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Abstract: Intermittency phenomenon is a continuous route from regular to chaotic behaviour. Intermittency is an
occurrence of a signal that alternates chaotic bursts between quasi-regular periods called laminar phases, driven
by the so called reinjection probability density function (RPD). In this paper is introduced a new technique to
obtain the RPD for type-II and III intermittency. The new RPD is more general than the classical one and includes
the classical RPD as a particular case. The probabilities of the laminar length, the average laminar lengths and
the characteristic relations are determined with and without lower bound of the reinjection in agreement with
numerical simulations. Finally, it is analyzed the noise effect in intermittency. A method to obtain the noisy RPD
is developed extending the procedure used in the noiseless case. The analytical results show a good agreement
with numerical simulations.
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1 Introduction
Intermittency is a particular route to chaos, where
a transition between regular or laminar and chaotic
phases occur. Pomeau and Maneville introduced the
concept of intermittency in [1, 2]. The intermittency
phenomenon has been observed in several physical
topics such as Lorenz system, Rayleigh-Bénard con-
vection, forced nonlinear oscillators, plasma physics,
turbulence, etc. Also, it is very important to prop-
erly characterise the intermittency phenomenon, es-
pecially in those fields, whose exact governing equa-
tions are partially unknown, as it happens in eco-
nomical and medical sciences [3, 4]. Traditionally,
intermittency is calssified into three differents types
called I, II and III [5, 6] according to the Floquet
multipliers or eigenvalue in the local Poincaré map.
By means of Poincaré sections it is possible to study
the intermittency mechanism using maps. Intermit-
tency type-II begins in a subcritical Hopf bifurca-
tion or Naimark-Sacker bifurcation [7], therefore,
two complex-conjugate Floquet multipliers or two
complex-conjugate eigenvalues of the local Poincaré
map exit the unit circle. Type-III intermittency is re-
lated to a subcritical period-doubling or flip bifurca-
tion when one Floquet multiplier leaves the unit circle
through -1. In the intermittency phenomenon, when a
control parameter exceeds a threshold value, the sys-
tem behaviour changes abruptly to a larger attractor

by means an explosive bifurcation [6]. Then, the pe-
riodic orbit becames chaotic. Concerning to type-I
intermittency, we have preparing an extension of the
methodology shown in this paper for type-II and type-
III. Then, in all the cases, a fixed point of the local
Poincaré map becomes unstable for positive values of
a control parameter ε. The local Poincaré maps for
type-I, type-II and type-III intermittencies are respec-
tively given by: xn+1 = ε + xn + a x2n, xn+1 =
(1 + ε)xn + a x3n and xn+1 = −(1 + ε) xn − a x3n,
where ε and a must be higher than 0. However, to
generate intermittency it is necessary to have a rein-
jection mechanism that maps back from the chaotic
zone into the local regular or laminar one. This mech-
anism is described by the so called reinjection prob-
ability density function (RPD) close to the unstable
point, which is determined by the non linear dynam-
ics of the system itself. Therefore, the accurate eval-
uation of the RPD function is extremely important to
correctly analize and describe the intermittency phe-
nomenon. It is important to note that in only a few
cases it is possible to obtain an analytical expression
for the RPD function. Also, it is not a simple task to
experimentally or numerically obtain the RPD due to
the huge amount of data needed. Besides this, the sta-
tistical fluctuations induced in the numerical computa-
tions and the experimental measurements are difficult
to be estimated. For theses reasons several different
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approaches have been used to describe the RPD for the
intermittent systems. The most popular approach used
is to consider the RPD as a constant, that is uniform
reinjection. However, different approaches have been
implemented. Some of them are built using a charac-
teristic of the particular non-linear proccesses. Nev-
ertheless, these RPD functions can not be applied for
other systems. For instance, to investigate the effect
of noise in type-I intermittency, sometimes it is as-
sumed that the reinjection is localized in a fixed point
[8]. For type-III intermittency in an electronic circuit
the RPD was considered as proportional to 1/

√
x−∆

in [9]. The previous examples show that there is no
efficient method to obtain the RPD function. How-
ever, recently a more general RPD that includes the
uniform reinjection as a particular case has been in-
troduced [10, 11]. In this paper we present a com-
plete description of the new formulation for two in-
termittency types. The formulation includes the lower
bound of the reinjection concept (LBR), and permits
the calculation of the laminar length statistic and the
characteristic relations. Finally we analize the influ-
ence of the noise in the new theory [12].

