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DOCTORAL THESIS

Advances in global instability computations:

from incompressible to hypersonic flow

by

Pedro Paredes

Aeronautical Engineer

Co-advisors

Vassilis Theofilis and Ardeshir Hanifi

Madrid, March 2014



This page intentionally left blank



 
 
 

 
 
 
 
 

 
 
 
 
 Tribunal nombrado por el Sr. Rector Magfco. de la Universidad Politécnica de 
Madrid, el día...............de.............................de 20.... 
 

Presidente:         
 

Vocal:           
   

Vocal:          
 

Vocal:          
 

Secretario:         
 

Suplente:         
 

Suplente:         
 
 
 
Realizado el acto de defensa y lectura de la Tesis el día..........de........................de 20 ...  
en la E.T.S.I. /Facultad.................................................... 
 
Calificación  ..................................................  
 
EL PRESIDENTE                 LOS VOCALES 
 
 
 
 
 
 

 
 
 
 

EL SECRETARIO 



This page intentionally left blank



Abstract

The present thesis constitutes a step forward in advancing the frontiers of knowledge of fluid
flow instability from a physical point of view, as a consequence of having been successful
in developing groundbreaking methodologies for the efficient and accurate computation of
the leading part of the spectrum pertinent to multi-dimensional eigenvalue problems (EVP)
governing instability of flows with two or three inhomogeneous spatial directions.

In the context of the numerical work presented in this thesis, the discretization of the spa-
tial operator resulting from linearization of the Navier-Stokes equations around flows with two
or three inhomogeneous spatial directions by variable-high-order stable finite-difference meth-
ods has permitted a speedup of four orders of magnitude in the solution of the corresponding
two- and three-dimensional EVPs. This improvement of numerical performance has been
achieved thanks to the high-sparsity level offered by the high-order finite-difference schemes
employed for the discretization of the operators. This permitted use of efficient sparse linear
algebra techniques without sacrificing accuracy and, consequently, solutions being obtained
on typical workstations, as opposed to the previously employed supercomputers.

Besides solution of the two- and three-dimensional EVPs of global linear instability, this
development paved the way for the extension of the (linear and nonlinear) Parabolized Sta-
bility Equations (PSE) to analyze instability of flows which depend in a strongly-coupled
inhomogeneous manner on two spatial directions and weakly on the third. Precisely the ex-
tensibility of the novel PSE-3D algorithm developed in the framework of the present thesis
to study nonlinear flow instability permits transition prediction in flows of industrial interest,
thus extending the classic PSE concept which has been successfully employed in the same
context to boundary-layer type of flows over the last three decades.

Typical examples of incompressible flows, the instability of which was analyzed in the
present thesis without the need to resort to the restrictive assumptions used in the past,
range from isolated vortices, and systems thereof, in which axial homogeneity is relaxed to
consider viscous diffusion, as well as turbulent swirling jets, the instability of which is exploited
in order to improve flame-holding properties of combustors. The instability of compressible
subsonic and supersonic leading edge flows has been solved, and the wake of an isolated
roughness element in a supersonic and hypersonic boundary-layer has also been analyzed
with respect to its instability: excellent agreement with direct numerical simulation results
has been obtained in all cases. Finally, instability analysis of Mach number 7 flow around an
elliptic cone modeling the HIFiRE-5 flight test vehicle has unraveled flow instabilities near
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the minor-axis centerline, results comparing favorably with flight test predictions.
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Resumen

Esta tesis constituye un gran avance en el conocimiento del estudio y análisis de inestabili-
dades hidrodinámicas desde un punto de vista f́ısico y teórico, como consecuencia de haber
desarrollado innovadoras técnicas para la resolución computacional eficiente y precisa de la
parte principal del espectro correspondiente a los problemas de autovalores (EVP) multi-
dimensionales que gobiernan la inestabilidad de flujos con dos o tres direcciones espaciales
inhomogéneas, denominados problemas de estabilidad global lineal.

En el contexto del trabajo de desarrollo de herramientas computacionales presentado en
la tesis, la discretización mediante métodos de diferencias finitas estables de alto orden de
los EVP bidimensionales y tridimensionales que se derivan de las ecuaciones de Navier-Stokes
linealizadas sobre flujos con dos o tres direcciones espaciales inhomogéneas, ha permitido
una aceleración de cuatro órdenes de magnitud en su resolución. Esta mejora de eficiencia
numérica se ha conseguido gracias al hecho de que usando estos esquemas de diferencias finitas,
técnicas eficientes de resolución de problemas lineales son utilizables, explotando el alto nivel
de dispersión o alto número de elementos nulos en las matrices involucradas en los problemas
tratados. Como más notable consecuencia cabe destacar que la resolución de EVPs multidi-
mensionales de inestabilidad global, que hasta la fecha necesitaban de superordenadores, se
ha podido realizar en ordenadores de sobremesa.

Además de la solución de problemas de estabilidad global lineal, el mencionado desarrollo
numérico facilitó la extensión de las ecuaciones de estabilidad parabolizadas (PSE) lineales
y no lineales para analizar la inestabilidad de flujos que dependen fuertemente en dos direc-
ciones espaciales y suavemente en la tercera con las ecuaciones de estabilidad parabolizadas
tridimensionales (PSE-3D). Precisamente la capacidad de extensión del novedoso algoritmo
PSE-3D para el estudio de interacciones no lineales de los modos de estabilidad, desarrollado
ı́ntegramente en esta tesis, permite la predicción de transición en flujos complejos de gran
interés industrial y por lo tanto extiende el concepto clásico de PSE, el cuál ha sido empleado
exitosamente durante las pasadas tres décadas en el mismo contexto para problemas de capa
ĺımite bidimensional.

T́ıpicos ejemplos de flujos incompresibles se han analizado en este trabajo sin la necesidad
de recurrir a restrictivas presuposiciones usadas en el pasado. Se han estudiado problemas
vorticales como es el caso de un vórtice aislado o sistemas de vórtices simulando la estela
de alas, en los que la homogeneidad axial no se impone y aśı se puede considerar la difusión
viscosa del flujo. Además, se ha estudiado el chorro giratorio turbulento, cuya inestabilidad
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se utiliza para mejorar las caracteŕısticas de funcionamiento de combustores. En la tesis se
abarcan adicionalmente problemas de flujos compresibles. Se presenta el estudio de inesta-
bilidad de flujos de borde de ataque a diferentes velocidades de vuelo. También se analiza
la estela formada por un elemento rugoso aislado en capa ĺımite supersónica e hipersónica,
mostrando excelentes comparaciones con resultados obtenidos mediante simulación numérica
directa. Finalmente, nuevas inestabilidades se han identificado en el flujo hipersónico a Mach
7 alrededor de un cono eĺıptico que modela el veh́ıculo de pruebas en vuelo HIFiRE-5. Los
resultados comparan favorablemente con experimentos en vuelo, lo que subraya aún más el
potencial de las metodoloǵıas de análisis de estabilidad desarrolladas en esta tesis.
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Introduction

Linear stability theory, in part motivated by research into laminar-turbulent flow transition,
has occupied a substantial part of fluid mechanics research for over a century. Numerical
expediency has confined the bulk of the efforts into analyzing one-dimensional shear flows.
The classic linear stability theory of Tollmien [258] is mainly concerned with individual si-
nusoidal waves propagating in the boundary-layer parallel to the wall. In this context, the
parallel flow approximation is assumed, resulting in an ODE-based eigenvalue problem (EVP),
which may be expressed as the Orr-Sommerfeld and Squire equations (OSE) [57, 162, 222].
The prediction of boundary-layer transition based on solutions of the OSE remains the only
theoretically-founded approach in use in industry presently. However, discrepancies exist with
experimental results, especially at the tip of the neutral curve of Blasius flow, as well as in
boundary-layer flows in the presence of pressure gradients. The origin of the discrepancies was
traced back to the existence of a small but not negligible wall-normal basic flow velocity com-
ponent. An instability analysis concept of the multiple-scales class, which relaxes the parallel
flow approximation was introduced in the 1990s of last century [22, 101, 146], denominated
Parabolized Stability Equations (PSE), owing to the change in the mathematical nature that
the multiple-scales approach introduces to the linearized stability equations. A key advantage
of the PSE over the OSE types of approaches is that it permits natural introduction of nonlin-
ear mode interaction and has been shown to be in excellent agreement with spatial DNS both
on flat-plate boundary layer [22] and vortex flows [269]. In-depth studies of the classic PSE
have appeared in the literature in the course of the past two decades [22, 37, 102, 147, 148];
see Herbert [103] for a review.

In a manner conceptually analogous to the OSE, global linear stability theory may consider
basic flows which are inhomogeneous in two (rather than one) spatial directions. The am-
plitude functions of the associated small-amplitude perturbations are now inhomogeneous in
the same two spatial directions upon which the basic flow depends and are periodic along the
third and are obtained from numerical solution of the pertinent two-dimensional (BiGlobal)
EVP. The three-dimensional (TriGlobal) EVP has also been solved in a linear stability con-
text, when no homogeneous directions existing in the base state. Three decades of research
into this type of global instability analysis has already produced a wealth of information; see
Theofilis [250, 251] for a review.

The pioneering studies of inviscid instability of a vortex by Pierrehumbert [194], viscous
instability analyses in the wake of the circular cylinder by Zebib [279] and the rectangular
duct by Tatsumi and Yoshimura [245] fall in the category of flows with two non-periodic
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spatial directions; all three works employed spectral methods for the spatial discretization of
the linearized operator. Almost simultaneously, finite-element methods were also used for the
solution of the two-dimensional EVP by Jackson [115] and Morzyński and Thiele [179], while
finite-volume methods soon followed [55]. Although finite-element or finite-volume methods
are not restricted to the single-domain two-dimensional grids employed in the early spectral
analyses, their low formal order of accuracy needs to be compensated in terms of grid density:
should sharp gradients need to be resolved, as the case is with the amplitude functions of
global eigenmodes at increasingly high Reynolds numbers, one resorts to using unstructured
meshes of ever-increasing density in order to achieve convergence [e.g. 80]. In doing so, one
effectively trades off the efficiency of a high-order method in favor of the flexibility offered by
the unstructured mesh discretization. The case is thus set for high-order accurate, flexible
and efficient numerical methods in order to solve the BiGlobal EVP. Such an approach has
been introduced in the seminal work of three-dimensional instability in the wake of a circular
cylinder by Barkley and Henderson [15, 99] in the form of spectral-element discretization on
structured meshes. The first application of a spectral/hp−element method [120] to the study
of a global instability problem on unstructured meshes was that of Theofilis et al. [253], who
recovered instability in the wake of a NACA0012 airfoil as the leading BiGlobal eigenmode of
the steady wake flow.

Regarding eigenspectrum computations, early analyses relied on full eigenspectrum com-
putation [195, 279], which scales as O(M2) and O(M3) with regard to memory and CPU
time requirements, respectively, if a total number of M degrees of freedom are used for the
spatial discretization of the linearized operator. Both estimates present a severe limitation
for full eigenspectrum computations in both two and three simultaneously discretized spatial
directions. Access to the entire eigenspectrum of global EVPs is thus routinely sacrificed in
present-day global instability analysis algorithms, which employ some form of subspace iter-
ation to recover a small subset of the eigenspectrum. This practice is justified since, from a
physical point of view only a relatively small part of the leading perturbations, those close to
the origin, is relevant to flow instability. On the other hand, access to the smallest eigenval-
ues implies inversion of the discretized linear operator; a common practice to avoid inversion,
the cost of which is also O(M2) and O(M3) if a direct dense method is used, is to emu-
late the action of the inverse operator during the subspace creation, without ever forming or
inverting the operator. Well-established practices in the latter context, collectively referred
to as time-stepping methods, have been introduced by Eriksson and Rizzi [61] and Edwards
et al. [59] and are in use in modern global instability analysis, such as the three-dimensional
global instability analyses of Tezuka and Suzuki [247] and Bagheri et al. [11], or the modal
and non-modal work of Blackburn et al. [24]. When considering non-modal linear analysis or
transient growth, the theory pertinent to one-dimensional base flows is well developed [222]
(mainly in the incompressible regime, except some works in the compressible regime as for
example [92]), but little transient growth analysis of essentially multi-dimensional flows has
been reported in the literature; the works of Arkevik et al. [9], Blackburn et al. [23, 25],
Heaton et al. [93] and Abdessemed et al. [1] are first examples in this class of analysis, all of
them in the incompressible limit, as well as the recent work of Schmidt and Rist [224] in the
compressible regime. The non-modal theory use to rely in the computation of the singular
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value decomposition (SVD) instead of solving an EVP when considering modal theory.

Nevertheless, it may be argued that forming the matrix has certain advantages over time-
stepping, the main ones being simplicity in the formation of the global EVP or SVD, and
flexibility in extending the analysis into regimes that would require the availability of entirely
different flow solvers, if the time-stepping approach were to be used. When the matrix is
formed, it is straightforward to include in the same code compressibility effects in subsonic
or supersonic flow, extend the analysis into the hypersonic regime by implementing a few
additional terms in an otherwise unchanged algorithm, or include new physics, such as non-
Newtonian dynamics or magnetohydrodynamics, all by appropriately modifying the linearized
operator. The penalty to be paid is of course the need to store and operate large matrices
which, as the resolution requirements increase, can quickly be unmanageable in all but the
largest supercomputers.

For a given spatial discretization method within a matrix forming context, straightfor-
ward serial (see [250] and Supplemental Appendix 3 of [251] for an overview), as well as
parallel computations (ranging from a modest number of processors [47] up to massively par-
allel EVP solutions [131, 209–211]) have been used for the recovery of (part of) the global
eigenspectrum. A key efficiency improvement was proposed by Crouch et al. [47] who first em-
ployed sparse direct solvers for this class of problems. In order to exploit the benefits of using
sparse solvers, Merle et al. [176] compared Padé [140] and Dispersion-Relation-Preserving [241]
high-order finite-difference spatial discretization schemes to the solution of the incompressible
BiGlobal EVP and concluded that from a combined accuracy and efficiency perspective the
DRP schemes offer the best alternative for the solution of this global EVP.

The most general case corresponds to a three-dimensional flowfield, which is inhomoge-
neous in all three spatial directions. A numerical solution of the PDE-based EVP resulting
from the discretization of the three coupled direction, referred to a TriGlobal stability anal-
ysis, is possible but prohibitively expensive nowadays for most applications of interest. A
parabolized variation of the three-dimensional stability equations (PSE-3D) can be derived
when the basic flow can be assumed to experience slow variations along one of the three spatial
directions. Examples of such flows are corner flows [68, 223], square or serrated-nozzle jets
[130], missile-shaped bodies, i.e. circular and elliptic cones- or systems of trailing-vortices in
wakes. In this manner, the three-dimensional EVP is replaced by an initial value problem that
is solved using a marching integration along the slow direction. In an analogous manner to
the extension of the OSS equations to the conventional PSE, the BiGlobal analysis equations
are extended to the PSE-3D analysis, which appears to be the most efficient methodology for
the study of wide branch of complex flows, as the examples mentioned above.

The linear PSE-3D methodology, formulated in the incompressible limit in Galionis and
Hall [68] [see also 31, 32, 189] and for the first time in the compressible flow regime in [52], as-
sumes the existence of two scales along the streamwise spatial direction: a slow one, on which
the base state varies, and a fast one, along which linear and nonlinear wave-like perturbations
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develop. Base flow and disturbances are inhomogeneous functions of the two coordintates of
the cross-sectional planes, and hence the two directions need to be resolved in a coupled man-
ner. Therefore, the PSE-3D methodology resolves a PDE-based instability problem at each
streamwise location. After initialising the PSE-3D with solutions of the spatial BiGlobal EVP
at a given cross-section of the geometry analysed [189], the full three-dimensional disturbance
equations are marched along the slowly varying spatial direction, solving the aforementioned
PDE-based stability problem (with two-dimensional eigenfunctions) at each station. It should
be noted that the term PSE-3D has been used in the literature to describe the standard PSE
[103] as applied to three-dimensional boundary-layers [as in 180]. Here, the term PSE-3D
is redefined in the sense of Broadhurst et al. [32] and [189] to denote an instability analysis
methodology in which the base flow is strongly dependent on two spatial directions.

The typical modal instability theory based on linear ordinary differential equations of
OSE or the linear partial differential equations of BiGlobal analyses neglect the interaction
between modes. Hence, its application is restricted to regions of small disturbance amplitude,
i.e. regions where modes develop practically independent from each. Nonlocal nonlinear
methods based on PSE, as the DLR/FOI transition analysis code NOLOT/PSE [91, 95, 97]
do not require linearization. Therefore, they also model the nonlinear early stages of laminar-
turbulent breakdown. The same methodology used for the addition of nonlinear effects in the
PSE is extended here for the PSE-3D, enabling the study of complex three-dimensional flows
that so far were only accessible to the much more computationally expensive full Navier-Stokes
spatial evolving simulations.

Besides the instability analysis theory and several applications, the computation of base
flows is also treated in this thesis. It is well-known that instability analysis results are strongly
dependent on the details of the base flow [251]. Small differences in the base flow can lead
to remarkable differences in the predicted amplifications, due to the exponential nature of
linear modal instability, while also leading to erroneous predictions of the relevant frequencies
of the small amplitude perturbations. The recovery of accurate base flows using DNS in
circumstances in which the flow is steady per se -and is thus, stable-, or along with a Newton-
iteration technique [262] in those cases in which an unsteady flow would exist, though feasible,
may require considerable computational resources for the three-dimensional, moderate-to-
high Reynolds number flows of industrial interest. In those flows in which a predominant
spatial direction exists, along which the mean properties of the flowfield vary slowly while fast
variations are observed on the cross-sectional planes, simplified approaches may be available
in order to circumvent the large computational cost. The geometrical particularities of this
kind of flows can be exploited in order to devise ad hoc approaches for the computation of
base flows, that result more efficient for the problem at hand than using DNS. Along the
present thesis, an algorithm for the accurate and efficient computation of incompressible and
compressible steady laminar base flows in which strong flow variations exist along two spatial
directions, while a mild variation can be assumed along the third. The algorithm is based on
the Parabolic Navier-Stokes (PNS) equations [217]. Since their appearance, these equations
have been used to successfully compute supersonic and hypersonic, viscous flows; see [216, 244]
for a review. The incompressible version of the PNS equations were first formulated by Rubin
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and Lin [215]. One of the advantages of using PNS for the computation of base flows in an
instability analysis context, is the steadiness of the solutions obtained by definition. In this
manner, unsteadiness in the real flow will be recovered as instability of the base state in a
later instability analysis. It is important to notice that the same assumptions required to
compute the flow field through PNS are invoked in order to perform subsequent instability
analysis of these flows using PSE-3D.

The present thesis is divided into different chapters, each one addressing a differentiated
objective of the present research work:

• Chapter 1: This Chapter presents a survey of the instability theory, addressing the dif-
ferent instability approaches depending on the dimensionality of the base flow. Besides
the modal local, BiGlobal and TriGlobal analyses, attention is focused on the parabo-
lized stability equations for two- and three-dimensional flows, namely the classical PSE
and the PSE-3D respectively.

• Chapter 2: In this Chapter different numerical methods for matrix formation approach
are briefly described. Special attention is firstly devoted to the spatial discretization.
Then, the equations used for analytical grid transformation, the eigenvalue computation
algorithm and the solution procedure for PSE-3D are explained.

• Chapter 3: A unified solution framework is presented for one-, two- or three-dimensional
complex non-symmetric EVPs, respectively governing linear modal instability of fluid
flows in rectangular domains having two, one or no homogeneous spatial directions.
The solution algorithm is based on subspace iteration in which the spatial discretization
matrix is formed, stored and inverted serially. Results delivered by spectral colloca-
tion based on the Chebyshev-Gauss-Lobatto (CGL) points and a suite of high-order
finite-difference methods comprising the previously employed for this type of work
Dispersion-Relation-Preserving (DRP) and Padé finite-difference schemes, as well as
the Summation-by-parts (SBP) and the new high-order finite-difference scheme of or-
der q (FD-q) have been compared from the point of view of accuracy and efficiency in
standard validation cases of temporal local and BiGlobal linear instability. The FD-q
method has been found to significantly outperform all other finite difference schemes in
solving classic linear local, BiGlobal, and TriGlobal EVPs, as regards both memory and
CPU time requirements. Results shown in the present study disproves the paradigm
that spectral methods are superior to finite difference methods in terms of computational
cost, at equal accuracy, FD-q spatial discretization delivering a speedup of O(104).

• Chapter 4: Flows of practical significance exist, like systems of trailing vortices or the
flow around the nose of an aerospace vehicle and the associated circular- and elliptic-
base cone models, which are inhomogeneous in two and weakly dependent along the
third spatial direction. Exploiting these characteristics, an integration of the Navier-
Stokes equations using the PNS concept is proposed for the recovery of steady solu-
tions, that might be used subsequently in the scope of primary instability analyses. The
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PNS equations are first formulated In the incompressible regime in a cylindrical coordi-
nate frame, and used to calculate the solution of an isolated, axisymmetric non-parallel
(axially developing) vortex. Then, the fully three-dimensional flow corresponding to a
counter-rotating pair of non-parallel vortices is obtained by PNS. Furthermore, the PNS
equations are formulated in compressible regime using an arbitrary coordinate transfor-
mation. For verification purposes, the boundary-layer solution around a circular cone at
zero angle of attack is compared in the incompressible limit with theoretical profiles. At
supersonic speed, at which an embedded shock appears, the recovered shock wave angle
is compared with theoretical predictions in the same circular cone geometry. Finally,
the entire flow field around a 2:1 elliptic cone, including the imbedded shock and the
three-dimensional boundary-layer, is recovered at Mach numbers 3 and 4.

• Chapter 5: In the literature, the flows addressed in the previous Chapter, which are in-
homogeneous in two and weakly dependent on the third spatial direction, have been ana-
lyzed by simplified methodologies those do not take in account the three-dimensionality
or by the very expensive, in terms of computational requirements, spatially evolving
DNS. Exploiting the properties of these problems, the PSE-3D, arise to be the best can-
didates for their instability analysis. Focusing on the incompressible vortex flows, the
standard PSE in cylindrical coordinates is used along with the non-parallel vortex base
flow computed by PNS, as a validation test for the PSE-3D algorithm presented herein.
The fully three-dimensional counter-rotating vortex-pair flow is analyzed through PSE-
3D.

• Chapter 6: In this Chapter, the global mode in a strongly swirling turbulent combus-
tor flow undergoing vortex breakdown is experimentally and analytically investigated.
The experiment shows a self-excited global flow oscillation at a well-defined frequency.
Based on the mean flow field, a global hydrodynamic stability analysis is carried out.
The dampening effect of the Reynolds stresses are accounted for by an estimated eddy
viscosity. The global analysis successfully predict the frequency of the global mode and
yields the global shape of the instability.

• Chapter 7: The linear instability induced by an isolated roughness element in a boundary-
layer at Mach 2.5 and 6 is analyzed in this Chapter through direct numerical simulations,
aided by spatial BiGlobal and three-dimensional parabolized (PSE-3D) stability analy-
ses. It is important to understand transition in this flow regime since the process can
be slower than in incompressible flow and is critical to prediction of local heat loads
on next-generation flight vehicles. The results show that the roughness element, with
a height of the order of the boundary-layer displacement thickness, generates a con-
vectively unstable wake, which is composed of a low velocity streak surrounded by a
three-dimensional high-shear layer and is able to sustain the rapid growth of a number
of instability modes. The most unstable of these modes are associated with varicose or
sinuous deformations of the low-velocity streak; they are a consequence of the instabil-
ity developing in the three-dimensional shear layer as a whole (the varicose mode) or
in the lateral shear layers (the sinuous mode). At the hypersonic regime, the Mach 6
case, boundary-layer modes develop at high frequencies and are also covered here. The
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independently performed Navier-Stokes, spatial BiGlobal and PSE-3D stability results
are in excellent agreement with each other, validating the use of simplified theories for
roughness-induced transition involving wake instabilities.

• Chapter 8: In this Chapter, the linear instability of the three-dimensional boundary-
layer over the HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, is
analyzed through spatial BiGlobal analysis, in a effort to understand transition and
accurately predict local heat loads on this configuration. The base state flow conditions
of Mach 7 flow at altitude of 33.0 km and unit Reynolds number 1.89 × 106 /m have
been computed using the US3D non-equilibrium solver by Gosse et al. [82]. The stabil-
ity analysis results reveal that the leading unstable modes peak on the mushroom-like
structure formed near the minor-axis meridian. On account of the three-dimensionality
of the elliptic cone boundary-layer, this produces spanwise pressure gradients, induc-
ing crossflow from the leading edge (major-axis meridian) to the centerline (minor-axis
meridian), resulting in a lift-up of low momentum boundary-layer fluid at the centerline.
An unstable fluid structure, which is composed of a low velocity streak surrounded by a
three-dimensional high-shear layer, is thus generated and is found to sustain the rapid
growth of instability modes.

• Chapter 9: In this Chapter, in an analogous manner to the addition of non-linear effects
into the conventional PSE, the linear PSE-3D are extended to predict the non-linear
development of perturbations on this kind of complex three-dimensional flows. This
new in-house developed code is used firstly on the flat-plate boundary-layer, showing
excellent agreement with PSE results, and secondly on the wake of an isolated roughness-
element imbedded in a supersonic boundary-layer.

Most of the material in the present thesis, along with additional specific details, has been
presented in the following list of publications:

• Journal Articles

– Gómez, F., Le Clainche, S., Paredes, P., Hermanns, M., Theofilis, V. (2012) “Four
decades of studying global linear instability: progress and challenges”, AIAA Jour-
nal, 50, 2731-2743.

– Paredes, P., Hermanns, M., Le Clainche, S., Theofilis, V. (2013) “Order 104

speedup in global linear instability analysis using matrix formation”, Computer
Methods in Applied Mechanics and Engineering, 253, 287-304

– De Tullio, N., Paredes, P., Sandham, N.D., Theofilis, V. (2013) “Laminar-turbulent
transition induced by a discrete roughness element in a supersonic boundary layer”,
Journal of Fluid Mechanics, 735, 613-646

– Paredes, P., Rodŕıguez, D., Theofilis, V. (2013) “Three-dimensional solutions of
trailing-vortex flows using parabolized equations”, AIAA Journal, 51(12), 2763-
2770.
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– Paredes, P., Theofilis, V. (in review) “The centerline global mode in Mach 7 flow
on the HIFiRE-5 elliptic cone”, Journal of Fluids and Structures

– Paredes, P., Terhaar, S., Oberleithner, K. and Theofilis, V. (in preparation) “On
the global instability of an isothermal swirling combustor flow”, Journal of Fluid
Mechanics

– Paredes, P., Theofilis, V., Kimmel, R. and Gosse, R. (in preparation) “Global
instability mechanisms on the HIFiRE-5 elliptic cone model flow”, Journal of Fluid
Mechanics

• Conference Papers

– De Vicente, J., Paredes, P., Valero, E. and Theofilis, V. (2011) “Wave-like distur-
bances on the downstream wall of an open cavity”, 6th AIAA Theoretical Fluid
Mechanics Conference, Honolulu, Hawaii, USA, 27-30 June 2011, AIAA 2011-3754
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– Gómez, F., Paredes, P., Gómez, R., Theofilis, V. (2012) “Global stability of cubic
and large aspect ratio three-dimensional lid-driven cavities”, 42nd AIAA Fluid
Dynamics Conference, New Orleans, Louisiana, USA, 25 - 28 June 2012, AIAA
2012-3274

– Paredes, P. and Theofilis, V. (2013) “Accurate Parabolic Navier-Stokes solutions
of the supersonic flow around and elliptic cone”, 51st AIAA Aerospace Sciences
Meeting, Grapevine, Texas, USA, 7 - 10 January 2013, AIAA 2013-0670

– Tendero, J.A., Paredes, P., Roura, M., Govindarajan, R. and Theofilis, V. (2013)
“BiGlobal and point vortex methods for the instability analysis of wakes”, 43rd
AIAA Fluid Dynamics Conference, San Diego, California, USA, 24 - 27 June 2013,
AIAA 2013-2820

– Paredes, P., Gennaro, E., Hermanns, M. and Theofilis, V. (2013) “On global linear
instability analysis of hypersonic flow around a model re-entry vehicle”, 43rd AIAA
Fluid Dynamics Conference, San Diego, California, USA, 24 - 27 June 2013, AIAA
2013-2820

– Paredes, P. and Theofilis, V. (2013) “Spatial linear global instability analysis of
the HIFiRE-5 elliptic cone model flow”, 43rd AIAA Fluid Dynamics Conference,
San Diego, California, USA, 24 - 27 June 2013, AIAA 2013-2880

xxxii



– Paredes, P. and Theofilis, V. (2014) “Traveling global instabilities on the HIFiRE-5
elliptic cone model flow”, 52nd AIAA Aerospace Science Meeting, National Harbor,
Maryland, USA, 13 - 17 January 2014, AIAA 2014-0075

– Paredes, P., Gennaro, E. and Theofilis, V. (2014) “Toward reliable and efficient
laminar-turbulent flow transition predictions in supersonic and hypersonic flows
over complex geometries”, 54th Israel Annual Conference on Aerospace Sciences,
Tel-Aviv & Haifa, Israel, 19 - 20 February 2014

– Paredes, P., De Tullio, N., Sandham, N.D. and Theofilis, V. (2014) “Instability
study of the wake behind a discrete roughness element in a hypersonic boundary-
layer”, Instability and Control of Massively Separated Flows, Prato, Italy, 4 -6
September 2013

– Tendero, J.A., Paredes, P., Roura, M., Govindarajan, R. and Theofilis, V. (2014)
“Filament vortex and global instability analysis of the Crow mode”, Instability and
Control of Massively Separated Flows, Prato, Italy, 4 - 6 September 2013

xxxiii



Introduction

xxxiv



Chapter 1

Hydrodynamic Instability

Hydrodynamic instability studies the behavior of a laminar flow field upon the introduction
of small-amplitude perturbations, in order to improve the understanding of the processes
involved in the onset of unsteadiness and the transition of laminar flow to a turbulent regime.

1.1 The equations of fluid motion

The equations governing the motion of a viscous Newtonian fluid are obtained by imposing
conservation of mass, momentum and energy. The result is a system of nonlinear partial
differential equations (PDEs), so called the Navier-Stokes equations, which can be written as

∂ρ∗

∂t
+∇ · (ρ∗u∗) = 0, (1.1)

ρ∗
[
∂u∗

∂t
+ (u∗ · ∇)u∗

]
= −∇p∗ +∇[λ∗(∇ · u∗)]

+ ∇ · [µ∗((∇u∗) + (∇u∗)T)], (1.2)

ρ∗c∗p[
∂T ∗

∂t
+ (u∗ · ∇)T∗] = ∇ · (κ∗∇T ∗) +

∂p∗

∂t
+ (u∗ · ∇)p∗

+ λ∗(∇ · u∗)2 +
µ∗

2
[(∇u∗) + (∇u∗)T]2 (1.3)

where u∗ is the velocity vector, ρ∗ the density, p∗ the pressure, T ∗ the temperature, c∗p the
specific heat, κ∗ the thermal conductivity, µ∗ the first coefficient of viscosity, and λ∗ the second
coefficient of viscosity. The equation of state is given by the perfect gas relation p∗ = ρ∗RT ∗.
Note that using the Stoke’s law λ∗ = −2/3µ∗ and the asterisk denotes dimensional quantities.

The fluid variables are non-dimensionalized as follows. Lengths are scaled by a reference
length l∗r , velocities by u∗r and temperature by T ∗r . The reference pressure is p∗r = ρ∗r(u

∗
r)

2,
the free-stream sound speed is denoted by s∗r , and γ = c∗p,r/c

∗
v,r. The resulting dimensionless

parameters are the Reynolds number, Re = ρ∗ru
∗
rl
∗
r/µ

∗
r , the Prandtl number to Pr = c∗p,rµ

∗
r/κ
∗
r ,

the Mach number M = u∗r/s
∗
r and the Eckert number Ec = (u∗r)

2/(c∗p,rT
∗
r ) = (γ − 1)M2. The

equation of state in dimensionless form becomes

p =
1

γM2
ρT (1.4)
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1. Hydrodynamic Instability

where the constant of perfect gases is fixed to γ = 1.4 and the Prandtl number Pr = 0.72.
Sutherland’s law is used for the viscosity coefficient

µ = (T )3/2 1 + S

T + S
(1.5)

with µ∗s = 1.716 × 10−5 N s/m2, T ∗s = 273.15 K and S = 110.4 K/T ∗s for air in standard
conditions. The thermal conductivity of the medium is taken equal to the viscosity coefficient
κ̄ = µ̄.

A simplification of the resulting flow equations (1.1-1.3) is obtained when considering
an incompressible flow of a Newtonian fluid. The assumption of incompressibility rules out
the possibility of sound or shock waves to occur; so this simplification is not useful if these
phenomena are of interest. The incompressible flow assumption typically holds well even
when dealing with a compressible fluid, such as air at standard sea level temperature, at low
Mach numbers (even when flowing up to about M = 0.3). Taking the incompressible flow
assumption into account and assuming constant viscosity, the Navier-Stokes equations written
in dimensionless form become

∇ · u = 0, (1.6)

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u, (1.7)

where equations (1.6) and (1.7) are called the continuity and momentum equations respec-
tively. Along the present Chapter, the stability analysis theories will be presented in Cartesian
coordinates for the incompressible flow regime for simplicity of notation. Their compressible
versions are written in the subsequent Appendices.

1.2 Instability analysis theory

The analysis of flow stability is based on the equations of motion (1.1-1.3) and monitors the
development in time and space of linear modal small-amplitude perturbations upon a given
flow through the solution of the linearized Navier-Stokes equations. In order to proceed, the
fluid variables q = (ρ, u, v, w, T )T are decomposed into a steady base flow q̄ = (ρ̄, ū, v̄, w̄, T̄ )T

and unsteady small-amplitude perturbations q̃ = (ρ̃, ũ, ṽ, w̃, T̃ )T :

q(x, t) = q̄(x) + εq̃(x, t), ε� 1. (1.8)

By introducing the previous decomposition of variables (1.8) into the governing equations
(1.1-1.3) and neglecting the non-linear terms of O(ε2) and O(ε3), the linearized Navier-Stokes
equations (LNSE) are recovered (see Appendix A). In the incompressible limit, the LNSE are
written as

∇ · ũ = 0 (1.9)
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1.2. Instability analysis theory

∂ũ

∂t
+ ū · ∇ũ + ũ · ∇ū = −∇p+

1

Re
∇2ũ (1.10)

The aforementioned LNSE can be written as initial-value-problem in the form

B(Re,M, q̄)
dq̃

dt
= A(Re,M, q̄)q̃, (1.11)

and solutions to this system of PDEs are considered.

The operators A and B are associated with the spatial discretization of the LNSE and
comprise the basic state, q̄(x) and its spatial derivatives. In case of steady basic flows,
the separability between time and space coordinates in (1.11) permits introducing a Fourier
decomposition in time through the expression q̃ = q̂ exp(−iωt), leading to the generalized
matrix eigenvalue problem (EVP)

Aq̂ = ωBq̂, (1.12)

in which matrices A and B discretize the operators A and B, respectively, and incorporate
the boundary conditions. Details on the eigenvector q̂ will be provided in what follows.
Re-writing (1.11) in matrix form as

dq̂

dt
= Cq̂, (1.13)

where C = B−1A, in which the inversion B is permissible due to its non-singular nature in
the compressible regime. The autonomous system (1.13) has the explicit solution

q̂(t) = exp(Ct) q̂(0) ≡ Φ(t)q̂(0). (1.14)

Here, q̂(0) ≡ q̂(t = 0) and the matrix exponential, Φ(t) ≡ exp(Ct), is known as the propagator
operator. In the case that the base flow has a time-periodic dependence, the propagator
operator is denoted as the monodromy matrix [120] and Floquet theory is applicable [15, 100].

The linearization of the equations of motion is correct while the disturbance amplitude
remains small enough for the non-linear terms to be negligible. This statement should be
kept in mind as the true non-linear system can become unstable under finite-amplitude dis-
turbances, under conditions in which the linearized system will stay stable. One physical
example of this is the laminar-turbulent transition originated by the transient or non-modal
growth of initially small disturbances, that can be stable in a linear approach (see Butler and
Farrell [33] for a review). Both modal- and non-modal growth may be studied by equation
(1.15), although the modal approach is addressed in computationally more efficient manner
by numerical solution of equation (1.12).

A solution of the initial value problem (1.13), which is valid for the non-normal matrices
discretizing the LNSE, distinguishes between the limits t → 0 and t → ∞; while the latter
limit may be described by the EVP (1.12), growth, σ, of an initial linear perturbation, q̂(0),
may be computed at all times via

σ2 =
〈exp(C∗t) exp(Ct)q̂(0), q̂(0)〉

〈q̂(0), q̂(0)〉 =
〈Φ∗(t)Φ(t)q̂(0), q̂(0)〉

〈q̂(0), q̂(0)〉 . (1.15)
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1. Hydrodynamic Instability

which permits the study of both modal and non-modal perturbation growth, the latter also
called transient growth, in a unified framework.

Implicit here is the definition of an inner product, (·, ·), and the associated adjoint C
∗

of
the matrix C, which discretizes the operator C.

The discussion is completed by introducing the singular value decomposition (SVD) of the
propagator operator

eCt = UΣV∗. (1.16)

Here the unitary matrices V and U respectively comprise (as their column vectors) initial
and final states, as transformed by the action of the propagator operator, while Σ is diagonal
and contains the associated growth σ as the corresponding singular value. The SVD may be
utilized to compute optimal perturbations, whose are recovered as the first column of matrix
U in equation (1.16).

The relationship between transient growth and the non-orthogonal properties of the linear
operators describing local linear flow instability in the incompressible limit for one-dimensional
problems, the so-called Orr-Sommerfeld equation (OSE), have been investigated by Trefethen
et al. [260] and Reddy et al. [199] using the concept of pseudospectrum. In addition to inves-
tigating the development of disturbances based on eigenmodes, the pseudospectrum analysis
is adapted to the present context in order to explore the potential for transient growth due
to non-orthogonality.

Analysis proceeds by computing the pseudospectrum of the matrix discretizing the lin-
earized equations, C = B−1A, via computation of the eigenspectrum ω of this matrix C,
perturbed by a small amount, according to

(C + E)q̂ = ωq̂. (1.17)

Here E is of the same dimension as A and contains homogeneously distributed random ele-
ments between 0 and ε. The literature uses the definition of the norm ‖E‖ in order to quantify
the perturbation of A; see Schmid and Henningson [222] for a complete description. The sen-
sitivity of eigenvalues can also be represented using the resolvent (ωI − A)−1, leading to a
similar definition of the ε-pseudo eigenvalue ω. In that context a large norm of the resolvent
implies strong sensitivity to forcing, which in turn may be related to transient growth.

Non-modal BiGlobal instability analysis is an emerging field of research, while the bulk of
global instability analyses performed in the quarter-century of history of the subject concern
the numerical solution of the EVP, mainly in two spatial dimensions.

4



1.2. Instability analysis theory
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1. Hydrodynamic Instability

1.3 Modal linear stability theory

The above generic discussion is applicable to any linearization of the governing equations
following the decomposition of flow quantities (1.8). Furthermore, in modal linear stability
theory, the perturbation term is usually written as the product of an amplitude function and
a phase function, q̃ = q̂Θ. Table 1.1 summarizes the different instability approaches arranged
by increasing constrains to the basic flow. However, depending on the dimensionality of
the base flow analyzed, the resulting theoretical frameworks involve numerical solutions that
require orders-of-magnitude different levels of computational work for their solution. In this
section the different frameworks in use in the context of modern linear stability theory are
detailed, and the associated terminology is introduced. Table 1.1 presents the assumptions
underlying the analysis, classified by the number of resolved inhomogeneous spatial directions
in the basic flow q̄.

The best known context of classic or local linear stability theory assumes a single inhomo-
geneous spatial direction in both the basic flow and the amplitude functions, indicated by x2 in
the last line of Table 1.1. Examples of flows to which classic local linear theory may be applied
are parallel shear flows [222], in which the velocity vector comprises a streamwise and a span-
wise component, q̄ = (ū1(x2), 0, ū3(x2))T , both of which are functions of the transverse spatial
coordinate, x2, as well as for example isolated vortices or circular ducts, the base flow velocity
of which depends on the radial coordinate alone [125]. Separation of variables in the operator
describing the linear perturbations permits the introduction of Fourier decompositions along
the homogeneous streamwise, x1, and spanwise, x3, spatial directions and the linearized equa-
tions of motion may be re-written to arrive at variants of the OSE. Numerical solution of this
class of EVP is straightforward and practically all present-day laminar-turbulent transition
analysis employs variants of this equation, also appropriately extended in the supersonic [165]
and hypersonic regimes [163, 166, 236]. On the other hand, the linear (and non-linear) sta-
bility of boundary-layer flows, in which a small but non-zero wall-normal velocity component
exists in the base flow and the dependence of the latter on the streamwise coordinate, x1, is
much weaker than that along the wall-normal, x2, can be studied by the Parabolized Stability
Equations (PSE), shown in Table 1.1. Unlike an EVP-based solution, PSE solve a marching
integration of the LNSE along the streamwise spatial direction, and is known as a non-local
instability analysis; Herbert [103] provides an introduction to the PSE.

The remaining three entries in Table 1.1 are collectively known as global linear theory.
The key difference with classic linear theory or the PSE lies in the number of inhomogeneous
spatial directions on which the base flow depends and the related number of periodic directions
assumed. Because of this, OSE and PSE result in a system of ordinary differential equations
(ODE). BiGlobal theory assumes the existence of a single homogeneous spatial direction and
fully resolves in a coupled manner the other two, while TriGlobal analysis does not make
any assumptions on homogeneity; respectively a two-dimensional and a three-dimensional
partial-differential-equation based EVP results. Between the two concepts, PSE-3D assumes
the existence of a base state which depends strongly on two and weakly on the third spatial

6



1.3. Modal linear stability theory

dimension. The amplitude functions in both BiGlobal linear analysis and PSE-3D are two-
dimensional functions of the resolved spatial coordinates, while those pertinent to TriGlobal
analysis are three-dimensional functions of three simultaneously resolved spatial coordinates.

The leading dimension of the matrices discretizing the two-dimensional PDE of the PSE-
3D equations and spatial BiGlobal analysis GEVP is several orders of magnitude (depend-
ing in the number of discretization nodes) larger than the equivalent when solving the one-
dimensional ODE of the classical PSE and local stability equations. Figure 1.1 shows a
schematic comparison of their leading dimension for compressible flow regime.

!"#$#%&'()%*+#%&

,-."*/#%&'()%*+#%&
0!1234&

,-."*/#%&5*6#%&
0!1&

!"#$#%&5*6#%&

Figure 1.1: Schematic comparison of leading dimension of matrices discretizing local, classical PSE,
BiGlobal and PSE-3D operators.

