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Traditional masonry is today an unusual material, it is 
alien to us at the beginning to the 21st. century. The 
usual assumptions for structural materials: homo- 
geneity, isotropy, elastic constants (Young's modulus, 
Poisson's coefficient), etc., do not apply or are irrele- 
vant in respect to masonry. 
Most important, though masonry presents a good 
strength in compression, is very weak to tension; its 
behaviour is 'unilateral'. This fact has paramount 
importance in masonry behaviour. Besides, real 
masonry structures are cracked. A different approach 
is needed and it was used indeed when this type of 
structures were designed during the 18th. and 19th. 
centuries. Since the 1960's Professor Heyman has 
rigorously introduced the theory of masonry struc- 
tures within the frame of Limit Analysis, and has 
clarified many aspects of the analysis of masonry 
architecture. 

To teach a new theory (in fact a forgotten one) 
presents serious difficulties. Not the least is that the 
listeners (students, practicing architects or engineers, 
even professors ...) must 'forget' the usual frame of 
reference (elastic analysis, framed or trussed struc- 
tures, etc..) and contemplate, as did for example the 
gothic masters, a masonry building as a "heap of 
stones" in equilibrium under its own weight. But, one 
can add to his or her knowledge, but not subtract to 
it. In fact, we must reconcile the intuition of the old 
master builders with the teachings of modern struc- 
tural theory. 

The theory can be studied but, how to teach the 

intuition, this feeling of the behaviour which has a 
fundamental importance in structural analysis and 
design? After more than fifteen years of teaching 
masonry structural behaviour I have found the use of 
physical models of extraordinary help. 

I do not mean the complicated models of labora- 
tory, made by skilled workmen, but very simple mod- 
els that the students may replicate at home for exper- 
iment, study and reflection. I use normally only two 
types of models. 

The first is Hooke's hanging chain. The second is 
a 'plane' block (voussoir) model made of thick card- 
board. It is a personal invention, an idea which 
occurred to me when, at the beginning of my studies 
of arch behavi.our, I was struggling with three dimen- 
sional models. It applies to arches or masonry struc- 
tures of any kind as far as its thickness in one direc- 
tion could be considered uniform: barrel vaults, but 
also buttresses or flying buttresses, double arches, 
etc. 

The paper will present the use of this two basic 
models: 1) for the teaching and appreciation of the 
fundamental assumptions; 2) to assure a better under- 
standing of the Fundamental Theorems of Limit 
Analysis applied to masonry structures; 3) to study 
and understand the basic crack configurations of 
masonry arches and vaults. 

But to appreciate the use of models, a brief sum- 
mary of the essentials of masonry structural theory 
should be given beforehand (for an excellent exposi- 
tion see Heyman 1995). 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad...

https://core.ac.uk/display/148651963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


748 S. Huerta 

The theory of structures uses only three types of 
equations: equilibrium, material and compatibility. 
The way these equations are managed depend on the 
type of structure and material. The conventional the- 
ory of structures was developed during the XIXth 
century to cope with the new materials and the new 
types of structures invented: frame or trussed struc- 
tures made of iron, steel or reinforced concrete. Of 
the three fundamental structural criteria (strength, 
stiffness and stability), strength was considered to 
govern the design. The approach was 'elastic' follow- 
ing the ideas of Navier (Heyman 1998). This 
approach is not adequate to understand the behaviour 
of masonry structures. In fact, a different theory 
developed before, independently, for masonry arches 
and vaults during the XVIIIth and XIXth centuries. 
This theory was swept away by the elastic approach. 
'Navies's straitjacket' conditioned structural thinking 
until the advent of plastic theory. However, the old 
theory was basically correct and it is a fact that was 
used successfully during two centuries. The more 
general frame of plastic theory permits to incorporate 
the old masonry theory within its frame. 
The 'Aold' theory became 'new' and the elastic 
approach (maybe disguised behind a complicated 
FEM program) should considered an outdated 
approach. 