2 Formulation for the RPD function
In this section we briefly describe the theoretical
framework that accounts for a wide class of dynam-
ical systems exhibiting intermittency. We consider a
general one-dimensional map: xn+1 = F (xn). The
RPD function, denoted here by φ(x), specifies the sta-
tistical behavior of the reinjection trajectories and it
depends on the specific form of F (x). We note that
there is not a general scheme or methodology to ob-
tain the RPD function from experimental or numerical
data. Therefore a formulation allowing the evaluation
of the RPD function will be useful. The main concept
to reach a more general formulation is given by the
following integral [10]:

M(x) =

{ ∫ x
xs

τ φ(τ) dτ∫ x
xs

φ(τ) dτ
if

∫ x
xs

φ(τ)dτ 6= 0

0 otherwise
(1)

where xs is a “starting” point, xs ≤ x ≤ c, and c is a
constant verifying c > 0 and it specifies the limits of
the laminar region around of the vanished fixed point
x0. Therefore, the laminar zone of intermittency is
defined by [−c + x0;x0 + c] . In the previous work
[10] we used xs = x0; however, a more general ap-
proach considering xs different to x0 was established
in [11]. We note that the integral M(x) smooths the
experimental o numerical data series, and its numeri-
cal estimation is more robust than the direct evaluation
of the function φ(x). As the function M(x) is an aver-

age over the reinjection points in the laminar interval,
we can calculate it as:

M(x) ≈ 1

n

n∑
j=1

xj , xn−1 < x ≤ xn (2)

where the data set (reinjection points) {xj}Nj=1 must
be sorted from lowest to highest, i.e. xj ≤ xj+1. For a
wide class of maps exhibiting intermittency, the func-
tion M(x) satisfies a linear approximation:

M(x) =

{
m(x− x̂) + x̂ if x ≥ x̂
0 otherwise

(3)

where the slope m ∈ (0, 1) is a free parameter, and x̂
is the lower boundary of the reinjection. Then, using
Eqs.(1 and 3) we can obtain the corresponding RPD:

φ(x) = λ(x− x̂)α, with α =
2m− 1

1−m
(4)

where λ is a normalization constant. We can note that
for m = 1/2 we recover the most implemented ap-
proach that uses the uniform RPD.

3 Type-II Intermittency
In this section we applied the new formulation to an
illustrating one-dimensional map presenting type-II
intermittency, and closely following previously pub-
lished work [10]. The implemented map has allowed
us to analyze different types of the reinjection mecha-
nism:

xn+1 =

{
F (xn) xn ≤ xr
(F (xn)− 1)γ xn > xr

(5)

where F (x) = (1+ε)xn+(1−ε)xpn, xr is defined by
F (xr) = 1, and ε is the control parameter. The origin
of the map x = 0 is always a fixed point, however it
is only stable for −2 < ε < 0. For ε > 0 the fixed
point is unstable. The iterated points xn of an inicial
point, close to the origin, increases due to a process
governed by parameters ε and p. A chaotic burst hap-
pens if xn becomes larger than xr; this chaotic pro-
cess will be finished when xn is reinjected into the
laminar zone. From this reinjected point, a new iter-
ative process governed by ε and p will cause an in-
crease of the iterative points. We note that γ drives
the reinjection mechanism, whereas p and ε influence
the laminar phase duration. If we use γ = 1 and p = 2
in Eq.(5), we recover the map used by Manneville in
his pioneer paper [13]. If we use p = 3, the local
form of the map corresponds with the local Poincare
map of type-II intermittency. We have numerically
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evaluated the function M(x) obtaining, in approxima-
tion, the following linear form M(x) = mx. Figure
(1) shows numerical evaluations of M(x) for different
values of parameter γ together with the corresponding
least squares straight line fitting. Always we find that
|m| < 1. We have used the following parameters: in
the upper line γ = 2 and ε = 10−3, and for the lower
line γ = 0.65 and ε = 10−4. According to previ-
ous results, we consider that the function M is linear,
M(x) = mx. Then the RPD can be expressed by
Eq.(4) with λ = α+1

