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Abstract: This paper presents a hand biometric system for contact-less, platform-free sce-1

narios, proposing innovative methods in feature extraction, template creation and template2

matching. The evaluation of the proposed method considers both the use of three contact-less3

publicly available hand databases, and the comparison of the performance to two competi-4

tive pattern recognition techniques existing in literature: namely Support Vector Machines5

(SVM) and k-Nearest Neighbour (k-NN). Results highlight the fact that the proposed method6

outcomes existing approaches in literature in terms of computational cost, accuracy in human7

identification, number of extracted features and number of samples for template creation.8

The proposed method is a suitable solution for human identification in contact-less scenarios9

based on hand biometrics, providing a feasible solution to devices with limited hardware10

requirements like mobile devices.11

Keywords: Contactless Hand Biometrics, Invariant Feature Extraction, Security, Pattern12

Recognition, Image Processing, Hand Geometry, Unconstrained Biometrics13

1. Introduction14

At present, trends in biometrics are inclined to provided human identification and verification without15

requiring any contact with acquisition devices. The point of aiming contact-less approaches for biomet-16

rics regards the upward concerns with hygiene and final user acceptability.17
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Concretely, hand biometrics usually have made use of a flat platform to place the hand, facilitating not18

only the acquisition procedure but also the segmentation and posterior feature extraction. Consequently,19

hand biometrics is evolving to contact-less, platform-free scenarios where hand images are acquired in20

free air, increasing the user acceptability and usability.21

However, this fact provokes an additional effort in segmentation, feature extraction, template creation22

and template matching, since these scenarios imply more variation in terms of distance to camera, hand23

rotation, hand pose and unconstrained environmental conditions. In other words, the biometric system24

must be invariant to all these former changes.25

The presented method proposes a hand geometry biometric system oriented to contact-less scenar-26

ios. The main contribution of this paper is threefold: firstly, a feature extraction method is proposed,27

providing invariant hand measurements to previous changes; second contribution consists of providing28

a template creation based on hand geometric distances, requiring information from only one individual,29

without considering data from the rest of individuals within the database; finally, a proposal for template30

matching is proposed, minimizing the intra-class similarity and maximizing the inter-class likeliness.31

The proposed method is evaluated using three publicly available contact-less, platform-free databases.32

In addition, the results obtained with these databases will be compared to the results provided by two33

competitive pattern recognition techniques, namely Support Vector Machines (SVM) and k-Nearest34

Neighbour, often employed within the literature.35

Finally, the layout of this paper remains as follows: First of all, a literature review is carried out in36

Section 2. Secondly, the feature extraction method is described in Section 3.2, together with a description37

of the database involved in the evaluation (Section 4). Afterwards, the comparative evaluation and the38

corresponding results are presented in Section 5. Finally, conclusions and future work are introduced in39

Section 6.40

2. Literature Review41

Hand biometric systems have evolved from early approaches which considered flat-surface and pegs42

to guide the placement of the user’s hand [1–3], to completely platform-free, non-contact techniques43

were user collaboration is almost not required [4–7]. This development can be classified into three44

categories according to the image acquisition criteria [8]:45

• Constrained and contact based. Systems requiring a flat platform and pegs or pins to restrict hand46

degree of freedom [2,3].47

• Unconstrained and contact based. Peg-free scenarios, although still requiring a platform to place48

the hand, like a scanner [6,9].49

• Unconstrained and contact-free. Platform-free and contact-less scenarios where neither pegs nor50

platform are required for hand image acquisition [5,10].51

In fact, at present, contact-less hand biometrics approaches are increasingly being considered because52

of their properties in user acceptability, hand distortion avoidance and hygienic concerns [11,12], and53

their promising capability to be extended and applied to daily devices with less requirements in terms of54

image quality acquisition or speed processor [9,10,13].55



Version January 8, 2012 submitted to Entropy 3 of 21

In addition, hand biometrics gather a wide variety of distinctive aspects and parameters to identify56

individuals, considering whether fingers [7,14,15], hand geometric features [2,3,6,15,16], hand contour57

[2,10,17], hand texture and palmprint [8,18] or some fusion of these former characteristics [7,14,19].58

More specifically, geometrical features have received notorious attention and research efforts, in com-59

parison to other hand parameters. Methods based on this strategy (like widths, angles and lengths) re-60

duce the information given in a hand sample to a N -dimensional vector, proposing any metric distance61

for computing the similarity between two samples [20].62

In opposition to this method, several schemes are proposed in literature applying different proba-63

bilistic and machine learning techniques to classify properly user hand samples. The most common64

techniques are k-Nearest Neighbours [21], Gaussian Mixture Models [3,22], naı̈ve Bayes [21] or Sup-65

port Vector Machines [9,18,21], which is certainly the most extended technique in hand biometrics due66

to their performance in template classification.67

Nonetheless, these latter strategies present several drawbacks in comparison with distance-based ap-68

proaches in terms of computational cost and efficiency, since probabilistic-based strategies require other69

user samples to conform an individual template. In other words, systems based on a classifier approach70

are trained for each of the enrolled persons, requiring samples from other enrolled individuals for a sep-71

arate classification. This fact may become a computational challenge, for large-population systems [20].72