The material masonry 

A masonry building is a heap of stones bond togeth- 
er in a certain way, with or without mortar, to produce 
a certain geometrical form. The adherence provided 
by the mortar, if it exists, is negligible and as a result 
the 'material' masonry (in fact a composite material) 
must work in compression. The form is maintained 
due to the friction forces generated between the 
stones by self-weight, and, as the friction coefficient 
is very high, sliding does not occur. Finally, stress 
levels are quite low and there is no need to make 
strength calculations (masonry may be assumed to 
have an infinite strength). 
These observations form the basis of the behaviour of 
masonry. Any master mason would have accepted 
them as obvious. They formed the point of departure 
of the calculation of masonry arches and vaults dur- 
ing the XVlIIth and XMth centuries. Professor 

Heyman used them as the 'principles of limit analy- 
sis of masonry structures'. 

Equilibrium: lines of thrust 

The condition that the masonry must work in com- 
pression imposes a severe geometrical limitation: thc 
internal forces must be transmitted within the mason- 
ry. In every section the point of application of thc 
stress resultant must lie within the lines (or surfaces) 
of extrados and intrados. The locus of these points 
forms a curve, the line of thrzist. In a masonry struc- 
ture the lines of thrust must lie wholly within the 
masonry. In fact, the line of thrust is an abstract con- 
cept (as, for example, the centre of gravity); it is only 
a way of representing the equilibrium equations. The 
drawing of the thrust line permits to check that the 
essential property of the material, working in com- 
pression, is respected. In a buttress subject to a cer- 
tain external thrust there is only one line of thrust ancl 
the problem is statically determined. In an arch, thc 
two set of equations (equilibrium and material) arc. 
not enough to determine the position of the line: thew 
are, in general, an infinite number of lines of thrust ill 

equilibrium with the internal forces within thr 
masonry. 

Cracks and hinges 

The material is supposed to have infinite strength ant1 
the sliding failure is impossible. In these conditions 
when the thrust (the compressive stress resultan0 
touches the limit of the masonry a 'hinge' forms. In ;I 

real arch this hinge is seen in the form of a 'crack': 
the joint opens and the contact must be, geometricnl- 
ly, in one point (in fact not in a mathematical poirll 
but in an 'engineering' point of small finite dimell- 
sion). The possibility of cracking is a fundamen(;~l 
property of masonry. It permits, for example, that all 
arch may adapt itself to any small movement of its 
abutments. The abutments of the arch on the figurcb 
have given way slightly; the arch cracks in thrcr 
points, and the resultant 'three hinged' arch is a per. 
fectly stable structure. 

The-position of the line of thrust is now detcra- 
mined. But any new movement will change the posi. 
tion of the line of thrust, resulting in new equilibriuri~ 
conditions (the thrust of the arch will change) ancl ;I 
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new pattern of cracks (always conducing to a isosta- 
rical state). In a real arch these kind of movements are 
unforeseeable and, essentially, unknowable. Small 
settlements of the soil, changes of temperature, an 
impact load, etc., will conduce to small movements 
of the abutments. It is impossible to know the 'actu- 
al' state of the arch nor to predict the possible 
changes in cracking. But cracks are not dangerous; 
on the contrary, the possibility of cracking is precise- 
ly which gives 'plasticity' to masonry structures. 

Collapse of arches and the Fundamental 
Theorems of Limit Analysis 

A masonry arch built with a material of infinite 
strength can collapse, and this may seem strange to a 
modern architect or engineer. In fact, when the load 
tlistribution produces an equilibrium state with a suf- 
ficient number of hinges which form a inechanism of 
collapse, the structure will fail. The collapse does not 
involve an strength failure, but an stability failure. It 
is the forming of a sufficient number of hinges which 
results in the collapse. This form of collapse was first 
tlemonstrated at the beginning of XVIIth century but, 
of course it was known by the old master builders. An 
arch collapses in the same way as an steel frame, 
forming hinges. The Fundamental Theorems of 
Plastic or Limit Analysis can, then, be applied to 
masonry structures. This fundamental discovery is 
due to Heyman (1966). 

The Safe Theorem and the 'Equilibrium 
approach' 

The most important of the Fundamentals Theorem is 
the Safe Theorem: if it is possible to find a distribu- 
tion of internal forces in equilibrium with the loads, 
which does not violate the yield condition of the 
material, then, the structure is safe (it will not col- 
lapse). The main point is that this distribution of 
internal forces need not be the 'real' or the Aactual@, 
it only need to be possible. If it exists, the structure, 
before collapse, will find it and remain safe. The Safe 
Theorem ha a corollary of paramount importance: it 
is possible to work only with two of the structural 
equations, equilibrium and material. It leads to what 
professor Heyman calls the approach of equilibrium, 
and approach which cuts the 'Gordian knot' present- 

ed by the question of what is the actual state of the 
structure. It is impossible to know the 'actual' state, 
because of its intrinsically ephemeral character, but it 
is possible to ascertain the safety of the an structure 
without making non-verifiable assertions (about its 
boundary conditions, etc.). 