cα+1 . Note that φ(x) is determined
only by the parameter m, which is easier to measure
than the complete function φ(x). Note that the shape
of φ(x) can be very different from the flat line (uni-
form reinjection), for instance limx→0 φ(x) is infinity
when 0 < m < 1/2 and zero if 1/2 < m < 1. In
Fig.(2) points indicate the numerical RPD functions,
and the theoretical functions for φ(x) given by Eq.(4)
are represented by continuous lines. We are consid-
ering the same two cases shown in Fig.(1). We can
observe that the numerical data and theoretical results
have a very good agreement. Note that the continuous
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Figure 1: Function M(x) for the map (5) with p = 3.
Continuous lines show the linear fit of the numerical
data. The slope of the dashed line is 0.5. In the upper
line γ = 2 and ε = 10−3 whereas for the lower case
γ = 0.65 and ε = 10−4

curve reduces the statistical fluctations of the numeri-
cal data. We observe that the slope m determines the
value of the exponent α in the reinjection function (4),
hence it rules the reinjection mechanism and it has di-
rect influence in the the length probability density, the
average laminar length and the characteristic relation.
The density of the laminar lengths probability φl(l) is
a global property and it is related to φ(l, c) [10, 11]:

φl(l, c) = λ

 ε(
a+ ε

c(p−1)

)
e(p−1)εl − a


p+α
p−1

×

×
(
a+

ε

c(p−1)

)
e(p−1)εl

(6)
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Figure 2: RPD for map (5). Upper and lower pictures
correspond with the upper and lower lines of Fig.(1)
respectively. Dots indicate numerical evaluations and
continuous lines show the analytival results.

We can note that φl(l, c) depends on the global param-
eter α. Hence, the probability of the laminar length
is determined by the slope m of the function M(x).
Fig.(3) shows a comparisson between the analytical
results calculated using Eq.(6) with the numerical re-
sults for the map (5). We can observe a good agree-
ment between numerical data and the theoretical re-
sults. Another important property of the intermittent
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Figure 3: φl for map (5) using the same parametres
that as Fig.(1).

behaviour is the average laminar length l̄, that if m
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does not depend on ε, can be written as [10]:

l̄ ≈ 1

acα+1

(a
ε

) p−α−2
p−1 π

p− 1
sin−1

(
π(1 + α)

p− 1

)
(7)

so the characteristic relation can be writte as:

l̄ ∝ ε
α+2−p
p−1 (8)

The characteristic relation depends on both: the be-
havior of the local map around the fixed point, and on
the global dynamic of the map represented by the pa-
rameters α or m. The map (5), in the region where
the chaotic dynamic occurs, depends on the exponent
γ, so we expect that the RPD also will depend on γ.
Then, we expect that α and m will be strongly depen-
dent on γ and weakly on parameters ε. We evaluate
l̄ for several values of γ as the values of ε change.
The results are shown in Fig.(4) for different values
of γ and p. In Fig.(4) four lines are plotted, the three

-6 -5 -4 -3 -2 -1
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6

log(l̄)

log(ε)

D
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B C

Figure 4: Characteristic relation for different γ in the
map (5). Dots shows numerical data and lines show
the least squares straight fitting. For lines A, B and
C, p is 3 and γ is 1, 2 and 3 for case A, B and C
respectively. For line D are p = 2 and γ = 1.5.