However, in terms of individual identification performance, they certainly succeed in relation to current73

distance-based methods.74

An overview on recent hand biometrics systems is presented in Table 1. This table presents the75

relation between the features required for identification, the method proposed, the population involved76

together with the results obtained, in terms of Equal Error Rate (EER).77

As hand biometrics tends to contact-less scenarios, hand image pre-processing increases in difficulty78

and laboriousness, since less constraints are required concerning background, i.e. the part behind the79

hand.80

Several approaches in literature tackle with this problem by providing non-contact, platform-free81

scenarios but with constrained background, usually employing a monochromatic color, easily distinctive82

from hand texture [23]. More realistic environments propose a color-based segmentation, detecting hand-83

like pixels either based on probabilistic [16] or clustering methods [18,24]. Although, the constraints on84

background are less restrictive in this case, the performance of this segmentation procedure still lacks in85

accuracy.86

However, a feasible solution for this latter scenario is based on an acquisition involving short distance87

to sensor. This approach considers the use of infrared illumination [9,18], due to the fact that infrared88

light only lighten close-to-camera regions, avoiding further regions (background) to be illuminated and89

therefore not acquired by the infrared camera.90

Most recent trends in hand segmentation consider no constraint on background, proposing more ef-91

ficient approaches based on multiscale aggregation, providing promising results in real scenarios [24].92

This scenario is clearly oriented to the application of hand biometrics in mobile devices.93

Moreover, hand biometrics also consider different acquisition modalities, namely 3D data acquisition94

[14,25], infrared cameras [9,18], scanners [6] or low-resolution acquisition devices [10,13].95
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Table 1. Literature review on most recent works related to contact-less hand biometrics
based on hand geometry. This table presents the relation between the features required for
identification, the method proposed, the population involved together with the results ob-
tained, in terms of Equal Error Rate (EER).

Year Ref. Features Method Population
Size

EER
(%)

2007 [5] 5-35 distances Projective invariants 23 2.11
[21] 23 distances Entropy Discretization

and SVM
100 5

[4] 15 hand distances SVM 18 8
[26] 5 distances AAM 18 5

2008 [18] 30-40 finger widths SVM 20-30 4.2-6.3
[27] 15 graph distances DBNN 250 0.89
[16] Palmprint Gabor Filters and SVM 49 1.7

2009 [7] Zernike Descriptors Fusion SVDD 86 1.5
[14] 2D and 3D features Savitzky-Golay filters 177 2.6
[10] Contour DTW alignment 45 3.7
[28] 40 distances SVM 260 0.0035-

5.7
2010 [15] 30 distances and angles Correlation 50 4.2

[25] 2D and 3D palmprint
and geometry

Surface Code 114 0.71

Best results in Table 1 are achieved by Rahman et al. [27] and Kanhangad et al. [25]. The former96

work consists of applying Distance Based Nearest Neighbour (DBNN) and Graph Theory to both feature97

extraction and feature comparison. In contrast, the latter work presents a new approach to achieve98

significantly improved performance even in the presence of large hand pose variations, by estimating the99

orientation of the hands in 3D space and then attempting to normalize the pose of the simultaneously100

acquired 3D and 2D hand images.101

As a conclusion, contact-less hand biometrics is receiving an increasing attention in recent years, and102

many aspects remain unresolved such as invariant feature extraction or hand template creation.103

3. Methodology104

A general biometric system involves the following steps, presented in Figure 1:105

• Data Collection module is dedicated to acquired data from the biometric sensor.106

• Signal Processing module involves both the pre-processing step to provide a precise segmentation107

and the creation of the template.108
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• Data Storage module stores the template, protected to ensure the biometric information is not109

compromised.110

• Decision module provides the resolution on the identity of an individual given the template and111

the data collected previously.112

The contribution of this paper is focused on the Signal Processing module and Decision module,113

defining geometric features invariant to changes like distance to camera, hand rotation or hand pose,114

together with the creation of a template requiring data from one single individual instead of using data115

from the whole biometric database. Concerning the Decision module, this paper proposes a template116

matching method, which outperforms competitive pattern recognition techniques like k-NN and SVM117

(Section 5).118

Figure 1. Diagram of a general biometric system.

