
Claremont Colleges
Scholarship @ Claremont

CMC Senior Theses CMC Student Scholarship

2017

Cyclic Codes and Cyclic Lattices
Scott Maislin
Claremont McKenna College

This Open Access Senior Thesis is brought to you by Scholarship@Claremont. It has been accepted for inclusion in this collection by an authorized
administrator. For more information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Maislin, Scott, "Cyclic Codes and Cyclic Lattices" (2017). CMC Senior Theses. 1552.
http://scholarship.claremont.edu/cmc_theses/1552

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Keck Graduate Institute

https://core.ac.uk/display/148363276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu
http://scholarship.claremont.edu/cmc_theses
http://scholarship.claremont.edu/cmc_student
mailto:scholarship@cuc.claremont.edu

Cyclic Codes and Cyclic
Lattices

Scott Maislin
Advisor: Lenny Fukshansky

Senior Thesis in Mathematics
Submitted to Claremont McKenna College

Aprill 24, 2017
Department of Mathematical Sciences

1

Abstract

In this thesis, we review basic properties of linear codes and lattices with a
certain focus on their interplay. In particular, we focus on the analogous con-
structions of cyclic codes and cyclic lattices. We start out with a brief overview
of the basic theory and properties of linear codes. We then demonstrate the
construction of cyclic codes and emphasize their importance in error-correcting
coding theory. Next we survey properties of lattices, focusing on algorithmic
lattice problems, exhibit the construction of cyclic lattices and discuss their
applications in cryptography. We emphasize the similarity and common prop-
erties of the two cyclic constructions.

2

Acknowledgments

I would like to thank my wife Alaina for tolerating the wild mood swings
brought on by this project. Also, thank you to my daughter Eloisa. As I watch
you learn to crawl by dragging yourself across the floor I can see that all good
things are learned through struggle. Finally, I must thank my thesis advisor
Professor Lenny Fukshansky. I swear I learned something in the last year. A
wise man once told me that something is better than nothing. Thank you for
giving me the opportunity to challenge myself.

3

Contents

Abstract 1
Acknowledgments 2
1. Introduction 4
2. Theory of linear codes 7
2.1. Finite fields and polynomial rings 7
2.2. Linear codes and Error Correction: definitions and basic

properties 12
2.3. Construction of cyclic codes 19
2.4. Prominent examples of cyclic codes 22
3. Lattices and cryptographic applications 27
3.1. Definitions and basic properties of lattices 27
3.2. Successive minima and Minkowski’s theorems 32
3.3. Lattice problems 38
3.4. Basic computational complexity 40
3.5. Applications in cryptography 45
3.6. Cyclic lattices and NTRU 52
4. Conclusion 57
References 59

4

1. Introduction

The Microcomputer revolution of the 1980s changed the face of information

exchange. Prior to this time the average individual came into contact with

computers only in rare instances. The advent of the Microcomputer, a com-

puter at least small enough to fit in a room, caused an exponential growth in

the exchange of digital information. The benefits of the proliferation of digital

communication are of course all around us. One example is the ability to con-

duct commerce and finance over an open channel, the Internet for example,

on a wide scale.

While effects of digital communication and the proliferation of Microcom-

puters are evident in all aspects of modern life they are particularly evident

in the aforementioned examples. In e-commerce, for example, there is an ever

present need to exchange information in a clear manner and to maintain the

security of a channel. Let us consider a hypothetical scenario. The reader

Alice realizes that ’Fifty Shades of Blue’ is available for sale as an ebook from

vendor Bob, who owns www.booksforsale.com. Alice wishes to to order this

book and sends her credit card information and email address to complete the

order. In order to make such a transaction possible we must first ensure that

the information sent is accurate across a channel which is possible noisy. De-

fine noise to be any interference which could cause a different message from the

intended one to arrive. This is important because we want to avoid the seller

receiving an order for another similarly titled book. Also, for the payment to

work the credit card number must be accurate. Noise might cause one digit

in the credit card number to be incorrect or deleted.

5

We must also consider the need to speak securely. Alice lives in country

X where ’Fifty Shades of Blue’ is banned. Eve is an Internet criminal who

sometimes works with the government of country X. Eve would like to know

who is buying banned books in country X in order to sell that information to

the government. Also, Eve, in the process of intercepting the transaction also

obtains Alice’s credit card number. Eve sells the information to country X

and then uses Alice’s credit card number to buy expensive electronics which

she then resells for cash. Alice is arrested and jailed without trial. Her family,

completely broke, becomes destitute. We see the need to make information

secure over a clear channel. Alice could encrypt her order. Now Alice and Bob

are able to send the order across the clear channel but when Eve intercepts

the order she can only see a string of unintelligible letters and numbers. This

makes the intercepted information useless to Eve.

We now define some key terms. Coding theory is the use of codes in trans-

mitting information with error correcting capabilities, data compression, and

cryptographic communication. A code is any method of representing infor-

mation such as a word, number, gesture, or an image into a compressed and

sometimes secret medium. Written language is in itself an example of an en-

coding of the spoken language. Morse code is a coding of the written language

into sound for transmission over great distances. Error correcting codes are

capable of detecting when an error occurs in transmission and then correcting

said error without the need for retransmission. Data compression, which we

will unfortunately not cover, is the stripping away all but the most essential

elements in the information. This saves bandwidth. The information can then

later be restored to its full form when needed for use. Finally, cryptography

6

is the scrambling of information with the intent that it is illegible to everyone

except those who understand the method by which it was scrambled. By first

scrambling a message, and then transmitting it via an error correcting code we

can transmit a secure message and minimize the risk of sending and receiving

incorrect information.

While multiple types of error correcting codes exist this paper will focus on

linear codes. We define linear codes as a collection of linearly independent code

words c1, . . . , cn closed under addition. Simply put any linear combination of

words
n∑
i=1

αci where ci is an element of the code and α is any scalar will give

the result of another element of the code.

Within the family of linear error correcting codes lies the subset of codes

known as block codes. Important and famous linear block codes that will be

covered are the Hamming [7, 4, 3] codes and the Golay codes. Following this

we will briefly overview the construction of a structured family of block codes

known as cyclic codes.