upper lines (A, B and C) show numerical and theoret-
ical results for p = 3 in Eq.(5). The analytical expre-
sion for the characteristic relation is given by Eq.(8),
then we expected that the slopes of lines A, B and
C are the exponents of the characteristic relation to
p = 3. The value of m is obtained for each point of
the Fig.(4) using the function M(x), and this value
is almost constant for each line of the figure as fol-
lows: mA ≈ 0.49,mB ≈ 0.32,mC ≈ 0.22. Hence
the expected slopes for lines A, B and C are respec-
tively: slopeA ≈ −0.51, slopeB ≈ −0.77, slopeC ≈
−0.86. On the other hand, if we fit the numerical data,
represented by points, in Fig.(4) we obtain the follow-
ing slopes -0.51, -0.80 and -0.92 for lines A,B and C
respectively. These results are in agreement with the
expected ones.

4 Type-III Intermittency
In this section we used the function M(x) to to study
the RPD in the type-III intermittency. A more de-
tailed description of this method can be found in
[11]. For one-dimensional map presenting type III-
intermittency, the Schwartzian derivative must be pos-
itive at the critical point [14]. Type-III intermittency
was observed for the first time in the Bénard con-
vection in a rectangular cell [16]. In this reference
the Poincaré map presents a gap without reinjection
around the neighborhood of the unstable fixed point.
This behavior suggests that exists a lower bound of the
reinjection (LBR). Here, we will extend the results ob-
tained in the previous section to type-III intermittency
to obtain a complete description of the laminar length
statistic and the effect of the LBR. To do this we in-
troduce the illustrating map:

xn+1 = F (xn) = −(1 + ε) xn − a x3n+

+ b x6n sin(xn) with a > 0
(9)

where x = 0 is a fixed point of the map. This
fixed point is asymptotically stable when ε satisfies
−2 < ε < 0, and it is unstable for ε > 0 and the
Schwartzian derivative SF(x) is positive. For points
far enough from the unstable point, the last term in
Eq.(9) provides an efficient mechanism for reinjec-
tion. The non-linear behavior of the Eq.(9) is com-
pletely different from the non-linear behavior of the
map used for type-II intermittency. Therefore, with
the map (9) we not only study type-III intermittency,
but we also extend the new formulation to another
wide set of maps. The reinjection mechanism depends
on the value of F (xr) at extreme points xr. As n in-
creases, any point xn close to the origin distances it-
self in a process driven by the parameters ε and a in
the cubic term of the map. For large n, the influence
of the RHS third term in Eq.(9) increases and xn ap-
proaches a xr point giving rise the reinjection mech-
anism into the laminar zone. There is no reinjection
around the unstable fixed point for b > bC ' 1.07
[11]. The LBR is defined by the closest reinjection
point of the fixed point [15]. However, there are no
LBR if b < bc for the same values of a and ε. Fig.(5)
plots the function M(x) calculated using the map (9)
for a = 1 and ε = 0.01. In this figure there are
two curves calculated using two different values of
the parameter b. Both curves M(x) can be approxi-
mated by straight lines, hence according with Eq.(3)
we can get m and by setting M(x̂) = x̂ we can ob-
tain the LBR value x̂. Hence by reinjection probabil-
ity density function can be described by Eq.(4) with
λ = 1

2
α+1

(c−x̂)α+1 . For Fig.(5), we found that m = 0.36

and m = 0.37 for the lower and upper line respec-

Latest Trends in Circuits, Automatic Control and Signal Processing

ISBN: 978-1-61804-131-9 148



0

0,1

0,2

0,3

0 0,2 0,4 0,6

x

M(x)

b  = 1.05

b  = 1.1

Figure 5: Numerical function M(x) for the map (9).
For the lower line b = 1.05 and for upper one b = 1.1.
After numerical fitting, we have m ≈ 0.36, x̂ ≈ 0 and
m ≈ 0.37, x̂ ≈ 0.053, respectively. The rest of the
parameters used are a = 1 and ε = 0.01.