The task of the analyst is not to find the actual 
equilibrium state, but to find reasonable states of 
equilibrium for the structure under study. In fact, this 
has been the approach of all the great architects and 
engineers. It was implicit in the "geometrical design" 
of the old master builders (Huerta 2004). It was 
explicit in the design work of Maillart, Torroja, 
Nervi, Candela or Gaudi, to cite only a few great 
engineers and architects. 

In masonry arches the application of the equilib- 
rium approach is straightforward: a distribution of 
internal forces in equilibrium is represented by a cer- 
tain line of thrust, and this line must lie within the 
masonry to account for the properties of the material. 
An arch is safe if we can draw a line of thrust inside. 
For self-weight this leads to a geometrical statement: 
the arch must have a thickness which permits this, it 
must have, then, a certain geometrical form and this 
form is independent of size. 

The safety of masonry arches 

The safety is a matter of geometry but, how to meas- 
ure it? Heyman (1969) proposed a geometrical safety 
coefficient resulting of the comparison of the actual 
geometry of the arch with the geometry of the limit 
arch, an arch-of the same profile as the original, but 
which has the minimum thickness to contain a line of 
thrust. The limit arch is in a mathematical, unstable, 
equilibrium and will collapse. It represents the start- 
ing point for the designing of a safe, thicker, arch. 
The geometrical safety coefficient represents the 
relationship between the thickness of the actual arch 
with that of the corresponding limit arch. Its concrete 
value is an empirical matter, but it appears that a 
value of 2 is convenient in most cases. 

To obtain the exact value of the thickness of a 
limit arch is a complicated mathematical exercise 
and, therefore, to ascertain the exact value of the geo- 
metrical safet'yFcoefficient may require long calcula- 
tions. However, to establish a lower limit is very 
easy. Suppose we want to check that the geometrical 
coefficient is at least 2 for a certain arch. For this, it 
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is only necessary to be able to draw a line of thrust 
within the middle half of the arch. The same proce- 
dure will be used if the analyst decide to check for a 
coefficient of three: this time the problem is simply to 
draw a line of thrust within the middle-third. In gen- 
eral, historical arches are very safe and it is not diffi- 
cult to draw these lines. 

Sometimes, the exact value must be calculated 
(for example, to know what is the limit load which 
can cross a bridge), but in most cases the method sug- 
gested functions pretty well (and it was used, without 
knowing the Fundamental Theorems, in the second 
half of the XIXth century). 

Hooke's idea 

Robert Hooke (1675) was the first to give a correct 
analysis of the behaviour of masonry arches. He 
solved the problem making an analogy of a well 

known structure, the hanging chain or cord. 'As 
hangs the flexible line, so but inverted will stand the 
rigid arch' (Fig. 1 (a)). What is tension in the cable 
will be compression in the arch and the absolute 
value of the internal forces is identical. 
Hooke was not able to deduce the equation of the 
catenary, but the analysis was not the mathematical 
exercise but the realization of the identical behaviour 
of two apparently different structures, as has been 
pointed by professor Heyman. A few years later 
another English mathematician, Gregory (1697), 
completed the assertion in a crucial way: the catenary 
is the true form of an arch and if arches of other 
forms stand it is because 'in its thickness some cate- 
naria is included' (Fig. l(b)). 
It is much simpler to think in terms of hanging cables 
than in terms of arches. Hanging models were usecl 
also at the end of the XVIIIth century to demonstratc 
the behaviour of masonry bridges, for example by 
Thomas Young (1 807). 
Gaudi made extensive use of hanging models for thc 
design of arches and vaults (Huerta 2003). (For ;I 

Figure 1 
Hooke's analysis of the arch (Heyman 1995) 
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review of the use of hanging models in arch and vault 
design, see Graefe 1986). 