3.1. Hand image acquisition and pre-processing119

Contact-less biometrics impose on users almost no constraints in terms of distance to camera, hand120

orientation and so forth, implying a demanding pre-processing stage in terms of segmentation and con-121

tour extraction accuracy. This step is essential for a posterior precise feature extraction, and the whole122
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hand biometric system relies strongly on this prior procedure. In addition, the proposed hand image123

acquisition contains no specific constraints on the characteristics of the camera124

The pre-processing proposed is independent from the database, in other words, there are no specific125

strategies for every database. In addition, the pre-processing method contains several steps, briefly126

described as follows:127

• Segmentation, which consists of isolating hand from background precisely.128

• Finger classification, carried out after segmentation process, it consists of identifying each finger129

(index, middle, ring or little) correctly with independence of previous possible changes (rotation,130

hand orientation, pose and distance to camera).131

• Valleys and tips detection, essential in order to provide accurate mark points from which features132

can be extracted.133

• Left-Right hand classification, based on the fact that an individual can provide any hand, and the134

system must firstly classify the hand. Notice that without this method, fingers from left hand could135

be compared to fingers from right hand, resulting in errors in identification.136

After introducing the main parts of the pre-processing stage, each step is explained more in detail.137

Firstly, concerning segmentation, a method based on gaussian multiscale aggregation [24,29] was se-138

lected based on their properties of linearity with the number of pixels and segmentation accuracy. The139

proposal of this method is justified since the biometric evaluation will consider three different databases140

with different backgrounds and image specifications, and the multiscale aggregation strategy can provide141

an accurate segmentation for each database, independently on their acquisition characteristics (illumina-142

tion condition, backgrounds, color or grayscale image and so forth).143

This method provides a binary image as a result of the segmentation procedure, indicating which144

pixels correspond to hand, and which pixels to background. This binary image will be used for contour145

and feature extraction in Section 3.2. A deep understanding and explanation of this method is far beyond146

the scope of this paper.147

Afterwards, fingers are split from the segmented hand in order to facilitate their classification. Math-148

ematically, let H be the result provided by segmentation procedure (Figure 2(a)). Applying an opening149

morphological operator [30] with a disk structural element of size 40 will cause fingers to disappear,150

remaining only the part corresponding to palm. This image is named Hp (Figure 2(b)), since it represent151

those pixels corresponding to palm. Although this operation is very severe, it allows conserving those152

region blobs which are very dense in terms of pixels, being suitable for deleting prominent blobs like153

fingers from hand [7].154

GivenH andHp, it is straightforward to calculateHf which represents the region blobs corresponding155

to fingers (five fingers, Figure 2(c)), by the following relation (Equation 1)156

Hf = H · H̄p (1)

being · an operator indicating a logical AND operation between H and the complementary of Hp.157

In case, image Hf contained some spurious blobs, they are erased by selecting the five most prominent158

blobs in image.159
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Figure 2 provides a visual example of the fingers isolation method.160

Figure 2. Fingers isolation steps: (a) represents the original segmented image, H; (b) the
result after applying morphological operator (opening, disk 40),Hp; (c)Hf represents fingers
after subtracting Hp to H .

(a) (b) (c)

Afterwards, five blobs are contained inHf (Figure 2) one of each corresponding to each finger. In case161

more than five blobs are obtained, an opening morphological operator based on a small disk structural162

element (size 5) will erase those small and undesired region blobs, with lack of interest for a finger163

classification.164

In order to distinguish among fingers, all of them are classified according to two criteria: the ratio165

between blob length and width (eccentricity) and area (number of pixels within blob).166

The blob which verifies to have the lowest values in both criteria is the little finger. The next finger167

with lower area is thumb, and ring, middle and index are classified according to the distance between168

their centroids to previous calculated fingers. In other words, that blob whose centroid is closer to little169

is classified as ring finger, for instance. A similar criteria was proposed by [6].170

Having the finger blobs calculated, tip detection consists of calculating the finger extrema of each171

blob. In other words, obtain the furthest pixel in each blob in relation to a reference point. In this paper,172

such point coincides with the each finger centroid, due to their geometric properties of being located in173

the middle of each finger. Others points could be the hand centroid [10], or minimum/maximum points174

in contour curve [20].175

Finally, since there are five fingers blobs, this method leads to five tips.176

In contrast to tip detection, obtaining valleys requires more effort. Let c be the hand contour obtained177

from the edge blob in H . Let tk be the finger tip corresponding to finger k, with k = {t, i,m, r, l}178

meaning thumb, index, middle, ring and little respectively. In addition, ζk = c(tk, tk+1) is the edge179

portion from tip tk and tk+1. Valley points verify to be the closest point to hand centroid hc. However,180

only little-ring, ring-middle and middle-index valleys support this criterion. The valley corresponding to181

index-thumb will be treated separately.182

Then, the former valleys are calculated according to Equation 2183

vk = arg min
k

(||ζk − hc||) (2)
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Notice that valley detection is a considerable challenging task, given that some fingers could be to-184

gether one to each other, making difficult the valley point calculation.185

Finally, last step consists of classifying the hand as left or right for a proper posterior feature compar-186

ison, with the aim of avoiding features from the same finger but from different hands.187