tively. Fig.(6) shows the RPD for the same cases plot-
ted in Fig. (5). The continuous curve in this figure cor-
responds to the analytical expression given by Eq.(3).
The agreement between the numerical and theoretical
results is very good. We only used the values of x̂ and
m founded in Fig.(5). Moreover, as shown in Fig.(6),
the theoretical RPD function provides a better descrip-
tion than the one given by the numerical data because
of the unavoidable statistical fluctuations. It is impor-
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Figure 6: RPD for the same parameters used for
Fig.(5). Dots are numerical data and continuous lines
represent the Eq.(4).

tant to emphasize that a LBR different from zero pro-

duces a gap around the unstable point in the Poincaré
map as has been observed from earlier experiments
[16]. The LBR appears in the function φ(x) = λxα

as a positive shift on the variable x. Also, negative
values of xi can also be possible for Eq.(4). There-
fore, if xi < 0, the RPD function can be described by
two overlapping functions, each one having the form
given by Eq.(4):

φ(x) =


λ [(|x̂|+ x)α + (|x̂| − x)α] if |x| 6 |x̂|
λ (|x̂|+ x)α if |x̂| < x 6 c
λ (|x̂| − x)α if − c < x 6 −|x̂|

(10)
where λ > 0 is again obtained by the normalization
condition

λ =
1

2

α+ 1

(c+ |x̂|)α+1 (11)

The RPD given by Eq.(10) is also specified by the two

0 0.1 0.2 0.3 0.4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x

M(x)

M(|x|)
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Figure 7: Numerical evaluation of M(x). Singular
point is |x̂| ≈ 0.157. The continuous line represents
Eq.(12) for x < |x̂| and the dashed one is the straight
line with slope 1/2. The parameters are a = 1.035,
b = 1.05 and ε = 0.001.

parameters α and x̂, as in the previous case. However,
the function M(x) is not linear in x because the rein-
jection is generated by superimposing two simultane-
ous processes (see Fig.7). The RPD given by Eq.(10)
is non-continuous for x = |x̂|, then M(x) has no
derivative at this point, and the point x̂ is a singular
point for both M(x) and φ(x). To reach the expres-
sion for M(x) we use Eqs.(3 and 10):

M(x) =
(1 + α)x− |x̂|

(2 + α)[
|x̂| (|x̂| − x)1+α − |x̂|2+α

(|x̂| − x)1+α − (|x̂|+ x)1+α

]
2

(2 + α)

(12)
To obtain the value of α, we valuated the Eq.(12) in
x = |x̂|. The next step is to verify the assumptions
made in obtaining the RPD in Eq.(10). To do this we
compare numerical data for M(x) with the Eq.(12). In
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Fig.(7) we plot both analytical and numerical M and
we can observe a very good agreement. In Fig.(8) we
compare the RPD function, Eq.(10), with the numeri-
cal data. The values of xi and α have been calculated
from the function M(x) for the same parameters used
in Fig.(7). Finally, we note that the overlapping of the
new function φ(x) is clearly exhibited in the figures.
Once the RPD function is calculated, we can evaluate

-0.6 -0.4 -0.2 0.2 0.4 0.6
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8

10
φ(x)

x

Figure 8: RPD for the same parameters used in
Fig.(7). Dots are numerical data and continuous lines
are referred Eq.(10).

the probability density of the laminar length l(x, c)

φl(l) = 2λ (X(l, c)− x̂)α
[
aX(l, c)3 + εX(l, c)

]
(13)

where X(l, c) =
√

ε
(a+ε/c2)e2ε l−a

. In Fig.(9) we

show the comparison between numerical data for the
probability of laminar phase length and the results cal-
culated with Eq.(13). For Fig.(9) we use the same pa-
rameters x̂ and m corresponding to lower and upper
line respectively of Fig.(5). Note that in Fig.(9.a) the
probability of laminar phase length values can be ar-
bitrarily very large because of x̂ ≈ 0. On the contrary,
for b = 1.1, we have x̂ > 0 and this fact gives rise
the existence of an upper cut-off value for l̂ as shown
in Fig.(9.b). For xi < 0, by ussing Eqs.(10) and (13),
the probability of laminar phase length is