Description and functioning of the model 

The material is a simple chain that can be acquired in 
any hardware store. The hanging chain takes the form 
of catenary and this is very nearly the form of the line 
of thrust of an arch made of equal voussoirs (the best 
mathematical study of lines of thrust in Milankovitch 
1907). 
The intention is not to make an exact calculation 
(with the values of the thrusts etc.), nor it is to obtain 
certain forms in the design (as Gaudi did), it is to 
have a model to demonstrate some of the main points 
of the structural theory cited before, to 'think with the 
model'. To relate the hanging chain with an arch of 
finite thickness we will draw the arch in a cardboard. 
The arch must be inverted to show the relationship 
with the chain. 

'PLANE' BLOCK (VOUSSOIR) MODELS 

Block models of arches 

Models of arches and vaults have been made since 
antiquity. It was a common practice to learn stonecut- 
ting, to make scale models with the voussoirs cut in 
soft stone or gypsum. Leonardo (ca. 1500) made 
some attempts to study arch behaviour with the help 
of models, without arriving to a theory. Danyzy 
(1732), Fig. 2, made the first experiments destined to 
demonstrate the correct form of collapse of arches, 
employing small models of arches made of gypsum 
(an excellent outline of the collapse theory of arches 
and the use of models in Heyman 1982). However 
the use models does not guarantee the arrival to a 
good theory, and there are many examples in the his- 
tory of arch theory. To cite but one example, Bland 
(1839) made many models of arches and buttresses 
without understanding the true principles which 
explained the observed behaviour. 

The problem with spatial block models is that the 
joints must be very precisely cut; if this is not so, the 
blocks tend to press in only certain points and the 
resulting behaviour (many times with slide-rotations 
of blocks etc.) deviates greatly from that of a real 
arch, where the process of construction preclude the 

occurrence of such phenomena. A successful spatial 
voussoir arch model can be constructed only by an 
experienced workman in possession of adequate 
tools. On the contrary, the 'plane' block model pro- 
posed may be made by anyone with a moderate skill 
in handiworks. The main utility of block models is to 
observe the different patterns of cracking in arches. 
However, they may be used to study, also, complex 
phenomena. 

Description and functioning of the model 

The arches (maybe with buttresses) are made of 
blocks cut from a thick cardboard. A thickness of 1 .S 
mm is recommended. A thinner cardboard may not be 
perfectly plane; if it is thicker it is difficult to cut the 
joints perfectly plane. It is better to make the drawing 
first on the cardboard and then cut the blocks. It is not 
convenient to divide the arch in too many blocks; this 
will only complicate the process of mounting and the 
interpretation of the observed behaviour. A number 
of, say, 10-12 blocks for a whole arch is adequate. Of 
course, there is ample space for experimentation; 
these recommendations are the fruit of several trials 
along the years. 

It is needed also a glass with a paper at the back 
to contrast the figure of the arch. It is better a plain, 
normal, glass; glasses with an anti-reflecting surface 
present normally a higher friction. At the base of the 
glass a continuous strip of cardboard should be glued. 
This is the basement for the arch. Then the glass is 
mounted on a lectern. The lectern should be in a posi- 
tion with a very low angle, so that the voussoirs do 
not slide. Now, the arch can be mounted. Normally it 
is not necessary to use a 'centering'; it is easy to 
mount the blocks one after the other, beginning by 
both springings and meeting at the keystone. It is not 
necessary that the blocks fit perfectly in this phase. 
When the arch is closed, the glass is lifted gently and 
the lectern is raised to a position with an inclination 
of, say, 65"-B70°. Carefully the glass with the arch 
on it is placed over the lectern. Now it is possible to 
see how the blocks are pressing one against the other. 
In this moment corrections on the position of the 
blocks may be made to obtain and arch perfectly 
'constructed' .'pig. 3) 

The physical principle involved is evident. The 
weight of each block acts vertically. As the block is 
supported by the inclined surface of the glass, this 
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Figure 2 
First experiments on the collapse of arches with small gypsum block models (Danyzy 1732) 

force may be resolved into two other forces: one nor- 
mal to the surface of the glass and the other contained 
within its surface. 

When the inclination of the glass is well above 
the angle of friction between the cardboard and the 
glass, all blocks tend to slide downwards and these 
forces are proportional to the gravity forces. The 
cardboard arch behaves in exactly the same way as an 
spatial arch (or barrel vault) of the same profile. (Of 
course, when the movement is not entirely vertical, 

some friction forces may arise, but they are very low 
and do not affect in general the fundamental behav- 
iour.) 

