first wall of a

fusion reactor. The IFMIF project was started in 1994 as an international scien-

tific research program, carried out by Japan, the European Union, the United States,

and Russia, and managed by the International Energy Agency. Since 2007, it has

been pursued by the Japanese Government and EURATOM under the Broader Ap-

proach Agreement in the field of fusion energy research, through the IFMIF/EVEDA

project, which conducts engineering validation and engineering design activities for

IFMIF.

The IFMIF plant consists of five major systems [41]: 1) Accelerator Facility,

2) Li Target Facility, 3)Test Facility, 4)Post-Irradiation Examination (PIE) Facility,

and 5) Conventional Facility. The whole plant must comply with international nu-

clear facility regulations. The energy of the beam (40 MeV) and the current of the

parallel accelerators (2 x 125 mA) have been tuned to maximize the neutron flux

(1018m−2s−1) while creating irradiation conditions comparable to those in the first

wall of a fusion reactor. Damage rates > 20 dpa per year of operation can be reached

in a volume of 0.5 l of its High Flux Test Module that can accommodate around 1000

small specimens. The small specimen testing techniques developed aim at full me-

chanical characterization (fatigue, fracture toughness, crack growth rate, creep and

tensile stress) of candidate materials, and allow, besides a scientific understanding

of fusion neutron induced degradation phenomena, the creation of the major el-

ements of a fusion materials database suited for designing, licensing and reliably

operating future fusion reactors. The main expected contributions of IFMIF to the

nuclear fusion community are to:

1. provide data for the engineering design for DEMO,

2. provide information to define performance limits of materials,

3. contribute to the completion and validation of existing databases,

4. contribute to the selection or optimization of different alternative fusion ma-

terials,

5. validate the fundamental understanding of the radiation response of materials

including benchmarking of irradiation effects modelling at length-scales and

time-scales relevant for engineering application, and
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6. tests blanket concept and functional materials prior to or complementary to

ITER test blanket module testing.

The IFMIF/EVEDA LIPAc [28] will be a 9 MeV, 125 mA cw deuteron prototype

accelerator, identical to the low energy section of one of the 40 MeV IFMIF acceler-

ators, which will be tested to verify the validity of the design before launching the

IFMIF construction. It includes an ion source, a Radiofrequency Quadrupole cavity

and the first module of a superconducting linac based on half wave resonator cavi-

ties. The accelerator is expected to generate the highest intensity continuous beam

ever, producing an extremely high thermal load in all the elements intercepting the

ions.

Independently of the final purpose of each device, if its working conditions im-

ply stopping a non-negligible amount of particles, the associated thermal solicita-

tion greatly determines the design constraints.

Different scrapers are located in the transport lines and a beam dump is required

to stop the beam exiting the accelerator during commissioning and accelerator tests,

so all these elements must operate in pulsed and CW modes.

A beam dump designed for a continuous maximum power of 1.125 MW will be

used to stop the beam at the accelerator exit [30]. The conceptual design for the

IFMIF and LIPAc accelerator beam dump is based on a conical beam stop made of

OFE copper. The cooling system uses an axial high velocity flow of water pressur-

ized up to 3.4 · 105 Pa to avoid boiling [59].

Figure 1.3: Scheme of the IFMIF/EVEDA accelerator, showing location of particle stop-
ping devices.

Stopping beam particles on a safe and reliable way shall be the most important

objective of the design, including radiation shielding [58]. The working conditions

have to be simulated as best as reasonably possible, including normal, off-normal

and accident situations.

The basic load that the material has to handle is the heat generation that comes

from the ionization of the beam particles [10]. The usual way to describe the beam
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is model it as a Gaussian distribution. The different acceleration stages of IFMIF

LIPAc prototype produce a beam that is more squared so the information of the

particle simulations must be used for the design.

The particles impinge upon the solid bodies of the beam facing devices, produc-

ing a thermal load as they lose their kinetic energy by an ionization process [31].

This load is usually modelled by a surface flux, as the ionization depth is in the or-

der of microns. This approximation has proved to be too conservative in the design

of pulsed beam diagnostics and dumps. An alternative approach to an extremely

dense FEM mesh is pursued using meshfree methods, which shall be extendable to

the study of the complex multi-body engineered systems.

1.2 Meshfree methods: State of the Art

There has been a growing interest on meshfree methods as an alternative to the

widely used finite element methods [45] during the last decade. Their approach

of mesh independent discretization by means of locally supported shape functions

makes this type of methods well suited for those problems where the domain has a

complex geometry or experiences very large deformations.

There is a general agreement to establish the origin of these methods in 1977,

with the publication of the SPH method [53], explained in more detailed in [55].

The original application of the SPH was focused in astrophysics, but it has been

extended later to other fields, as fluid and solid mechanics, and even used to couple

fluid dynamics with multibody systems [65]

Another two development paths of meshfree methods where the generalization

of the finite differences method and the particle in cell method. One of the first

contributions to the first one is due to Perrone and Kao [60]. A remarkable contri-

bution was the alternative technique proposed by Liszka and Orkisz [46] due to its

robustness.

Until the 1990s, the development of the meshfree methods was limited, but dur-

ing the last 23 years there has been a lot of activity in the development of new

methods. One of these early methods proposed in that decade was the Diffuse El-

ement Method (DEM) [56], based on a moving least square (MLS) approximation

[43] and a discrete Bubnov-Galerkin form of continuum equations.

Using a similar focus but with different weight functions, Belytschko and co-

workers develop the Element Free Galerkin (EFG) method [9]. These methods were

first applied to fracture mechanics [62], adding contacts [6], and even using ALE

formulations [61] but they have also been applied to general solid mechanics [63],

and shell structures [49]. Even a test of using FEM compatible sliding joint was

presented [37] modifying the EFG approximation functions to regain delta property

at the ends of the element.
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Simultaneously, W. K. Liu and co-workers presented the Reproducing Kernel

Particle Method (RKPM) [50] in both continuous and discrete forms. It uses ap-

proximations in integral form in a similar way as SPH does, but enriched with the

functions to be reproduced. It was applied initially to fluid mechanics and extended

lately to the strong and weak formulation of solid mechanics, even under large de-

formations [12]. J.-S. Chen and co-workers developed a stabilized conforming nodal

integration (SCNI) scheme for Galerkin meshfree methods, which allows the use of

collocation techniques without the risk of arising instabilities in solid mechanics

[72], and in Reisner-Mindling plates [71]. Extended meshfree methods use a com-

bination of particular and homogeneous solutions to calculate the total solution, re-

quiring much less computational effort [14]. Double grid approaches are presented

for study of effects in meso-scale modelling of grain growth [13].

Multiquadrics [39] and other radial basis functions (RBFs) [40] have been ap-

plied to develop explicit collocation solvers for elliptic problems [38]. With a similar

scheme as the EFG but using RBFs and with a possible enrichment with polynomi-

als, the so-called Radial Point Interpolation Method (RPIM) is published by G. R.

Liu and co-workers [47]. It has been applied to the linear formulation of solids,

beams and plates. True meshless implementation of those shape functions was ex-

plored in [51], and further extended in [48]. As an alternative, using the method of

fundamental solutions led to a boundary-type meshless method [44]. Local Petrov-

Galerkin forms are proposed for elastic dynamic problems [52], and contact elas-

tomeric components [29].

Natural neighbours [69] use Voronoi tesselation of sets of nodes. Elastoplastic

2D applications using local delaunay forms are described in [27].

Finally, the polygonal based interpolation by maximum entropy (max-ent) prin-

ciple was introduced by N. Sukumar [68] and generalized for local schemes by [3].

The shape functions minimize the width of the support domain, interpolate affine

functions exactly, and have a weak Kronecker-delta property at the boundary. The

initial first order method has been extended to higher-order consistent interpolants

using the Boor’s algorithm [24]

Many other methods have been developed (MLPG, Hp-Clouds, Finite Spheres,

etc.) but are not referenced and detailed here because they significantly differ from

than the method proposed in this article, while providing no clear advantages in the

context of multibody applications.

A detailed description of the origin and evolution of the meshfree methods can

be found in the book [45], the review article [8], and other articles in the same

monographic volume. Updated review of the different methods, including Matlab

codes, is presented in [57], and the evolution of the shape function construction

procedures can be found in [70].
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1.3 Statement of the problem

Meshfree Galerkin methods have been developed in the last 20 years, and ap-

plied to the simulation of complex mechanical problems involving large strains of

structures, crack propagation or high velocity impact dynamics. At the present time,

the application of these methods to multibody dynamics has not been made despite

their potential great advantage in some situations over standard finite element tech-

niques. In particular, the following issues are aimed to be addressed:

• Increase the accuracy of thermo-mechanical simulations including large dis-

placements and deformations.

• Simplify and generalize the joint definition and formulation, in a way that is

independent on how the solid bodies are modelled.

• Improve the modelling time, as it usually takes around 80-90% of the total

time spent by an analyst.

• Minimize the risk of mesh locking when using triangular or tetrahedral meshes.

• Reduce the computational time required to simulate a full nonlinear multi-

body system, aiming to provide soft real-time capabilities.

1.4 Aims of the thesis

The main objective of this research is to stablish the suitability of meshfree meth-

ods for the space discretization of solid multibody systems using continuum me-

chanics formulations. In particular, the research aims to identify potential advan-

tages of such discretizations, based in the items described in the previous section.

The methodology shall be capable of enhancing existing state-of-the art nonlinear

simulation codes and algorithms, and its overall applicability will be demonstrated

by the simulation of challenging multibody engineering problems.

1.5 Scope, delimitation and methodology

The project is centred in the application of 2D and 3D geometric nonlinear for-

mulation embedded in a multibody framework. The proposed approach shall allow

the implementation of flexible solid bodies with as minor changes as possible ]in a

multibody code.

The types of problems of interest are dominated by thermo-mechanical effects,

and have in common that the current state-of-the-art approach for solving them is

limited, either by numerical stability, computational capacity, or accuracy of exist-

ing FEM based simulations.
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No mechanical to thermal coupling effects are considered—apart from displace-

ments and deformations—, so the following effects are neglected:

• Internal heat generation due to plastic deformations or viscous effects

• Heat generation due to friction

On the other side, thermal to mechanical coupling effects are considered through

the next mechanism:

• Thermal expansion

• Temperature-dependent mechanical properties

• Heat transfer between contacting bodies

The flexibility is formulated by a Galerkin weak form. Among all the meshfree

discretization methods, radial basis shape functions have been identified has the

best ones for this kind of approach. The formulation is suited for both 2D and 3D

problems, including static and dynamic analysis.

The proposed method uses a total Lagrangian formulation, such that shape func-

tions are computed only at the beginning of the simulation. As exposed in following

sections, this approach reduces significantly the number of operations, because the

computation of the shape functions involves the resolution of a linear system for

each Gauss point.

Among all parametrizations available to model solid bodies, generalized Carte-

sian natural coordinates is preferred when dealing with solid flexible bodies because

their configuration is described by the coordinates of their nodes. This choice im-

plies some extra nodes and constraints when modelling rigid bodies (e.g. a 3D rigid

body needs four nodes and six constraints) but the cost is negligible compared to

the DOFs that a flexible solid body usually has. This approach has numerous ad-

vantages, even when used only in rigid multibody systems [20], and also leads to a

constant mass matrix for the whole system.

For the evaluation of the efficiency and complexity of the formulation presented,

a multibody code will be developed from scratch. It will allow to run flexible multi-

body systems using both FEM and meshfree approximations. The requirements for

its design are motivated for the need of sharing as much functions as possible be-

tween both approaches, in order to make a fair comparison between existing FEM

techniques and the proposed meshfree methods applications. Its requirements and

functionality are inspired in the SNAW code [26], which was written for the appli-

cation of the RKPM method in the field of structural mechanics. It also has some

similarities from the user’s perspective to the multibody script language HOTINT

[23].
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1.6 Contents and structure of the document

The document is divided in two main parts. The formulation of the problem

is described through chapters 2 to 4 while the numerical implementation, bench-

marking, applications are covered on chapters 5 to 7. Each chapter can be briefly

described as follows:

• Chapters 2 and 3 present the framework definition, corresponding to the adap-

tation of existing theories in nonlinear continuum mechanics and meshfree

approximations, respectively. Work is also presented in chapter 3, defining a

set of parameters valid for the definition of two different meshfree methods.

• Chapter 4 proposes a complete nonlinear multibody formulation including

rigid bodies and generalized constraints, joints, and contacts.

• Chapter 5 Demonstrates the validity of the formulation.

• Chapter 6 Tests its performance compared to regular FEM.

• Chapter 7 Presents a set of examples that take advantage of the meshfree for-

mulations, and also an application to the remote handling of the DEMO fusion

reactor.



Continuum

Formulation of

Flexible Bodies 2
For the simulation of the flexibility of solids, the continuum mechanics theory

defines the deformation as a change in the configurationof the body. The study

of the effects that appear when a body changes from an undeformed (reference)

configuration to a deformed (spatial) configuration can be done in both descriptions

of the body.

Let B0 be the reference configuration (i.e. t = 0) and Bt its configuration in time

t > 0, we assume that there is a mapping:

ϕ : B0 × [0, t)→Bt ∈R3

that describes the movement of each particle of the body. This motion is described

by:

x = ϕ(X , t) (2.1)

where x is the position of a point with material coordinate X at time t.

The kinematic state of any point can be defined by its position and velocity. The

difference between the deformed and the original configurations is described by the

displacement. It can be expressed in the deformed system u or in the reference one

U . Note that although it has two descriptions, it represents a unique motion:

u(x, t) = x −X(x, t) (2.2)

U (X , t) = x(X , t)−X (2.3)

U (X , t) = U (ϕ−1(x, t), t) = u(x, t) (2.4)

The velocity, V (X , t), is the material time derivative of the displacement. This

derivative is calculated with respect to the original configuration, X and is also

13
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called total derivative and noted as D(·)/Dt when indicial notation is used. As the

time configuration x is related to the initial configuration by means of the motion,

the velocity can be expressed using the displacement or the position:

V (X , t) = U̇ =
∂U (X , t)
∂t

=
∂ϕ(X , t)
∂t

(2.5)

Even though the velocity field is in essence a spatial vector as its existence is

impossible without deformation, it is defined as a material variable. A spatial de-

scription of the velocity can be calculated using an inverse deformation:

v(x, t) = u̇ =
∂x
∂t

= V (ϕ−1(x, t), t) (2.6)

Finally, the acceleration, A(X , t), is a derived quantity which describes the rate

of change of the velocity:

A(X , t) = V̇ =
∂V (X , t)
∂t

=
∂2u(X , t)
∂t2

(2.7)

And the relation between them is established in the deformed configuration:

a = v̇ = ü (2.8)

The evolution of the deformation is usually described by a Lagrangian formula-
tion, which “follows” the displacement of each point in a fixed framework. If this

formulation is described in the reference configuration, we will talk about a material
description or total Lagrangian formulation. On the other hand, if the formulation is

described in the deformed configuration, then a spatial description is used and the

formulation is called updated Lagrangian.

An Eulerian description of a spatial variable can be derived also from its La-

grangian definition using the material derivative. As the former depends indirectly

on the material coordinates, the chain rule can be used. Let the second order Cauchy

stress tensor, σ (x, t) = σij , be used as an example:

Dσij
Dt

=
∂σij
∂t

+
∂σij
∂xk

∂xk
∂t

(2.9)

σ̇ =
∂σ
∂t

+ v · ∇σ (2.10)

The derivation leads to a sum of two terms, the spatial derivative and the convective
term, respectively.
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2.1 Strain measures

The deformation gradient second order tensor, F (X , t), is defined as the material

derivative of the movement. It represents the relationship between the material

coordinates X and the spatial coordinates, x:

F (X , t)
def
=
∂ϕ(X , t)
∂X

≡ ∂x
∂X

Other useful measures can be defined using the deformation gradient:

• Right Cauchy-Green deformation: C
def
= F T F

• Left Cauchy-Green deformation: b
def
= FF T

• Green-Lagrange strain: E
def
=

1
2

(C − 1)

• Almansi-Euler strain: e
def
=

1
2

(1−b−1)

• Euler linear strain: ε
def
=

1
2

∂u∂x +
(
∂u
∂x

)T 
2.2 Stress measures

The Cauchy postulate establishes that the traction, t, depends not only on the

point in study, x, but also on its associated surface. Using the normal of the sur-

face, n, the Cauchy second order stress tensor is defined as the one that verifies the

following condition:

t(x,n) = σ (x) n (2.11)

Using the Cauchy stress and the deformation gradient, the following stress mea-

sures are defined:

• Piola-Kirchoff first tensor: P
def
= det(F )σF −T

• Piola-Kirchoff second tensor: S
def
= F −1P = det(F )F −1σF −T

• Kirchoff tensor: τ
def
= det(F )σ

2.3 Balance equations

This section develops the strong form of the thermo-mechanical balance princi-

ples, which are those that must be satisfied for each one of the material points of the

continuum. The equations are presented as an equilibrium in both, the reference

and the updated configuration. They represent the basic relations and conditions
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required to the loads, stress and strain fields from the mechanical and thermody-

namical continuum theory, applied to infinitesimal solid volumes ([25]).

Recalling the initial configuration of a body, B0, in t = 0 and a later and deformed

configuration, Bt, the following balance equations are particularized to their mate-

rial and spatial descriptions.

2.3.1 Conservation of mass

The mass properties of a continuum body in a configuration Bt ⊂ R
3, are de-

scribed by means of a mass density scalar field, ρt = ρ (·, t) : Bt→R, so that the mass

of the whole domain Bt can be calculated as:

mass[Bt] =
∫
Bt
ρ (x, t)dv (2.12)

Using this definition, the principle of conservation of mass in the domain Bt can be

established. Therefore, we will not consider any chemical nor nuclear reactions that

imply modification of the body mass. Also, relativistic effects will not be considered.

Mathematically the principle is express in the following way:

d
dt

mass(Bt) = 0 (2.13)

The fact that the mass does not change between the reference and deformed

domains represents the basic property of the Lagrangian formulation, as opposed

to the Eulerian formulation which establishes a control volume instead to formulate

the equilibrum. In the case of the control mass of the Lagrangian formulation, the

deformation of the system allows only transmission of energy through the boundary,

while the total mass will be constant:

mass(B0) = mass(Bt) (2.14)

At the reference configuration, the total mass is known if the material density

field, ρ0(X), is defined. The spatial density, ρ(x, t), will vary through the deforma-

tion but the conservation of mass implies that the infinitesimal mass is constant

(and positive):

dm(X) = dm(x, t) > 0 (2.15)

ρ(X) dV (X) = ρ(x, t) dv(x, t) (2.16)

As the volume is always positive, so should be the density fields. The change in
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volume is proportional to the determinant of the deformation gradient

dv = J dV ; J = det(F (X , t)) (2.17)

so the relation between the density fields is finally:

ρm (X , t) J (X , t) = ρo (X) (2.18)

where the material description of the spatial density has been used,

ρm (X , t) = ρ (ϕ(X , t), t).

2.3.2 Momentum balance

Considering a body with continuous movement and deformation in time and

space R
3, let vt = v (·, t) : Bt → V the velocity field. The linear momentum is defined

as

l [Bt] =
∫
Bt
ρ (x, t)v (x, t)dv (2.19)

In the same way as a force can be associated to a torque, the angular momen-
tum can be defined with respect to some point z as the linear momentum times the

perpendicular distance to that point. Mathematically, it expresed as

j [Bt]z =
∫
Bt

(x − z)× ρ (x, t)v (x, t)dv (2.20)

We consider that the body is subjected to a surface loading, described by a trac-
tion field in its boundary tt = t (·, t) : ∂Bt→V , and also to a set of external volumetric

loads gathered in the volumetric field of specific loads bt = b (·, t) : Bt→V .

The resultant force of both fields in the whole domain Bt is then

r [Bt] = rs [Bt] + rb [Bt] =
∫
∂Bt
t (x, t)da+

∫
Bt
ρ (x, t)b (x, t)dv (2.21)

And the resultant torque around a point z is

ϑ [Bt] = ϑs [Bt] +ϑb [Bt] (2.22)

ϑs [Bt] =
∫
∂Bt

(x − z)× t (x, t)da (2.23)

ϑb [Bt] =
∫
Bt

(x − z)× ρ (x, t)b (x, t)dv (2.24)

The Inertia laws can be expressed in the following way:

With respect to a reference frame, the time derivative of the linear momentum

of a material body equals the resultant applied force, and the change in time of the
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angular momentum about any fixed point equals the total torque around that point.

Mathematically:
d
dt
l [Bt] = r [Bt] (2.25)

d
dt
j [Bt]z = ϑ [Bt]z (2.26)

A. Balance of linear momentum

The internal equilibrium of linear momentum at any point requires the inertia

effects to compensate the difference of internal and external forces:

∇ ·σ +ρb = ρv̇ (2.27)

Or, incomponents:

σij,j + ρbi = ρv̇i (2.28)

When the balance is applied to material variables, a similar expression is ob-

tained:

∇0 ·P +ρ0bm = ρ0
∂2

∂t2
ϕ (2.29)

where:

P = P (X , t) = detF (X , t) σ (ϕ (X , t) , t) F (X , t)−T ,

is the first Piola-Kirchkoff tensor, previously defined, and

bm = b(ϕ (X , t) , t).

is the material description of the volumetric load field.

B. Balance of angular momentum

Considering or not the inertial effects, the angular momentum equilibrium im-

plies the symmetry of the Cauchy stress tensor:

σ = σT (2.30)

Or, in components:

σij = σji (2.31)

When applied in the material description, results in the symmetry of the second

Piola-Kirchkoff tensor:

P F T = F P T (2.32)

S = ST (2.33)
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2.3.3 Balance of mechanical energy

The integration of all the power contributions over the domain indicates the

variation of the mechanical energy over time. It is a direct result from the applica-

tion of the previous balance laws. The spatial description of the mechanical power

balance takes the following form:

d
dt
K [Bt] +

∫
Bt
σ : d dv = Pext [Bt] (2.34)

where:

K [Bt] =
∫
Bt

1
2ρv · v dV

is the total kinetic energy stored in the body, Bt,
d = ∇symv = 1

2

(
gradv + gradT v

)
is the velocity gradient, also called deformation rate, and

Pext [Bt] =
∫
∂tBt

v · t dA+
∫
Bt
ρb · v dV

is the power of external loads over Bt and its boundary.

When the kinetic energy and external power are described in the reference con-

figuration, the balance implies the definiton of the internal power using material

variables:
d
dt
K [B0] +

∫
B0

P : Ḟ dV = Pext [B0] (2.35)

where:

K [B0] =
∫
B0

1
2ρV ·V dV

Ḟ = Ḟ (X , t) = ∇0 ϕ̇ (X , t).

is the material derivative of the deformation gradient, and

Pext [B0] =
∫
∂TB0

V · t dA+
∫
B0
ρB ·V dV

2.3.4 Thermodynamics

The external thermal power, Q, represents the change in heat energy produced

by external loads. This power can be introduced in the system through the bound-

ary as a heat flux, qn, or as a volumetric heat source, r. The Stokes’ heat flux theorem

establishes that the flux going through the boundary corresponds to its normal pro-

jection. As the normal is usually taken as positive in the outward direction, sign is

reversed in the sum of thermal power:

Q [B0] =
∫
Bt
r dv −

∫
∂tBt

q ·n da (2.36)

=
∫
B0

R dV −
∫
∂tB0

Q ·N dA (2.37)

where:



20 2.3. Balance equations

q is the Cauchy (or true) heat flux and

Q is the Piola-Kirchoff heat flux tensor.

The integration of the heat fluxes over the boundary can be related between

configurations using Nanson’s formula:

∫
∂tB0

Q ·N dA =
∫
∂tBt

q ·n da =
∫
∂tB0

q · JF −TN dA =
∫
∂tB0

JF −1q ·N dA (2.38)

Comparing the previous manipulation, the Piola transformation of the heat flux

can be defined as:

Q = JF −1q (2.39)

The thermal power introduced in the system produces a change in the internal

energy, W . Adding its contribution to the mechanical power, the first law of ther-

modynamics states the equilibrium of the internal energy of a continuum under

thermo-mechanical loading:

d
dt
K(t) +

d
dt
W (t) = Pext(t) +Q(t) (2.40)

A. Spatial description

For a thermoelastic body, the internal energy is composed of elastic and thermal

energy due to volumetric and temperature variations:

d
dt
W =

∫
Bt
σ : d dv +

∫
Bt

d
dt

(CΘ)dv (2.41)

where:

C = ρcp is the volumetric heat capacity of the material, and

Θ is the temperature.