φl(l) = 2λ [(|x̂|+X(l, c))α ++k (|x̂| −X(l, c))α][
aX(l, c)3 + εX(l, c)

]
(14)

where k = 0 for |l| 6
∣∣∣l̂∣∣∣ and k = 1 for |l| >

∣∣∣l̂∣∣∣.
Fig.(10) shows the comparison between the numerical
values and the Eq.(14). The parameters x̂, α and λ
used in this figure are the same that we used in Figs.(7
and 8). Fig.(10) has a mirrored form. When x̂ > 0

we find that l̂ is a cut-off value, whereas for x̂ < 0 the
function φl does not have a cut-off and this function
continues to infinite. To the average laminar length
and the characteristic relation considering xi < 0, we
established a more general result [11]: If the system
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Figure 9: φl for the same test of Fig.(7). Eq.(13) is
represented by lines.
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l̂ l

Figure 10: φl for the same test of Fig.(8). Eq.(14) is
represented by lines.

verifies the following two assumptions: i) φ(0) 6= 0

and ii) dφ(x)
dx

∣∣∣
x=0

is bounded, then the function M(x)

can be approximated, near of x = 0, as M(x) = x/2
hence its characteristic relation will be l̄ ∝ ε−0.5. This
means that the uniform reinjection is not needed to get
the value −0.5 as the critical exponent.

5 Noise influence
In this section we study the noise influence on the sta-
tistical properties of intermittency, and we follow the
research published in [12]. It is clear that noise affects
all system dynamic, therefore it will be affect the RPD
function. We note that in the previos studies about of

Latest Trends in Circuits, Automatic Control and Signal Processing

ISBN: 978-1-61804-131-9 150



the local noise effect is usually assumed that the noise
strength σ is much smaller than ε. Here, we consider
a general process where this hypothesis is not neces-
sary. We apply our noisy theory to previous maps. For
instance, for type-II intermittency we transfor the map
(5) into the noisy map:

x′n+1 =

{
F (xn) + σξn xn ≤ xr
(F (xn)− 1)γ + σξn xn > xr,

(15)

ξn is a uniform distributed noise verifying that <
ξm, ξn >= δ(m − n) and < ξn >= 0. The noise
strength is given by σ. To keep x′n+1 in the unit inter-
val we modifies the the map as follows:

xn+1 =

{
|x′n+1| x′n+1 ≤ 1
|x′n+1| − 2mod(|x′n+1|, 1) x′n+1 > 1.

(16)
We can note that when σ = 0, we recover the previ-
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0

0.2

0.4

0.6

0.8

1

Xr

0l

Xn

Xn+1

γ =1

γ =2

γ =0.65
1

0
10

Figure 11: Map of Eqs.(15-16) with σ = 0 (hence it
is equal to map (5)) and ε = 10−3.

ously used map. Fig.(11) shows the reinjection map-
ping into the laminar region. The dashed arrow repre-
sents the noiseless trajectory. However, the trajectory
for the system (15-16), due to the noise, may spread
over a region enclosed by the solid lines. To analyze
the noise influence in type-III intermittency, we use
the following map:

xn+1 = −(1 + ε) xn − a x3n + d x6n sin(xn) + σξn,
(17)

If we consider a noiseles case (σ = 0), we recover the
map (9). As fist step we calculate the function M(x)
for the map (15-16) considering two cases: with and
without noise. The results are indicated in Fig.(12).
The functions M(x) for noise and noiseles tests are
smooth becuase the definition of M(x) smoothed the
data. For the noisy tests M(x) has different bahav-
ior on each side of xc and it can be approximated by
a piecewise linear function with two slopes. And the
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Figure 12: Numerical simulations of M(x) for the
map (15-16). The dashed line has slope 1/2. The
lines above the dashed one correspond to γ = 0.65.
The same values of noise strength is used for the two
lines below the dashed one, that correspond to γ = 2.
For all the cases ε = 0.001 is fixed and c = 0.1.