1.3.1 Local instability: One-dimensional LNSE

The basic flow is assumed to be homogeneous in two of the three spatial directions, here x
and z. Assuming that the basic flow is only dependent on one, y, out of the three spatial
directions, the coefficients of the resulting EVP are (x, z)-independent, and without loss of
generality modal perturbations get the form

q(x, y, z, t) = q̂(y) exp[i(αx+ βz − ωt)] (1.18)
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1. Hydrodynamic Instability

where the new periodicity lengths Lx = 2π/α and Lz = 2π/β have been imposed to the
disturbances shape in the x− and z− direction respectively. Upon substitution of the ansatz
(1.18) in the incompressible LNSE (1.9-1.10), results the system of equations

Lû+ ūyv̂ + iαp̂ = 0 (1.19)

Lv̂ + p̂y = 0 (1.20)

Lŵ + w̄yv̂ − iβp̂ = 0 (1.21)

iαû+ v̂y + ŵz = 0 (1.22)

where L = iαū + iβw̄ − 1
Re(D2

yy − β2 − α2) − iω. The compressible version of equations
(1.19-1.22) can be found in the work of Malik [165].

The system of ODEs described by equations (1.19-1.22) can be reduced to a system of
two coupled equations when w̄ = 0, by eliminating the pressure variable in v−equation and
introducing the normal vorticity η̂ = ∂û/∂z − ∂ŵ/∂x. The resulting set of equations is

[
(−iω + iαū)

(
D2
yy − k2

)
− iαūyy −

1

Re

(
D2
yy − k2

)2
]
v̂ = 0 (1.23)

[
(−iω + iαU)− 1

Re

(
D2
yy − k2

)]
η̂ = −iβUyv̂, (1.24)

where the wavenumber k2 = α2 + β2 has been introduced. This problem is usually comple-
mented with the boundary conditions v̂ = dv̂/dy = η̂ = 0 at solid walls or in the far field.
However, this choice of boundary conditions for the far field is not justified when a continuous
spectrum exists.

Equation (1.23) is called the Orr-Sommerfeld equation, and has been widely used since its
introduction in the beginning of the XX century [57, 153]. This equation is a one-dimensional
EVP for the evolution of viscous wave-like disturbances, superposed to a basic flow given by
a velocity profile ū(y). Despite its apparent simplicity, it provides the exact eigenmodes of
strictly parallel flows like plane-Poiseuille and Couette flows, and good approximations for
quasi-parallel, slowly diverging flows like the Blasius boundary-layer. It is worth mentioning
the inviscid equivalent of the OSE, that was derived by Lord Rayleigh, and yields exact
solutions for parallel inviscid shear flows, and good approximations for slowly diverging flows
like the unbounded mixing layer. Equation (1.24) is known as the Squire equation. For
disturbances with v̂ = 0, it becomes an EVP for pure normal vorticity disturbances. For
v̂ 6= 0, i.e. for eigenmodes solution of the OSE, equation (1.24) is a linear problem for the
normal disturbance vorticity.

The instability problem as presented from the beginning considers the growth in time of
disturbances. However, many of the instability phenomena relevant to laminar-to-turbulent
transition evolves in space rather than in time, as the classic picture of transition in boundary-
layer flows. The local instability problem, based on the parallel flow assumption, can evenly
consider evolutions in space or time. As was said, the basic flow being a velocity profile
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1.3. Modal linear stability theory

homogeneous in two directions, the disturbances obey the wave-like ansatz exp[i(αx − ωt)],
where ω was taken as a complex quantity and α as a real parameter. For three-dimensional
disturbances, the wavenumber β can also be a complex quantity, but here it will be taken as
a real parameter for the sake of simplicity. The (linear) temporal eigenvalue problem, can be
written as a generalized EVP:

A · q̂ = ωB · q̂ (1.25)

where q̂ = [ρ̂, û, v̂, ŵ, T̂ ]T and the (nonlinear) spatial eigenvalue problem,

A · q̂ =
2∑

k=1

αkBk · q̂. (1.26)

The latter problem can be converted into a (larger by a factor equal to the degree of non-
linearity) linear eigenvalue problem, as shown by Heeg and Geurts [94], using the companion
matrix method [30, 248], in which an auxiliary vector q̂∗ = [ρ̂, û, v̂, ŵ, T̂ , αû, αv̂, αŵ, αT̂ ]T is
defined, resulting in

A · q̂∗ = αB · q̂∗. (1.27)

In order to solve numerically the quadratic EVP, it must be previously reduced to a
linear EVP. The numerical procedure for the numerical solution of EVPs (1.25) and (1.27) is
discussed in the Chapter 2 devoted to numerical methods.

The distinction of spatial and temporal instability problems is due to historical reasons.
The temporal problem was the first to be employed because its simplicity, predicting rea-
sonably well the dominant frequencies in shear-flows. The spatial problem attained higher
importance later in the study of instability waves originated by periodic forcing, e.g. vibrating
ribbons in boundary-layers, closely modeling the initial stages of the transition to turbulence.
However, both spatial and temporal problems are particular cases in which the wave-like
perturbations grow only in space or in time. The instability waves can grow simultaneously
in space and in time, and both α and ω can be complex quantities in general. The relation
between the wavenumbers α and β, the frequency ω, and other parameters involved is referred
to as the dispersion relation:

D(α, ω;β,Re,M) = 0. (1.28)

The wave-like disturbances characterized by complex α and ω values can grow in space
and simultaneously decay in time, or viceversa. The dispersion relation (1.28) maps points in
the complex ω-plane to points in the complex α-plane, thus determining the behavior of the
wave. A wave-like disturbance is said to be convectively unstable if after its introduction it
experiences growth while it moves downstream, but in the initial location it decays and finally
vanishes. On the other hand, a disturbance is absolutely unstable if it grows in the location
where it is introduced, being also possible a growth downstream and upstream of the initial
location. Absolute instability [107, 108] would appear if there exist waves with group velocity
cg = 0 and positive temporal growth rate ωi > 0. Those disturbances would determine the
border between parametric regions of absolute instability and convective instability.
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1. Hydrodynamic Instability

Temporal Local instability formulation

The operators A and B defining (1.25) in the incompressible limit written using matrix nota-
tion become

A =




LT ūy 0 iα
0 LT 0 Dy
0 w̄y LT iβ
iα Dy iβ 0


 (1.29)

B =




i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0


 (1.30)

where LT = iαi + w̄iβ − 1
Re(D2

yy − β2 − α2). Here α, β ∈ R are a wavenumber parameter,
related with the periodicity length along the homogeneous spatial directions, x and z, through
α = 2π/Lx and β = 2π/Lz. The sought complex eigenvalue is ω = (ωr + iωi), the real part
being a circular frequency, while the imaginary part is the temporal amplification/damping
rate.

Spatial Local instability formulation

The operators A and B defining (1.27) in the incompressible limit written using matrix nota-
tion become

A =




LS ūy 0 0 0 0 0
0 LS 0 Dy 0 0 0
0 w̄y LS iβ 0 0 0
0 Dy iβ 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I




(1.31)

B =




−iū 0 0 −i − 1
Re 0 0

0 −iū 0 0 0 − 1
Re 0

0 0 −iū 0 0 0 − 1
Re

−i 0 0 0 0 0 0
I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0




(1.32)

where LS = −iω − 1
Re(D2

yy − β2). Here ω ∈ R is a real frequency parameter and β ∈ R is
a real wavenumber, β = 2π/Lz, while α ∈ C is the sought eigenvalue, the real part of which
is related with the periodicity length along the homogeneous spatial direction, x, through
αr = 2π/Lx and the imaginary part, αi is the spatial amplification/damping rate.
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1.3. Modal linear stability theory

1.3.2 Parabolized Stability Equations

Parabolized Stability Equations (PSE) have opened new avenues to the analysis of the stream-
wise growth of linear and nonlinear disturbances in slowly varying shear flows such as boundary-
layers, jets, and far wakes. Growth mechanisms include both algebraic transient growth and
exponential growth through primary and higher instabilities. In contrast to the eigensolutions
of traditional linear stability equations, PSE solutions incorporate inhomogeneous initial and
boundary conditions as do numerical solutions of the Navier-Stokes equations. The PSE are
valid for convectively unstable flows in which the root-mean-square of the variables profiles
vary slowly in the streamwise direction, i.e. ∂

∂x = O(ε), with ε � 1, for example being
ε = O(Re−1) in boundary-layer flows.

The velocity components ū and w̄ exhibit small variations in the streamwise and span-
wise direction, and the component v̄ normal to the surface is non-zero to provide the mass
parameter as the displacement thickness changes.

The disturbance quantities are expanded in terms of their truncated Fourier components
assuming that are periodic in time

q̃(x, y, z, t) =
M∑

m=−M

N∑

n=−N
q̆m,n(x, y) exp [i(mβz − nωt)] . (1.33)

Furthermore, q̆ = (ρ̆, ŭ, v̆, w̆, T̆ ) is defined as a fast varying wavy function with a slowly
varying amplitude

q̆(x, y) = q̂(x, y) exp

[
i

∫

x
α(x′)dx′

]
, (1.34)

where q̂(x, y) varies slowly with x. Note that q̆−m,−n is equal to the complex conjugate of
q̆m,n.The sub-index m,n is suppressed for simplicity when appropriate.

Within the PSE approximation, the streamwise derivatives of q̂ take the form

∂kq̆

∂xk
= ik

[
αkq̂− ikαk−1∂q̂

∂x
− i

k(k − 1)

2
αk−2dα

dx
q̂

]
exp

[
i

∫

x
α(x′)dx′

]
, (1.35)

and for the first and second derivative, the above expression becomes

∂q̆

∂x
=

(
iαq̂ +

∂q̂

∂x

)
exp

[
i

∫

x
α(x′)dx′

]
, (1.36)

∂2q̆

∂x2
=

(
−α2q̂ + 2iα

∂q̂

∂x
+ i

dα

dx
q̂

)
exp

[
i

∫

x
α(x′)dx′

]
. (1.37)

Substituting (1.34) and the first and second streamwise derivatives (1.36)-(1.37) into the
LNSE (A.1-A.5), and neglecting terms of O(ε2) as αxq̂x, q̂xx, αxx and higher derivatives with

11



1. Hydrodynamic Instability

respect to x or streamwise derivatives in the viscous part of the equations, the non-linear PSE
are written in a compact form as

(Lm,n +Mm,nDx) q̂(x, y) = Fm,n(x, y) exp

[
−i

∫

x
αm,n(x′)dx′

]
, (1.38)

where Fm,n is the Fourier component of the total forcing, F , which comprises the non-linear
terms on disturbance variables

F =
M∑

n=−M

N∑

n=−N
Fm,n(x, y) exp [i(mβz − nωt)] . (1.39)

The entries of the coefficient matrices for Lm,n and Mm,n and vector components of F can
be found in [91, 95, 97] for the compressible regime and are expressed as follow in the incom-
pressible limit

Lm,n =




L0 + ūx ūy 0 iα
v̄x L0 + v̄y 0 Dy
w̄x w̄y L0 iβ
iα Dy iβ 0



m,n

, (1.40)

Mm,n =




ū 0 0 1
0 ū 0 0
0 0 ū 0
1 0 0 0


 , (1.41)

F =




ũũx + ṽũy
ũṽx + ṽṽy
ũw̃x + ṽw̃y

0


 , (1.42)

where L0 = ūiα+ v̄Dy+w̄iβ− 1
Re(D2

yy−β2−α2)− iω. The linear PSE equations are recovered
by setting zero forcing term, what is equivalent to neglect terms of O(ε2).

The normalization condition

An ambiguity exists in the PSE formulation, in which the changes in amplitude along the slow
spatial direction can be contained both in the amplitude function q̂ or in the phase function
of the Ansatz of equation (1.34). A normalization condition is required in order to close the
formulation of the problem (see Herbert [102, 103] for a review). In this work, the following
normalization condition is used:

∫

Ω
ρ̄1/2û†

∂(ρ̄1/2û)

∂x
dΩ =

∫

Ω

1

2

∂

∂x
ρ̄|û|2 dΩ = 0 (1.43)

12



1.3. Modal linear stability theory

where û = (û, v̂, ŵ)T . This normalization imposes that the kinetic energy of the shape func-
tions remains independent of x. Thus, the amplitude growth is absorbed into the phase
function.

The effective growth rate computed by PSE is formulated as

σK = −αi +
1

2

d ln[K(x)]

dx
, with K(x) =

∫

Ω
ρ̄(ûû† + v̂v̂† + ŵŵ†)dΩ, (1.44)

in order to take into account the residual slow variation of disturbance kinetic energy, K, with
x.

Numerical stability

Inspection of this system suggests a parabolic set of equations that can be solved by treating
the x direction as a pseudo-time, marching in this direction. The studies of Li and Malik
[146] and [148], found that these equations are mathematically elliptic, and are numerically
ill-posed. Choosing a sufficiently large marching step, however, negates the upstream influence
and was found to give accurate results. Li and Malik [146] found that, for a backward difference
scheme in x, a limit of

∆x >
1

|α| (1.45)

needs to be placed on the marching step size.

1.3.3 BiGlobal Instability

Assuming that the basic flow is now dependent on two out of the three spatial coordinates,
the two-dimensional parallel flow is assumed and the BiGlobal instability theory is applicable
(see Theofilis [250], [251] for a review).

The disturbances are three-dimensional, but a sinusoidal dependence with the homoge-
neous x-direction is assumed, with the periodicity length Lx = 2π/α as follows

q̄(x, y, z, t) = q̂(y, z)exp[i(αx− ωt)]. (1.46)

Upon substitution of the ansatz (1.46) in the incompressible LNSE (1.9-1.10), results the
system of equations

Lû+ ūyv̂ + ūzŵ + iαp̂ = 0 (1.47)

(L+ v̄y)v̂ + v̄zŵ + p̂y = 0 (1.48)

(L+ w̄z)ŵ + w̄yv̂ + p̂z = 0 (1.49)

13



1. Hydrodynamic Instability

iαû+ v̂y + ŵz = 0 (1.50)

where L = iαū+ v̄Dy + w̄Dz − 1
Re(D2

yy +D2
zz − α2)− iω, Dz being the first derivative matrix

and D2
zz the second derivative matrix respect to z direction.

Temporal BiGlobal instability formulation

Written using matrix notation, the operators A and B defining (1.25) become:

A =




LT ūy ūz iα
0 LT + v̄y v̄z Dy
0 w̄y LT + w̄z Dz
iα Dy Dz 0


 (1.51)

B =




i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0


 (1.52)

where LT = iαū + v̄Dy + w̄Dz − 1
Re(D2

yy + D2
zz − α2). Following the same reasoning made

in the temporal local instability formulation, here α ∈ R is a wavenumber parameter, related
with the periodicity length along the homogeneous spatial direction, x, through α = 2π/Lx.
The sought complex eigenvalue is ω = (ωr + iωi), the real part being a circular frequency,
while the imaginary part is the temporal amplification/damping rate.

The entries of the matrices discretizing the operators A and B defining (1.25) in the
compressible regime are found in Appendix B for the choice of variables used in this work
q = (ρ, u, v, w, T ), while Robinet [208], Theofilis and Colonius [252] show the equations for
q = (u, v, w, T, p).

Spatial BiGlobal instability formulation

Written using matrix notation, the operators A and B defining (1.27) become:

A =




LS ūy ūz 0 0 0 0
0 LS + v̄y v̄z Dy 0 0 0
0 w̄y LS + w̄z Dz 0 0 0
0 Dy Dz 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I




(1.53)
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1.3. Modal linear stability theory

B =




−iū 0 0 −i − 1
Re 0 0

0 −iū 0 0 0 − 1
Re 0

0 0 −iū 0 0 0 − 1
Re

−i 0 0 0 0 0 0
I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0




(1.54)

where LT = −iω + v̄Dy + w̄Dz − 1
Re(D2

yy + D2
zz). Following the same reasoning made in the

spatial local instability formulation, here ω ∈ R is a real frequency parameter, while α ∈ C
is the sought eigenvalue, the real part of which is related with the periodicity length along
the homogeneous spatial direction, x, through αr = 2π/Lx and the imaginary part, αi is the
spatial amplification/damping rate.

1.3.4 Three-Dimensional Parabolized Stability Equations

The most general case corresponds to a three-dimensional flowfield, which is inhomogeneous
in all three spatial directions. A numerical solution of the PDE-based EVP resulting from
the discretization of the three coupled direction, referred to a TriGlobal stability analysis, is
possible but prohibitively expensive nowadays for most applications of interest. A parabolized
variation of the three-dimensional stability equations (PSE-3D) can be derived when the basic
flow can be assumed to experience slow variations along one of the three spatial directions
(see Table 1.1). In this manner, the three-dimensional EVP is replaced by an initial value
problem that is solved using a marching integration along the slow spatial direction.

Following the same reasoning made on the classical PSE, the PSE-3D are valid for convec-
tively unstable flows in which the root-mean-square of the variables profiles vary slowly in the
streamwise direction. The disturbance quantities are expanded in terms of their truncated
Fourier components assuming that are periodic in time

q̃(x, y, z, t) =
N∑

n=−N
q̆n(x, y, z) exp [−inωt] . (1.55)

Furthermore, we write the q̆ as a fast varying wavy function with a slowly varying ampli-
tude

q̆(x, y, z) = q̂(x, y, z) exp

[
i

∫

x
α(x′)dx′

]
, (1.56)

where q̂(x, y, z) varies slowly with x. The subindex n will be supressed for simplicity when
appropiate.

Substituting (1.56) and the first and second streamwise derivatives (1.36)-(1.37) into the
LNSE (A.1)-(A.5), and neglecting terms ofO(ε2) as αxq̂x, q̂xx, αxx and higher derivatives with
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1. Hydrodynamic Instability

respect to x or streamwise derivatives in the viscous part of the equations, the compressible
linear non-linear PSE-3D equations are written in a compact form as

(Ln +MnDx) q̂(x, y, z)n = Fn(x, y, z) exp

[
−i

∫

x
αn(x′)dx′

]
, (1.57)

where Dx being the first derivative matrix respect to x direction, and Fn is the Fourier
component of the total forcing,

F =
N∑

n=−N
Fn(x, y, z) exp [−inωt] . (1.58)

The entries of the coefficient matrices for Ln and Mn and vector components of F can be
found in Appendix D for compressible flows and are expressed in the incompressible limit as
follows

Lm,n =




L0 + ūx ūy ūz iα
v̄x L0 + v̄y v̄z Dy
w̄x w̄y L0 + w̄z Dz
iα Dy Dz 0



m,n

, (1.59)

Mm,n =




ū 0 0 1
0 ū 0 0
0 0 ū 0
1 0 0 0


 , (1.60)

F =




ũũx + ṽũy + w̃ũz
ũṽx + ṽṽy + w̃ṽz
ũw̃x + ṽw̃y + w̃w̃z

0


 , (1.61)

where L0 = ūiα + v̄Dy + w̄Dz − 1
Re(D2

yy − D2
zz − α2) − iω. The linear PSE equations are

recovered by setting zero forcing term, what is equivalent to neglect terms of O(ε2).

The normalization condition

Following the same explanation of the classical PSE, the used normalization condition is
equation (1.43), but here the integral is two-dimensional over the plane normal to the marching
direction.

Numerical stability

Following the same reasoning made on the classical PSE, the PSE-3D contain also some
residual ellipticity, as was shown by Broadhurst and Sherwin [31]. The marching integration
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1.3. Modal linear stability theory

is performed using an implicit scheme along with a sufficiently large streamwise step satisfying
equation (1.45).

1.3.5 TriGlobal instability

The TriGlobal analysis is the most general case with the perturbations being non-homogeneus
in the three spatial directions and modal perturbations get the form

q̃(x, y, z, t) = q̂(x, y, z) exp[−ωt] (1.62)

where the definition ω → iω is used to have a real arithmetic EVP. In this case, ωi is the
circular frequency and ωr is the damping/growth rate.

Upon substitution of equation (1.62) into the incompressible LNSE (1.9-1.10), the opera-
tors A and B of equation (1.25) define a PDE-based problem with real arithmetic as follows

A =




L+ Ux Uy Uz Dx
Vx L+ Vy Vz Dy
Wx Wy L+Wz Dz
Dx Dy Dz 0


 , B =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , (1.63)

where L = ūDx + v̄Dy + w̄Dz − 1
Re(D2

xx + D2
yy + D2

zz) and D2
xx being the second derivative

matrix respect to x direction. The entries of the coefficient matrices for A and B can be found
in Appendix E for compressible flows. Although TriGlobal instability results for compressible
flows are not shown in this work, the equations will be referenced when solving complex
geometries using spatial BiGlobal and PSE-3D by using a generalized coordinate system
transformation.
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Chapter 2

Numerical considerations

2.1 Spatial discretization

The spatial discretization plays a very important role in matrix storing and forming approach
for solving eigenvalue problems. Special attention is devoted to the high order finite-difference
methods developed by Hermanns and Hernández [104], since it is employed here for the first
time in the global instability field.

2.1.1 Dispersion-Relation-Preserving finite-difference schemes

The main objective of Dispersion Relation Preserving (DRP) finite-difference schemes is to
present an optimized high order finite-difference scheme which minimizes dispersion wave
errors. Therefore, this scheme supports not only consistency, stability and convergence but
also wave solutions with the same characteristics as the linearized Euler equations in the case
of small amplitude waves. The methodology of this method is briefly introduced in this paper
and is explained more in detail by Tam and Webb [241].

Considering the model wave equation

∂u

∂t
= c

∂u

∂x
, (2.1)

and using the spatial discretization on a uniform grid spacing ∆x, the next expression gives
the first order spatial derivative at the nodal point l:

(
∂u

∂x

)

l

' 1

∆x

M∑

j=−N
ajul+j , (2.2)

where the finite-difference coefficients aj need to be determined. Additionally to the fulfillment
of the classical finite-difference relations among the coefficients aj to ensure a certain order
of convergence, the DRP methods impose additional conditions based on the minimization of
the integrated error E, defined by the Euclidean norm,

E =

∫ π/2

−π/2
|α∆x− α̂∆x|2 d(α∆x), (2.3)
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2. Numerical considerations

where α is the physical wavenumber and α̂ is the effective wave number of the finite-difference
approximation obtained from applying a spatial Fourier transformation to equation (2.2).
This additional condition seeks to improve the spectral resolution capabilities of the explicit
finite-difference method [241].

The procedure to calculate second derivatives is similar to the one explained before. These
coefficients are presented in the work of Paredes et al. [190] for a finite-difference scheme of
order 8. Following the methodology employed by Merle et al. [175], the boundary formulations
for the first and second order derivatives correspond to standard finite-difference schemes of
lower accuracy order. However, in the present procedure, the order of the boundary formu-
lations are kept of the same order than the inner finite-difference scheme. Such difference is
necessary in order to get the proper slope of the relative error curves that proves the order of
the method.

2.1.2 Compact finite-difference schemes

The implicit scheme or compact finite-difference scheme described in Lele [140] is briefly
presented next. These schemes are generalizations of the Padé schemes. The considered mesh
is again a regular one with a constant grid spacing ∆x. The generalizations for the first and
second derivatives have the following form:

βf ′j−2 + αf ′j−1 + f ′j + αf ′j+1 + βf ′j+2

= c
fj+3 − fj−3

6∆x
+ b

fj+2 − fj−2

4∆x
+ a

fj+1 − fj−1

2∆x
, (2.4)

βf ′′j−2 + αf ′′j−1 + f ′′j + αf ′′j+1 + βf ′′j+2

= c
fj+3 − 2fj + fj−3

9∆x2
+ b

fj+2 − 2fj + fj−2

4∆x2
+ a

fj+1 − 2fj + fj−1

∆x2
. (2.5)

Following the methodology employed by Colonius [43], the boundary formulation employed
for the first and second derivatives is a finite-difference compact scheme with smaller order
than the inner scheme. However, the present formulation keeps the same order used in the
inner finite-difference scheme for the boundary formulations. Thanks to this, the proper slope
of the relative error curves that proves the order of the method is recovered.

2.1.3 Summation-by-Parts operators for finite-difference approximations

Summation-by-Parts (SBP) operators can be used to construct time-stable high-order accu-
rate finite-difference schemes as a discretization of the integration by parts formula. In this
paper the basic idea of the method construction is briefly presented, which is explained more
in detail in [36, 171, 235] .
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2.1. Spatial discretization

Considering the hyperbolic scalar equation ut + ux = 0, integration by parts can be
expressed as

d

dt
‖ u ‖2= −(u, ux)− (ux, u) = −u2 |ab , (2.6)

where (u, v) is the standard L2 inner product on [a, b] and ‖ u ‖2= (u, u) is the associated
L2 norm. Considering the approximation of the equation vt + Dxv = 0, being v the discrete
counter part of u, a difference operator Dx = H−1Q is an SBP operator if Q+QT = B, where
B = diag(−1, 0, ..., 0, 1). The procedure to calculate second derivatives is following as well
a discretization of the integration by parts formula similar to the one previously explained.
The coefficients used to perform first and second derivatives for a finite-difference scheme of
order 8 can be found in [171].

2.1.4 Finite difference methods with uniform error

The here called FD-q method developed by Hermanns and Hernández [104] is a new high
order finite-difference method employed to solve global instability problems for the first time
[190]. Therefore, more attention is paid in the description of this numerical method. The idea
behind FD-q is to construct a non-uniform finite-difference scheme based on the philosophy
behind Chebyshev Gauss-Lobatto collocation points which minimize interpolation errors.

The approach followed for the derivation of the finite-difference approximation is briefly
presented in this Subsection. See the work by Hermanns and Hernández [104] for in-depth
details of the presented method as well as its application to time evolution problems.

Piecewise polynomial interpolation

In order to derive the finite-difference approximations to the spatial derivatives of a general
function u(x, t), a piecewise polynomial interpolant is constructed that matches the discrete
values ui(t) of the function u(x, t) at the grid nodes xi, and whose derivatives are then com-
puted to obtain the sought finite-difference formulas. Figure 2.1 represents such a piecewise
polynomial interpolant formed out of individual polynomial interpolants Ii(x) which are only
valid in their respective domains of validity Ωi. Each of these domains Ωi includes the corre-
sponding grid node xi and their union is equal to the whole domain [−1,+1] of the problem.

Given a set of grid nodes, the expressions for Ii(x) can readily be obtained through the
Lagrange interpolation formula [66, 105]:

Ii(x) =

si+q∑

j=si

`ij(x)uj , `ij(x) =

q∏

m=0
si+m 6=j

x− xsi+m
xj − xsi+m

. (2.7)
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Figure 2.1: Stencils, seeds si, and domains of validity Ωi of the individual polynomial interpolants
Ii(x) of a piecewise polynomial interpolation of degree q = 6 on 11 nodes (N = 10). The dashed box
separates the centered stencils from those affected by the presence of the boundaries.

where q is the polynomial degree and the seed si is the index of the left most node xi involved
in the construction of the interpolant Ii(x). For the case of even polynomial degrees, which
is the choice from now on, the following selection of values for si is made:

{si} = {0, . . . , 0︸ ︷︷ ︸
q/2 times

, 0, 1, . . . , N − q︸ ︷︷ ︸
centered FD

, N − q, . . . , N − q︸ ︷︷ ︸
q/2 times

}. (2.8)

The piecewise polynomial interpolant represented in figure 2.1 corresponds to the case of q = 6
and N = 10. As can be seen from the represented stencils of the individual interpolants,
sufficiently far away from the boundaries, the above selection of seeds leads to centered finite-
difference formulas, whereas close to the boundaries the stencils are biased towards the center
of the domain in order to only make use of existing grid nodes.

It should be noted, that in virtue of the uniqueness of the interpolating polynomials,
the finite-difference formulas obtained from the differentiation of the piecewise polynomial
interpolant introduced above coincide with the ones obtained by classical means. Thus, no
differences compared to conventional finite-difference methods on arbitrary grids exist, only
the way in which they are formulated and derived, but not in the end result.
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2.1. Spatial discretization

Uniform interpolation errors

In the above definition of the piecewise polynomial interpolant the choice of grid nodes xi
has been left open so far. However, by their proper selection it is possible to make the
interpolation error of the piecewise polynomial interpolant to be uniform across the interval
[−1,+1]. The result is a non-uniform grid that is unique for each pair of values of q and
N . This same idea underlies the Chebyshev interpolation, where the condition that the
interpolation error is uniform across the interval [−1,+1] is also imposed, but this time on
a single polynomial interpolant instead [28, 112]. The result is also a non-uniform grid,
known as the Chebyshev roots or Chebyshev-Gauss quadrature points, that is unique for each
value of N . Both approaches achieve the same result, namely the suppression of the Runge
phenomenon that spoils the accuracy of high order polynomial interpolations close to the ends
of the interpolation interval.

In figure 2.2 the resulting grid spacings ∆xi = xi+1 − xi for the piecewise polynomial
interpolant and for the Chebyshev interpolant are shown for different cases, both of them
normalized with the uniform grid spacing ∆xi,Eq = 2/N . The details of the algorithm for the
derivation of the former one can be found in [104], while the derivation of the Chebyshev grids
can be found in any classical textbook on spectral collocation methods or interpolation theory
[28, 105, 112]. The case q = 6 and N = 10 from figure 2.1 is shown in figure 2.2(a), where it
can be seen that the proposed non-uniform grid for the piecewise polynomial interpolant lies
in between the uniform grid and the Chebyshev grid.

Very enlightening are the following limiting cases: (i) q � N and (ii) q = N . In the first
case, only a few points O(q) close to the boundaries need to be clustered in order to control the
interpolation error, while far from the boundaries the grid points are equally spaced, as seen
in figure 2.2(b), where the case of a piecewise polynomial interpolant for q = 6 and N = 30 is
shown. In the second case, when q = N , only one interpolating polynomial can be constructed
out of the N + 1 grid nodes, thus I0(x) = I1(x) = . . . = IN (x). Due to the uniqueness of the
interpolating polynomials and the fact that the same error uniformization strategy is used for
the piecewise polynomial interpolant than for the Chebyshev interpolant, both approaches
are identical. Thus, in the limit q = N , the proposed piecewise polynomial interpolant with
the proposed non-uniform grid presents all the properties of spectral collocation methods,
especially their spectral accuracy [28, 34, 65].

When q < N , most of the nodes are affected by the presence of the boundaries and the
resulting grid point distributions are in between the two limiting cases. This can be seen in
figure 2.2(c), where the grid spacing of the proposed non-uniform grids for different values of
q and N = 50 are shown. As the degree of the interpolation increases, the node distribution
approaches the Chebyshev grid, while for small values of q it is more close to the uniform
grid. Figure 2.2(d) shows that the minimum grid spacing ∆xmin present in the proposed
non-uniform grids is always greater than the minimum grid spacing ∆xmin,Ch of the Cheby-
shev grid. Moreover, from the figure it can be inferred that ∆xmin = O (∆xmin,ChN/q) =
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Figure 2.2: Grid spacing ∆xi = xi+1 − xi of the non-uniform grid for the piecewise polynomial
interpolation (solid line), for the Chebyshev interpolation (dotted line), and for the uniform grid
(dashed line) normalized with the uniform grid spacing ∆xi,Eq = 2/N for (a) q = 6 and N = 10, (b)
q = 6 and N = 30, and (c) q = 10, 20, 30, 40 and N = 50. (d) Variation of ∆xmin,Ch/∆xmin with q of
the non-uniform grid for the piecewise polynomial interpolation with N = 50.

2.1.5 Spectral collocation methods

The limit of q = N in the FD-q methodology is the Chebyshev-Gauss-Lobatto spectral col-
location method. These methods offer an optimal compromise between the highest accuracy
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2.1. Spatial discretization

possible and the necessity of reducing the amount of information to be stored. The reason of
the high accuracy of (collocation) spectral methods lies on the use of high-order interpolating
polynomials, comprising all the points in the discretization domain. Spectral methods use all
the points and the error is ε = O((1/N)N )→ O(eN ) [28, 34].

Non-periodic boundary conditions

Chebyshev-Gauss-Lobatto (CGL) points, indicated for the non periodic configurations of in-
terest, are used here.

The Chebyshev polynomial of degree n, Tn(x), is given explicitly in terms of trigonometric
functions by

Tn(x) = cos(nθ), x = cos(θ). (2.9)

From the trigonometric representation of this expression it is clear that the extrema of TN (x)
are ±1 . The collocation derivative matrix for the Gauss-Lobatto grid is defined by the set of
zeros of TN+1 and is evaluated in the interval [-1,1]. The Chebyshev-Gauss-Lobatto (CGL)
points are

xj = cos(jπ/N), j = 0, 1, ..., N. (2.10)

Any function f(x) can be expressed via the expansion:

fN (xj) =
N∑

k=0

akTk(xj), (2.11)

where ak are the series coefficient and k is the order of Chebyshev polynomial.

The elements of D depend solely on the set of discretization points [83]

Di,j =





2N2+1
6 , i = j = 0

− yj
2(1−y2j )

, i = j 6= 0, N

c̄i
c̄j

(−1)i+j

yi−yj , i 6= j

−2N2+1
6 , i = j = N

(2.12)

where

c̄j =

{
2, j = 0, N
1, 1 ≤ j ≤ N − 1

(2.13)
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2. Numerical considerations

Table 2.1: Accuracy study for different approaches of DGL with N = 128

Case x f(x) = ex Df(x) D(2)f(x) D(4)f(x)

1 1 2.71828182845 2.71828182679 2.71827011478 -89.670055389
0 1.00000000000 1.00000000000 1.00000000128 0.99997886179
-1 0.36787944117 0.36787944146 0.36787697207 -23.832031250

2 1 2.71828182679 2.71828711319 95.2748298645
0 1.00000000000 1.00000000005 0.99999436007
-1 0.36787944146 0.36787962165 13.4882812500

3 1 2.71828182845 2.71828175174 1.90732192993
0 0.99999999999 0.99999999996 1.00000016850
-1 0.36787944115 0.36787954252 1.19531250000

Case 1: D calculated using equation (2.12) and D2 = D ·D
Case 2: D and D2 calculated using equations (2.12) and (2.14) respectively

Case 3: D calculated using equation (2.15) and D2 = D ·D

An expression for the second derivative matrix can be found in [60]

D2
i,j =





(−1)(i+j)

c̄j

y2i+yiyj−2

(1−y2i )(yi−yj)2
, 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N, i 6= j

− (N2−1)(1−y2i )+3

3(1−y2i )2
, 1 ≤ j = j ≤ N − 1

2
3

(−1)j

c̄j

(2N2+1)(1−yj)−6
(1−yj)2 , i = 0, 1 ≤ j ≤ N

2
3

(−1)j+N

c̄j

(2N2+1)(1+yj)−6
(1+yj)2

, i = N, 0 ≤ j ≤ N − 1
N4−1

15 i = j = 0, i = j = N

(2.14)

However, alternative expressions that reduce the impact of the round-off errors resulting
from subtraction of nearly equal quantities are preferred. With this aim, the most obvious
approach to reducing the impact of subtracting nearly equal numbers for the Chebyshev
derivative matrices is to use trigonometric identities, giving the next derivative matrix [34]:

Di,j =





2N2+1
6 , i = j = 0

− yj
2sin2(jπ/N)

, i = j 6= 0, N
c̄i

2c̄j

(−1)i+j

sin[(i+j)π/2N ]sin[(i−j)π/2N ] , i 6= j

−2N2+1
6 i = j = N

(2.15)

Table 2.1 shows a study of the recovered results using different approaches for D. The
minimum error is achieved in the Case 3: D calculated using equation (2.15) and D(2) = D·D.
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2.2. Multidimensional differentiation matrices

Periodic boundary conditions

Some problems allow the use of periodic boundary conditions in some spatial directions. The
method used to discretize these spatial coordinates is the Fourier spectral collocation method.

The definition of derivative matrix coefficients on a periodic grid, depends on the choice
of gird points, N , either being even or odd. Here, the N is chosen always even for this
discretization. The mesh spacing, h = 2π/N , implies that wavenumbers differing by an integer
multiple of 2π/h are indistinguishable on the grid, and thus it will be enough to confine our
attention to wavenumbers in the range k ∈ [−π/h, π/h]. The waves in physical space must
be periodic over the interval [0, 2π], and only waves exp(ikx) with integer wavenumbers have
the required period 2π.

The elements of D and D2 can be written as

Di,j =

{
0, i = j
1
2(−1)i+j cot[(i− j)π/(N + 1)], i 6= j

(2.16)

D2
i,j =

{
− (N+1)2

12 − 1
6 , i = j

−1
2(−1)i+j csc2[(i− j)π/(N + 1)], i 6= j

(2.17)

where i, j = 0, 1, ..., N . See [28, 34, 83] for more details.

2.2 Multidimensional differentiation matrices

The differentiation matrices can be formed from the 1D differential operator placing every
coefficient in its respective row and column or easily if Kronecker tensor product (⊗) is
considered [259]. The Kronecker product of two matrices A and B of dimension p × q and
r × s respectively is denoted by A⊗B of dimension pr × qs. For instance

(
1 2
3 4

)
⊗
(
a b
c d

)
=




a b 2a 2b
c d 2c 2d

3a 3b 4a 4b
3c 3d 4c 4d


 (2.18)

Using this tensor product, the two dimensional derivatives matrices are computed. In
what follows, let [a, b]× [c, d] be the computational domain discretized using the same number
of points in each direction (N).
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2. Numerical considerations

2.2.1 Two-dimensional differentiation matrices

The differentiation matrices in a two-dimensional problem are

Dx = D ⊗ I =

=




d0,0 d0,1 d0,N

d0,0 d0,1 d0,N

. . .
. . .

. . .

d0,0 d0,1 d0,N

d1,0 d1,1 d1,N

d1,0 d1,1 d1,N

. . .
. . .

. . .

d1,0 d1,1 d1,N

. . .

dN,0 dN,1 dN,N
dN,0 dN,1 dN,N

. . .
. . .

. . .

dN,0 dN,1 dN,N




(2.19)

Dy = I ⊗D =

=




d0,0 d0,1 . . . d0,N

d1,0 d1,1 . . . d1,N

. . .

dN,0 dN,1 . . . dN,N
d0,0 d0,1 . . . d0,N

d1,0 d1,1 . . . d1,N

. . .

dN,0 dN,1 . . . dN,N

. . .

d0,0 d0,1 . . . d0,N

d1,0 d1,1 . . . d1,N

. . .

dN,0 dN,1 . . . dN,N




(2.20)
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2.3. General coordinate transformation

where I is the N ×N identity matrix.

Second order derivative matrices are built using the same technique Dxx = D2⊗ I, Dyy =
I ⊗D2, and Dxy = (I ⊗D)× (D ⊗ I).

2.2.2 Three-dimensional differentiation matrices

The differentiation matrices in a three-dimensional problem are

Dx = D ⊗ I ⊗ I (2.21)

Dy = I ⊗D ⊗ I (2.22)

Dz = I ⊗ I ⊗D (2.23)

where I is the N × N identity matrix. Second order derivative matrices are built using the
same technique.

2.3 General coordinate transformation

Let the position vector in the Cartesian coordinate system be defined as

x = x(ξ, η, ζ)j1 + y(ξ, η, ζ)j2 + z(ξ, η, ζ)j3, (2.24)

where ξ, η and ζ are three independent curvilinear coordinates and j1, j2 and j3 orthogonal
unit vectors in the physical domain.

A general transformation follows

ξ = ξ(x, y, z), (2.25)

η = η(x, y, z), (2.26)

ζ = ζ(x, y, z), (2.27)

which can be used to transform the governing equations from the physical domain (x, y, z) to
the computational domain (ξ, η, ζ). Using the chain rule of partial differentiation, the partial
derivatives become

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
+ ζx

∂

∂ζ
, (2.28)

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
+ ζy

∂

∂ζ
, (2.29)

∂

∂z
= ξz

∂

∂ξ
+ ηz

∂

∂η
+ ζz

∂

∂ζ
. (2.30)
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The metrics (ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy, ζz) appearing in these equations can be determined in
the following manner. Firstly, they are written in matrix form as




dξ
dη
dζ


 =




ξx ξy ξz
ηx ηy ηz
ζx ζy ζz






dx
dy
dz


 . (2.31)

In a like manner, the next expression is written as




dx
dy
dz


 =




xξ xη xζ
yξ yη yζ
zξ zη zζ






dξ
dη
dζ


 . (2.32)

Therefore




ξx ξy ξz
ηx ηy ηz
ζx ζy ζz


 =




xξ xη xζ
yξ yη yζ
zξ zη zζ



−1

= J




yηzζ − yζzη −(xηzζ − xζzη) xηyζ − xζyη
−(yξzζ − yζzξ) xξzζ − xζzξ −(xξyζ − xζyξ)
yξzη − yηzξ −(xξzη − xηzξ) xξyη − xηyξ


 ,(2.33)

where J is the Jacobian of the transformation,

J =
∂(ξ, η, ζ)

∂(x, y, z)
=

∣∣∣∣∣∣

ξx ξy ξz
ηx ηy ηz
ζx ζy ζz

∣∣∣∣∣∣
(2.34)

which can be evaluated in the following manner

J = 1/J−1 = 1

/
∂(x, y, z)

∂(ξ, η, ζ)
= 1

/∣∣∣∣∣∣

xξ xη xζ
yξ yη yζ
zξ zη zζ

∣∣∣∣∣∣
= 1/ [xξ(yηzζ − yζzη)− xη(yξzζ − yζzξ) + xζ(yξzη − yηzξ)] . (2.35)

The metrics can be readily determined if analytical expressions are available for the inverse
of the transformation:

x = x(ξ, η, ζ), (2.36)

y = y(ξ, η, ζ), (2.37)

z = z(ξ, η, ζ). (2.38)

For cases where the transformation is the direct result of a grid generation scheme, the metrics
can be computed numerically.
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2.3. General coordinate transformation

In order to express second order derivatives in terms of computational coordinate deriva-
tives, the next equivalence, written using Einstein notation, is used:

∂f

∂xi
= ξjxi

∂f

∂ξj
= J

∂

∂ξj

(
ξjxif

J

)
− Jf

[
∂

∂ξj

(
ξjxi
J

)]
, (2.39)

where f = f(x, y, z) is an arbitrary scalar function, i = 1, 2, 3, j = 1, 2, 3, (x1, x2, x3) =
(x, y, z) and (ξ1, ξ2, ξ3) = (ξ, η, ζ). The term in square brackets is equal to zero. This can be
verified by substituting the metrics given by equation (2.33) into this term. Then, using the
above expression (2.39), the second order derivative with respect to the physical coordinates
xi and xj of an arbitrary scalar function f is expressed as follow

∂2f

∂xi∂xj
= ξkxi

∂

∂ξk

(
ξlxj

∂f

∂ξl

)
= J

∂

∂ξk

(
ξkxiξ

l
xj

∂f
∂ξl

J

)
= ξkxiξ

l
xj

∂2f

∂ξk∂ξl
+ J

∂

∂ξk

(
ξkxiξ

l
xj

J

)
∂f

∂ξl
.