Cyclic codes are in many ways analogous to cyclic lattices. We will first

overview the lattice in general. This will segue into the topic of classic lattice

problems such as closest vector problem and shortest vector problems. These

problems will require an explanation of basic tenants of computational com-

plexity. Finally we will cover the basic definitions of public key cryptography

and how cyclic lattices can be used to construct encryption algorithms. One

such algorithm, NTRU which is resistant to quantum computing attacks and

requires less computational resources than another non lattice based algorithm

called RSA encryption.

7

2. Theory of linear codes

2.1. Finite fields and polynomial rings. As stated in the introduction

linear codes are an important family of error correcting codes. A convenient

fact in regards to linear codes is that they have algebraic structure to them.

Specifically they have the structure of what is called a finite field. Let us first

define a field.

Definition 2.1(a): A field, referred to as F, is a ring whose non-zero ele-

ments form a multiplicative Abelian Group. In short a non-zero commutative

division ring. This creates an algebraic structure which conforms to the fol-

lowing rules.

(1) F is closed under + and · such that the output of any elements in the

set under these operations will be in the set. +, · are typically referred

to as addition and multiplication.

(2) The afore-mentioned operations, +, · are commutative. For example,

let there exist two elements in the set a, b. Then

a+ b = b+ a, a · b = b · a

(3) Associativity also holds. I.E.:

(a+ b) + c = a+ (b+ c), (a · b) · c = a · (b · c)

(4) The distributive law holds:

a · (b+ c) = a · b+ a · c

8

(5) Being that a field is a commutative non-zero division ring there must

exist identity elements for the two operations +, ·. These are defined

as:

a+ 0 = a for all a in F

a · 1 = a for all a in F

(6) Since F is a ring with unique properties it must of course contain the

additive inverse such that for any a in F :

a+ (−a) = 0

(7) The unique property which distinguishes fields from rings is that for

any non zero element of the field there exists a multiplicative inverse

such that

a · a−1 = 1

whereas examples of infinite fields are Q and R. A field of a finite cardinality

is called a finite field. This cardinality is referred to as the order of the field.

The order of this field, q is denoted Fq.

There are some basic properties in regards to finite fields. [15]

(1) The order, or number of elements in finite field must be a prime

power. Let pn = q be the order of a finite field where p is some prime

number and n is a positive integer. It is notable that all finite fields of

the same order are isomorphic to one another. Finite fields of order

pn are denoted Fpn

(2) (x+ y)p = xp + yp where x and y are elements in a field of order p.

9

(3) xp − x =
∏

(x− a) where element a is any element of the field. More

generally we can say (xp)n −X = 0 Without running through a

complete proof we can see from this property that finite fields are

cyclic.

It is important to understand that while the most basic version of a finite

field is Z/pZ, i.e a finite field of integers modular some prime p, we are not

limited to such examples. If we begin with a field Fq then we can create an

extension of this field. The term extension is by definition an add on to our

original field. A simple example is that C is an extension of R. Conversely

the rationals are subfield of the complex numbers. Formally, A field K is

called an extension or extension field of a field F, if F is contained in K.

If we take our field Fq then Fq[X] is the ring of polynomials whose

coefficients are between 0 and q − 1. Recall the field F = Z/pZ. This is a

quotient ring that is also a field by the fact that the ring is modular some

integral domain, i.e. there are no zero divisors, and that the same element is

maximal, i.e. the quotient ring is not modular some element whose entire

multiplicative image is contained in the image of another single element. As

a result a finite field of integers must be of a prime order, in other words

modular some prime element. If we were instead to create a finite field from

a quotient ring of polynomials Fq[X]/ < g >. Fq[X] is now modular a

polynomial, < g > which meets specific requirements. The polynomial

quotient ring is a field by virtue of the fact that < g > is maximal. We will

put this in formal terms but first must define the term ideal which up to this

point we have been skirting around.

10

Definition 2.1(b): If R is a ring then the ideal I is a non empty subset of

R which contain two properties.

(1) If a, b ∈ I then a+ b ∈ I

(2) If a ∈ I and r ∈ R then ar ∈ I and ra ∈ I

[5]

Theorem 2.1(a). Let I contained in F[X] be an ideal Then there exists a

polynomial g(x) in F[x] such that I =< g(x) > such that

{g(x)f(x) : f(x) ∈ F[x]} Remark: This property means that every ideal in

F[x] is principally generated. In other words. Generated by a single element.

Rings with this property are called principal ideal rings.

[5]

Proof: To show that the ideal is generated by single polynomial g we simply

consider Euclid’s division algorithm. Let g ∈ I be a non-zero polynomial of

least degree where g = I. If f ∈ I also then f = qg + r where q, r are

polynomials of degree less than g. We see that because g is of least degree

and degree r < degree g then the degree of r must be 0. This leads us to the

fact f = qg. By definition of the ideal every multiple of g ∈ I. So I ⊆ g and

g ⊆ I so I = G.

Furthermore we can say that the quotient of said ring F[x] is a field when

< g > is maximal. A maximal ideal is an ideal which not contained in a

larger ideal of the same ring F[x]. For example within the integers Z/6Z we

can see that 6 is an ideal meeting the requirements of definition 2.1(c).

However, closer examination shows that the ideal generated by the integer 6

is contained entirely within an ideal generated by 2. In brief < 2 >⊆< 6 >

11

Definition 2.1(c): Let R be a commutative ring with identity. An ideal P

contained in R is called prime if wherever ab in P for some a, b in R, then at

least one of a, b ∈ P .

[5]

Remark: For the purposes of commutative rings a prime ideal P and

maximal ideal are interchangeable terms. However in more abstract terms

this is never the case.

Theorem 2.1(b):. Let P contained in F[x] be an ideal. Then P is prime

iff there exists an irreducible polynomial g(x) in P such that P is generated

by this g(x) [5]

Proof: Suppose the ideal P is maximal and that P is generated by

polynomial < g >. Write < g >= fq for some f, q ∈ R. Since f | < g >, P

must be a subset of the ideal generated by f . Were this inclusion to be

proper, by the maximality of P , we would have R being generated by f .

This make f a unit. By symmetry, f or q is a unit. We conclude that < g >

is irreducible.