Thus, hand can be classified as right or left by using three points: tt, tl and hc. Two vectors are188

considered, joining hc to each point tip tt and tl, which are represented by vT and vL respectively. These189

former vectors are on the same plane, so that their cross-vector product will be normal to that plane.190

There exist a direct relation between right-left hand classification and vector vT × vL. The sign of the191

z component of vT×vL is associated with right hand, in case the sign is positive and left hand, otherwise.192

In addition, this image pre-processing achieved second position in the Hand Geometric Points Detec-193

tion International Competition HGC2011 [31].194

3.2. Feature Extraction195

The proposed method extracts features by dividing the finger from the basis to the tip in m parts.196

Each of these former parts measures the width of fingers, based on the euclidean distance between two197

pixels. Afterwards, for each finger, the m components are reduced to n elements, with n < m, so that198

each n component contains the average of
⌊
m
n

⌋
values, gathering mean value, µ and standard deviation199

σ. In other words, template is extracted based on an average of a finger measures set, being more reliable200

and precise than one single measure. This approach provides a novelty if compared to previous works in201

literature, where more simple measures were considered [2,3,21].202

Thus, the template can be mathematically described as follows. Let F = {fi, fm, fr, fl} be the set of203

possible fingers, namely index, middle, ring and little, respectively.204

Each finger fk is divided into m parts from basis to top, resulting in the set of widths Ωfk =205

{ω1, . . . , ωm}. From set Ω, the template is represented by ∆fk = 1
δ̄fk

{
δfk1 , . . . , δ

fk
n

}
, where each δfkt206

is defined as the average value of at least bm
n
c components in Ωfk . Notice that this division could imply207

that last element δn could be the average of more than
⌊
m
n

⌋
components in order to ensure that every208

element in Ωfk is considered to create ∆fk . In addition, δ̄fk represent the width arithmetic average,209

providing the normalization for vector ∆fk .210

Therefore, each hand sample is represented by a M = 4 × n components vector ∆ = {∆fk} with211

k ∈ {i,m, r, l}, where the initials stand for index, middle, ring and little finger. Thumb is not considered212

due to its great variability in terms of movement, flexibility and orientation [18].213

The width average normalization proposed for each ∆fk attempts to provide independence on several214

acquisition changes like hand rotation, distance to camera and invariance to small differences in pose. In215

contrast to the normalization provided in the literature based on finger length [3,18,20], a normalization216

oriented to average width contains the same properties in terms of invariability against distance to camera217

and rotation, but with the benefit of providing also independence on pose position respect to camera.218

In order to evaluate the performance of both normalization strategies, four scenarios are proposed219

with different changes in acquisition. First, features are extracted from samples in natural pose, as220

stated in Section 3.1. Second scenario considers in-plane rotation changes, within the acquisition plane.221

Third scenario states different separation distance between hand and camera, and finally, changes in pose222

orientation. These changes cover all possible degrees of freedom in hand contact-less approaches.223
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Figure 3. Mean and standard deviation of the difference between hand templates in different
evaluation conditions (natural pose, changes in rotation, separation between hand and camera
and pose orientation). The normalization based on average width provides less variation
intra-class in every aspect than the finger length normalization.

0
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Figure 3 represents the intra-class variation between features of same individuals in terms of euclidean224

distance, in four different scenarios, for both normalization approaches: length (represented in green)225

and average width (represented in clear blue). Average value and standard deviation of the variation of226

extracted features in previous four scenarios are gathered, supporting the affirmation that average width227

normalization provides more invariant features to previous changes.228

3.3. Template Definition229

This section describes the creation of the hand template considering only samples (hand feature vec-230

tors) from a single individual, in contrast to most extended approaches in literature which propose the231

use of samples of all enrolled individuals on the system to create individual templates [20].232

Let W be a N ×M matrix containing N rows vectors of M components (columns) representing the233

N required samples to conform the template.234

This matrix W is created for each individual, and it is represented by W = {W1, . . . ,WN}, where235

each Wi is a row vector containing a total of M components, coinciding with the number of distances236

contained in each extracted vector from a hand acquisition.237

Let W̃ be a
(
N
2

)
×M matrix, representing the absolute euclidean difference between every pair of238

row vectors in W . In other words, W̃ = {|W1 −W2|, |W1 −W3|, . . . , |WN−1 −WN |}, gathering a total239

of
(
N
2

)
possible pairs. Matrix W̃ represents to some extent the variation between hand acquisitions for240

each template position.241

In fact, matrices W and W̃ lead to the definition of two parameters, which are µW and σW̃ , namely242

the average of extracted features and the standard deviation of the difference variation. These latter243

parameters attempt to collect the behaviour of all the vectors contained in W and the similarity between244