value xc depends on the noise intensity, σ. For x < xc
the slope of M(x) approaches 1/2, as we expect for
the uniform reinjection. However, for xc < x, the
slope of M(x) reaches a very similar value to the cor-
responding noiseless slope. For γ = 0.65 in the noisy
test the slope is m ≈ 0.61 and to the noiseless case
m ≈ 0.60. Then, in the region xc < x the noisy
RPD (NRPD) must have a similar form that the RPD
function. This is a very important property of M(x)
because by means of the noisy data analysis we can
obtain the RPD function for the noiseless case. We
note that noise acts on the complete system. How-
ever, it does not afects the function M(x) in the re-
gion x > xc. Then, on the right side of xc, the RPD
function is robust against the noise but in the region
x < xc the noise modifies the RPD. The noise influ-
ence, for x < xc, produces that the RPD aproaches to
the uniform reinjection, at least locally around x = 0.
For type-III intermittency, we find a similar behavior.
The main difference happens in the value of xc, that
in this case it is bigger. We start with a numerical cal-
culation of the function M(x). The results are ploted
in Fig.(13). We note that for values close to the ori-
gin (on the left of the arrows), the function M(x) ap-
proaches M(x) ≈ 0.5x, but for points on the right
hand side of the arrows we have M(x) ≈ mx where
the slope m is similar as to in the noiseless map. For
the map with type-III intermittency the effect of noise
on the function M(x) is stronger than for the map with
type-II intermittency because the transition from the
0.5 slope to a slope close to the noiseless test takes
place for bigger values of xc than for the type-II map.

5.1 NRPD in type II intermittency
To obtain an analytical expression for the NRPD, de-
noted by Φ(x), we analyse the effect of noise on the
reinjection trajectories, as it is described in Fig.(11).
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Figure 13: Function M(x) for the map Eq.(17). The
parameters are: c = 0.8, a = 1.1, d = 1.35,
ε = 10−4. Arrows show when M(x) change the 1/2
slope.

A trajectory withouth noise is indicated by a dashed
line, when this trajectory is perturbed by noise the
reinjection point can be palced inside of the inter-
val l0. That is, the noiseless density φ′(x) should be
transformed into a new density Φ(x) according to the
convolution: Φ(x) =

∫
φ′(y)G(x − y, σ)dy. Where

G(x, σ) is the probability density of the noise term
σξn in Eq.(15). For x > xc, the slope of the noisy
M(x) approaches the corresponding slope without
noise, and we can calculate the function φ(x) with-
out noise. These developments suggest that φ′(x) ≈
φ(x), where φ(x) = λ|x|α is the noiseless RPD. We
note that the parameters λ and α are the values for
the noiseless map. We introduce φ′(x) = λ|x|α in
the convolution integral to prove this assumption. As
noise source we used a random variable ξ in the inter-
val [-1,1], hence its probability density G in Eq.(15)
and (17) is given by G(x, σ) = Θ(x+σ)−Θ(x−σ)

2σ .
Where Θ(x) is the Heaviside step function. After
solving the integral, we can writte the NRPD function
as:

Φ(x) =
1

c1+α

(|x|+ σ)1+α − Sg(|x| − σ)||x| − σ|1+α

2σ
,

(18)
Sg(x) is the sign function. In Fig.(14) we compare
the results calculated by Eq.(18) with the numerical
simulations for different noise levels. We consider
the same values of m and α obtained from Fig.(12).
We observe a good agreement between the numeri-
cal simulations and the analytical evaluations. How-
ever, when the intensity of the noise is higher we find
differences of about 10 percent between the noise-
les slopes m obtained with and without noise data.
But, the power law exponential form of the RPD,
φ′(x) = λ|x|α, remains robust [12].
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Figure 14: NRPD for the map Eq. (15-16). a) c = 0.1,
γ = 0.65, σ = 0.03 and b) c = 0.1, γ = 2 and
σ = 0.01. Dots correspond to numerical data, Eq.(18)
is plotted as a solid line.