It would have been appreciated during the 
process of mounting the arch, that any small move- 
ment of the abutments or blocks leads to some 
'crackin2':the blocks forming some hinges. If the 
handling is not correct, occasional sliding may be 
observed. Moving the abutments, these cracks may 
be closed. 
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Figure 3 
The 'plane' block model of cardboard 

EXPERIMENTAL DEMONSTRATIONS sion (i.e. the model guarantees that the masonry 
never will be in tension). 

In what follows we will make a series of assertions [Fig. 4(a) to (c); Fig. 7; Fig. 8 (b).] 
which can be checked immediately employing the 
hanging chain models. Reference will be made to the 
figures of the experiments. Equilibrium + material 

Equilibrium 

1) The chain represents a certain possible state of 
equilibrium for the given loads. 

2) There are infinite chains in equilibrium with 
the same loads. 

3) A variation of the loads results in a change of 
the form of the chain. 

[Fig. 4 (a) to (c); Fig. 6 (a); Fig. 7; Fig. 8 (b).] 

6) There are still infinite possible chains (states of 
equilibrium) $within the arch. 
7) There are two extreme positions of the chain, 
which corresponds to maximum and minimum height 
of the chain and, consequently, maximum and mini- 
mum thrust. 
8) It is not possible to calculate the actual thrust of 
the arch, but it is possible to fix the upper and lower 
limits to its value. 
[Fig. 4 (a) to (c); Fig. 7; Fig. 8 (b).] 

Material Cracks and hinges 

4) The masonry must work in compression; this 9) When the chain touches on of the limits of the 
implies that the chain must be within the arch masonry (linesaf extrados or intrados) a hinge forms. 
5) The use of hanging models provides an automatic The hinge will manifest itself in a real arch in the 
check -on this essential property of masonry: it is form of a crack. The formation of the hinge depends 
impossible that a chain or cable works in compres- on the characteristics of the material: infinite com- 
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Figure 4 
Semicircular arch. Equilibrium. Basic crack patterns 

pressive strength, zero tension strength, impossibility 
of sliding. 

[Figs. 2 ,4 ,6 ,8 ,9 ,  101 

Response to a movement of the abutments 

10) After the decentering, a masonry arch will 
thrust against the abutments and they will give way 
slightly. The span consequently increases and the 
arch must accommodate to the new situation by 
forming hinges or cracks: three cracks develop: one 
at the keystone and two on the haunches. 

11) These cracks determine the position of the 
chainlline of thrust which must pass through the 
hinges. In the above mentioned case, the chain takes 
a position corresponding to the minimum thrust. The 
state of the arch is now an isostatic three-hinged arch 
and internal efforts may be calculated with only the 
equilibrium equations. 

REMARK 1: Cracking is NOT dangerous; it is 
the only way the structure has to cope with an 
'aggression' of the environment. 

REMARK 2: An slight further movement out- 
wards will not affect the value of the horizontal com- 
ponent of the thrust. 

REMARK 3: The cracking is 'reversible': if the 

abutments approach to reach the original position thc 
crack will close. It is possible to move forwards and 
backwards the abutment of the model without conse- 
quences. 

In bridges and buildings this may occur as :I 

result of seasonal changes in soil conditions, for 
example. [Fig. 4 (d) and (Q] 

12) When the two abutments approach and thc 
span is reduced the arch crack again and the hinges 
are disposed following the line of maximum horizon- 
tal thrust. The two superior hinges are equivalent to 
one as they both open upwards (in a real arch one of 
them will close). 

The arch is again three-hinged and the thrust may 
be calculated readily. [Fig. 4 (e)] 

13) Any other movement of the abutments will 
lead to a different cracking. As the base of each abut- 
ment has three degrees of freedom (two displace- 
ments and a rotation) the number of possible combi- 
nations is quite large. [Fig. 51 

Collapseof arches 

14) The addition of a point load to an stable arch 
will distort the form of the line of thrust. For a certain 
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Figure 5 .  
Response of a pointed arch to movements of the supports. Cracking and lines of thrust 

value of the load the line of thrust will be just con- 
tained within the arch, touching in four points. The 
correspondent four hinges form a mechanism of col- 
lapse. 