Theorem 2.1(c): F[x]/ < g > is a field iff < g > generates a prime ideal I.

[5]

Proof: ⇒ Suppose I is a maximal ideal. Suppose I + a ∈ R/I such that

I + a 6= I + 0 (a /∈ I). Consider J = I +Ra = {i+ ra|i ∈ I, r ∈ R}. Note

that J is an ideal. Also, for all i ∈ I, i = i+ 0a ∈ j, such that I ⊆ J . Since I

is maximal, J = I or J = R. Note a = 0 + 1a ∈ J , but a /∈ I so J 6= I. This

forces J = R such that, I +Ra = R ⊇ 1, hence 1 = i+ ra for some

12

i ∈ I, r ∈ R. So 1− ra = i ∈ I, so I + 1 = I + ra. This means

(I + r)(I + a) = I + 1. This shows that (I + a) is a unit hence R/I is a field.

⇐ Suppose R/I is a field. Let J be an ideal J ⊃ I. Then there exists some

element x ∈ J but x /∈ I such that I + x 6= I + 0 Since R/I is a field, so there

is some I + y ∈ R/I such that

(I + x)(I + y) = I + 1

I + xy = I + 1.

hence xy − 1 ∈ I ⊆ J . Note 1 = xy − xy − 1 ∈ J Then for all

r ∈ R, r = r � 1 ∈ J , so R = J Which proves I is maximal.

2.2. Linear codes and Error Correction: definitions and basic

properties. We start with some definitions which will help us improve our

understanding of what makes a code linear. We then discuss in very basic

terms the idea behind error correcting codes. In initial laymen’s terms we see

that a code is linear when combinations of any elements in the code will

remain in the code. Each word, or vector, in the code is a message which is

designed to be sent over a noisy channel. When errors occur error correcting

codes detect and correct errors up to certain limits. Many error correcting

codes are linear and we will only discuss this subset of the family of error

correcting codes. The following definitions, a through f , are found in [10].

Definition 2.2(a): A linear code of length n over the finite field Fq is a

subspace of the finite field Fq where n is the characteristic, also known as

13

order, of the field. Any codeword in the code is a vector of the subspace

(Fq)n. Commonly referred to as a code vector.

Henceforth we can refer to the subspace which contains the linear code by C.

Any such code has an alphabet of size q since it is a subspace of the field Fq.

So C is q-ary code. Of course when C is a subspace of F2 or F3 it is a binary

or ternary code respectively. Since C is a subspace it adheres to normal rules

of sub spaces such as:

(1) For elements a, b in the linear code C, (a+ b) is in C for any a, b in C

(2) Any element a multiplied by a scalar remains in C as long as said

scalar is in Fq.

Since C is a subspace of length n it will have a basis {c1, c2 . . . , ck} where k is

the dimension of the subspace. The size of the codes can be expressed in the

terms qk. C. In other words C has qk possible vectors. Any word or code

vector in the code is a linear combination of the above basis. The vectors

which form said basis are written in an n× k matrix commonly referred to as

a generator matrix of the code C.

Definition 2.2(b) Generator Matrix: A matrix G ∈ Fn×kq is a generator

matrix for C if its k rows span C.

Remark: Why various texts differ it is common for vectors in code, code

vectors, to be rows in a matrix.

Definition 2.2(c) Hamming Distance: Let there exist two code vectors

in C x, y where both x, y are length n and defined over the same alphabet of

order q. Then distance between x and y is defined as ∆(x, y) =
∑n

i=0 xi 6= yi.

14

Furthermore, we can define the fractional hamming distance as

δ(x, y) = ∆(x,y)
n

.

Definition 2.2(d) Hamming Weight: Defined as wt(Ci) of a code vector

Ci is the number of nonzero components of the code vector. The Hamming

weight of the entire code wt(C) is the minimum weight of all non-zero

vectors in the code.

Remarks: Due to linearity the Hamming weight of the code is the weight of

the smallest non-zero code vector in the generator matrix G. Additionally,

for any x, y ∈ C wt(x− y) = ∆(x− y).

Definition 2.2(e) Minimum Distance: For any any two code vectors

x, y ∈ C the minimum distance of the code, denoted

d(C) = min{d(x, y)|x, y ∈ C, x 6= y}.

Definition 2.2(f) Code Rate: The rate of a code is defined as the the

proportion of useful information sent over a channel out of the total amount

of information sent. This is simply k/n. For ever k bits of information sent n

total bits are then generated as part of the encoding process. k − n bits is

the redundant part of the message sent over the channel.

Theorem 2.2(a): Let C be a linear code and let wt(C) be the smallest of

the weights of the non-zero code vectors of C. Then d(C) = wt(C). [12]

Proof: There exists code vectors x, y such that d(C) = δ(x, y). Then by the

fact, wt(x− y) = ∆(x− y),

d(C) = wt(x− y) ≥ wt(C)

15

since (x− y) is a code vector of C. We can then apply this statement for the

zero code vector and the smallest non-zero code vector, x ∈ C such that.

wt(C) = wt(x) = ∆(x, 0) ≥ d(C)

Having defined some key terms such as hamming distance, weight, generator

matrix, and size of the code we can now introduce some simple notation.

The basic characteristics of a code. [n, k, d] describes the length of the code

vectors, the size of the code, and the minimum distance of said code. Often

this abbreviated to [n, k] and d is omitted.

Linear codes over the same field Fnq can be considered equivalent if one can

be obtained over two operations.

(1) Permutation of the positions of the code

(2) Multiplication of the symbols appearing in a fixed position by a

non-zero scalar.

Theorem 2.2(b): Let G be a generator matrix of an [n, k] code C. By

performing permutations of positions and multiplication on fixed position

symbols by non-zero scalars we can put a matrix into standard form.

[Ik|A]

where Ik is the k × k identity matrix and A is a k × (n− k) matrix.

[12]

Proof: For purposes of brevity the proof this theorem is available on page 51

of A First Course in Coding Theory by Raymond Hill.

Linear codes are primarily used in the construction of error correcting codes.

The foundation upon which error correction and detection is built is the

16

Hamming distance. The Hamming distance is a well defined metric space,

although this is not proved in this paper, and is the foundation of what is

called nearest neighbor decoding.