5.2 NRPD in type III intermittency
We show in the previous section that the noiseless
RPD for type-III intermittency follows a power law.
This law depends on the neighboring points of the
map maximum and minimum values, Eq.(17), [11].
In Fig.(15), we indicate using a dashed line the noise-
less trajectory of a point starting near the maximum
value of the map. When the noise affects the sys-
tem, this trajectory may spread over a region of some
width, denoted here by l0. We can observe that l0
will be stretched on the graph of the map by a suit-
able factor K, l1 = Kl0. The factor K depends
of the particular form of the map. To reach an ana-
lytical equation for Φ(x), we consider that the map
Eq.(17) can be represented by a composition of the
two maps: one of them corresponds to a noiseless
map x′n = −(1 + ε) xn − a x3n + d x6n sin(xn),
and the another is a new map xn+1 = x′n + σξn
We use here a similar argument that for type-II in-
termittency, and we consider that ρ′(x) is the invari-
ant density in a region close to the maximum of the
map without noise. Then, the noise influence on this
density can be obtained by means of the convolution
ρ(x) =

∫
ρ′(τ)G(τ − x, σ)dτ , where ρ(x) is the in-

variant density in the interval l0. Unlike to the anal-
ized type-II intermittency test, for this type-III inter-
mittency map, points placed on l0 are not directly
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Figure 15: Map of Eq.(17). Dashed line indicates the
effect of the map on a point near the maximum. Solid
lines represent the noise effect on the same point.

mapped on the laminar region. Therefore to obtain
the NRPD, we must follow the evolution of the den-
sity ρ(x) produced by the map (17) [12]:

Φ(x) =
1

c1+α

(|x|+K σ)1+α − Sg(|x| −K σ)||x|
2K σ

− K σ|1+α

(2K σ)c1+α

(19)
This expression is plotted in Fig.(16) showing agree-
ment with the numerical results.

6 Conclusion
In this paper we have presented a review of a new for-
mulation of intermittency theory. We have applied
this formulation to type-II and type-III intermittency
with and without noise effects [10, 11, 12]. We have
introduced a new RPD function for a broad class of
systems. To achieve this we have used the function
M(x) which is easy to calculate. We have found
that the function M(x) has a linear form. By means
of a numerical evaluation of the function M(x), we
have obtained the values of the parameters m and x̂.
With only theses two parameters, we provide a whole
description of the RPD. Once we obtained the RPD
function, we established analytical relations for the
probability of the laminar length, the average length,
and the characteristic relations. In all tests performed,
the numerical data and theoretical results have shown
a very good agreement. When x̂ > 0, the system has a
LBR and there is a cut-off value for the laminar phase
length. For x̂ < 0 the system has a more complex
RPD which is a linear combination of RPD describing
the case of x̂ > 0. This behavior modified the linearity

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0.4

0.6

0.8

1

1.2

1.4

1.6

Φ(x)

x 0.60.40.20−0.2−0.4−0.6

0.6

0.8

1

1.6

1.4

1.2

0.4

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0.4

0.6

0.8

1

1.2

1.4

1.6

0.60.40−0.4

0.6

1

1.6

1.2

0.4
−0.6 −0.2 0.2

0.8

1.4

Φ(x)

x

Figure 16: NRPD for two values of the noise strength
σ of the Eq.(17): a) σ = 0.02 and b) σ = 0.03. Dots
are numerical data whereas solid lines are given by
Eq.(19). The noiseless RPD is also plotted. The pa-
rameters are:c = 0.6, a = 1.1, d = 1.35, ε = 10−4.

of the function M(x). However, even in theses test,
the function M(x) provides us enough information to
completely determine the function φ(x). Finally, we
have investigated the noise effect on the RPD func-
tion. We have found that the new methodology de-
veloped to describe the noiseles reinjection is robust
against noise. Then, we can use the RPD to obtain
an analytical description of the NRPD in accordance
with numerical simulations. For the other hand, we
note that from the NRPD, obtained from noisy data,
we have a complete description of the noiseless sys-
tem.
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