REMARK 4: The collapse depends on the forma- 
tion of a sufficient number of hinges. It does not 
involve a strength failure (the cardboard blocks pres- 
ent no damage or distortion): it is a stability failure. 

REMARK S: It is precisely the same form of col- 
lapse of steel frames. The Fundamental theorems 
may be 'translated' to masonry when the properties 
of the material guarantee this form of collapse (infi- 
nite compressive strength, zero tension strength, 
impossibility of sliding). [Fig. 61 

Safety 

15) The Safe theorem states that an arch with a 
possible equilibrium state which respect the material 
yield condition (work in compression), i. e., an arch 
with a chain inside is safe: it will not collapse. 

16) For self weight, the form of the hanging chain 

depends, for self-weight, on the form of the arch. The 
safety depends on geometry and not in size. 

REMARK 6: Safe Theorem. A safe arch, an arch 
in which it has been possible to draw a line of thrust, 
will not collapse, for whatever movements we induce 
in the abutmegts, provided that these movements are 
'small', i. e., that the equilibrium equations have not 
changed, i. e., the overall geometry of the arch is not 
distorted. 

REMARK 7: The model may be considered as an 
empirical proof of the Safe Theorem, as it is impossi- 
ble to produce the collapse of an arch by producing 
any set of small movements. 

REMARK 8: Though the Safe Theorem applies 
only to small movements, the model shows that a 
voussoir arch may withstand very large movements, 
unacceptable for example for an steel or concrete 
modern structure. (Evidence of such large move- 
ments can be found in places where the soil suffers 
great movements, as is the case in MCxico DF where 
it is easy to find masonry churches with enormous 
deformations which have stood for several centuries.) 
[Fig. 4 (a) to (c); Fig. S; Fig. 7; Fig. 8 (b).] 
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Figure 6 
Collapse of a semicircular arch under a point load 

Limit arches Upper limit to the geometrical coefficient of safety 

17) as the form of the chain and that of the arch are 
different, if we shrink the thickness of the arch we 
reach a point where there is only one possible chain 
within the arch. This is the limit arch. 
18) for an arch of uniform thickness with a certain 
profile, the limit arch is characterized by a relation- 
ship between the span and the thickness. For a semi- 
circular arch slt ' 18, nearly; for the pointed arch in 
figure slt ' 22. [Fig. 7 (b) and (d)] 

20) To demonstrate that the geometrical coefficient is 
at least equal and in general greater than a certain 
value rk; it is sufficient to be able to draw a line of 
thrust within an arch of the same form with a thick- 
ness tln, being t the thickness of the real arch. For 
example, for a coefficient of 2, a line must line with- 
in the middle half of the section of the arch; for a 
coefficient of 3 a line must lie within the middle 
third. [Fig. 7 (a) and (c), for a coefficient of nearly 21 

Geometrical coefficient of safety COMPLEX PROBLEMS 

19) The limit arch provides essential information for So far the two type of models have been used to make 
the assessment of the safety of arch of the same form. evident th 
A geometrical coefficient of safety (Heyman) may be e most ihportant theorems and corollaries of the the- 
defined: the relationship between the thickness of the ory of the masonry arch. The same models may serve 
real arch to that of the corresponding limit arch. to study complex problems. 
[Fig. 7 ] When the analyst is faced with a new type of struc- 
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(4 (b) 

(c) 

Figure 7 
Limit arches and the geometrical safety coefficient 

ture, it will be very useful to use the models to exam- 
ine the problem qualitatively before doing any calcu- 
lations. In fact, the models may well indicate an 
unexpected behaviour. In what follows some exam- 
ples will be shown. 