The thermo-mechanical coupling is produced mainly by thermal expansion and

balanced by the external power Pext. Mechanical processes that imply changes in

temperature are limited to thermal dissipation, which only occurs during plastic

deformation [Stainer2008]. Other thermoelastic effects are almost insignificant and

can be neglected.

Once this simplification is made and using the internal thermal energy, H, as a

state variable, the thermal equilibrum of the thermal power can be stated:

d
dt
H(t) = Q(t) (2.42)∫

Bt

d
dt

(CΘ)dv =
∫
Bt
r dv −

∫
∂tBt

q ·n da (2.43)
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Applying the divergence theorem to the last term and localizing the equation,

the strong form of the thermal power balance in the deformed configuration is ob-

tained:
d
dt

(CΘ) = r −∇ ·q (2.44)

The Second Principle of Thermodynamics states the non-negative production of

entropy. Previous considerations allow to not take into account the entropy in the

formulation and just reduce it to its thermal implications.

The Clausius-Planck inequality indicates that the thermal energy always flows

opposing the thermal gradient:

−q · ∇Θ ≥ 0 (2.45)

Duhamel’s law of heat conduction introduces the positive semi-definite spatial
thermal conductivity tensor, κ, to establish the relation between the thermal gradient

and flux:

q = −κ∇Θ (2.46)

For isotropic materials, the thermal conductivity tensor has only one parameter

and can be simplified to κ = κI , where I is the second order unit tensor. In this case,

the previous relation is known as the Fourier’s law of heat conduction:

q = −κ∇Θ (2.47)

Going back to the strong form of the balance eq. 2.44, the heat flux can now be

described in terms of the temperature:

d
dt

(CΘ) = r +∇ · (κ∇Θ) (2.48)

B. Material description

A similar procedure can be done in the material configuration, where the balance

of power takes the following form:

ρCp
dΘ
dt

= R−∇0 ·Q (2.49)

Taking into account the between gradients in the deformed and reference con-

figurations, gradΘ = F −T GradΘ, and eq. 2.39, Duhamel’s law can be related to the

reference geometry:

J−1FQ = −κF −T∇0Θ (2.50)

Defining the material thermal conductivity tensor, κ0 = Jκ the expression is sim-

plified:

Q = −F −1κ0F
−T∇0Θ (2.51)
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If the material is thermally isotropic, using the inverse of the Cauchy-Green

tensor, C−1 = F −1F −T , the Fourier’s law is then:

Q = −κ0C
−1∇0Θ (2.52)

Finally, the thermal power equilibrium in material coordinates is stated:

ρCp
dΘ
dt

= R+∇0 ·
(
F −1κ0F

−T∇0Θ
)

(2.53)

2.4 Constitutive equations: hyperelasticity

The thermo-mechanical behaviour of the solids produces the strain state at each

point to be an addition of the thermal and mechanical parts. As thermal expansion,

β, is considered isotropic:

E = Ee + βI(Θ −Θ0) (2.54)

In thermal-elastic materials, the stress field is function of the mechanical strain

state and the temperature.

S = S(Ee,Θ) (2.55)

Thermal-hyperelastic materials are characterized by the existence of a strain en-
ergy density function W (F ,Θ,X), such that the Piola-Kirchoff first tensor P is ob-

tained as:

P =
∂W (F e,Θ,X)
∂F e(X)

(2.56)

The thermal dependence relies on the nonlinear material properties, which are

temperature dependent. This implies that the work of the stress along a deformation

is path-independent, depending only on the initial and final deformation states.∫ 1

0
dW =

∫ t1

t0

P : Ḟ edt =W01(F e,∆Θ1
0)

One of the simplest expressions for strain energy density functionW is the Saint-

Venant Kirchhoff law, given by:

W (Ee,Θ) =
λ
2

[tr(Ee)]2 +µEe : Ee

S(Ee,Θ) = λ tr(Ee)1 + 2µEe

C = λ(1⊗ 1) + 2µI

CIJKL = λδIJδKL + 2µδIKδJL

where, being E = E(Θ) the Young’s Modulus and ν = ν(Θ) the Poisson coefficient:
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λ(Θ) = Eν
(1+ν)(1−2ν) is the Lamé’s first parameter, and

µ(Θ) = E
2(1+ν) is the shear modulus.

This material shows some instabilities under extremely large deformations, as

its law leads to a null stress state with an infinite compresion, limJ→0σ = 0. In those

cases other hyperelasticity laws such as Neo-Hookean are used with some extra cost

in terms of operations and computer memory.

2.5 Variational principles: weak formulation

The balance of linear momentum, in either spatial or material description, must

be enforced at any point of the body. On the other hand, the principle of the me-

chanical virtual work states that the work performed by the applied forces under

any compatible virtual displacements δx must vanish:

δΠmech = 0

Applying compatible virtual temperatures to the thermal equilibrium, the prin-

ciple of thermal virtual power is stated:

δΠ̇th = 0

A more formal statement of this principle is obtained defining a set of test func-

tions η such that η(x) = 0 in the boundary where essential conditions are applied.

The weak form is obtained by weighting the strong form with these test functions,

integrating by parts and applying the divergence theorem. This procedure is equiv-

alent to the one that we present here provided that tests functions are defined in

the same functional space as the spatial coordinates and temperatures, representing

virtual displacements or virtual temperature variations, respectively.

2.5.1 Mechanical virtual work

The mechanical virtual work has several contributions:

δΠmech = 0 = δΠinertia + δΠinternal − δΠexternal (2.57)

where each of the terms is expressed as:

δΠinertia =
∫
B
ρv̇ · δx dV (2.58)

δΠinternal =
∫
B0

P : δF dV0 (2.59)

δΠexternal =
∫
B
b · δx dV +

∫
∂B
t · δx dS (2.60)
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The total Lagrangian description of the internal virtual work is given by:

δΠinternal =
∫
B0

(F S) : δF dV0 =
∫
B0

S : δE dV0 (2.61)

Although it is also possible to express the virtual work in the deformed configura-

tion, obtaining the following actualized lagrangian description:

δΠinternal =
∫
B
σ : δε dV =

∫
B
τ : δe dV (2.62)

Finally, using the jacobian of the deformation and the Piola transformation from

(Eq. 2.39), the external power can be also expressed in the original configuration:

δΠexternal =
∫
B0

Jb · δx dV +
∫
∂B0

JF −1t · δx dS (2.63)

2.5.2 Thermal virtual power

The thermal virtual power has the following contributions:

δΠ̇thermal = δΠ̇capacitance − δΠ̇external − δΠ̇conduction = 0 (2.64)

where each term takes the following form:

δΠ̇capacitance =
∫
B0

ρCp
dΘ
dt
δΘ dV (2.65)

δΠ̇external =
∫
B0

RδΘ dV +
∫
∂B0

QδΘ ·n dS (2.66)

δΠ̇conduction =
∫
B0

(
F −1κ0F

−T∇0Θ
)
· ∇0δΘ dV (2.67)

2.5.3 Modifications of the weak form

When the test functions do not vanish at the essential boundary, η(x) , 0, an

additional term must be added to the virtual work to meet this requirement:

δΠ̄ = 0 = δΠ+ δΠconstrains (2.68)

The essential boundary, ∂BD , is subjected to a set of conditions,

Φ(x) = 0, that can be implemented by different means.

Lagrange multipliers. The contribution to the virtual work takes the following

form:

δΠ̄ = δΠ+
∫
δBD

δλ ·Φ dS +
∫
δBD

λ · δΦ dS (2.69)
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Penalty method does not impose exactly the constraint. Instead, it adds a force that

is proportional to the constraint infringement, multiplied by a penalty factor,

α:

δΠ̄ = δΠ+α
∫
δBD

Φ · δΦ dS (2.70)

For simplicity’s sake, the penalization parameter has been chosen to be con-

stant but it can be different for each condition Φi . In that case it is represented

by a penalization diagonal matrix α = [αii].

Augmented Lagrange represents the combination of the previous two methods. Its

based on adding the constraint violation to the Lagrange multiplier: λ = 1
2α ·

Φ+λ∗:

δΠ̄ = δΠ+
∫
δBD

δλ∗ ·Φ dS +
∫
δBD

(αΦ +λ∗) · δΦ dS (2.71)





Meshfree

Discretization of

Flexible Bodies 3
3.1 Meshfree Functions

Meshfree techniques use separation of variables in a similar sense as the FEM.

Inside a flexible domain, the variables, u = {x(X , t), Θ(X , t)}, of a point of interest—

mainly a Gauss point in a Galerkin formulation or a node for collocation methods—

at any time are discretized using the values of the shape functions N (X) of each

node, I , located inside the support domain of X , of size SP :

ui(X , t) ' uhi (X , t) =
SP∑
I=1

NI (X)qiI (t) (3.1)

with:

i = {1, . . . ,m-DoFs} degrees of freedom, and

qiI (t) generalized coordinates of the flexible body.

The main difference between finite element and meshfree discretizations is that,

instead of defining the shape functions inside non-intersecting elements, the sup-

port domains for different points of interest must be overlapping.

The advantage of this approach is that the discretization does not depend on the

quality of a mesh. On the other side, it can easily be seen that the computational

cost will be greater because of the following aspects:

• As the domains of influence intersect with each other, the number of sums

needed for describing the motion of all the points of interest of the domain

will be greater than those of a FEM discretization.

• As there is no connectivity defined, the definition of the support domain needs

the application of node search techniques.

27
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Figure 3.1: Typical 2D distribution of nodes and Gauss points with overlapping supports

• Special definition of the distance function must be done for the points of in-

terest located near a non-convex boundary.

• The shape functions Nj(X) usually are not analytically defined so calculating

its value for each point of interest can imply the solution of a linear problem

of a size equal to the support nodes number.

If a total Lagrangian formulation is used, the approximation is computed at the

reference configuration. With this formalism, the evolution in time of the position

of any point is given by a set of basis functions bi(X) and unknowns ai(X , t) which

are, in general, function of the material coordinates X . Let a scalar function, u(X) ∈
C0(Rn) (e.g., a degree of freedom) be approximated by a discrete function:

uh(X) =
m∑
j=1

bj(X)aj(X , t) = bT (X)a(X , t) (3.2)

This expression is very similar to equation (3.1), but note that it just represents a

shift of basis for just one of the degrees of freedom. The basis of the approximation

is b while a represent the coefficients of the approximation in this new basis. Note

that both terms now depend on the coordinate.



Chapter 3. Meshfree Discretization of Flexible Bodies 29

The type of functions that the basis b(X) contains along with the way that the

coefficients aj(X) are computed leads to different types of approximations.

Two commonly used approximations are presented:

• The moving least-square approximation (MLS) is used in the EFG method [9].

It uses a set of monomials as basis functions, and the coefficients are obtained

by a weighed least squared fit.

• Radial Basis Functions are used in the so called RPIM method [48]. The basis is

interpolated through the support points to obtain the coefficients of the shape

functions.
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Figure 3.2: Shape functions for RBF and MLS approximations

The main difference is that only interpolation functions conserve the Kronecker

delta property which states that the value of the shape function associated to a given

support node is 1 at the node, and 0 at the rest of them, and it is a basic property

of FEM. When it does not hold, uh(X j ) , qJ , and the formulation of constraints is

more involved; direct elimination is not possible for simple constraints, requiring

the addition of constraint equations to couple the desired degrees of freedom, even

if the nodes are coincident. Note also that the delta property must be satisfied when

dealing with continuous varying boundary conditions for achieving at least linear

accuracy (patch test).
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3.1.1 Properties of the meshfree shape functions

The common characteristic of all discretization methods is that they all describe

a partition of unity:
SP∑
j=1

Nj(X) = 1

Used as weight and shape functions, meshless discrete functions ideally should

have the following properties [47]:

Arbitrary nodal distribution: a reasonable approximation must be built from any

regular or irregularly distributed set of points.

Stability: small differences between different set of points should produce approx-

imations that do not blow up the numerical method.

Completeness: The shape functions must represent exactly all polynomial terms of

order up to the highest derivative of the residual equation, m. A set of shape

functions that satisfies this condition is called m-complete.

Compatibility: The shape functions should provide displacement continuity over

the domain. Physically the compatibility condition insures that no material

gaps appear as the numerical model deform.

Consistency: The approximation is said to have m-order consistency if it is com-

patible and m-complete.

Compact support: The points used for the shape function approximation must be

lye inside a compact subdomain much smaller than the whole continuum to

simulate.

Efficiency: The rate of precision to computing time must be in the same order as

equivalent FEM discretization or better.

Delta Function Property: As the formulation of constraints is greatly simplified if

the shape functions behave as the Kronecker delta function.

3.1.2 Moving Least Squares aproximation

The basis functions correspond to a set of monomials. In the case of a linear

basis, we have:

b(X) = p(X) = {1 X1 . . . Xm}T

Note that the number of coefficients to determine depends of the type of basis.

If a higher order basis is chosen, the linear system that defines the approximation
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values is greater. The values ai are determined by a weighted least square fit. The

weighting function is a compactly supported function (or window function). This

means that given a continuous distance function s(X −X i), the weight function w(s)

must be positive inside the support domain and zero outside.
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Figure 3.3: Shape functions for MLS approximations

When dealing with convex domains, an euclidean norm can be used:

si = ‖X −X i‖

but for non-convex boundaries, other functions have been proposed [7]. In any

case, the weight functions are defined using the dimensionless parameter

s̄i = si/smax

Commonly used weight functions are:

• Gaussian:

w(si) =

 e−(s̄i /α)2
for s̄ ≤ 1

0 for s̄ > 1
(3.3)

where α is a constant that determines the truncation of the Gaussian, with a

typical value of 0.4.
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• Cubic spline:

w(si) =


2
3 − 4s̄2i + 4s̄3i for s̄i ≤ 1

2
4
3 − 4s̄i + 4s̄2i −

4
3 s̄

3
i for 1

2 < s̄i ≤ 1

0 for s̄i > 1

• Quartic spline

w(si) =

 1− 6s̄2i + 8s̄3i − 3s̄4i for s̄i ≤ 1

0 for s̄ > 1

Using a standard weighted least-square fit method, the next functional can be

defined to estimate the error of the approximation:

J =
n∑
j=1

w(sj )

 m∑
i=1

pi(X j )ai(X)− xhj


2

=
(
P a− xh

)T
W

(
P a− xh

)
(3.4)

where:

n is the number of support points.

xh =
{
xhi

}
P =

[
pij

]
=

[
pj(X i)

]
=

[
p(X i)T

]
W (X) = [wii] =

[
w(sj(X))

]
Minimizing the functional (3.4), we get the residual form:

∂J
∂a

= A(X)a(X)−B(X)q = 0 (3.5)

where:

A = P TW (X)P =
∑n
k=1w(X −Xk)p(Xk)p(Xk)T −→ Aij =

∑n
k=1wkPkiPkj

B = P TW (X) =
[
w(X −X j )p(X j )

]
−→ Bij = wjPji

Equation (3.5) provides the values for the coefficients ai :

a(X) = A−1(X)B(X)xh

What is more, as the approximate coordinate value is given by:

xhi (X) = pT (X)a(X) ,

the shape functions are defined using equation (3.1) as:

N = [NI ] = pT (X)A−1(X)B(X) (3.6)
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Note that N is defined as a row matrix, so using each column of the matrix

B = [BI ] such that (bI )i = wIpi , each shape function value can be computed as:

NI = pTA−1BI (3.7)

As stated in [7], the derivatives can be computed faster if an auxiliary variable α

is defined:

αT = pTA−1→ Aα = p (3.8)

Then, replacing (3.8) in (3.6), those partial derivatives involved in the continuum

formulation are computed as:

N =
[
N ,i

]
= αT,iB +αTB,i

where N is a rectangular matrix where each row represents the i-th derivative of

each shape function:

NiI =NI,i = αT,iBI +αTBI,i

Now α,i can be computed in an efficient manner, as in a LU decomposition,

where matrix A is only decomposed once:

Aα,i = p,i −A,iα

Note that the decomposition of matrix A is used for solving the shape functions

too, as shown in equation (3.8).

3.1.3 Radial basis functions interpolation

As opposed to the MLS approximation, the RBF are interpolation functions. This

means that they have the delta function property. The most attractive RBF is the

Multi-quadrics (MQ) due to its high convergence rate, but other radial functions are

also found in the literature. The selection of the parameters to be used involve the

consideration of the size of the window function and a characteristic length param-

eter. The reference equations and the influence of their parameters are studied in

[38].

Recalling equation (3.2), the approximation can be defined as:

xh(X) = bT (X)a(X) = {R(X) p(X)}T
{
aR(X) ap(X)

}
, (3.9)

where the term RT (X)aR(X) represents the approximation on the RBF basis, with

a size which is equal to the number of support points. pT (X)ap(X) is an optional

polynomial basis that can be used for the required reproducing conditions.
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2D RBF shape function
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Figure 3.4: Shape functions for RBF interpolants

Multiquadrics. The original form of this RBF [19] depends only on one parameter,

c > 0, with length units:

Ri = R(si) =
√
s2i + c2

The generalized MQ basis function adds an exponential parameter [40],

β = −1
2 ,

1
2 ,

3
2 , . . . , although other parameters have been successfully tested, as:

Ri = R(si) =
(
s2i + c2

)β
G. R. Liu and co-workers [47] use a dimensionless approach for the function

constant, arriving to different optimal values in Galerkin methods by the study of

benchmark static problems:

Ri = R(si) =
(
s2i + (αcdc)

2
)q

Comparing the above equations, it can be seen that the parameter they employ

is simply defined as αc =
c
dc

. Also, they rename β = q and recommend the value

q = 0.98 or q = 1.03, because the moment matrix used in the interpolation fit is

singular for intermediate values.
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Gaussian. This RBF has an expression with a high statistical meaning, with a for-

mat which is expressed in terms of its standard deviation, σ :

Ri = R(si) = e
−
s2i

2σ2

Once again, G.R. Liu [47] propose this dimensionless form:

Ri = R(si) = e
−αc

 sidc
2

where they have defined a parameter αc that weights the ratio of the distance over

the average nodal separation. This parameter relates to the standard deviation by:

αc =
d2
c

2σ2 (3.10)

Comparing expression (3.3) with (3.10), taking into account that they define the

parameter α =
√

2σ , it turns out that:

αc =
d2
c

α2

Polyharmonic Splines. They represent a family of exponential surfaces. The use

of a low order polynomials for augmenting the interpolation basis improves the

interpolation near the boundary. The general form of these functions is:

Ri = R(si) =

 ski with k = 1,3,5, . . .

ski log(si) with k = 2,4,6, . . .

The formulation of the splines with the logarithmic term may be changed in the

implementation in order to avoid its singularity problem around si = 0:

Ri = R(si) =

 sk−1
i log(ssii ) for si < 1

ski log(si) for si ≥ 1

When k = 2, the function represents a thin plate spline (TPS), which is the similar

to the cubic spline for higher dimensions. It represents in three dimensions the

bending of a thin sheet surface that goes through the interpolation points.

Ri = R(si) = s2i log(si)

In order to use RBFs with a set of scattered points, let us define first the distance
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from a point of the set j to the reference point i:

rk = ‖Xk −X i‖

The computation of the coefficients of the basis is done by an interpolation proce-

dure, so the functions are forced to pass through the nodal values:

q = R0aR + P map (3.11)

where:

R0 =
[
Rj(ri)

]
(n×n)

P m =
[
pj(X i)

]
(n×m)

In order to obtain the equations that must be solved to obtain the m variables

incorporating the augmented basis, orthogonal conditions are added. The final sys-

tem, using generalized coordinates, yields:

q̃ =

 q

0

 =

 R0 P m
P Tm 0


 aR
ap

 =Ga

Solving for coefficients a and substituting in equation (3.9) we obtain:

xh(X) =
{
RT (X) pT (X)

}
G−1q̃

So, the augmented shape functions are expressed as:

Ñ (X) =
{
RT (X) pT (X)

}
G−1

However, they are more efficiently computed solving the linear system:

GT Ñ (X) = {R(X) p(X)}T (3.12)

What is more, spatial derivatives are easily calculated by:

xh,l(X) = Ñ ,l(X)q̃ (3.13)

where the derivative of the shape functions is computed solving the following linear

system:

GT Ñ ,l(X) =
{
R,l(X) p,l(X)

}T
(3.14)



Chapter 3. Meshfree Discretization of Flexible Bodies 37

3.2 Bubnov-Galerkin discretization of flexible bodies

In an thermal-hyperelastic body, the strong form of the governing dynamic equa-

tions can be stated as general initial value problem. Recalling the mechanical (2.35)

and thermal (2.53) equilibrum equations: M(ẍ) +D(x,Θ)− f (x, ẋ, t) = 0

C(Θ̇) +H(x,Θ)−Q(x, t) = 0

 in the domain B (3.15)

 B(x)− g(t) = 0

L(Θ)− q(x, t) = 0

 in the Neumann boundary ∂BN

 u(x, ẋ, t) = 0

T (x,Θ, t) = 0

 in the Dirichlet boundary ∂BD

{
L(Θ)− q(x,Θ, t) = 0

}
in the Robin boundary ∂BR

with {x, ẋ,Θ}T = {x0, ẋ0,Θ0}T in t0, and where:

D is a first order elliptic operator,

B,H,L are first order differential operators,

f ,Q are the body loads and internal heat generation, respectively,

M,C are algebraic operators,

g,q is the traction field and heat flux values on the non-constrained boundary, and

u,T are the displacement and temperature constraints.

The shape functions could be partitioned for separating the mechanical (D) and

thermal (T ) components:

uhi (X , t) =

xhi
Θh
i

 =
SP∑
I=1

N I (X)qiI (t) (3.16)

with

N I =

NDI 0

0 NT I

 (3.17)

and

qiI (t) =

qDIqT I

 , (3.18)
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although they are usually the same for each degree of freedom:

uhi (X , t) =

xhi
Θh
i

 =
SP∑
I=1

NI (X)qiI (t) (3.19)

The spatial coordinates x and temperatures Θ of the body are now approximated

by a set of discrete values: xh

Θh

 =

ND 0

0 NT


qD

qT

 = N qf (3.20)

in terms of the flexible body generalized coordinates qf and shape functions N.

In this section we will assume that the Diritchlet boundary conditions are exactly

satisfied by the approximation. We will see later on how to enforce those conditions

when the latter statement does not hold. Equation (3.15) will not hold exactly at

every point of the domain when the approximation is introduced, and the difference

between the exact and the approximate solutions can be stated in a residual form

as:

RD(xh,Θh) = M(ẍh) +D(xh,Θh)− f (xh, ẋh, t) (3.21)

RT (xh,Θh) = C(Θ̇
h
) +H(xh,Θh)−Q(xh, t) (3.22)

The (n+m) equations needed to find the qi coefficients are built up from a set of

weighted integrals:∫
Bi
Wi(x)RD(xh,Θh)dV = 0 , for i = 1,2, . . . ,n (3.23)∫

Bi
Wj(Θ)RT (xh,Θh)dV = 0 , for j = 1,2, . . . ,m (3.24)

The weights W = {W1, . . . ,Wn,Wn+1, . . . ,Wn+m}T are the discrete counterpart of

the test functions or virtual displacements. If they are chosen so that they are the same

as the trial (or shape) functions, then the method is called Bubnov-Galerkin.

W =

 δxh

δΘh

 =
∂{xh,Θh}T

∂qf
δqf = N · δqf (3.25)

What is more, as shape functions do not depend on time, the n-th time derivative

of the spatial coordinates and temperatures is:

dn

dtn
{xh,Θh}T =

ND 0

0 NT

 dn

dtn
qf = N

dn

dtn
qf (3.26)
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Introducing the discretization (3.25) in the mechanical virtual work equations,

with inertial (2.58), internal (2.59) and external (2.60) terms; and using the dis-

cretized time derivation formula, (3.26), the expressions for the discretized virtual

work can be obtained. Note that the discretized temperature degree of freedom is

only implicitly used through the material’s properties and the thermal dilatation:

δΠh
mech = δΠh

inertia + δΠh
internal − δΠ

h
external = 0 (3.27)

δΠh
inertia = δqTD ·

[∫
B0

ρNT
D ·NDdV

]
· q̈D = δqTD ·MD · q̈D (3.28)

δΠh
internal = δqTD · f

h
int (3.29)

δΠh
external = δqTD · f

h
ext (3.30)

where:

MD is the mass matrix of the flexible body,

fhint is the discretized internal forces vector:(
f hint

)
I

=
∫
B0
∇0NDI ·P dV0 in a total Lagrangian formulation,(

f hint
)
i

=
∫
B∇NDi ·σ dV in an updated lagrangian formulation, and

fhext is the discretized external forces vector, where each nodal vector is defined by:(
f hext

)
I

=
∫
B0
NDI ·Jb dV +

∫
∂B0

NDI ·JF −1t dS in a total Lagrangian formulation,(
f hext

)
I

=
∫
BNDi ·b dV +

∫
∂BNDi · t dS in an updated lagrangian formulation.