(2.40)

Particularly, the second order derivatives ∂2

∂y2
, ∂2

∂z2
and ∂2

∂y∂z are

∂2

∂y2
= ξ2

y

∂2

∂ξ2
+ η2

y

∂2

∂η2
+ ζ2

y

∂2

∂ζ2

+ 2ξyηy
∂2

∂ξ∂η
+ 2ξyζy

∂2

∂ξ∂ζ
+ 2ηyζy

∂2

∂η∂ζ

+ J

[
∂

∂ξ

(
ξ2
y

J

)
+

∂

∂η

(
ξyηy
J

)
+

∂

∂ζ

(
ξyζy
J

)]
∂

∂ξ

+ J

[
∂

∂ξ

(
ξyηy
J

)
+

∂

∂η

(
η2
y

J

)
+

∂

∂ζ

(
ηyζy
J

)]
∂

∂η

+ J

[
∂

∂ξ

(
ξyζy
J

)
+

∂

∂η

(
ηyζy
J

)
+

∂

∂ζ

(
ζ2
y

J

)]
∂

∂ζ
(2.41)

∂2

∂z2
= ξ2

z

∂2

∂ξ2
+ η2

z

∂2

∂η2
+ ζ2

z

∂2

∂ζ2

+ 2ξzηz
∂2

∂ξ∂η
+ 2ξzζz

∂2

∂ξ∂ζ
+ 2ηzζz

∂2

∂η∂ζ

+ J

[
∂

∂ξ

(
ξ2
z

J

)
+

∂

∂η

(
ξzηz
J

)
+

∂

∂ζ

(
ξzζz
J

)]
∂

∂ξ

+ J

[
∂

∂ξ

(
ξzηz
J

)
+

∂

∂η

(
η2
z

J

)
+

∂

∂ζ

(
ηzζz
J

)]
∂

∂η

+ J

[
∂

∂ξ

(
ξzζz
J

)
+

∂

∂η

(
ηzζz
J

)
+

∂

∂ζ

(
ζ2
z

J

)]
∂

∂ζ
(2.42)

∂2

∂y∂z
=

∂2

∂z∂y
= ξyξz

∂2

∂ξ2
+ ηyηz

∂2

∂η2
+ ζyζz

∂2

∂ζ2

31



2. Numerical considerations

+ (ξyηz + ξzηy)
∂2

∂ξ∂η
+ (ξyζz + ξzζy)

∂2

∂ξ∂ζ
+ (ηyζz + ηzζy)

∂2

∂η∂ζ

+ J

[
∂

∂ξ

(
ξyξz
J

)
+

∂

∂η

(
ξyηz
J

)
+

∂

∂ζ

(
ξyζz
J

)]
∂

∂ξ

+ J

[
∂

∂ξ

(
ξzηy
J

)
+

∂

∂η

(ηyηz
J

)
+

∂

∂ζ

(
ηyζz
J

)]
∂

∂η

+ J

[
∂

∂ξ

(
ξzζy
J

)
+

∂

∂η

(
ηzζy
J

)
+

∂

∂ζ

(
ζyζz
J

)]
∂

∂ζ
(2.43)

2.3.1 Two-dimensional transformation

In the case of a two-dimensional transformation of the form

ξ = ξ(x, y), (2.44)

η = η(x, y), (2.45)

the partial derivatives become

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
, (2.46)

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
. (2.47)

The metrics (ξx, ξy, ηx, ηy) appearing in these equations can be determined as

(
ξx ξy
ηx ηy

)
=

(
xξ xη
yξ yη

)−1

= J

(
yη −xη
−yξ xξ

)
,

where J is the Jacobian of the transformation,

J =
∂(ξ, η)

∂(x, y, )
=

∣∣∣∣
ξx ξy
ηx ηy

∣∣∣∣ = 1

/∣∣∣∣
xξ xη
yξ yη

∣∣∣∣ = 1/ [xξyη − xηyξ] . (2.48)

Using the same methodology of the general three-dimensional case, the second order
derivatives are written as

∂2

∂x2
= ξ2

x

∂2

∂ξ2
+ η2

x

∂2

∂η2
+ 2ξxηx

∂2

∂ξ∂η

+ J

[
∂

∂ξ

(
ξ2
x

J

)
+

∂

∂η

(
ξxηx
J

)]
∂

∂ξ
+ J

[
∂

∂ξ

(
ξxηx
J

)
+

∂

∂η

(
η2
x

J

)]
∂

∂η
(2.49)

∂2

∂y2
= ξ2

y

∂2

∂ξ2
+ η2

y

∂2

∂η2
+ 2ξyηy

∂2

∂ξ∂η
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+ J

[
∂

∂ξ

(
ξ2
y

J

)
+

∂

∂η

(
ξyηy
J

)]
∂

∂ξ
+ J

[
∂

∂ξ

(
ξyηy
J

)
+

∂

∂η

(
η2
y

J

)]
∂

∂η
(2.50)

∂2

∂x∂y
= ξxξy

∂2

∂ξ2
+ ηxηy

∂2

∂η2
+ (ξxηy + ξyηx)

∂2

∂ξ∂η

+ J

[
∂

∂ξ

(
ξxξy
J

)
+

∂

∂η

(
ξxηy
J

)]
∂

∂ξ
+ J

[
∂

∂ξ

(
ξyηx
J

)
+

∂

∂η

(ηyηx
J

)] ∂

∂η
(2.51)

2.3.2 Verification

The above expressions are verified solving the two-dimensional Helmholtz eigenvalue problem,

(
∂2

∂x2
+

∂2

∂y2

)
φ = −λ2φ, (2.52)

for orthogonal and non-orthogonal transformations. The two-dimensional differentiation ma-
trices are computed using the definitions (2.49-2.50) and the results are checked against those
recovered using differentiation matrices computed by simply multiplying first order derivative
matrices, Dxx = Dx · Dx, Dyy = Dy · Dy.

Firstly, the orthogonal elliptic confocal transformation is used

x = c cosh η cos ξ, y = c sinh η sin ξ. (2.53)

The domain is discretized using Nξ = 60 Fourier collocation points for ξ and Nη = 61
Chebyshev-Gauss-Lobatto collocation points for η. The parameters of the transformation
(2.53) are selected for an ellipse of aspect ratio AR = 2, η = [η0, ηR] with η0 = atanh(1/AR),
c = AR/ sinh(η0) and ηR = acosh(10/c). Figure 2.3 shows the grid corresponding to the
selection of parameters and discretization points.

Figure 2.4(a) shows the first eigenvalues corresponding to the Helmholtz problem (2.52)
discretized in the geometry defined by equation (2.53), using different definitions for the
differentiation matrices. The second order derivative matrices are defined using (2.49-2.50)
(referenced as D2) and by simply multiplying the first order derivative matrices Dxx = Dx ·Dx,
Dyy = Dy ·Dy (referenced as DD). This fact verify the procedure used here and makes possible
to compute second order derivatives using finite-difference schemes without lost of accuracy.
Another advantage has been observed when using the definitions (2.49-2.50), resulting in a
considerable computational requirement reduction.

A more stringent test is a non-orthogonal transformation, since the cross-derivatives ap-
pearing in equations (2.49-2.50) are nonzero. The elliptic transformation

x = ARη cos ξ, y = η sin ξ. (2.54)
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2. Numerical considerations

Figure 2.3: Elliptic confocal grid around a 2:1 ellipse.
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Figure 2.4: Eigenspectrum of Helmholtz problem (2.52) discretized in the orthogonal grid shown in
figure 2.3 and iso-contours of normalized eigenfunction with index 7.
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2.3. General coordinate transformation

Figure 2.5: Elliptic non-orthogonal grid around a 2:1 ellipse.
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Figure 2.6: Eigenspectrum of Helmholtz problem (2.52) discretized in the non-orthogonal grid shown
in figure 2.5 and iso-contours of normalized eigenfunction with index 7.

is used here with similar parameters to the previous case, AR = 2, η0 = 1 and ηR = 10, and
same number of discretization points. The resulting grid is plotted in figure 2.5.

Figure 2.6(a) shows again perfect agreement for results recovered using definitions (2.49-
2.50) (referenced as D2) and by simply multiplying the first order derivative matrices Dxx =
Dx · Dx, Dyy = Dy · Dy (referenced as DD).
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2.3.3 One-dimensional mappings

In some flows, the calculation domain has to be mapped onto the standard domain of the
employed spatial discretization through some one-dimensional mapping η = η(ξ), ξ being the

standard collocation points. The derivative matrices D
(m)
i,j for each spatial direction has to be

independently redefined to incorporate the stretching transformation as

D̂1
k,j(η) =

dξ

dη
D1
k,j(ξ) (2.55)

D̂2
k,j(η) =

(
dξ

dη

)2

D2
k,j(ξ) +

d2ξ

dη2
D1
k,j(ξ) (2.56)

D̂3
k,j(η) =

(
dξ

dη

)3

D3
k,j(ξ) + 3

d2ξ

dη2

dξ

dη
D2
k,j(ξ) +

d3ξ

dη3
D1
k,j(ξ) (2.57)

D̂4
k,j(η) =

(
dξ

dη

)4

D
(4)
k,j(ξ) + 6

d2ξ

dη2

(
dξ

dη

)2

D3
k,j(ξ)

+3

(
d2ξ

dη2

)2

D2
k,j(ξ) + 4

d3ξ

dη3

dξ

dη
D2
k,j(ξ) +

d4ξ

dη4
D1
k,j(ξ) (2.58)

Derivatives of the interpolating polynomials are then calculated in the standard manner with
Dm
i,j replace by D̂m

i,j .

Two mappings are used in this work between CGL or FD-q grids (ξ ∈ [−1, 1]) and the
actual physical domain. The next transformation obtains a domain in the entire real axis [96],

η = η0 + η∞
tan

(
cπ
2 ξ
)

tan
(
cπ
2

) , (2.59)

where η is the discretized spatial direction, and η0 and η∞ are the respective center-point
and far-field truncation locations. Another transformation is used here in order to map the
calculation domain grid r ∈ [0, r∞] into the grid ξ ∈ [−1, 1] [165],

ηj = l
1− xj

1 + s+ ξj
, s = 2l/η∞, l =

η∞ηh
η∞ − 2ηh

, (2.60)

being η∞ the location where the calculation domain is truncated and ηh the domain location
that splits in two halves the number of discretization points.

2.4 Eigenvalue computation

The generalized EVP (1.25) must be constructed and solved employing adequate algorithms,
taking into account the memory and CPU-time requirements when the matrices are formed
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2.4. Eigenvalue computation

and stored. Although the newly developed code allows the use of dense or sparse linear algebra,
the sparse version is much more efficient and it is the one used here. The complex matrices A
and B discretizing the operators of equation (1.25) are built using an in-house modified version
of the SPARSKIT2 library [220] to work with complex arithmetic. To solve the eigenvalue
problem, the Arnoldi algorithm [219] is employed, combined with the MUMPS library [5, 6]
(MUltifrontal Massively Parallel Solver) to perform the LU-decomposition and solve the linear
algebraic systems with the possibility of making serial and parallel computations.

The Arnoldi algorithm delivers a number of eigenvalues on the vicinity of a specific estimate
value. Such value is set in the vicinity of the unstable/least-stable eigenvalue. Computational
cost is notoriously reduced employing Arnoldi algorithm instead of the classical QZ method.
More details can be found in the literature [219, 250].

The number of eigenvalues delivered is determined by the freely chosen Krylov subspace
dimension, whose limit is the leading dimension of matrices A and B. A so-called shift-and-
invert strategy is also implemented in this eigenvalue problem solver. The problem solved is
the following

CX = µX, C = (A− σB)−1B, µ = 1
ω−σ . (2.61)

where the Krylov subspace is constructed by

Km = span(v, C · v, C2 · v, ..., Cm−1 · v) (2.62)

where m is the dimension of the subspace.

The vectors forming the basis are ordered by columns into the matrix Vm. The projection
of the linear operator on the basis Vm yields the relation

VH
mCVm = Hm, (2.63)

where Hm is an upper triangular Hessenberg matrix. The restriction of the eigenvalue problem
to the Krylov subspace Km is

HmVH
m · q̂ = µVH

m · q̂. (2.64)

The eigenvalues of the Hessenberg matrix Hm are approximations to the m largest eigenvalues

of the original problem. If y
(m)
i is the eigenvector corresponding to the i-th eigenvalue of Hm

the corresponding approximation to the eigenvector of the original problem, known as Ritz
vector, is

q̂i = Vm · y(m). (2.65)
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2.5 Solution procedure of PSE-3D

2.5.1 Parabolic marching integration

The next solution procedure is equivalent for classical PSE, except the difference of having
q̂j(y, z), instead of q̂j(y). Therefore, the involved integrals are two-dimensional instead of
one-dimensional. The parabolic PDE system of equations (1.57) is solved by marching along
the streamwise direction. The derivative in the marching direction is approximated by the
implicit backward Euler scheme:

(q̂x)j+1 ≈
1

∆xj
(q̂j+1 − q̂j), (2.66)

where j ≥ 0 is the step index and q̂j = q̂j(y, z) = q̂(xj , y, z). In addition to this first order
scheme, the newly-developed code incorporates the option to use a second order scheme.
Equation (1.57) becomes

[∆xjLkj+1 +Mk
j+1]nq̂

k
n,j+1 = [∆xjFkj+1 +Mk

j+1]nq̂n,j , (2.67)

where k is the iteration index. Starting with an initial guess α0
j+1 = αj , according to the

first approximation αx = 0, q̂0
j+1 is obtained from equation (1.57). Then, the normalization

condition (1.43) is used to estimate a new αj+1:

αk+1
j+1 = αkj+1 −

i

∆xj

∫
Ω(ρb)

1/2
j+1û

†k
j+1[(ρb)

1/2
j+1û

k
j+1 − (ρb)

1/2
j ûj ] dΩ∫

Ω(ρb)j+1|ûkj+1|2 dΩ
. (2.68)

Once the wavenumber is updated, equation (2.67) is solved for the new shape functions, and
the value of α is recalculated. The iteration continues until the normalization condition is
satisfied to within some specified residual r (i.e. |αk+1 − αk| < r = 10−8 in the present
computations).

2.5.2 Non-linear terms

Computationally, the Fourier component of the forcing term, Fn, can be computed using
different algorithms. When solving classical non-linear PSE and the number of modes in
consideration is large enough, the Fast Fourier Transform (FFT) is used. In order to proceed,
firstly, q̃ is calculated from equation (1.56). Then, F is computed from the terms in Appendix
D and finally Fn is computed by performing the FFT of F . However, for the PSE-3D results
shown here, the Fourier modes of the non-linear terms, Fn, are computed directly in the
Fourier space using the convolution operation.

The computation of the non-linear terms requires some previous operations to calculate
the streamwise derivatives of perturbation variables. Since the second derivatives of the
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2.5. Solution procedure of PSE-3D

disturbances with respect to x appear only in the viscous terms, the following formula

∂2q̃

∂x2
=

N∑

n=−N
−α2

nq̆ exp[−inωt], (2.69)

is consistent with the order of magnitude analysis made for the derivation of the linear terms.
First derivatives of the disturbances with respect to x can be written as

∂q̃

∂x
=

N∑

n=−N

(
∂q̂

∂x
+ iαnq̂

)
exp

[
i

∫

x
α(x′)dx′

]
exp[−inωt]. (2.70)

This may cause that some terms smaller than O(ε) appear in the forcing terms.
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Chapter 3

Linear modal stability validations and numerical
efficiency

3.1 Introduction

The present contribution revisits the numerical solution of the EVP arising in global linear
stability theory using matrix formation and spatial discretization of the spatial operator by
means of the previously employed Padé compact [140] and Dispersion-Relation-Preserving
[241] schemes, as well as standard high-order finite-differences, Summation-By-Parts operators
[171, 235], and the less-known very high order finite-difference schemes of Hermanns and
Hernández [104]. All results are compared against those delivered by the spectral collocation
method based on (standard and coordinate-transformed) Chebyshev Gauss-Lobatto grids.

Although the main focus of the present work is global instability analysis in two or three
inhomogeneous spatial directions, the one-dimensional EVP governing local flow stability
is also solved, since its well-known highly accurate results assist quantification of the error
associated with each spatial discretization method. The potential of the most accurate finite-
difference method identified to permit transient growth analyses [222] is demonstrated also in
this local linear stability limit. For the sake of quantifying errors in the numerical solution of
the two- and three-dimensional global linear stability EVP, solution of the Helmholtz equation
in two and three spatial dimensions is also presented using the spatial discretization methods
discussed earlier since, on the one hand analytically-known solutions exist for the Helmholtz
EVP and on the other hand the Laplacian operator in two and three spatial dimensions is a
key element in the construction of the respective BiGlobal and TriGlobal EVPs.

3.2 Incompressible stability analysis validations

In the incompressible limit, validations commence with the well-known Orr-Sommerfeld equa-
tion (OSE), to which the global eigenvalue problem (EVP) reduces in case of parallel flows.
Results are presented for the plane Poiseuille flow (PPF) [129, 186] and for the Blasius
boundary-layer [161].
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3. Linear modal stability validations and numerical efficiency

EVPs whose spatial dependence is described by the Poisson operator are subsequently
solved by the present methodology, in both two and three spatial dimensions. The attractive-
ness of this spatial operator resides in the existence of analytically-known results in regular
two- and three-dimensional geometries and also in the fact that this spatial operator is at the
heart of the global EVP in both two and three spatial dimensions. Attention will be paid to the
accurate recovery of analytically known results of the Poisson operator, the Helmholtz EVP,
which is at the elliptic part of the linearized Navier-Stokes equations governing instability in
both two and three spatial dimensions:

∆φ+ λ2φ = 0, (3.1)

where λ2 is the sought real eigenvalue and can be determined analytically for simple geometries
[178]. This problem is also recovered by simplification from the linearized Euler equations,
neglecting flow altogether and keeping only the pressure.

Global modal instability analysis results are obtained in five fluid flow applications, three
in a BiGlobal and two in a TriGlobal EVP context. The BiGlobal EVPs to solve differ in
the number of base flow components: in the rectangular duct [245] only one such component
exists, and the EVP is complex; in the 2D lid-driven cavity [249], two base flow velocity
components exist, while the wavenumber vector is normal to the base flow plane, and the
stability EVP is real; in the swept attachment-line boundary-layer [154] all three base flow
components exist and the EVP is again complex. Finally, TriGlobal linear instability EVPs
are solved, treating all three inhomogeneous spatial dimensions in a coupled manner. This
is the most stringent test to which the proposed spatial discretization is performed. The
same rectangular duct and 2D lid-driven cavity problems studied by BiGlobal analysis are
solved by TriGlobal analysis. The solution is obtained at length-to-depth ratio of unity and a
spanwise domain extent defined by the maximally amplified BiGlobal eigenmode, with which
the TriGlobal analysis results are compared. Furthermore, the 3D lid-driven cavity flow
instability problem is solved using TriGlobal matrix-formation analysis. It is worth noting
that the very first TriGlobal instability analysis to appear in the literature was performed
relatively recently in a time-stepping context [247], while presently four more such analyses
are available [11, 63, 75, 179]. Of these, one [179] is performed in a matrix-forming context,
while two in a time-stepping technique, all concerning the cubic lid-driven cavity with singular
lid motion [63, 75].

The elliptic EVP (1.25) must be complemented with adequate boundary conditions for
the disturbance variables. In the presence of solid walls, no-slip condition is implemented,
and far from the wall all disturbances decay to zero. Boundary conditions for the disturbance
pressure do not exist physically; instead on the boundaries, compatibility conditions are used
derived from the Navier-Stokes equations at the boundary of the domain (see Theofilis et al.
[255]).
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3.2. Incompressible stability analysis validations

3.2.1 Local instability analysis

The one-dimensional LNSE is the limit to which the global eigenvalue problem reduces in
case of parallel flows. Results are presented for the plane Poiseuille flow (PPF) [129, 186], the
bounded nature of which implies the existence of a discrete eigenspectrum only, and for the
Blasius boundary-layer [161], where both discrete and continuous branches of the spectrum
exist.

In order to assess the ability of the proposed spatial discretization to perform transient
growth studies, the well-known pseudospectra of the OSE [199] are also obtained.

Eigenspectrum of plane Poiseuille flow

The temporal stability analysis of the plane Poiseuille flow is considered first. The stability
EVP [186] is solved at Re = 10000, α = 1 and spanwise wavenumber β = 0, for which the con-
verged leading eigenvalue in double precision arithmetic has been provided by Kirchner [129]
as being ωr,c + iωi,c = 0.2375264888204682 + i0.0037396706229799. Owing to the relatively
small leading matrix dimension, the dense linear algebra subroutine ZGGEV of LAPACK,
based on the QZ algorithm [77], is used for the solution of the EVP. The examined spatial
discretizations are summarized in Table 3.1. All these finite-difference methods are imple-
mented at order 8 and on uniform grids, except for the last one, FD-q, which employs its
particular grid. In addition, FD-q method is implemented not only at order 8, but also at
order 16, in order to prove the capability of this method of reaching very high order schemes
and its good behavior. In figure 3.1, relative error of the leading eigenvalue as function of
the leading matrix dimension N + 1 is presented in order to compare accuracy between the
different numerical methods. The relative error is defined in the following way:

εω =

∣∣∣∣
ωi − ωi,c
ωi,c

∣∣∣∣ , (3.2)

where ωi is the computed imaginary part of the eigenvalue using N + 1 nodes and ωi,c the
corresponding converged value quoted above.

Several observations are worthy of discussion on the basis of these results and the analogous
ones of the mode frequency, as well as all qualitatively identical results obtained for FD-q at
different combinations of discretization nodes, N +1, and orders, q, not presented here. First,
it is seen that, compared with any finite-difference method, the spectral collocation method
needs less grid points to obtain a converged result, a fact which is well-known from classic
linear stability studies [e.g. 165]. Second, when monitoring finite-difference discretizations of
the same order (here methods of order 8 are shown), the standard and the compact finite-
differences, the DRP and the SBP methods all require practically the same resolutions in
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3. Linear modal stability validations and numerical efficiency

Table 3.1: Examined spatial discretization methods.

Spatial discretization method Acronym Refereces

Spectral collocation CGL [28, 34]

Standard centered finite-differences STD -
Compact finite-differences Padé [140]
Dispersion-Relation-Preserving finite-differences DRP [241]
Summation-by-parts operators SPB [171, 235]

Finite difference methods with uniform error FD-q [104]
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Figure 3.1: Convergence history of relative error for the amplification rate of the leading eigenmode
of plane Poiseuille flow at Re = 10000, α = 1, obtained by (black) spectral collocation using CGL and
(blue) high-order finite-difference methods of order 8: STD, Padé, DRP, SBP, as well as (red) FD-q
with q = 8 and q = 16. N + 1 is the total number of discretization points.
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3.2. Incompressible stability analysis validations

order to deliver amplification rate results converged to the same degree. However, fastest
convergence, compared with any of the examined finite-difference methods of the same order,
is offered by the FD-q8 method. In the example presented, in order to achieve a relative error
of O(10−6) in the amplification rate, N ≈ 200 points are needed by FD-q8 and N ≈ 500
by all other finite-difference methods despite having all of them the same formal order of
accuracy/convergence. Conversely, and much more important from the point of view of the
subsequent use of the FD-q methods as the basis for spatial discretization in the multi-
dimensional EVPs, at a given affordable level of discretization, say N = 200 points, STD,
Padé, SBP and DRP methods of order 8 have a relative error of O(10−3) in the recovery
of the leading eigenmode, while the error of the FD-q8 method is O(10−6). Third, as the
order of the FD-q method is increased, its results approach those of the spectral collocation
method, with which the method becomes identical when q = N as discussed in Subsection
2.1.4; the FD-q16 results shown in figure 3.1 are typical for the convergence history shown by
FD-q methods of order 8 < q < N , requiring only N ≈ 100 points to achieve the specified
relative error level of O(10−6), or attaining an accuracy of O(10−10) for N = 200 points.

In summary, at all orders examined, the FD-q method performs better than all of the
well-known high-order finite-difference methods. This is attributed to the fact that the FD-
q method minimizes the interpolation error both at the interior and boundary (and near-
boundary) points in a self-consistent uniform manner. In order for the standard high-order,
Padé, DRP or SBP schemes to become competitive with FD-q, higher formal orders need to be
used compared with that employed in the FD-q method. However, that increase in the order
may not be straightforward for some schemes at q ≥ 8 [235] or the resulting finite-difference
method may be unstable.

On the other hand, for those methods for which using q > 8 is possible, the increase in
bandwidth resulting from a comparatively high value of q is not an issue from the point of view
of efficiency, when the one-dimensional EVP is solved using full eigenspectrum computations
and the QZ algorithm. However, FD-q has a competitive advantage in performing global
instability analyses, where exploitation of the matrix sparsity is essential; there one seeks to
use the method having optimal convergence and accuracy properties between all available
having the same sparsity pattern, as will be discussed in subsequent sections.

Pseudospectrum of plane Poiseuille flow

The non-modal scenario for laminar-turbulent flow transition is now well-understood [222],
the concept of pseudospectrum [260] being central to its theoretical description. Here, the
pseudospectrum of plane Poiseuille flow (PPF) is shown comparing, for brevity, Chebyshev-
Gauss-Lobatto collocation (CGL) and FD-q16.

As shown above, results obtained are representative of all combinations of number of
discretization points, N , and finite-difference method order, q for FD-q; N = 128 and q = 16

45



3. Linear modal stability validations and numerical efficiency

cr

c i

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 3.2: Eigenspectrum and pseudospectrum of plane Poiseuille flow at Re = 104, α = 1, obtained
by spectral collocation using CGL and high-order finite-difference method FD-q. Solid lines and empty
circles correspond to CGL and dashed lines and solid circles to FD-q16, both of them with N+1 = 129
discretization points. Levels from inner to outer isoline, 10−7, 10−6, 10−5, 10−4, 10−3 and 10−2. Note
that c = ω/α refers to phase velocity.

are used presently, and the pseudospectrum has been computed using EigTool [276].

Figure 3.2 shows the eigenspectrum and pseudospectrum obtained by the spectral col-
location and FD-q methods. Eigenspectrum results are graphically indistinguishable from
each other while the pseudospectrum, plotted here at different levels of matrix perturbations,
corresponding to 10−7 for the innermost to 10−2 in the outermost curve in figure 3.2, only
shows discrepancies at large matrix perturbation levels. However, given that q � N , the
overall agreement is quite satisfactory. If an improved agreement is sought, the order q or
the number of points N may be increased in order for the FD-q method to deliver results
approaching those obtained by the spectral collocation method. As mentioned, though, it is
not perfect agreement of the FD-q with the spectral collocation method that is sought, but
rather the ability of the former method to deliver accurate description of the pseudospectrum,
as shown in the results of figure 3.2, at a smaller cost thanks to the fact that q � N , thus
improving the sparsity pattern.
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3.2. Incompressible stability analysis validations

Eigenspectrum of the Blasius boundary-layer

The accuracy properties of the FD-q method are preserved in open flows, where a mapping
transformation is needed to transfer data from the standard domain x ∈ [−1, 1] of both the
CGL and the FD-q methods onto a semi-infinite domain y ∈ [0, y∞] with transformation
(2.60), setting y∞ = 150 and yh = 5.

Figure 3.3 shows the leading unstable eigenmode and the least stable part of the Blasius
eigenspectrum at Reδ∗ = 580 and α = 0.179 [161], as recovered by the CGL spectral colloca-
tion method on N + 1 = 101 points, as well as FD-q12 and FD-q24 on the same number of
nodes. Even at a value of q which is an order of magnitude smaller than N , the entire discrete
eigenspectrum is seen to be recovered by the FD-q method as reliable as by the CGL spatial
discretization. None of the three methods is capable of capturing the continuous spectrum
correctly; as is known analytically, the latter is a vertical line at cr = ωr/α = 1 (c refers to
phase velocity). Interestingly, even at q = 12 the discrete approximation of the continuous
spectrum is more vertical than the one delivered by the spectral collocation method, although
as q increases the FD-q and spectral results come closer, and collapse onto each other at
q = N , pointing towards the existence of an optimum value of q which for the moment is
unknown a priori. Finally, an additional discrete mode is recovered at cr = 0.8 using the
FD-q12 and FD-q24 methods due to the displacement of the continuous part of the spectrum.

Pseudospectrum of the Blasius boundary-layer

This Subsection of validation of results of the FD-q method against known solutions of the
one-dimensional EVP closes with the presentation of the pseudospectrum of Blasius flow at the
same parameters as those at which the eigenspectrum has been obtained. Figure 3.4 presents
the eigenspectrum obtained by the spectral collocation method, already shown in figure 3.3,
alongside the one delivered by FD-q16, which exhibits the properties discussed in the previous
Subsection. In addition, the pseudospectrum obtained at perturbation levels of 10−7 to 10−2

(inner-to-outer curves) is shown. As in the case of the plane Poiseuille flow, close qualitative
agreement is seen between the two sets of results, although the poor recovery of the continuous
spectrum by both, the spectral and the finite-difference methods, results in larger discrepancies
in the pseudospectrum in that region. By contrast, the pseudospectrum associated with the
discrete eigenvalues is reproduced in close agreement by both methods, despite the fact that
q = 16 is an order of magnitude smaller than N + 1 = 129, the discretization nodes used in
both methods.
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Figure 3.3: Eigenspectrum of Blasius boundary-layer flow at Reδ∗ = 580 and α = 0.179, obtained
with spectral collocation based on mapped CGL and two high-order finite-difference methods FD-q of
order 12 and 24 with N + 1 = 101 discretization points. Note that c = ω/α refers to phase velocity.

3.2.2 The 2D Helmholtz EVP

In two spatial dimensions the Helmholtz EVP (3.1) is

(
∂2

∂x2
+

∂2

∂y2

)
φ+ λ2φ = 0. (3.3)

Such problem is useful in assessing the accuracy of the proposed spatial discretization
method comparing the recovered eigenvalues with the analytical solution of this problem in
the rectangular membrane domain Ω = {x ∈ [−1, 1]} × {y ∈ [−1, 1]} [e.g. 178]. Such solution
is the following:

λ2
nx,ny =

π2

4
(n2
x + n2

y); nx, ny = 1, 2, 3, · · · (3.4)

Higher eigenvalues/eigenfunctions (nx, ny � 1) are of special interest due to the need of
using a relatively high number of nodes for an accurate description. This is in contrast with
the first few eigenvalues, which are already recovered using N ≈ 10.
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Figure 3.4: Eigenspectrum and pseudospectrum of the Blasius boundary-layer flow at Reδ∗ = 580
and α = 0.179, obtained by spectral collocation using CGL and FD-q. Solid lines and empty circles
correspond to CGL and dashed lines and solid circles to FD-q16, both of them with N + 1 = 129
discretization points. Levels from inner to outer isoline, 10−7, 10−6, 10−5, 10−4, 10−3 and 10−2.
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Figure 3.5: Convergence history of the solution of the 2D Helmholtz EVP for the eigenvalue
λ2/(π2/4) = 34, obtained by (black) spectral collocation using CGL and (blue) high-order finite-
difference methods of order 8: STD, Padé, DRP, SBP, as well as (red) FD-q with q = 8 and q = 16.
The number of discretization nodes used is the same in both spatial directions and is denoted by N+1.
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Figure 3.6: (a) Convergence history of the solution of the 2D Helmholtz EVP for the eigenvalue
λ2/(π2/4) = 34, obtained using CGL and a suite of FD-q methods of orders 4, 8, 12, 16 and 20. The
number of discretization nodes used is the same in both spatial directions and is denoted by N + 1.
(b) Corresponding eigenfunction using FD-q12 with Nx×Ny = 802. Shown are contours (-0.9:0.1:0.8)
with isolines of positives (solid line) and negatives (dashed line) values.
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3.2. Incompressible stability analysis validations

Figure 3.5 shows the convergence history of the numerical solution of the 2D Helmholtz
problem for a high eigenvalue (λ2/(π2/4) = 34) comparing the same finite-difference methods
used to obtain the OSE results in figure 3.1. Similar conclusions to the one reached in the Orr-
Sommerfeld flow instability problem solved in the previous applications are also drawn here:
maintaining the order of the scheme (order 8) FD-q presents higher accuracy than the other
finite-difference methods, and with a higher order (order 16), FD-q reaches double-precision
employing a number of nodes only two times larger than employing the spectral collocation
method.

Figure 3.6(a) shows the convergence history of the numerical solution of the 2D Helmholtz
problem for the same eigenvalue. Different orders of FD-q methods are implemented and
compared with CGL spectral collocation method. Special interest is focused on intermediate
values of the order of the method, e.g. q = 12. In such case single-precision convergence
is achieved using approximately two times more discretization points than with the spectral
collocation method. In addition, double-precision convergence is achieved with less than four
times more nodes than the ones required by the spectral collocation method. For completeness,
figure 3.6(b) displays the eigenfunction corresponding to the eigenvalue λ2/(π2/4) = 34,
obtained numerically using FD-q12 with Nx ×Ny = 802.

3.2.3 BiGlobal instability analysis

Attention is now turned to the main subject of this paper, namely modal global linear in-
stability, discussing BiGlobal instability first. Three applications are selected for validation
purposes: the rectangular duct [245], the lid-driven cavity [3, 249] and the swept leading-edge
boundary-layer [154, 254]. As mentioned at the beginning of this Section, these problems
are selected because they are governed by one, two and three base flow velocity components,
respectively, and also permit validating both the real and the complex form of the EVP.

The rectangular duct flow

In two coupled spatial directions, the rectangular duct [245] of cross-sectional aspect ratio
A, driven by a constant pressure gradient along the axial (unbounded) direction, is the two-
dimensional extension of the plane Poiseuille flow. Its base flow is known analytically [212]
and has a single component along the (homogeneous) wavenumber vector direction. Con-
sidering the rectangular duct defined in the domain Ω = {z ∈ [−A,A]} × {y ∈ [−1, 1]}, a
constant pressure gradient in the unbounded x direction drives a steady laminar flow which
is independent of x and possesses a velocity vector ū = [ū(z, y), 0, 0]T with a single velocity
component ū(z, y) along the x spatial direction. The latter satisfies the Poisson equation that
may be solved in series form [212]. Global flow instability in this application is governed by
a complex EVP.
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3. Linear modal stability validations and numerical efficiency

Table 3.2: Convergence history of BiGlobal instability analysis of rectangular duct flow at A = 1,
Re = 1000 and α = π comparing the leading eigenmode results using CGL and FD-q16 and the
corresponding Richardson extrapolations.

N2 ωr ωi

CGL 302 2.9027647730 -0.10353535398
402 2.9027654432 -0.10352492808
502 2.9027654495 -0.10352492616
602 2.9027654518 -0.10352492608
702 2.9027654528 -0.10352492609

Richardson Ext. 2.9027654541 -0.10352492635

FD-q16 302 2.9027679758 -0.10352715467
502 2.9027654409 -0.10352492446
702 2.9027654496 -0.10352492422
902 2.9027654520 -0.10352492512
1102 2.9027654529 -0.10352492555

Richardson Ext. 2.9027654541 -0.10352492637

Table 3.2 presents convergence history results for the numerical solution of the 2D EVP
presented in equation (1.25) using the matrices (1.51) with base flow velocity ū = [ū(z, y), 0, 0]T ,
using CGL and FD-q16 at a subcritical Reynolds number, Re = 1000, and wavenumber pa-
rameter α = π. In addition, Richardson-extrapolation results are also shown. Considering the
Richardson extrapolation value of CGL spectral collocation method as converged eigenvalue,
8 decimal digits are converged in ωr and 9 in ωi when using CGL methods with N2 ≥ 602. On
the other hand, the same order of convergence is reached when using FD-q16 with N2 ≥ 902.
Figure 3.7 shows the convergence history for the different spatial discretization schemes, us-
ing the converged result of Table 3.2, ω = 2.9027654541 − i 0.10352492635, as correct value.
Different slopes arise due to the discontinuities of the derivatives in the corners of the domain
[34]. As expected, the convergence rate for FD-q16 and CGL are better than for the order
8 schemes. However, the higher degree of sparsity in the 8th-order scheme makes FD-q8 the
more efficient one in terms of the numerical solution of this problem.
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Figure 3.7: Convergence history of the BiGlobal EVP applied to the rectangular duct flow at Re =
1000 and α = π, with A = 1 for the eigenvalue ω = 2.9027654541−i 0.10352492635, obtained by (balck)
spectral collocation using CGL and (blue) high-order finite-difference methods of order 8: STD, Padé,
DRP, SBP, as well as (red) FD-q with q = 8 and q = 16. The number of discretization nodes used is
the same in both spatial directions and is denoted by N + 1.

The regularized lid-driven cavity

The two-dimensional lid-driven cavity, three-dimensional (non-zero spanwise wavenumber)
BiGlobal instability analysis of which was first performed using singular boundary conditions
[3, 249], is solved next, after regularizing the lid motion. Regularization eliminates the corner
singularities at the two ends of the moving lid and permits obtaining highly-accurate base flow
solutions. Regarding global instability in this problem, the wavenumber vector is normal to the
plane on which the base flow develops, and a simple transformation of the linearized Navier-
Stokes equations reduces the two-dimensional EVP into one governed by real coefficients
[250].

The direction z is taken to be in the direction of the motion of the lid and y to be along
the normal to this direction. The base flow is considered independent of the third (spanwise)
direction x. Thus, the domain is defined as Ω = {z ∈ [0, A]} × {y ∈ [0, 1]}, where A is
the aspect ratio. The steady base flow vector under these assumptions has two velocity
components, ū = [0, v̄(z, y), w̄(z, y)]T , and it is obtained by solving the vorticity-transport
equation (see [250] for more details). The boundary conditions are v̄ = 0 on all four walls and
w̄ = 0 in all the walls but the corresponding to the lid where

w̄ =
[
1− (2z − 1)16

]2
, z ∈ [0, 1]. (3.5)

In this manner, the discontinuity in the boundary condition at w̄(z = 0, y = 1) and w̄(z =
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3. Linear modal stability validations and numerical efficiency

1, y = 1) of the lid-driven-cavity flow [74, 228] is avoided, since it is a potential source of
suboptimal convergence.

Figure 3.8 presents convergence history results using the same suite of 8th-order finite-
difference methods used so far, in addition to FD-q16 and CGL. At the conditions at which the
EVP in equation (1.25) with the matrices (1.51) is solved, the leading eigenmode is stationary,
so comparisons are performed using only the imaginary part of the leading eigenvalue. The
converged value used for this result is the average obtained whit the Richardson extrapolations
of the CGL and FD-q16 results. The same qualitative conclusions reached by application of
these discretization methods in the previous problems are reached here too, namely that the
FD-q methods are superior in terms of accuracy to all other finite-difference approaches.

It is worth noting in this context that the only previous known work in the literature which
compares finite-difference and spectral collocation methods for global instability analysis is the
work by Merle et al. [176] who also used the lid-driven cavity as test. The conclusion reached
in that work was that the DRP scheme is the best alternative in terms of computational cost
to CGL from a combined accuracy and efficiency perspective. This conclusion is superseded
by the results of figure 3.8: while the DRP method has the same formal resolution capacity as
standard, Padé or SBP finite-differences, and may indeed be more efficient than some of the
other methods examined (comparisons in [176] were confined to Padé and DRP), the 8th-order
member of the FD-q methods family significantly outperforms all its peers; using N = 100 it
delivers a relative error of the most unstable eigenmode of O(10−4), as opposed to O(10−2)
that all other finite-difference methods deliver. In addition, due to the nature of the method,
the sparsity of DRP is smaller than the one of FD-q when the order of the method is the
same in both numerical schemes. As in the previously studied problems, increasing the order
of the FD-q method utilized delivers results approximating those obtained by the spectral
collocation method.

The swept attachment-line boundary-layer flow

Still within a BiGlobal context, the EVP governing instability of the incompressible swept
Hiemenz flow is also solved using the proposed spatial discretization methods. Unlike the two
previous two-dimensional base flows, here all three base flow velocity components are present
and no reductions of the LNSE are possible. Here again a complex EVP needs to be solved.
One advantage of this application is that the base flow is obtained by the solution of systems
of coupled ordinary differential equations at arbitrarily high precision. In addition, accurate
global instability results of this flow are available [154] and have been modeled by simple one-
dimensional EVPs in both the orthogonal [254], and the non-orthogonal [192] leading-edge
boundary-layer flow, providing highly accurate data to compare against.

The base flow is provided by the swept Hiemenz boundary-layer, which models steady
stagnation line flow. The velocity components are independent of the homogeneous direction
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Figure 3.8: Convergence history of the BiGlobal EVP applied to the regularized lid-driven cavity
flow at Re = 1000 and α = 15, with A = 1 for the most unstable eigenvalue ω = i 0.108337, obtained
by (black) spectral collocation using CGL grid and (blue) high-order finite-difference methods of order
8: STD, Padé, DRP, SBP, as well as (red) FD-q with q = 8 and q = 16. The number of discretization
nodes used is the same in both spatial directions and is denoted by N + 1.

along the attachment line, x, which is assumed to be infinite, while all three base flow velocity
components are taken to depend on the wall-normal direction y. Moreover, the chordwise
velocity component w̄(y, z) is taken to be linearly dependent on the chordwise coordinate z,
while the wall-normal velocity component v̄(y) and the velocity component ū(y) along the
attachment line are taken to be independent of z [212].

The EVP in equation (1.25) with the matrices (1.51) is solved with this attachment-line
boundary-layer base flow using the same set of parameters of Lin and Malik [154]: Re = 800
and α = 0.255. The transformation used for the wall-normal direction y is the same as the
one used for the Blasius boundary-layer problem (2.60) but with y∞ = 150 and yh = 4. In
the chordwise coordinate, a linear transformation is used to map the standard CGL or FD-q
domain into z ∈ [−200, 200]. Table 3.3 shows comparisons with the converged results of Lin
and Malik [154] using CGL, FD-q8 and FD-q16 for the first two most unstable modes. FD-q8
and FD-q16 results show very good agreement with the literature result and even outperform
the CGL results of the second eigenvalue using low resolution (e.g. Nx ×Ny = 502), which is
more difficult to be calculated numerically, due to the closeness between both modes.
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3. Linear modal stability validations and numerical efficiency

Table 3.3: BiGlobal instability analysis of the incompressible attachment-line boundary-layer flow
with at Re = 800 and α = 0.255. The first two most unstable modes, GH and A1 are shown.
Comparison with the results presented by Lin and Malik [154]. Note that c = ω/α refers to phase
velocity.

N2 cr(GH) ci(GH)(×102) cr(A1) ci(A1)(×102)

CGL 302 0.35840506 0.58473709 0.35791126 0.41108252
402 0.35841015 0.58531622 0.35792172 0.41104656
502 0.35840978 0.58532857 0.35792622 0.41027206
602 0.35840997 0.58531393 0.35792318 0.40962663

FD-q16 302 0.35842026 0.58484758 0.35792767 0.40974017
502 0.35840951 0.58533098 0.35791855 0.40989817
702 0.35840947 0.58529166 0.35791927 0.40986547
902 0.35840990 0.58532679 0.35791979 0.40988838

FD-q8 302 0.35840088 0.58685134 0.35790972 0.41179370
502 0.35841011 0.58540140 0.35797511 0.40990771
702 0.35840976 0.58530175 0.35791916 0.40989455
902 0.35840991 0.58532658 0.35791980 0.40988576

L&M [154] 0.35840982 0.58532472 0.35791970 0.40988667
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Figure 3.9: (a) Convergence history of the solution of the 3D Helmholtz EVP for the eigenvalue
λ2/(π2/4) = 43, obtained using CGL and a suite of FD-q methods of orders 4, 8, 12, 16 and 20. The
number of discretization nodes used is the same in the three spatial directions and is denoted by N+1.
(b) Iso-surfaces of the corresponding eigenfunction obtained using FD-q12 with Nx ×Ny ×Nz = 603.