Version January 8, 2012 submitted to Entropy 10 of 21

previous vectors, provided by the vector pairwise likelihood. Based on these characteristics, these vector245

parameters are essential to create the template.246

More in detail, operators µ and σ are functions applied to matrices, defined as follows in Equations 3247

and 4 respectively, ∀ p, q ∈ N, assuming, for generalization sake, that matrix contains real values (R).248

µ : Mp×q(R)→M1×q(R)

M 7→ µM =

{
1

p

p∑
k=1

Mk,j

}
∀j∈{1,...,q}

(3)

σ : Mp×q(R)→M1×q(R)

M 7→ σM =


√√√√1

p

p∑
k=1

(
Mk,j −

1

q

q∑
i=1

Mi,j

)
∀j∈{1,...,q}

(4)

In addition, the template will consider also those k < M components which remain less invariant249

along different samples, i.e., template will discard those components whose variability is dissimilar to250

some extent. This criterion is gather by vector π1×M defined as251

πi =

1, if σW̃i ≤ µσ
W̃

0, otherwise
(5)

where σW̃i corresponds to the ith component of vector σW̃ , and µσW̃ is the average of vector σW̃ as252

defined in Equation 3.253

Therefore, π contains a ’1’ value in those positions where the feature variability is under the average254

of the variability, indicating which distances remain more invariant over acquisition.255

Finally, based on this vector π, a last parameter is defined, which will be useful when comparing a256

sample (original or impostor) to a provided template. This parameter is represented by γ, and it is defined257

as the average value of the first standardized moments applied to non-null positions in π. In other words,258

γ =
1

M

(
µW̃

σW̃
πT

)
=

1

M

M∑
i=1

µW̃i πi

σW̃i
(6)

where πT makes reference to the transposition of matrix π. Furthermore, parameter γ can be regarded259

as the inverse of the coefficient of variation [30], providing a dimensionless number to compare samples260

with widely different means.261

Finally, the hand template associated to a specific user is defined asH = (µW , σW̃ , π, γ).262

3.4. Matching based on the hand distances template263

Provided the template H, which collects global information from samples of a same individual, it264

is mandatory the definition of a likelihood function able to indicate to what extent an acquire sample265

(impostor or genuine) is similar to previous templateH.266
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Thus, given a hand feature vector h1×M of M components (as defined in Section 3.2), the likelihood267

function is defined as the similarity probability p(h|H) given by the following relation (Equation 7):268

p(h|H) =
1

M
e−αHH

T

(7)

defining H as269

H =
1

γ

(
h− µW

σW̃
◦ π
)

=
1

γ

(
M∑
i=1

πi
hi − µWi
σW̃i

)
(8)

where operator A ◦ B = [aijbij]∀i,j is defined as the Hadamard product, an entrywise multiplication270

for any two matrices A,B ∈ Mp×q(R), ∀ p, q ∈ N. Furthermore, parameter α is a global value set271

experimentally to α = 0.01 for the whole biometric system.272

This probability p(h|H) is within the interval [0, 1], indicating that sample h belongs to user with273

templateH as p(h|H)→ 1, and vice versa.274

Therefore, the biometric verification based on this approach can be carried out by stating a threshold275

th ∈ [0, 1], so that an individual (with templateHk) accesses the system providing a sample hk, then the276

user is correctly verified (authenticated) if p(hk|Hk) ≥ th. Otherwise, the user is rejected.277

Similarly, the identification is considered by considering same previous threshold th, so that, provided278

a sample of a user, hk, the system must decide whom the sample belongs to, or, whether the user is not279

enrolled in the system. In other words, if arg
i

(max p(hk|Hi) ≥ th) determines that i = k then the sample280

hk is properly identified, otherwise the user is not enrolled in the system.281

Some approaches in literature fail in associating sample hk with a non-existing profile, since they282

provide the most likelihood an similar class, even if the sample provided by hk corresponds to a non-283

registered individual [20].284

As a matter of fact, a trade-off must be achieved for th for the sake of an accurate performance in285

terms of false rejection and false acceptance [1].286

This effect will be discussed under the result section (Section 5).287

4. Databases288

The proposed scheme in Sections 3.2 and 3.3 are evaluated considering three public databases.289

The first database contains hand acquisitions of 120 different individuals of an age range from 16 to290

60 years old, gathering males and females in similar proportion.291

With the aim of a contact-less approach in hand biometrics, hand images were acquired without292

placing the hand on any flat surface neither requiring any removal of rings, bracelets or watches. Instead,293

the individual was required to open his/her hand naturally, so the mobile device (an HTC) could take a294

photo of the hand at 10-15 cm of distance with the palm facing the camera.295

This acquisition procedure implies no severe constraints on neither illumination nor distance to mobile296

camera, being every acquisition carried out under natural light. In addition, it is a database with a huge297

variability in terms of size, skin color, orientation, hand openness and illumination conditions. In order to298

ensure a proper feature extraction, independently on segmentation, acquisitions were taken on a defined299

blue-coloured background, so that segmentation can be easily performed, focusing on hands. Both300
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hands were taken, in a total of two sessions: During the first session, 10 acquisitions from both hands301

are collected; second session is carried out after 10-15 minutes, collecting again 10 images per hand.302