Theorem 2.2(b):

(1) A code C can detect up to s errors in any code vector if d(C) ≥ s+ 1.

(2) A code C can correct up to t errors in any codeword if d(C) ≥ 2t+ 1.

[12]

Proof:

(1) Suppose d(C) ≥ s+ 1. Suppose a code vector X is transmitted and s

or fewer errors are introduced. Then the received vector cannot be a

different code vector and so the rrors can be detected.

(2) Suppose d(C) ≥ 2t+ 1. Suppose a code vector /bX is transmitted and

the code vector Y is received in which t or fewer errors have occurred,

so that d(X,Y) ≤ t. If X ′ is any code vector other than X, then

d(X ′,Y) ≥ t+ 1. For otherwise, d(X ′,Y) ≤ t, which implies, by the

triangle inequality, that d(X,X ′) ≤ d(X,Y) + d(X ′,Y) ≤ 2t. This

contradicts d(C) ≥ 2t+ 1. So X is the nearest code vector to Y and

nearest neighbor decoding corrects the errors.

Figure 2.2(a):

17

[12]

The process of encoding messages in code C is extremely straightforward.

There exists qk messages in C. Let U be code vector in C such that

U = U1U2U3 . . . Uk. We simply apply standard matrix multiplication on the

generator matrix G where G = c1, c2 . . . , ck

UG =
∑k

i=1 UiCi

If the generator matrix is in its standard form then

UG = x1x2 . . . xkxk+1 . . . xn

and xi = ui , 1 ≤ i ≤ k are the bits containing the encoded message and from

the k + 1 bit and beyond we have the redundant bits previously discussed.

The redundant check digits are expressed in the form.

xk+i =
∑k

j=1 ajiuj, 1 ≤ i ≤ n− k

18

The process of decoding a code vector requires defining several terms first.

Definition 2.2(f) Dual of The Code: C⊥ denotes the dual of a code. Let

the dual of code be

C⊥ = {x ∈ Fnq |
n∑
i=1

xici = 0 ∀ Ci ∈ C}

[12]

Definition 2.2(g) Parity Check Matrix: If we assume that C has a

generator matrix in the form G = [IK |A] Then there exists a generator for

for C⊥ of the form

H = [−AT |In−k].

Remark: The parity check matrix gives us the parity check equation. Where

(−AT)T represent the the digits in each code vector which add to zero under

(Fq)n. For example

H =

 0 0 1 1

1 1 0 0


tells us that in the code containing H the digits C3 + C4 and C1 + C2 must

add to zero.

[12]

Definition 2.2(g) Syndrome Decoding: The syndrome of a codeword is

defined as

S(y) = yHT

[12]

19

where y is some received message vector. Right multiplication of the message

vector gives us the syndrome of the message vector received. Only message

vectors with S(y) = 0 are in the code.

Individuals with knowledge of group theory will immediately recognize that

that vectors with the same syndrome are in the same coset as each other.

The coset leader is the vector of minimum hamming weight in the coset. For

example the coset leader of the coset represented by S(y) = 0 will be the zero

vector of the generator matrix. When an error vector y is received we can

conduct nearest neighbor decoding through the process of calculating S(y)

and finding the coset leader. We then subtract the coset leader from y, which

within the limits maximum error detection and correction, will give us the

intended code word sent.

2.3. Construction of cyclic codes. We start by defining a cyclic code.

Definition 2.3(a) Cyclic Codes: A linear code of length n is cyclic if it is

invariant under a cyclic shift. So we see that

c = (c0, c1, c2, . . . , cn−2, cn−1) ∈ C

⇐⇒

c̃ = (cn−1, c0, c1, c2, . . . , cn−2) ∈ C

If Fn is a field such that n ≥ 3 then there will always be trivial examples of a

cyclic code present in the field.

(1) A length n zero dimensional code consisting of the all zero code word.

This code lacks any information.

(2) A length n one dimensional code, known as the repetition code

20

(3) An n length code with dimension (n− 1) consisting of all vectors

(c0, c1, c2, . . . , cn−2, cn−1) such that
∑

iCi = 0. This is the single

parity check code.

(4) A length n dimension n. This is the no parity code.

[2]

It may appear that appearances of cyclic codes are arbitrary with the

exception of the trivial examples listed above. This is not true. In fact cyclic

codes have algebraic structures.

Let R = F[x]/(xn − 1) be the polynomial quotient ring over the finite field

Fnq . If we have some polynomial in R such that the code vector (c0, . . . , cn−1)

maps to the polynomial c(x) = c0 + c1x+ · · ·+ cn−1x
n−1.

For example in a code over F3
2

(0) = (000)

(1 + x) = (110)

(x+ x2 = (011)

(1 + x2) = (101).

Note that over any field (xn − 1) = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1). Also,

(xn− 1) = 0 in the polynomial ring and is an ideal of the ring of polynomials.

As discussed earlier when the ideal is generated by an irreducible polynomial

then the quotient ring is a field. In this specific case the factor of (xn − 1)

21

will be an irreducible polynomial which generates the ideal and is thus

referred to as the generator of the cyclic code. [12]

Theorem 2.3(a): If we define the generator function as c(x) then cr(x) is

the right cyclic shift defined by cr(x) = x · c(x)mod (xn − 1)

Proof:

cr(x) = x · c(x)mod (xn − 1)

= x(c0 + c1x+ · · ·+ cn−1x
n−1)

= xc0 + c1x
2 + · · ·+ cn−2x

n−1 + cn−1x
n

= cn−1 + xc0 + c1x
2 + · · · cn−3x

n−2 + cn−2x
n−1

It is important to remember that in the polynomial ring modular (xn − 1)

xn = 1 such that the cyclic shift can now occur.

Theorem 2.3(b): Let the code C 6= 0 be a cyclic code and of length n over

F then g(x) is the generator function of minimal degree that is uniquely

determined and C = {g(x)q(x)| ∈ Fn−d} where d denotes the degree of the

generator function g(x). [11]

Proof:

Let c(x) = g(x)q(x) + r(x). Where c(x) is any polynomial in the code. By

equality c(x)− g(x)q(x) = r(x). If r(x) was non zero then it would also be in

C and would have degree less than d. However, this contradicts the

minimality of g(x) and so r(x) = 0 This proves that g(x) is the unique

minimal generator in C.