3.2.4 The 3D Helmholtz EVP

In three spatial dimensions the Helmholtz EVP (3.1) is defined by the following equation:
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
φ+ λ2φ = 0, (3.6)

Such problem is useful in assessing the accuracy of the proposed spatial discretization
method, especially in the recovery of the higher eigenvalues/eigenfunctions, nx, ny, nz � 1.
The recovered eigenvalues are compared with the analytical solution of this problem in the
domain Ω = {x ∈ [−1, 1]}× {y ∈ [−1, 1]}× {z ∈ [−1, 1]} [178]. Such solution is the following:

λ2
nx,ny ,nz =

π2

4

[
n2
x + n2

y + n2
z

]
; nx, ny, nz = 1, 2, 3, · · · (3.7)

Figure 3.9(a) shows the convergence history of the eigenvalue λ2/(π2/4) = 43. Conclusions
analogous to those reached in the two-dimensional Helmholtz EVP and in the previously
addressed applications are also drawn here. Special interest is focused on intermediate values
of the order of the method, e.g. q = 12, q = 14. Single-precision convergence is achieved using
approximately two times more discretization points than with spectral collocation methods,
and double-precision convergence is achieved with less than four times more nodes than with
spectral collocation methods.
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3. Linear modal stability validations and numerical efficiency

For completeness, figure 3.9(b) displays the eigenfunction corresponding to the eigenvalue
(λ2/(π2/4) = 43), obtained numerically using FD-q12, showing that a non-trivial structure
in terms of gradients is obtained. As with its two-dimensional analogous, reliable spatial
discretization of the three-dimensional Poisson operator sets the scene for the solution of the
TriGlobal EVP.

3.2.5 The TriGlobal EVP

Finally, the TriGlobal linear instability EVP in equation (1.25) formed by the matrices (1.63)
is solved, treating all three inhomogeneous spatial dimensions in a coupled manner.

Using the two-dimensional rectangular duct and regularized lid-driven cavity base states
previously calculated, a three-dimensional, spanwise homogeneous base flow is constructed
and analyzed by solving the three-dimensional EVP without exploitation of the spanwise
periodicity. Furthermore, the three-dimensional lid-driven cavity flow in absence of homo-
geneous spatial directions is solved. This is the most stringent test to which the proposed
spatial discretization is exposed. In view of the results, only the FD-q method is used for the
solution of equation (1.25) formed by the matrices (1.63).

The rectangular duct flow

The rectangular duct flow is analyzed also with TriGlobal analysis at Re = 1000, employing
FD-q10 in both z and y directions. For the TriGlobal analysis, NF Fourier collocation points
are used along the spanwise direction, in order to discretize a spanwise length Lx = 2π/αBG.
The parameter αBG = π is chosen to enable direct comparisons of the present TriGlobal with
the results obtained by the solution of the BiGlobal analysis in which only (z, y) are discretized
in a coupled manner, ω = 2.902765454 − i0.1035249264. Results are presented in Table 3.4,
where a very good agreement between BiGlobal and TriGlobal analysis results is observed:
the damping rate obtained by BiGlobal analysis using the highest attainable resolution on
the used desktop computer, Nz ×Ny = 702 CGL points and that delivered by the TriGlobal
analysis with Nz ×Ny = 562 FD-q10 points and NF = 12 Fourier collocation points, have a
relative difference of O(10−7).

The two-dimensional regularized lid-driven cavity

Here, the two-dimensional regularized lid-driven cavity flow is analyzed with TriGlobal anal-
ysis. For the solution of equation (1.25) formed by the matrices (1.63), NF Fourier collo-
cation points are used along the spanwise direction, in order to discretize a spanwise length
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Table 3.4: TriGlobal instability analysis of the rectangular duct flow in the domain Ω = {x ∈
[−1, 1]} × {y ∈ [−1, 1]} × {z ∈ [−1, 1]} at Re = 1000 using FD-q10 for z and y direction with N + 1
points and Fourier collocation with NF points in x.

N2 ×NF ωr ωi Memory (MB) TLU (s) TAR (s)

322 × 12 2.90275822 -0.103516753 4862† 353† 0.8†

402 × 12 2.90276481 -0.103523881 2980 1006 8.8
482 × 12 2.90276539 -0.103524652 4611 1735 16.4
422 × 16 2.90276510 -0.103524201 6253 3345 19.0
562 × 12 2.90276545 -0.103524809 6539 5247 20.6

TLU and TAR respectively refer to time spent in the LU decomposition of the matrix and
the Arnoldi iteration.

† refers to Out-of-Core while rest are In-Core calculations.

Lx = 2π/αBG, and FD-q10 in both of the z and y directions. The parameters Re = 1000
and αBG = 15 are chosen in order to directly compare the present TriGlobal results with the
converged BiGlobal result shown in figure 3.8, ω = i0.108337. The results are presented in
Table 3.5, where an acceptable agreement between BiGlobal and TriGlobal analysis results is
observed: the damping rate obtained by BiGlobal analysis using Nz ×Ny = 702 CGL points
and the one delivered by TriGlobal analysis with Nz ×Ny = 562 FD-q10 points and NF = 12
Fourier collocation points show a relative difference of O(10−3). This discrepancy is expected
to improve by increasing resolutions.

The three-dimensional regularized lid-driven cavity

The last test to which FD-q methods are subject is the three-dimensional regularized lid-
driven cavity flow. The base flow is computed with an in-house developed steady-state high
order spectral collocation DNS solver [79]. The already showed substantial efficiency improve-
ment over spectral collocation offered by the FD-q finite-difference discretization method in
combination with sparse matrix storage and inversion permits solving the canonical TriGlobal
linear modal instability problem in the cubic lid-driven cavity [63, 75] serially, on a worksta-
tion having 8GB of memory. While details of the physics of this problem are discussed in
the work of Gómez et al. [79], Table 3.6 shows the computing requirements for the reliable
solution of this problem, using the matrix-forming approach.
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Table 3.5: TriGlobal instability analysis of the regularized lid-driven cavity flow in the domain
Ω = {z ∈ [0, 1]}×{y ∈ [0, 1]}×{x ∈ [0, 2π/15]} at Re = 1000 using FD-q10 for z and y direction with
N + 1 points and Fourier collocation with NF points in x.

N2 ×NF ωi Memory (MB) TLU (s) TAR(s)

322 × 12 0.102726 4920† 377† 0.9†

402 × 12 0.106135 3226 1447 8.8
482 × 12 0.106903 4578 1819 15.8
422 × 16 0.106538 6061 3097 16.5
562 × 12 0.106804 6704 3947 25.4

TLU and TAR respectively refer to time spent in the LU decom-
position of the matrix and the Arnoldi iteration.

† refers to Out-of-Core while rest are In-Core calculations.

Table 3.6: TriGlobal instability analysis of the regularized cubic lid-driven cavity flow in the domain
Ω = {x ∈ [0, 1]} × {y ∈ [0, 1]} × {z ∈ [0, 1]} at Re = 200 using matrix formation. FD-q finite-
differences of orders q and N number of points in each of the three spatial directions are used. The
leading eigenvalue is shown in terms of damping rate ωr and frequency ωi.

N3 q ωr ωi Memory (MB) TLU (s) TAR(s)

203 4 0.41796 0.15894 665 17 0.1
263 4 0.41475 0.13689 2172 84 0.4
323 4 0.41601 0.13405 5904 332 1.1
383 4 0.41585 0.13278 3742† 1126† 12.4†

203 6 0.41262 0.13152 1224 67 0.2
263 6 0.41606 0.13191 4296 265 0.7
323 6 0.41601 0.13191 4217† 1214† 10.7†

203 8 0.41711 0.13223 1926 142 0.3
263 8 0.41650 0.13187 6666 677 1.1

TLU and TAR respectively refer to time spent in the LU decomposition of
the matrix and the Arnoldi iteration.

† refers to Out-of-Core while rest are In-Core calculations.
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Table 3.7: Local modal analysis results of compressible flat-plate boundary-layer at M = 6, Re =
1000, α = 0.8 and β = 0.8 using FDq-24 with N + 1 = 129 discretization points. The two modes
shown are identified with A and B in Figure 3.11. The leading mode (mode A) is compared with the
result of Theofilis and Colonius [252].

Mode ωr ωi
A 0.072489745 0.001054002
T&C [252] 0.072487839 0.001052149

B 0.050920988 0.000023752

3.3 Compressible stability analysis validations

3.3.1 The Local EVP

The stability analysis of the zero-pressure-gradient boundary-layer flow at hypersonic regime
(M = 6) is solved under the parallel flow assumption using local theory. The parameters
selected in this computation are Re = 1000, α = 0.8 and ψ = tan−1(β/α) = 45 deg.

The solution of the generalized EVP (1.25) applied to this problem is observed in figure
3.11, where the eigenvalues are plotted using N = 129 discretization points using FD-q16
(right triangles) and FD-q24 (left triangles). The mapping applied to the spatial scheme
(2.60) uses the same parameters for both discretizations, ηh = 20 and η∞ = 150. The
boundary conditions are Dirichlet for the three components of velocity and temperature at
the wall and far field. The pressure component does not need boundary conditions. The
purpose of setting two spatial discretization is the identification of spurious and converged
modes. Two modes are identified in figure 3.11, being A the leading mode (corresponding
with the first mode of Mack [162]) and B an arbitrary acoustic mode. The eigenvalues of this
modes are exposed in Table 3.7. Well agreement is observed against the literature predictions
for the leading mode. The eigenvectors of both modes are showed in figure 3.10 versus the
wall normal direction. The nature of the compressible modes become clear by inspection of
the most unstable mode, namely the first Mack mode, result (figures 3.10(a), 3.10(b), 3.10(c)
and 3.10(d)). As the Mach number increases, sharp gradients develop both in the near-wall
region and the neighborhood of the critical layer, the latter moving well into the free-stream.
The acoustic modes (figures 3.10(e), 3.10(f), 3.10(g) and 3.10(h)) develops wave-like behavior
at high wall-normal coordinate values, i.e. at the free-stream region.

After the modal analysis, attention is paid to the non-modal lineal results. For that, the
matrix discretizing the operator C of equation (1.13), C = B−1A, is formed in a straight-
forward manner thanks to the non-singularity of matrix B, unlike the incompressible case.
The pseudospectrum of this matrix is showed in figure 3.11. Also, the results for two spatial
discretization, FD-q16 (dashed lines) and FD-q24 (solid lines), are showed. The pseudospec-
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Figure 3.10: Components of the first Mack mode (A) and an arbitrary acoustic mode (B) eigenvectors
of compressible flat-plate boundary-layer flow at M = 6, Re = 1000, α = 0.8 and β = 0.8.

trum isoline ε = 10−4 cross the unstable border on closely to the leading mode. Figure 3.12
shows the evolution of the norm of the discretization of the propagator operator, ‖eCt‖. After
a transient growth at short times (3.12(b)), reaching a value around ‖eCt‖ ≈ 150 at t = 10,
an exponential behavior is exhibited for larger times. The exponential slope of this region,
0.00105035, matches the leading mode growth rate.

Same calculation is showed in figure 3.13 at same parameters but decreasing the Reynolds
number up to Re = 100, for which all the modes are stable. In this case, the maximum
transient growth ‖eCt‖ ≈ 150 is reached at t ≈ 750, and after this time, an oscillatory
decreasing of the norm is observed.

3.3.2 The BiGlobal EVP

The stability analysis of the compressible orthogonal swept leading-edge flow at M = 0.9 and
Re = 800 is solved using temporal BiGlobal analysis theory. The base flow analyzed here is
the same used in [73, 256].

The boundary conditions used for the temporal BiGlobal EVP (1.25) are no-slip on the
perturbation velocities at the wall, alongside with homogeneous Dirichlet condition for tem-
perature and at the far-field, a fast decay in the wall-normal direction is assumed for all dis-
turbances, permitting the imposition of homogeneous Dirichlet conditions at large distance
form the wall, y∞ = 100. At a large distance form the attachment line, along the z-direction,
z = ±Lz (setting Lz = 100 as in [73]), the homogeneous condition D2

zz(û, v̂, ŵ, T̂ ) = 0 is used,
which is equivalent to a linear extrapolation from the interior of the computational domain.
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Figure 3.12: Evolution of the norm of the discretization of the propagator operator, ‖eCt‖ for flat-
plate boundary-layer flow at Ma = 6, Re = 1000, α = 0.8 and β = 0.8 using FD-q24 with N = 129
discretization points.
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3. Linear modal stability validations and numerical efficiency

Table 3.8: BiGlobal instability analysis of the compressible attachment-line boundary layer flow with
at Re = 800, M = 0.9 and α = 0.19. The first two most unstable modes, GH and A1 are shown.
Comparison with the results presented by Gennaro et al. [73], where the authors used Nz = 140 STD
nodes of sixth order and Ny = 140 CGL nodes. Note that N = Ny = Nz.

N2 ωr(GH) ωi(GH) ωr(A1) ωi(A1)

CGL 302 0.076470803 0.001189096 0.076325574 0.000576254
402 0.076472284 0.001187837 0.076329702 0.000575014
502 0.076472281 0.001187836 0.076329243 0.000574900
602 0.076472275 0.001187834 0.076329278 0.000574939

FD-q16 502 0.076472269 0.001187838 0.076329292 0.000574931
602 0.076472275 0.001187831 0.076329285 0.000574934
702 0.076472274 0.001187833 0.076329282 0.000574932
802 0.076472274 0.001187837 0.076329282 0.000574936

FD-q8 502 0.076472282 0.001187879 0.076329313 0.000574981
602 0.076472276 0.001187858 0.076329293 0.000574943
702 0.076472272 0.001187841 0.076329285 0.000574938
802 0.076472275 0.001187839 0.076329287 0.000574936

G [73] 0.07647184 0.00118942 0.07632667 0.00057823
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Figure 3.13: Evolution of the norm of the discretization of the propagator operator, ‖eCt‖ for flat-
plate boundary-layer flow at Ma = 6, Re = 100, α = 0.8 and β = 0.8 using FD-q24 with N = 129
discretization points.

Table 3.8 shows the convergence history of the two most amplified modes, the GH (Görtler-
Hammerling or first symmetric mode) and the A1 (first antisymmetric mode), compared with
the results of Gennaro et al. [73]. The non-uniform high-order finite-difference scheme FD-q8
of eighth order [104] is used for discretization of both spatial direction. The wavenumber,
taken from [73] for comparison purpose, is α = 0.19. It is very surprising that a similar
level of accuracy is recovered by CGL, FD-q16 and even for FD-q8 with the same number of
discretization points Ny = Nz = 60. The absolute error achieved for the leading mode, i.e.
the GH mode, is O(10−8). The A1 mode also is recovered by FD-q16 and FD-q8 with the
same absolute error for approximately same number of discretization points. Figures 3.14 and
3.15 show the real and imaginary part of the eigenvectors û and ŵ for the GH and A1 modes
respectively.

3.4 The efficiency advantages of the FD-q method

Once the accuracy of FD-q method has been established, attention may be turned to the effi-
ciency advantage that they offer over spectral collocation methods. The solution algorithm is
based on subspace iteration in which the spatial discretization matrix is formed, stored and
LU-decomposed using sparse linear algebra routines and, therefore, the sparsity pattern is
the key parameter for the success of the overall algorithm. Only the FD-q spatial discretiza-
tion has been monitored in terms of the memory and CPU time requirements for the serial
solution of the incompressible BiGlobal EVP, on account of the superior accuracy properties
of this over other finite-difference methods of the same formal order (and sparsity pattern).
A visual indication of the savings expected by using a given FD-q method over the CGL
spatial discretization is offered by the sparsity patterns resulting from spatial discretization of
the left-hand-side BiGlobal matrix A of equation (1.25) for incompressible flows, respectively
shown in figure 3.16(a) for CGL and figure 3.16(b) for FD-q4, both plotted using N = 20.
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Figure 3.14: Eigenfuctions at M = 0.9, Re = 800 and α = 0.19 corresponding to the mode GH ((a)
Re(û), (b) Im(û), (c) Re(ŵ) and (d) Im(ŵ).
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Figure 3.15: Eigenfuctions at M = 0.9, Re = 800 and α = 0.19 corresponding to the mode A1 ((a)
Re(û), (b) Im(û), (c) Re(ŵ) and (d) Im(ŵ).
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3. Linear modal stability validations and numerical efficiency

The key parameter when a sparse solver is used is the number of non-zero elements (NNZ).
In most of the differential operators, this parameter is reduced by a factor of O(q+ 1/N + 1),
with q the order of the used finite-difference scheme (i.e. q + 1 is the stencil of the scheme)
and N+1, the number of points used to discretize the problem in each spatial direction for all
the differentiation matrices. For the more stringent case of compressible BiGlobal instability
analyses, or when non-orthogonal curvilinear mappings are used to discretize the problem,
cross-derivatives are present in the differential operators. In this case, NNZ is reduced by a
factor of O((q + 1/N + 1)2).

The computational requirements of the overall numerical solution of the EVP are imposed
by those of the LU-decomposition of the sparse matrix. The required memory and elapsed
time for this factorization cannot be predicted a priori and the ratio (q + 1/N + 1), elevated
to a power to be determined later, is used next to relate the required memory and elapsed
time of the LU-decomposition of FD-q with those of CGL spatial discretization. The flow
instability problem chosen to study computational requirements is one in which all velocity
components and their derivatives need to be discretized: the attachment-line boundary-layer
flow problem. Spatial discretization methods used are the CGL discretization working in
dense (results taken from [73]) and comparing them with the respective results corresponding
to sparse CGL, FD-q8, FD-q16 and FD-q24 spatial discretizations.

3.4.1 Incompressible regime operators

Focusing firstly in the incompressible regime and setting N = Nz = Ny, the leading dimension
of the matrix operator is M = 4 (N + 1)2.

Table 3.9 shows the required memory for the LU decomposition of the BiGlobal EVP
matrix using dense and sparse routines in conjunction with CGL discretization, as well as
three members of the FD-q family and sparse linear algebra. The quantity of required memory
when working in sparse is significantly reduced respect to the quantity of required memory
working in dense, which is theoretically Mem ≈ O(M2) ≈ O(N4). The memory requirements
of the FD-q8 method are found to be smaller by one order of magnitude compared with
those of the CGL method. In order to obtain a relation between the respective quantities the
formula

Mem FD−q =

(
q + 1

N + 1

)a
×Mem CGL, (3.8)

is assumed and used to identify (fit) the constant exponent a using the results of Table 3.9,
plotted in figure 3.17(a). Independently both the CGL and the FD-q results are taken to
follow a curve Mem ∝ (N + 1)α. This exponent is α CGL = 4.1 for the sparse CGL method,
which is very close to the theoretical exponent of 4 for dense computations, while the values
2.7, 2.8 and 2.6 have been identified for FD-q24, FD-q16 and FD-q8, respectively. Using the
average between the three FD-q cases, α FD−q = 2.7, the constant exponent of equation (3.8)
is approximated by a = α CGL − α FD−q = 1.4. Figure 3.17(b) shows the collapse of all FD-q
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3.4. The efficiency advantages of the FD-q method

(a) (b)

Figure 3.16: Sparsity pattern of the left-hand-side BiGlobal operator matrix with N + 1 = 21 dis-
cretization points per spatial direction using (a) CGL and (b) FD-q4 in the attachment line boundary-
layer problem. (blue) Real part and (red) imaginary part of the non-zero elements.

curves using equation (3.8) and these constant values. The required memory for FD-q scales
as Mem FD−q ≈ O(N2.7) ≈ O(M1.3), which outperforms computations using CGL, the latter
scaling as Mem CGL ≈ O(M2).

Turning to the elapsed time for serial LU factorization of the matrix pertinent to the same
global stability EVP, results in Table 3.10 are presented for the same methods. The theoretical
prediction of O(M3) ≈ O(N6) is verified by the CGL either sparse or dense results. The most
striking result of this table is the order(s) of magnitude decrease of CPU time that the FD-q
method offers, when compared with either of the CGL sparse or dense solution.

In order to quantify the relation between the elapsed times required by the CGL and the
FD-q methods, the formula

Time FD−q =

(
q + 1

N + 1

)b
× Time CGL, (3.9)

is assumed and used to fit the constant exponent b. Figure 3.18(a) shows the results of
Table 3.10. As in the case of memory requirements, either method is taken to follow a curve
Time ∝ (N+1)β. For the CGL method the exponent extracted from the results is β CGL = 6.0,
which is exactly the theoretical exponent for dense calculations, while the exponent values
of 3.8, 3.7 and 3.1 have been obtained for FD-q24, FD-q16 and FD-q8, respectively. Again,
using the average value of the three FD-q cases, β FD−q = 3.5, the constant exponent of
equation (3.9) is approximated by b = β CGL − β FD−q = 2.5. Figure 3.18(b) shows the
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3. Linear modal stability validations and numerical efficiency

Table 3.9: Memory requirements for the LU decomposition (MB) in the attachment line boundary
layer problem, using different resolutions and working with dense algebra for CGL and sparse algebra
for CGL, FD-q24, FD-q16 and FD-q8. Note that N = Nx = Ny.

N CGLdense CGLsparse FD-q24 FD-q16 FD-q8

40 760 584 444 246 107
50 1747 1350 705 457 179
60 3494 3078 1217 775 284
70 6230 5544 1889 1174 436
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Figure 3.17: (a) Required memory and (b) rescaled memory for LU-factorization of incompressible
BiGlobal EVP using the equation (3.8) versus number of discretization points per direction, N + 1.
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3.4. The efficiency advantages of the FD-q method

Table 3.10: Elapsed time for the LU decomposition (s) in the attachment line boundary layer flow
problem, using different resolutions and working with dense algebra for CGL and sparse algebra for
CGL, FD-q24, FD-q16 and FD-q8.

N CGLdense CGLsparse FD-q24 FD-q16 FD-q8

40 152.7 34.7 18.0 7.6 2.0
50 553.9 97.0 33.1 16.8 3.6
60 1603.4 292.0 80.2 35.2 6.3
70 4665.8 516.3 136.8 57.3 10.8

collapse of the FD-q CPU-time curves onto a single FD-q curve, which has the same slope
as that obtained using CGL discretization, when equation (3.9) is used with this parameter
value. Therefore, the CPU time for FD-q scales as Time FD−q ≈ O(N3.5) ≈ O(M1.7), instead
of Time CGL ≈ O(M3) for CGL.

The reductions in computational effort by the sparse solution of the BiGlobal EVP in which
the matrix is formed using the FD-q methods are made palpable by recalling the largest such
solution to-date, namely the massively parallel computations of Kitsios et al. [131], Rodŕıguez
and Theofilis [210]. The latter work was performed on the JUGENE supercomputing facility1,
on which 2048 processors were used in order to distribute the 1 TB large matrix resulting from
the CGL spectral collocation discretization of the incompressible operator on a Nz×Ny = 2502

grid, employing the parallel dense linear algebra library ScaLAPACK [26], with an elapsed
time of ≈ 10.5 hours of wall-clock time (≈ 22000 total hours of CPU time). Using the BiGlobal
results of figure 3.8 as a guidance, and employing the relation NCGL ≈ 2NFD−q8 at which the
CGL and the FD-q8 spatial discretizations both reach a relative error of εω ≈ 10−5 in the
leading eigenmode, the results of Kitsios et al. [131], Rodŕıguez and Theofilis [210] could be
obtained by employing Nz ×Ny = 5002 FD-q8 points. The memory estimation provided by
the sparse direct solver MUMPS on a serial desktop is 28 GB for in-core and 3.2 GB for out-of-
core calculations. The estimation of the respective elapsed time is calculated by extrapolating
the results of Table 3.10 for CGL sparse results to N = 500 with the previously calculated
slope β CGL = 6.0, resulting Time CGL ≈ 18000 CPU hours, and then using equation (3.9) to
obtain the estimation of Time FD−q8 ≈ 46 CPU minutes.

In order to complete the cost estimations, the relation NCGL ≈ 4NFD−q8, observed in the
results of figure 3.6(a) at which the CGL and the FD-q8 spatial discretizations both reach a
relative error of ελ ≈ 10−9 in the leading eigenmode, is adopted. Now, using NFD−q8 = 1000,
the memory estimation provided by MUMPS is 137 GB for in-core and 13.3 GB for out-

1http://www.fz-juelich.de/ias/jsc/EN/Home/home node.html
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Figure 3.18: (a) Elapsed time and (b) rescaled CPU-time for LU-factorization of incompressible
BiGlobal EVP using the equation (3.9) versus number of discretization points per direction, N + 1.

of-core calculations. For the time estimation, following the same procedure, the result of
Time FD−q8 ≈ 9 CPU hours is obtained. While these estimates are one order of magnitude
larger than those corresponding toNz×Ny = 5002 FD-q8 collocation nodes, the FD-q methods
still offer an interesting alternative to the commonly employed spectral collocation methods
for this class of stability problems.

3.4.2 Compressible regime operators

Secondly, the same efficiency test is performed in the compressible regime. Setting N = Nz =
Ny, the resulting leading dimension of the matrix operators is M = 4 (N + 1)2.

A visual indication of the savings expected by using a given FD-q method over the CGL
spatial discretization is offered by the sparsity patterns resulting from spatial discretization of
the left-hand-side BiGlobal matrix A of equation (1.25), respectively shown in figure 3.19(a)
for CGL and figure 3.19(b) for FD-q4, both plotted using N = 20. Within the compressible
BiGlobal instability analyses, or when non-orthogonal curvilinear mappings are used to dis-
cretize the problem, cross-derivatives are present in the differential operators. In this case,
NNZ is reduced by a factor of O((q + 1)/(N + 1))2).

Table 3.11 shows the required memory for the LU decomposition of the BiGlobal EVP
matrix using dense and sparse routines in conjunction with CGL discretization, as well as three
members of the FD-q family and sparse linear algebra. The quantity of required memory when
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(a) (b)

Figure 3.19: Sparsity pattern of the left-hand-side compressible BiGlobal operator matrix with
N + 1 = 21 discretization points per spatial direction using (a) CGL and (b) FD-q4 in the attachment
line boundary-layer problem. (blue) Real part and (red) imaginary part of the non-zero elements.

working in sparse is significantly reduced respect to the quantity of required memory working
in dense, which is theoretically Mem ≈ O(M2) ≈ O(N4). The memory requirements of the
FD-q8 method are found to be smaller by one order of magnitude compared with those of the
CGL method. In order to obtain a relation between the respective quantities, the formula
(3.8) is used again to identify (fit) the constant exponent a using the results of Table 3.9,
plotted in figure 3.20(a). Independently both the CGL and the FD-q results are taken to
follow a curve Mem ∝ (N + 1)α. This exponent is α CGL = 3.83 for the sparse CGL method,
which is very close to the theoretical exponent of 4 for dense computations, while the values
2.74 and 2.63 have been identified for FD-q16 and FD-q8, respectively. Using the average
between the three FD-q cases, α FD−q = 2.69, the constant exponent of equation (3.8) is
approximated by a = α CGL − α FD−q = 1.15. Figure 3.20(b) shows the collapse of all FD-q
curves using equation (3.8) and these constant values. The required memory for FD-q scales
as Mem FD−q ≈ O(N2.7) ≈ O(M1.3), which outperforms computations using CGL, the latter
scaling as Mem CGL ≈ O(M1.9).

Turning to the elapsed time for serial LU factorization of the matrix pertinent to the same
global stability EVP, results in Table 3.12 are presented for the same methods. The most
striking result of this table is the order(s) of magnitude decrease of CPU time that the FD-q
method offers, when compared with either of the CGL sparse or dense solution.

In order to quantify the relation between the elapsed times required by the CGL and the
FD-q methods, the formula (3.9) is used again to fit the constant exponent b. Figure 3.21(a)
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3. Linear modal stability validations and numerical efficiency

Table 3.11: Memory requirements for the LU decomposition (MB) in the compressible attachment
line boundary layer problem, using different resolutions for CGL, FD-q16 and FD-q8. Note that
N = Ny = Nz. Note that ∗ refers to extrapolated values.

N CGL FD-q16 FD-q8

40 1561 462 202
50 3686 887 354
60 7141 1432 578
70 12888∗ 2125 864
80 21351∗ 3010 1195
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Figure 3.20: (a) Required memory and (b) rescaled memory for LU-factorization of incompressible
BiGlobal EVP using the equation (3.8) versus number of discretization points per direction, N + 1.
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Table 3.12: Elapsed time for the LU decomposition (s) in the attachment line boundary layer flow
problem, using different resolutions for CGL, FD-q24, FD-q16 and FD-q8. Note that ∗ refers to
extrapolated values.

N CGL FD-q16 FD-q8

40 84 22 5.6
50 285 40 10
60 840 95 18
70 1990∗ 162 30
80 4267∗ 250 47

shows the results of Table 3.12. As in the case of memory requirements, either method is
taken to follow a curve Time ∝ (N + 1)β. For the CGL method the exponent extracted from
the results is β CGL = 5.79, which is nearly the theoretical exponent for dense calculations,
Time ≈ O(M3) = O(N6), while the exponent values of 3.69 and 3.29 have been obtained
for FD-q16 and FD-q8, respectively. Again, using the average value of the three FD-q cases,
β FD−q = 3.49, the constant exponent of equation (3.9) is approximated by b = β CGL −
β FD−q = 2.30. Figure 3.21(b) shows the collapse of the FD-q CPU-time curves onto a
single FD-q curve, which has the same slope as that obtained using CGL discretization, when
equation (3.9) is used with this parameter value. Therefore, the CPU time for FD-q scales as
Time FD−q ≈ O(N3.5) ≈ O(M1.7), instead of Time CGL ≈ O(M2.9) for CGL.

Regarding the accuarcy conclusions of Table 3.8, using FD-q8 at similar accuracy for N2 =
60 one order of memory reduction (see Table 3.11) and a speed up factor of TimeCGL/TimeFD−q8 ≈
50 (see Table 3.12). In more complex problems, where the number of discretization points is
much larger, several orders of magnitude of CPU requirement savings would be expected as
shown in the incompressible limit.

3.5 Summary and conclusions

The prime consideration in performing numerical solutions of the linear flow instability EVPs
is accuracy. Following the influential work of Orszag [186], spectral spatial discretization has
historically been the method of choice for spatial discretization of the linear local stability
analysis operator, a tendency which to a large extent continues presently in the context of
global linear flow instability analysis. The present contribution has presented a comparison
of a suite of high-order finite-difference spatial discretizations of the linear stability operator
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Figure 3.21: (a) Elapsed time and (b) rescaled CPU-time for LU-factorization of incompressible
BiGlobal EVP using the equation (3.9) versus number of discretization points per direction, N + 1.

in regular Cartesian two- and three-dimensional domains and compared the respective results
against those delivered by standard multi-dimensional spectral collocation discretization of
the same spatial operators. The FD-q method [104] has been found to outperform all its peers
at any given formal order of accuracy, and tend toward the spectral results in the limit of
the bandwidth of the differentiation matrix being equal with the leading matrix dimension,
q → N . Exploiting the sparsity at q � N , accurate results have been delivered at orders
of magnitude less storage and serial CPU time requirements, compared with the standard
spectral collocation approach based on the (unmapped or mapped) Chebyshev Gauss-Lobatto
grid. This permits a drastic reduction of the computing hardware on which state-of-the-art
global linear instability analyses are performed when the spatial discretization matrix is stored
and LU-decomposed. Results obtained demonstrate a memory reduction from O(M2) to
O(M1.3), being M the leading dimension of the matrix operator, as well as a reduction of CPU
time from O(M3) to O(M1.7). Subsequently, the usage of FD-q delivers a speedup of O(104)
and a memory reduction of O(103) in the most challenging global linear stability calculation
made so far using matrix formation [131, 210], which used spectral collocation methods for
the spatial discretization. Both improvements permit performing TriGlobal linear instability
analyses on a modern desktop computer with modest computational effort.
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Chapter 4

Parabolic Navier-Stokes solutions of incompressible
and compressible base flows

4.1 Introduction

The present Chapter presents an algorithm for the accurate and efficient computation of in-
compressible and compressible steady laminar base flows in which strong flow variations exist
along two spatial directions, while a mild variation can be assumed along the third. The algo-
rithm is based on the Parabolic Navier-Stokes (PNS) equations [217]. Since their appearance,
these equations have been used to successfully compute supersonic and hypersonic, viscous
flows; see [216, 244] for a review. The incompressible version of the PNS equations were first
formulated by Rubin and Lin [215]. One of the advantages of using PNS for the computation
of base flows in an instability analysis context, is the steadiness of the solutions obtained by
definition. In this manner, unsteadiness in the real flow will be recovered as instability of the
base state in a later instability analysis.

An example of this concept is the recent work of Duck [58], where inviscid instability is
studied upon the solution of systems of trailing vortices which are computed by a formulation
of the three-dimensional boundary-layer equations. The application of the PNS equations to
recover the solution of an isolated vortex in cylindrical coordinates is related to the quasi-
cylindrical boundary-layer approximation used by Hall [90] and Trigub [261]. Both the latter
and the formulation used by Duck [58] can be regarded as further approximations of the
PNS. In the quasi-cylindrical boundary-layer approximation, the radial velocity and axial
derivatives are dropped from most of the equations. In the three-dimensional boundary-
layer approximation used by Duck [58], the transversal velocities to the axial direction are
assumed of order ū/Re, being ū the axial velocity. The main objective of these works is
the analysis of the vortex breakdown phenomenon. The axisymmetric vortex breakdown
study was followed in the 90’s by Beran and Culick [19] and Wang and Rusak [266], who
constructed the bifurcation diagram for swirling flows in a pipe. Later, Wang and Rusak
[267, 268] presented a novel theory based on a rigorous mathematical analysis, recovering the
flow behavior of previous computations and providing a solid theoretical understanding of the
dynamics of axisymmetric swirling flows in a pipe. These works were extended for a diverging
pipe by Rusak and Judd [218].
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4. PNS solutions of incompressible and compressible base flows

Turning the attention now to high speed flows, the circular and elliptic cones are a fre-
quently used models to understand transition over components of next-generation aerospace
vehicles. Hypersonic flows around both geometries give rise to a three-dimensional boundary-
layer. The process of transition in these kind of flows is highly complex, since besides the
second mode disturbances that often dominated in two-dimensional/axisymmetric hypersonic
flows, also first mode and crossflow instabilities all become relevant mechanisms in the transi-
tion process. These scenarios have been reported in numerous experimental research efforts in
both configurations, the circular cone at non-zero angle of attack (AoA) [128, 232, 234, 238]
and the elliptic cone at zero AoA [110, 196, 225, 226]. Furthermore, recently large-scale com-
putations [13, 16, 86, 87] and stability calculations [39, 133, 149, 150, 191] have appeared in
the literature, reporting the co-existence of all these scenarios and mostly focusing on the
crossflow instability.

The first PNS calculations of three-dimensional viscous flows over cone-based shaped bod-
ies at non-zero AoA was presented by Lin and Rubin [155, 156], where the authors computed
the boundary later over a slender cone at moderate incidence (ratio between AoA and half-
cone vertex angle is lower or equal than 2). The same authors also published the PNS
calculations on spinning cones at nonzero AoA [157]. Almost contemporary, Helliwell and
Lubard [98, 158] developed their PNS code and showed calculations over a circular cone at
high AoA. In the next decade, Tannehill et al. [243] developed a general PNS code to compute
the steady supersonic viscous flow around arbitrary body shapes at high AoA and used it to
calculate the laminar flow over a slab delta wing with 70◦ sweep at AoA up to 41.5◦ and M
equal to 6.8 and 9.6. Some years later, Lawrence et al. [137] showed PNS calculations for
two body shapes: a circular cone of 10◦ half-angle at AoA = 12◦, 20◦ and 24◦ and an elliptic
cone-based all-body hypersonic vehicle at AoA = 0◦ and 10◦, which can be considered as the
first PNS calculation of the viscous flow over an elliptic cone. Motivated by the NASP effort
in the early 90s, Stuckert and Reed [237] presented PNS base flow computations and local
modal stability analysis of hypersonic, chemically reacting, viscous flow over a circular cone at
zero AoA. The supersonic and hypersonic PNS calculations research of the three-dimensional
boundary-layer over elliptic cross-section cones was undertaken by Lyttle and Reed [159],
who presented solutions for adiabatic wall elliptic cones of eccentricities of 2:1, 3:1 and 4:1
at M = 4, applying Reynolds number correlations based on the parameter R (see Reed and
Haynes [202]) for stability analysis. The parameter R for these configurations peaked near the
top centerline, outside the region of validity of the above correlation. Boundary-layer velocity
profiles near the top centerline were inflectional and unstable. Kimmel et al. [127] used an
extended version of the the UPS PNS code [136, 233], enabling the study of cool-wall cases,
for computing the base flow around cones with eccentricities of 1.5:1, 2:1 and 4:1 at M = 7.95.

The PNS equations are derived from the Navier-Stokes equations by assuming steadiness
and, based on the relative smallness of the streamwise flow variations, neglecting the viscous
streamwise derivative terms. Then, the equations change their mathematical nature from
elliptic to parabolic, and a parabolic integration along the streamwise direction is possible.
The numerical solution of the problem for flows of practical application is challenging, as it
involves the inversion of the large matrices that result form the discretization of a system of
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two-dimensional partial derivative equations. The challenge is met in the present work using
stable high-order finite-difference schemes, developed recently by Hermanns and Hernández
[104], together with the parallelizable sparse matrix linear algebra package MUMPS [5, 6].
This combination exploits the high level of sparsity offered by the finite-difference spatial dif-
ferentiation, improving substantially the numerical efficiency while keeping accuracy. In the
previous Chapter 3, a systematic study on global stability problems using the same combina-
tion shows that the solution of PDE-based problems of the same kind of those treated here is
feasible for typical desktop computers.

The PNS equations are formulated and the numerical solution procedure are presented
in what follows. Solution of a non-parallel isolated vortex and comparisons with theoretical
predictions [17] and experiments [53] are presented in Section 4.4. Then, the fully three-
dimensional flowfield corresponding to two counter-rotating vortices is computed by PDE-
based PNS equations. The effect of the distance between the vortices on their axial develop-
ment is studied. Furthermore, verifications and validations of the newly-developed code are
carried out solving the flow around a circular cone at zero AoA. Solutions of the supersonic
flow around a 7◦ half minor-axis angle 2:1 elliptic cone at Mach numbers 3 and 4 are also
presented.

4.2 Theory

4.2.1 Parabolic Navier-Stokes equations

The derivation of the Parabolic Navier-Stokes (PNS) equations from the three-dimensional
steady Navier-Stokes equations (1.1-1.3) is valid in the limit of large Reynolds number when
the flow configuration is predominant along the streamwise direction and exhibits a slow
spatial dependence in the same direction, ξ. Therefore, the streamwise viscous derivative
terms are negligible compared to the normal and transverse viscous derivative terms:

Lξ � Lη, Lζ , ∂( )/∂ξ � ∂( )/∂η, ∂( )/∂ζ, ∂( )2/∂2ξ ≪ ∂( )2/∂2η, ∂( )2/∂2ζ, (4.1)

where Lξ, Lη and Lζ are the characteristic lengths on the streamwise and normal to it spa-
tial directions respectively. Hence, the PNS equations are derived here by simply dropping
second order partial derivatives with respect to the streamwise direction from the steady
Navier-Stokes equations (1.1-1.3) [244]. When there is no flow, or reversed flow along the
slow direction, the downstream integration of the Navier-Stokes equations is not correct, and
numerical instabilities will prevent the recovery of converged solutions.

The parabolization of equations is not totally correct due to the term p̄ξ, which is associ-
ated with the left-running characteristic (for subsonic flows only) allowing upstream influence.
The technique for handling the pressure gradient term was proposed by Vigneron et al. [265].
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4. PNS solutions of incompressible and compressible base flows

In this approach, the upstream propagation is suppressed by splitting the pressure gradient
term into an explicit and an implicit parts. This is made by multiplying the streamwise
pressure gradient p̄ξ by a parameter Ω given by

Ω =

{
γM2

ξ

1+(γ−1)M2
ξ

Mξ < 1,

1 Mξ ≥ 1,
(4.2)

where Mξ = Mūξ/
√
T̄ is the streamwise Mach number and ūξ the velocity component in

the streamwise direction, ξ. The remainder streamwise pressure gradient part is evaluated
explicitly from previous marching steps.

The vector of fluid variables is defined as q̄ = (ρ̄, ū, v̄, w̄, T̄ )T . The resulting PNS equations
are a system of nonlinear partial differential equations. In order to solve the system, a
marching integration in ξ is used together with Newton iteration for solving the implicit
scheme. The linear system solved to update the solution in each ξ-station is

J (q̄n−1)∆q̄ = Fq̄(q̄n−1)∆q̄ = −F(q̄n−1), (4.3)

where J = Fq̄ is the Jacobian of the operator F , ∆q̄ = (∆ρ̄,∆ū,∆v̄,∆w̄,∆T̄ )T and q̄n =
q̄n−1 + ∆q̄. The equation (4.3) is written using matrix formation in Appendix F. The PNS
equations have to be complemented with appropriate boundary condition depending on the
particular problem.

4.3 Numerical considerations

4.3.1 Spatial discretization

The spatial discretization in the streamwise direction, ξ, is performed using Backward Differ-
entiation Formulas (BDF). The BDF have the following general form for a k-step method

∂q̄m
∂ξ

= ∆ξ

k∑

i=0

aiq̄m−i, (4.4)

where q̄m = q̄(ξm) and ai are the scheme’s coefficients. A two-step BDF (a0 = 1, a1 = −4/3,
a2 = 1/3) with constant step-size ∆ξ is convergent for index 2 DAEs and gives second order
accuracy in ∆ξ. No higher order scheme is used in ∆ξ since, as has been mention before,
the flow fields studied here exhibit a mild variation in this direction. This scheme needs two
previous steps to evaluate the ξ-derivative. The one-step BDF, which is equivalent to the
backward Euler method, a0 = 1 and a1 = −1, is used for the first step, started with an initial
flow field.
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4.4. Incompressible vortex flows

The two directions of the normal plane to the streamwise marching direction, (η, ζ), are
discretized using the stable high-order finite-differences numerical schemes of order q (FD-q)
recently developed by Hermanns and Hernández [104] and reviewed in Subsection 2.1.4. An
exception is the non-parallel isolated vortex problem, which is assumed to be axisymmetric
in the absence of instabilities and in consequence the azimuthal direction is homogeneous.
Owing to this, the PNS equations are reduced to a system of ODE depending solely on the
radial coordinate, which is discretized using the Chebyshev-Gauss-Lobatto (CGL) spectral
collocation method [28, 34]. In this case, the parabolic integration is affordable using dense
algebra.

4.3.2 Non-linear marching integration

As has been mentioned above, the derivation of the PNS equations implies a change in the
mathematical nature of the steady Navier-Stokes equations, from elliptic to parabolic, and
a marching integration on the streamwise direction is permissible. The resulting discretized
PNS equations are a system of nonlinear PDE. In order to solve the system, a marching
integration along ξ is used together with the Newton iteration method for solving the non-
linear implicit scheme. The linear system of equation (4.3) is solved for update the solution
in each ξ-station. The inversion of the matrix discretizing the Jacobian operator J , which
leading dimension is O(104 − 105), is performed using the parallelizable sparse matrix linear
algebra package MUMPS [5, 6] and the SPARSKIT2 library [220].