The image size provided by the device is 640x340 pixels. This first database is publicly available at303

www.gb2s.es. This database will be referred in this paper as GB2S database.304

Second database is named ’IIT Delhi Palmprint Image Database version 1.0’ [32], and it is a palmprint305

image database consisting of a hand images collection from the students and staff at IIT Delhi, New306

Delhi, India. This database has been acquired in the IIT Delhi campus during July 2006 - Jun 2007307

using a simple and touchless imaging setup. All the images are collected in the indoor environment308

and employ circular fluorescent illumination around the camera lens. The currently available database309

is from 235 users, all the images are in bitmap format. All the subjects in the database are in the age310

group 12-57 years. Seven images from each subject, from each of the left and right hand, are acquired in311

varying hand pose variations. Each of the subject is provided with live feedback to present his/her hand312

in the imaging region. The resolution of these images is 800x600 pixels. This database will be referred313

in this paper as IITDelhi database.314

Third database acquisition setup is inherently simple and does not employ any special illumination315

nor does it make use of any pegs to cause any inconvenience to users. The Olympus C-3020 digital316

camera (1280 x 960 pixels) was used to acquire both images from 287 individuals, with ten samples per317

user. The users were only requested to make sure that their fingers do not touch each other and most of318

their hand (back side) touches the imaging table. A further explanation of this database can be found in319

[33]. This database will be referred in this paper as UST database.320

As a conclusion, these databases contain different acquisition procedures (population size, distance321

to camera, different illumination, hand rotation and the like) being a suitable evaluation frame for testing322

the proposed method.323

5. Results324

A complete evaluation of a biometric system must entail different aspects such as performance/identification325

accuracy, trade-off between false match rate and false non-match rate and dependency on the number of326

training samples and features. Given the variety of aspects to evaluate, this section is divided into the327

following parts:328

• Evaluation criteria for biometric systems329

• Comparative evaluation to SVM and k-NN employing the proposed databases330

• Study of performance dependency on the number of training samples331

• Study of performance dependency on the number of features332

• Study of the improvement provided by the feature extraction method333

In addition, temporal aspects and computational cost evaluation will be carried out within each of the334

previous presented sections, provided the following computer specifications: a PC computer @2.4 GHz335

Intel Core 2 Duo with 4GB 1067 MHz DDR3 of memory, considering that the proposed method was336

completely implemented in MATLAB.337
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Table 2. FTE and FTA rates for each database. These values will be considered during the
calculation of FAR, FRR and EER rates in the evaluation.

GB2S IITDelhi UST
FTE (%) 0 0.5 0
FTA (%) 0.4 0.7 0.2

5.1. Evaluation Criteria for Biometric Systems338

There exist several types of testing for a biometric system considering a wide variety of aspects such as339

reliability, availability and mantainability; security, including vulnerability; conformance; safety; human340

factors, including user acceptance; relation between cost and benefit or privacy regulation compliance.341

The purpose of this section is to conduct a technical performance testing in terms of error rates. More in342

detail, the proposed assessment involves a technology evaluation, defined as an offline evaluation of one343

or more algorithms for the same biometric modality using a pre-existing or specially collected corpus of344

samples.345

The evaluation criteria are defined by the following rates [12,34]:346

• False-Non Match Rate (FNMR): Proportion of genuine attempt samples falsely declared not to347

match the template of the same characteristic from the same user supplying the sample.348

• False Match Rate (FMR): Proportion of zero-effort impostor attempt samples falsely declared to349

match the compared non-self template.350

• Failure-to-enroll rate (FTE): Proportion of the population for whom the system fails to complete351

the enrollment process.352

• Failure-to-acquire (FTA): Proportion of verification or identification attempts for which the system353

fails to capture or locate and image or signal of sufficient quality.354

• False Reject Rate (FRR): Proportion of verification transactions with truthful claims of identity355

that are incorrectly denied. Moreover, FRR is defined as follows: FRR = FTA+FNMR×(1-FTA)356

• False Accept Rate (FAR): Proportion of verification transactions with wrongful claims of identity357

that are incorrectly confirmed. Furthermore, FAR is calculated as follows: FAR = FMR×(1-FTA)358

• Equal Error Rate (EER): Rate at which both FAR and FRR coincides. In general, a system with359

the lowest EER is most accurate.360

Table 2 contains the FTE and FTA rates for the three proposed databases: GB2S, IITDelhi and UST.361

These values will be taken into account in order to obtain FAR, FRR and EER rates in each evaluation362

scenario, as defined previously.363

The behaviour of these latter parameters will be used for the evaluation across different databases,364

methods and dependency with variable parameters presented in Section 3.365
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Table 3. Equal Error Rate for each database and method. The results obtained with GB2S
database are worst in comparison to the other databases since GB2S database present more
variability in terms of hand rotation, distance to camera and environmental conditions. These
results were obtained considering 4 samples for training, and 20 features per finger, i.e.
M = 80.