22

Theorem 2.3(c): Let the check polynomial of a cyclic code be denoted by

h(x). Furthermore, xn − 1 = h(x) · c(x) = 0 under Fnq for any c(x) in the

code. [11]

Proof: Again we refer to the division algorithm. For some s(x) with degree

less than d

xn − 1 = h(x) · g(x) + s(x)

−h(x) · g(x) = s(x)mod(xn − 1)

If s(x) is not equal to zero then there exists a contradiction to the minimality

of g(x). So therefore s(x) = 0 and h(x) is the polynomial which negates any

code vector in C. The polynomial h(x) is referred to as the check polynomial.

2.4. Prominent examples of cyclic codes. Having defined the basic

construction of cyclic codes we will now look at some actual example. First

we will consider the famous Hamming code. Hamming codes are most easily

defined in terms of their parity check matrix.

Definition 2.4(a) Hamming Code: Let H denote the parity check matrix

such that H is a r × (2r − 1) size matrix. This matrix H is the parity check

matrix for the binary Hamming code denoted Ham(r, 2). [12]

Remark: While we are only discussing the binary Hamming codes in this

text there is no need to restrict Hamming codes to binary alphabets. To

describe other codes we simply replace Ham(r, 2), with Ham(r, q) such that q

is the size of the alphabet.

Additionally we note some other facts about Ham(r, 2) codes.

(1) Ham(r, 2) has length n = 2r − 1 and dimension k = n− r.

23

(2) Hamming codes are perfect codes. This means that the code vectors

with covering radius of t errors fill the entire vector space with no

overlap. Alternatively the vector space is filled with the maximum

number of code words without violating the minimum distance

between codes.

(3) Ham(r, 2) has a minimum distance of three. This is easily proved by

considering the case of a code vector whose wt(x) = 1. We quickly see

that the parity check matrix would have an all zero vector. This

would violate the definition of the parity check matrix. Showing that

there are no code vectors of wt(x) ≤ 3 is an extension of this proof.

(4) Decoding with ham(r, 2) is very simple. Since the code is perfect the

coset leaders are the 2r vectors of wt ≤ 1 in the space. This means

that s(y) will, in binary representation, give the position of a single

error digit in the code vector. This, in the case of single error

detection and correction allows for fast and low bandwidth error

correction.

It is not immediately apparent that the Ham(r, 2) codes are in fact

cyclic. They, in fact, are cyclic. This property allows us to describe a

hamming code with a single polynomial function.

Definition 2.4(b): Cyclotomic Coset Let n be relatively prime to q. The

cyclotomic coset of q modulo n containing i is defined by:

Ci = {i · qj(mod n)Zn | j = 0, 1, }

24

A complete set of representatives of equivalence classes under Zn is referred

to as the complete set of representatives of cyclotomic cosets.

Theorem 2.4(a): Let α be a generator element of Frq. Then the minimal

polynomial of αi with respect to Fq is.

M (i)(x) =
∏
j∈Ci

(x− αj)

where Ci is the unique cyclotomic coset of q modulo qr − 1 containing i. [3]

Proof: Let

M (i)(x) = a0 + a1x
1 + · · ·+ ar−1x

r−1 + arx
r

Then by raising each coefficient to the power of q we obtain

aq0+aq1x
1+· · ·+aqr−1x

r−1+aqrx
r =

∏
j∈Ci

(x−αqj) =
∏
j∈Cqi

(x−αj) =
∏
j∈Ci

(x−αi) = M (i)(x)

Which proves M (i)(x) is a polynomial over Fq.

Let us show M (i)(x) is minimal. First, since α is a generator element the

αk 6= αj for k 6= j. Next let f(x) ∈ Fq[X] | f(ai) = 0. If we then construct

f(x) = f0 + f1x+ · · ·+ fnx
n then for any j ∈ Ci there exists an integer l such

that j ≡ iql (mod qr − 1). Hence,

f(αj) = f(αiq)l = f(αi)q
l

= 0

Which shows that M (i)(x) is a divisor of f(x).

Remark 1: aq0 + aq1x
1 + · · ·+ aqr−1x

r−1 + aqrx
r =

∏
j∈Ci

(x− αqj) by way of

the freshman’s dream property of finite fields which is referenced in section

25

2.1. Also, by definition of the cyclotomic coset Ci = Cqi. This will allow us

to find the third product of the proof. Lastly, because ak = aqk , for all

0 ≤ k ≤ r, all ak are elements of Fq.

Thereom 2.4(b): The ham(r, 2) code is equivalent to a cyclic code. [2]

Proof: Let α be the generator polynomial of the field Fr2. By the previous

theorem the minimal polynomial of α is f(x) = M1(x) =
∏

j∈Ci
(x− αi)

where C1 is the cyclotomic coset of 2 modulo 2r − 1. By our earlier definition

of cyclotomic cosets C1 = {1, 2, 3, 22, 23, . . . , 2r−2, 2r−1}, such that the degree

of f(x) = M1(x) is r, see theorem 2.4(a), and is irreducible. Furthermore,

{0, 1, α, . . . , α2r−2} = F2r = F2[x]/f(x) = F2[α] = {α0+α1α+α2α
2+· · ·+αr−1α

r−1|αi ∈ F2}

Let α0 + α1α + α2α
2 + · · ·+ αr−1α

r−1 ∈ F2r = {0, 1, α, . . . , α2r−2}. Be

associated to the column vector


α0

α1

...

αr−1


∈ Fr2

Let n = 2R − 1. The r × n matrix

H[1, α, α2, · · · , αn−1]

26

is the parity check matrix for C = Ham(r, 2). since its columns are the

distinct nonzero vectors of Fr2. Our code vector multiplied by the parity

check matrix H must be equal to 0 so that.

{C = U(x) ∈ Rn
2 |U(α) = 0 ∈ F2[x]/f(x)} = {x ∈ Fn2 |Hxt = 0}

Finally, if U(x) ∈ C and r(x) ∈ Rn
2 , then r(α)u(α) = r(α)0 = 0 ∈ F2[x]/f(x),

noting that αn = 1, so r(x)u(x) is an element of C. The fact that we are

working in a field implies C is cyclic.