Inserting the equations (3.27), (3.29) and (3.30) into (2.57) we obtain:

δqTD
(
MD q̈D + fhint − fhext

)
= 0 ∀δqD compatible,

which leads to the following system of ordinary differential equations, provided all

generalized coordinates are compatible:

MD q̈D + fhint − fhext = 0 (3.31)

The thermal power is discretized by similar means:

δΠ̇h
thermal = δΠ̇h

capacitance − δΠ̇
h
external − δΠ̇

h
conduction = 0 (3.32)

δΠ̇h
capacitance = δqTT ·

[∫
B0

ρCpNT
T ·NT dV

]
· q̇T = δqTT ·C · q̇T (3.33)

δΠ̇h
external = δqTT ·Q

h
ext (3.34)

δΠ̇h
conduction = δqTT ·H ·qT (3.35)
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where:

C is the capacitive matrix of the flexible body,

Qh
ext is the discretized external heat loads vector, with each component described

by:(
Qh
ext

)
I

=
∫
B0
NDI ·R dV +

∫
∂B0

NDI ·Q ·n dS in a total Lagrangian formulation,(
Qh
ext

)
I

=
∫
BNDI ·r dV +

∫
∂B
NDI ·q·n dS in an updated lagrangian formulation,

and

H is the discretized thermal conductivity matrix of the body:

H =
∫
B0
∇0N

T
T F
−1κ0F

−T∇0N T dV in a total Lagrangian formulation,

H =
∫
B∇N

T
Tκ∇N T dV in an updated Lagrangian formulation,

Once again, making the substitution of the equations (3.32), (3.34) and (3.35)

into (2.64) we obtain:

δqTT
(
C q̇T −H qT −Qh

ext

)
= 0 ∀δqT compatible,

leading to the thermal system of ordinary differential equations, with the thermal

generalized coordinates compatible:

C q̇T −H qT −Qh
ext = 0 (3.36)

3.2.1 Constrained Bubnov-Galerkin form

Lagrange multipliers have the advantage of imposing exactly the constraints al-

though they increase the number of unknowns, lead to a DAE system and the tan-

gent matrix is no longer diagonally dominant. Also, the system of equations turn

out to be singular if the number of Lagrange multipliers is too large and their inter-

polation functions are not chosen carefully [11]. Penalty functions do not impose ex-

actly the constraints and increase the condition number of the tangent matrix. Aug-

mented Lagrange method solve previous inconveniences by adding another loop to

the solver, increasing significantly the computation time.

Recalling the continuous description of the modified variational problem of sec-

tion 2.5.3, the discretized constrained problem is defined next for each type of

method.

Lagrange multipliers.

δΠ̄ = δΠ+
∫
δBD

δλ ·Φ dS +
∫
δBD

λ · δΦ dS (3.37)
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The lagrange multipliers are approximated along the boundary by a set of

functions λ(x, t) '
∑l
i=1λi(t)φ

L
i (X). The simplest way to integrate the con-

strained boundary is to apply point collocation, φLi (X) = δ(x − xLi ), where
{
xLi

}
are the nodes of the essential boundary domain. Finally, this procedure leads

to the following discrete residual form:

δΠ̄h = δΠh + δqT (ΦT
q λ) + δλT Φ = 0 (3.38)

where the {·}q denotes the gradient: Φq =
∂Φ
∂q

The constraint force vector for each flexible body takes the form (fΦ)i = ΦT
qλ

and the constraint set Φ must be appended to the differential equation system

(4.112), adding one variable for each constraint and require special time inte-

gration procedures. The resulting index-3 DAE must be solved for (q(t),λ(t)).

Penalty method

δΠ̄ = δΠ+α
∫
δBD

Φ · δΦ dS (3.39)

δΠ̄h = δΠh + δqT (ΦT
q αΦ) = 0 (3.40)

If the value of this parameter is too high, it will produce an ill conditioned

set of equations. The constraint force takes the form fΦ = ΦT
qαΦ and the

differential system (4.112) completely defines the motion.

Augmented Lagrange

δΠ̄ = δΠ+
∫
δBD

δλ∗ ·Φ dS +
∫
δBD

(αΦ +λ∗) · δΦ dS (3.41)

The integration of this equation by collocation is equivalent to make the cor-

responding substitution in Eq. (3.38) and taking into account that δλT Φ = 0;

resulting:

δΠ̄h = δΠh +Φq
T (α ·Φ) +ΦT

q λ
∗ = 0 (3.42)

The system is solved by an iterative procedure where the multilpliers can be

updated adding the penalty load:

λ∗i+1 = λ∗i +α ·Φ i+1 (3.43)

Although another iterative loop is added to the nonlinear solving procedure,

the convergence to almost the exact constraint imposition is very fast.
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3.2.2 Transformation method

The transformation method [15] is the best way to impose directly the essential

boundary conditions [45] but requires the inversion of the transformation matrix.

As a total Lagrange formulation is used for the modeling of flexible bodies, this

matrix must only be computed once, reducing the impact on the total computation

cost.

The recovery of the delta property for a node can be seen as the imposition of an

essential boundary condition using point collocation. Supposing that each bound-

ary condition, Φi = 0, is a explicit expression of the nodal displacements, each con-

dition can then be expressed as Φi = Fi − xi = 0, which can be put in the following

form:

xi(X J , t) = Fi(x1, . . . ,xi−1,xi+1, . . . ,xn, t) = gi(X J , t) (3.44)

Materializing the shape function of Eq. (3.1) at a constrained node J and taking

into account that its variation must vanish, the following expressions have to be

satisfied:

xhi (X J , t) =
NP∑
I=1

φI (X J )qiI (t) = gi(X J , t) (3.45)

δxhi (X J , t) = 0 (3.46)

Using implicit addition, Eq. (3.45) can be expressed in the following way:

xhiJ (t) = φIJ qiI (t) = giJ (t) (3.47)

changing the index for convenience, the generalized coordinates will be

qiI (t) = φ−TIK x
h
iK (t) (3.48)

and substituing in the shape function definition (Eq. 3.1)

xhi (X , t) =
NP∑
I=1

φI (X)qiI (t) =
NP∑
I=1

φI (X)φ−TIK x
h
iK (t) (3.49)

The modified shape function is

φ̂(X) =
NP∑
I=1

φ−1
KI φI (X) (3.50)

and has recovered the delta property

φ̂K (X J ) =
NP∑
I=1

φ−1
KI φI (X J ) = φ−1

KI φIJ = δKJ (3.51)
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Figure 3.5: Blending meshfree approximation functions with FEM shape functions [18]

while preserving the properties of the original shape function. Note that this trans-

formation is only necessary for the shape functions of those points that have one or

more constrained nodes inside their support domain.





Flexible Multibody

Systems

Formulation 4
Previous chapters have described the dynamics of single flexible bodies. The

reason to study more than one of those bodies in the same system is the existence of

some kind of interaction between them. The present chapter presents the formula-

tion of these systems, considering also perfectly rigid bodies, which are those where

the strain can be neglected, allowing a simplified formulation of their dynamics.

Lets recall the deformation gradient of a body, F = ∇0 x. For each deformation

tensor, there exists a right polar decomposition into an orthogonal and a positive

definite symmetric tensor: F = R·U , representing a stretch, U , followed by a rotation,

R. A rigid body motion can be defined by a deformation without stretch, F rigid = R.

This is equivalent to the condition of null strain, as the nonlinear strain measures

defined in Section 2.1 depend directly on the right or left stretch tensors: U 2 = F T F

and V 2 = FF T , respectively.

As all the points of a rigid body will remain at the same distance between them,

the motion of the body can be described exactly by a discrete set of parameters. This

number defines the degrees of freedom and depends on the kind of body and the

euclidean space dimension considered on a simulation.

If the number of parameters chosen to describe a rigid body is higher than its

degrees of freedom, a set of constraints must be imposed to compensate this excess

of variables. In a similar manner, the physical joints between the bodies reduce

the degrees of freedom of the whole system, which mathematically implies also

the application of constraint equations to parameters of different bodies. The total

number of parameters minus all the internal and joint constraints give the degrees

of freedom of the whole multibody system.

45
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4.1 Balance equations of rigid bodies

Lets consider a general rigid body composed by d continuous and p discrete

masses, with the only condition that their position is fixed in a local reference frame.

The application of the balance equations for flexible bodies of Section 2.3 to rigid

bodies is done by applying the previous non-stretching condition:

Conservation of mass: the mass of the domain, d
dtmass[Bt] = 0, remains constant.

As the volume of the distributed mass does not change at any point, J = 1, the

density field must also be constant: ρm (X , t) = ρo (X)

Linear momentum balance: the lack of strain implies that any applied load pro-

duces directly a change in the linear momentum of the whole body:

Nb∑
i=1

∫
Bi
bi dV +

Nt∑
j=1

∫
δBj
tj dA+

Nf∑
k=1

f k =
Nd∑
l=1

[∫
Bl
ρl
∂2x
∂t2

dV

]
+
Np∑
h=1

mh
∂2xh
∂t2

(4.1)

Angular momentum balance: the resultant torque of the applied loads around a

point z is:

ϑ [Bt]z = ϑf +ϑt +ϑb (4.2)

ϑf [B]z =
Nf∑
i=1

(xi − z)× fi (x, t) (4.3)

ϑt [B]z =
Nt∑
j=1

∫
∂Bj

(x − z)× tj (x, t)da (4.4)

ϑb [B]z =
Nb∑
k=1

∫
Bk

(x − z)×bk (x, t)dv (4.5)

This applied torque varies the inertial angular momentum of the body:

ϑ [Bt]z =
Nd∑
i=1

[∫
Bi
ρi
∂x
∂t
× (x − z) dV

]
+

Np∑
j=1

mj
∂xj
∂t
×
(
xj − z

)
(4.6)

Balance of mechanical energy: The equilibrium is equivalent to the one expressed

by (Eq. 2.34) neglecting the deformation energy:

d
dt
K [Bt] = Pext [Bt] (4.7)

where:

K [Bt] =
∑Nd
i=1

∫
Bi

1
2ρiv · v dV +

∑Np
j=1

1
2mjvj · vj
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Pext [Bt] =
∑Nb
i=1

∫
Bi
bi · v dV +

∑Nt
j=1

∫
δBj
tj · v dA+

∑Nf
k=1 f k · vk

is the power of external loads over Bt and its boundary.

Virtual work: the application of the D’Alembert Principle of classical mechanics

gives the weak form of the mechanical equilibrium. Using virtual displace-

ments as test functions, the variation of the mechanical energy potentials will

vanish for any compatible variation:

δΠ =
∂Π
∂xi

δxi = 0 (4.8)

δΠmech = 0 = δΠinertia − δΠexternal (4.9)

where each of the previous contribution terms can be expressed as:

δΠinertia =
Nd∑
i=1

∫
Bi
ρi v̇ · δx dV +

Np∑
j=1

mj v̇j · δxj

δΠexternal =
Nb∑
i=1

∫
Bi
bi · δx dV +

Nt∑
j=1

∫
δBj
tj · δx dA+

Nf∑
k=1

f k · δxk

4.2 Basic points coordinates

The movement of a rigid body embedded in an Euclidean Space of dimension

n, En, can be described exactly by the spatial position of a minimum of n points.
Taking into account that the number of parameters needed for establishing the po-

sition of those n points is n2 (unknowns) and that the enforcing of the constant

distance conditions of n points implies the same number of conditions (equations)

for each additional point, the number of independent unknowns of the problem of

the parameterization of a rigid body or degrees of freedom (DOF) are given by the

next expression:

DOF = n2 −
n∑
i=1

(i − 1) (4.10)

For a system composed of r-rigid bodies, with a set of joints between them that

apply a total of s-constraints of relative displacement, the previous statement can

be generalized:

Mechanical system’s DOF = r ·

n2 −
n∑
i=1

(i − 1)

− s (4.11)

The selection of the points and associated coordinates used to describe the con-



48 4.2. Basic points coordinates

figuration of the body define the type of parameterization:

Independent coordinates: are the ones that use a number of parameters equal to

the degrees of freedom of the rigid multi-body system. Its use is not frequent

as it requires a process of selection of parameters that is very difficult to sys-

tematize. Also, there can be situations in which the configuration of some

systems cannot be uniquely defined using this kind of parameterization.

Relative coordinates: This kind of discretization relies in the relative degrees of

freedom between the bodies to define its configuration. Each one of the pa-

rameters directly defines the magnitude of one degree of freedom associated

to a mechanical joint. The relative coordinates represent the minimum set of

parameters needed to define an open chain mechanism. In the case where the

there are closed chains, a–sometimes complex–preprocessing for substituting

them for additional constraints is needed.

Reference point coordinates: The position of each of the bodies that compose the

system is defined through the position and orientation of a reference frame

fixed to one of its points, usually the center of gravity. The number of cartesian

and angular parameters usually corresponds exactly to the degrees of freedom

of the body so no internal constraints must be added. The advantage of this

parameterization is that its implementation is easy to generalize for any body,

although it requires a slightly higher number of unknowns and equations, as

each of the constraints between the bodies must be explicitly imposed.

Natural coordinates: Instead of selecting an arbitrary point of a body, the points

where the joints are located are chosen [20]. If at least two points for each

body are used, there is no need to use angular parameters, reducing the com-

plexity of the formulation specially in 3D dynamics. Each point is described

by its cartesian coordinates and each body is defined by the position of dif-

ferent points and, sometimes, also by some orientation vectors, leading to a

constant mass matrix [22]. As each of the points located in the joints are used

for describing the position of the bodies joined, the number of total parame-

ters for a system is reduced.

Basic points coordinates represent an intermediate approach of the later two pa-

rameterizations. The reference frame is located in the center of gravity, the

points are selected in the principal inertia directions forming an orthonormal

basis, and only cartesian coordinates are used to avoid the use of angular pa-

rameters. The reference frame used to defined a body is formed by a set of

points with an associated mass matrix. Later on it will be shown that this
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presents a great advantage as the mass matrix will be diagonal and also re-

main constant during the movement. A set of constraints must be imposed

between the points, increasing the number of degrees of freedom and equa-

tions needed. But, as the multi-body systems will also have flexible bodies

with a much higher number of parameters, this increment of the variables and

equations is less important than in the case of considering only rigid bodies.

Independently of the discretization used in the formulation, the position of any

point of a rigid body will be defined at any time using a finite set of parameters

called generalized coordinates, qR:

x = x(qR), (4.12)

and, in the case of using natural or reference points coordinates, the relation be-

tween the position of any point and the generalized coordinates is constant and

given by its transformation matrix:

xp = Cp ·qR (4.13)

Taking into account that a virtual displacement of any point of the rigid body is

δx =
∂x
∂qR

δqR, the discretized weak form is given by:

δqTR · (Mr q̈R −QR) = 0 , ∀δqr constraint compatible , (4.14)

Mr being the mass matrix and Qr = Qg +Qf the generalized force vector. The term

Qg represents the gyroscopic-type forces associated to the selected parametrization,

and Qf the forces related to the loads applied to the body. Further elaboration of

the different terms of (4.14) for any kind of parameterization is out of the scope of

this work and can be found in several references [21, 66, 2].

Obviously, an independent set of coordinates would allow us to cancel the term

inside the parenthesis in (4.14), resulting in a set of n ordinary differential equations

describing the rigid body motion. This is not possible for a dependent set of coordi-

nates, which will require the addition of constraint equations and the introduction

of additional terms related with the constraint forces.

For a mechanism composed exclusively of rigid bodies, the different terms in

(4.14) can be further elaborated as follows. Assuming that the rigid body is com-

posed by Np discrete points with mass and Nd rigid parts with a distributed mass,

MR is the mass matrix, given by:

MRij =
NP∑
k=1

mk
∂xk
∂qRi

∂xk
∂qRj

+
Nd∑
l=1

∫
Bj
ρl
∂x
∂qRi

∂x
∂qRj

dV

 (4.15)
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What is more, the generalized force vector QR takes the form QR = Qg + Qf . The

termQg represents the gyroscopic-type forces associated to the selected parametriza-

tion, and Qf the forces related to the loads applied to the body, given by:

Qfi =
Nf∑
j=1

fj
∂xj
∂qRi

+
Nt∑
k=1

[∫
δBk

tk
∂x
∂qRi

dA

]
+

Nb∑
l=1

[∫
Bl
bl
∂x
∂qRi

dV

]
(4.16)

assuming the cartesianly decomposed Nf concentrated forces fj , Nt surface loads tk
and Nb volumetric loads bl .

The particular choice of the basic points coordinates results in a dependent set

of coordinates, requiring the satisfaction of holonomic constraints related with the

selected points. This approach is very systematic and possesses several additional

advantages as it eliminates the gyroscopic-type forces in the equations of motion

and produces a constant mass matrix.

Based on the previous results, the weak formulation of a system of rigid bodies

connected by joints is straightforward. Collecting the coordinates of all rigid bodies

under vector qR, the equations of motion are formally obtained replacing qr by qR
in (4.14). But note that in this case δqR are never compatible, even if the set of

coordinates for each single body is independent, because the constraints introduced

by the joints.

4.3 Formulation of rigid bodies

Once the type of discretization has been defined, any of the points of a rigid

body can be located during its movement. Any rigid body will be described by a set

of points and constraints. The inertial components will be studied in this section

while the internal forces, as it is produced by the constant distance constraints, will

be analyzed in Section 4.4.

The contributions to the global mass matrix can be proposed for each of the bod-

ies, classified depending on their dimension, i.e. the space where their mass is dis-

tributed. The most simple body is a point mass, considered a 0-D element as it

ideally does not occupy any space. Considering a system moving in a n-dimension

space and a value of the point mass of mp, the local mass matrix is as simple as:

Mp =mp In (4.17)

For bodies with distributed masses, the formulation is more involved and will

be detailed in the following subsections.
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4.3.1 1-D bodies: Bars

A bar is a rigid body with its mass, mb, distributed along a line. The inertia

around that line is zero, so it can be modeled using only two aligned points. If the

end points, A,B of a bar of length lb are chosen for its discretization, the position

of any other point belonging to the bar is defined by one parameter in the local

coordinate frame as:

x = xA + c1 (xB − xA) , [0 ≤ c1 ≤ 1] (4.18)

which can be put in matrix notation:

x =
[
(1− c1)In c1In

]xAxB
 = C ·q (4.19)

The constant matrix C represents the relation between the parameterization and

coordinates of any point of the bar, ∂xi
∂qj

= Cij . The mass matrix can be calculated

using the definition of the of Eq. 4.15:

MR =
∫
Bb
ρbCT C dV (4.20)

with:

CT C =

 (1− c1)2In (1− c1)c1In
(1− c1)c1In (1− c1)2In

 (4.21)

ρb(c1) =
mb∫
lb
dl

=
mb

[c1]1
0

=mb (4.22)

where the density has been considered constant along the bar. The substitution

and integration leads to the following mass matrix of a rigid bar:

MR =

mb
3 In

mb
6 In

mb
6 In

mb
3 In

 (4.23)

If the center of mass, x0 and director vector d1 = x1 −x0 are used as basic points

of the parameterization, any point of the body can be expressed as:

x = x0 + c1d1,

[
− l

2
≤ c1 ≤

l
2

]
(4.24)

the constant matrix of the body will have the next simple form:

C =
[
1In c1In

]
(4.25)
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and the mass matrix can be calculated as previously:

MR =
∫ l

2

− l2
ρb

 In c1In
c1In c2

1In

dl =

mbIn 0

0 IoIn

 (4.26)

where:

Io = ρl3b
12 is the polar moment of inertia of the bar around a perpendicular axis passing

through its center of mass.

Note that body’s constant matrix is built by a function (i.e. 4.24) that represents

the relation between any body point with the nodal coordinates. In essence, it rep-

resents the same transformation as the shape functions provide for flexible bodies.

What’s more, the polynomial equation 4.19 is equivalent to the shape function of

a 1D element when described in the real space (as opposed to the isoparametric

definition).

4.3.2 2-D bodies: Plates

A plate is a solid that has all of its points contained in a plane. The 2-axis ref-

erence frame needed to define the position of any point of the plate can be formed

using any three non-aligned points. The center of gravity, x0, and two other points,

{x1,x2} are selected such that the director vectors, d1 = (x1 − x0), and, d2 = (x2 − x0)

define an orthonormal reference system, coincident with the principal axis of the

solid.

The position of any point of the body can be expressed as:

x = x0 + c1d1 + c2d2 (4.27)

the constant matrix of the body will have the next simple form:

C =
[
1In c1In c2In

]
(4.28)

and the mass matrix can be calculated as previously:

MR =
∫
B
ρp


In c1In c2In
c1In c2

1In c1c2In
c2In c1c2In c2

2In

dA =


mpIn 0 0

0 I1In 0

0 0 I2In

 (4.29)

4.3.3 3-D bodies

A general 3D body is modeled using four points, {x0,x1,x2,x3}, and six con-

straints for maintaining the orthonormal triad that they form. The local reference

frame is located in the center of gravity, x0 and its director vectors are defined using
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the other three points, di = xi − x0.

Using this local reference frame, the position of a material point of the body is

calculated by:

x = x0 + c1d1 + c2d2 + c3d3 (4.30)

C =
[
1I3 c1I3 c2I3 c3I3

]
(4.31)

MR =
∫
B
ρp


I3 c1I3 c2I3 c3I3

c1I3 c2
1I3 c1c2I3 c1c3I3

c2I3 c1c2I3 c2
2I3 c2c3I3

c3I3 c1c3I3 c2c3I3 c2
3I3

dA

=


mpI3 0 0 0

0 I1I3 0 0

0 0 I2I3 0

0 0 0 I3I3



4.4 Generalized joints formulation

The constraints relate the position or orientation of material points. In rigid

bodies, constraints are imposed between different bodies to model joints. As it will

be shown in section 4.3, constraint equations are needed when the rigid body is

modelled with more nodes than necessary, so they do not have always a physical

counterpart as it is always the case with joints. If the bodies are flexible, internal

constraints can be also added to model an specific behaviour (e.g. a reinforcement)

as it was detailed in section 3.2.1.

This section extends and details the different techniques for applying constraints

that were introduced for flexible discrete bodies. Some typical constraint equations

in solid bodies (rigid and flexible) are described, and combined to form joints. The

application of joints in rigid bodies is summarized along with a generic way to im-

pose the same formulae to joints including flexible bodies. The methodology is

based in the application of meshfree shape functions for the definition of the con-

straint points. This generalized form is applicable to any joint connecting any kind

of rigid or flexible body. It’s also independent on the discretization method used for

the flexible bodies, therefore being compatible with FEM or meshfree shape func-

tions.
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4.4.1 Application of joints to flexible bodies

From the practical point of view, note that the use of a meshfree discretization

greatly simplifies the modelling of joints, because nodes can be added at any place

inside de boundary, independently of the integration grid. In a computer combined

design/analysis process of a real mechanism, the user may introduce corrections on

the design very efficiently from the computational point of view, since no connec-

tivity must be rebuild, and therefore any added/removed joint has small impact in

the overall data structure of the software.

The main issue regarding the modelling of joints connecting deformable bodies

discretized with a meshfree technique is related to the delta property of the shape

functions. This property states that the value of the shape function associated to

a given support node is 1 at the node, and 0 at the rest of them, and it is a basic

property of FEM. This property greatly simplifies the formulation of joints, because

a constraint applied on specific nodes of the flexible body just relates the degrees of

freedom of the affected nodes. For some simple cases (e.g. constraints that fix the

position of nodes, or constraints over coincident nodes of different bodies, sharing

several degrees of freedom), the constraint can be enforced just eliminating the af-

fected degrees of freedom. Note also that the delta property must be satisfied when

dealing with continuous varying boundary conditions for achieving at least linear

accuracy (patch test).

Not all meshfree techniques have this delta property; actually some of the most

common types of shape functions lack this property, as MLS and RKPM. When it

does not hold, the formulation of constraints is more involved; direct elimination is

not possible for simple constraints, requiring the addition of constraint equations

to couple the desired degrees of freedom, even if the nodes are coincident. For these

cases, some techniques can be developed to recover this property, as the transforma-
tion method [15] or the coupling with finite elements
[42].