4.4 Incompressible vortex flows

Two different flow configurations are considered here in the incompressible limit. First, an iso-
lated axisymmetric trailing-vortex is computed. The homogeneity on the azimuthal direction
permits reducing the problem to a ODE-based PNS in cylindrical coordinates. The solution
recovered is compared with theoretical predictions [17] and stereo-PIV experiments [53]. The
second configuration is a pair of counter-rotating vortices, a problem in which the number of
inhomogeneous directions cannot be reduced on account of symmetries and PDE-based PNS
must be solved.

In this Section, the Cartesian coordinate system, (ξ, η, ζ) = (x, y, z) is considered, with
the exception of the isolated trailing-vortex case. The resulting set of equations is modified
here to reduce the derivative order of v̄ with respect to y and of w̄ with respect to z from
second order to first order using the total pressure q̄ = p̄ + (v̄2 + w̄2)/2 + 1/Re ūx and the
streamwise vorticity ζ̄ = v̄z − w̄y [169]. This reduces also the number of boundary conditions
to be imposed. The resulting set of equations for a Cartesian coordinate system is given by:

ū ūx + v̄ ūy + w̄ ūz = −p̄∞,x +
1

Re
(ūyy + ūzz), (4.5)
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4. PNS solutions of incompressible and compressible base flows

ū v̄x + w̄ ζ̄ = −q̄y +
1

Re
ζ̄z, (4.6)

ū w̄x − v̄ ζ̄ = −q̄z −
1

Re
ζ̄y, (4.7)

ūx + v̄y + w̄z = 0, (4.8)

being p̄∞,x the streamwise derivative of the free-stream pressure, which enter into the equa-
tions as a known function. The streamwise pressure gratient, p̄ξ is dropped for parabolization
of equations. The flows considered in this work are not subjected to a free-stream pressure
gradient, so p̄∞,x = 0.

4.4.1 The isolated trailing-vortex

For initialization of the PNS marching integration, the asymptotic parallel Batchelor vortex
[17] is used here. The Batchelor model vortex is a self-similar solution assuming that the
vortex core radius r behaves as r ∝ √x when the axial (or streamwise) is x� 1.

If (ūx, ūr, ūθ) denote the non-dimensional velocity components in the axial x, radial r (i.e.
r2 = (y − yc)2 + (z − zc)2 with (yc, zc) the coordinates of the vortex axis) and azimuthal θ
directions respectively, the non-dimensional parallel-flow version of Batchelor’s equations can
be written as:

ūx = 1− γ0 exp(−r/δ0)2, (4.9)

ūr = 0, (4.10)

ūθ =
κ0

r
{1− exp(−r/δ0)2)}, (4.11)

where γ0 = ū∗c/ū
∗
∞ is the axial velocity defect, ū∗c is the core vortex velocity and ū∗∞ is the

free-stream velocity (stars denote dimensional quantities), δ0 is the initial core vortex radius
and κ0 = Γ∗/(2πū∗∞δ

∗
0) is the swirl strength parameter, which is related to the q-Vortex swirl

parameter q, commonly used in the literature [125, 172], as

q =
κ0

γ0δ0
. (4.12)

The Reynolds number is defined using the free-stream velocity ū∗∞, the kinematic viscosity
coefficient ν∗ and initial core vortex radius, δ∗0 , as

Re =
ū∗∞δ

∗
0

ν∗
. (4.13)

Since the core vortex radius is the selected length scale, δ0 = 1.

The incompressible PNS equations (4.5-4.8) are used here in cylindrical coordinates, par-
ticularized for axisymmetric flow:

ūx
∂ūx
∂x

+ ūr
∂ūx
∂r

=
1

Re

(
∂2ūx
∂r2

+
1

r

∂ūx
∂r

)
, (4.14)
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Figure 4.1: Axial velocity defect γ(x) and vortex radius δ(x) computed by PNS (solid line) at
Re = 100 for the non-parallel vortex with initial parameters κ0 = 0.8 and γ0 = 0.8, compared to the
theoretical curves [17] (dotted line).

ūx
∂ūr
∂x

+ ūr
∂ūr
∂r
− ū2

θ

r
= −∂p̄

∂r
+

1

Re

(
∂2ūr
∂r2

+
1

r

∂ūr
∂r
− ūr
r2

)
, (4.15)

ūx
∂ūθ
∂x

+ ūr
∂ūθ
∂r

+
ūθ ūr
r

=
1

Re

(
∂2ūθ
∂r2

+
1

r

∂ūθ
∂r
− ūθ
r2

)
, (4.16)

∂ūx
∂x

+
1

r

∂(r ūr)

∂r
= 0. (4.17)

The axis conditions for axisymmetric flow are (∂ūx/∂r, ūr, ūθ) = (0, 0, 0) [17]. The pressure
level is arbitrarily set to p̄ = 0 at the axis. At the upper edge of the domain, asymptotic
boundary conditions for the streamwise velocity, ūx = 1, and azimuthal velocity, ūθ = 0, are
imposed.

The selected computational domain is discretized using Nr = 101 CGL points (r ∈ [−1, 1])
mapped to r ∈ [0, r∞] with the transformation of equation (2.60), setting r∞ = 200 and rh = 4,
and ∆x = 0.5 for the marching direction.

Figure 4.1 shows the evolution of the axial velocity defect at r = 0, γ(x), and the vortex
radius, δ(x), along the axial direction for Re = 100, κ0 = 0.8 and γ0 = 0.8. Both magnitudes
are compared with the theoretical predictions of Batchelor [17]. Figure 4.1(a) shows the
comparison with the axial velocity defect at the axis of the vortex,

γ(x)TH = K2 log(x/Re)

8x/Re
+

L

8x/Re
, (4.18)

where K and L are free constant fitted for best comparison. The agreement between the the-
oretical and PNS computed curves improves as γ decreases, consistently with the assumption
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4. PNS solutions of incompressible and compressible base flows

used by Batchelor [17], γ � 1. Figure 4.1(b) reflects close agreement of the vortex radius,
δ(x), computed by PNS using the definition based on the vorticity polar moment,

δ(x) =

[
2π

Γ

∫

r

(
ζ̄r3
)

dr

]1/2

, ζ̄ =
1

r

∂(r ūθ)

∂r
, (4.19)

and the one predicted by the theoretical curve [17]:

δ(x)TH = δ0

(
1 +

4x

δ2
0 Re

)1/2

. (4.20)

The initial transient observed in the PNS solution is attributed to the adjustment of the initial
condition to the PNS equations, since the Batchelor’s solution (4.9-4.11) does not take into
account the radial velocity component. This component is essential in enforcing a divergence-
free velocity field when the solution is axially divergent.

In order to check the reliability of these computations, results are compared with the ex-
periments of Del Pino et al. [53]. These authors compared stereo Particle Image Velocimetry
(PIV) measurements of the trailing vortex behind a wing in a water tunnel with the theo-
retical models of Batchelor [17] and Moore and Saffman [177]. Figure 4.2 shows comparisons
between the numerical results delivered by the PNS equations (4.14-4.17), initialized with the
parallel Batchelor vortex (4.9-4.11), for κ0 = 0.75 and γ0 = 0.95, and the experimental curves
[53] at two downstream positions, x/Re = 0.41 and x/Re = 0.65, chosen in order to match
the experimental profiles. The axial coordinate is expressed as x/Re since the isolated vortex
is theoretically self-similar as shown by equations (4.18) and (4.20). Axial and azimuthal
velocities match very well the experimental profiles. The small differences present at large r
values may be due to the Batchelor vortex model used at the initial position of the march-
ing integration, the assumptions done using PNS or the errors associated with measuring
devices of the experiments. Comparisons for larger radial coordinate are not performed since
experimental results are not available.

4.4.2 The trailing counter-rotating vortex-pair

By contrast to the isolated vortex considered before, the solution of the non-parallel vortex-
pair is not axisymmetric, and cannot be reduced to an ODE with the use of cylindrical coor-
dinates, thus requiring the PDE-based PNS equations (4.5-4.8). The flowfield corresponding
to a counter-rotating vortex pair, used as initial condition for the parabolic integration of the
PNS, is constructed as the linear sum of two Batchelor parallel vortices, defined by equations
(4.9)-(4.11), as follows

ū = 1−
2∑

n=1

γn exp (−rn/δn)2 , (4.21)
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Figure 4.2: Comparisons between the experimental results of Del Pino et al. [53] and numerical
results delivered by PNS for the non-parallel vortex with initial parameters κ0 = 0.95 and γ0 = 0.75
at positions (a) x/Re = 0.41 and (b) x/Re = 0.65 for the azimuthal velocity, ūθ, and axial velocity,
ūx.

v̄ = −
2∑

n=1

{
κn
r2
n

(z − zn)
(

1− exp (−rn/δn)2
)}

, (4.22)

w̄ =
2∑

n=1

{
κn
r2
n

(y − yn)
(

1− exp (−rn/δn)2
)}

, (4.23)

where r2
n = (y−yn)2+(z−zn)2 and (yn, zn) denotes the center of the n (= 1, 2) vortex. Defining

d as the initial distance between the vortex cores, the vortices are located at (y1, z1) = (d/2, 0)
and (y2, z2) = (−d/2, 0). The two vortices are counter-rotating, κ1 = −κ2 = κ0, and have the
same axial velocity defect, γ1 = γ2 = γ0.

In order to reduce the computational requirements, the symmetries existing in the problem,
ū and w̄ symmetric and v̄ antisymmetric with respect to the plane y = 0, have been exploited.
Therefore, the computational domain is reduced to Ω = {x ∈ [0, x∞]} × {y ∈ [0, y∞]} × {z ∈
[−z∞, z∞]}.

For counter-rotating vortex-pairs, a downward induced velocity exists because of the in-
teraction between the vortices on the (y, z)-plane, causing the downwash displacement of the
vortices. A rotation of the computational domain is used to keep the vortex cores approx-
imately at the center of the domain during the marching integration, significantly reducing
the discretization area and therefore the number of discretization points required in the z-
direction. Using the magnitude of the velocity induced between the vortices for the initial
profile, v̄d = κ0/d, the computational domain is rotated an angle

θd = atan (v̄d) = atan (κ0/d) , (4.24)

along the y-axis as can be observed in the sketch of figure 4.3. An axes translation can also be
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Figure 4.3: Sketch of the rotational transformation around the y-axis used for the computations of
the counter-rotating pair of trailing vortices by PNS.

used, introducing some additional terms into the equations. In this case, the PNS equations
(4.5-4.8) are expressed in the new coordinate axes

x′ = x, y′ = y, z′ = z + v̄d x, (4.25)

resulting

ū ūx′ + v̄ ūy′ + (w̄ + v̄d ū) ūz′ = −p̄∞,x′ +
1

Re
(ūy′y′ + (1 + v̄2

d) ūz′z′), (4.26)

ū v̄x′ + (w̄ + v̄d ū) v̄z′ − w̄ w̄y′ = −q̄y′ +
1

Re
(−w̄y′z′ + (1 + v̄2

d) v̄z′z′), (4.27)

ū w̄x′ + v̄ w̄y′ + v̄d ū w̄z′ − v̄ v̄z′ = −q̄z′ −
1

Re
(−v̄y′z′ + w̄y′y′ + v̄2

d w̄z′z′), (4.28)

ūx′ + v̄d ūz′ + v̄y′ + w̄z′ = 0, (4.29)

where the total pressure is here defined as q̄ = p̄+(v̄2 +w̄2)/2+1/Re (ūx′+ v̄d ūz′). The results
delivered by the two approaches, axes rotation and translation, are nearly indistinguishable,
as show in figure 4.7. As a second validation test, the computed flowfieds were introduced
into the full Navier-Stokes equations. The computed residuals are shown in figure 4.4, and
consistently with the approximations taken (see Section 4.2) are of order ε (being ε the level
of accuracy set in the Newton iteration procedure) in the continuity, y− and z−momentum
equations, while in the x−momentum equation the residual is of of order p̄x ≈ O(1/Re), since
the term p̄x is dropped in order to parabolize the equations. These residuals are related to
the leading eigenmodes of a linear stability problem; see the structure of the modes found
by González et al. [80] and the discussion about the relation between residuals and flow
instabilities of Theofilis [251].

The domain is discretized using Nz = 160 points for the z-direction, mapped using Equa-
tion (2.59) setting z∞ = 40 and cz = 0.90 to concentrate points in the vortex cores, and
Ny = 181 points, mapped using equation (2.60), y∞ = 40 and yh = 8. A constant marching
step ∆x = 0.5 is selected. Tenth-order stable high-order finite differences (FD-q10) are used
for the differentiation along the two spatial directions. The boundary conditions imposed by
the symmetries are (ūy, v̄, w̄y) = (0, 0, 0) at y = 0 and asymptotic boundary condition for the
streamwise velocity, ū = 1, and normal velocity w̄ = 0 are imposed at y∞, where it is also set
the total pressure level, q̄ = 0. Periodic boundary conditions are imposed at z∞.
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(a) Continuity (b) x−momentum

(c) y−momentum (d) z−momentum

Figure 4.4: Residuals of the full Navier-Stokes equations for the PNS computed solution of the
counter-rotating vortex-pair flow at x = 20 with an initial distance between vortex cores d = 5, setting
Re = 3000, κ0 = 0.4 and γ0 = 0.8.
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!

Figure 4.5: Iso-contours and iso-surfaces of axial vorticity of the non-parallel counter-rotating vortex-
pair at Re = 3000 for the initial parameters κ0 = 0.4 and γ0 = 0.8, computed by PNS methodology.

Figure 4.5 shows a three-dimensional visualization of the counter-rotating vortex-pair flow-
field by iso-surfaces and iso-contours of axial vorticity at Re = 3000. The vortices are defined
by the initial parameters γ0 = 0.8, κ0 = 0.4 and the distance between the cores d = 6. The
downwash displacement of the vortices, caused by the induced velocity, v̄d, is clearly visible.

Figure 4.6 shows the evolution of the vortex radius δ = (δ2
y + δ2

z)
1/2 based on the vorticity

polar momentum on the half-plane [230], defined as

δ2
y =

1

Γ

∫ ∫

z>0

ζ̄ (y − yc)2 dy dz, δ2
z =

1

Γ

∫ ∫

z>0

ζ̄ (z − zc)2 dy dz, (4.30)

where (yc, zc) denotes the position of the vorticity centroids,

yc =
1

Γ

∫ ∫

z>0

y ζ̄ dy dz, zc =
1

Γ

∫ ∫

z>0

z ζ̄ dy dz. (4.31)

The interaction between the vortices is illustrated by the differences with the theoretical curve
for one isolated vortex (4.20): as the distance between vortices, d, increases, the vortex radius
curve, δ(x), tends to the theoretical value for one isolated vortex. For the smaller initial
distances between vortices, cases d = 4 and 5, the vortex radius stops growing about x ≈ 20
and then decays slowly downstream. This behavior is attributed to the inviscid interaction
between the core vortices as the ratio δ0/d becomes significant. It is important to note that
the swirl strength parameter also affects this phenomenon.

88



4.5. Compressible circular and elliptic cone flows

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0  5  10  15  20  25  30

δ/
δ 0

x

1 Vortex
PNS (d=8)
PNS (d=6)
PNS (d=5)
PNS (d=4)

Figure 4.6: Evolution on streamwise direction of vortex radius δ(x) computed by PNS equations
(4.5-4.8) with four different initial distances between the vortex cores (d = 4, 5, 6 and 8) and the
theoretical value for one isolated vortex with the same parameters of figure 4.5 (κ0 = 0.4, γ0 = 0.8).

Figure 4.7 shows the evolution along the axial direction of the vortex core locations (4.31).
As shown in figure 4.7(a), the yc coordinate experiments an initial shift due to the adjust-
ment of the initial condition, which is not a solution of the PNS equations. Downstream, a
mild displacement increases the distance between the vortices. This phenomenon impacts on
the zc coordinate, by decreasing the downward induced velocity, as shown in figure 4.7(b).
Stronger effects are observed for smaller initial distances. Figure 4.7 also reflects the very
good agreement between the results recovered by translation and rotation of axes.

4.5 Compressible circular and elliptic cone flows

This Section firstly presents validations of the compressible PNS code solving the boundary-
layer around a circular cone at zero AoA in the incompressible and compressible regimes.
Secondly, the supersonic flow solutions around a 2:1 elliptic cone at Mach numbers 3 and 4
are presented, also at zero AoA.

The marching integration needs to be feed by an initial condition. Free-stream conditions,
q̄∞ = (ρ̄∞, ū∞, v̄∞, w̄∞, T̄∞)T , i.e. q̄∞ = (1, 1, 0, 0, 1)T for AoA=0◦, are imposed at the vertex
of the cone and the solution at an initial station ξ0 is converged after some Newton iterations.

A three-dimensional coordinate transformation of the form

ξ = ξ(x), η = η(x, y, z), ζ = ζ(x, y, z), (4.32)

are used to transform the governing equations into the (ξ, η, ζ) system. This transformation
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Figure 4.7: Evolution on the streamwise direction of the vortex core position (a) yc and (b) zc + v̄d x
for d = 4, 5, 6 and 8 setting the same parameters of figure 4.5 (κ0 = 0.4, γ0 = 0.8). The open circles
correspond to the equations (4.26-4.29) with axes translation for d = 5

restricts the (η, ζ) solution surfaces to be in a plane normal to the x axis, resulting ξy =
ξz = 0. Using the chain rule, the derivatives with respect to physical coordinates system are
related to those with respect to the computational coordinates system through the metrics
(ξx, ηx, ηy, ηz, ζx, ζy, ζz). More details are found in Subsection 2.3.

The PNS marching scheme (4.3) has to be complemented with appropriate boundary
conditions. For the cases studied here, the flow around a circular cone and around an elliptic
cone, the symmetries of the problem are exploited for reducing computational requirements
and the corresponding boundary conditions are imposed for the azimuthal direction, ζ. No-slip
conditions are imposed at the wall, η = 0, together with Neumann conditions for temperature
and density, which implies having adiabatic wall. Results showed here are recovered using
free-stream conditions at the top boundary η = 1 and therefore the shock wave is immersed
in the domain.

4.5.1 Circular cone

The mesh surrounding a circular cone is calculated using a modification of the cylindrical
transformation, written as

x = ξ, y = (ξ tanα+ ηη∞) sin ζ, z = (ξ tanα+ ηη∞) cos ζ, (4.33)

where η ∈ [0, 1] and η∞ controls the far-field boundary.

The flow around a circular cone is well understood thanks to the axisymmetric condition,
in which the streamlines remain in meridian planes. The boundary-layer equations under ro-
tational symmetry were first given by Mangler [168] in the incompressible limit, introducing
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Figure 4.8: Comparisons of theoretical predictions and results delivered by the newly-developed PNS
code. Figure 4.8(a) shows the streamwise velocity profiles in a circular cone with half angle α = 15◦

setting M = 10−3 comparing with Mangler theory [168] at different streamwise positions. Figure
4.8(b) shows the shock angle β versus the half cone angle α for Mach numbers 2 and 3 comparing with
the Taylor and Maccoll theoretical predictions [246].

the Mangler transformation, which converts the well-known Falker-Skan boundary-layer solu-
tions into the ones around circular cones. Figure 4.8(a) shows the streamwise velocity profiles
for a circular cone with half angle α = 15◦ setting M = 10−3 and Re = 100 comparing with
Mangler theory [168] at three different streamwise positions, x = 100, 200 and 300. Excellent
agreement is observed, having an overlapping of the profiles.

The theory of inviscid supersonic flow past a circular-based cone at zero incidence (see
Shapiro [229] for more details) indicates that, for M > 1.2 and a half cone angle less than 55◦,
the resulting shock wave is attached to the cone vertex, and the flow at the cone surface is
at constant velocity, pressure, and temperature. These properties base the analysis of Taylor
and Maccoll [246], in which the shock angle β is predicted versus the Mach number and half
cone angle α. Figure 4.8(b) shows the comparisons between the PNS results and the inviscid
theory predictions for Mach numbers 2 and 3. Excellent agreement is again observed.

4.5.2 Elliptic cone

For the elliptic cone problem, a modified confocal elliptic transformation is used,

x = ξ, y = cξ sinh(η0 + ηη∞) sin ζ, z = cξ cosh(η0 + ηη∞) cos ζ, (4.34)

where c sets the half angle of the cone minor-axis, c = atanα/ sinh η0, and η0 is a parameter
controlling the Aspect Ratio (AR) of the cone, η0 = atanh (1/AR).

In the elliptic cone problem, the three-dimensionality of the flow makes it unaffordable
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(a) u, M = 3 (b) v, M = 3 (c) w, M = 3

(d) u, M = 4 (e) v, M = 4 (f) w, M = 4

Figure 4.9: Three velocity components of the flow field from Rex = 104 to Rex = 3 × 104 for a 7◦

half minor-axis cone angle elliptic cone of aspect ratio 2 at Mach numbers 3 and 4.

from an analytical point of view and more complex numerical tools are needed to recover
the flow field. The three-dimensionality of the flow inevitable produces spanwise pressure
gradients, which induce crossflow, at locations where the flow direction of the interior of the
boundary-layer is no longer co-planar with the edge velocity vector. This phenomenon causes
the appearance of two main regions in the elliptic cone flow, the attachment-line on the leading
edge, i.e. the major-axis, and the top centerline, i.e. the minor-axis, where a lift-up process
is observed.

The supersonic flow around a 7◦ half minor-axis angle angle 2:1 elliptic cone is solved at
Mach numbers 3 and 4. Figures 4.9 and 4.10 show the iso-contours of the flow field variables
from Rex = 104 to Rex = 3× 104. The shock wave layer is clearly visible in the density plots
4.10(c) and 4.10(d). The crossflow region is observed in figures 4.9(c) and 4.9(f), near the
wall of the cone, where w̄ < 0. Figure 4.11 shows some near-wall streamlines for the M = 4
case, differentiating the two mentioned main regions of the flow, the attachment-line at the
leading edge and the lift-up over the top centerline.
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(a) T , M = 3 (b) T , M = 4

(c) ρ, M = 3 (d) ρ, M = 4

Figure 4.10: Temperature and density components of the flow field from Rex = 104 to Rex = 3×104

for a 7◦ half minor-axis cone angle elliptic cone of aspect ratio 2 at Mach numbers 3 and 4.
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Figure 4.11: Near-wall streamlines of a 7◦ half minor-axis angle 2:1 elliptic cone at M = 4.

4.6 Summary and conclusions

A Parabolic Navier-Stokes (PNS) algorithm has been developed and validated in a systematic
manner and solutions of two different flows are obtained. Using this methodology, steady
incompressible three-dimensional flows with one slowly-varying spatial direction can be solved
without resorting to a fully three-dimensional spatially evolving DNS and thus saving several
orders-of-magnitude of computational effort in the computation of steady solutions to serve
as base flow in subsequent stability analysis. The algorithm has been formulated and results
have been obtained for the incompressible and compressible flow regimes.

Focusing firstly on the incompressible limit, two different vortical flows have been com-
puted, a non-parallel trailing vortex and a system of two counter-rotating vortices which are
allowed to interact. The non-parallel trailing vortex is computed by PNS equations in cylindri-
cal coordinates initialized with the Batchelor vortex [17]. The solution differs from Batchelor’s
model in the existence of a radial velocity component, arising from the inhomogeneity on the
axial direction. Results are compared with theoretical predictions and stereo-PIV experi-
ments [53], validating the present algorithm. In the case of a pair of counter-rotating vortices,
a downward induced velocity exists and the domain is transformed using two approaches, an
axes rotation and a translation. Both domain transformations delivered nearly indistinguish-
able solutions. The PNS computed results converge to those of the isolated vortex as distance
between vortices increases. It is found that, as vortices become closer, the mutual interaction

94



4.6. Summary and conclusions

results in an increase of the vortex radii, accompanied by a decrease in the downward induced
velocity. It should be noted that the steady nature of the PNS equations prevents the recov-
ery of elliptic instability induced by one vortex on the other. Subsequent stability analysis of
the computed incompressible vortex base flows using three-dimensional Parabolized Stability
Equations (PSE-3D) is shown in next Chapter 5.

On the other hand, solutions of the supersonic flows around the circular and elliptic cones
computed using a newly-developed compressible PNS code are presented. The boundary-layer
solution around a circular cone at zero angle of attack is compared in the incompressible limit
with theoretical profiles. Also, the recovered shock wave angle at supersonic conditions is
compared with theoretical predictions in the same circular-base cone geometry. Both results
show excellent agreement with theoretical predictions. The fully three-dimensional flow field
surrounding a 7◦ half minor-axis cone angle elliptic cone of aspect ratio 2 at supersonic regime
is presented. The domain is chosen in the way that the shock position and the compressible
boundary-layer are captured. The two main features of this flow are identified, the attachment
line at the leading edge and the lift-up over the top centerline. The crossflow region is
also clearly visible in the three-dimensional plots, showing potential crossflow mechanisms of
transition.
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Chapter 5

Instability analysis of trailing vortex flows using
parabolized equations

5.1 Introduction

The stability analysis of the steady base flows computed in the previous Section 4.4 is per-
formed here. The model typically analyzed when considering trailing vortices flows is the
Batchelor [17] vortex, initially investigated by Lessen and Paillet [141], Lessen et al. [142] and
more recently by Khorrami et al. [125]. Several spiral modes of instability were identified but
their relation with the abrupt change in structure and subsequent vortex breakdown is not
fully understood yet; where vortex breakdown is defined following Leibovich [138, 139] as, ”a
disturbance characterized by the formation of an internal stagnation point on the vortex axis”.
It has been suggested that one reason why local stability theory proves inadequate in predict-
ing breakdown consistently is because, similar to the parallel boundary layer assumption, it
neglects axial velocity and pressure gradients, such as axial deceleration, that may influence
the vortex. This was confirmed by the DNS results of Abid and Brachet [2], who related
the spiral instability eigenmode with a lateral expansion of the vortex cross section. As a
direct consequence of the assumption of streamwise periodicity, these results fail to identify
a significant axial loss in velocity. However, it is recently becoming clear that the assump-
tion of homogeneity in one spatial direction may be overtly restrictive even in as simple a
flow as a single spatially-developing viscous vortex as seen in the results of Broadhurst et al.
[32], who analyzed a temporally and a spatially-developing Batchelor vortex both by DNS.
In the first case, the temporal-evolving vortex in which the axial direction was artificially
kept homogeneous, these authors predicted linear instability by local analysis, observed also
in the DNS results, in whose it is followed by nonlinear saturation. By contrast, the nonlinear
development of instability in the Batchelor vortex is qualitatively different when the vortex
is allowed to evolve spatially. Then, a streamwise loss in energy (initiated by the linear mode
of instability), will lead to the formation of an internal stagnation point and ultimate vortex
breakdown. The assumption of axial homogeneity of a base flow vortex employed in all previ-
ous global analyses was relaxed by Heaton et al. [93], who studied the more realistic spatially
developing Batchelor vortex model. These authors documented the modifications that the
classic Batchelor eigenspectrum experiences and the ensuing potential for transient growth
exhibited by the spatially developing flow, computing the base flow and studying its stability
using an axisymmetric DNS.
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5. Instability analysis of vortex flows using parabolized equations

Modeling the trailing-vortex system behind an aircraft as an isolated vortex is quite re-
strictive as it assumes an axisymmetric basic state, thus it neglects in principle the influence of
any neighboring vortices. Crow [49], Widnall [273], Jiménez [117], Crouch [46] and Fabre and
Jacquin [62], amongst others, have used vortex filament methods to analyze the instabilities
triggered by interaction between neighboring vortices. However, vortex core instabilities [172]
or absolute instability [54] are beyond the scope of a vortex filament approach. In addition,
the vortex filament method has limitations (besides that of strictly being applicable to inviscid
flow) in the permissible distributions of vorticity in the wake, in terms of both strength and
placement of the constitutive vortices.

The instability analysis technique that may consider base flows inhomogeneous in two or
three (rather than one) spatial directions is call global linear stability theory, referenced as
BiGlobal or TriGlobal analysis for two and three inhomogeneous directions, respectively; see
Theofilis [250, 251] for a review. Hein and Theofilis [96] presented some numerical results
for the flow developing downstream from two counter-rotating Batchelor vortices, with the
axial velocity component neglected, computed with a two-dimensional DNS. The instabil-
ity analysis was performed by BiGlobal analysis, which considers the quasi-steady and the
axially-homogeneous approximations in the base flow; recovering both classic long- (Crow)
and short-wavelength instabilities. The work of González et al. [80] shows a similar study,
but considering axial flow, finding only short-wavelength instabilities. Another related study
of non-axisymmetric/system of vortices is that of Lacaze et al. [134], in which the stability
of flows with no/little axial flow was studied. The authors focused on the short-wavelength
instabilities, specifically on the elliptic instability, observed on a isolated vortex subject to a
stationary strain field. The elliptical instability is believed to take place in various contexts
ranging from three-dimensional transition in shear flows [18] to vortex interactions [144]; see
Kerswell [123] for a review.

In a first approximation, the system of counter-rotating vortex-pair flow may be analyzed
by BiGlobal instability analysis, neglecting the the existence of a small, but not negligible, de-
pendence of the fluid variables on the axial direction. Therefore, a three-dimensional analysis
is needed, but treating the three spatial directions as inhomogeneous, the TriGlobal analysis
requires the numerical solution of the PDE-based EVP resulting from the discretization of
the three coupled directions, which is possible but prohibitively expensive nowadays for most
applications of interest. In an analogous manner to the extension of the OSS equations to
the conventional PSE, the BiGlobal analysis equations are extended to the PSE-3D analysis,
which appears to be the most efficient methodology for the counter-rotating vortex-pair flow.

In what follows, these approaches are used along with the non-parallel isolated vortex,
comparing PSE-3D against conventional PSE in cylindrical coordinates and spatial BiGlobal
stability. The PSE-3D methodology is used to study the instability properties of the fully
three-dimensional counter-rotating vortex-pair flow field, computed by PNS equations in Sec-
tion 4.4.
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5.2 Results

5.2.1 The isolated trailing-vortex

The stability analysis is performed upon the previously showed trailing line vortex base flow
computed by PNS of figure 4.1, with Re = 3000, κ0 = 0.8 and γ0 = 0.8. The conventional
PSE in cylindrical coordinates (see [189] for more details) and the PSE-3D are used along
with this base flow for cross-validation purposes. The PSE in cylindrical coordinates uses
the same spatial discretization of PNS, Nr = 101 CGL points mapped with equation (2.60)
setting r∞ = 200 and rh = 4, and PSE-3D uses (N + 1)2 = 1212 FD-q10 points for both y
and z directions, mapping the square domain with equation (2.59) setting cy = cz = 0.96 and
y∞ = z∞ = 40. The marching step of both the PSE and PSE-3D is ∆x = 1.

Figure 5.1 shows the leading spatial eigenmodes computed by Spatial BiGlobal instability
analysis of the Batchelor vortex model of equations (4.9)-(4.11) with κ0 = 0.8 and γ0 = 0.8
at Re = 3000. The different modes appearing in figure 5.1 correspond to discrete modes and
present a periodic structure in the azimuthal direction, with the wavenumber assigned by m.
In the range of frequencies analyzed, the most unstable mode occurs for m = 2, frequency
ω = 1.75, wavenumber αr = 1.212 and growth rate −αi = 0.725. From this maximum at
m = 2, a linear trend defines the maximum growth rate, −αi, for increasing m. These maxima
are specified in Table 5.1. Figure 5.2(a) shows the eigenspectrum at ω = 4.6. A branch of
eigenvalues appears for αr = 0 and αi < 0, which corresponds to a discretized spectrum of
upstream moving pressure waves. This branch is suppressed in the PSE approximation in
order to permit a stable numerical integration along the axial direction, as discussed by Li
and Malik [147]. In addition, a branch of discrete eigenvalues is found, describing a near-
vertical line. The modes inside this branch have the same wavenumber m. Note that when
a one-dimensional stability analysis such as the OSE in cylindrical coordinates is used, the
wavenumber m is a parameter of the problem. The BiGlobal analysis recovers the results of
several local analysis at the same time. Figure 5.2(b) shows the real part of the initial axial
velocity amplitude eigenfunction of the most unstable mode that corresponds to five lobes
(m = 5) spiral-eigenmode.

Initial conditions need to be specified for the PSE solution. The most common method
used in conventional PSE is to draw on the local analysis of weakly non-parallel flow, q̄0, in
order to obtain a complex wavenumber, α0, and shape function, q̂0, at initial axial location
for an specific Re and ω [102]. In this work, the parallel-flow approximation along the axial
direction is considered, so the spatial BiGlobal problem obtains a first approximation to the
complex wavenumber and shape functions. Afterwards, this result is refined by PSE-3D
iterations introducing the non-parallel effects to α0 and q̂0. In the case that an arbitrary
eigenmode is given at the initial position, by marching integration upon the base flow q̄0, the
leading eigenmode is recovered by PSE-3D as can be observed in figure 5.3. This fact gives
more advantages to the PSE-3D methodology, because the leading eigenmode is an attractor
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Table 5.1: Spatial BiGlobal leading eigenmodes of each familily represented by the number of lobes,
m, for the Batchelor vortex model flow (4.9)-(4.11) with κ0 = 0.8, γ0 = 0.8, δ0 = 1 at Re = 3000.

m 1 2 3 4 5 6

ω 0.86 1.75 2.70 3.65 4.56 5.49
αr 0.543 1.212 1.792 2.399 2.897 3.466
−αi 0.185 0.725 0.690 0.663 0.636 0.605
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Figure 5.1: Unstable spatial eigenmodes, represented by their (a) wavenumber, αr, and (b) growth
rate, −αi, of the Batchelor vortex model of equations (4.9)-(4.11) with κ0 = 0.8, γ0 = 0.8 at Re = 3000,
obtained by spatial BiGlobal analysis. Symbols indicate different azimuthal wavenumbers or number
of lobes, m.
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Figure 5.3: Evolution of initial complex wavenumber by PSE-3D iterations on the initial station
from the second most unstable eigenmode (A) shown in the spectrum of figure 5.2(a) to the leading
eigenmode (B) for the vortex model of equations (4.9)-(4.11) defined with the parameters γ0 = 0.8
and κ0 = 0.8 at Re = 3000 and ω = 4.6.
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PSE with cylindrical coordinates and PSE-3D results for a cross-validation test. Also, the leading
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of the system.

Figure 5.4 shows the evolution of the spatial growth rate, −αi, along the axial direction
computed using PSE-3D and conventional PSE with cylindrical coordinates [189]. Excellent
agreement exists between the results delivered by both methodologies. The main target of
this work is to prove the profit of using non-parallel or non-local analysis instead of using
local stability analysis. For example at x = 10, a gap larger than the 50 % of relative
error between both local and non-local analyses is observed. It is important to note that,
although large discrepancies exist in terms of relative error between both curves, they cross the
neutral stability threshold, αi = 0, at same axial position x ≈ 25.4. Figure 5.5 compares the
reconstruction of the three-dimensional solutions, showing again notable differences between
the results delivered by both approaches.

5.2.2 The trailing counter-rotating vortex-pair

The non-parallel counter-rotating vortex-pair base flow computed by PNS in Section 4.4 is
now analyzed by PSE-3D, since it is the only analysis methodology capable to it, regardless
the prohibitively expensive TriGlobal instability analysis. The next results are corresponding
to fixed Re = 3000 and ω = 2.55. The computational domain in the y − z plane is truncated
at (y∞, z∞) = (35, 35). It is discretized using Ny ×Nz = 181× 121 FD-q10 nodes mapped by
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(a) (b)

Figure 5.5: Iso-surfaces (ũ/|ũ0| = 10 and ũ/|ũ0| = −10) of axial velocity amplitude functions of
figure 5.4 by local theory, in this case by spatial BiGlobal analysis, and PSE-3D.

equation (2.59) setting cz = 0.85 and cy = 0.93, but the case with d = 8, in which Ny = 201.

Firstly, the spatial BiGlobal analysis is used to obtain the most spatial amplified eigenmode
for the initial integration station. Two eigenmodes are found with equal growth rate, one
symmetric and another antisymmetric. Figure 5.6 shows the shape functions of the most
spatially amplified modes, corresponding to the d = 6 case. The spatial structure is resemblant
mode to the one recovered for the isolated vortex flow analysis, with five lobes per vortex,
m = 5. Same shape functions is observed for d = 4 and d = 8 with same parameters.

Figure 5.7 shows the axial evolution of the wavenumber αr(x) and the amplification rate
−αi(x), these curve are identical for both symmetric and antisymmetric eigenmodes. As
the vortices are initially located farther, more similarities are found with the isolated vortex
analysis results. The trend of the curve changes when the vortices are initially located closer,
d = 4. Surprisingly, the stabilization of the flow is inverted from x ≈ 10 to x ≈ 25.

Figure 5.8 shows the iso-surfaces of axial vorticity flowfield for the initial most unstable per-
turbations (plotting the symmetric eigenmode). The inhomogeneous nature of the underlying
flow is evident in the non-axisymmetric shape of the amplitude functions of perturbations.

5.3 Summary and conclusions

The combination of parabolized equations, PNS equations for the computation of steady
base flows and PSE-3D methodology for their latter stability analysis, is found to be the
best candidate for the analysis of spatial developing vortical flows and extensively to a wide
range of complex three-dimensional flows with a slow-varying spatial direction, instead of
using a fully three-dimensional spatially evolving DNS and thus saving several orders-of-
magnitude of computational effort. Two different flows have been analyzed, the realistic non-
parallel trailing line vortex and a system of two counter-rotating vortices whose are allowed to
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Figure 5.6: The most unstable eigenmodes of the counter-rotating Batchelor vortex (4.21)-(4.23)
with d = 6, γ0 = 0.8 and κ0 = 0.4 at Re = 3000 and ω = 2.55, (upper) symmetric and (lower)
antisymmetric eigenmodes plotted with iso-contours û/|u| = (−0.9 : 0.1 : 0.9) of normalized real part
of axial velocity amplitude function (dashed lines correspond to negative values).
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Figure 5.7: Evolution of (a) wavenumber and (b) growth rate for the counter-rotating non-parallel
vortex-pair flow with γ0 = 0.8 and κ0 = 0.4 initial parameters, at Re = 3000 and frequency ω = 2.55,
corresponding the leading spatial eigenmode for three different initial distances between vortices d = 4,
6 and 8.

Figure 5.8: Iso-surfaces of axial vorticity flow field (ζ = ζ̄ + εζ̃ = ±0.6) with ε = 10−5/|ζ̃0| for the
initial most unstable perturbations (plotting the symmetric eigenmode) with the selected parameters
for the base flow (κ0 = 0.4, γ0 = 0.8, d = 6) at Re = 3000 and ω = 2.55.
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5. Instability analysis of vortex flows using parabolized equations

interact. Spatial BiGlobal EVP and PSE-3D analysis have been developed and validated with
results of local analysis and PSE upon the previously mentioned base flows. Comparisons of
local and non-local stability analyses of an isolated vortex, by spatial BiGlobal and PSE-
3D methodologies respectively, showed saturation of modal growth due to viscous spread
in the downstream direction, as opposed to the uninhibited axial growth predicted by the
local analysis of a parallel vortex. Results of conventional PSE in cylindrical coordinates,
using spectral collocation methods, and PSE-3D in a rectangular domain, using high-order
finite difference schemes [104], analyses upon the non-parallel isolated vortex base flow are
compared as a cross-validation test showing excellent agreement. Furthermore, the leading
spatial eigenmode is computed at each station by spatial BiGlobal analysis, showing important
discrepancies between local and non-local analyses, showing the need of taking into account
the non-parallel velocity term, the radial velocity, and the dependence of the base flow on the
axial direction. In the case of a pair of counter-rotating vortices, the results showed similar
results to those of the isolated vortex flow, but the stabilization process is suppressed as the
vortices are initially located closer.
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Chapter 6

Global analysis of an isothermal turbulent swirling
combustor flow

6.1 Introduction

Swirling flows are employed in the majority of modern gas turbine combustors for aerodynamic
flame stabilization. The strong swirl leads to vortex breakdown and large regions of reversed
flow. The high turbulence intensity and the continuous upstream transport of hot combustion
products are vital for the flame anchoring and its stability. However, swirling flows are often
prone to self-excited flow oscillations that are manifested in large-scale helical flow structures,
featuring a precessing vortex core (PVC) [240]. The starting point for an analytical assessment
of the mechanisms that cause the PVC was its interpretation as an unstable global mode
triggered by an inherent flow resonance [70, 152, 183]. This concept is further developed in
the present work by conducting global linear stability analysis on the time-averaged flow field.

Since the seminal experiments conducted by Crow and Champagne [48], it is generally
accepted that turbulent flows are organized by orderly quasi-deterministic coherent structures
(CS). Follow-up work has shown that these structures comprise large portions of the overall
kinetic energy, being responsible for noise [64], mixing [42], cross-stream momentum transfer
[85], and many other unsteady flow phenomena. Moreover, the analysis and modeling of CS
plays an important role in modern flow data analysis strategies. Since modern experimental
and numerical methods provide flow quantities at high spatial and temporal resolution, it
becomes a crucial issue to extract the main flow features from these enormous data sets. This
calls for flow dynamic models that allow for describing the dominant flow structures within a
low-dimensional subspace of the original data set. The reconstruction of the CS may either
be entirely empirical (empirical mode construction) or based on physical equations (physical
mode construction). Physical modes are superior to empirical modes in view of the fact
that they are derived from the governing equations, providing insight into physical cause and
effect. For instance, a linear stability analysis (LSA) allows differentiating between globally
unstable flows that promote self-excited single-tone flow oscillations (oscillator flows; see e.g.
the Karmán vortex street) and convectively unstable flows that promote a wide range of
frequencies (amplifier flows; see e.g. the 2D mixing layer) [108].

The Proper Orthogonal Decomposition (POD) is probably the most prominent empirical
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6. Global analysis of a turbulent swirling combustor flow

CS reconstruction scheme, where turbulent flow data is expressed as series of orthogonal modes
that are optimal in terms of energy content [84]. High energetic CS are well captured by this
method [183], while frequency-ranked modes are more appropriate when the energy of the
structure of interest is low [213]. Empirical modes are typically used for efficient reduced order
models that can be employed for closed-loop control applications [181]. The most prominent
representation of physical modes are the stability eigenmodes of the linearized Navier-Stokes
operator [57]. LSA is conventionally applied to laminar steady base flow solutions to study
the flow bifurcation from a steady and stable to an unsteady and unstable state. Such an
analysis is highly valuable to describe the initial onset of instability, but it is incapable to
describe the flow fluctuations at post-critical/transitional (turbulent) conditions.