We now define a 3 step process which allows us to find a cyclic code

equivalent to the binary [2r − 1, 2r − 1− r] hamming code.

Definition 2.4(c): A polynomial g(x) is primitive if its coefficients are in

GF (p) = Z/pZ, has degree m, and has a root α in GF (pm) such that

{0, 1, α, α2, α3, · · · , αpm−2} is the entire finite field. A corollary to this is that

α is a root of unity in the finite field. [2]

Step 1: Let m = 2r − 1, and write the cyclotomic factorization

xm − 1 =
∏

d|n Φd(x), such that 0 < d < n, in Z[x].

Step 2: Reduce this factorization mod 2, and factor into irreducibles in

F2[x]. Let g(x) be a primitive irreducible factor in this factorization. It will

have degree n.

Step 3: Let g(X) be the generator polynomial such that < g(x) > Is the

cyclic code in F2[x]/ < xm + 1 >.

27

3. Lattices and cryptographic applications

In the following sections we will discuss properties of integer lattices,

computationally complex problems related to lattices, and how lattices and

cyclic codes combine to create a cryptographic algorithm called NTRU.

3.1. Definitions and basic properties of lattices. First we will define

lattices from two standpoints.

Definition 3.1(a): A lattice is a discrete additive subgroup of Rn, i.e., it is

a subset Λ ⊆ Rn which satisfies the following:

• Λ is closed under addition and subtraction. It is a subgroup.

• The lattice is discrete. There is an ε > 0 such that for any two lattice

points x 6= y ∈ Λ are at least the distance ‖x− y‖ ≥ ε. [17]

So based off this initial definition of a lattice we see that the set Zn is a

lattice. This set is closed under addition and subtraction as well as having a

minimum euclidean distance of at least 1 between any two vectors.

An alternative definition of a lattice is as follows.

Definition 3.1(b): Given n linearly independent vectors

b1, b2, · · · , bn ∈ Rm, the lattice generated by them is defined as

L(b1, b2, · · · , bn) = {
∑

xibi|xi ∈ Zn}

The vectors b1, b2, · · · , bn are defined as the basis of the lattice.

If we define the matrix B as the m× n matrix whose columns are

b1, b2, · · · , bn then the lattice generated by B is

L(B) = L(b1, b2, · · · , bn) = {Bx | x ∈ Zn}

28

[19]

Definition 3.1(c): We can define the rank of the lattice as the n columns of

the above matrix. If the matrix has dimension m and n = m then the lattice

is called a full rank lattice.

Definition 3.1(c): The span of a lattice L is the linear space spanned by its

vectors.

span(L(B)) = span(B) = {By | y ∈ Rn}

[19]

Definition 3.1(d): The fundamental parallelepiped for any lattice of basis

B is defined as

P(B) = {Bx | x ∈ [0, 1)n}

[13]

Which essentially is the space spanned by its basis when restricting the

scalar of the basis to a domain from [0, 1).

An interesting property of the fundamental parallelepiped, P(B) is that if

the lattice is full rank, i.e. the matrix B has n = m columns and rows, is

that P(B) will tile Rn. More formally we write this as.

Rn = {P(B) + x | x ∈ L(B)}

[13]

From this it becomes clear that translations of P(B) by all the vectors in

L(B) will cover the space Rn. Naturally, if the lattice L(B) is of full rank, B

29

is an n× n matrix, then the intersection of the lattice L(B) with P(B) is the

empty set. The proof of this fact is on page two of [13].

Theorem 3.1(a): Let V be an r-dimensional subspace of Rn, and let Γ be a

discrete co-compact subgroup of V . Then Γ is a lattice of rank r in Rn.

Remark: We will briefly define co-compactness as that if there exists some

discrete subgroup H of G which is co-compact. Then there must also exists

a compact subgroup K such that HK = G..

The previous theorem is proved on page 14 in [7]. For sake of brevity the full

proof is omitted. However, it is worth explaining why this theorem is so

important. Clearly we can construct a basis of linearly independent vectors

{α1, · · · , αr} which span R. We must construct our lattice basis,

{b1, b2, · · · , br}, in such a manner in such a way that it specifically spans Z in

r dimensions. To do this we must first construct the linearly independent

basis for Γ. Then the proof must show that the span of Z in r dimensions

contains Γ, which is fairly obvious. Lastly, we show that Γ contains the span

of Z in r dimensions. The main point of the above theorem is that an integer

lattice is a unique object quite different from a full rank matrix due to it

being a discreet subgroup of a vector space in Rn.

Another interesting property of lattices is that a basis for a lattice is not

necessarily unique. We now show why this is so. This fact is highly

important in the use of lattices in cryptography.

Given two basis B1, B2, we must determine if they generate an equivalent

lattice such that L(B1) = L(B2). It is necessary to introduce more

definitions to do so.

30

Definition 3.1(e): A matrix U in Zn×n is called unimodular if det U = ±1

[19]

Lemma 3.1(a): If U is unimodular, then U−1 is also unimodular, and

U−1 ∈ Zn×n.

Proof: Suppose A is unimodular. Then by generalized Cramer’s rule we

have:

A−1(I, J) = ±A(J c, Ic)

detA

,

where A(J c, Ic) is the cofactor matrix. Since A is unimodular by definition

detA = 1. So we can restate the above as

A−1(I, J) = ±A(J c, Ic)

Which essentially states that A−1 = Adj(A). Where Adj(A) is the adjugate

of A. Finally, there exists a relationship, which we will not prove for brevity

sake, that states

det(Adj(A)) = det(A)n−1

. Since our matrix is unimodular it is clear det(A)n−1 = 1 Which shows that

det(Adj(A)) = 1 and we are done.