However, some meshfree shape functions do have the delta property. This is

the case of the RBF interpolants, and this is actually one of the main reasons for

selecting them to be used in a multibody context, were an efficient representation

of joints plays such an important role in the overall formulation. With these RBF

interpolants, joints can me modelled as simple as with the use of FEM, eliminating

degrees of freedom for simple joints and facilitating the general formulation of more

complex constraints that have to be imposed explicitly.

The following presents a methodology for connecting flexible bodies between

them or to rigid bodies. As opposed to the common approaches, it is applicable

to any meshfree methods, having or not the Kronecker delta property. Differences

between its application to both types of methods will be commented, specially in
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what regards to efficiency and errors in the constraint.

4.4.2 Mechanical constraint equations

As pointed out in the previous section, kinematic joints among the different

parts of the mechanism are represented by a set of constraint equations. We will

focus in holonomic constraints, which are those that do not depend on the deriva-

tives of the generalized coordinates

Φ(q) = 0 (4.32)

The classical methods to introduce their effect in the equations of motion are La-

grange multipliers, penalty and the augmented Lagrange method. A more detailed

description of these methods is given in the following paragraphs.

The Lagrange multipliers add the following term to the general dynamic equa-

tion 4.14:

δqT {M q̈−Q}+ δ(λT Φ) = 0

resulting the system:

δqT {M q̈+ (ΦT
q λ)−Q}+ δλT Φ = 0

where the index indicates the first derivative: Φq =
∂Φ
∂q

The previous equation holds for any variation δq,δλ, so both addition terms

must vanish. The system is decomposed in two complementary systems of n sec-

ond order differential equations and p algebraic equations, forming the next DAE

system:

M q̈+ (ΦT
q λ)−Q = 0 (4.33)

Φ = 0 (4.34)

To facilitate the numerical resolution of the DAE system, the constraints can be

substituted by their derivatives. The derivation of the expression Φ = 0 twice leads

to:

Φ̇ = 0 → Φq q̇+Φt = 0 (4.35)

Φ̈ = 0 → Φq q̈+
dΦq

dt
q̇+

dΦt

dt
= 0 (4.36)

Swaping Φ by its second derivative and grouping the terms of the Eq. (4.33),
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the final form of the dynamic system is obtained: M ΦT
q

Φq 0


 q̈

λ

 =

 Qg
 (4.37)

where:

g = −
dΦq

dt
q̇− dΦt

dt

The application of the penalty method substitutes the multipliers, λ, in Eq.

(4.33) by a product of the constraint equations and a penalty matrix, α = αii :

λ ' α ·Φ (4.38)

The resulting second order ODE system will then maintain its original size:

M q̈+Φq
T (α ·Φ)−Q = 0 (4.39)

As the penalization parameters’ values are increased infinitely, αii → ∞, the

constraints are more exactly imposed, implying that(α·Φ)→ λ, although the system

becomes more numerically ill-conditioned.

The augmented lagrange method represents an intermediate approach of the

previous two methods. Making the following substitution in Eq. (4.33):

λ = α ·Φ+λ∗ (4.40)

the system is transformed to the following ODE system:

Mq̈ +Φq
T (α ·Φ) +ΦT

q λ
∗ −Q = 0 (4.41)

Where the vector λ∗ can be considered a correction to the penalty forces by

means of Lagrange multipliers.

In the Eq. (4.41) is obvious that Φq
T (α ·Φ) → 0 if and only if λ∗ → λ. If an

iterative method in λ∗ is used, so it converges to λ the system constraints will be

imposed exactly.

Retaking the idea of the penalty method, where the constraint is imposed with

more precision asα increases and noting that the constraint is imposed exactly using

the Lagrange multipliers, it can be stated that the next succession is monotonic and

converges to λ:

λ∗i+1 = λ∗i +α ·Φ i+1 (4.42)

If Φ i+1 = Φ(qi) is calculated with the solution for the displacements given by
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Eq. (4.41), then:

Mq̈i + (Φq
T )i (α ·Φ i) + (ΦT

q )i λ
∗
i −Qi = 0 (4.43)

A. Constant distance between two points

In the reference configuration, the distance between two points of different bod-

ies with positions X1 and X2 is defined as:

d0 = ||X2 −X1|| =

√√√
dim∑
i=1

(X2i −X1i)
2 (4.44)

With dim the dimension space of the problem.

At any time, the distance between both points will have a magnitude dt:

dt = ||x2 − x1|| =

√√√
dim∑
i=1

(x2i(t)− x1i(t))
2 (4.45)

The constraint imposes the distance to remain equal as originally, and is usu-

ally applied as a squared exponential to reduce the number of calculations as the

previous squared roots would not be required:

Φ i = Φi = d2
t − d2

0 (4.46)

Another advantage appears when computing the derivatives of the constraint, as

the expressions get greatly simplified. For example, in the case of a 2-dimensional

problem, the first derivative results in the following:

(
Φq

)
i

= ∇qΦi = ∇d2
t =


−2 (x2(t)− x1(t))

−2 (y2(t)− y1(t))

2 (x2(t)− x1(t))

2 (y2(t)− y1(t))


T

(4.47)

When one of the points belongs to a rigid body, its position x is calculated using

the constant matrix C, as defined e.g. in equation (4.19):

x = C ·q (4.48)

Or, for each of the i = (x,y,z) components:

xi =
dim+1∑
j=1

Cij qj (4.49)

Without loss of generality, considering that both constrained points are part of
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a pair of similar (i.e. same dimension) rigid bodies, A and B. Let’s assume that the

bodies are a couple of 1D rigid bars, then the constraint can be formulated as:

Φ i = Φi = d2
t − d2

0 (4.50)

=
dim∑
i=1

(x2i(t)− x1i(t))
2 − d2

0 (4.51)

=
dim∑
i=1

dim+1∑
j=1

(
CBij q

B
j −C

A
ij q

A
j

)
2

− d2
0 (4.52)

Returning to the example of the constraint in 2D space, the first derivative can

then be formulated also as a function of the rigid body nodes generalized coordi-

nates. For two bars, each point will have two support nodes, and each node, two

degrees of freedom. The total size of the derivative corresponds to the eight gener-

alized coordinates of the joint:

(
Φq

)
i

= ∇qΦi = ∇d2
t =



−2 dt
−2 dt
−2 dt
−2 dt
2 dt
2 dt
2 dt
2 dt



T

(4.53)

Let’s note that using meshfree shape functions, the position of any point inside

or outside the domain can be calculated from the support nodes’ (SP) location (as

stated by eq. 3.1):

xi(X , t) ' xhi (X , t) =
SP∑
j=1

Nj(X)qij(t) (4.54)

with i = {1, . . . ,m-DOFs}

Applying the same procedure as for the rigid body constant matrix, the con-

straint can be imposed between points belonging to a pair of flexible bodies A and

B. The support nodes for each node will be different in general, and here are denoted
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as SP 1 and SP 2 respectively. The constraint has the following form:

Φ i = Φi =
dim∑
i=1

(x2i(t)− x1i(t))− d2
0 (4.55)

=
dim∑
i=1

SP 2∑
j=1

NB
j (XB)qij(t)−

SP 1∑
k=1

NA
k (XA)qik(t)


2

− d2
0 (4.56)

The previous expression is valid for any kind of discretization of the flexible

body. But, if the shape functions have the Kronecker delta property and the point

selected to impose the constraint is a node, there is no need to compute any sum. In

this particular case, the displacement of that node is directly its generalized coordi-

nate, speeding up the calculation and eliminating any approximation error.

Finally, going back to the 2D case between two flexible bodies, the expression

for the derivative gets a generic form. This resulting derivative of the constraint has

a general form of a transposed vector of size (dim (SP 1 + SP 2)), being valid for any

dimension and type of solid:

(
Φq

)
i

= ∇qΦi = ∇d2
t =



−2 dt
−2 dt
...

−2 dt
2 dt
2 dt
...

2 dt



T

(4.57)

B. Fixed coordinates between points

When the points are in the same location, an alternative and even more direct

formulation is defined using only each of the coordinates:

Φ i =


Φix

Φiy

Φiz

 =


x2 − x1

y2 − y1

z2 − z1

 (4.58)

The previous expression can be written as a function of the supporting nodes

using numerical indexing of coordinates {x,y,z} = {1,2,3}, in a similar manner as

before:

Φ i =


∑SP 2
j=1 N

B
j (XB)q1j(t)−

∑SP 1
k=1 N

A
k (XA)q1k(t)∑SP 2

j=1 N
B
j (XB)q2j(t)−

∑SP 1
k=1 N

A
k (XA)q2k(t)∑SP 2

j=1 N
B
j (XB)q3j(t)−

∑SP 1
k=1 N

A
k (XA)q3k(t)

 (4.59)
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Which can be simplified to the following:

Φ i =
SP 2∑
j=1

NB
j (XB)


q1j(t)

q2j(t)

q3j(t)

−
SP 1∑
k=1

NA
k (XA)


q1k(t)

q2k(t)

q3k(t)

 (4.60)

The derivatives are then computed in a generalized way leading to the following

Jacobian matrix, with a size of (dim× dim(SP 1 + SP 2)):

(
Φq

)
i

= ∇qΦi =



−NA
1 (XA) Idim

−NA
2 (XA) Idim

...

−NA
SP 1(XA) Idim
NB

1 (XB) Idim
NB

2 (XB) Idim
...

NB
SP 2(XB) Idim



T

(4.61)

Note that when the delta property holds, the constraint can be imposed using

eq. 4.58, and its derivative is greatly simplified:

(
Φq

)
i

= ∇qΦi =

−Idim
Idim

T (4.62)

C. Alignment of three points in space

Any three points x1,x2,x3 are aligned if the cross product between their relative

vectors is zero. Two of them are used for defining the constraint: P 1 = x2 − x1, and

P 2 = x3 − x1. The alignment condition enforces the following product to vanish:

Φi =


Φix

Φiy

Φiz

 = P 1 × P 2 (4.63)

The vectors can be defined as a function of the generalized coordinates as in eq.

4.60 using the point support sums:

P 1 =
SP 2∑
i=1

Nj(X
2)


q1i(t)

q2i(t)

q3i(t)

−
SP 1∑
k=1

Nk(X
1)


q1k(t)

q2k(t)

q3k(t)

 (4.64)



Chapter 4. Flexible Multibody Systems Formulation 61

P 2 =
SP 3∑
j=1

Nj(X
3)


q1j(t)

q2j(t)

q3j(t)

−
SP 2∑
i=1

Nj(X
2)


q1i(t)

q2i(t)

q3i(t)

 (4.65)

Let’s define the third vector relative to the points as P 3 = x3 − x2

P 3 =
SP 3∑
j=1

Nj(X
3)


q1j(t)

q2j(t)

q3j(t)

−
SP 1∑
k=1

Nk(X
1)


q1k(t)

q2k(t)

q3k(t)

 (4.66)

After some work with the equations, the derivative in 3D space can be expressed

in the following form: (
Φq

)
i

= ∇qΦi =
(
Φ i1 Φ i2 Φ i3

)
(4.67)

With each of the sub-matrices having this transposed form:

Φ i1 =


N1(X1)A

N2(X1)A
...

NSP 1(X1)A



T

(4.68)

Φ i2 =


N1(X2)B

N2(X2)B
...

NSP 2(X2)B



T

(4.69)

Φ i3 =


N1(X3)C

N2(X3)C
...

NSP 3(X3)C



T

(4.70)

With the skew-symmetric matrices:

A =


0 P3z −P3y

−P3z 0 P3x

P3y −P3x 0

 (4.71)

B =


0 −P2z P2y

P2z 0 −P2x

−P2y P2x 0

 (4.72)



62 4.4. Generalized joints formulation

C =


0 P1z −P1y

−P1z 0 P1x

P1y −P1x 0

 (4.73)

D. Constant orientation between two vectors

Two vectors can be defined in a pair of bodies by a set of four points, each two

defining the corresponding vector of interest in the body i: (P i)0 = X i12 = X i2 −
X i1. The evolution of each vector during the deformation of each body will then be

(P i)t = xi12 = xi2 − x
i
1.

The initial angle between the two vectors can be calculated by the arcsin of the

normalized cross product:

θ0 = arcsin
||(P 1)0 × (P 2)0||
||(P 1)0|| ||(P 2)0||

(4.74)

Or also by the arccos of the normalized dot product

θ0 = arccos
||(P 1)0 · (P 2)0||
||(P 1)0|| ||(P 2)0||

(4.75)

The constraint is defined by the differences between the angle at any time, θt,

and the initial angle, θ0. To reduce the complexity of the derivatives, the trigono-

metric terms can be removed with some caution, as it must be taken into account

that θ ' nπ → sin(θ) ' θ, while θ ' nπ/2 → cos(θ) ' θ, with n = 0,1, . . . . Then

the sinθ along with equation 4.74 can be used for the ranges [0 ≤ |θ0| ≤ π/4] and

[3π/4 ≤ |θ0| ≤ π]; while the cosθ with equation 4.75 would be used for the comple-

mentary angles [π/4 ≤ |θ0| ≤ 3π/4].

Φi = θt −θ0 '


||(P 1)t × (P 2)t ||
||(P 1)t || ||(P 2)t ||

− sinθ0 ,
0 ≤ |θ0| ≤ π/4

3π/4 ≤ |θ0| ≤ π

||(P 1)t · (P 2)t ||
||(P 1)t || ||(P 2)t ||

− cosθ0 , π/4 ≤ |θ0| ≤ 3π/4

(4.76)

Considering the vector lengths as constant allows to simplify the formulation of

the joint, which is valid if the points are selected adequately (i.e. in parts of both

bodies with similar strains). This implies that ||(P 1)t || ||(P 2)t || = ||(P 1)0|| ||(P 2)0||, and
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the constraint is then:

Φi =


||(P 1)t || × ||(P 2)t || − ||(P 1)0|| × ||(P 2)0|| ,

0 ≤ |θ0| ≤ π/4

3π/4 ≤ |θ0| ≤ π

||(P 1)t || · ||(P 2)t || − ||(P 1)0|| · ||(P 2)0|| , π/4 ≤ |θ0| ≤ 3π/4

(4.77)

As in the case of three aligned points, the formulation of the derivatives when

vector products appear are much more involved.

For the case of the first range of initial angles, [π/4 ≤ |θ0| ≤ 3π/4], the jacobian

results in the following:

(
Φq

)
i

= ∇qΦi =
(
−φi1 φi2 −φi3 φi4

)
(4.78)

With:

φi1 =


−N1(X1)P 1

−N2(X1)P 1
...

−NSP 1(X1)P 1



T

(4.79)

φi2 =


N1(X2)P 1

N2(X2)P 1
...

NSP 2(X2)P 1



T

(4.80)

φi3 =


−N1(X3)P 2

−N2(X3)P 2
...

−NSP 3(X3)P 2



T

(4.81)

φi4 =


−N1(X4)P 2

−N2(X4)P 2
...

−NSP 4(X4)P 2



T

(4.82)

And each of the vectors represented in generalized coordinates:

P 1 =
SP 2∑
i=1

Nj(X
2)


q1i(t)

q2i(t)

q3i(t)

−
SP 1∑
k=1

Nk(X
1)


q1k(t)

q2k(t)

q3k(t)

 (4.83)
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P 2 =
SP 4∑
l=1

Nj(X
4)


q1l(t)

q2l(t)

q3l(t)

−
SP 3∑
j=1

Nj(X
3)


q1j(t)

q2j(t)

q3j(t)

 (4.84)

Note that if the delta property holds, the derivative would be much more simple

to calculate:

(
Φq

)
i

= ∇qΦi =


x3 − x4

x4 − x3

x1 − x2

x2 − x1


T

(4.85)

In the other ranges of initial angles, [0 ≤ |θ0| ≤ π/4] and [3π/4 ≤ |θ0| ≤ π], the

jacobian is much more involved and can be computed in a similar way as in the

previous subsection, with the difference of the Euclidean norm.

4.4.3 Thermal constraint equations

The thermal constraints can be viewed as a simplification of the mechanical tech-

niques, as they only affect to one degree of freedom and are applied to a first order

discrete ODE system:

The Lagrange multipliers add the following term to the heat equation:

δqT {C q̇T −Qh}+ δ(λT Φ) = 0 (4.86)

where, for simplification, Qh includes external heat and internal conduction. the

system can be divided in:

δqT {C q̇T + (ΦT
qT
λ)−Qh}+ δλT Φ = 0 (4.87)

where the index indicates the first derivative with respect to the generalized tem-

peratures: ΦqT =
∂Φ
∂qT

The previous equation also holds for any variation δq,δλ, so both addition terms

must vanish. It can be rearranged to the next DAE system:

C q̇T + (ΦT
qT
λ)−Qh = 0 (4.88)

Φ = 0 (4.89)

Instead of deriving twice as in the mechanical case, the constraints can be sub-

stituted by their first derivatives, leading to:

Φ̇ = 0→ΦqT q̇T +Φt = 0 (4.90)
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Swaping Φ by its first derivative and grouping the terms of the Eq. (4.88), the

final form of the dynamic system is obtained: C ΦT
qT

ΦqT 0


 q̇T
λ

 =

 Qh

−Φt

 (4.91)

The application of the penalty method and Augmented Lagrange is equivalent to

the process presented in section 4.4.2, leading to the following respective systems:

C q̇+ΦqT
T (α ·Φ)−Qh = 0 (4.92)

C (q̇)Ti +
(
ΦqT

T
)
i

(α ·Φ i) +
(
ΦT
qT

)
i
λ∗i −Qh

i = 0 (4.93)

A. Fixed temperatures between points

When the points are in the same location, it is usual to link their temperatures.

As these correspond to an additional degree of freedom, the same form from eq.

4.58 of the constraint for fixed coordinates can be used:

Φi = Θ2 −Θ1 (4.94)

Which, in generalized coordinates uses the support nodes for each point:

Φ i =
SP 2∑
j=1

NB
j (XB)qT j(t)−

SP 1∑
k=1

NA
k (XA)qT k(t) (4.95)

And has a Jacobian matrix in form of a row vector, with size of (SP 1 + SP 2):

(
ΦqT

)
i

= ∇qΦi =



−NA
1 (XA)

−NA
2 (XA)
...

−NA
SP 1(XA)

NB
1 (XB)

NB
2 (XB)
...

NB
SP 2(XB)



T

(4.96)

If the shape functions possess the Kronecker delta property, the derivative is as

simple as: (
Φq

)
i

= ∇qΦi =

−1

1

T (4.97)



66 4.4. Generalized joints formulation

4.4.4 Joints between rigid bodies

A. 2D pin joint and 3D spherical joint

The joint is defined by a minimum of four points: 1,3 for one body, and 2,4

belonging to the other body. 1 and 2 are defined in the same initial location, setting

the centre of rotation of the joint. The joint has therefore only rotational degree(s)

of freedom. In 2D, the DoF is measured by the mean angle between the other non-

coincident points of each body. In general, the coincident points will be defined

by a set of support nodes in each body. Let there be NA and NB support nodes for

the interfaces of the joint. A fixed point constraint can be imposed between the

interfaces using eq 4.60:

Φ i =
SP 2∑
j=1

Nj(X
2)


q1j(t)

q2j(t)

q3j(t)

−
SP 1∑
k=1

Nk(X
1)


q1k(t)

q2k(t)

q3k(t)

 (4.98)

The joint orientation vectors are then defined in a similar way as:

P 1 =
SP 3∑
j=1

Nj(X
3)


q1j(t)

q2j(t)

q3j(t)

−
SP 1∑
k=1

Nk(X
1)


q1k(t)

q2k(t)

q3k(t)

 (4.99)

P 2 =
SP 4∑
l=1

Nj(X
4)


q1l(t)

q2l(t)

q3l(t)

−
SP 3∑
j=1

Nj(X
3)


q1j(t)

q2j(t)

q3j(t)

 (4.100)

And using a similar approach, the mean angle of rotation between the bodies

can be calculated using equation 4.75, defined as the starting point for the vector

alignment constraint:

θ = arccos
||P 1 · P 2||
||P 1|| ||P 2||

(4.101)

In the case of the 3D spherical joint, there are three degrees of freedom instead

of just one, so another pair of points can be defined to measure the spatial angles,

in order to have a complete definition of the relative positions of the bodies.

B. 3D revolute joint

A schematic representation of the joint is shown in 4.1. Six points are needed to

define it. Five of them are used for setting the constraint equations:

• A constant distance constraint between two points defining the centre (as in

the 2D case):

Φi = x2 − x1 (4.102)
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• Two constant orientation constraints between a vector in the axis of rotation

of the joint and two non-aligned vectors:

Φi = θ(x13,x24)−θ0(X13,X24) (4.103)

Φi = θ(x13,x25)−θ0(X13,X25) (4.104)

Figure 4.1: 3D Revolute joint

Another point is defined in a plane perpendicular to the revolution axis contain-

ing the point 4. The angle of rotation can then be calculated using equation 4.101,

with:

θi = θ(x16,x24) (4.105)

C. 3D cylindrical joint

The joint has two degrees of freedom: the same rotational as before, and a rel-

ative slide between the bodies along the rotation axis. Five points are also used for

the constraints, three aligned in the axis, and a fourth and fifth away from it:

• The first three are used for an alignment constraint of points in space:

Φi = x12 × x13 (4.106)

• The same constant orientation vectors are defined as in the revolute joint:

Φi = θ(x13,x24)−θ0(X13,X24) (4.107)
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Φi = θ(x13,x25)−θ0(X13,X25) (4.108)

The angle of rotation can then be calculated adding a sixth point, and using

equation 4.105.

For measuring the sliding in the joint, the relative movement between coaxial

points is used:

Li = x2 − x1 =
SP 2∑
j=1

Nj(X
2)


q1j(t)

q2j(t)

q3j(t)

−
SP 1∑
k=1

Nk(X
1)


q1k(t)

q2k(t)

q3k(t)

 (4.109)

Figure 4.2: 3D Cylindrical joint

D. 3D prismatic joint

Finally, the one degree of freedom slider can be built using the same points as

before. The main difference is that the relative angle θi is fixed, so the angle mea-

surement is converted to a new constraint:

Φi = θ(x16,x24)−θ0(X16,X24) (4.110)
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Figure 4.3: 3D Prismatic joint

4.5 Generalized contact formulation

The algorithms involved in the construction of the meshfree shape functions are

also used to formulate an automatic contact detection method. Let’s recall how the

support for the shape functions is computed:

• A set of scattered nodes is defined.

• A boundary is descretized by means of cells, defined by their vertex points.

• Each cell defines the location of its Gauss points (GPs).

• The GPs are iterated and each one searches for its neighbour nodes, adding to

its support those that reside within a distance defined by the product of the av-

erage nodal distance field surrounding it dc, and the dimensionless parameter

αi .

The optimization of last step involves creating structures that group the domain

nodes depending on their location. The most popular approach for speeding up

the node searching computation is the Octree voxel grouping [54]. It consists in

a subdivision of the 3D space in blocks of eight equally sized boxes. Each one is

recursively subdivided until a predefined maximum number of nodes are located

inside of each box. The analogue technique in 2D receives the name of quadtree.
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Once the nodes are quickly found, their position can be evaluated. For construct-

ing the shape function values at the GPs, the distance between this point and each

node is used. But, if the relative distance between nodes is calculated, then they

can be connected using a similar criterion. This is the principle of the Delaunay

triangularization constrained by α-shapes [1].

For each time step, the relative distance of the boundary nodes is evaluated.

Once a set of three nodes (or four in 3D) are close enough (as defined by the α

parameter), the connectivity of a contact triangular element (or tetrahedron) is de-

fined. For simplicity’s sake the 2D approach is presented here, although as the

method is distance based, its extension to 3D is straightforward.

Let a contact element be formed by the nodes (P0,P1,P2), where the pair (P0,P1)

corresponds to nodes within the same boundary.

Let Pi = {xi , yi} be the 2D components of the nodal positions. The normal unit

vector of the contact element can be calculated as:

n =

 −(y1 − y0)

x1 − x0

 1√
(y1 − y0)2 + (x1 − x0)2

The gap, g, or contact distance is defined as:

g = (P 2 − P 0) ·n
= (P 2 − P 1) ·n
= (P 2−P 1)+(P 2−P 0)

2 ·n

Or, in components:

g =
0.5 ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))√

(y1 − y0)2 + (x1 − x0)2

A contact potential is defined, Φ , so that when the gap turns negative, g < 0, the

contact force is proportional to that gap:

Φ =
0.25 ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))2

(y1 − y0)2 + (x1 − x0)2

The previous function defines a temporary constraint between the nodes of the

system. Considering variations of the normal vector, the derivative formulation is

quite involved, as detailed in Appendix A.