GB2S IITDelhi UST
k-NN 4.3±0.2 3.9±0.2 3±0.1
SVM 3.1±0.1 2.4±0.1 2.1±0.2

Proposed 2.5±0.2 2±0.2 1.4±0.1

5.2. Comparative evaluation to SVM and k-NN employing the proposed databases366

The proposed method will be compared in terms of technical evaluation [35] to two competitive pat-367

tern recognition techniques, namely Support Vector Machines (SVM) and k-Nearest Neighbour (k-NN)368

[21]. Although a wide explanation of these approaches is beyond the scope of this paper, some con-369

cerns must be taken into account with reference to the manner both approaches carry out classification.370

Both SVM and k-NN create a template based on information from other individuals, in contrast to the371

proposed template method, where only samples from a single individual are required to conform the372

template.373

In addition, there exist another difference concerning the similarity score provided by these methods.374

As stated in previous Sections 3.3 and 3.2, the similarity score measures the similitude between a375

template and a collected sample. The similarity score in the SVM is considered as the distance to the376

corresponding hyperplane associated to the most likely class. Likewise, the similarity score in the k-NN377

is the minimum distance associated to an element within the corresponding class. In these experiments,378

k coincides with 3, providing a major voting selecting of the corresponding class, and SVM employs379

linear kernel functions. This SVM and k-NN configurations are justified since it is the most suitable380

value compromising both identification performance and computational cost.381

Table 3 presents the Equal Error Rates obtained for each method (k-NN, SVM and proposed) in382

relation to the three employed databases in the evaluation (GB2S, IITDelhi and UST).383

This table shows that SVM overcomes k-NN in terms of EER but the proposed algorithm improves384

the results obtained by both pattern recognition technique. The results obtained with the GB2S database385

are higher than those obtained with the other databases, since GB2S database contains more variability386

in terms of hand rotation, pose, distance to camera and environmental conditions (e.g., illumination).387

Furthermore, performances of each method are provided by means of ROC (Receiver Operating388

Curve) curves [5,32], indicating the behaviour of the overall system. Concretely, Figure 4 presents the389

results of the three methods (proposed, k-NN and SVM) for the database GB2S. In addition, Figure 5390

presents the results of the three methods (proposed, k-NN and SVM) for the databases IITDelhi (Figure391

5 (a)) and UST (Figure 5 (b)).392

Both Figures 4 and 5 illustrate that the proposed method improves the performance obtained by the393

other two methods along three contact-less databases.394
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Figure 4. ROC curves for the proposed method in comparison to k-NN and SVM, using
GB2S database. These results were obtained considering 4 samples for training, and 20
features per finger (M = 80).
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Figure 5. ROC curves for the proposed method in comparison to k-NN and SVM, using
IITDelhi (a) and UST (b) databases. These results were obtained considering 4 samples for
training, and 20 features per finger (M = 80).
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5.3. Study of performance dependency on the number of training samples395

Biometric systems provide more precise results when more samples during the enrollment are ac-396

quired. The number of these samples coincides with the number of samples used to train the biometric397

system. Therefore, the study of the dependency between the performance of the whole system and the398

number of training samples is essential since an increment of the training samples will lead to an incre-399

ment in performance, at expense of a diminution on the user acceptance and comfortability [11,12,35].400

The performance of a biometric system is measured in terms of Equal Error Rate (EER) as defined in401

Section 5.1. The results are presented in Figure 6 (a), where the variation of EER is presented along the402

number of training samples for each database. Due to the different number of samples per individual (7403

for IITDelhi, 10 for UST and 20 for GB2S), the maximum number of training samples for IITDelhi is 6404

and for UST is 9. In addition, Figure 6 was obtained fixing the number of extracted features to 20 per405

finger, i.e. M = 80.406

However, an increase in the number of training samples to create the template results in an increment407

of the time. Figure 7 (a) provides the relation between time and number of training samples to extract408

the template. The proposed approach needs much less time to create the template since only considers409

samples from a single user, in contrast to SVM or k-NN where the template must consider samples from410

other users. Similarly, the values presented in Figure 7 were obtained fixing the number of extracted411

features to 20 per finger.412

5.4. Study of performance dependency on the number of features413

Together with the number of training samples, the number of features (distances) extracted from each414

hand is strongly related to the overall system performance. An increment on the number of features415

results in an increment of the performance, as well as in an increment of the computational cost.416

Figure 6 (b) contains the performance dependency on the number of features of the proposed method417

for the three databases: GB2S, IITDelhi and UST. This evaluation compares the evolution of the Equal418