Theorem 3.1(b): Let Λ be a lattice of rank n in Rn, and let A be a basis

matrix for Λ. Then B is another basis matrix for Λ if and only if there exists

an N ×N integral matrix U with detU = 1 such that

31

B = UA

[7]

Proof: First note that if

B = UA

then

bi =
N∑
j=1

uijaj

and since B is also a basis matrix then there must exist some unimodular

square integer matrix W such that

ai =
N∑
j=1

wijbj

such that

B = UA = UWB

Which implies UW = IN which further implies that W = U−1. Note that we

already showed that if U is a unimodular square integer matrices then

det(U) = det(U−1) = ±1. From this we can see that

det(A)det(U) = det(U−1)det(B) 6= 0

which implies that the columns of B are linearly independent. Finally, if

B = U−1A

32

the column vectors of A are in the span of the column vectors of B, which

shows that

Λ = spanZ{b1, b2, · · · , bn}

. Hence B is a basis for Lambda and our proof is complete.

Corollary: From the above proof we see that

|det(a)| = |det(b)|

Remark: For the full version of this proof refer to page 15 of [7].

While there are many interesting properties and theorems concerning lattices

we will conclude this section with a definition regarding the determinant.

Definition: Let Λ = L(B) be a lattice of rank n. Then det(Λ) = volP (B),

i.e. the determinant is the n dimensional volume of the fundamental

parallelepiped. [19]

In the general case define det(Λ) =
√
B ·Bt. However since we are restricting

ourselves to full rank lattices we state that det(Λ) = |det(B)|.

3.2. Successive minima and Minkowski’s theorems. We start the

following subsection with definitions which will be necessary for

understanding upper and lower bounds on successive minima. We begin by

defining the Gram-Schmidt Orthogonalization Process.

Definition 3.2(a): Given any n set of linearly independent vectors we can

create a set of n orthogonal vectors through the following process.

(1) First we must define the projection operator as the algorithm for

projecting the vector ~v onto a new orthogonal vector ~u this is defined

33

as

proju (v) =
〈v,u〉
〈u,u〉

u,

(2) Gram-Schmidt process on the kth vector is as follows.

uk = vk −
k−1∑
j=1

projuj
(vk), .

(3) Then we obtain an orthonormalized Gram-Schmidt basis when

normalization is applied to each vector in the usual way.

ek =
uk
‖uk‖

The span of the orthonormalized basis is equal to the span of the basis of the

original lattice L(B). However, the orthonormal basis need not be a basis for

L(B) and generally is not. We finish our discussion of the Gram-Schmidt

process with a formal definition

Definition 3.2(b): Let B ∈ Rd×n be a basis then

det(L(B) = vol(P (B)) =
∏
i

‖b∗i ‖

[17]

Where ‖b∗i ‖ is the ith orthogonal Gram-Schmidt vector. From this we have a

convenient way of calculating the determinant of the lattice.

Definition 3.2(c): For any lattice basis of B ∈ Rd×n

det(L(B) =
√
BTB

[17]

34

Definition 3.2(d): The ith successive minimum of lattice Λ, λi(Λ), is

defined to be inf { r | dim(span(λ ∩B(0, r))) ≥ i} [13]

More colloquially we can say that λi is the following: it is the smallest r such

that the lattice points inside a ball of radius r span a space of dimension i.

Below we see an example in R2.

Figure 3.2(a):

[13]

However, defining the successive minima does little to help us understand

what the upper and lower bounds on them are. More importantly there are

key questions left unanswered regarding on how one obtains a basis of

successive minima.

The question of the lower bound is the least complicated. We can use our

Gram-Schmit process to produce an orthogonal basis. This will then provide

us a lower bound for the successive minima.

Theorem 3.2(a): Let B be a rank-n lattice basis and let B∗ be its Gram

Schmidt orthogonalization. Then we have that

35

λ1(L(B)) ≥ min
1,··· ,n
‖B∗‖ > 0

[22] [19]

Proof: Let j ∈ {1, . . . , n} be the largest index such that xj 6= 0. Then,

|〈Bx, b∗j〉| = |〈
n∑
i=1

xibi, b
∗
j〉| =

n∑
i=1

xi|〈bi, b∗j〉| = |xj|〈b∗j , b∗j〉 = |xj| ·
∥∥b∗j∥∥2

where we used that for all i < j, 〈bi, b∗j〉 = 0 and that 〈bj, b∗j〉 = 〈b∗j , b∗j〉. On

the other hand, |〈Bx, b∗j〉| ≤ ‖Bx‖ ·
∥∥B∗j∥∥, concluding that

‖Bx‖ ≥ |xj|
∥∥b∗j∥∥ ≥ ∥∥b∗j∥∥ ≥ min‖b∗i ‖

We must now consider the upper bounds on successive minima. To do this

however we must first present two theorems known as Blichfeld’s Theorem

and Minkowski’s Convex Body Theorem. Let us begin with Blichfeldt’s

theorem.

Theorem 3.2(b): For any full-rank lattice Λ ⊆ Rn and set S ⊆ Rn with

vol(S) > det(Λ) there exists two nonequal points z1, z2 ∈ S such that

z1 − z2 ∈ Λ. [19]

Proof: Let B be a basis for the lattice L. Define f : Rn 7→ P (B) as follows:

f(
∑
xibi) =

∑
(xi − bxc)bi. First, note that∑

xibi − f(
∑
xibi) =

∑
bxicbi ∈ L. Now consider the following two cases:

Case 1: If ∃ x, y ∈ S s.t. f(x) = f(y). Then x− y = (x− f(x))− (y − f(y)).

But as noted, x− f(x) ∈ L and y − f(y) ∈ L. Therefore x− y ∈ L.

36

Case 2: Assume there are no collisions. Les S = ∪x∈LSx. Define S∗x = Sx − x.

By definition, S∗x ⊆ P (B). Also, vol(s) =
∑
vol(sx) and vol(S∗x) = vol(Sx).

Therefore vol(s) =
∑
vol(sx) =

∑
vol(S∗x). But since we assume that we do

not have any collisions, then for x, y, S∗x ∩ S∗y = ∅. And so,

vol(s) =
∑

vol(S∗x) =
∑

vol(∪
x∈L

S∗x) ≤ vol(P (B)) = det(L)

Therefore, vol(s) ≤ det(L) which contradict the assumption of case 2. [22].

Theorem 3.2(c): (Minkowski’s Convex Body Theorem) For all full-rank

lattice L, and a convex centrally symmetric set S with vol(s) > 2ndet(L), S

contains a non-zero lattice point. [22].

Proof: Let S∗ = x/2 : x ∈ S. Then,

vol(s∗) = 2−nvol(s) > det(L).