Flying buttress: sliding at the head 

A flying buttress is not half an arch, but an arch with 
the supports at different height. When the buttress 

where the lower part abuts gives way slightly, the fly- 
ing buttress must crack but, in what way? Consider 
the problem in relation with idealized buttress of Fig. 
8 (a). After looking at Fig. 4 one may expect a simi- 
lar crack pattern. In fact, the hanging model of Fig. 8 
(b) makes evident that this is not the case. Three 
hinges should form following the pattern of Fig. 8 
(d). However, 'again unexpectedly, the first trial with 
the model gave the pattern of Fig. 8 (c): two hinges 
and sliding downwards at the head. Looking again at 
the form of the line of thrust (Fig 8 (b)) it is clear that 
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Figure 8 
Study of a flying buttress 

the inclination of the thrust with the wall may be out 
of the friction cone: the head of the buttress will tend 
to slide downwards. 
The gothic builders placed there a little column or 
other similar device (the matter has been discussed 
by Heyman (1966), the best exposition of flying but- 
tress behaviour). Evidence of sliding is not difficult 
to find (see for example, Smars 2000, 167). To avoid 
sliding in Fig. 8 (d) the friction was increased making 
small crease in the cardboard on both faces of the 
joint. 

Double arches 

Not infrequently a barrel vault is 'reinforced' by 
arches. Also, some brick bridges are made of succes- 
sive rings, built concentrically one after the other. 
The model of such constructions may be that in Fig. 
9 (a). What is the behaviour of such 'double' arches? 
Does theyfunction as a single arch? A simple test 
with a model demonstrates that this is not the case. 
The two rings tend to slide and hinges form inde- 
pendently, Fig. 9 (b). There may be some transrnis- 
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Figure 9 
Behaviour of double arches 

sion of load due to friction but it should be small. In Arch which supports a wall 
case the model shows the expected pattern of cracks. 
This may be verified observing real vaults (Fig. 9 This is another frequent situation: an arch supports a 
(c)). The matter has been studied with a complex wall of ashlar masonry (Fig. 10 (a)). The buttress sys- 
mathematical algorithm by Melbourne and Gilbert tem, as usual, gives way slightly, what is the expect- 
(1995). The results are the same. ed pattern of cracks? This may difficult to study with 

Figure 10 
Arch which supports an ashlar wall. 

the available engineering software. Again, a simple 
cardboard model (this time more time consuming) 
will make apparent the main features, Fig. 10 (b): 
inclined cracks forms, following the weaker lines of 
the bonding. The model may be compared with 
existing crack patterns, as in Fig. 10 (c), where the 
'kink' in the cornice makes evident the movement. 
Cracks on the right and left sides are also evident. 
The wall is supported on the arch at the back of Fig. 
9 (c). 

Collapse of a masonry buttress 

Traditionally the buttresses which support the arch or 
vault t h s t s  have been considered monolithic. In 
fact, a real buttress is made of separate stones and 
some cracking may be expected to occur. The first 
study of this p6ssibility corresponds to the Spanish 
engineer Monasterio, ca. 1800 (Huerta y Foce 2003). 
The model demonstrates easily the most common 
mode of collapse (Fig. l l (c)). The mode of Fig. 11 
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Figure 11 
Possible modes of collapse of a masonly buttress 

(4 0)) 
Figure 12 
Collapse of an arch under constant horizontal acceleration 

(b) suggest the convenience to build a pinnacle on use of simple models may help to direct more precise 
top, a practice followed by gothic builders. Finally, experiments. 
the mode of Fig. l 1  (d) is very unlikely in a real 
building. The theoretical aspect has been recently 
studied (Ochsendorf, Hernando y Huerta 2004). CONCLUSIONS 

Arch subject to a constant horizontal acceleration 
(seismic collapse) 

Finally, the hanging and block models may be used to 
study possible collapse modes under seismic action. 
The effect of a constant acceleration may be simulat- 
ed simply inclining the model: the collapse mode 
may be observed in the model of Fig. 12. 
The same pattern has been observed in more precise 
experiments made with scale arches. I have found 
this idea of inclining block models in an article by 
Frei Otto (1986). 
There is abundant literature on the seismic response 
of masonry stsuctures. The laboratory material need- 
ed for experiments is quite sophisticated. Again, the 

Two siGple types of scale models, Hooke's hanging 
chain and the 'plane' block model, may be used to 
visualize the main assumptions of the theory of 
masonry. 

The models may help to add to our experience of 
this kind of structures, which nowadays are no longer 
built in the western world. Also, the models help to 
think about the essentials of the stability of masonry 
arches. 

'Playing' with them the student (I mean here a 
person who studies, in the University or maybe some 
years later as a professional) may check his or her 
understanding of the theory. 

Finally, an experienced architect or engineer may 
find these models useful in order to study new prob- 
lems. 
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