Error Rate (EER) in relation to the number of features extracted for each hand.419

In contrast, the computational cost increases substantially in relation to the number of features. More420

in detail, the computational cost contains both the time required to train the biometric system and the time421

needed to carry out the comparison. The latter time is negligible provided the computer specifications422

where experiments are carried out, since comparing a M -dimensional vector with the three approaches423

requires almost no time in comparison to other steps such as segmentation, feature extraction or the424

training of the biometric system.425

In contrast, the number of features increases the processing time during the training. Figure 7 (b)426

gathers the behaviour of the training time for the three systems (template-based, SVM and k-NN), in427

relation to the number of extracted features.428

The results obtain in both Figures 6 (b) and 7 (b) were obtained fixing the number of training samples429

to 4, and considering only the GB2S database, assuming that similar results will be obtained for the other430

two databases.431
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Figure 6. Comparative Equal Error Rate (EER) variation in relation to number of training
samples to create the template and the number of features per finger, for the three databases:
IITDelhi, UST and GB2S.
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Figure 7. Comparative time variation in relation to number of training samples to create the
template and the number of features per finger, for the proposed method, SVM and k-NN.
Time is measured in seconds.
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Table 4. Comparative study of the improvement achieved by the proposed feature extraction
method for each pattern recognition method (proposed, k-NN and SVM). The improvement
achieved by the proposed method is remarkable. These results were obtained considering 4
samples for training, and 20 features per finger, i.e. M = 80.

Standard Method [2,3] Proposed Method
k-NN 7.1 ± 0.2 4.3±0.2
SVM 6.3 ± 0.2 3.1±0.1

Proposed 4.8 ± 0.1 2.5±0.2

5.5. Study of the improvement provided by the feature extraction method432

Apart from template creation, another innovative contribution of this paper consists of providing a433

feature extraction as described in Section 3.2.434

Table 4 gathers the results obtained applying the proposed method and standard width feature extrac-435

tion [2,3]. It shows that the use of this feature extraction method decreases the EER for each pattern436

recognition method, obtaining a remarkable improvement compared to standard extraction methods.437

In addition, results presented in Table 4 where obtained by using the GB2S database. It is not difficult438

to assume that the feature extraction method conserves its properties, regardless the database.439

Finally, the number of training samples was 4 and the number of feature extracted was also 20 per440

finger, as in all the evaluation scenarios.441

6. Conclusions and Future Work442

This paper has presented a biometric system based on hand geometry oriented to contact-less and443

platform-free scenarios. The contribution of this paper consisted of three innovative aspects: the pro-444

posal of a feature extraction method, invariant to distance to camera, hand rotation, hand pose and445

environmental conditions; the creation of a template involving only data (features) from one single indi-446

vidual; and a template matching able to minimize the intra-class similarity variation and maximize the447

inter-class likeliness.448

The evaluation was carried out with three publicly available contact-less, platform-free databases,449

comparing the results obtained to two competitive pattern recognition techniques, namely Support Vector450

Machines (SVM) and k-Nearest Neighbour (k-NN), widely employed within the literature.451

The results obtained show that the feature extraction method is able to provide invariant to changes452

features. In fact, the proposed method has achieved the second position in the Hand Geometric Points453

Detection International Competition HGC2011.454

The template proposal only considers features from an individual. In other words, the template does455

not require information from the individuals contained on the rest of the database. This template creation456

not only reduces the computational cost of the enrollment procedure but also it allows biometric systems457

of one single individual, oriented to applications in mobile devices, for instance.458

In fact, the use of both the feature extraction method and the template creation decreases remarkably459

the Equal Error Rate of the system, regardless the database involved. In addition, the feature extraction460
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method improves the performance of the three compared approaches: the proposed method, SVM and461

k-NN. A further comparison to other existing feature extraction methods remains as future work.462

Finally, the template matching proposed outcomes the presented pattern recognition techniques SVM463

and k-NN in terms of identification and verification performance. This template matching only consid-464

ers those positions within the template with less intra-class variation, instead of comparing the whole465

template.466

In general, the low computational cost required with this approach, together with the accurate per-467

formance in human identification makes of this proposed method a suitable scheme for devices with468

low hardware requirements, and its unconstrained and contact-less acquisition procedure can extend the469

applicability of this proposed system to a wide number of scenarios. In addition, there is no constraint470

on the quality of the camera during the acquisition, since one of the database was obtained with a mobile471

phone.472

Considering future work, an implementation of this method in mobiles remains as future work to-473

gether with its corresponding evaluation in real environments. Furthermore, more contact-less databases474

will be regarded for evaluation, together with the exploitation of both hands in a fusion scheme to im-475

prove identification and verification. Finally, an in depth evaluation of the effect of acquisition changes476

(distance-to-camera, hand rotation and openess variations) in identification performance will be consid-477

ered.478
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