In the case that the normal vector can be set as a constant within the nonlinear

solving step, the resulting equations get greatly simplified. The components of the
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gap are reduced to:

g = ny

(
y2 −

y1 + y0

2

)
+ nx

(
x2 −

x1 + x0

2

)

And the generalized constraint force is then:

Φ = g2 =
(
ny

(
y2 −

y1 + y0

2

)
+ nx

(
x2 −

x1 + x0

2

))2

The derivatives of the contact force components are needed for the calculation

of the residual contributions:

∂Φ
∂x0

= −nx

(
ny

(
y2 −

y1 + y0

2

)
+ nx

(
x2 −

x1 + x0

2

))

∂Φ
∂y0

= −ny

(
ny

(
y2 −

y1 + y0

2

)
+ nx

(
x2 −

x1 + x0

2

))

∂Φ
∂x1

= −nx

(
ny

(
y2 −

y1 + y0

2

)
+ nx

(
x2 −

x1 + x0

2

))

∂Φ
∂y1

= −ny

(
ny

(
y2 −

y1 + y0

2

)
+ nx

(
x2 −

x1 + x0

2

))

∂Φ
∂x2

= 2nx

(
ny

(
y2 −

y1 + y0

2

)
+ nx

(
x2 −

x1 + x0

2

))

∂Φ
∂y2

= 2ny

(
ny

(
y2 −

y1 + y0

2

)
+ nx

(
x2 −

x1 + x0

2

))
And finally, the second derivative, required for the nonlinear Newton-Raphson

solver, can be written in the following matrix form:

∇2Φ =



nx
2

2
nx ny

2
nx

2

2
nx ny

2 −nx
2 −nx ny

nx ny
2

ny
2

2
nx ny

2
ny

2

2 −nx ny −ny
2

nx
2

2
nx ny

2
nx

2

2
nx ny

2 −nx
2 −nx ny

nx ny
2

ny
2

2
nx ny

2
ny

2

2 −nx ny −ny
2

−nx
2 −nx ny −nx

2 −nx ny 2nx
2 2nx ny

−nx ny −ny
2 −nx ny −ny

2 2nx ny 2ny
2


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4.6 Proposed multibody formulation

The weak form of the equations of motion for a system composed of both rigid

and flexible bodies is obtained adding the weak equations of the rigid and the de-

formable subsystems and a coupling term that account for the effect of the joints

that connect both subsystems, imposing a set of ΦRD constraints. This coupling

term is the virtual work of the constraint forces acting over the rigid and deformable

components fΦRD
and fΦDR

respectively. Thermal effects are also taken into account

in the weak form for any rigid or flexible continuous bodies. The weakly couple

includes thermal deformation, and also configuration dependent heat fluxes. For

simplification, the terms for internal and external discretized forces are grouped in

fhR and fhD , as well as the ones for internal and external heat fluxes in Qh.

Based on these considerations, the global weak form for the thermo-mechanical

equations of the system is:

δqTR · (MR q̈R) + δqTD · (MD q̈D )− δqTR · f
h
R − δqTD · f

h
D

+ δqTR ·
[
fΦR

+ fΦRD

]
+ δqTD ·

[
fΦD

+ fΦDR

]
+ δqTT (C q̇T )− δqTT (Qh) + δqTT (QΦ) = 0 ∀δqR,δqD ,δqT (4.111)

assuming that:

qR and qD satisfy the mechanical constraints ΦR,ΦD ,ΦRD , and

qT satisfies the thermal constraints ΦT .

Collecting all motion coordinates under vector qM = {qR,qD}T, the equations can

be written in a compact matrix format as:

 MR 0

0 MD

︸           ︷︷           ︸
M

·

 q̈R
q̈D

︸   ︷︷   ︸
q̈M

−

 fhR
fhD

︸  ︷︷  ︸
fh

+

 fΦR

fΦD

+

 fΦRD

fΦDR

︸                    ︷︷                    ︸
fΦM

= 0

C · q̇T − Qh + QΦT
= 0

(4.112)

Φ denoting the global set of constraints over the entire flexible system. If the La-

grange multiplier method is employed, the constraint force vector takes the form

fΦM
= GTλM , the constraint flux QΦT

= TTλT , and the constraint set Φ must be

appended to the differential equation system (4.112) to define an index-3 DAE that

must be solved for (q(t),λ(t)). If a penalty metod is employed, the constraint force

and flux take the form fΦ = GTαMΦM , QΦ = TTαTΦT respectively, and the differ-

ential system completely defines the equilibrium:
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 MR 0

0 MD

︸           ︷︷           ︸
M

·

 q̈R
q̈D

︸   ︷︷   ︸
q̈M

+

 0

fhintD

︸     ︷︷     ︸
fhint

− fhext + GTαMΦM = 0

C · q̇T + H qT − Qh
ext + TTαTΦT = 0

(4.113)

where:

M is the global mass matrix, logically partitioned into rigid and flexible contribu-

tions from the system:

MR Rigid bodies’ mass matrix, composed by individual masses and continu-

ous bodies local matrices:

MR = Anbodies
b=1 [MIJ ]R = Anbodies

b=1

[
mIδIJ +

∫
B0
ρbCJCIdV

]
MD Flexible bodies’ mass matrix, assembled from local matrices described at

each Gauss point with overlapping domain of influence:

MD = AnGP s
p=1 [M IJ ]D = AnGP s

p=1

[∫
B0
ρpNJNIIdimdV

]
fhint is the discretized global internal forces vector of the flexible bodies:

fhint = AnGP s
p=1

{
f hp

}
I

= AnGP s
p=1

{∫
B0
P p · ∇0NI dV

}
fhext is the discretized global external forces vector, integrated in the domain and

boundary:

fhext = AnGP s
p=1

{
f hp

}
I

+ AnGP s
q=1

{
f hq

}
J

= AnGP s
p=1

{∫
B0
NI ·b0 dV

}
+ AnGP s

q=1

{∫
∂B0

NJ · t0 dS
}

C is the global capacitive matrix of the continuous thermal bodies:

C = AnGP s
p=1 [CIJ ] = AnGP s

p=1

{∫
B0
ρCpNJNIdV

}
H is the discretized global thermal conductivity matrix of the system:

H = AnGP s
p=1 [HIJ ] = AnGP s

p=1

{∫
B0
∇T0NJF

−1
p κ0F

−T
p ∇0NI dV

}
Qh
ext is the discretized global external heat loads vector, composed of internal gen-

eration and heat fluxes:

Qh
ext = AnGP s

p=1

{
Qhp

}
I
+AnGP s

q=1

{
Qhq

}
J

= AnGP s
p=1

{∫
B0
NI · r0 dV

}
+AnGP s

q=1

{∫
∂B0

NJ ·q0 ·n dS
}

ΦM , ΦT are the motion and thermal constraints, respectively.

G, T are the gradient of the constraints:

G = ∇qMΦM

T = ∇qTΦT

αM , αT are the penalty vectors for the constraints.





Validation Cases 5
This section describes simulations of increasing complexity computed with the

developed multibody code and how they correlate to the analytical solution. FEM

and meshfree methods have been implemented in the code, and both have been

verified using the Ansys FEM code, and also by step-by-step scripting of the internal

matrices for the simple cases (detailed in appendix B).

5.1 3-node triangle

The most simple case is a 2D plane strain triangle defined only by a set of nodes

in each of the vertices, as shown in figure 5.1. The sides are given a value h = 1, and

the displacement of both left nodes is constrained. Node 1 is located at the origin of

the coordinate system.

The elastic material properties have been set to the following values, both for

linear Hooke, and nonlinear Saint-Venant Kirchoff models:

• Density: ρ = 7850

• Young’s modulus: E = 0.7E6

• Poisson coefficient: ν = 0.3

5.1.1 Shape functions

The area can be integrated using only one Gauss Point (GP) for all the three

methods evaluated. This GP is located in (1/3,1/3). Nevertheless, in general the

shape functions of the meshfree methods are of higher order and may take advan-

tage of an increased number of Gauss Points. For calculating the Mass and Thermal

75
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h

h

x

y

1 2

3

Figure 5.1: three node triangle

Capacity matrices, three Gauss Points are used, with locations (1/6,1/6), (2/3,1/6), (1/6,2/3),

and equal weights of 1/3.

All of the shape function information is given in a matrix form. Each matrix

gives the values for the shape function in the first row, meanwhile the partial deriva-

tives values are ordered in the first (∂/∂x) and second (∂/∂y) rows:

Ni =


NT
i

∂NT
i /∂x

∂NT
i /∂y


A. FEM

The type of element used is the regular CST (constant strain) triangle. The shape

functions are linear polynomials, deriving to a constant gradient for the whole ele-

ment. Of course, the stiffness matrix is integrated exactly by just one Gauss Point.

The shape function and derivatives are therefore:

N1(1/3,1/3) =


0.333333 0.333333 0.333333

−1 1 0

−1 0 1


The three shape functions associated to each of the nodes used to compute the

Mass and Thermal Capacity matrices are represented by the following arrays:

N1(1/6,1/6) =


0.666667 0.166667 0.166667

−1 1 0

−1 0 1


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N2(2/3,1/6) =


0.166667 0.666667 0.166667

−1 1 0

−1 0 1


N3(1/6,2/3) =


0.166667 0.166667 0.666667

−1 1 0

−1 0 1


B. Radial Basis Functions interpolation

A basic radial multiquadrics (MQ) basis functions evaluation is presented. No

polynomial augmented basis is applied, and the functions parameters correspond

to the following:

• β = q = 1/2, for the original RBFs proposed by [19].

• dc = 1.13807 is the average distance between the nodes

• αi = 3.5, leads to an equivalent vale of c = αidc = 3.983245.

Using one Gauss Point, the shape function does not lead any more to a constant

coefficient, as was the case for FEM:

N1(1/3,1/3) =


0.343836 0.321592 0.321592

−0.990709 0.997061 −0.0159348

−0.990709 −0.0159348 0.997061


It’s worth that as expected, the truncation of the RBF in a finite local domain

produces an integration error of the domain shape. Adding all the values for the

shape function we arrive to a value of:

3∑
i=1

Ni = 0.987019 < 1

The truncation error in this case is heavily dependent on the parameter αi , due

to a very limited number of support nodes. For example, a general rule to define a

parameter-less RBF is based in the following procedure:

1. The neighbouring nodes are found using the maximum distance c = αidc,

2. The average distance dij between the GP and the NP neighbours is used to

redefine the local size relative factor:

αi =

∑NP
j=1dij

dc NP
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When applied to a low number of support nodes, as in this case, the resulting

shape function is heavily truncated. The corresponding average distances define

αi = 0.654929. The moment matrix with only three points has a high condition

number, which in practice produces increases the interpolation error. The corre-

sponding shape function is:

N1(1/3,1/3) =


0.412152 0.230399 0.230399

−0.938652 0.987919 −0.123922

−0.938652 −0.123922 0.987919


And the error in the shape function is no longer small:

3∑
i=1

Ni = 0.872951 << 1

Returning to the previous αi = 3.5, in the case of considering three Gauss Points

for the cell integration, the values of the respective shape functions are the follow-

ing:

N1(1/6,1/6) =


0.673551 0.15916 0.15916

−0.985899 0.987145 −0.0207492

−0.985899 −0.0207492 0.987145


N2(2/3,1/6) =


0.174506 0.660126 0.15485

−1.0026 1.00913 0.00345126

−0.968617 −0.0255352 0.975039


N3(1/6,2/3) =


0.174506 0.15485 0.660126

−0.968617 0.975039 −0.0255352

−1.0026 0.00345126 1.00913


Note that no longer the shape functions are permutations of the same coeffi-

cients, as the node 1 is closer to the GPs than the other two. Of course, the symmetry

of the triangle translates into symmetric functions for GPs 2,3. Finally, the errors

indicate the relation between the quality of the interpolation and the dispersion of

the nodes:
3∑
i=1

N1 = 0.991871

3∑
i=1

N2 = 0.989482

3∑
i=1

N3 = 0.989482
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C. Moving Least Squares approximation

The MLS approximation studied is obtained using a cubic spline weight func-

tion. It degenerates to a linear polynomial shape function when the support is

minimal. The parameters used are automatically computed in this case using the

previous procedure to rescale αi :

• dc = 1.13807 is the average distance between the nodes, and

• αi = 0.6549295 is the average distance factor from the GP to all the support

nodes.

As previously stated, the results obtained for the three-node MLS triangle are

exactly the same as the ones presented for the FEM functions:

N1(1/3,1/3) =


0.333333 0.333333 0.333333

−1 1 0

−1 0 1


In case that the αi is not averaged to the GP to nodes distance, a round-off error

appears. For example, if we force αi = 3.5 as in the RBF case, we get:

N1(1/3,1/3) =


0.333333 0.333333 0.333333

−1 1 −1.11022e − 16

−1 4.16334e − 17 1


In the case of using three Gauss points letting the code compute the average

αi = 0.6549295 again, the same FEM shape functions are produced:

N1(1/6,1/6) =


0.666667 0.166667 0.166667

−1 1 0

−1 0 1


N2(2/3,1/6) =


0.166667 0.666667 0.166667

−1 1 0

−1 0 1


N3(1/6,2/3) =


0.166667 0.166667 0.666667

−1 1 0

−1 0 1


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5.1.2 Mechanical validation

A. Gravity acceleration load case

A volumetric gravitational load of magnitude −10 has been applied in the y−axis

direction. It is equivalent to a positive vertical ÿ = 10 acceleration. Both small and

large strain (linear and nonlinear, respectively) formulations have been verified for

the simple triangle model, while the procedure, including intermediate and final

results have been verified in detail (see Appendix B.1.1).

As expected, same results are obtained for the linear and nonlinear formula-

tions in the case of FEM and EFG shape functions. For the RBF interpolants, the

integrated mass is slightly lower, so the deflection of the tip and the internal stress

are lower. When the number of integration points is raised to 3 GPs, the behaviour

converges for the linear formulation analysis, although the stress distribution is no

longer constant, capturing slightly better the variations due to variable section of

the geometry, from the tip to the clamped left side. In fact, where the σxy is the only

stress component in the FEM element, other tension effects are capture by the RBF

functions. In the case of the nonlinear formulation, results differ more compared to

the FEM case, probably due this effect. Instead of a deformation exclusively related

to shear strain, tractions appear along the triangle increasing the model’s stiffness.

Table 5.1: Linear results

Method uy1 σxy σVM
FEM (ANSYS) −0.09719 −2.617E4 4.53E4

FEM −0.09719 −2.617E4 4.53E4
RBF 1GP −0.09306 −2.498E4 4.41E4
RBF 3GPs −0.09544 −2.539E4 4.45E4
MLS 1GP −0.09719 −2.617E4 4.53E4

Table 5.2: Nonlinear results

Method uy1 σVM
FEM (ANSYS) −0.09719 4.56E4

FEM −0.09719 4.56E4
RBF 1GP −0.06174 4.35E4
RBF 3GPs −0.06913 4.72E4

MLS −0.09719 4.56E4
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Figure 5.2: Gravitational load linear results in Ansys: Von-Mises stress (top), and verti-
cal displacements (bottom)
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Figure 5.3: Gravitational load linear validation results: Von-Mises stress for FEM (top),
and RBFs with 3GPs (bottom)
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5.2 4-node square

A second, also simple case of interest consists on a 2D square defined by its

vertex nodes (Figure 5.4). The sides are given a value h = 1. The support conditions

are provided by statically determined attachments: fixed for node 1, and sliding

along y−axis for node 3. Both supports are considered thermally isolated.

The thermal and elastic material properties have been set to the following val-

ues, both for linear and nonlinear Saint-Venant Kirchoff thermo-elastic models:

• Thermal conductivity: κ = 224

• Specific heat capacity: cp = 1348

• Density: ρ = 7850

• Young’s modulus: E = 0.7E6

• Poisson coefficient: ν = 0.3

h x
y

1

h

4

2

3

Figure 5.4: three node triangle

This example can be approached and solved using meshfree methods to join to

separate triangular domains. Although in this case does not provide any numerical

advantage, it allows to validate the general blending algorithm that will be used

in following sections. Differences are shown in figure 5.5, where both the square

domain and the two joined triangles are shown.

5.2.1 Discretization

A. FEM

Two triangular elements are defined dividing the square by its diagonal between

nodes 1 & 4. The shape functions are not numerically identical to previous case, but
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Figure 5.5: Different models used: FEM usual single domain (left), and meshfree two
domains (right)

for simplicity’s sake, their details are avoided due to its similarity. Of course, a 4-

node element could be considered for its study, but its not the aim of this research

to apply discretization schemes other than triangular grids.

B. Radial Basis Functions

The same division as with FEM is considering but only for the integration of the

domain (cells). Each cell is used to defined a set of Gauss Points in the way explained

in the previous validation case, i.e. choosing the integration order depending on the

accuracy required on the shape function mapping.

Using one GP per cell, the shape functions are of course completely different

as with the triangular domain. The parameters defining RBF the interpolation for

both points in each centroid of the triangles are the same as before for the case of

αi = 3.5. The proximity of the node to the integration point is clear in the shape

function values, which are symmetrical as expected:

N1(2/3,1/3) =


0.444458 0.217847 0.217847 0.106776

−0.679781 0.676484 −0.336512 0.329943

−0.679781 −0.336512 0.676484 0.329943



N1(1/3,2/3) =


0.106776 0.217847 0.217847 0.444458

−0.329943 0.336512 −0.676484 0.679781

−0.329943 −0.676484 0.336512 0.679781


The addition of one more node to the support domain improves the shape func-

tion accuracy. Although adding all the values for each of the shape functions, we

arrive to a similar value than in the previous case. This suggests that the truncation

of the shape function is more related to the node dispersion:

4∑
i=1

Ni = 0.986928 ' 0.987019
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When three GPs are used for the integration of each cell, the total sum of the

RBFs functions correspond to:

4∑
i=1

Ni = 0.991849 ' 0.991871

4∑
i=1

Ni = 0.989392 ' 0.989482

C. Moving Least Squares approximation

In the case that the MLS are computed setting αi with the cell averaging pro-

cedure, the additional node will remain just in the limit of the support size and

it’s shape function contribution will be negligible. This happens with a value of

αi = 0.937716, and it can be seen how the shape functions will also degenerate to

the FEM shape functions even though the support is no longer minimal:

N1(2/3,1/3) =


0.333333 0.333333 0.333333 0

−1 1 2.77556e − 16 0

4.44089e − 16 −1 1 0



N1(1/3,2/3) =


0.333333 0 0.333333 0.333333

8.88178e − 16 0 1 −1

−1 0 1.77636e − 15 1


Obviously for a 1GP integration, using the previous shape functions will lead to

exactly the same results as with FEM. In these cases with reduced number of nodes

and few integration points—as it happens with the RBFs—it can be preferable to set

a higher value for the distance factor. In the case of 3GPs per cell, using the exact

αi parameter is still preferred. If it’s force to higher values, the approximation does

not improve and weight matrices are generally worse conditioned.

The following richer shape functions are obtained when setting a value of αi =

3.5:

N1(2/3,1/3) =


0.24155 0.425116 0.24155 0.091783

−0.550667 0.550667 0.449333 −0.449333

−0.449333 −0.550667 0.550667 0.449333


N1(1/3,2/3) =


0.24155 0.091783 0.24155 0.425116

−0.449333 0.449333 0.550667 −0.550667

−0.550667 −0.449333 0.449333 0.55066


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5.2.2 Thermal validation

A dynamic analysis has been performed for a constant absorbed heat flux ap-

plied in node 3, with value 5E6. A BDF-1 integration scheme has been used with

the following parameters:

• Initial time: t0 = 0

• Step size: ∆t = 1E-3

• Final time: tf = 1E-2

The problem has been analysed with all the discretization methods, and com-

pared to Ansys. A complete verification of the different matrices is presented in a

dedicated script in the appendix B.2.2.

The short time steps are not a coincidence, but have been chosen specifically to

validate adiabatically dominated thermal effects. This, along with the definition of

a point load will allow to evaluate the suitability of each shape function, when the

type of loads are prone to produce singularities.

Results summarized in table 5.3 show that the C∞ are rich enough with only

four nodes to capture this localized effect, at least slightly better.

Table 5.3: Thermal tramsient results

Method T2(t = 1E-2)

FEM (ANSYS) 0.063586

FEM 0.063586

RBF 1GP 0.085523

RBF 3GPs 0.097295

MLS 1GP 0.063586

MLS 1GP (αi = 3.5) 0.087747

MLS 3GPs (αi = 3.5) 0.095379

5.2.3 Mechanical validation

A. Constant strain: Patch test

Although not neither necessary nor sufficient for convergence [5], the patch test

is an well known and used test as an initial test of newly proposed finite elements.

It’s clear from the truncation of the shape function, that the RBF based discrete
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model will not pass the test. As it will be shown in the mechanical benchmark sec-

tion 6.1, this does not directly imply any lack of accuracy when simulating flexible

systems.

The problem is stated as follows: The side between nodes 2 and 3 is subjected

to a constant traction with a value of 2E4 per unit of length. Considering there are

only two nodes defining the boundary segment, this is equivalent to the application

of a force of 1E4 in each node.

The results in table 5.4 show that, as expected, the meshfree methods struggle

mapping exactly the constant strain field, although the error is low. In the case of

the MLS, low support size helps in getting the exact result but same effect would

appear with denser meshes.

Table 5.4: Linear results

Method ux2−3 σx

FEM (ANSYS) 0.028572 2.00E4

FEM 0.028572 2.00E4

RBF 1GP 0.027874 1.97E4

RBF 3GPs 0.028243 1.99E4

MLS 0.028572 2.00E4
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Figure 5.6: Temperature evolution for Ansys FEM model: first step at t = 1E-3 (top), and
last step at t = 1E-2 (bottom)
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Figure 5.7: Temperature evolution for simulated FEM model: Node 3 (top), and last step
at t = 1E-2 (bottom)
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5.3 Prismatic beam

A 3D cantilever beam (Figure 5.9) is considered in this section, schematically

shown in Figure 5.8. It has a square hollowed cross-section, and a relatively thick

wall thickness. The parameters that define its geometry are the following:

• Length of beam, L = 40,

• Height and width, he = 8, and

• Internal hollow height and width, hi = 6, corresponding to a thickness of e = 1.

x
yhe hi

p

L

Figure 5.8: Prismatic beam section view

Figure 5.9: 3D beam geometry

The objective is analysing the effects on a 3D beam when statically loaded with

force of magnitude FP = 8 applied in the centre of its top flange (point P in Figure

5.8).
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Once again, the same elastic material properties have been set for both linear

and nonlinear SVK elastic constitutive models:

• Density: ρ = 7850

• Young’s modulus: E = 0.7E6

• Poisson coefficient: ν = 0.3

5.3.1 Beam discrete models

A. 3D solid beams

Two different models have been generated for the 3D real beam:

• Reference model with > 300k nodes (Figure 5.10). It will be solved in ANSYS,

in order to evaluate the error of the other coarse discretizations.

• Coarse model with 261 nodes (Figure 5.11). Used for comparing the accu-

racy between FEM and meshfree methods in 3D tetrahedral grids with flatten

elements/cells (Figure 5.12).

Figure 5.10: 3D reference mesh model in ANSYS

The reference results show a non-negligible local effect of the point load (Figure

5.13). The maximum deformation in the point of application of the load is Uy−max =
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Figure 5.11: 3D mesh model

Figure 5.12: Aspect ratio histogram for 3D coarse beam model elements

−1.496, while the deformation in the upper central point is Uy−top = −1.39. The

maximum deformation is due to the numerical singularity being capture by the

very fine mesh. As we are interested in validating the global behaviour of the beam,

the later value, far enough from the singularity but still affected by de upper flange

deformation will be used as the reference solution for the upper flange.

The lower flange mid-point has a vertical deformation of Uy−bot = −1.05. It also

will be used for validation to other models as it depends only on the global bulk

behaviour of the beam.

The 3D coarse model has been solved both with FEM and meshfree RBF func-

tions. As expected, both show higher stiffness due to the low number of nodes and

elements used to approximate the deformation. This stiffer behaviour is even worse

in the FEM case, as it’s also influenced by the high aspect ratio (Figure 5.12). It’s
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Figure 5.13: 3D reference mesh model in ANSYS

also well-known the poor performance of the tetrahedrons for capturing bending

strains.