To model CS, LSA is applied to the turbulent flow, which requires additional assumptions:
Firstly, the CS are seen as a superposition of instability modes with their scales to be much
larger than those of the background turbulence. Secondly, the LSA is based on the time-
averaged flow that represents the saturated state of the stability modes. Nonlinear interactions
between the mean flow and the CS are thereby inherently accounted for, while mode-mode
interactions are neglected. While the validity of the first assumptions can be readily shown,
the justification of the second is difficult. Examples supporting the mean flow LSA are the
mixing layer [71], the cylinder wake [14, 174, 193], the vortex breakdown bubble [183], the
swirling jet [184], and natural and forced jets [89]. The listed examples demonstrate the high
potential of the physical mode construction based on the mean turbulent flow. Particularly
the most recent investigations show a good quantitative agreement between the CS and the
stability eigenmodes and, most importantly, provide information about the cause and the
effect. The analysis reveals the source of the flow oscillations, and how they are affected by,
e.g., fluidic excitation [257] , density stratification [185], or volume forces [174].

Despite of these inspiring examples, the application of LSA to turbulent flows is far from
being common practice. Mean flow stability wave models have the reputation of being inac-
curate and not rigorously valid, and therefore, most investigations are still restricted to the
analysis of stationary base flows, which might be of academic interest, but of minor practical
relevance. The low confidence in the mean flow LSA, encountered presently, is attributed, on
the one hand, to inconsistent comparison of experimental data with simplified or incomplete
flow representations [69, 113], and, on the other hand, to an insufficient implementation of
the general concept.

The principle theoretical approach is based on a triple decomposition of the flow into a
mean part, a coherent part, and an incoherent part, reading u(x, t) = ū(x)+ũ(x, t)+u′(x, t).
The mean and uncorrelated parts are typically given, while the coherent part, representing
the flow oscillations associated with the CS, is modeled via LSA. Utilizing the phase-averaged
equations of motion, it can be shown that the coherent part interacts with the mean flow
through the generation of coherent Reynolds stresses, the turbulent (incoherent) part interacts
with the mean flow through the generation of turbulent Reynolds stresses, while the coherent
part and the turbulent part interact through phase-averaged turbulent Reynolds stresses [206].
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The mean-coherent and mean-turbulent interactions are readily incorporated through the
analysis of the actual mean flow, while the coherent-turbulent interactions must be accounted
for by employing a turbulence model. Particularly the latter is often ignored, which leads to
a wrong estimation of the CS’s growth rates [71, 89].

In the present Chapter, the global mode in a strongly swirling turbulent combustor flow
undergoing vortex breakdown is experimentally and analytically investigated. The experiment
shows a self-excited global flow oscillation at a well-defined frequency. Based on the mean
flow field, global hydrodynamic stability analysis is carried out. The dampening effect of the
Reynolds stresses are accounted for by an estimated eddy viscosity. The global analysis suc-
cessfully predicts the frequency of the global mode and, in addition to that, yields the global
shape of the instability. The results show a precession of the vortex core and synchronized
Kelvin-Helmholtz instabilities in the shear layers. In gas turbine combustors, the flow oscil-
lations cause large-scale flame oscillation and may couple with thermoacoustic instabilities,
proving the practical relevance of the investigated global mode.

6.2 Theory

6.2.1 Stability analysis of turbulent mean flows

In the present analysis, the flow of interest is unsteady and non-periodic. Therefore, the triple
decomposition theory proposed by Hussain and Reynolds [111] is used to distinguish between
the time-averaged base flow q̄(x), the coherent or instability perturbations q̃(x, t) and the
stochastic or turbulent fluctuations q′(x, t):

q(x, t) = q̄(x) + q̃(x, t) + q′(x, t) (6.1)

Note that for a steady base flow q′(x, t) = 0. The three components of equation (6.1) are
defined as

q̄(x) = lim
T →∞

1

T

∫ T

0
q(x, t)dt, (6.2)

q̃(x, t) = 〈q(x, t)〉 − q̄(x), (6.3)

q′(x, t) = q(x, t)− 〈q(x, t)〉 , (6.4)

where the phase average is defined as

〈q(x, t)〉 = lim
N→∞

1

N

N∑

n=0

q
(
x, t +

n

f

)
, (6.5)

with f being the frequency of the coherent perturbation.
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6. Global analysis of a turbulent swirling combustor flow

The evolution equations for q̃(x, t) are derived by substituting equation (6.1) into the
Navier-Stokes equations (1.6-1.7). For an incompressible flow, each individual component of
equation (6.1) conserves continuity. The momentum equation for q̃ is derived phase averag-
ing the equations and then subtracting away the time-averaged mean of the phase-averaged
equations. The resulting continuity and momentum equations of the perturbations are given
by

∇ · ũ = 0, (6.6)[
∂ũ

∂t
+ (ū ·∇) ũ + (ũ ·∇) ū

]
+∇ p̃− 1

Re
∆ũ = −∇ ·

(
τR + τN

)
, (6.7)

where τN ≡ ũũ− ũũ are the non-linear terms, which are removed assuming small-amplitude
perturbations, and

τR ≡
〈
u′u′

〉
− u′u′ = ũ′u′, (6.8)

are the remaining stresses. For further details on the derivation of the momentum equation
see Reynolds and Hussain [206].

6.2.2 Eddy-viscosity closure

In order to resolve the equations (6.6-6.7), a model relating τR to q̃ is required. In the present
work, the turbulent stresses are modeled with an eddy viscosity, redefining the viscosity of
the problem as the sum of the molecular plus the eddy viscosities ν → ν + νt. The well-
known Boussinesq’s eddy-viscosity approximation assumes that the Reynolds stresses are the
product of the mean strain-rate tensor and turbulent viscosity νt. This is analogously to the
viscous stresses in Newtonian fluids that are determined by the molecular viscosity ν and the
strain-rate tensor. For a constant density flow this hypothesis can be written as [274]:

−u′iu′j = νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2

3
kδij . (6.9)

The turbulent kinetic energy (TKE) k is introduced to avoid an inconsistency with the conti-
nuity equation [114]. The aim is to describe the stress tensor with only one turbulent viscosity.
Thus, for a three-dimensional flow, as the swirling jet, the system of equations (6.9) is overde-
termined. An optimal representation of νt is obtained using a least-square fit over all resolved
Reynolds stresses [114]

νt =

(
−u′iu′j + 2

3kδij

)
·
(
∂ūj
∂xi

+ ∂ūi
∂xj

)

(
∂ūk
∂xl

+ ∂ūl
∂xk

)
·
(
∂ūk
∂xl

+ ∂ūl
∂xk

) , (6.10)

with the summation over the repeating indices i, j, k, and l = 1, 2, 3.
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6.2.3 Global analysis of axisymmetric flows

The swirling jet flow is axisymmetric, what translates that mean flow is homogeneous in
the azimuthal direction, q̄ = q̄(x, r). Therefore, the equations (6.6-6.7) are expressed in
cylindrical coordinates and the perturbations are written as

q̃(x, r, θ, t) = q̂(x, r) exp[i(mθ − ωt)] + c.c., (6.11)

where q̂ represents the vector of two-dimensional amplitude functions, m is the azimuthal
wavenumber, ω is the circular frequency and c.c. refers to complex conjugate.

Introducing the perturbation variables decomposition of equation (6.11) in equations (6.6-
6.7), the temporal BiGlobal EVP (1.25) is recovered. Written using matrix notation, the
operators A and B become

A =




L+ ūx ūr 0 Dx
v̄x L+ v̄r + 1

Re r2
−2w̄

r + 2im
Re r2

im

w̄x w̄r + w̄
r − 2im

Re r2
L+ v̄

r + 1
Re r2

im
r

Dx 1
rDr r im

r 0


 , B =




i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0


 , (6.12)

where L = ūDx + v̄Dr + w̄
r im− 1

Re

(
D2
xx + 1

rDr +Drr + m2

r2

)
.

The elliptic EVP (1.25) is complemented with the next boundary conditions. Dealing
firstly with the streamwise direction, homogeneous Neumann conditions are imposed at the
inlet, homogeneous Dirichlet conditions at the walls and decay of perturbations through the
imposition of a sponge region at the outlet, setting homogeneous Dirichlet boundary con-
ditions. The main objective of this sponge region is to avoid spurious reflections. This is
achieved by artificially decreasing the local Reynolds number, in the exit region, using a
smooth function, say a hyperbolic tangent. The sponging strength is defined as the ratio of
the decrease in the Reynolds number between the flow and the exit, to the Reynolds number
of the flow. Sponging strengths of between 80% and 90% have been used. The sponged length
is the fraction of the domain over which the sponging is applied, ranging from 10 to 20%.
Within this range of strengths and lengths, it is seen that the results remain insensitive. For
the radial coordinate, a sponge region is also used at the top boundary r = rm and homo-
geneous Dirichlet boundary conditions are imposed for the three velocity components. The
same sponge technique was successfully used by Meliga et al. [173] for recovering the global
modes of a swirling jet flow. At the radial axis r = 0, the boundary conditions, originally
derived by Batchelor [17], are:

∂û

∂r
= v̂ = ŵ = 0, if m = 0, (6.13)

û =
∂v̂

∂r
= v̂ +mŵ = 0, if |m| = 1, (6.14)

û = v̂ = ŵ = 0, if |m| > 1. (6.15)
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6. Global analysis of a turbulent swirling combustor flow

(a) Generic swirl stabilized combustor

camera 2

camera 1

measurement 
plane

center body

laser

mirror 2

mirror 1

(b) Setup for the stereo PIV measurements

Figure 6.1: Generic burner and stereo PIV setup

In order to avoid the use of artificial pressure boundary conditions, the pressure and
continuity equation are enforced at the mid grid points. This method, so called staggered
grid, was successfully used for first time in cylindrical coordinates for local stability analysis
by Khorrami [124] using Chebyshev spectral collocation discretization.

Since this flow problem requires a mild clustering of points at the inflow boundary, the
equation used to map the calculation domain x ∈ [0, xm] and r ∈ [0, rm] into the FD-q grid
is equation (2.60). The selected mapping parameters are xh = 2 and xm = 6. The same
equation is used for mapping the radial coordinate, setting rh = 1 and rm = 3.2.

6.3 Experimental setup

The swirling jet under investigation is created from a swirl-stabilized model combustor, as
depicted in figure 6.1(a). It consists of an adjustable radial swirl generator, where the angular
momentum is imparted on the flow. The amount of swirl was set to a theoretical swirl number
of S = 0.9 [143] for the experiments. Downstream of the swirl generator the fluid passes an
annular duct of 55 mm outer diameter and 27.5 mm inner diameter, which serves to enhance
the fuel-air mixing under reacting conditions. The combustion chamber downstream of the
duct has a diameter of 200 mm, a length of 300 mm and open exit boundary conditions.

The flow measurements are carried out in a vertically oriented water tunnel test facility.
The water is filtered at the bottom of the storage tank in order to reduce perturbations by
non-seeding particles and air bubbles during testing. A flow straightener upstream of the test
section homogenizes the velocity inlet profile. A rotary vane flow meter measures the water
mass flow (±5%). The stereo PIV measurement system, shown in figure 6.1(b), consists of
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two PCO Sensicams and an Nd:YaG laser operating at 4 Hz with a pulse energy of 20 mJ .
The flow is seeded with silver coated hollow glass spheres of a nominal diameter of 15 µm.
The laser sheet is aligned at an angle of ≈ 45◦ to the windows of the rectangular test section
and the cameras are aligned in an angle of ≈ 45◦ to the laser sheet. to the laser sheet. Time
resolved pressure data was recorded using a sensor located in burner mouth.

6.4 Results

The global mode in a strongly swirling turbulent combustor flow undergoing vortex breakdown
is experimentally and analytically investigated. The experiment shows a self-excited global
flow oscillation at a well-defined frequency. Based on the mean flow field, global hydrodynamic
stability analysis is carried out.

6.4.1 Experimental observations

The flow studied here is the time- and azimuthally-averaged mean flow recovered by PIV
experiments. The non-dimensionalisation of the equations and variables is performed using
the inner diameter as reference length scale, l∗r = Dh = 27.5mm, and u∗r = 1m/s as reference
velocity. The flow field inside the combustor, as depicted in figure 6.2, is composed of an
emanating jet and large zones of recirculating fluid. An inner recirculation zone is located
around the centerline and an outer recirculation zone near the combustor walls. In between
the jet and the recirculation zones, turbulent shear layers are formed. The tangential velocities
show a solid body rotation in the vortex core and a decay of the tangential velocities for higher
radii. The solid body rotational speed decay quickly with the distance from the combustor
inlet. The highest levels of the turbulent kinetic energy (TKE), as shown in figure 6.3(a), are
encountered near the combustor inlet on the centerline and in the inner shear layers. Figure
6.3(b) shows that the calculated eddy viscosity (6.10), in contrast to the TKE, peaks in the
shear layers only up to axial locations of x∗/Dh = 33.

The spectrum of the pressure signal located at the burner, depicted in figure 6.4, shows
a clear peak at 9.25 Hz, indicating a strong periodic oscillation. The second peak is at the
double frequency of 18.5 Hz and corresponds to the first harmonic of the oscillation. The
resulting measured Strouhal number is St = f∗Dh/u

∗
r = 0.26 and dimensionless circular

frequency ω = 2πSt = 1.61.
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(b) Azimuthal velocity, w̄

Figure 6.2: Time-averaged flow field
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Figure 6.3: Flow field turbulence properties
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Fig. 4. Results of the global stability analysis.

3. Results

First results of the global analysis are presented in Fig. 4a for two different fixed swirl Reynolds numbers and the
Reynolds number based on the calculated eddy viscosity. For the highest Reynolds number, an unstable mode is pre-
dicted at a slightly higher frequency than encountered in the experiments. For the lowest Reynolds number, a stable
mode with a very similar frequency as in the experiments is calculated. With the incorporated eddy viscosity, a slightly
stable mode is found at a frequency close to the measured frequency. The eigenfunctions corresponding to this eigen-
value are depicted in in Fig. 4b and compared to the shape of the global mode reconstructed from the experimental
data via a proper orthogonal decomposition4. It is evident that both modes describe a similar wave pattern located in
the shear layers. Some deviations exist in the distribution of the oscillation amplitude. In the experiments, it is more
concentrated near the burner inlet and the axial decay is faster. However, the excellent agreement of the frequency
and the reasonable agreement of the mode shape provide sufficient evidence that the global stability analysis captures
the flow instability.

4. Outlook

The results of the global stability show a very good agreement to the experiments. This provides strong evidence
that the instability, including the precession of the vortex core and the Kelvin-Helmholtz instability, is the manifesta-
tion of a global mode. The results of the local analysis (not shown in the extended abstract) also successfully predict
the instability frequency. Furthermore, it provides the location of the wave maker of the instability. This wave maker
is assumed to be of utmost importance for the manipulation of the instability. This can be by means of flow control or
due to changes in the flow field in the presence of a flame in the swirling combustor flow.
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described in the text are enclosed by the red line.

115



6. Global analysis of a turbulent swirling combustor flow

PSfrag replacements

(d)(c)

(b)(a)

x/Dhx/Dh

y/
D

h
y/

D
h

0 1 2 3 4 5 60 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
0

0.5

1

1.5

2

2.5

3
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6.4.2 Global instability analysis

Results of the global analysis, setting m = 1 to capture the global helical mode (PVC),
are presented in figure 6.5 for two different fixed swirl Reynolds numbers and the Reynolds
number based on the calculated eddy viscosity. For the highest Reynolds number, an unstable
mode is predicted at a slightly higher frequency than encountered in the experiments. For the
lowest Reynolds number, a stable mode with a very similar frequency as in the experiments is
calculated. With the incorporated eddy viscosity, a slightly stable mode is found at a frequency
close to the measured frequency. The eigenfunctions corresponding to this eigenvalue are
depicted in in figure 6.6 and compared to the shape of the global mode reconstructed from
the experimental data via a POD [183]. It is evident that both modes describe a similar
wave pattern located in the shear layers. Some deviations exist in the distribution of the
oscillation amplitude. In the experiments, it is more concentrated near the burner inlet
and the axial decay is faster. However, the excellent agreement of the frequency and the
reasonable agreement of the mode shape provide sufficient evidence that the global stability
analysis captures the flow instability.

6.5 Summary and conclusions

The results of the global stability show a very good agreement to the experiments. This
provides strong evidence that the instability, including the precession of the vortex core and
the Kelvin-Helmholtz instability, is the manifestation of a global mode. Although it is not
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shown here, local stability analysis was conducted on the same mean flow and the results also
successfully predict the instability frequency. Furthermore, it provided the location of the
wave maker of the instability. This wave maker is assumed to be of utmost importance for
the manipulation of the instability. This can be by means of flow control or due to changes
in the flow field in the presence of a flame in the swirling combustor flow.
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Chapter 7

Instability study of the wake behind a discrete
roughness element in high speed boundary-layers

7.1 Introduction

Experimental observations indicate that the dominant laminar-turbulent transition mecha-
nisms in boundary-layers can be greatly modified by the presence of localized or distributed
roughness, leading to a significant acceleration of the transition process both in noisy and
in quiet environments [44, 67, 132, 227, 242]. Over the years, a number of possible sce-
narios have been postulated to explain these observations. However, despite the numerous
research efforts, the underlying physical mechanisms responsible for roughness-induced tran-
sition are only partly understood. Consequently high-speed vehicle design still relies on em-
pirical transition-prediction criteria [198]. A deeper understanding of the effects of roughness
on the stability of boundary-layers is thus urgently needed since it is particularly important
for high-speed applications, where transition to turbulence leads to a significant increase of
both the skin-friction and the wall heat-transfer, with obvious implications for the design of
high-speed vehicles.

The early experiments of Klebanoff and Tidstrom [132] showed that discrete two-dimensional
roughness elements may lead to an acceleration of the transition process due to the modi-
fied stability of the tripped boundary-layer. In particular, the growth of Tollmien-Schlicting
(TS) waves was found to be enhanced by the 2D roughness element. The effects of local-
ized two-dimensional roughness elements on the stability of a compressible boundary-layer at
M = 4.5 have recently been studied through direct numerical simulations (DNS) by Marxen
et al. [170], who showed that the roughness element induces a sudden disturbance amplifi-
cation (over a limited frequency band) in its vicinity but does not affect the boundary-layer
stability characteristics further downstream. The sudden amplification appears to be due to
the phase-locked linear superposition of the first boundary-layer mode with a stable mode
excited by the roughness element, resulting in transient energy growth. This result seems to
be in line with a mechanism, originally proposed by Ruban [214] and Goldstein [76] and stud-
ied theoretically by Crouch [45] and Choudhari and Street [38], by which the interaction of
free-stream disturbances with localized surface geometrical distortions can excite disturbances
tuned (in frequency and phase speed) with the boundary-layer instability eigenmodes. An ex-
ample of this mechanism for three-dimensional localized roughness elements, in the context
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7. Roughness-induced transition in high speed boundary-layers

of compressible boundary-layers, was reported in the DNS results of Balakumar [12]. How-
ever, the effect of three-dimensional roughness elements on the stability of boundary-layers
seems to extend beyond the enhancement of the receptivity, that is conversion of external
disturbance in boundary-layer modes, and/or amplification of boundary-layer modes. Three-
dimensional roughness elements often induce subcritical disturbance amplification, leading to
a “bypass”-like laminar-turbulent transition. In fact, bypass and roughness-induced transi-
tion to turbulence appear to share numerous similarities, at least in the incompressible flow
regime.

Bypass transition may take place when moderate or large free-stream disturbances enter
the boundary-layer and give rise to high- and low-velocity streaks through the lift-up mech-
anism of Landahl [135] [see also 4, 7, 109, 116, 200, 204]. The streaks may then interact
nonlinearly with each other [29] or undergo a secondary instability before breaking down into
turbulence [8]. Investigations into the secondary instability of streaks in boundary-layers have
been conducted mainly for incompressible flows. The early experiments of Swearingen and
Blackwelder [239] show that low velocity streaks, appearing following the formation of Görtler
vortices in a concave wall boundary-layer, can sustain both sinuous (anti-symmetric) and vari-
cose (symmetric) instabilities, the former being more prominent. More recently Asai et al. [10]
experimentally investigated the linear instability of a single boundary-layer streak, showing
that under certain conditions (mainly depending on the geometry of the three-dimensional
high-shear layer surrounding the streak) the varicose mode can be more unstable than the
sinuous mode. In the nonlinear transition stages, quasi-streamwise vortices and hairpin vor-
tices form following a sinuous and a varicose streak instability, respectively. The growth of
the varicose mode was found to be the consequence of a Kelvin-Helmholtz instability of the
wall-normal detached high-shear layer, while the sinuous mode develops due to an instability
of the lateral high-shear layers. Numerical simulations performed by Andersson et al. [8] in-
dicate that the streak instability starts appearing in the form of a sinuous perturbation for
streak amplitudes of about 26% of the free-stream velocity, while varicose disturbances be-
come unstable only for streak amplitudes larger than 37%. Their inviscid stability simulations
indicate that the sinuous mode grows faster than the varicose instability; a result which was
also reported by Wu and Choudhari [277].

Roughness-induced transition may follow a similar path. In fact, the flow behind small
three-dimensional localized roughness elements is characterized by the presence of counter-
rotating streamwise vortices [see for example 72, 119, 207, 263], which through the “lift-up”
effect can potentially lead to strong algebraic growth of boundary-layer streaks and breakdown
to turbulence. A model based on the transient growth mechanism was proposed by Reshotko
and Tumin [205] to predict roughness-induced transition, following a similar approach to
that of Andersson et al. [8] for the bypass transition scenario. The model suggests that
the transition Reynolds number (based on the momentum thickness θ) varies according to
(h/θ)−1 for stagnation point flow with constant wall temperature, thereby agreeing with the
ballistic-range data presented by Reda [198]. Reda’s review provides a detailed analysis of the
available experimental data for a variety of different flows and provides strong evidence of the
importance of the critical roughness Reynolds number approach (Reh = ūhh/νh, where ūh and
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νh are the streamwise velocity and kinematic viscosity taken at y = h in the corresponding
clean flat plate boundary-layer) for modeling laminar-turbulent transition induced by localized
and distributed roughness. However, Reda also concludes that a universal critical Reh will not
be found, given the large number of different flow conditions and roughness patterns possible.
Somewhat in contrast with this view, Horvath et al. [106] propose a transition criterion for
isolated roughness elements based on the parameter momentum thickness Reynolds number
divided by the boundary-layer edge Mach number. Critical values of this parameter appear
to scale linearly (on a logarithmic scale) with the roughness height divided by the local
boundary-layer thickness.

A parametric study of the effects of localized smooth roughness elements on the laminar-
turbulent transition occurring in supersonic flat-plate boundary-layers was recently performed
by Redford et al. [201] using DNS. Their results indicate that transition is promoted provided
Reh exceeds a critical value which increases as the parameter Mh T̄∞/T̄w increases, where Mh

is the Mach number calculated at the roughness edge and T̄w is the wall temperature. They
proposed a roughness-induced transition map which suggests a critical value of Reh = 300
for Mh T̄∞/T̄w = 0. These findings were confirmed by Bernardini et al. [20], who proposed a
modified version of roughness Reynolds number Re∗h = ūhh/νw, with the kinematic viscosity
taken at the wall, which has a constant critical value of Re∗h = 460.

The criteria mentioned above represent a useful tool for predicting roughness-induced
transition, without attempting to provide a physical explanation of the flow instability and
transition to turbulence. In order to gain a better understanding of the physical mechanisms
driving the roughness-induced transition process Choudhari and co-workers [40, 121] analyzed
the growth of instabilities in the wake of diamond-shaped roughness elements atM = 3.5, both
experimentally and through BiGlobal linear stability calculations. The results show that both
sinuous and varicose modes can grow substantially in the linear stages of the transition process.
For Reh = 426 the experiments show that the transition process is driven by the varicose
mode, while the sinuous mode dominates for Reh = 319. This result is in agreement with the
BiGlobal stability simulations, which show that the sinuous mode becomes more dominant for
decreasing Reh. The BiGlobal stability results also suggest that the varicose mode growth-rate
decreases more rapidly than that of the sinuous mode with increasing streamwise distance,
suggesting that the latter mode may drive the final breakdown to turbulence even for high
Reh. Experimentally obtained mode shapes were found to be in good qualitative agreement
with the eigenfunctions extracted from the BiGlobal stability analysis. Groskopf et al. [88]
studied the instability induced by discrete three-dimensional roughness elements in a M = 4.8
boundary-layer, reporting good agreement between BiGlobal stability simulations and DNS.
Further experimental results demonstrating the importance of the roughness wake instability
as the cause of the early laminar-turbulent transition observed in the presence of isolated
roughness elements were reported by Kegerise et al. [122] and Owens et al. [187]. Recently
Wheaton and Schneider [270, 271] have carried out a set of experiments on roughness-induced
transition at M = 6, reporting the first quantitative measurements of the roughness wake
instability at hypersonic speeds. For the same Mach number, the numerical simulations of De
Tullio and Sandham [51] and Choudhari et al. [41] show that the roughness wake can sustain
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7. Roughness-induced transition in high speed boundary-layers

the growth of a number of different instability modes, the relative importance of which seems
to depend on the specific flow conditions considered.

In the wake flow behind an isolated three-dimensional roughness element, a predominant
spatial direction exists along which the mean flow properties vary slowly, while the flow varies
rapidly in the crossflow directions. These properties are taken into account in the derivation
of the three-dimensional parabolized stability equations (PSE-3D), which represent the most
efficient simplified approach for the solution of the instability problem of such flows.

In what follows we study the linear stage of the laminar-turbulent transition process
induced by a sharp-edged isolated roughness element embedded in a boundary-layer at two
speed regimes, firstly at a supersonic Mach number M = 2.5 and secondly at a hypersonic
regime, M = 6. The first Mach number is high enough for significant compressibility effects to
be expected but below the Mach number at which higher modes of instability (Mack modes)
develop, what occurs in the highest Mach number case. The linear instability of the flow is
investigated through full Navier-Stokes (NS) simulations, spatial BiGlobal and linear PSE-3D
stability analyses. Details about the breakdown to turbulence following the linear growth of
instability modes is investigated by DNS in the work of De Tullio et al. [52] for the M = 2.5
case.

7.2 Theory

In order to compute the base flow analyzed here, the compressible Navier-Stokes equations
(1.1-1.3) are solved numerically using high order finite-differences. The spatial discretization
is treated using a standard fourth-order central difference scheme to calculate derivatives at
internal points, while close to boundaries a stable boundary treatment by Carpenter et al. [35]
is applied, giving overall fourth-order accuracy. Time integration is based on a third-order
compact Runge-Kutta method [275] and an entropy splitting approach developed by Sandham
et al. [221] is used to split the inviscid flux derivatives into conservative and non-conservative
parts, thereby improving numerical stability. The code has multi-block capabilities and is
made parallel (both intra- and inter-block) using the message-passing-interface (MPI) library.
Details on the implementation of the numerical schemes can be found in Li [151] and Jones
[118]. The multi-block version of the code used has been extensively validated [see for example
50, 278].

The study include the effects of one roughness element with dimensionless height equal
to h = 1. The roughness element is placed at a non-dimensional distance xh = x∗h/δ

∗
0 = 50.

The laminar displacement thickness (δ∗) and the boundary-layer thickness (δ99) grow in the
streamwise direction according to

δ∗(x̃∗)

δ∗0
= ∆

√
2Rex̃∗

Reδ∗0
and

δ99(x̃∗)

δ∗(x̃∗)
=

∆99

∆
, (7.1)
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where

Rex̃∗ =
1

2

(
Reδ∗0

∆

)2

+Reδ∗0
x∗

δ∗0
. (7.2)

Equations (7.1) and (7.2) were derived from the similarity solution [see the section on the
Illingworth transformation in 272]. Note that x̃∗ is the dimensional streamwise coordinate in
a reference frame positioned at the flat plate leading edge. The scaling factors ∆ and ∆99 are
calculated as

∆ =

∫ ∞

0

(
ρ∗∞
ρ∗
− u∗

u∗∞

)
dη and ∆99 =

∫ η99

0

ρ∗∞
ρ∗
dη, (7.3)

where η = [(ρ∗∞u
∗
∞)/(2µ∗∞x̃

∗)]1/2
∫ y∗

0 (ρ∗)/(ρ∗∞)dy∗ is the non-dimensional similarity coordi-
nate and η99 is obtained at y∗99, where u∗/u∗∞ = 0.99. Equation (7.2) provides a straight-
forward method of converting from the dimensionless simulation data to a reference system
based on the flat-plate that would be used in an experiment.

The reference values for velocity (u∗r), density (ρ∗r), temperature (T ∗r ) and dynamic viscos-
ity (µ∗r) are taken at the free stream, while the reference length is the displacement thickness
of the laminar boundary-layer at the computational domain inflow, δ∗0 .

7.3 Results

7.3.1 Supersonic regime

The laminar-turbulent transition induced by a sharp-edged isolated roughness element in
an supersonic boundary-layer is analyzed. It focuses on the linear instability of the wake
induced by the isolated roughness element, the full Navier-Stokes equations are simulated and
compared with BiGlobal and PSE-3D simulations. Dimensionless parameters which define the
problem are the Reynolds number Reδ∗0 = 3300, the Mach number M = 2.5 and the Prandtl
number Pr = 0.72.

The roughness height expressed in terms of δ∗99 of the surrounding undisturbed boundary-
layer at streamwise location of the roughness element is h∗/δ∗99 = 0.44. The roughness element
has length L = 6.0 and same width. The walls are considered no-slip and isothermal with
T̄w = T̄ad = 2.05, where T̄ad is the laminar adiabatic-wall temperature. The roughness
Reynolds numbers of Reh = 791 and modified roughness Reynolds numbers [20] Re∗h = 788.
More details can be found in De Tullio et al. [52].

During the linear instability study, the laminar boundary-layer base flow is subjected to a
time-varying density disturbance imposed at the inflow boundary, which is placed at x0 = 16,
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7. Roughness-induced transition in high speed boundary-layers

so that the inflow condition for density reads

ρ(x0, y, z, t) = ρ̄(x0, y, z) + aGw

M∑

m=1

N∑

n=1

cos (βmz + φm) cos (ωnt+ ψn) , (7.4)

with N = 16 and M = 6 as the number of frequencies and spanwise wavenumbers respectively,
βm = m2π/Lz, ωn = n2πF0 with F0 = 0.02. Note that the non-dimensional frequency
F = f∗δ∗0/u

∗
∞, f∗ being the dimensional frequency (cycles per second), takes the form of a

Strouhal number. The phases φm and ψn are set to random numbers between 0 and 2π in order
to avoid local peaks in the disturbance signal which might trigger undesired non-linearities.
The damping function Gw = 1 − exp

(
−y3

)
was used to control the disturbance location

with respect to the boundary-layer; it is greater than zero inside the boundary-layer and zero
at the wall. An additional damping was employed to drive the forcing function to zero at
the top domain boundary to avoid the onset of numerical oscillations. A small amplitude of
a = 2× 10−6 is used to ensure the linearity of the dominating transition mechanisms, at least
for the initial stages of the instability. The boundary-layer response to the inflow disturbances
is characterized by consideringintegrated disturbance energy norm given by

Eη(x) =

∫ δ99

0
|ρ̆|0,(·)

[
|ŭ|2η,(·) + |v̆|2η,(·) + |w̆|2η,(·)

]
+
|ρ̆|2η,(·)|T̆ |0,(·)
γ|ρ̆|0,(·)M2

∞
+

|T̆ |2η,(·)|ρ̆|0,(·)
γ(γ − 1)|T̆ |0,(·)M2

dy. (7.5)

The wake of the roughness element is characterized by the presence of regions of high
streamwise vorticity. A pair of strong counter-rotating streamwise vortices form as the
flow reattaches downstream of the roughness. Figure 7.1 shows shaded contours of ūs =
[(∂ū/∂y)2 + (∂ū/∂z)2]1/2 at three different streamwise positions. The strong streamwise vor-
tices induced downstream of the roughness element lift-up low momentum fluid from the near
wall region and give rise to a low velocity streak away from the wall as shown in figures 7.1(a),
7.1(b) and 7.1(c). As the low velocity streak forms, it induces a three-dimensional detached
high shear-layer in its surroundings, leading to a highly unstable roughness wake. Note that
the shape of the low velocity streak changes notably along the streamwise extent of the com-
putational domain, suggesting that non-parallel flow effects might play an important role in
the determination of the stability characteristics of the wake.

Figure 7.2 compares the growth-rates of the dominant modes extracted from the PSE-3D
results at different streamwise locations with the NS results for a selection of frequencies. The
NS growth-rates are measured as

σE =
1

2

d ln[Eη(x)]

dx
, for η = 1, 2, . . . , J/2− 1, (7.6)

while for the PSE-3D results the effective growth-rate calculated using equation (1.44) is used
to account for the residual slow variation of disturbance kinetic energy (K) with x. Note that
the PSE-3D growth-rates can also be computed from the streamwise variation of the mode
amplitudes, similarly to what was done for the NS results. The growth-rates obtained using
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Figure 7.1: Contours of ūs in crossflow planes at x = 76.025, 93.665 and 114.665 for (a), (b) and (c)
respectively, showing the localized shear generated by the roughness-induced counter-rotating vortices.
The solid lines show contours of ū = 0.38 and the dashed ones correspond to the roughness element
position.
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Figure 7.2: Disturbance growth-rate at different streamwise positions for a selection of the most
unstable frequencies (σE for NS and σK for PSE-3D).

the two methodologies were found to be practically indistinguishable from each other. This
aspect was also reported by Bertolotti and Herbert [21], who showed the use of normalization
condition (1.43) and consequent definition of the effective growth-rate (σK) does not change
the results. Therefore the definition in equation (1.44) was used here for the comparison
with the NS results. Both NS and PSE-3D results show that disturbances with F = 0.14 are
the most unstable, with an averaged growth-rate of σK ≈ 0.21 for 80 ≤ x ≤ 116. This is
roughly thirty times higher than the smooth flat plate primary instability for the same Mach
and Reynolds numbers, which has F ≈ 0.013 and −αi ≈ 0.0075 according to parallel linear
stability theory. While the NS and PSE-3D growth-rates agree closely for x ≥ 95.8, a slight
disagreement is evident at x = 91.6 for F ≥ 0.14. This is believed to be due to the fact that,
as will be shown in the following, multiple modes with different growth-rates contribute to
the growth of Eη in the NS simulations. In the linear limit the disturbed flow field is given by
the sum of these modes and

√
Eη can potentially grow faster than the most unstable mode, as

is the case for F ≥ 0.14 in figure 7.2(b). The mechanism is similar to that responsible for the
transient growth of disturbances in the presence of non-orthogonal stable modes, only here
two (or potentially more) unstable modes combine linearly and lead to a total disturbance
energy growing faster than the most unstable mode during a certain transient.

A more complete picture of the modes taking part in the instability of the wake can
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Figure 7.3: Spatial BiGlobal spectrum (a), with letters in brackets referring to subsequent figures,
and contours of the real part of the temperature eigenfunctions (blue for negative and red for positive).
Spectrum and eigenfunctions were obtained for F = 0.08 at x = 93.66.

be obtained by analysing the linear stability of y-z slices of the roughness wake. Figure
7.3(a) gives the spatial BiGlobal eigenspectrum obtained for F = 0.08 at x = 93.66. It can
be seen that, in addition to the dominant varicose and sinuous modes, figures 7.3(b) and
7.3(c) respectively, the wake of the roughness element sustains the growth of four additional
modes for the frequency and streamwise position considered. The modes shown in figures
7.3(d) and 7.3(e) belong to the family of modes growing in the three-dimensional high-shear
layer surrounding the low-velocity streak, while the modes shown in figures 7.3(d) and 7.3(e)
reflect disturbances growing in the streak itself. The growth-rate obtained from the BiGlobal
eigenvalue problem for the dominant varicose mode is −αi = 0.149, while the NS and PSE-
3D results give respectively σE = 0.169 and σK = 0.167 for the same mode. A disagreement
between NS and BiGlobal results was expected given the degree of non-parallelism of the base
flow. On the other hand, the agreement between NS and PSE-3D is remarkable.

Difficulties in recovering accurate amplification rates from BiGlobal stability results were
also reported by Bonfigli and Kloker [27] while studying the secondary instability of crossflow
vortices in an incompressible flow. On the other hand, they show that a BiGlobal stability
analysis can give reliable results in terms of mode eigenfunctions and dispersion relation.

Here, the u-, v-, and w-velocity amplitude functions of the dominant modes obtained from
the BiGlobal eigenvalue analysis are compared with those obtained from the NS simulations
in figure 7.4 for F = 0.08 and F = 0.26. It can be seen that the two results are in excellent
qualitative agreement. The varicose mode dominates the wake instability for F = 0.08, but
there is a non-negligible contribution of the sinuous mode to the NS amplitude functions,
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|ŵ|(f )

7 8 9 10 11 12 13

0

1

2

3

4

Figure 7.4: Mode shape comparison between Navier-Stokes (red contour-lines) and BiGlobal stability
(shaded contours) results for x = 93.66. The Navier-Stokes and BiGlobal mode amplitudes were
normalised with the maximum attained over y and z and plotted at the same contour levels, eight
equally spaced contours from 0 to 1. (a), (b) and (c) for F = 0.08 (varicose mode) and (d), (e) and
(f) for F = 0.26 (sinuous mode).

which leads a slight asymmetry. On the other hand, for F = 0.26 both the BiGlobal stability
and the NS results indicate that the only unstable mode is sinuous and grows in the lateral
high-shear layers induced at the sides of the low-velocity streak.

The structure of the dominant modes taking part in the wake instability can be used to
estimate the growth-rates of the varicose and sinuous modes separately from the NS results,
which can then be compared with those obtained from the PSE-3D simulations. For this
purpose it is worth noting that growth of v′ disturbances at the roughness mid-plane reflects
solely the growth of the varicose mode, while w′ disturbances at the same location are only
influenced by the sinuous mode development (note that |ŵ| = 0 for the varicose mode and
|v̂| = 0 for the sinuous mode at the roughness mid-plane). Figure 7.5 gives a comparison of the
streamwise variation of the sinuous and varicose mode amplitudes obtained from the NS and
PSE-3D simulations for some of the most unstable frequencies. Varicose and sinuous mode
amplitudes are obtained respectively as

∫ δ99
0 |v̂|dy and

∫ δ99
0 |ŵ|dy at z = 10 (roughness mid-

plane) from the NS results, while the PSE-3D mode amplitudes are calculated as
∫
x σK(x)dx.

Again NS and PSE-3D results agree closely and indicate that varicose and sinuous modes
are unstable for overlapping frequency ranges. The varicose mode dominates throughout the
streamwise extent of the computational domain for the most unstable frequencies. In fact,
at x = 90 the growth-rate of the varicose mode is higher than that of the sinuous mode by
about 15% for F = 0.10 and F = 0.12, 11% for F = 0.14 and 8% for F = 0.16, while at
x = 112 the growth-rate differences are about 16%, 19%, 21% and 22%, respectively. On
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FIGURE 13. Growth of the dominant varicose and sinuous modes; comparison between NS
and PSE-3D results. The NS mode amplitudes are calculated as

� δ99
0 |ŝ| dy at the roughness

mid-plane, where s = v for the varicose mode and s = w for the sinuous mode. The varicose
and sinuous PSE-3D mode amplitudes were calculated as

�
x σK(x) dx and normalized to

match, respectively, the v-velocity and w-velocity NS amplitudes at x = 90: (a) F = 0.10; (b)
F = 0.12; (c) F = 0.14; (d) F = 0.16.

v� disturbances growing in the lateral shear layer regions and w� disturbances growing
over the whole three-dimensional shear layer.

The structure of the dominant modes taking part in the wake instability can be used
to estimate the growth-rates of the varicose and sinuous modes separately from the NS
results, which can then be compared with those obtained from the PSE-3D simulations.
For this purpose it is worth noting that growth of v� disturbances at the roughness
mid-plane reflects solely the growth of the varicose mode, while w� disturbances at
the same location are only influenced by the sinuous mode development (note that
|ŵ| = 0 for the varicose mode and |v̂| = 0 for the sinuous mode at the roughness
mid-plane). Figure 13 gives a comparison of the streamwise variation of the sinuous
and varicose mode amplitudes obtained from the NS and PSE-3D simulations for
some of the most unstable frequencies. Varicose and sinuous mode amplitudes are
obtained respectively as

� δ99
0 |v̂| dy and

� δ99
0 |ŵ| dy at z = 10 (roughness mid-plane)

from the NS results, while the PSE-3D mode amplitudes are calculated as
�

x σK(x) dx.
Again NS and PSE-3D results agree closely and indicate that varicose and sinuous
modes are unstable for overlapping frequency ranges. The varicose mode dominates
throughout the streamwise extent of the computational domain for the most unstable
frequencies. In fact, at x = 90 the growth-rate of the varicose mode is higher than that
of the sinuous mode by ∼15 % for F = 0.10 and F = 0.12, 11 % for F = 0.14 and
8 % for F = 0.16, while at x = 112 the growth-rate differences are ∼16, 19, 21 and
22 %, respectively. On average (for 80 � x � 116) the most unstable varicose mode
grows ∼17 % faster than the most unstable sinuous mode (σK = 0.18 for F = 0.14).

Figure 7.5: Growth of the dominant varicose and sinuous modes; comparison between NS and PSE-

3D results. The NS mode amplitudes are calculated as
∫ δ99
0
|ŝ|dy at the roughness mid-plane, where

s = v for the varicose mode and s = w for the sinuous mode. The varicose and sinuous PSE-3D mode
amplitudes were calculated as

∫
x
σK(x)dx and normalised to match, respectively, the v-velocity and

w-velocity NS amplitudes at x = 90.
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average (for 80 ≤ x ≤ 116) the most unstable varicose mode grows about 17% faster than the
most unstable sinuous mode (σK = 0.18 for F = 0.14).

These results are in agreement with the BiGlobal stability and experimental results of
Choudhari et al. [40] and Kegerise et al. [121], which suggest that the varicose mode dominates
over the sinuous mode for high Reh (arguably Reh ≥ 426). However, contrary to what was
found by Choudhari et al. [40], here the difference in growth-rates between varicose and
sinuous modes increases for increasing x-position, at least within the streamwise extent of
the computational domain used, which could be due to a number of reasons including the
higher Reh considered here, increased compressibility effects at the higher Mach number or a
dependence on the shape of the roughness element. Additional parametric studies would be
needed to clarify these findings. Using the N-factor concept [231, 264] and assuming N = 9 as
the transition criterion, both the NS and PSE-3D results indicate that transition to turbulence
occurs within about 40 roughness heights from the point of excitation of the varicose mode,
which can be considered to be positioned immediately downstream of the separation bubble
at the back of the roughness element (x = 66). Therefore, transition to turbulence occurs
about 50 roughness heights downstream of the roughness trailing edge. This prediction is in
agreement with a non-linear simulation of De Tullio et al. [52].

7.3.2 Hypersonic regime

Here, the laminar-turbulent transition induced by a sharp-edged isolated roughness element
in an hypersonic boundary-layer is analyzed. It focuses on the linear instability of the wake
induced by the isolated roughness element with dimensionless height h = 1. The roughness
height expressed in terms of δ∗99 of the surrounding undisturbed boundary-layer at streamwise
location of the roughness element is h∗/δ∗99 = 0.44. The roughness element has length L = 6.0
and same width. The Reynolds number is Reδ∗0 = 8200 and the Mach number is M = 6. The
walls are considered no-slip and isothermal with T̄w = T̄ad = 7.022, where T̄ad is the laminar
adiabatic-wall temperature. The roughness Reynolds number is Reh = 331 [201].