The deformation in the upper flange is higher in the meshfree model by around

∆Uy−top ' 0.2 for both linear and nonlinear formulations. In the nonlinear case,

the upper corner nodes of the coarse meshfree grid are influenced by the point load

(Figure 5.14). Although it’s a slight effect, the end cross-section artificially deforms

out of its plane. This is due to the large domain of influence needed by this method

in order to generate well conditioned matrices for computing the shape functions.
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Figure 5.14: 3D coarse nonlinear meshfree solution: linear (top), nonlinear (bottom)
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B. 2D solid and hollowed beams

Both the geometry and the loading conditions are not well suited at all for 2D

simplified models. Nevertheless, this is a usual problem in engineering when a

simplified initial calculation is made in order to evaluate a concept. For these 2D

models, a plane strain formulation will be used. The load needs to be scaled by the

thickness of the beam that is being modelled, leading to a 2D load of magnitude

F2D = 1

Figure 5.15: 2D solid coarse model

Figure 5.16: 2D composite grid model

Figure 5.17: 2D hollowed grid model

Three different models have been created in order to approximately solve the

problem:

• 2D solid coarse model (Figure 5.15). Represents the usual approach using a

continuous model and neglecting the hollowed section. This mesh is solved

using FEM approximation. Maximum displacement of the tip is Uy−top = −0.4

and Uy−top = −0.35, for the linear and nonlinear formulations. As expected, it

is far stiffer than the real behaviour of the 3D beam.
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Figure 5.18: 2D solid coarse model deformation

• 2D composite grid model (Figure 5.16). It uses a coarse grid for the hollowed

part and a more dense nodal distribution for each of the beam flanges. The dif-

ferent domains define the integration points for the meshfree method, while

all the nodes will be used for building the shape functions of the GPs. Max-

imum deformation for the beam is Uy−top = −0.41 for the linear formulation.

When the nonlinear form is used, the deformation increases instead of reduc-

ing its value, as it would be expected when membrane effects are considered.

The resulting Uy−top = −0.43 comes by the better capture of the local strains—

induced by the point load—in the denser grid.

Figure 5.19: 2D composite grid deformation

• 2D hollowed grid model (Figure 5.17). The hollow material is removed, and

cells containing integration points are placed only in the flanges of the actual

cross-section of the 3D beam with the x-y plane. The shape functions are

defined with a domain of influence that is large enough to connect both upper

and lower sub-grids. As there is no material to model the side webs of the

beam, the shear stress between both flanges is only transmitted by a much

smaller area, thus increasing the total deformation. Also, a different behaviour

has been detected between the linear and nonlinear. An average value is also

calculated for the non-existing centre line end points, being the displacements

at the loaded tip as follows:

– Linear formulation: Uy−top = −1.48,Uy−bot = −1.45, with an average value

of Uy−avg = −1.46.
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– Nonlinear formulation: Uy−top = −1.65, Uy−bot = −0.31, with an average

value of Uy−avg = −0.98.

Figure 5.20: 2D hollowed grid model deformation

5.3.2 Results summary and discussion

Apart from the results presented, the Euler-Bernoulli beam model have been

added to the summary in Table 5.5. To calculate the maximum deflection due to the

E-B theory, the specific inertia for each model section has been applied. As the beam

is not particularly slender, the E-B is not considered a reference result, but more a

guide in order to see how differently the models analysed behave.

To compute the relative errors, the ANSYS 3D solid beam results are used. De-

pending on the case, either the top or the bottom deformation is compared. In

general, the bottom value is chosen. As that lower flange is away from the singular

point load, it represents the global behaviour of the beam. In the case of the the hol-

lowed 2D model, each flange deflection is compared to the correspondent reference

case flange.

It must be noted again that the hollowed 2D beam relies in the shape functions

and not in any domain for transmitting the shear stress between the flanges. This is

clearly method-specific and allows no generalization, so the results need to be taken

with caution. In any case, the response is better than expected, and would need

further investigation.

In general, meshfree shape functions provide an improvement compared to the

FEM models. It can be concluded that this validation exercise shows promising

results from the meshfree interpolation schemes.
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Table 5.5: Results summary for loaded beam models

Model E-B Umax NL Umax NL error L Umax L error

FEM ANSYS TOP -0.77 -1.39 -1.39

FEM ANSYS BOT -0.77 -1.05 -1.1

RPIM Hollowed 2D top -1.24 -1.65 0.18 -1.48 0.06

RPIM Hollowed 2D bot -1.24 -0.31 -0.71 -1.45 -0.32

RPIM Hollowed 2D average -1.24 -0.98 -0.07 -1.46 -0.33

FEM Hollowed 3D -0.77 -0.65 -0.38 -0.72 -0.35

EFG Hollowed 3D -0.77 -0.82 -0.21 -0.93 -0.15

RPIM Solid 2D -0.39 -0.35 -0.66 -0.4 -0.64

RPIM Solid 2D – two meshes -0.39 -0.43 -0.59 -0.41 -0.63
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One drawback of meshfree methods is that, with equal number of degrees of

freedom (i.e. nodes), the cost of computation is higher to FEM. A set of three studies

are presented in this chapter comparing efficiency between meshfree methods and

FEM, thus trying to identify cases where their application can provide an advantage.

First section details a nonlinear very flexible double pendulum. The comparison

made suggests that meshfree methods may have higher efficiency as they give more

accurate solutions at a given computational cost, and has been published in [35].

6.1 Mechanical benchmark

In this section we present the analysis of a planar double pendulum as a simple

example of a flexible multibody system, composed of a rigid and a deformable bar.

One end of the rigid bar is connected by a revolute joint to a fixed point, and the

other end is connected to a flexible beam at one point by another revolute joint,

which is a rectangle of an hyperelastic material (Saint-Venant Kirchhoff) with a 2-D

plane strain formulation.

The configuration of the system is parametrized by a set of inertial cartesian co-
ordinates of selected points of the mechanism. In this case, these points are the two

extremes of the rigid bar and the nodes associated to the spatial discretization of the

flexible beam.

The rigid bar is defined by the cartesian coordinates of the nodes at both ends

and a constant distance constraint between them. The inertia properties of the rigid

99
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bar is completely defined by its mass matrix, given by:

Mbar =


m/3 0 m/6 0

0 m/3 0 m/6

m/6 0 m/3 0

0 m/6 0 m/3

 , (6.1)

m being the total mass of the bar. Denoting by qi ,qj the coordinate vectors of the

end points of the bar, the constant distance constraint between them is given by:

Φ = ||qj(t)−qi(t)||
2 − l20 = 0 , (6.2)

l0 being the length of the rigid bar. The constraints associated to the revolute joint

on the fixed end of the bar and the joint between the rigid bar and the flexible beam

are formally the same. Both express that the distance between two points i, j is null:

Φ = qj(t)−qi(t) = 0 (6.3)

The Finite Element Method (FEM) is compared to the Meshfree formulation us-

ing Multiquadrics Radial Basis Functions (RBF), with no polynomial terms. The

FEM mesh is used in this case to define the integration cells, and in both cases the

equations of motion are integrated using the same implicit integrator.

Two different initial conditions are considered in order to produce qualitatively

different deformations, at least during the first seconds of the simulation (see Figure

6.1).

• In Case I both bars are horizontal. The movement is simulated for a full pe-

riod and the deformation of the flexible bar during the first seconds of the

simulation is mainly axial.

• In Case II the rigid bar is vertical while the flexible bar is horizontal, producing

a high bending deformation at the beginning of the motion. The simulation

is shorter that in the previous case because we are interest in analyzing the

lash-type behavior that takes place during the first quarter period.

In both cases the bars are released from rest from their initial positions, and

three different elastic modulus are considered for the elastic bar. As this value gets

smaller, the deformations are higher, causing larger distortions of the FEM mesh

affecting the performance of the formulations. Table 6.1 details the parameters of

the both cases.

Different meshes are used for modelling the flexible beam. The number of de-

grees of freedom of the coarser mesh is 64, and consecutive refinements maintain
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a) Case I

b) Case II

Figure 6.1: Initial configurations

coincident nodes allowing to directly compare the variables of interest at the same

locations. The simplicity of the geometry has made possible to define very regular

meshes in all cases.

6.1.1 Error estimation

The error is estimated using an energy norm [64] of the state vector z(t) = {q(t), q̇(t)}T :

|| · ||E : R2ndof −→ [0, inf)

z(t) −→ ||z(t)||E :=
1
2

q̇(t) ·Mq̇(t) +
1
2

q(t) ·Kq(t) (6.4)

The absolute configuration error at coincident nodes is computed at each step

as:

z̄(tn) = z(tn)− zref (tn) = {q̄(tn), ¯̇q(tn)}T (6.5)

where:

z(tn) is the computed state vector at tn

zref (tn) is the reference solution for the state vector at tn.

The reference solution has been computed with a 1433 node FEM model (2866 de-

grees of freedom). Note that z(tn) includes only the subset of DOFs of the nodes that
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Table 6.1: Details of the numerical experiment
Properties

Rigid bar l0CaseI
= 40 m , l0CaseII

= 20 m , m = 4 · 10−2 kg
Flexible bar Dimensions: 40 x 4 m

FEM: CST elements (3 nodes, 1 GP)
Meshfree: 1 GP per cell, MQ shape functions (αc = 3.5, q = 1.03)

Flexible material SVK model
Density, ρ = 0.2 kg/m3

Poisson coefficient, ν = 0.3
Young modulus, variable, E = (3000,4000,5000) Pa

Constraints Penalty method
penalty parameter α = 106

Time integration t0 = 0 s , tfCaseI
= 18 s , tfCaseII

= 4.5 s
Trapezoidal rule, ∆t = 0.05 s

exist in both meshes, as the reference solution is computed with a finer mesh.

Finally, the absolute energy error in tn is computed as:

||z̄(tn)||E :=
1
2

¯̇q(tn) ·M ¯̇q(tn) +
1
2

q̄(tn) ·K0q̄(tn) (6.6)

M being the constant mass matrix of the system and K0 the initial stiffness matrix.

6.1.2 Results

The solution has been obtained using three different mesh densities (33, 107 and

381 nodes) and three different Young modulus’ values (3000, 4000 and 5000 Pa) in

order to observe the effects of flexibility on the quality of the solution.

For values of the elastic modulus lower than 3000 Pa, FEM simulations did not

converge due to extremely large distortions of the mesh. On the other hand, the

meshfree method showed higher robustness since convergence was achieved in al

cases down to E = 500 Pa. Based on these results, and taking into account that the

reference solution has been obtained with FEM, the lowest modulus considered in

both cases has been 3000 Pa.

In spite of the simulation code is not optimized nor parallelized, its object ori-

ented design makes both methods share the maximum number of functions, so com-

putational times can be compared.

A. Results of Case I

The pendulum departs from rest from an horizontal position and the motion

in computed up to an instant where the rigid bar almost reaches again the initial

configuration. The first half of the movement is relatively smooth, while the second

half shows larger oscillations. The computations using different discretizations does
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Figure 6.2: Case I: absolute error vs. time. E = 5000 Pa

not show a chaotic behavior and, therefore, results can be confidently compared to

the reference solution for error estimation.

The evolution in time of the error for each discretization is shown for the max-

imum and minumum values of the elastic modulus in Figures 6.2 and 6.3 respec-

tively. A first qualitative analysis of the results shows a relation between the error

value and the magnitude of the deformation, which is related to the mesh distor-

tion. As the figures suggest, the maximum error corresponds to a highly tensioned

bar, and the error is low when the beam is less deformed. These results indicate that

the meshfree method in less sensitive to the strain magnitude than FEM.

Figure 6.4 shows the dependency of the maximum absolute error with the num-

ber of degrees of freedom. We can observe that both methods converge to the ref-

erence solution, but the meshfree method has higher accuracy at equal number of

degrees of freedom and, it has also a slightly higher convergence rate.

In order to explore a potential advantage of the meshfree method in terms of

efficiency, Figure 6.5 shows the relation between the maximum error and the total

computing time. It becomes apparent that the meshfree method takes less comput-

ing time to achieve a given accuracy in spite of the fact that the computation of the

local matrices takes more time, because the quadrature points have more number of

support nodes compared with FEM.
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Figure 6.3: Case I: absolute error vs. time. E = 3000 Pa

B. Results of Case II

As described previously in this section, the computed motion is shorter than in

Case I, and the initial conditions are chosen such that the bending deformation is

dominant during the first seconds of the motion. This situation clearly differs from

Case I, where the longitudinal deformation of the beam was more important.

The evolution in time of the absolute error computed with both methods is dif-

ferent. The error of the FEM model oscillates following quite closely the bending of

the flexible bar; but the longitudinal deformation seems to have more influence in

the behaviour of the meshfree model. For E=5000 (Figure 6.6) the maximum error

for the meshfree method occurs in t = 4.2 s, when the main effect is the longitudi-

nal deformation of the beam due to the inertia and the force exerted by the rigid

bar (this effect is not visible in Figure 6.6, but it can be clearly identified in an an-

imation of the motion). When the value of the Young modulus goes down to 3000

Pa (Figure 6.7), the maximum deformation has both effects (bending and longitudi-

nal deformation) and the peaks of error are closer but they still do not occur in the

same moment. Again, the maximum errors occur when the strains are larger and

the FEM mesh is more distorted, and the results indicate that the meshfree method

is less sensitive to the strain magnitude.

In terms of convergence, the meshfree discretization shows in this case higher
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Figure 6.4: Case I: Maximum error vs. number of degrees of freedom.

accuracy for equal number of degrees of freefom (Figure 6.8), as it happened for

Case I, but in this case the convergence rate is lower than for FEM.

Comparing to clock time instead of number of degrees of freedom, the advan-

tage of the meshfree method only shows up for the coarser meshes (see Figure 6.9).

This behaviour suggests that the efficiency of the meshfree method gets better com-

pared to the FEM when the beam gets more flexible and the deformations and the

mesh distortions are higher. The computations with the three different values of the

elastic modulus show this trend.

Figure 6.10 shows the evolution of the accumulated computing time for the first

ten steps. These results confirm that the preparation of the internal data struc-

tures and the construction of the tangent matrix significantly penalize the comput-

ing time of the meshfree method compared with FEM. Firstly, because the local

matrices are bigger, and secondly and more important, because the computation of

the shape functions implies the solution of a a linear system for each quadrature

point. The y-axis of Figure 6.10 is shown in log scale in order to make more visible

the initial delay that these effects produce at the beginning of the computation. It

is apparent that, for the same number of degrees of freedom, the meshfree model

takes more time than FEM to start the computation. Nevertheless, it must be re-

called that the use of the total Lagrangian formulation demands the shape function

computation to be performed just once at the beginning. Note also that this delay is

relatively small compared to the time that it takes to compute the whole simulation.

Finally, Figure 6.11 presents an example of the robustness of the meshfree method

when dealing with an extreme deformation, corresponding to Case II with an elastic

modulus E = 500 Pa, which is ten times less than the original. No error analysis or
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Figure 6.5: Case I: Maximum error vs. computing time

comparison could be made in this occasion since convergence was not achieved with

the FEM model.
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Figure 6.6: Case II: absolute error vs. time. E = 5000 Pa

Figure 6.7: Case II: absolute error vs. time. E = 3000 Pa
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Figure 6.8: Case II: Maximum error vs. number of degrees of freedom

 10

 100

 1000

 1  10  100  1000  10000

M
ax

 e
rr

or
 (

en
er

gy
 n

or
m

)

Computing time (s)

E=5000

 10

 100

 1000

 1  10  100  1000  10000

Computing time (s)

E=4000

 10

 100

 1000

 1  10  100  1000  10000

Computing time (s)

E=3000

fem
meshfree

Figure 6.9: Case II: Maximum error vs. computing time



Chapter 6. Benchmarks 109

 0.01

 0.1

 1

 10

 100

 1000

 0  0.1  0.2  0.3  0.4  0.5

C
om

pu
te

r 
cl

oc
k 

tim
e 

(s
)

Simulation time (s)

Time for Meshless and FEM Analysis. E=5000

FEM 66 dofs
FEM 214 dofs
FEM 762 dofs

MeshFree 66 dofs
MeshFree 214 dofs
MeshFree 762 dofs

Figure 6.10: Case II: Computing timer vs. simulation time. Detail of the ten first time
steps



110 6.1. Mechanical benchmark

Figure 6.11: Case II. System configuration at t = 4.05 s for E = 500 Pa (meshfree, 107
nodes). The connectivity among nodes define the integration cells
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6.2 Thermal benchmark

6.2.1 IFMIF LIPAc slits beam model

The IFMIF ion beam will be have the highest current beam ever achieve in a

continuous wave (CW) accereratpr. The heat power density can be as high as 5.8

GW/m2 for some diagnostics. The beam parameters in the diagnostic plate are the

following:

• 1.125 MW

• D+ 5 MeV (MEBT), 9 MeV (HEBT)

• I = 125 mA

• Duty cycle from 0.1% to 100% (CW), f = 1 Hz.

Figure 6.12: Beam power footprint at the diagnostic plate

LIPAc ions penetrate just a hundred of microns in the solid material [35]. The in-

put from Beam Dynamics for the analysis of any device consists mainly on the beam
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properties (footprint and divergence) at a section of the line close to the device. This

information gives directly the heat flux q(x) at any spatial point. Considering beam

moves along the z-axis and has a bi-Gaussian shape:

q(x) =
P · exp

{
− (x−x0)2

2(σx+σ ′x(z−z0))2 −
(y−y0)2

2(σy+σ ′y (z−z0))2

}
2π(σx + σ ′x(z − z0))(σy + σ ′y(z − z0))

ez (6.7)

If long pulses or CW behaviour is simulated, the load can be applied as a Neu-

mann boundary condition using Eq. (6.7) as the normal vector at any point of

the boundary n(x) can be calculated using the position of its neighbours along the

boundary. These neighbors can be found by the node search algorithm used for the

shape function calculation or by a predefined connectivity, which is always needed

if the body is non-convex.

For short pulses, the volumetric power density must be used. An ionization

table, i(a,xn), is prepared using SRIM code results in the beam facing wall’s (BFW)

normal direction depending on the incidence angle, a. The heat rate value at the

integration points is calculated as shown in Figure 6.14. For a Gauss point j, the

rate is averaged from the contributions of its support nodes i, provided that the

support size radius is much greater than the ionization depth:

rj =
SP∑
i=1

rij
SP

=
1
SP

SP∑
i=1

qi
E

i(ai , (xj − xi) ·ni) (6.8)

A great advantage of this approach is that the beam must only be defined in a

plane. As the body moves and deforms, the simulation procedure computes and

updates the heat rate for each time step.
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Figure 6.13: Design of the LIPAc interceptive slit system

Figure 6.14: Computing of volumetric heat rate at an integration point
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6.2.2 IFMIF LIPAc slits section analysis

The method has been used for the simulation of the slits diagnostic of Figure 6.15

with the following beam parameters: P = 1.125 MW,E = 9 MeV,σx = 4.985 mm,σy =

6.174 mm, a0 = 15deg. Preliminary thermal results of a power deposition section

strip show a consistent higher precision and accuracy of the solution using meshfree

methods (Figure 6.18). Future work will focus on the thermo-mechanical behaviour

of the BFW plate.

Figure 6.15: Slits design with volumetric power density loading
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Figure 6.16: Temperature evolution of slit during beam pulse

Figure 6.17: BFW Section temperatures during pulse
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6.3 Thermo-mechanical coupling benchmark

The previous two examples are mixed to compare if the results are consistent for

the coupled nonlinear formulation. The double pendulum is set at t0 in horizontal

position, and loaded by a volumetric heat flux similar to the one of the previous

section. Some load scaling is applied in order to use the same geometry and models

as in the mechanical benchmark.

The rigid bar is located between (−40,0) and (0,0). The rectangular beam corners

are (0,−4) and (40,4). Finally the is a revolute joint at each end of the rigid bar,

connecting the bodies between them, and the rigid bar to ground.

The reference solution is calculated using the 1532 nodes FEM mesh shown in

Figure 6.19. Mechanical loading is limited to gravitational effects in vertical direc-

tion (g = (0,−10)), and the material properties used are the following:

• Thermal conductivity: κ = 300

• Specific heat capacity: cp = 1130

• Thermal expansion: β = 1E-4

• Density: ρ = 7850

• Young’s modulus: E = 2E2

• Poisson coefficient: ν = 0.3

Figure 6.19: Initial configuration of the thermomechanical system

The heat load is applied for the first 1/8 length (left hand side) of the beam, with

the profile shown in figure 6.20. The heat flow is applied instantly from the start

(t = 0), and kept constant for two steps (t = 0.1). After that the load is removed and

the solid cools down by internal conduction until reaches equilibrium at the end of

the simulation (t = 30).

Qext =

 2000(40− x) 0 ≤ x ≤ 5, 0 ≤ t ≤ 0.1

0 otherwise
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Figure 6.20: Heat flow profile during time t = [0 : 0.1]

6.3.1 Overall models and simulation description

The rigid bar is modelled with a penalty factor of α = 1E3 for all the models. A

more stiff behaviour is given to the joints, where the penalty factor raises to α = 1E8.

The integration is carried out by a first order BDF (Euler implicit) integration

scheme. Step size chosen sits in between the needs of the thermal load, and the

gravitational deformation response time scales, ∆t = 0.05. The simulation is run

from t = 0 to t = 30, point where the conduction effects have led to an almost uni-

form temperature within the domain. The total simulation therefore requires the

solution of 601 steps, considering also the analysis of the initial acceleration and

heat fluxes at t = 0.

The 32 and 110 nodes models from the mechanical benchmark of section 6.1 are

used also for this study. Figure 6.21 shows a snapshot of the simulated deformation

of the reference model with 1532 nodes.

Both meshfree shape functions have been applied, and also a variation on their

parameters is studied to study the effects of the size of the influence domain and the

integration order. In the case of the EFG, the method shows robust enough to run a

varied set of parameters for the whole simulation.
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Figure 6.21: Evolution of the system configuration for the reference case, including tem-
perature map. From top to bottom, left to right: t = (0.01,2.5,5.0,7.5,10.0,12.5,15.0,17.5)
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For the RPIM is way more difficult to achieve stability, and the simulation blows

up quite easily. In fact, for the case of the 32 node model, it was not possible to

achieve convergence for all steps with any parameter combination using the RBF

shape functions. On the contrary, when the number of nodes where raised to 110,

the method showed robust and equally accurate for different sizes of the influence

domain. The lower size giving stable models as been chosen in order to optimize

the computation time.

The different combinations of method parameters for the simulations are sum-

marized in the table 6.2.

Table 6.2: Meshfree shape functions parameters

αi = 2.0 αi = 2.5 αi = 3.5

1GP EFG110 - -

3GPs EFG32, EFG110 RBF110 EFG32

6GPs EFG32 RBF110 -

Important differences appear in both phases: heating and cooling. The peak

temperature values are mostly determined by the volumetric load integration, and

the model of the domain heating capacity (H matrix). Meanwhile, the cooling dif-

ferences will be dependant on the temperature gradient, and also on the conduction

model (C matrix).

At the same time, there is also a non-negligible elastic deformation induced by

the thermal strain. This deformation is taken into account by the model both in

the heating and conduction processes. In essence, the loads vary depending on the

location of the GPs. As opposite to the previous benchmark case, the volumetric

load profile has been chosen to be linear, in order to compare the behaviour for

stepped loads with a shape that can be exactly integrated by FEM, but that have

enough variation to have be influenced by the deformation process.

6.3.2 Initial heating

The peak temperature is compared between the models at time t = 0.1. The

interpolation of the heat load is done applying the value of the flow depending on

the location of the integration points, scaling it by the GP weight and cell jacobian,

and then transferring that load to the support nodes using the shape functions.

The reference solution is shown in the sequence of Figure 6.22. The heat-up

is almost adiabatic, and the conduction effect starts cooling down the maximum

temperature zone as soon as the heat load is not applied.

To evaluate the accuracy of the heat capture, the peak temperatures at the lower

left corner of the domain ((x,y) = (0,−4)) are compared at the end of the loading
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Figure 6.22: Temperature profile for the reference model for times t = (0.05,0.1,0.15) (top
to bottom)

time. Results are shown in table 6.3.

Being the load linear, the FEM models behave much better than in the thermal

benchmark studied in the previous section. These present a relative low error com-

pared to the reference solution.