The laminar base flow is calculated through full Navier-Stokes simulations. The roughness
element induces two regions of 3D separated flow, located immediately upstream and down-
stream of it. The wake of the roughness element is convectively unstable for the condition
studied here. The bubble lengths are 5.9δ∗0 upstream and 9.9δ∗0 downstream. The wake of
the roughness element is characterised by the presence of regions of high streamwise vorticity.
A pair of counter-rotating streamwise vortices form at the edges of the roughness element,
inducing lift-up of low momentum fluid from the near wall region and give rise to a low ve-
locity streak. Figure 7.6 shows shaded contours of ūs = [(∂ū/∂y)2 + (∂ū/∂z)2]1/2 at three
different streamwise positions. A further description of the base flow is found in De Tullio and
Sandham [51], where also the flow is subjected to disturbances, recovering the main stability
aspects of it.
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Figure 7.6: Contours of ūs in crossflow planes at x = 79.6, 113.2 and 142.6 for (a), (b) and (c)
respectively, showing the localized shear generated by the roughness-induced counter-rotating vortices.
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Figure 7.7: Contours of streamwise velocity eigenfunctions of leading roughness-induced modes at
different frequencies for x = 142.6 recovered by spatial BiGlobal analysis. (a) for F = 0.02 (sinuous
mode) and (b), (c) and (d) for F = 0.06, F = 0.12 and F = 0.14 respectively (varicose modes). The
black isolines correspond to ū = (0 : 0.2 : 0.8) and the thicker blue lines indicate the critical layers
(ū = cph, where cph is the phase speed of the instability modes).
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Figure 7.8: Spatial BiGlobal spectrum, with letters in parentheses referring to subsequent figures,
and contours of streamwise velocity eigenfunctions. The isolines correspond to ū = (0 : 0.2 : 0.8). The
spectrum and eigenfunctions were obtained for F = 0.14 at x = 142.6

Here, the u-velocity amplitude functions of the dominant wake modes obtained from the
BiGlobal eigenvalue analysis at x = 142.6 are shown in figure 7.7 for F = 0.02, 0.06, 0.12
and 0.14. For F = 0.02 (figure 7.7(a)), the shape function peaks near the lateral shear layer
and the instability mode manifests itself as a sinuous deformation of the low velocity streak
generated in the region near the roughness centreline. At higher frequencies the instability of
the wall normal detached shear induced at the roughness centreline starts appearing in the
disturbance amplitude function, as shown in figure 7.7(c) for F = 0.12, which also induces
a varicose deformation of the streak. This becomes dominant for F = 0.14, as shown in
figure 7.7(d), which is the frequency with the highest disturbance growth rate. These shape
functions compare very well with those recovered by full NS simulations [51] for the same set
of frequencies and streamwise position.

A more complete picture of the modes taking part in the instability of the wake is observed
in figure 7.8, which shows the spatial BiGlobal eigenspectrum obtained for F = 0.14 at
x = 142.6 and the discrete unstable eigenfunctions. In agreement with the full NS predictions
[51] is the amplification of the Mack mode in the lateral boundary-layer, observing the growth
of a two-dimensional instability 7.8(a) in a clean flat plate at the same frequency, F = 0.14, for
x > 100. Furthermore, a second unstable mode peaks in the lateral boundary-layer with lower
amplification rate, showing a antisymmetric shape function about the roughness mid-plane
7.8(b). Finally, the streamwise velocity eigenfunction of the unstable varicose wake mode is
shown in figure 7.8(c).

Having identified the structure of the modes dominating the wake instability, PSE-3D
simulations are carried out to determine their growth-rates. The frequency is set to F =
0.14 since it corresponds to the maximum linear growth rate [51]. To this end, the PSE-
3D marching integration is performed for F = 0.14, starting from the dominant BiGlobal
eigenfunctions obtained at x = 67 for the wake instability mode and from x = 105 for the
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boundary-layer or Mack mode. Figure 7.9 compares the growth-rates of the dominant modes
extracted from the PSE-3D and BiGlobal results at different streamwise locations. The PSE-
3D effective growth-rates are defined in equation 1.44in order to account for the residual slow
variation of disturbance kinetic energy (K =

∫
y

∫
z ρ̄(û2 + v̂2 + ŵ2) dy dz) with x. In fact,

regarding the changes of the roughness-induced wake along x, strong discrepancies are found
between PSE-3D and BiGlobal predictions for the varicose wake mode. In the other hand,
the growth rate results for the second Mack mode differ less. It is important to notice the
very good prediction of the PSE-3D effective growth rate comparing with the DNS results of
[51], where the amplification slope of the most amplified mode, namely the growth rate, is
nearly constant ≈ 0.021 for 80 ≤ x ≤ 147 and the averaged σK = 0.0203.

7.4 Summary and conclusions

The laminar-turbulent transition induced by a sharp-edged quadrilateral isolated roughness
element at Mach numbers M = 2.5 and M = 6 was thoroughly investigated. The study
focused on the linear instability of the roughness-modified steady but convectively unstable
base flow. The main contributions of the present work are an in-depth analysis of the linear
instability of the wake generated behind the roughness element and a cross validation of full
NS, spatial BiGlobal stability and PSE-3D simulations. The latter two analyses were found
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to agree very well with the NS results. The application of these different methods to the
same problem allows the effect of multiple modes and flow non-parallelism to be separated
out. PSE-3D simulations were performed here for the first time in the context of compressible
flows. The results show that the base flow changes introduced by the roughness elements
can lead to a drastic modification of the stability characteristics of the flow depending on the
roughness height considered. Of particular importance is the generation of pairs of counter-
rotating streamwise vortices, which, through the lift-up of low momentum fluid from the
near wall region, give rise to a low velocity streak surrounded by regions of high wall-normal
and lateral shear, forming the roughness wake. Focusing on the supersonic case, M = 2.5
and Reδ∗0 = 3300, a roughness element with height over boundary-layer thickness ratio of
h∗/δ99 = 0.44 (Reh = 791) gives rise to a highly unstable wake, where instability modes grow
for all frequencies of the forcing. Note that δ99 is taken at streamwise location of the roughness
element in the surrounding undisturbed boundary-layer. The spatial BiGlobal stability results
show that at least six different modes may grow in the wake of the roughness element. Four of
these modes are manifestations of the instability of the three-dimensional shear-layer bounding
the low-velocity streak, while the remaining two modes reflect disturbances growing in different
parts of the streak itself. The two most unstable modes belong to the family of modes
developing in the three-dimensional shear-layer and are associated with characteristic varicose
(symmetric u′ about the roughness mid-plane) and sinuous (anti-symmetric u′ about the
roughness mid-plane) deformations of the low-velocity streak. The dominant varicose mode
differs from that reported in the experiments of Asai et al. [10] in that it is a consequence of
an instability of the 3D shear-layer as a whole rather than a Kelvin-Helmholtz instability of
its ∂ū/∂y part. Both varicose and sinuous modes are most unstable for a non-dimensional
frequency F = 0.14. The varicose mode grows on average about 17% faster than the sinuous
mode, in qualitative agreement with the findings of Choudhari et al. [40] and Kegerise et al.
[121], and reaches N = 9 within about 50 roughness heights from the roughness element
trailing edge. The NS results also indicate that when varicose and sinuous modes present
similar amplitudes, the total disturbance energy may grow faster that the most unstable
mode, as a consequence of the linear superposition of the two modes. This effect was found
to be limited for the cases analysed here but it may have wider significance under different
conditions. The results obtained from the NS simulations are found be in excellent agreement
with those obtained from the stability analyses. The shape functions and growth-rates of
the most unstable modes extracted from the NS data are in close agreement with the two-
dimensional eigenfunctions obtained from the BiGlobal stability analysis and the growth-rates
obtained from the PSE-3D simulations, respectively.

The second case analyzed through spatial BiGlobal and PSE-3D analyses, commenting
some qualitative comparisons with NS simulations [51], corresponds to the same flow configu-
ration at hypersonic speed, M = 6 and Reδ∗0 = 8200. At this high speed, Mack modes develops
in the surrounding undisturbed boundary-layer, as it would do in a clean flat-boundary-layer
at this conditions. Mack modes are found to grow slower and in a smaller region of instability
than roughness-induced wake modes. The results are found in a qualitatively good agree-
ment with the same NS simulations. Varicose instability modes were found to be the most
unstable, which is also observed in NS simulations [51]. The shape functions and growth
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rates of the most unstable modes extracted from the NS data are in close agreement with the
two-dimensional eigenfunctions obtained from the BiGlobal stability analysis and the growth
rates obtained from the PSE-3D simulations, respectively.
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Chapter 8

Global instability analysis of an elliptic cone flow at
hypersonic flight conditions

8.1 Introduction

The elliptic cone is a frequently used model to understand transition over components of next-
generation high speed vehicles. Evidence has been accumulated regarding laminar-turbulent
transition scenarios on elliptic cones at aspect ratios 2:1 and 4:1, exposed at zero angle of
attack to oncoming flows for Mach numbers (M) between 4 and 8 in different experimental
facilities [110, 196, 225, 226], while recently large-scale computations of the same phenomenon
have appeared in the literature [16]. All these studies reported the formation of large struc-
tures near the minor-axis centerline of the cone; these structures were first experimentally
found by Schmisseur et al. [225, 226] to be most receptive to amplification of perturbations
in a 4:1 elliptic cone at M = 4. Simultaneously, Poggie and Kimmel [196] reported evidence
of the classical crossflow and second Mack mode [162] instabilities in a 2:1 elliptic cone at
M = 8; the transition front was asymmetric, with early transition near the top centerline
and delayed transition near the leading edge. Images taken by Huntley and Smits [110] of
the early stages of transition, on a sharp-nosed 4:1 elliptic cone at same M = 8, confirm that
transition begins with the emergence of small-scale structures near the centerline axis of the
cone, rather than in the outboard crossflow region.

In the last two decades, stability analyses of boundary-layers on sharp-nosed cones with
elliptical cross sections have been performed, using linear stability theory and cross flow
correlations. These calculations relied on mean flow solutions recovered using the Parabolized
Navier-Stokes equations. In 90’s of last century, research into three-dimensional boundary-
layers over elliptic cross-section cones was undertaken by Lyttle and Reed [159], who presented
solutions of the PNS equations for adiabatic wall elliptic cones of eccentricities of 2:1, 3:1 and
4:1 at M = 4, applying Reynolds number correlations based on the parameter Recf(R&H) =
HLRecf , where Recf is the traditional crossflow Reynolds number and the factors H and L
are introduced to account for compressibility and cooling effects of the wall [202], for stability
analysis. The parameter Recf(R&H) for these configurations peaked near the top centerline,
outside the region of validity of the above correlation. Boundary-layer velocity profiles near
the top centerline were inflectional and unstable. Kimmel et al. [127] used an extended version
of the the UPS PNS code [136, 233], enabling the study of cool-wall cases, for computing the
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8. Instability analysis of the hypersonic flow over an elliptic cone

base flow around cones with eccentricities of 1.5:1, 2:1 and 4:1 at M = 7.95. The eMalik

code [164] was used to calculate boundary-layer stability, demonstrating that all the three
cases showed crossflow instability, with the 4:1 configuration attaining the highest N -factors.
Later experimental studies by the same authors delivered results in reasonable agreement
with linear stability calculations and were suggestive of a traveling crossflow instability mode
[197]. The flow in the vicinity of the top centerline was found to be highly unstable and for
this region both the experiments and the computations showed an unstable frequency band
that coincided with the characteristic second Mack mode frequency [162].

Recently, Gosse and Kimmel [81] compared the mean flow and transition correlating pa-
rameters of a 2:1 elliptic cone at a free-stream Mach number of 7.95 calculated using both
a full Navier-Stokes CFD solver and a PNS code, resulting in good agreement. From then
on, efforts have concentrated on the HIFiRE-5 geometry, also studied in this work. Details
of the HIFiRE-5 configuration are discussed in Kimmel et al. [126]. The works of Choud-
hari et al. [39] and Li et al. [150] present a thorough instability analysis of this configuration
using local and non-local theories, respectively based on the solution of the one-dimensional
eigenvalue problem or the Parabolized Stability Equations. These approaches base the tran-
sition prediction on the N -factor over streamlines or grid lines of the cone, mainly the top
centerline or the attachment-line. Furthermore, in the work of Choudhari et al. [39], also a
two-dimensional stability theory is used, focusing this analysis on the vicinity of the mayor-
and minor-axis meridians, without accounting for surface curvature effects. In the last work,
between the flow condition studied, two were selected for flight condition at altitudes 18 km
and 33 km. The latter corresponds with the conditions studied here, but they used a lower
free-stream velocity, having a slightly smaller Reynolds number, Re′ = 1.65 × 106 /m. The
two-dimensional global linear eigenvalue problem (called here BiGlobal analysis [251]) results
showed unstable modes in both conditions, but the onset for transition was not reached for the
larger altitude flow conditions case. Furthermore, leading-edge instabilities were not found
for this case, since the attachment-line Reynolds number with compressibility correction [167]
did not exceed the critical threshold.

Large-scale computations by Bartkowicz et al. [16] confirm the co-existence of all these
scenarios and attempt a first classification of their significance at different Reynolds number
(Re) range: while the centerline structures lead flow to transition at lower Re values, cross-
flow instability near the elliptic cone leading-edge becomes competitive at higher Reynolds
numbers. The origin and role of the large centerline structures in the laminar-turbulent tran-
sition process on the elliptic cone is presently unclear. Mapping of the parameter space with
respect to critical conditions and study of nonlinear interactions of different modal scenarios
potentially leading flow to transition are issues hardly to be addressed by large-scale computa-
tions; spatial BiGlobal linear analysis and three-dimensional Parabolized Stability Equations
(PSE-3D) are called for in order to accomplish these tasks.

In this Chapter, the linear instability of the three-dimensional boundary-layer over the
HIFiRE-5 flight test vehicle modeling a rounded-tip 2:1 elliptic cone at Mach number M = 7
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was investigated. The main contribution of the present work is an analysis of the liner
instability of the overall geometry through spatial BiGlobal stability simulations including
surface curvature effects.

8.2 General coordinate spatial BiGlobal analysis

Regarding Chapter 1, spatial BiGlobal analysis is the analog of classic spatial linear theory in
a local framework [203], in case two inhomogeneous spatial directions are resolved simultane-
ously on a plane, while the third direction is considered locally homogeneous. In the elliptic
cone geometry both the plane of amplitude functions and the homogeneous spatial direction
are defined on a transformed coordinate system as follows. A three-dimensional coordinate
transformation of the form

ξ = ξ(x), η = η(x, y, z), ζ = ζ(x, y, z), (8.1)

is used to transform the governing equations into the (ξ, η, ζ) system. Regarding this transfor-
mation, it restricts the (η, ζ) solution surfaces to be in a plane normal to the x axis, resulting
ξy = ξz = 0. Using the chain rule, the derivatives with respect to physical coordinates system
are related to those with respect to the computational coordinates system through the metrics
(ξx, ηx, ηy, ηz, ζx, ζy, ζz). More details are found in Subsection 2.3.

Here, the transformed coordinate system (ξ, η, ζ) is taken such that

Lξ � Lη, Lζ , ∂( )/∂ξ � ∂( )/∂η, ∂( )/∂ζ, (8.2)

where Lξ, Lη and Lζ are the characteristic lengths on the streamwise and normal to it spatial
directions respectively. In order to proceed, the base flow is assumed to be locally independent
of one spatial coordinate ξ (but depending on the other two spatial directions, η and ζ, in a
coupled inhomogeneous manner). Flow quantities are then decomposed according to

q(ξ, η, ζ, t) = q̄(η, ζ) + εq̃(ξ, η, ζ, t), ε� 1, (8.3)

where εq̃ represents the unsteady three-dimensional infinitesimal perturbations, being inho-
mogeneous in η and ζ and periodic in ξ. Thus, one may write

q̃(ξ, η, ζ, t) = q̂(η, ζ) exp[i(αξ − ωt)] + c.c., (8.4)

with q̂ representing the vector of two-dimensional complex amplitude functions.

The resulting two-dimensional partial derivative generalized EVP follows equation (1.27)
and its entries are derived from the TriGlobal operators of Appendix E substituting the deriva-
tives with respect to physical coordinates by expressions (2.39) and (2.40), setting ∂q̄

∂ξ = 0.
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Furthermore, next terms arise from the decomposition of streamwise derivatives of amplitude
functions

Dx = iα+D′x, (8.5)

D2
xx = −α2 +D′2xx +D′′xxiα, (8.6)

D2
xy = D′2xy +D′′xyiα, (8.7)

D2
xz = D′2xz +D′′xziα, (8.8)

which are defined as

D′x = ηxDη + ζxDζ , (8.9)

D′2xx = η2
xD2

ηη + ζ2
xD2

ζζ + 2ζxηxD2
ηζ +

+ J
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x

J
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Dζ , (8.10)

D′′xx = 2ηxDη + 2ζxDζ + J

[(ηx
J

)
η

+

(
ζx
J

)

ζ

]
, (8.11)

D′2xy = ηxηyD2
ηη + ζxζyD2

ζζ + (ηxζy + ηyζx)D2
ηζ +

+ J
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J
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Dζ , (8.12)

D′′xy = Dy, (8.13)

D′2xz = ηxηzD2
ηη + ζxζzD2

ζζ + (ηxζz + ηzζx)D2
ηζ +

+ J

[(ηxηz
J
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Dη + J
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η

+

(
ζxζz
J

)

ζ

]
Dζ , (8.14)

D′′xz = Dz. (8.15)

8.3 Numerical considerations

8.3.1 Elliptic cone transformation

The computational domain coordinate system (ξ, η, ζ) is transformed into the desired physical
coordinate system (x, y, z) using a modified confocal elliptic transformation, written as follows

x = ξ, y = cξ sinh(η0 + sp(ζ)η) sin ζ, z = cξ cosh(η0 + sp(ζ)η) cos ζ, (8.16)

where c sets the half angle of the cone minor-axis, c = tanα/ sinh η0, sp(ζ) truncates the
wall-normal domain and η0 is a parameter controlling the Aspect Ratio (AR) of the cone,
η0 = atanh (1/AR).
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8.3.2 Boundary conditions

The elliptic eigenvalue problem (1.27) must be complemented with adequate boundary con-
ditions for the disturbance variables. Dealing firstly with the azimuthal direction, ζ, the
symmetries of the problem are exploited in order to reduce the computational requirements.
Depending on the case, either symmetric or antisymmetric boundary for each flow component,
the corresponding homogeneous Dirichlet or Neumann boundary conditions are imposed at
ζ = 0 and ζ = π/2. The combination of these conditions gives rise to four cases, but it is
reduced to two due to the linearity of the modes and the clear independence of the structure
of the shape functions either if it is located near ζ = 0 or ζ = π/2. For the wall-normal direc-
tion, the perturbations are forced to decay through the imposition of a sponge region outside
the shock layer in the free-stream region, setting homogeneous Dirichlet boundary conditions
at η = 1. The main objective of this sponge region is to avoid spurious reflections. This is
achieved by artificially decreasing the local Reynolds number using a smoothing function. At
the wall, η = 0, no-slip conditions are imposed by setting homogeneous Dirichlet boundary
conditions and the same condition is set for temperature amplitude function. No boundary
condition needs to be imposed for density amplitude function at the wall, since the linearized
continuity equation is satisfied at η = 0.

Appropriate mappings between the finite-difference grids (ξ ∈ [−1, 1]) and the computa-
tional domain are needed. Since the boundary-layer problem requires clustering of points at
the wall, the equation (2.60) is used to map the calculation domain grid η ∈ [0, 1] into the
FD-q grid, setting ηh = 0.2. For the spanwise direction, the same transformation is used in
order to cluster point near the top center-line with ζh = 3π/4.

8.4 Base flow

The geometry studied here corresponds to the HIFiRE-5 configuration. The HIFiRE program
is a hypersonic flight test program executed by the Air Force Research Laboratory (AFRL)
and the Australian Defense Science and Technology Organization (DSRO) [56]. The HIFiRE-
5 test payload consists of a blunt-nosed elliptic cone of 2:1 ellipticity, 0.86 m in length. The
nose tip cross-section in the minor-axis describes a 2.5 mm radius circular arc, tangent to
the cone ray describing the minor-axis, and retains a 2:1 elliptical cross-section to the tip.
Fight conditions were calculated for a Mach 7 flow at altitude of 33.0 km[82]. The free-
stream velocity is 2452.17 m/s and the unit Reynolds number is Re′ = 1.89 × 106 /m. The
surface temperature was defined using a prescribed temperature based on heat conduction
analysis of an estimated trajectory for the vehicle. The surface temperature near the nose is
approximately 650 K and varies between 300 K and 400 K over much of the surface of the
cone. This results in a cold surface temperature accomplishing Tw/Ta,w < 0.3 over most of
the cone surface downstream of the nose. The mean flow solution has been calculated using
the US3D non-equilibrium solver with shock fitting algorithm [182] by Gosse et al. [82] and
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Figure 8.1: Streamwise Mach number at axial positions x∗ = 0.12, 0.32 and 0.72 m. The vicinity of
the minor-axis meridian is zoomed at x∗ = 0.72 m.

has been used to extract the basic state analyzed here at different distances from the cone
vertex.

The three-dimensional shape of the elliptic cone inevitably produces spanwise pressure
gradients, which induce cross-flow and the flow direction of the interior of the boundary-
layer is no longer co-planar with the edge velocity vector, as in circular cones at zero angle
of attack. The low-momentum boundary-layer fluid near the surface is deflected from the
leading-edge or major-axis meridian towards the minor-axis meridian or centerline. This fact
produces a lift-up of low-momentum boundary-layer fluid at the centerline, generating a low
velocity streak away from the wall, as it is observed in figure 8.1. This figure shows contours
of streamwise Mach number, Max, at different intermediate axial sections of the cone. In the
same figure, the mushroom-like structure formed in the vicinity of the minor-axis meridian
is zoomed to show its complex shape. As the low velocity streak forms, it induces a three-
dimensional detached high shear-layer in its surroundings. Note that the shape of the low
velocity streak changes notably along the streamwise extent of the computational domain,
suggesting that non-parallel flow effects might play an important role in the determination of
the stability characteristics of it. A further description of the base flow is found in Gosse et al.
[82]. The analysis of such flow structure is only accessible to the present multidimensional
global stability analysis.
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8.5 Results

The steady laminar base flow introduced in previous section is interpolated onto the grid
constructed by equation (8.16) for spatial BiGlobal analysis at different distances from the
tip. The instability analysis of Choudhari et al. [39], Paredes and Theofilis [188] on the
same elliptic cone geometry for different flight conditions show that the onset for transition
may be due to either one or more instability mechanisms, cataloged as centerline, crossflow
and attachment-line modes. The structure of the attachment-line modes is located near the
major-axis meridian and are well-understood in the incompressible [254] and compressible
[160] regimes, as well as the well-known crossflow modes [145]. On the other hand, the
centerline modes are accessible only to the present type of global eigenvalue problem solution
and their role in the transition process is still unclear.

As discussed in Section 8.3, the symmetries of the elliptic cone geometry allow the re-
duction of the discretized domain to one quarter of the cone, using either symmetric or anti-
symmetric boundary conditions on the minor-axis meridian, recovering the centerline varicose
(ũ symmetric about the minor-axis meridian) and sinuous (antisymmetric ũ about the same
meridian) modes respectively. Same strategy is followed at the major-axis meridian for com-
putation of symmetric and antisymmetric attachment-line modes. On the other hand, the
crossflow modes are not dependent on the boundary conditions used.

Computations are carried out for a wide a wide range of frequencies, from 50 to 300 kHz,
at several distances from the cone tip. The number of discretization points per direction
was checked for convergence and the following results were calculated using Nζ = 181 and
Nη = 141 points.

The solution of the spatial BiGlobal analysis is composed by the complex eigenvalue α and
the related complex eigenvectors, i.e. the two dimensional amplitude functions q̂(y, z). Firstly,
the real and imaginary parts of α, i.e. the wavenumber αr and growth rate −αi respectively,
are shown in figure 8.2 for the dominant unstable centerline and crossflow modes. It is
relevant to notice that no unstable attachment-line modes were found, what is in agreement
with theory. Although the frequency of attachment-line stabilities is much higher [39], for the
flight conditions studied here, height of 33 km and using a slightly lower Re′ = 1.65×106 /m,
Choudhari et al. [39] showed that the attachment-line Reynolds number with compressibility
correction [167] was far to exceed the critical threshold.

Focusing firstly on the centerline modes, figure 8.2(a) shows a constant slope of the
wavenumber αr versus frequency curves with an approximately constant phase velocity of
these modes for all the axial stations; for example, cph = 0.856 for F∗ = 156 kHz at x∗ = 0.52
m. For the same frequencies and axial positions, figure 8.2(b) shows the growth rate curves. It
is observed that the growth rates for varicose and sinuous modes exhibit some differences and
oscillations for lower frequencies but approximate each other as the distance from the cone
vertex and frequency increase. The amplification peak is found at x∗ = 0.52 m for a frequency
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Figure 8.2: Wavenumber (a) and growth rate (b) of most amplified centerline and crossflow modes for
a range of frequencies F ∗ ∈ (50, 300) kHz. Note that A refers to antisymmetric and S to symmetric
boundary conditions at ζ = 0 and ζ = π/2 and CL and CF refer respectively to centerline and
crossflow modes.

around F ∗ ≈ 156 kHz. The amplification rate of the most unstable mode decays for larger
x∗, while the most amplified frequency is unchanged. The maximum N-factor [222] reached
by this mode along the cone is lower than 6, what does not exceed the typical threshold of
transition, N = 9. Furthermore, unstable crossflow modes are found for x∗ > 0.52 m and
F ∗ > 150 kHz. Their phase velocity is slightly larger and the frequency bandwidth becomes
more narrow, ≈ 100 kHz, varying its most amplified frequency at each axial position and
thus leading to a localized amplification and decay of perturbations.

The eigenspectrum and eigenfuctions resulting from the spatial BiGlobal analysis are
shown in figures 8.3 and 8.4 for x∗ = 0.62 and frequencies F ∗ = 156 kHZ and F ∗ = 215
kHZ, respectively. Figure 8.3 shows only unstable centerline modes. The symmetric and
antisymmetric centerline modes are associated with varicose or sinuous deformations of the
low-velocity streak formed in the centerline; they are a consequence of the instability devel-
oping in the three-dimensional shear layer. As can be observed in figure 8.3, both the leading
varicose and sinuous modes have almost equal amplitude function, what refers to the fact that
they are localized in the lateral shear. This explains why their associated wavenumber and
growth rate is almost equal. The main difference is that the sinuous mode would break the
symmetries exhibited by the base flow.

At a higher frequency, F ∗ = 215 kHZ, figure 8.4 shows a higher number of unstable
modes. The leading mode at this condition is a centerline mode, but several boundary-layer
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Figure 8.3: Spatial BiGlobal spectrum and contours of the real and imaginary parts of the streamwise
velocity leading mode eigenfunctions for symmetric and antisymmetric boundary conditions (red for
positive and blue for negative). The iso-lines correspond to base flow nondimensional streamwise
velocity ub = (0 : 0.2 : 0.8). The spectrum and eigenfunctions were obtained for F ∗ = 156 kHz and
x∗ = 0.62 m.

modes appear in the unstable region of the spectrum. These modes peaking far form the
minor-axis meridian and localized in the regions of high near-wall spanwise velocity are called
crossflow modes. The axial velocity amplitude function of the leading crossflow mode at the
previously mentioned conditions is shown in figure 8.4. The structure of this mode is localized
at an azimuthal position of ζ ≈ 80 and is composed by one negative and one positive peaks
in the spanwise/azimuthal direction.

8.6 Summary and conclusions

The linear instability of the three-dimensional boundary-layer over a rounded-tip 2:1 elliptic
cone at Mach number M = 7 was investigated. The main contribution of the present work is
an analysis of the liner instability of the overall geometry through spatial BiGlobal stability
simulations.

The leading instability modes were found to peak in the vicinity of the minor-axis meridian
of the cone, denominated centerline in the text, where a mushroom-like structured is formed as
consequence of the three-dimensional shape of the elliptic cone geometry. Crossflow is induced
from the leading-edges to the centerline, producing a lift-up of low-momentum boundary-
layer fluid at the centerline, generating a low velocity streak away from the wall. This streak
induces a three-dimensional detached shear-layer in its surroundings capable to sustain the
growth of different modes. The two most unstable modes in the range of frequencies studied
(50 − 300 kHz) belong to the family of modes developing in the three-dimensional shear-
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Figure 8.4: Spatial BiGlobal spectrum, with letters in parentheses referring to subsequent figures,
and contours of the real and imaginary parts of the streamwise velocity eigenfunctions (red for positive
and blue for negative). The iso-lines correspond to base flow nondimensional streamwise velocity
ub = (0 : 0.2 : 0.8). The spectrum and eigenfunctions were obtained for F ∗ = 215 kHz and x∗ = 0.62
m, setting symmetric boundary conditions.

layer and are associated with characteristic varicose and sinuous deformations of the low-
velocity streak. Both modes are found to have similar wavenumbers and growth rates as a
consequence of their amplitude function shape, which is localized in the lateral shear of the
centerline flow structure. Furthermore, unstable crossflow modes are found for x∗ > 0.52 m
and F ∗ > 150 kHz. Their associated most amplified frequency differs at each axial position,
resulting in a localized amplification and decay of perturbations. On the other hand, no
unstable attachment-line modes were found at studied frequencies, what agrees with the
theory [39].

The assumption of parallelism made in the spatial BiGlobal analysis may lead to approxi-
mate wave number and growth rates predictions as shown in previous Chapter 7 and literature
[52, 78, 189]. Regarding this issue, a relative error of approximately 10% is found between
spatial BiGlobal and PSE-3D or full Navier-Stokes growth rate predictions. In order to ac-
count for the non-parallelism of the flow, the present analysis must be extended by performing
three-dimensional parabolized stability equations (PSE-3D).
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Chapter 9

Non-linear PSE-3D validations

9.1 Introduction

In this Chapter, in an analogous manner to the addition of non-linear effects into the con-
ventional PSE [22], the linear PSE-3D are extended to predict the non-linear development of
perturbations on this kind of complex three-dimensional flows.

The typical modal instability theory based on linear ordinary differential equations of
Orr-Sommerfed or the linear partial differential equations of BiGlobal analyses neglect the
interaction between modes. Hence, its application is restricted to regions of small disturbance
amplitude, i.e. regions where modes develop practically independent from each. Nonlocal
nonlinear methods based on PSE, as the DLR/FOI transition analysis code NOLOT/PSE
[91, 95, 97], used here for comparisons, do not require linearization. Therefore, they also model
the nonlinear early stages of laminar-turbulent breakdown. The same methodology used for
the addition of nonlinear effects in the PSE is extended here for the PSE-3D, enabling the
study of complex three-dimensional flows that so far were only accessible to the much more
computationally expensive full Navier-Stokes spatial evolving simulations.

The linear version of the in-house developed stability codes have been validated against
DNS results analyzing instability of the wake behind an isolated roughness element in su-
personic flow in previous Chapter 7 and De Tullio et al. [52]. In the latter work, the first
linear PSE-3D analysis for high-speed flows is performed, showing excellent agreement when
compared with DNS results in the linear regime. The theoretical formulation and numerical
treatment of the non-linear PSE-3D are explained in Subsection 1.3.4 and Section 2.5, re-
spectively. The full listing of the operators of the parabolic PDE system of equations (1.57)
is found in Appendix D. In this Chapter, the new in-house developed non-linear PSE-3D
code is used firstly on the flat plate boundary-layer, showing excellent agreement with the
NOLOT/PSE results, and secondly on the wake of an isolated roughness-element imbedded
in a supersonic boundary-layer.
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Figure 9.1: Comparison of |ŭ|rms evolution in local Re =
√
xRe0, for the incompressible flat-plate

boundary-layer using the non-linear PSE-3D and the NOLOT/PSE codes, showing (a) linear and (b)
logarithmic scalings. Also, the linear evolution of fundamental mode for same initial amplitude is
shown.

9.2 Results

The non-linear PSE-3D are firstly used here to compute the non-linear evolution of two-
dimensional perturbations in the incompressible flat-plate boundary-layer flow. Reference
values are taken at the initial station, setting Re0 = 400. Figure 9.1 shows the evolution of the
root-mean-square (RMS) streamwise velocity perturbation for each time Fourier component,
including the mean flow distorsion (MFD), which correspond to the zero frequency mode. The
fundamental frequency is set to ω = 0.0344. The spanwise direction is discretized with Nz = 4
Fourier collocation points and the wall-normal direction with Ny = 101 eight order finite
differences scheme (FD-q8) [190]. Results show excellent agreement against those computed
with the NOLOT/PSE code [91, 95, 97]. The non-linear effects are clearly visible, exhibiting a
strong difference of the fundamental mode from Re > 800 with the linear simulation, together
with an important growth of the MFD.

Secondly, the convectively unstable wake of an isolated roughness element in a boundary-
layer at Mach 2.5 and Reδ∗ = 3300, presented in Chapter 7, is analyzed through non-linear
PSE-3D. The same base flow has been analyzed by means of direct numerical simulations,
aided by spatial BiGlobal and linear PSE-3D analyses, showing excellent agreement with
each other and validating the use of simplified theories for this flow configuration. Results
are performed using Nz = 140 and Ny = 121 FD-q8 discretization points. Figure 9.2 shows
the evolution of maximum amplitude of ŭ on the streamwise direction for the MFD and
six traveling modes, setting initial amplitude |ŭ|2,max = 10−3 to the mode with frequency
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Figure 9.2: Evolution of |ŭ|max with streamwise direction of the different modes setting as funda-
mental frequency F1 = ω1/(2π) = 0.04, but given the initial highest amplitude of |ŭ0|max = 10−3 to
the first harmonic. Also, three-dimensional view of iso-surfaces of ũ = ±10−2.

F2 = ω2/(2π) = 0.08. The non-linear effects are clearly visible since the modes with multiple
frequencies to the amplified one, i.e. |ŭ|4,max and |ŭ|6,max, grow more than the rest, what
would not happen in a linear simulation. Also, the three-dimensional view of the iso-surfaces of
the perturbation quantity ũ is shown in the same figure, together with the roughness element
in gray color.
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Appendix A

Linearized Navier-Stokes equations

In order to recover the linearized stability equations, the decomposition of variables (1.8) is
introduced into the governing equations of fluid motion (1.1-1.3), resulting

∂ρ̃

∂t
+ ρ̄xũ+ ρ̄ũx + ρ̄yṽ + ρ̄ṽy + ρ̄zw̃ + ρ̄w̃z +

+ ρ̃xū+ ρ̃ūx + ρ̃yv̄ + ρ̃v̄y + ρ̃zw̄ + ρ̃w̄z =

= −ρ̃xũ− ρ̃ũx − ρ̃yṽ − ρ̃ṽy − ρ̃zw̃ − ρ̃w̃z, (A.1)

ρ̄

(
∂ũ

∂t
+ ũūx + ūũx + ṽūy + v̄ũy + w̃ūz + w̄ũz

)
+

+ ρ̃ (ūūx + v̄ūy + w̄ūz) +
1

γM2

(
T̃ ρ̄x + ρ̄T̃x + T̄ ρ̃x + ρ̃T̄x

)
−

− 1

Re

[
µ̄ (ũxx + ũyy + ũzz) +

µ̄

3
(ũxx + ṽxy + w̃xz) +

+
2 µ̄x

3
(2ũx − ṽy − w̃z) + µ̄y (ũy + ṽx) + µ̄z (ũz + w̃x)

]
−

− µ̄′

Re

[
T̃ (ūxx + ūyy + ūzz) +

T̃

3
(ūxx + v̄xy + w̄xz) +

+
2 T̃x

3
(2ūx − v̄y − w̄z) + T̃y (ūy + v̄x) + T̃z (ūz + w̄x)

]
−

− µ̄′′

Re
T̃

[
2 T̄x

3
(2ūx − v̄y − w̄z) + T̄y (ūy + v̄x) + T̄z (ūz + w̄x)

]
=

= −ρ̃∂ũ
∂t
− (ρ̃+ ρ̄) (ũũx + ṽũy + w̃ũz)−

− ρ̃ (ūũx + v̄ũy + w̄ũz + ũūx + ṽūy + w̃ūz)−
1

γM2

(
T̃ ρ̃x + ρ̃T̃x

)
+

+
µ̄′

Re

[
T̃ (ũxx + ũyy + ũzz) +

T̃

3
(ũxx + ṽxy + w̃xz) +

+
2 T̃x

3
(2ũx − ṽy − w̃z) + T̃y (ũy + ṽx) + T̃z (ũz + w̃x)

]
+
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+
µ̄′′T̃

Re

[
2 T̄x

3
(2ũx − ṽy − w̃z) + T̄y (ũy + ṽx) + T̄z (ũz + w̃x)

]
, (A.2)

ρ̄

(
∂ṽ

∂t
+ ũv̄x + ūṽx + ṽv̄y + v̄ṽy + w̃v̄z + w̄ṽz

)
+

+ ρ̃ (ūv̄x + v̄v̄y + w̄v̄z) +
1

γM2

(
T̃ ρ̄y + ρ̄T̃y + T̄ ρ̃y + ρ̃T̄y

)
−

− 1

Re

[
µ̄ (ṽxx + ṽyy + ṽzz) +

µ̄

3
(ũxy + ṽyy + w̃yz) +

+ µ̄x (ṽx + ũy) +
2 µ̄y

3
(2ṽy − ũx − w̃z) + µ̄z (ṽz + w̃y)

]
−

− µ̄′

Re

[
T̃ (v̄xx + v̄yy + v̄zz) +

T̃

3
(ūxy + v̄yy + w̄yz) +

+ T̃x (v̄x + ūy) +
2 T̃y

3
(2v̄y − ūx − w̄z) + T̃z (v̄z + w̄y)

]
−

− µ̄′′

Re
T̃

[
T̄x (v̄x + ūy) +

2 T̄y
3

(2v̄y − ūx − w̄z) + T̄z (v̄z + w̄y)

]
=

= −ρ̃∂ṽ
∂t
− (ρ̃+ ρ̄) (ũṽx + ṽṽy + w̃ṽz)−

− ρ̃ (ūṽx + v̄ṽy + w̄ṽz + ũv̄x + ṽv̄y + w̃v̄z)−
1

γM2

(
T̃ ρ̃y + ρ̃T̃y

)
+

+
µ̄′

Re

[
T̃ (ṽxx + ṽyy + ṽzz) +

T̃

3
(ũxy + ṽyy + w̃yz) +

+ T̃x (ṽx + ũy) +
2 T̃y

3
(2ṽy − ũx − w̃z) + T̃z (ṽz + w̃y)

]
+

+
µ̄′′T̃

Re

[
T̄x (ṽx + ũy) +

2 T̄y
3

(2ṽy − ũx − w̃z) + T̄z (ṽz + w̃y)

]
, (A.3)

ρ̄

(
∂w̃

∂t
+ ũw̄x + ūw̃x + ṽw̄y + v̄w̃y + w̃w̄z + w̄w̃z

)
+

+ ρ̃ (ūw̄x + v̄w̄y + w̄w̄z) +
1

γM2

(
T̃ ρ̄z + ρ̄T̃z + T̄ ρ̃z + ρ̃T̄z

)
−

− 1

Re

[
µ̄ (w̃xx + w̃yy + w̃zz) +

µ̄

3
(ũxz + ṽyz + w̃zz) +

+ µ̄x (w̃x + ũz) + µ̄y (ṽz + w̃y) +
2 µ̄z

3
(2w̃z − ũx − ṽy)

]
−

− µ̄′

Re

[
T̃ (w̄xx + w̄yy + w̄zz) +

T̃

3
(ūxz + v̄yz + w̄zz) +

+ T̃x (w̄x + ūz) + T̃y (v̄z + w̄y) +
2 T̃z

3
(2w̄z − ūx − v̄y)

]
−

152



− µ̄′′

Re
T̃

[
T̄x (w̄x + ūz) + T̄y (v̄z + w̄y) +

2 T̄z
3

(2w̄z − ūx − v̄y)
]

=

= −ρ̃∂w̃
∂t
− (ρ̃+ ρ̄) (ũw̃x + ṽw̃y + w̃w̃z)−

− ρ̃ (ūw̃x + v̄w̃y + w̄w̃z + ũw̄x + ṽw̄y + w̃w̄z)−
1

γM2

(
T̃ ρ̃z + ρ̃T̃z

)
+

+
µ̄′

Re

[
T̃ (w̃xx + w̃yy + w̃zz) +

T̃

3
(ũxz + ṽyz + w̃zz) +

+ T̃x (w̃x + ũz) + T̃y (ṽz + w̃y) +
2 T̃z

3
(2w̃z − ũx − ṽy)

]
+

+
µ̄′′T̃

Re

[
T̄x (w̃x + ũz) + T̄y (ṽz + w̃y) +

2 T̄z
3

(2w̃z − ũx − ṽy)
]
, (A.4)

ρ̄

(
∂T̃

∂t
+ ūT̃x + v̄T̃y + w̄T̃z + ũT̄x + ṽT̄y + w̃T̄z

)
+ ρ̃

(
T̄xū+ T̄yv̄ + T̄zw̄

)
−

− (γ − 1)T̄

(
∂ρ̃

∂t
+ ūρ̃x + v̄ρ̃y + w̄ρ̃z

)
− (γ − 1)

(
ũρ̄xT̄ + ṽρ̄yT̄ + w̃ρ̄zT̄

)
−

− (γ − 1)T̃ (ūρ̄x + v̄ρ̄y + w̄ρ̄z)−

− γ

RePr

[
κ̄
(
T̃xx + T̃yy + T̃zz

)
+ 2κ̄′

(
T̄xT̃x + T̄yT̃y + T̄zT̃z

)
+

+ κ̄′T̃
(
T̄xx + T̄yy + T̄zz

)
+ κ̄′′T̃

(
T̄ 2
x + T̄ 2

y + T̄ 2
z

) ]
−

− 2γ(γ − 1)M2µ̄

Re

[
2

3
(2ūx − v̄y − w̄z) ũx + (ūy + v̄x) ũy + (ūz + w̄x) ũz +

+ (ūy + v̄x) ṽx +
2

3
(2v̄y − ūx − w̄z) ṽy + (w̄y + v̄z) ṽz +

+ (w̄x + ūz) w̃x + (w̄y + v̄z) w̃y +
2

3
(2w̄z − ūx − v̄y) w̃z

]
−

− γ(γ − 1)M2µ̄′

Re
T̃

[
4

3
(ū2
x + v̄2

y + w̄2
z − ūxv̄y − ūxw̄z − v̄yw̄z) +

+ ū2
y + v̄2

x + ū2
z + v̄2

z + w̄2
x + w̄2

y + 2ūyv̄x + 2ūzw̄y + 2v̄zw̄y

]
=

= −ρ̃∂T̃
∂t
− (ρ̄+ ρ̃)

(
ũT̃x + ṽT̃y + w̃T̃z

)
−

− ρ̃
(
ūT̃x + v̄T̃y + w̄T̃z + ũT̄x + ṽT̄y + w̃T̄z

)
+

+ (γ − 1)T̃
∂ρ̃

∂t
+ (γ − 1)(T̃ + T̄ ) (ũρ̃x + ṽρ̃y + w̃ρ̃z) +

+ (γ − 1)T̃ (ūρ̃x + v̄ρ̃y + w̄ρ̃z + ũρ̄x + ṽρ̄y + w̃ρ̄z)