Using the EFG method the relative errors are slightly higher for the 110 nodes

models, and slightly lower for the 32 nodes. Increasing the number of GPs does

not reduce that error. Having a high influence domain factor (α = 3.5) reduces the

accuracy of the solution, as the heat integrated by a GP inside the volumetric load

will be transfer beyond it. Nodes located at x > 5 will receive some load. In fact, this

is the effect that is affecting the accuracy of the rest of the EFG models, although

with less impact, as their influence domains are smaller (α = 2.0).

Finally, the RPIM accuracy is in the order of the EFG. This method gives higher

peak temperatures that the reference solution, instead of falling short as it would be

expected. The reason for this is the trimming effect of the shape functions, which

affects specially the node chosen to do the comparison of the temperatures.

6.3.3 Cooling process

The way that each of the models capture the conduction while deforming is pre-

sented in the following summary. The figure 6.23 shows how each of the methods

applied compare to the reference solution for the first 2 seconds. The relative error
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Table 6.3: Results after the heat loading steps

Model T (t = 0.1) Rel. error (%)

FEM1532 834.04

FEM110 826.78 -0.87

FEM32 769.64 -7.72

EFG110-1GP 811.51 -2.70

EFG110-3GPs 808.79 -3.03

EFG32-3GPs 781.71 -6.27

EFG32-3GPs-a3.5 702.72 -15.74

EFG32-6GPs 781.04 -6.35

RPIM110-3GPs 856.48 2.69

RPIM110-6GPs 848.10 1.69

in peak temperatures over time is represented in figure 6.24.

In the case of the FEM the heating up was well matched in the case of the 110

nodes model. After that stage, the temperature evolution shows a worse behaviour

of the diffusivity process. The same effect appears in the 32 node model, although

the peak temperature is smaller and cooling temperatures therefore remian below

the reference solution.

Temperature evolution in the case of both meshfree methods is much more satis-

factory for the 110 node model. Although starting with slightly different peak tem-

peratures, both models converge to the reference solution, meaning that the amount

of thermal energy from the loading steps has been captured properly. Also the rich-

ness of the shape functions allow to match the diffusivity behaviour with an order

of magnitude less of nodes, when compared to FEM.

A special study has been made for the sensitivity of the shape function param-

eters for the EFG method (Figure 6.25). The model giving the best behaviour, and

converging to the reference solution needs 110 nodes and 3GP per cell. If the num-

ber of points is reduced, the peak temperature is not affected (due to the linearity of

the load), but the conduction process is clearly limited. When the number of nodes

is reduced, there is not a satisfactory model for this problem. Several tests changing

the method’s parameters have been performed, showing here a small representative

set. An increase of the integration points with such low number of nodes does not

help in capturing with enough accuracy the temperature gradient of the diffusion

process. In fact, solution drifts further apart when going from 3 to 6 GPs. If the size

of the influence domain is increased, the shape functions are of course smoother,

and the peak temperature error is very high. Diffusion behaviour improves but no

convergence is achieved after 5 seconds, showing some oscillating behaviour in-

stead.
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Figure 6.23: Temperature evolution compared to reference solution for the first two sec-
onds
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Figure 6.24: Temperature relative errors for all models

Figure 6.25: Temperature relative errors for EFG models
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Simulation of Real

Systems 7
This chapter is devoted to show potential advantages of the meshfree approach.

Instead of comparing to FEM solutions, a set of examples are presented where FEM

has different issues, either defining or solving the model. The second section in-

troduces a complex research application, detailing how the meshfree methods are

applied, and demonstrating how they can provide some real advantages.

7.1 Application examples

7.1.1 Generalized joints example

A very frequent issue when modelling real multibody systems is establishing

the joints between their flexible components. Usually the joint defines a set of con-

straints in a boundary of that component rather to just a point. As opposed to rigid

body parts, where the movement of any point can be extrapolated from the reference

frame, which holds the degrees of freedom; flexible bodies discretized by means of

FEM can only interpolate the movement inside each of the finite elements.

If the connection point of the joint is not defined inside the domain, there will

no way of approximating its location using the FEM shape functions. This issue has

been addressed by introducing the so called Multi-point constraints (MPC), which

connect a set of nodes to a point inside or outside the domain. Two usual set of

constraints are defined in this way:

• Displacement MPC joins the position of all of the boundary nodes to the joint

definition point. This results in a rigid boundary (i.e. node-to-point distances

are fixed).

125
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• Force MPC does something similar with the internal forces instead of the dis-

placements. This is called flexible MPC in some commercial implementations,

as the boundary is allowed to deformed, but on the other side the proportion

of the constraint force is fixed in advance for each pair node-point; either be-

ing constant or dependant on the distance.

An alternative approach was presented in section 4.4 by using the meshfree

functions for defining the joint kinematics by more than one node per body. The

main idea consists in defining the position of any point using a meshfree shape

function supported by a subset of nodes from the flexible domain. The joint con-

straints will be applied using the position of this point, which is not part of the

system of equations (i.e. not a node). In consequence, the point can be anywhere,

inside or outside the domain, and its location will be implicitly determined by a se-

lected group of nodes, without any other additional constraints. From the practical

point of view, the possibilities are huge, as it allows to place a joint independently

on the underlying discretization of the flexible body.

An application of this generalized joint definition is presented here. A two body

pendulum is studied, which is similar to the ones analysed in previous chapters.

The main difference is that the flexible link has a hole representing the revolute

joint that exists between this part and the rigid link. With this consideration, the

internal rod will be part of the rigid link. A complex but realistic way of solving the

joint’s behaviour would be to model the rod and placing unilateral contact elements

between the rod and the flexible body’s internal boundary. Of course, this approach

would increase the cost of solving the system by several orders of magnitude, and

probably pose a big challenge to the solver algorithm.

The problem is tackled in this example by using MLS shape functions to approx-

imate the position of the central point of the circular hole. The hole centre is placed

in (x,y) = (0,0), and has a radius of r = 6. The shape function is defined using all the

nodes of the flexible body within an influence domain of rID = r αi , with αi = 1.1. As

the flexible domain is modelled by the mesh shown in Figure 7.1, this implies that

only the nodes of the hole boundary will be selected, although no other definition

nor manual input is needed.

Figure 7.1: Model of rigid bar and flexible body with hollowed revolute joint
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To show how flexible the approach can be, two different methods have been used

for modelling the flexible domain, but neither of them is the EFG (corresponding

to the MLS used for the joint). Instead, the pendulum has been analysed using

FEM and RPIM methods, showing similar response with subtle differences, as it

is expected after the validation and benchmarks shown in previous chapters. The

evolution of the configuration is shown in Figure 7.2, where the deformation of the

hole is significant. The reaction load of the joint is plotted in figures 7.3 and 7.4,

showing smooth behaviour overall, with just the regular shifts in angle when the

magnitude is almost zero.

This example demonstrates that the use of meshfree functions for generalized

joints is perfectly compatible both with FEM and meshfree discrete solid models.

Figure 7.2: Time evolution of the reaction components for the joint between the bodies



128 7.1. Application examples

Figure 7.3: Time evolution of the reaction components for the joint between the bodies

Figure 7.4: Time evolution of the reaction components for the joint between the bodies
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7.1.2 Hollowed double pendulums example

In the previous chapter, a solid beam was used to model one of the links of a

double pendulum under mechanical (6.1) and thermo-mechanical (6.3) effects. The

2D model of the beam used in those benchmarks was compared to a 3D prismatic

beam in section 5.3.

The first section of this chapter has shown how shape functions can be used to

approximate the displacement of a point even if it is located outside of the domain.

This section describes a further application of this intrinsic advantage: using com-

pletely different discretizations for the support domain and the integration domain.

The main objective is showing how powerful this approach can be when dealing

with complex geometries, but willing to preserve a low number of degrees of free-

dom.

Two kind of nodal arrangements are used for modelling the hollowed beam:

• A set of scattered nodes in the convex hull of a body is used for the support of

the thick wall beam model.

• Instead of spreading nodes inside the convex hull, when the void is too large

(low thickness). its preferable to arrange the nodes only inside of the solid

domain, as in figures 7.6 and 7.7. This approach is still useful to reduce the

overall size of the system of equations, as is demonstrated with the regular

and thin wall beams.

Discretizations used:

Thick model: Corresponds to a wall thickness of 3, leaving a gap between them

of size 2. The nodal distribution corresponds to the same 110 nodes used in

chapter 6 for benchmarks. This is a regular node distribution with average dis-

tance of 2.5 approximately. Integration cells are defined using a two-domain

grid of 125 points and 158 2D cells.

Figure 7.5: Discrete nodal distribution and integration grid for the thick hollow beam
model

Regular thickness model: This is the same geometry studied in the beam valida-

tion section 5.3. The thickness of the beam was in that case of size equal to 1,
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with an internal square hollow section with side dimensions of 6. The main

difference between this model and the one analysed for validation purposes is

that two different nodal arranagements are used for the support nodes, and for

the integration cells. The shape functions are built using a reduced number of

nodes, 40 in total. For the integration domain, two grids are defined totalling

116 points and 112 2D cells.

Figure 7.6: Discrete nodal distribution and integration grid for the regular thickness
hollow beam model

Thin wall model: Taking the plate slenderness to the limit, a third model is pro-

posed with a wall thickness of just 0.5, and hollow height of 7. The integration

grid defines the domain with 148 points and 144 2D cells; while the degrees

of freedom are concentrated in a coarse distribution of 57 nodes.

Figure 7.7: Discrete nodal distribution and integration grid for the thin hollow beam
model

The three models have been used to replace the solid beam of section 6.1 using

the same material and analysis parameters. The evolution of the deformation is

shown in figures 7.8, 7.9, 7.10, respectively. The thinner the model, the more similar

the overall beam behaviour is. This is somehow expected, as the stress in the solid

domain is due mainly to bending. The deformation depends on a combination of

gravity and inertial volumetric effects, and the point reaction force coming from the

joint with the bar. The thinner the section gets, the more constant the strain within

it is; meaning that the relation between mass and stiffness (modal content) tends to

get uniform.
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Figure 7.8: Time evolution of the configuration for the thick wall flexible double pendu-
lum
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Figure 7.9: Time evolution of the configuration for the medium thickness wall flexible
double pendulum
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Figure 7.10: Time evolution of the configuration for the thin wall flexible double pen-
dulum
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7.1.3 Generalized contact example

A contact model that takes advantage of the meshfree node searching algorithms

was presented in section 4.5. The basic problem to solve is a contact between two

bodies in locations that are not known a priori. Two applications of are now briefly

introduced, using the same material properties:

• Density, ρ = 7850

• Young’s modulus, E = 0.7E6

• Poisson ratio, ν = 0.3

A. Point mass contacting flexible beam

A unit mass representing a sphere falls freely due to gravity (downwards with

magnitude 10), colliding with a flexible curved beam in its trajectory. The initial

position of the mass centre is (x,y) = (−40,70). The thin walled beam with thickness

3, has an initial configuration of semi-arch with external radius 30. It is connected

to ground by a rigid link of mass 100 and end points located at (−20,−20) − (0,0).

The discrete model consists on 88 nodes and 111 2D cells/elements.

Figure 7.11: First contact example: system setup (left), and detail of the discrete domain
(right)

The contact model uses a penalty coefficient of 1E7. A triggering gap offset is

defined in order to take into account the sphere radius of rb = 2. This offset is

only applied to the contact elements generated using the node of the point mass,

although no other contacts will occur during the simulation.

Initial configuration of the system and the discretized model of the curved beam

are shown in Figure 7.11. The time integration is performed with a step of ∆t = 0.1,

both FEM and RPIM formulations have been successfully tested. The evolution of

the system is represented in Figure 7.12.
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Figure 7.12: Time evolution of the configuration for the thin wall flexible double pen-
dulum: From top to bottom, left to right, snapshots for six intermediate configurations
showing Von Mises stress; and same snapshots representing the automatically generated
contact elements

B. Rigid bar contacting flexible solid

A rigid bar of mass 100 is dropped inside a flexible container which wobbles

due to inertial effects. The solid is fixed to the ground in its four exterior corners,

and a thickness of 5. The same value as the thickness is chosen for the contact αc
parameter.

As before, a penalty contact model is applied, with a factor of 10E6. A lower

value of the penalty along with a higher mass (and kinetic energy) of the bar, will

facilitate observing the penetration of the nodes in the solid. Higher factors have

been also tested, requiring a reduction in the time stepping (Euler implicit inte-

grator) in order to avoid artificial numerical impulse. A variable step size integrator

with predictor/corrector scheme would have allowed increasing the automation and

speed of the simulation procedure.

The simulation is schematically shown in Figure 7.13. The bar is at an initial

horizontal distance to the internal edge of the solid of 4, so contact elements to this

side are automatically created and destroyed during the free fall of the bar. It has
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been checked that none of them influences the movement of the bar, as their height

is over the contact gap tolerance. Also, contact elements are automatically created

in the internal corners of the flexible bodies, suggesting that self-contact constraints

would be applied in case it suffered very large deformation.

As the bar approaches the inner horizontal boundary of the solid, a set of contact

elements are created, activating the constraint force upon collapse. The gap remains

negative for more than one step, warranting that the simulation does not blow-up,

but not enough to restore the initial energy to the bar, which raises less than half

way up in the air again.

Figure 7.13: Time evolution of the configuration for the thin wall flexible double pen-
dulum: From top to bottom, left to right, snapshots for six intermediate configurations;
and same snapshots representing the automatically generated contact elements

In summary, two simple applications have been presented that show automated
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contact using the same node search algorithms employ to build the meshfree shape

functions. The formulation of the contact itself is quite simple, but robust if the

integration parameters are selected taking into account the relation between maxi-

mum kinetic energy and contact penalty coefficient.

7.2 DEMO Remote Handling for blanket segments replacement

The future DEMO (fusion demonstrator) tokamak is in its conceptual design

stage, which will conclude at the end of this decade. The baseline design is compose

of set of sectors (between 16 and 20) which repeat all around the machine forming

the donut shaped tokamak. The in-vessel components need regular replacement

due to accumulated neutron damage, and are accessed through three ports located

in upper, equatorial, and divertor (bottom) positions for each port.

7.2.1 System description

The most massive in-vessel components are the blanket segments, also called

Multi-Module Segments (MMS in Figure 7.14). This structures can be up to 10

meters tall, and weigh between 50 and 80 tonnes. For each sector, there are three

outboard segments: central (COBS), right (ROBS), and left (LOBS); and two smaller

inboard segments: right (RIBS), and left (LIBS).

The main challenge of the replacement of the MMS is related to the integration

of the machine requirements. Basically, the blankets need to be as close together as

possible, and the ports be as compact as possible. These translates into very tight

clearances (20mm is the present goal), which leads to complex transport kinematics,

and also extremely precise heavy-duty remote handling equipment.

This section is devoted to show how the previously presented methodology can

benefit the design and assessment of the remote replacement of the blanket seg-

ments.

The basic design of the blanket segments is composed on a back-structure (BS)

and a set of (6-10) blanket modules attached to it. All the service connections run

from the ports’ infrastructure (pipes and cables) all the way inside the BS to each one

of the modules. Those modules are not mechanically interconnected between each

other, leading to a more flexible structure than would be thought. Its worth noticing

that due to extremely harsh radiation inside the vessel, the blankets need to be han-

dled right from the top and bottom, avoiding direct exposure of the mechatronic

equipment to the core of the gamma radiation field.
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Figure 7.14: DEMO cross section (left) and cask deployment in ports (right)

7.2.2 Preliminary assessments and problem statement

During the concept design stage, several basic kinematic approaches are eval-

uated using CAD models, as shown in Figure 7.15. After important engineering

details are added to the model, the movements are defined, and the complete geom-

etry and kinematics are evaluated in a Virtual Reality mock-up, as shown in Figure

7.16.

After checking the estimation of the clearances in VR, a set of static structural

analysis were performed for the blanket segments. Those confirmed the expected

deformation as number one risk to induce clashes and seizures, which would have a

really serious impact in the operational availability of the whole power production

plant.

A two stage approach has been followed in order to evaluate the nonlinear dy-

namic effects of when handling the blankets:

• 2D simulation of the COBS, validation to FEM results, and comparison with

rigid body behaviour.

• 3D simulation for COBS, comparing the modelling approach with the 2D re-
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sults, and comparison with rigid body behaviour.

The objective is to create simulation models, as efficient as possible, aiming to

the implementation of an enhanced real-time VR structural simulator.

Figure 7.15: DEMO cross section basic strategy
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Figure 7.16: Virtual reality kinematic study for the DEMO segments handling
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7.2.3 Discrete models

A simplified version of the CAD models is used in terms of design details. The

maximum number of 10 blanket modules per segment is chosen, which will pose

a more difficult problem. The interface and BS of the blanket segment is kept as a

solid body, until more detail of the design is available. Of course, these structural

members will not be completely solid due to services and weight constraints, so the

material properties need con reflect this uncertainty.

Figure 7.17: CAD models for DEMO blanket segments

The models used for each of the simulations are all composed of non-conforming

meshes. As it’s often the case when the CAD geometries are complex, building a

continuous mesh for all the domain is something that requires some processing of

the CAD shape, or—as in this case—a complete re-drafting can be necessary. Figure

7.18 shows how the different parts of the models do not match with each other, and

even the lower two blanket segments are completely overlapped. For a regular one

part FEM analysis, quite a lot of effort would be necessary even to have an initial

rough response of the system.

The modelling is approached without any processing of the initial geometry,

requiring individual discrete models of each part, which need to be joined together.

The following four discrete systems have been generated:

2D plane strain models (Figure 7.18):

• Coarse Meshfree simulation model, with only 161 nodes, 157 2D cells.
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Figure 7.18: 2D section: CAD and discrete models

• Dense model for FEM analysis and comparison, with 809 nodes, and 1184

2D elements.

3D models (Figure 7.19):

• Coarse Meshfree model with 226 nodes, and 439 3D tetrahedrons.

• Denser model for convergence studies, with 497 nodes, and 941 3D tetra-

hedrons

7.2.4 COBS removal analyses

The 2D and 3D simulations are detailed in this section. When possible, com-

parison have been made with FEM discretization. The aim is to demonstrate the

applicability of the meshfree methods to the conceptual study, so material prop-

erties have been chosen intentionally to produce very flexible bodies. Probably, as

the deformations obtained are too large, the final design will be stiffer. Still, the

conclusions about the advantages of the presented approach will still hold.

Therefore, material properties definition are based on the expected average den-

sity and worst case stiffness. Its also been considered part of the body mass not

being structural, setting the following material values for all bodies:

• Density: ρ = 3240.36 kg/m3.

• Young’s modulus: E = 0.7E10 Pa.
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Figure 7.19: 3D discrete models

• Poisson coefficient: ν = 0.3

In all cases, the remote handling interface of the blanket segment is defined in

the two (for 2D) or four (3D) points of the upper-external grab feature, as shown in

Figure 7.20. The motions defined for each interface point (or pair of points in 3D) is

interpolated from Table 7.1, using subscript 1 for the outboard node, and 2 for the

inboard. In the 2D simulations, the z values of the table applied to the y−axis.

A. 2D models

Two different joints are applied to the interface points: a revolute joint for the

inboard, and a sliding joint (along x-axis) at the outboard point. The mesfree model

uses EFG shape functions and all the integration cells for the blanket modules have

been defined with 1 GP, which speeds up computation. In this case EFG are pre-

ferred over RPIM as it behaves better when the number of supporting nodes is low.

For the BS, as strain levels are larger, 3GPs are required in order to obtain enough

accuracy. The values for domain of influence have been set to αi = 2.0 for the BS,

and αi = 2.5 for all the blanket modules.

In the case of the FEM model, the modules are connected to the BS using double-

point fixed-distance constraints. These are applied between the corners of each
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Table 7.1: Imposed motion at the Remote Handling (RH) interface points

Time x1 y1 z1 x2 y2 z2

0 0 0 0 0 0 0 0

15 0 0 0 0 0 0

20 0 0 0.0 0 0 0.05

45 0 0 1.5 0 0 1.55

85 1 0 4.0 1.0 0 4.05

95 1 0 4.0 1.0 0 3.95

160 1 0 10.0 1.0 0 9.95

Figure 7.20: RH interface points defined in all models

module and the closest node of the BS (Figure 7.21).

The analysis is performed using a BDF-2 integration method and fixed 0.25 s

time step, without any contacts being considered. An overview of the motion is

described with snapshots in Figure 7.22. In there, both the ideal rigid body motion

and the deformed system is overlapped.

Two critical points have been identified:

• The back structure clashes with the vacuum vessel at the start of the lifting

operation. This is due to the deformation reducing the effective rotation angle

given to the MMS before it’s lifted.

• On the other side, deflections avoid a clash between the COBS being extracted

and the inboard segments, as shown in the last capture of the handling se-
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Figure 7.21: Double-point fixed joints for FEM model: modules’s nodes in red, and back-
structure (BS) nodes in green.

quence.

The loads that would be applied to the remote handling end-effector providing

this motion are influenced by the deformation too. Figure 7.23 shows the horizontal

and vertical components of those loads. Both oscillations are due to the oscillation

of the position of the Centre of Gravity, and peak at every change of direction of the

motion.

Total vertical reaction is equal to the total weight of the MMS. A few ripples

indicate some (low) numerical errors. Being a plain strain model, all the loads need

to be scaled by the thickness of the COBS (1.3 m) in order to compare them to the

3D simulations, and therefore to the actual MMS, which weighs 67 t.

The deformation of the bottom side of the MMS is compared between the FEM

(Figure 7.25) and Meshfree (Figure 7.24) models. The former shows a more stiff
behaviour than the later, with respective peaks of 13 and 22 cm, neglecting the

initial oscillation. The vibration at each change of motion path is important, peaking

3 and 4 cm for each model respectively.
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Figure 7.22: 2D comparison (superimposed images) between solid and flexible dynamics
for the DEMO segments handling. Top to bottom, left to right: configuration of the COBS
blanket segment during extraction operation
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Figure 7.23: Forces for the 2D model RH interface during the extraction of the COBS
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Figure 7.24: Deformation of the bottom of the MMS for EFG 157 nodes model

Figure 7.25: Deformation of the bottom of the MMS for FEM 1184 nodes model
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B. 3D models

The 3D models are more involved to prepare, as more joints need to be defined

to the Remote Handling (RH) interface. Vertical displacements need to be imposed

to each of the corners of the RH interface, but also the lateral movements and rota-

tions shall be controlled. To avoid over constraining the system, only one spherical

joint has been applied to a node (inboard-left). In addition, one sliding joint in ver-

tical direction is applied to the opposed node (outboard-right), constraining y − z
displacement. Finally, two axial constrains only acting in z−axis direction are also

applied to the other two nodes.

The EFG parameters used in this case are a constant value for the influence do-

main of αi = 2.5, and just 1 integration point (GP) for all cells. Several runs have

been performed in order to set these values; one of them using 4 GPs per cell show-

ing no improvement in the accuracy of the model.

Figure 7.26: Deformation of the bottom of the MMS during the extraction of the COBS

The relative deformation of the lower node of the segment is shown in Figure

7.26. The response gives very similar results in the horizontal deformation to the

ones presented for the 2D meshfree plane strain model. Differences in the vertical

deformation are significant, and probably due to the lack of refinement of the 3D

model in the RH interface area.

The evolution of the model is shown in Figure 7.27. External cables have been

added to the representation, although their flexibility is not considered in order to
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be able to compare to the previous 2D analysis. Of course, when used, as they only

work in tension, a different set of joints would need to be provided in order to absorb

the torque (7.29) due to the offset of the MMS CoG(7.30).

The lateral and vertical forces which the RH end-effector would need to resist

are plotted in Figure 7.28. The lateral forces are mainly due to the lack of symmetry

of the model and also the boundary conditions, but still remain in the order of what

was obtained for the 2D model.

The vertical forces correspond to compression in the outboard side and tension

in the inboard (closer to the CoG). The later become compression during the final

lift, which can be an important fail-safe feature to take into account for the design

of the end-effector. Its worth noting that the loads applied to each pair of nodes

with equal motion are not exactly the same, specially when the CoG’s offset is max-

imum, also due to the lack of symmetry; but overall the results are consistent and

no particular flaw has been produced by such a coarse discrete model.
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Figure 7.27: 3D multibody simulation of the flexible COBS MMS, with rigid vacuum
vessel and other MMS in place. Top to bottom, left to right: configuration of the blanket
segments during extraction
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Figure 7.28: Forces for the 3D model RH interface during the extraction of the COBS
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Figure 7.29: Torque applied to the RH interface when removing the MMS

Figure 7.30: Distance from the centre of the RH interface to the Centre of Gravity of the
MMS



154 7.2. DEMO Remote Handling for blanket segments replacement

7.2.5 Computing efficiency

Finally, it’s worth detailing the impact of each of the approaches on the com-

putational cost of the simulation. The systems are modelled with fully nonlinear

material behaviour, and the analysis use implicit integration schemes. In case of

using a model with more nodes than needed, the impact on the computational re-

sources to solve it can be very important.

A. 2D analyses

In the 2D case, the EFG and FEM results have been presented. In order to achive

enough accuracy with FEM, a quite dense mesh has been defined. The main effect

on the computational expense is that the system no longer is solved in less time than

the simulated time (Figure 7.31. In fact, the time required for solving the analysis

is doubled with respect to the time analysed. On contrary, the EFG model is solved

always well below the time step size, although step solving time is more sensitive to

nonlinearities (in average).

Figure 7.31: Computational times for the 2D FEM model. Time per 0.25 s step (left), and
accumulated clock time (right)

Figure 7.32: Computational times for the 2D EFG model. Time per 0.25 s step (left), and
accumulated clock time (right)
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B. 3D analyses

For the 3D models, sparse matrices are used, although the main impact in com-

putational cost is the iteration through the support nodes to compute forces and

system’s matrices. Special attention has been paid to optimizing the calculation of

the tangent matrix, adding also a shared memory parallel execution routine to take

advantage of multi-core processors.

Simulation speeds are encouraging in the case of the coarse model (7.33). A lot of

steps are computed well under the step size, while the maximum duration is within

4 times the step size. This results can clearly be improved for a final application,

considering that the system has been studied with a very high flexibility, and that

the simulations were run in a regular laptop 1. One drawback of meshfree methods

needs to be noted: the exponential need of resources. When the dense node distri-

bution was solved, the increase in clock time needed was very important, leading to

analysis runs of around two hours for the minimum support size and GP number.

Figure 7.33: Computational times for the 3D EFG coarse model. Time per 0.5 s step (left),
and accumulated clock time (right)

Figure 7.34: Computational times for the 3D EFG dense model. Time per 0.5 s step (left),
and accumulated clock time (right)

1Intel® Core™ i7-4710HQ quad core CPU @ 2.50GHz





Conclusions and

Outlook 8
8.1 Overview of main contributions

This thesis has proposed the following set of new contributions to the field of

multibody dynamics:

1. The work presents for the first time the use of meshfree methods in multibody

dynamics, using a Total langrangian nonlinear formulation for hyperelastic

bodies.

2. A novel generalized formulation of constraints and joints is presented, valid

for rigid and flexible bodies; and compatible with FEM and meshfree dis-

cretizations. This completely new approach allows to define the joint inde-

pendently of the body nodes without the addition of any more constraints to

the system.

3. A new strategy for automatic contacts is proposed based on meshfree neigh-

bour search algorithms, with applications in 2D and extendible also to 3D.

4. Compatible parameters are proposed for defining meshfree bodies either with

Radial Basis Functions or Moving Least Squares aproximations.

5. A new methodology is applied to the discretization of bodies. It allows to re-

duce significantly the size of the problem, using a dense grid for capturing

a very detail geometry and a coarser node distribution for modelling the dy-

namics of the system. It is also shown to work with bodies defined by multiple

domains.

6. A complete multibody computer code has been built from scratch, including

the algebraic methods [32], linear and nonlinear solvers, time integrators, etc.

157
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for the thermo-mechanical simulation of flexible and rigid bodies. It has been

designed in a way that shares as much as possible code between the different

methods for modelling the flexibility of the parts: FEM and meshfree. Al-

though its development has required a huge effort, it allows to have a really

precise comparison and benchmark of the new approach.

7. The use of meshfree methods in mechanical [32] [35], thermal and thermo-

mechanical [34] nonlinear MB dynamics has been benchmarked for the first

time. The comparison to FEM shows an order of magnitude better accuracy at

equal number of nodes, and general gains of efficiency, specially for systems

with coarse discretizations.

8. Examples of all the formulation proposed to apply the meshfree approxima-

tion in a MB framework are provided, demonstrating that the approach is

generic and extensible to further problems.

9. A final application to a real system has been presented [36], allowing to over-

come day-to-day real engineering issues such as poor CAD modelling and non-

conformity of meshes, and thus reducing the overall required modelling time.

Coarse discrete models of the system have been proven to be capable of Real-

time simulation at this time in 2D, and in a near future in 3D.

8.2 Summary of conclusions and research findings

The document has been divided into several chapters, in order to clarify the dif-

ferent building blocks of the research. The first chapter introduces the motivation

for looking into alternative formulations for simulating the nonlinear behaviour of

systems including rigid and flexible bodies. The kind of applications where issues

have been found using the usual FEM approach are centred in the Fusion Tech-

nology field; specifically for the simulation of future multibody remote handling

equipment, and for present linear particle accelerators. Galerkin meshfree meth-

ods are studied for improving the accuracy of the thermo-mechanical behaviour of

the flexible bodies, which is the main problem statement. A comprehensive review

of the State of the Art shows that no previous application of the meshfree shape

functions has been proposed previously. This is believe to completely justify the

aims and scope of this PhD. The need for an objective comparison between FEM

and Meshfree methods in multibody dynamics has a very important consequence: a

complete code including both methods will need to be developed. This is required

in order to share as much functions as possible and have a common solver core, as

it’s the only way to put side by side both their accuracy and efficiency.

The second chapter is devoted to define the formulation framework for non-

linear multibody dynamics of flexible bodies, including thermal effects. The Total
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Lagrangian formulation of the equations is chosen to take advantage of the equilib-

rium being set in the reference configuration. This implies not needing an update

of the shape functions during the deformation of the system, which is key to get an

efficient implementation of discrete meshfree dynamic systems. A thorough defini-

tion of all relevant laws and equations is provided, which leads to the continuous

variational formulation for the flexible bodies.

The meshfree shape functions are presented in Chapter 3. Radial Basis Func-

tions (RBF) and Moving Least Squares (MLS) have been selected, as representatives

of families of functions with and without the Kronecker delta property. Their def-

inition has been reformulated in order to have equivalent length and interpolation

properties; leading to a common set of parameters used to define the approximation

of any point within the bodies.

Chapter 4 presents the main theoretical contribution of the thesis. In order to

complete the definition of any multibody system, the other components are pre-

sented. The configuration of multi-dimensional rigid bodies is described using only

cartesian coordinates for their nodes, along with a set of constraints between them.

This is known to have the advantage of leading to a constant Mass matrix. The

relation between a flexible body’s shape function with the rigid bodies’ constant

matrix is stated, which in fact allows to use signed FEM shape functions to define

the configuration of the rigid body. Following the same argument, the meshfree

shape functions are used to defined the position of any point of a flexible body ei-

ther inside or outside its domain. This is used to develop a generalised formulation

for mechanical and thermal constraints. Real joints are also detailed in this mesh-

free generalized form, which is valid for any kind of discretization of the flexible

body’s domain, including FEM. A generalised contact formulation is proposed and

developed for 2D. It takes advantaged of the same techniques needed for neighbour

search when building the shape functions, and it is also expandable to 3D appli-

cation. Finally, the global system of equations is presented, describing the weakly

coupled Total Lagrangian thermo-mechanical form for the dynamic equilibrium of

the multibody system.

The rest of the thesis explains how the proposed formulation can be applied. To

validate and verify both the equations and their implementation in the complete

multibody code developed, three different cases are studied in Chapter 5. From a

simple triangle to a thick-wall hollowed beam, the integration point distribution,

shape function values, and overall mechanical and thermal response are compared

between FEM, RBF and MLS discretizations. Advantages of the proposed approach

are identified when dealing with non-conforming meshes and multi-domain bodies.

A large effort has been done to compare the efficiency of FEM and meshfree in

multibody benchmarks in Chapter 6. Mechanical simulations with large displace-
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ment demonstrate that the meshfree methods are consistently more robust to ex-

treme deformations, and also give more accurate solutions for an equal number of

degrees of freedom. For a given simulation time, they also show more efficient as

the number of nodes decrease. One of the motivation problems is studied also in

this chapter: the thermal simulation of IFMIF LIPAc diagnostic slits. A novel strat-

egy for the definition of the volumetrical thermal load is described, and when used

in conjunction with the RBF shape functions, an increase in efficiency of one or-

der of magnitude is found compared with FEM. The final benchmark compares the

coupled thermo-mechanical behaviour, and similar conclusions are drown. A linear

thermal load is used in this last case, helping the FEM to capture correctly the peak

temperature; although the meshfree methods show a minimum error converging to

the reference solution during the diffusion cooling process.

The last chapter is divided in two big sections. The first one presents three exam-

ples where meshfree allow to simulate systems that FEM cannot cope with—without

requiring any involved extra algorithms. The powerful approach of the generalized

joints formulation is demonstrated by a simple pin joint, where the hollow shape of

the pin is removed from the flexible component, but retaining the centre of rotation

of the joint, even when the boundary deforms. Finally, a real-world application is

analysed with the proposed formulation, showing very good comparison with finite

elements, and a greater efficiency, which overcomes a radical issue for its application

to real-time simulations.

8.3 Future work

From the lessons learnt through the thesis, the following research lines are pro-

posed to continue investigating and extending the meshfree applications in multi-

body dynamics:

1. Compare the accuracy and efficiency of other meshfree shape functions, such

as Maximum Entropy interpolants.

2. Further extend the contact formulation to take advantage also of the smooth

discrete shape of the boundary provided by meshfree functions.

3. Fully meshless methods can be also applied by implementing other integra-

tion techniques, such as nodel collocation with strain smoothing stabilization.

4. Investigate and apply discretization refinement algorithms and specialized in-

tegrator schemes (variable step-size, energy-momentum conserving, predictor-

corrector, etc) to improve accuracy, robustness, and control of the numerical

error during the simulation.
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5. Extend the formulation with other nonlinear material models, especially with

localized plastic deformation. This study could be done also using local up-

dates in the shape functions when the deformation of a given integration point

is excessive.

6. Implement the methods in massively parallel computing systems. As the main

bottleneck has been identified to be the computation and assembly of the tan-

gent matrix, adapting the formulation to run in shared memory devices such

as GPUs and co-processors can greatly increase their efficiency.

7. Develop methods and algorithms to optimize the shape functions definition:

from the neighbour search process, to the optimal number of supporting nodes,

and the selection of the kernel function type and parameters.

8. Automatize the process from the CAD modelling stage to the final simulation

run. Meshfree methods are extremely well suited for this task, as the pose very

little requirements in the discrete integration grid. Also, in case its necessary

to cope with varied geometries, the nodes defining the dynamics of the sys-

tem can be erased, added, or modified very easily, allowing a straightforward

implementation of discretization algorithms. Automating the joint definition

between different bodies is also feasible, as it has been demonstrated that the

constraints can be formulated independently of the discrete form of the joined

bodies.
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Contact forces with

varying surface

normal A
A.1 2D case

The computation of the contact forces is defined by the potential detailed in

section 4.5. The formulation of the first and second of its gradients when the normal

vector is not constant can be calculated as follows:

∂Φ
∂x0

=
0.5 (x1 − x0) ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))2(

(y1 − y0)2 + (x1 − x0)2
)2

+
0.5 (2y2 − 2y1) ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))

(y1 − y0)2 + (x1 − x0)2

∂Φ
∂y0

=
0.5 (y1 − y0) ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))2(

(y1 − y0)2 + (x1 − x0)2
)2

−
1.0x2 ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))

(y1 − y0)2 + (x1 − x0)2

∂Φ
∂x1

=
0.5 (2y1 − 2y2) ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))

(y1 − y0)2 + (x1 − x0)2

−
0.5 (x1 − x0) ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))2(

(y1 − y0)2 + (x1 − x0)2
)2
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∂Φ
∂y1

=
0.5 (2x2 + 2x1 − 2x0) ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))

(y1 − y0)2 + (x1 − x0)2

−
0.5 (y1 − y0) ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))2(

(y1 − y0)2 + (x1 − x0)2
)2

∂Φ
∂x2

=
1.0 (y1 − y0) ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))

(y1 − y0)2 + (x1 − x0)2

∂Φ
∂y2

=
1.0 (x0 − x1) ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))

(y1 − y0)2 + (x1 − x0)2

∂2Φ

∂x2
0

= −
0.5 ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))2(

(y1 − y0)2 + (x1 − x0)2
)2

+
2.0 (x1 − x0)2 ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))2(

(y1 − y0)2 + (x1 − x0)2
)3

+
2.0 (x1 − x0) (2y2 − 2y1) ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))(

(y1 − y0)2 + (x1 − x0)2
)2

+
0.5 (2y2 − 2y1)2

(y1 − y0)2 + (x1 − x0)2

∂2Φ

∂x0∂x1
=

0.5 ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))2(
(y1 − y0)2 + (x1 − x0)2

)2

−
2.0 (x1 − x0)2 ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))2(

(y1 − y0)2 + (x1 − x0)2
)3

−
1.0 (x1 − x0) (2y2 − 2y1) ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))(

(y1 − y0)2 + (x1 − x0)2
)2

+
1.0 (x1 − x0) (2y1 − 2y2) ((x0 − x1) (2y2 − y1 − y0) + (2x2 + x1 − x0) (y1 − y0))(

(y1 − y0)2 + (x1 − x0)2
)2

+
0.5 (2y1 − 2y2) (2y2 − 2y1)

(y1 − y0)2 + (x1 − x0)2



Verification codes B
B.1 Mechanical formulation

B.1.1 3-node triangle mechanical static

Code in Python for verification� �
1 #!/usr/bin/env python

2

3 import numpy as np

4 np.set_printoptions(precision=1)

5

6 # Calculate matrices and static response of the 1triangle geometry

7

8 # Material properties

9 density=7850.;

10 young=0.7E6;

11 poisson=0.3;

12

13 # Geometry

14 x1=0.; y1=0.; z1=0.;

15 x2=1.; y2=0.; z2=0.;

16 x3=0.; y3=1.; z3=0.;

17

18 a1A = x2*y3-x3*y2

19 b1A = y2-y3

20 c1A = x3-x2

21

22 a2A = x3*y1-x1*y3

23 b2A = y3-y1

24 c2A = x1-x3
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25

26 a3A = x1*y2-x2*y1

27 b3A = y1-y2

28 c3A = x2-x1

29

30 Area = .5*(a1A+a2A+a3A)

31 print("Area = " + str(Area))

32

33 Bt=np.array(

34 [[b1A, 0., c1A],

35 [0., c1A, b1A],

36 [b2A, 0., c2A],

37 [0, c2A, b2A],

38 [b3A, 0., c3A],

39 [0., c3A, b3A]])

40

41 B=np.transpose(Bt)

42 print("B = ")

43 print B

44

45 kcom = young / (1 - pow(poisson, 2) )

46 D = kcom*np.array(

47 [[1., poisson, 0.],

48 [poisson, 1., 0.],

49 [0., 0, (1.-poisson)/2.]])

50 print("D = ")

51 print D

52

53 K = 1./(4.*Area) * np.dot(np.dot(Bt, D), B)

54

55 print("K = ")

56 print(K)

57

58 # Consistent capacity matrix

59 MA = np.array(

60 [[2., 0., 1., 0., 1., 0.],

61 [0., 2., 0., 1., 0., 1.],

62 [1., 0., 2., 0., 1., 0.],

63 [0., 1., 0., 2., 0., 1.],

64 [1., 0., 1., 0., 2., 0.],

65 [0., 1., 0., 1., 0., 2.]])

66 # Lumped capacity matrix:

67 #MA = np.asarray(

68 #[[4., 0., 0.],

69 #[0., 4., 0.],
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70 #[0., 0., 4.]])

71 M = density*Area/12.*MA

72 print("M = ")

73 print(M)

74

75 gravity=np.array([0,1,0,1,0,1])

76

77 fext=-np.dot(M,gravity)

78 print("Fext = ")

79 print(fext)

80

81 # Static equilibrium, nodes 0 and 2 eliminated:

82 Kff=K[2:4,2:4] # Free DoF K, only last two rows and columns

83 print("Kff = ")

84 print(Kff)

85

86 fextf=fext[2:4] # Free DoF loads

87 print("Fextf = ")

88 print(fextf)

89

90 uf = np.linalg.solve(Kff,fextf)

91

92 Kcf=K[[0,1,4,5]][:,[2,3]]

93 print("Kcf = ")

94 print(Kcf)

95

96 print(fext[[0,1,4,5][:]])

97

98 fextc = fext[[0,1,4,5][:]] - np.dot(Kcf,uf)

99 print("Reactions = ")

100 print(fextc)

101

102 np.set_printoptions(formatter={’float’: lambda x: format(x, ’6.3E’)})

103 print("uf = ")

104 print(uf)

105

106 u=np.array([])

107 u.resize(6)

108 u[2:4]=uf

109 print("u = ")

110 print(u)

111

112 print("Deformation = ")

113 print(np.dot(B,u))

114
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115 print("Stress = ")

116 print(np.dot(np.dot(D,B),u))� �
Output of the previous script:� �

1 Area = 0.5

2 B =

3 [[-1. 0. 1. 0. 0. 0.]

4 [ 0. -1. 0. 0. 0. 1.]

5 [-1. -1. 0. 1. 1. 0.]]

6 D =

7 [[ 769230.8 230769.2 0. ]

8 [ 230769.2 769230.8 0. ]

9 [ 0. 0. 269230.8]]

10 K =

11 [[ 519230.8 250000. -384615.4 -134615.4 -134615.4 -115384.6]

12 [ 250000. 519230.8 -115384.6 -134615.4 -134615.4 -384615.4]

13 [-384615.4 -115384.6 384615.4 0. 0. 115384.6]

14 [-134615.4 -134615.4 0. 134615.4 134615.4 0. ]

15 [-134615.4 -134615.4 0. 134615.4 134615.4 0. ]

16 [-115384.6 -384615.4 115384.6 0. 0. 384615.4]]

17 M =

18 [[ 654.2 0. 327.1 0. 327.1 0. ]

19 [ 0. 654.2 0. 327.1 0. 327.1]

20 [ 327.1 0. 654.2 0. 327.1 0. ]

21 [ 0. 327.1 0. 654.2 0. 327.1]

22 [ 327.1 0. 327.1 0. 654.2 0. ]

23 [ 0. 327.1 0. 327.1 0. 654.2]]

24 Fext =

25 [ -0. -1308.3 -0. -1308.3 -0. -1308.3]

26 Kff =

27 [[ 384615.4 0. ]

28 [ 0. 134615.4]]

29 Fextf =

30 [ -0. -1308.3]

31 Kcf =

32 [[-384615.4 -134615.4]

33 [-115384.6 -134615.4]

34 [ 0. 134615.4]

35 [ 115384.6 0. ]]

36 [ -0. -1308.3 -0. -1308.3]

37 Reactions =

38 [-1308.3 -2616.7 1308.3 -1308.3]

39 uf =

40 [0.000E+00 -9.719E-03]

41 u =
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42 [0.000E+00 0.000E+00 0.000E+00 -9.719E-03 0.000E+00 0.000E+00]

43 Deformation =

44 [0.000E+00 0.000E+00 -9.719E-03]

45 Stress =

46 [0.000E+00 0.000E+00 -2.617E+03]� �
B.2 Thermal formulation

B.2.1 3-node triangle thermal static

Code in Python for verification� �
1

2 #!/usr/bin/env python

3

4 import numpy as np

5 np.set_printoptions(precision=1)

6

7 # Calculate matrices and first step of the 1triangle geometry

8

9 # Material properties

10 density=1750.;

11 capacity=1348.;

12 kappa=224.;

13

14 # Geometry

15 x1=0.; y1=0.; z1=0.;

16 x2=1.; y2=0.; z2=0.;

17 x3=1.; y3=1.; z3=0.;

18 # Equilateral

19 #x1=0.; y1=0.; z1=0.;

20 #x2=1.; y2=0.; z2=0.;

21 #x3=0.5; y3=np.sqrt(3.)/2.; z3=0.;

22

23 a1A = x2*y3-x3*y2

24 b1A = y2-y3

25 c1A = x3-x2

26

27 a2A = x3*y1-x1*y3

28 b2A = y3-y1

29 c2A = x1-x3

30

31 a3A = x1*y2-x2*y1

32 b3A = y1-y2

33 c3A = x2-x1
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34

35 Area = .5*(a1A+a2A+a3A)

36 print("Area = " + str(Area))

37

38 H = kappa/4./Area* np.asarray(

39 [[b1A**2+c1A**2, b1A*b2A+c1A*c2A, b1A*b3A+c1A*c3A],

40 [b1A*b2A+c1A*c2A, b2A**2+c2A**2, b2A*b3A+c2A*c3A],

41 [b1A*b3A+c1A*c3A, b2A*b3A+c2A*c3A, b3A**2+c3A**2]])

42 print("H = ")

43 print(H)

44

45 # Static equilibrium, eq 1 eliminated:

46 Hc=H[1:3,1:3] # Constrained H, only last two rows and columns

47 print("Hc = ")

48 print(Hc)

49

50 # External heat, eq 1 eliminated, Qc

51 Qc = np.asarray([0., 2.5e6])

52

53 # H*T1 = Q

54 T1 = np.linalg.solve(Hc,Qc)

55 print("T1 = ")

56 print(T1)� �
Output of the previous script:� �

1 Area = 0.5

2 H =

3 [[ 112. -112. 0.]

4 [-112. 224. -112.]

5 [ 0. -112. 112.]]

6 Hc =

7 [[ 224. -112.]

8 [-112. 112.]]

9 T1 =

10 [ 22321.4 44642.9]� �
B.2.2 Thermal dynamic

Code in Python for verification� �
1 #!/usr/bin/env python

2

3 import numpy as np

4 np.set_printoptions(precision=1)

5
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6 # Calculate matrices and first step of the 1triangle geometry

7

8 # Material properties

9 density=1750.;

10 capacity=1348.;

11 kappa=224.;

12

13 # Geometry

14 x1=0.; y1=0.; z1=0.;

15 x2=1.; y2=0.; z2=0.;

16 x3=1.; y3=1.; z3=0.;

17

18 a1A = x2*y3-x3*y2

19 b1A = y2-y3

20 c1A = x3-x2

21

22 a2A = x3*y1-x1*y3

23 b2A = y3-y1

24 c2A = x1-x3

25

26 a3A = x1*y2-x2*y1

27 b3A = y1-y2

28 c3A = x2-x1

29

30 Area = .5*(a1A+a2A+a3A)

31 print("Area = " + str(Area))

32

33 H = kappa/4./Area* np.asarray(

34 [[b1A**2+c1A**2, b1A*b2A+c1A*c2A, b1A*b3A+c1A*c3A],

35 [b1A*b2A+c1A*c2A, b2A**2+c2A**2, b2A*b3A+c2A*c3A],

36 [b1A*b3A+c1A*c3A, b2A*b3A+c2A*c3A, b3A**2+c3A**2]])

37

38 print("H = ")

39 print(H)

40

41 # Consistent capacity matrix

42 CA = np.asarray(

43 [[2., 1., 1.],

44 [1., 2., 1.],

45 [1., 1., 2.]])

46 # Lumped capacity matrix:

47 #CA = np.asarray(

48 #[[4., 0., 0.],

49 #[0., 4., 0.],

50 #[0., 0., 4.]])
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51 C = density*Area*capacity/12.*CA

52 print("C = ")

53 print(C)

54

55 # First step integration, BDF-1:

56 # T(n+1) = T(n) + h*Tdot(n+1)

57 # Integrator step, h

58 h=0.001

59 # External heat, Q

60 Q = np.asarray([0., 0., 2.5e6])

61

62 # (C+h*H)Tdot = Q

63 Tdot1 = np.linalg.solve(np.add(C, h*H),Q)

64 print("Tdot1 = ")

65 print(Tdot1)

66

67 T1 = h*Tdot1

68 np.set_printoptions(precision=4)

69 print("T1 = ")

70 print(T1)

71

72 # Integration directly in order 0:

73 T01 = np.linalg.solve(1/h*C,Q)

74 print("T01 = ")

75 print(T01) # Same result as T1� �
Output of the previous script:� �

1 Area = 0.5

2 H =

3 [[ 112. -112. 0.]

4 [-112. 224. -112.]

5 [ 0. -112. 112.]]

6 C =

7 [[ 196583.3 98291.7 98291.7]

8 [ 98291.7 196583.3 98291.7]

9 [ 98291.7 98291.7 196583.3]]

10 Tdot1 =

11 [ -6.4 -6.4 19.1]

12 T1 =

13 [-0.0064 -0.0064 0.0191]

14 T01 =

15 [-0.0064 -0.0064 0.0191]� �
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