+
γ

RePr

[
κ̄′T̃

(
T̃xx + T̃yy + T̃zz

)
+ κ̄′

(
T̃ 2
x + T̃ 2

y + T̃ 2
z

)
+ κ̄′′T̃ (T̄xT̃x + T̄yT̃y + T̄zT̃z)

]
+
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+
γ(γ − 1)M2µ̄′T̃

Re

[
2

3
(2ūx − v̄y − w̄z) ũx + (ūy + v̄x) ũy + (ūz + w̄x) ũz +

+ (ūy + v̄x) ṽx +
2

3
(2v̄y − ūx − w̄z) ṽy + (w̄y + v̄z) ṽz +

+ (w̄x + ūz) w̃x + (w̄y + v̄z) w̃y +
2

3
(2w̄z − ūx − v̄y) w̃z +

+
2

3
(2ũx − ṽy − w̃z) ūx + (ũy + ṽx) ūy + (ũz + w̃x) ūz +

+ (ũy + ṽx) v̄x +
2

3
(2ṽy − ũx − w̃z) v̄y + (w̃y + ṽz) v̄z +

+ (w̃x + ũz) w̄x + (w̃y + ṽz) w̄y +
2

3
(2w̃z − ũx − ṽy) w̄z

]
+

+
γ(γ − 1)M2(µ̄′T̃ + µ̄)

Re

[
4

3
(ũ2
x + ṽ2

y + w̃2
z − ũxṽy − ũxw̃z − ṽyw̃z) +

+ ũ2
y + ṽ2

x + ũ2
z + ṽ2

z + w̃2
x + w̃2

y + 2ũyṽx + 2ũzw̃y + 2ṽzw̃y

]
. (A.5)

Here, ( )′ = ∂( )
∂T̄

and ( )′′ = ∂2( )
∂T̄ 2 . Note that the right-hand-side (RHS) terms are the non-

linear terms of O(ε2) and O(ε3), which are neglected to recover the linearized Navier-Stokes
equations.
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Appendix B

Temporal BiGlobal EVP operators

The operators of the temporal BiGlobal EVP (1.25) for compressible flows are structured as
follows




A11 A12 A13 A14 0
A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55







ρ̂
û
v̂
ŵ

T̂




= ω




B11 0 0 0 0
0 B22 0 0 0
0 0 B33 0 0
0 0 0 B44 0
B51 0 0 0 B55







ρ̂
û
v̂
ŵ

T̂




(B.1)

The full listing of the operators in equation (B.1) follows

A11 = v̄Dy + w̄Dz + v̄y + w̄z + ūiα

A12 = ρ̄iα

A13 = ρ̄Dy + ρ̄y

A14 = ρ̄Dz + ρ̄z

A21 = v̄ūy + w̄ūz +
1

γM2
(T̄ iα)

A22 = − µ̄

Re
(D2

yy +D2
zz) +

(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz + ρ̄ūiα+

4

3

µ̄

Re
α2

A23 = − µ̄

3Re
iαDy + ρ̄ūy −

µ̄y
Re

iα

A24 = − µ̄

3Re
iαDz + ρ̄ūz −

µ̄z
Re

iα

A25 = − µ̄′

Re
(ūyDy + ūzDz) +

1

γM2
ρ̄iα−

− µ̄′

Re

[
ūyy + ūzz −

2

3
(v̄y + w̄z)iα

]
− µ̄′′

Re
[ūyT̄y + ūzT̄z]

A31 =
T̄

γM2
Dy + v̄v̄y + w̄v̄z +

1

γM2
T̄y

A32 = − µ̄

3Re
iαDy +

2 µ̄y
3Re

iα
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B. Temporal BiGlobal EVP operators

A33 = − µ̄

Re

(
4

3
D2
yy +D2

zz

)
+

(
ρ̄v̄ − 4 µ̄y

3Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz +

+ ρ̄(ūiα+ v̄y) +
µ̄

Re
α2

A34 = − µ̄

3Re
D2
yz −

µ̄z
Re
Dy +

2 µ̄y
3Re

Dz + ρ̄v̄z

A35 =

[
ρ̄

γM2
− µ̄′

Re

2

3
(2v̄y − w̄z)

]
Dy −

µ̄′

Re
(v̄z + w̄y)Dz +

+
ρ̄y
γM2

− µ̄′′

Re

[
2

3
(2v̄y − w̄z)T̄y + (v̄z + w̄y)T̄z

]

− µ̄′

Re

(
4

3
v̄yy + v̄zz +

1

3
w̄yz + ūyiα

)

A41 =
T̄

γM2
Dz + v̄w̄y + w̄w̄z +

1

γM2
T̄z

A42 = − µ̄

3Re
iαDz +

2 µ̄z
3Re

iα

A43 = − µ̄

3Re
D2
yz +

2 µ̄z
3Re

Dy −
µ̄y
Re
Dz + ρ̄w̄y

A44 = − µ̄

Re

(
D2
yy +

4

3
D2
zz

)
+

(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − 4 µ̄z

3Re

)
Dz +

+ ρ̄(ūiα+ w̄z) +
µ̄

Re
α2

A45 = − µ̄′

Re
(w̄y + v̄z)Dy +

[
ρ̄

γM2
− µ̄′

Re

2

3
(2w̄z − v̄y)

]
Dz +

+
1

γM2
ρ̄z −

µ̄′′

Re

[
(w̄y + v̄z)T̄y +

2

3
(2w̄z − v̄y)T̄z

]

− µ̄′

Re

[
4

3
w̄zz + w̄yy +

1

3
v̄yz + ūziα

]

A51 = −(γ − 1)T̄ (v̄Dy + w̄Dz) + γ(T̄yv̄ + T̄zw̄)− (γ − 1)T̄ ūiα

A52 = −2γ(γ − 1)M2µ̄

Re

[
ūyDy + ūzDz −

2

3
(v̄y + w̄z)iα

]

A53 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2v̄y − w̄z)Dy + (v̄z + w̄y)Dz + ūyiα

]

− (γ − 1)(T̄yρ̄+ T̄ ρ̄y) + γρ̄T̄y

A54 = −2γ(γ − 1)M2µ̄

Re

[
(v̄z + w̄y)Dy +

2

3
(2w̄z − v̄y)Dz + ūziα

]

− (γ − 1)(T̄zρ̄+ T̄ ρ̄z) + γρ̄T̄z

A55 = − γ

RePr
κ̄
(
D2
yy +D2

zz

)
+
(
ρ̄v̄ − γ

RePr
2κ̄′T̄y

)
Dy +

(
ρ̄w̄ − γ

RePr
2κ̄′T̄z

)
Dz −

− (γ − 1)(ρ̄yv̄ + ρ̄zw̄)− γ

RePr

[
−κ̄α2 + κ̄′

(
T̄yy + T̄zz

)
+ κ̄′′(T̄ 2

y + T̄ 2
z )
]
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− γ(γ − 1)M2µ̄′

Re

[
4

3
(v̄2
y + w̄2

z − v̄yw̄z) + ū2
y + ū2

z + v̄2
z + w̄2

y + 2v̄zw̄y

]
+ ρ̄ūiα

B11 = i

B22 = ρ̄i

B33 = ρ̄i

B44 = ρ̄i

B51 = (1− γ)T̄ i

B55 = ρ̄i
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Appendix C

Spatial BiGlobal EVP operators

The operators of the spatial BiGlobal EVP (1.27) for compressible flows are structured as
follows




A11 0 A13 A14 0 0 0 0 0
A21 A22 A23 A24 A25 0 0 0 0
A31 0 A33 A34 A35 0 0 0 0
A41 0 A43 A44 A45 0 0 0 0
A51 A52 A53 A54 A55 0 0 0 0

0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I







ρ̂
û
v̂
ŵ

T̂
αû
αv̂
αŵ

αT̂




=

= α




B11 B12 0 0 0 0 0 0 0
B21 B22 B23 B24 B25 B26 0 0 0
0 B32 B33 0 B35 0 B37 0 0
0 B42 0 B44 B45 0 0 B48 0
B51 B52 B53 B54 B55 0 0 0 B59

0 I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0







ρ̂
û
v̂
ŵ

T̂
αû
αv̂
αŵ

αT̂




(C.1)

The full listing of the operators in equation (C.1) follows

A11 = v̄Dy + w̄Dz + v̄y + w̄z − iω

A13 = ρ̄Dy + ρ̄y

A14 = ρ̄Dz + ρ̄z

A21 = v̄ūy + w̄ūz

A22 = − µ̄

Re
(D2

yy +D2
zz) +

(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz − iρ̄ω

A23 = ρ̄ūy

A24 = ρ̄ūz
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C. Spatial BiGlobal EVP operators

A25 = − µ̄′

Re
(ūyDy + ūzDz)−

− µ̄′

Re
[ūyy + ūzz]−

µ̄′′

Re
[ūyT̄y + ūzT̄z]

A31 =
T̄

γM2
Dy + v̄v̄y + w̄v̄z +

1

γM2
T̄y

A33 = − µ̄

Re

(
4

3
D2
yy +D2

zz

)
) +

(
ρ̄v̄ − 4 µ̄y

3Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz + ρ̄v̄y − iρ̄ω

A34 = − µ̄

3Re
D2
yz −

µ̄z
Re
Dy +

2 µ̄y
3Re

Dz + ρ̄v̄z

A35 =

[
ρ̄

γM2
− µ̄′

Re

2

3
(2v̄y − w̄z)

]
Dy −

µ̄′

Re
(v̄z + w̄y)Dz +

+
ρ̄y
γM2

− µ̄′′

Re

[
2

3
(2v̄y − w̄z)T̄y + (v̄z + w̄y)T̄z

]

− µ̄′

Re

(
4

3
v̄yy + v̄zz +

1

3
w̄yz

)

A41 =
T̄

γM2
Dz + v̄w̄y + w̄w̄z +

1

γM2
T̄z

A43 = − µ̄

3Re
D2
yz +

2 µ̄z
3Re

Dy −
µ̄y
Re
Dz + ρ̄w̄y

A44 = − µ̄

Re

(
D2
yy +

4

3
D2
zz

)
+

(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − 4 µ̄z

3Re

)
Dz + ρ̄w̄z − iρ̄ω

A45 = − µ̄′

Re
(w̄y + v̄z)Dy +

[
ρ̄

γM2
− µ̄′

Re

2

3
(2w̄z − v̄y)

]
Dz +

+
1

γM2
ρ̄z −

µ̄′′

Re

[
(w̄y + v̄z)T̄y +

2

3
(2w̄z − v̄y)T̄z

]

− µ̄′

Re

[
4

3
w̄zz + w̄yy +

1

3
v̄yz

]

A51 = −(γ − 1)T̄ (v̄Dy + w̄Dz) + (T̄yv̄ + T̄zw̄) + (γ − 1)T̄ iω

A52 = −2γ(γ − 1)M2µ̄

Re
[ūyDy + ūzDz]

A53 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2v̄y − w̄z)Dy + (v̄z + w̄y)Dz

]

− (γ − 1)T̄ ρ̄y + ρ̄T̄y

A54 = −2γ(γ − 1)M2µ̄

Re

[
(v̄z + w̄y)Dy +

2

3
(2w̄z − v̄y)Dz

]

− (γ − 1)T̄ ρ̄z + ρ̄T̄z

A55 = − γ

RePr
κ̄
(
D2
yy +D2

zz

)
+
(
ρ̄v̄ − γ

RePr
2κ̄′T̄y

)
Dy +

(
ρ̄w̄ − γ

RePr
2κ̄′T̄z

)
Dz −

− (γ − 1)(ρ̄yv̄ + ρ̄zw̄)− γ

RePr

[
κ̄′
(
T̄yy + T̄zz

)
+ κ̄′′(T̄ 2

y + T̄ 2
z )
]
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− γ(γ − 1)M2µ̄′

Re

[
4

3
(v̄2
y + w̄2

z − v̄yw̄z) + ū2
y + ū2

z + v̄2
z + w̄2

y + 2v̄zw̄y

]
− ρ̄iω

B11 = −iū

B12 = −iρ̄

B21 =
−iT̄

γM2

B22 = −iρ̄ū

B23 =
µ̄ i

3Re
Dy +

µ̄y i

Re

B24 =
µ̄ i

3Re
Dz +

µ̄z i

Re

B25 = − ρ̄ i

γM2
− 2 i µ̄′

3Re
(v̄y + w̄z)

B26 = − 4 µ̄

3Re

B32 =
µ̄

3Re
iDy −

2 µ̄y
3Re

i

B33 = −iρ̄ū

B35 =
µ̄′ i

Re
ūy

B37 = − µ̄

Re

B42 =
µ̄i

3Re
Dz −

2 i µ̄z
3Re

B44 = −iρ̄ū

B45 =
µ̄′

Re
ūzi

B48 = − µ̄

Re
B51 = (γ − 1)T̄ ūi

B52 = −4γ(γ − 1)M2µ̄

3Re
(v̄y + w̄z)i

B54 =
2γ(γ − 1)M2µ̄

Re
ūyi

B54 =
2γ(γ − 1)M2µ̄

Re
ūzi

B55 = −iρ̄ū

B59 = − γ κ̄

RePr
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Appendix D

Non-linear PSE-3D operators

Equation 1.57 for compressible flows expressed in matrix form results (index n is suppressed
for simplification)




L11 L12 L13 L14 0
L21 L22 L23 L24 L25

L31 L32 L33 L34 L35

L41 L42 L43 L44 L45

L51 L52 L53 L54 L55







ρ̂
û
v̂
ŵ

T̂




+

+




M11 M12 0 0 0
M21 M22 0 0 M25

0 0 M33 0 0
0 0 0 M44 0
M51 0 0 0 M55







ρ̂x
ûx
v̂x
ŵx
T̂x




=




F1

F2

F3

F4

F5




(D.1)

The full listing of the operators in equation (D.1) follows

L11 = v̄Dy + w̄Dz + ūx + v̄y + w̄z + ūiα− iω

L12 = ρ̄iα+ ρ̄x

L13 = ρ̄Dy + ρ̄y

L14 = ρ̄Dz + ρ̄z

L21 = ūūx + v̄ūy + w̄ūz +
1

γM2
(T̄ iα+ T̄x)

L22 = − µ̄

Re
(D2

yy +D2
zz) +

(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz +

+ ρ̄(ūiα+ ūx − iω) +
4

3

µ̄

Re
α2

L23 = − µ̄

3Re
iαDy + ρ̄ūy −

µ̄y
Re

iα

L24 = − µ̄

3Re
iαDz + ρ̄ūz −

µ̄z
Re

iα

L25 = − µ̄′

Re
(ūyDy + ūzDz) +

1

γM2
(ρ̄iα+ ρ̄x)−

− µ̄′

Re

[
ūyy + ūzz −

2

3
(v̄y + w̄z)iα

]
− µ̄′′

Re
(ūyT̄y + ūzT̄z)
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L31 =
T̄

γM2
Dy + ūv̄x + v̄v̄y + w̄v̄z +

1

γM2
T̄y

L32 = − µ̄

3Re
iαDy + ρ̄v̄x +

2 µ̄y
3Re

iα

L33 = − µ̄

Re

(
4

3
D2
yy +D2

zz

)
+

(
ρ̄v̄ − 4 µ̄y

3Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz +

+ ρ̄(ūiα+ v̄y − iω) +
µ̄

Re
α2

L34 = − µ̄

3Re
D2
yz −

µ̄z
Re
Dy +

2 µ̄y
3Re

Dz + ρ̄v̄z

L35 =

[
ρ̄

γM2
− µ̄′

Re

2

3
(2v̄y − w̄z)

]
Dy −

µ̄′

Re
(v̄z + w̄y)Dz +

ρ̄y
γM2

− − µ̄
′′

Re

[
2

3
(2v̄y − w̄z)T̄y + (v̄z + w̄y)T̄z

]
− µ̄′

Re

(
4

3
v̄yy + v̄zz +

1

3
w̄yz + ūyiα

)

L41 =
T̄

γM2
Dz + ūw̄x + v̄w̄y + w̄w̄z +

1

γM2
T̄z

L42 = − µ̄

3Re
iαDz + ρ̄w̄x +

2 µ̄z
3Re

iα

L43 = − µ̄

3Re
D2
yz +

2 µ̄z
3Re

Dy −
µ̄y
Re
Dz + ρ̄w̄y

L44 = − µ̄

Re

(
D2
yy +

4

3
D2
zz

)
+

(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − 4 µ̄z

3Re

)
Dz +

+ ρ̄(ūiα+ w̄z − iω) +
µ̄

Re
α2

L45 = − µ̄′

Re
(w̄y + v̄z)Dy +

[
ρ̄

γM2
− µ̄′

Re

2

3
(2w̄z − v̄y)

]
Dz +

ρ̄z
γM2

−

− µ̄′′

Re

[
(w̄y + v̄z)T̄y +

2

3
(2w̄z − v̄y)T̄z

]
− µ̄′

Re

(
4

3
w̄zz + w̄yy +

1

3
v̄yz + ūziα

)

L51 = −(γ − 1)T̄ (v̄Dy + w̄Dz + ūiα− iω) + (T̄xū+ T̄yv̄ + T̄zw̄)

L52 = −2γ(γ − 1)M2µ̄

Re

[
ūyDy + ūzDz −

2

3
(v̄y + w̄z)iα

]
−

− (γ − 1)T̄ ρ̄x + ρ̄T̄x

L53 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2v̄y − w̄z)Dy + (v̄z + w̄y)Dz + ūyiα

]

− (γ − 1)T̄ ρ̄y + ρ̄T̄y

L54 = −2γ(γ − 1)M2µ̄

Re

[
(v̄z + w̄y)Dy +

2

3
(2w̄z − v̄y)Dz + ūziα

]

− (γ − 1)T̄ ρ̄z + ρ̄T̄z

L55 = − γ

RePr
κ̄
(
D2
yy +D2

zz

)
+
(
ρ̄v̄ − γ

RePr
2κ̄′T̄y

)
Dy +

+
(
ρ̄w̄ − γ

RePr
2κ̄′T̄z

)
Dz − (γ − 1)(ρ̄xū+ ρ̄yv̄ + ρ̄zw̄) +
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+ ρ̄(ūiα− iω)− γ

RePr

[
−κ̄α2 + κ̄′

(
T̄yy + T̄zz

)
+ κ̄′′(T̄ 2

y + T̄ 2
z )
]
−

− γ(γ − 1)M2µ̄′

Re

[
4

3
(v̄2
y + w̄2

z − v̄yw̄z) + ū2
y + ū2

z + v̄2
z + w̄2

y + 2v̄zw̄y

]

M11 = ū

M12 = ρ̄

M21 =
1

γM2
T̄

M22 = ρ̄ū

M25 =
ρ̄

γM2

M33 = ρ̄ū

M44 = ρ̄ū

M51 = −(γ − 1)T̄ ū

M55 = ρ̄ū

F1 = −ρ̃xũ− ρ̃ũx − ρ̃yṽ − ρ̃ṽy − ρ̃zw̃ − ρ̃w̃z
F2 = −ρ̃∂ũ

∂t
− ρ̄ (ũũx + ṽũy + w̃ũz)−

− ρ̃ (ūũx + v̄ũy + w̄ũz + ũūx + ṽūy + w̃ūz)−
1

γM2

(
T̃ ρ̃x + ρ̃T̃x

)
+

+
µ̄′

Re

[
T̃ (ũxx + ũyy + ũzz) +

T̃

3
(ũxx + ṽxy + w̃xz) +

+
2 T̃x

3
(2ũx − ṽy − w̃z) + T̃y (ũy + ṽx) + T̃z (ũz + w̃x)

]
+

+
µ̄′′T̃

Re

[
2 T̄x

3
(2ũx − ṽy − w̃z) + T̄y (ũy + ṽx) + T̄z (ũz + w̃x)

]

F3 = −ρ̃∂ṽ
∂t
− ρ̄ (ũṽx + ṽṽy + w̃ṽz)−

− ρ̃ (ūṽx + v̄ṽy + w̄ṽz + ũv̄x + ṽv̄y + w̃v̄z)−
1

γM2

(
T̃ ρ̃y + ρ̃T̃y

)
+

+
µ̄′

Re

[
T̃ (ṽxx + ṽyy + ṽzz) +

T̃

3
(ũxy + ṽyy + w̃yz) +

+ T̃x (ṽx + ũy) +
2 T̃y

3
(2ṽy − ũx − w̃z) + T̃z (ṽz + w̃y)

]
+

+
µ̄′′T̃

Re

[
T̄x (ṽx + ũy) +

2 T̄y
3

(2ṽy − ũx − w̃z) + T̄z (ṽz + w̃y)

]

F4 = −ρ̃∂w̃
∂t
− ρ̄ (ũw̃x + ṽw̃y + w̃w̃z)−

− ρ̃ (ūw̃x + v̄w̃y + w̄w̃z + ũw̄x + ṽw̄y + w̃w̄z)−
1

γM2

(
T̃ ρ̃z + ρ̃T̃z

)
+
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+
µ̄′

Re

[
T̃ (w̃xx + w̃yy + w̃zz) +

T̃

3
(ũxz + ṽyz + w̃zz) +

+ T̃x (w̃x + ũz) + T̃y (ṽz + w̃y) +
2 T̃z

3
(2w̃z − ũx − ṽy)

]
+

+
µ̄′′T̃

Re

[
T̄x (w̃x + ũz) + T̄y (ṽz + w̃y) +

2 T̄z
3

(2w̃z − ũx − ṽy)
]

F5 = −ρ̃∂T̃
∂t
− ρ̄

(
ũT̃x + ṽT̃y + w̃T̃z

)
−

− ρ̃
(
ūT̃x + v̄T̃y + w̄T̃z + ũT̄x + ṽT̄y + w̃T̄z

)
+

+ (γ − 1)T̃
∂ρ̃

∂t
+ (γ − 1)T̄ (ũρ̃x + ṽρ̃y + w̃ρ̃z) +

+ (γ − 1)T̃ (ūρ̃x + v̄ρ̃y + w̄ρ̃z + ũρ̄x + ṽρ̄y + w̃ρ̄z)

+
γ

RePr

[
κ̄′T̃

(
T̃xx + T̃yy + T̃zz

)
+ κ̄′

(
T̃ 2
x + T̃ 2

y + T̃ 2
z

)
+ κ̄′′T̃ (T̄xT̃x + T̄yT̃y + T̄zT̄z)

]
+

+
γ(γ − 1)M2µ̄′T̃

Re

[
2

3
(2ūx − v̄y − w̄z) ũx + (ūy + v̄x) ũy + (ūz + w̄x) ũz +

+ (ūy + v̄x) ṽx +
2

3
(2v̄y − ūx − w̄z) ṽy + (w̄y + v̄z) ṽz +

+ (w̄x + ūz) w̃x + (w̄y + v̄z) w̃y +
2

3
(2w̄z − ūx − v̄y) w̃z +

+
2

3
(2ũx − ṽy − w̃z) ūx + (ũy + ṽx) ūy + (ũz + w̃x) ūz +

+ (ũy + ṽx) v̄x +
2

3
(2ṽy − ũx − w̃z) v̄y + (w̃y + ṽz) v̄z +

+ (w̃x + ũz) w̄x + (w̃y + ṽz) w̄y +
2

3
(2w̃z − ũx − ṽy) w̄z

]
+

+
γ(γ − 1)M2µ̄

Re

[
4

3
(ũ2
x + ṽ2

y + w̃2
z − ũxṽy − ũxw̃z − ṽyw̃z) +

+ ũ2
y + ṽ2

x + ũ2
z + ṽ2

z + w̃2
x + w̃2

y + 2ũyṽx + 2ũzw̃y + 2ṽzw̃y

]
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Appendix E

TriGlobal EVP operators

The operators of the three-dimensional partial derivative GEVP (1.25) for TriGlobal analysis
upon compressible flows are structured as follows



A11 A12 A13 A14 0
A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55







ρ̂
û
v̂
ŵ

T̂




= ω




B11 0 0 0 0
0 B22 0 0 0
0 0 B33 0 0
0 0 0 B44 0
B51 0 0 0 B55







ρ̂
û
v̂
ŵ

T̂




(E.1)

The full listing of the operators in Eq. E.1 follows

A11 = ūDx + v̄Dy + w̄Dz + ūx + v̄y + w̄z

A12 = ρ̄Dx + ρ̄x

A13 = ρ̄Dy + ρ̄y

A14 = ρ̄Dz + ρ̄z

A21 =
T̄

γM2
Dx + ūūx + v̄ūy + w̄ūz +

1

γM2
(T̄x)

A22 = − µ̄

Re
(
4

3
D2
xx +D2

yy +D2
zz) +

(
ρ̄ū− 4 µ̄x

3Re

)
Dx +

+

(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz + ρ̄ūx

A23 = − µ̄

3Re
D2
xy −

µ̄y
Re
Dx −

2 µ̄x
3Re

Dy + ρ̄ūy

A24 = − µ̄

3Re
D2
xz −

µ̄z
Re
Dx −

2 µ̄x
3Re

Dz + ρ̄ūz

A25 =

[
ρ̄

γM2
− 2 µ̄′

3Re
(2ūx − v̄y − w̄x)

]
Dx −

µ̄′

Re
[(ūy + v̄x)Dy + (ūz + w̄x)Dz] +

+
1

γM2
ρ̄x −

µ̄′

Re

[
4

3
ūxx + ūyy + ūzz +

1

3
(v̄xy + w̄xz)

]
−

− µ̄′′

Re
[
2

3
(2ūx − v̄y − w̄x)T̄x + (ūy + v̄x)T̄y + (ūz + w̄x)T̄z]

A31 =
T̄

γM2
Dy + ūv̄x + v̄v̄y + w̄v̄z +

1

γM2
(T̄y)
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A33 = − µ̄

Re
(
4

3
D2
yy +D2

zz +D2
zz) +

(
ρ̄v̄ − 4 µ̄y

3Re

)
Dy +

+
(
ρ̄ū− µ̄x

Re

)
Dx +

(
ρ̄w̄ − µ̄z

Re

)
Dz + ρ̄v̄y

A32 = − µ̄

3Re
D2
xy −

µ̄x
Re
Dy −

2 µ̄y
3Re

Dx + ρ̄v̄x

A34 = − µ̄

3Re
D2
xz −

µ̄z
Re
Dx −

2 µ̄x
3Re

Dz + ρ̄v̄z

A35 =

[
ρ̄

γM2
− 2 µ̄′

3Re
(2v̄y − ūx − w̄x)

]
Dy −

µ̄′

Re
[(v̄x + ūy)Dx + (v̄z + w̄y)Dz] +

+
1

γM2
ρ̄y −

µ̄′

Re

[
4

3
v̄yy + v̄xx + v̄zz +

1

3
(ūxy + w̄yz)

]
−

− µ̄′′

Re
[
2

3
(2v̄y − ūx − w̄y)T̄y + (ūy + v̄x)T̄x + (v̄z + w̄y)T̄z]

A41 =
T̄

γM2
Dz + ūw̄x + v̄w̄y + w̄w̄z +

1

γM2
(T̄z)

A44 = − µ̄

Re
(
4

3
D2
zz +D2

yy +D2
xx) +

(
ρ̄w̄ − 4 µ̄z

3Re

)
Dz +

+

(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄ū− µ̄x

Re

)
Dx + ρ̄w̄z

A43 = − µ̄

3Re
D2
yz −

µ̄y
Re
Dz −

2 µ̄z
3Re

Dy + ρ̄w̄y

A42 = − µ̄

3Re
D2
xz −

µ̄x
Re
Dz −

2 µ̄z
3Re

Dx + ρ̄w̄x

A45 =

[
ρ̄

γM2
− 2 µ̄′

3Re
(2w̄z − v̄y − ūx)

]
Dz −

µ̄′

Re
[(w̄y + v̄z)Dy + (w̄x + ūz)Dx] +

+
1

γM2
ρ̄z −

µ̄′

Re

[
4

3
w̄zz + w̄yy + w̄xx +

1

3
(v̄zy + ūxz)

]
−

− µ̄′′

Re
[
2

3
(2w̄z − v̄y − ūz)T̄z + (ūy + v̄z)T̄y + (w̄x + ūz)T̄x]

A51 = −(γ − 1)T̄ (ūDx + v̄Dy + w̄Dz) + γ(T̄xū+ T̄yv̄ + T̄zw̄)

A52 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2ūx − v̄y − w̄z)Dx + (ūy + v̄x)Dy + (ūz + w̄x)Dz

]
−

− (γ − 1)(T̄xρ̄+ T̄ ρ̄x) + γρ̄T̄x

A53 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2v̄y − ūx − w̄z)Dy + (v̄x + ūy)Dx + (v̄z + w̄y)Dz

]
−

− (γ − 1)(T̄yρ̄+ T̄ ρ̄y) + γρ̄T̄y

A54 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2w̄z − v̄y − ūx)Dz + (w̄y + v̄z)Dy + (w̄x + ūz)Dx

]
−

− (γ − 1)(T̄zρ̄+ T̄ ρ̄z) + γρ̄T̄z

A55 = − γ

RePr
κ̄
(
D2
xx +D2

yy +D2
zz

)
+
(
ρ̄ū− γ

RePr
2κ̄′T̄x

)
Dx +

168



+
(
ρ̄v̄ − γ

RePr
2κ̄′T̄y

)
Dy +

(
ρ̄w̄ − γ

RePr
2κ̄′T̄z

)
Dz −

− (γ − 1)(ρ̄yv̄ + ρ̄zw̄)− γ

RePr

[
κ̄′
(
T̄yy + T̄zz

)
+ κ̄′′(T̄ 2

x + T̄ 2
y + T̄ 2

z )
]
−

− γ(γ − 1)M2µ̄′

Re

[
4

3
(ū2
x + v̄2

y + w̄2
z − ūxv̄y − ūxw̄z − v̄yw̄z) +

+ ū2
y + v̄2

x + ū2
z + v̄2

z + w̄2
x + w̄2

y + 2ūyv̄x + 2ūzw̄y + 2v̄zw̄y

]

B11 = 1

B22 = ρ̄

B33 = ρ̄

B44 = ρ̄

B51 = −(γ − 1)T̄

B55 = ρ̄
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Appendix F

Compressible PNS operators

Equation (4.3) for compressible flows expressed in matrix form results




J11 J12 J13 J14 0
J21 J22 J23 J24 J25

J31 J32 J33 J34 J35

J41 J42 J43 J44 J45

J51 J52 J53 J54 J55







∆ρ
∆u
∆v
∆w̄
∆T




= −




F1

F2

F3

F4

F5




(F.1)

The full listing of the operators in equation (F.1) without dropping streamwise derivative
terms in the viscous part follows

J11 = ūDx + v̄Dy + w̄Dz + ūx + v̄y + w̄z

J12 = ρ̄Dx + ρ̄x

J13 = ρ̄Dy + ρ̄y

J14 = ρ̄Dz + ρ̄z

J21 = ūūx + v̄ūy + w̄ūz +
Ω

γM2
(T̄Dx + T̄x)

J22 = − µ̄

Re

(
4

3
D2
xx +D2

yy +D2
zz

)
+

(
ρ̄ū− 4 µ̄x

3Re

)
Dx

+

(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz + ρ̄ūx

J23 = − µ̄

3Re
D2
xy −

µ̄y
Re
Dx −

2 µ̄x
3Re

Dy + ρ̄ūy

J24 = − µ̄

3Re
D2
xz −

µ̄z
Re
Dx −

2 µ̄x
3Re

Dz + ρ̄ūz

J25 =

[
ρ̄

γM2
− 2 µ̄′

3Re
(2ūx − v̄y − w̄x)

]
Dx −

µ̄′

Re
[(v̄x + ūy)Dy + (w̄x + ūz)Dz]

+
Ω

γM2
ρ̄x −

µ̄′

Re

[
4

3
ūxx + ūyy + ūzz +

1

3
(v̄xy + w̄xz)

]

− µ̄′′

Re

[
2

3
(2ūx − v̄y − w̄x)T̄x + (ūy + v̄x)T̄y + (ūz + w̄x)T̄z

]
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J31 =
T̄

γM2
Dy + ūv̄x + v̄v̄y + w̄v̄z +

1

γM2
T̄y

J32 = − µ̄

3Re
D2
xy −

µ̄x
Re
Dy +

2 µ̄y
3Re

Dx + ρ̄v̄x

J33 = − µ̄

Re
(
4

3
D2
yy +D2

xx +D2
zz) +

(
ρ̄v̄ − 4 µ̄y

3Re

)
Dy

+
(
ρ̄ū− µ̄x

Re

)
Dx +

(
ρ̄w̄ − µ̄z

Re

)
Dz + ρ̄v̄y

J34 = − µ̄

3Re
D2
yz −

µ̄z
Re
Dy +

2 µ̄y
3Re

Dz + ρ̄v̄z

J35 =

[
ρ̄

γM2
− µ̄′

Re

2

3
(2v̄y − ūx − w̄z)

]
Dy −

µ̄′

Re
[(v̄x + ūy)Dx + (v̄z + w̄y)Dz]

+
ρ̄y
γM2

− µ̄′

Re

[
4

3
v̄yy + v̄xx + v̄zz +

1

3
(ūxy + w̄yz)

]

− µ̄′′

Re

[
2

3
(2v̄y − ūx − w̄z)T̄y + (ūy + v̄x)T̄x + (v̄z + w̄y)T̄z

]

J41 =
T̄

γM2
Dz + ūw̄x + v̄w̄y + w̄w̄z +

1

γM2
T̄z

J42 = − µ̄

3Re
D2
xz −

µ̄x
Re
Dz +

2 µ̄z
3Re

Dx + ρ̄w̄x

J43 = − µ̄

3Re
D2
yz +

2 µ̄z
3Re

Dy −
µ̄y
Re
Dz + ρ̄w̄y

J44 = − µ̄

Re

(
4

3
D2
zz +D2

yy +D2
xx

)
+

(
ρ̄w̄ − 4 µ̄z

3Re

)
Dz

+

(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄ū− µ̄x

Re

)
Dx + ρ̄w̄z

J45 =

[
ρ̄

γM2
− 2 µ̄′

3Re
(2w̄z − v̄y − ūx)

]
Dz −

µ̄′

Re
[(w̄y + v̄z)Dy + (w̄x + ūz)Dx]

+
1

γM2
ρ̄z −

µ̄′

Re

[
4

3
w̄zz + w̄yy + w̄xx +

1

3
(v̄zy + ūxz)

]

− µ̄′′

Re

[
2

3
(2w̄z − v̄y − ūz)T̄z + (ūy + v̄z)T̄y + (w̄x + ūz)T̄x

]

J51 = ūT̄x + v̄T̄y + w̄T̄z + (γ − 1)T̄ (ūx + v̄y + w̄z)

J52 = −2γ(γ − 1)M2

Re
µ̄

[
2

3
(2ūx − v̄y − w̄z)Dx + (ūy + v̄x)Dy + (ūz + w̄x)Dz

]

+ (γ − 1)T̄ ρ̄Dx + ρ̄T̄x

J53 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2v̄y − ūx − w̄z)Dy + (v̄x + ūy)Dx + (v̄z + w̄y)Dz

]

+ (γ − 1)T̄ ρ̄Dy + ρ̄T̄y

J54 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2w̄z − v̄y − ūx)Dz + (w̄y + v̄z)Dy + (w̄x + ūz)Dx

]
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+ (γ − 1)T̄ ρ̄Dz + ρ̄T̄z

J55 = − γ

RePr
κ̄
(
D2
xx +D2

yy +D2
zz

)
+
(
ρ̄ū− γ

RePr
2κ̄′T̄x

)
Dx

+
(
ρ̄v̄ − γ

RePr
2κ̄′T̄y

)
Dy +

(
ρ̄w̄ − γ

RePr
2κ̄′T̄z

)
Dz + (γ − 1)ρ̄(ūx + v̄y + w̄z)

− γ

RePr

[
κ̄′
(
T̄xx + T̄yy + T̄zz

)
+ κ̄′′(T̄ 2

x + T̄ 2
y + T̄ 2

z )
]

− γ(γ − 1)M2µ̄′

Re

[
4

3
(ū2
x + v̄2

y + w̄2
z − ūxv̄y − ūxw̄z − v̄yw̄z) +

+ ū2
y + v̄2

x + ū2
z + v̄2

z + w̄2
x + w̄2

y + 2ūyv̄x + 2ūzw̄x + 2v̄zw̄y

]

F1 = ρ̄xū+ ρ̄ūx + ρ̄yv̄ + ρ̄v̄y + ρ̄zw̄ + ρ̄w̄z

F2 = ρ̄(ūūx + v̄ūy + w̄ūz) +
Ω

γM2
(ρ̄xT̄ + ρ̄T̄x)

− 1

Re

[
µ̄

(
4

3
ūxx + ūyy + ūzz +

1

3
(v̄xy + w̄xz)

)

+
2

3
µ̄x(2ūx − v̄y − w̄z) + µ̄y(ūy + v̄x) + µ̄z(ūz + w̄x)

]

F3 = ρ̄(ūv̄x + v̄v̄y + w̄v̄z) +
1

γM2
(ρ̄yT̄ + ρ̄T̄y)

− 1

Re

[
µ̄

(
4

3
v̄yy + v̄xx + v̄zz +

1

3
(ūxy + w̄yz)

)

+ µ̄x(v̄x + ūy) +
2

3
µ̄y(2v̄y − ux − w̄z) + µ̄z(v̄z + w̄y)

]

F4 = ρ̄(ūw̄x + v̄w̄y + w̄w̄z) +
1

γM2
(ρ̄zT̄ + ρ̄T̄z)

− 1

Re

[
µ̄

(
4

3
w̄zz + w̄xx + w̄yy +

1

3
(uxz + v̄yz)

)

+ µ̄x(w̄x + ūz) + µ̄y(v̄z + w̄y) +
2

3
µ̄z(2w̄z − ūx − v̄y)

]

F5 = ρ̄(ūT̄x + v̄T̄y + w̄T̄z) + (γ − 1)ρ̄T̄ (ūx + v̄y + w̄z)

− γ

RePr

[
κ̄(T̄xx + T̄yy + T̄zz) + κ̄xT̄x + κ̄yT̄y + κ̄zT̄z

]

− γ(γ − 1)M2

Re
µ̄

[
4

3
(ū2
x + v̄2

y + w̄2
z − ūxv̄y − ūxw̄z − v̄yw̄z)

+ ū2
y + ū2

z + v̄2
x + v̄2

z + w̄2
x + w̄2

y + 2ūyv̄x + 2ūzw̄x + 2v̄zw̄y

]
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F. Compressible PNS operators

where Ω < γM2

1+(γ−1)M2 and the derivative operators are expressed in function of the metric

functions and derivatives following equations (2.39-2.40)
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analysis of wind turbine wakes performed on wind tunnel measurements. J. Fluid Mech.,
737:499–526, 2013.

[114] E. Ivanova. Numerical Simulations of Turbulent Mixing in Complex Flows. Phd thesis,
University of Stuttgart, 2012.

[115] C.P. Jackson. A finite-element study of the onset of vortex shedding in flow past vari-
ously shaped bodies. J. Fluid Mech., 182:23–45, 1987.

[116] R.G. Jacobs and P.A. Durbin. Simulations of bypass transition. J. Fluid Mech., 428:
185–212, 2001.
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[258] W. Tollmien. Über die Entstehung der Turbulenz. 1. Mitteilung. Nachr. Ges. Wiss.
Göttingen, Math. Phys. Klasse, 1929.

[259] L.N. Trefethen. Spectral Methods in Matlab. SIAM, 2000.

[260] L.N. Trefethen, A.E. Trefethen, S.C. Reddy, and T. Driscoll. Hydrodynamic stability
without eigenvalues. Science, 261:578–584, 1993.

[261] V.N. Trigub. The problem of breakdown of a vortex line. J. Appl. Math. Mech., 49:
166–171, 1985.

[262] L.S. Tuckerman and D. Barkley. Bifurcation analysis for timesteppers. In Numerical
methods for bifurcation problems and large-scale dynamical systems, pages 453–566.
Springer, 2000.

[263] A. Tumin and E. Reshotko. Receptivity of a boundary-layer flow to a three-dimensional
hump at finite Reynolds numbers. Phys. Fluids, 17(094101), 2005.

[264] J.L. Van Ingen. A suggested semi-empirical method for the calculation of boundary
layer transition region. Rept. UTH-74., Univ. of Techn., Dept. of Aero. Eng., Delft,
1956.

[265] Y.C. Vigneron, J.V. Rakich, and J.C. Tannehill. Calculation of supersonic viscous flow
over delta wings with sharp subsonic leading edges. AIAA 78-1337, 1978.

[266] S. Wang and Z. Rusak. The time-asymptotic behavior of vortex breakdown in tubes.
Compt. Fluids, 23:913, 1994.

191



Bibliography

[267] S. Wang and Z. Rusak. The dynamics of a swirling flow in a pipe and transition to
axisymmetric vortex breakdown. J. Fluid Mech., 340:177, 1997.

[268] S. Wang and Z. Rusak. The effect of slight viscosity on a near-critical swirling flow in
a pipe. Phys. Fluids, 9:1914–1927, 1997.

[269] P. Wassermann and M. Kloker. Transition mechanisms induced by travelling crossflow
vortices in a three-dimensional boundary layer. J. Fluid Mech., 483:67 – 89, 2003.

[270] B.M. Wheaton and S.P. Schneider. Roughness-induced instability in a hypersonic lam-
inar boundary layer. AIAA J., 5(6):1245–1256, 2012.

[271] B.M. Wheaton and S.P. Schneider. Instability and transition due to near-critical rough-
ness in a hypersonic laminar boundary layer. AIAA 2013-0084, 2013.

[272] F.M. White. Viscous fluid flow. McGraw-Hill, 3nd edition, 2005.

[273] S.E. Widnall. The structure and dynamics of vortex filaments. Ann. Rev. Fluid Mech.,
7:141–165, 1975.

[274] D.C. Wilcox. Turbulence Modeling for CFD. DCW Industries, 3rd edition, 2006.

[275] A.A. Wray. Minimal storage time advancement schemes for spectral methods. Rept.
M.S. 202 A-1., NASA Ames Research Centre, 1990.

[276] T.G. Wright. Eigtool. Technical report, Oxford University Computing Laboratory,
2002. Available at http://www.comlab.ox.ac.uk/pseudospectra/eigtool/.

[277] X. Wu and M. Choudhari. Linear and nonlinear instabilities of a Blasius boundary
layer perturbed by streamwise vortices. Part 2: Intermittent instability induced by
long-wavelength Klebanoff modes. J. Fluid Mech., 483:249–286, 2003.

[278] Y. Yao, Z. Shang, J. Castagna, R. Johnstone, R.E. Jones, J.A. Redford, R.D. Sandberg,
N.D. Sandham, V. Suponitsky, and N. De Tullio. Re-engineering a DNS code for high-
performance computation of turbulent flows. AIAA 2009-566, 2009.

[279] A. Zebib. Stability of viscous flow past a circular cylinder. J. Eng. Math., 21:155–165,
1987.

192