[22]

Therefore, by the Blichfeldt theorem ∃x, y ∈ S∗ | x− y ∈ L. We will show

that x− y ∈ S. Now, 2x ∈ S and 2y ∈ S by the construction of S∗.

Therefore, −2y ∈ S. and x− y = 2x−2y
2
∈ S.

Finally, we have the building blocks for a theorem which gives us an upper

bound on the first successive minima.

Theorem 3.2(d): For every full rank lattice L:

λ1L ≤
√
n · det(L)1/n

[22]

37

Proof: Let S = (0, λ1(L)), where B(x, r) is an n-dimensional open ball of

radius r centered at x. This ball contains an n dimension cube of length 2r√
n
.

Therefore,

vol(B(0, r)) ≥ (
2r√
n

)n

.

Therefore, we get vol(B(0, λ1(L))) ≥ (2λ1L√
n

)n. But from theorem 3.2(c)

(Minkowski’s convex body theorem) and the fact that the ball is open and

hence contains no non-zero lattice points, we get

λ1(L)) ≥
√
n · det(L)1/n

We conclude this section by giving an upper bound for any successive

minima. This is Minkowski’s second theorem. From this theorem we now

have a lower and upper bound for any λi. This is as follows:

Theorem 3.2(e): For all full rank lattices L.

n∏
i=1

λi(L)1/n ≤
√
n · (det(L))1/n

Remark: The proof of this theorem is simply too long to include in this

work. However, for the full proof refer to Martin Henk’s proof of Minkowski’s

second theorem. Minkowski’s own theorem is widely viewed as overly long

and difficult to understand.

To conclude this section we must note that while we have defined upper and

lower bounds for successive minima we have not determined the successive

38

minima themselves. This is a uniquely hard problem. This leads us into our

next two sections.

3.3. Lattice problems. In order to understand how lattices can be used to

encrypt and decrypt messages we must explain several problems based off

finding successive minima. We start off with the definition of shortest vector

problem (SVP).

Definition 3.3(a): Given a lattice Λ find λi 6= 0 ∈ Λ such that for any other

lattice point λk ∈ Λ where 0 < k ≤ n and k 6= i we have that

‖λk‖ ≥ ‖λi‖

From this we can see the that λi = λ1, the shortest non-zero vector in the

lattice. Visually we see that

Figure 3.3(a):

[20]

Where the red vector represents λi and the blue vectors represent the basis

vectors of a lattice in two dimensions. In the following sections we will

discuss why it is difficult to find this vector. We now discuss a similar

problem called closest vector problem (CVP)

Definition 3.3(b): Given a lattice Λ and vector y ∈ Rn, find a λk ∈ Λ such

that ‖y − λk‖ is minimal.

39

Figure 3.3(b):

[20]

Where the green point is the vector y and the red point is λk.

Finally we define the Shortest Independent Vector Problem (SIVP) which is

finding n independent short vectors. We now formally define this.

Figure 3.3(c): Given a basis B ∈ Zn×n, find independent vectors

{u1, · · · , un} such that ‖ui‖ ≤ λn for i ∈ [n]. [22]

Figure 3.3(c):

[16]

In the image above we see that we have found the shortest independent

vectors up to n = 2. Over more dimension this problem becomes

progressively more complex.

Although we have not adequately explained complexity at all, much less with

rigor. It is not hard for the lay person to imagine how these problems would

get progressively difficult as the dimension of your lattice increases.

40

3.4. Basic computational complexity. Alan Turing is viewed as the

father of modern computer science. The Turing Machine, named after him, is

a purely hypothetical construct which we will now define.

Definition 3.4(a): A Turing machine is specified by a finite alphabet Σ, a

finite set of states K with a special element s, (the starting state), and a

transition function δ : K × Σ 7→ (K ∪ {halt, yes, no})× Σ× {←,→,−}. It is

assumed that Σ, K , {halt, yes, no}, and {←,→,−} are disjoint sets, and

that Σ contains two special elements B,t representing the start and end of

the tape, respectively. We require that for every q ∈ K, if δ(q,B) = (p, σ, d)

then σ =B and d 6=←. In other words, the machine never tries to overwrite

the leftmost symbol on its tape nor to move to the left of it. [14]

Quite simply the Turing machine reads a tape and proceeds left or right on

the tape based off an instruction alphabet written on the tape. While this

machine was hypothetical in its construction it is not far off from the

function of modern computers.

Obviously we can use computers to solve certain problems faster than people.

For example, calculators conduct multiplication for us and can do so at a

much faster rate than people. However, speed, or efficiency, of the computer

can depend greatly on the algorithm used. For example, we can tell a

computer to multiply a · b by adding a to itself b− 1 times or through use of

the usual grade school algorithm. We see that the grade school algorithm

requires at most 2n2 steps, where n is the size of the input. The former

method requires at least n10n−1 steps. Using the more efficient grade school

algorithm we would see common pocket calculators beating supercomputers

41

using the former repeat addition algorithm. This disparity of course holds

only for sufficiently large input n.

It is important, when talking about efficiency, to try and rigorously define

how much time an algorithm takes to solve some sort of problem. We define

our first set of complexity class with two definitions.

Definition 3.4(b): Let T : N 7→ N be some function. We let

DTIME(T (n)) be the set of all Bolean (one bit output) functions that are

computable in c · T (n)-time for some constant c > 0. [1]

Definition 3.4(c): P = ∪c≥1DTIME(nc) Where P the class P . [1]

So we see that a problem solved in DTIME, or deterministic polynomial

time, might be solved in n3, or n5 step algorithm. From this we can say that

the group of efficient algorithms for decision (boolean) problems are

analogous to the class P .

We now know that there are efficient algorithms for solving certain problems.

Other problems, say a sudoko puzzle or the shortest route for a UPS delivery

truck, have a verifiable solution. These problems with solutions may not

have an efficient algorithm to solve the problem, only to verify the solution

when given. The set of problems in the latter set are in what is called

non-deterministic polynomial time, NP time.

Definition 3.4(d): A language L ⊆ {0, 1}∗ is in NP if there exists a

polynomial p : N 7→ N and a polynomial-time Turing Machine M such that

for every x ∈ {0, 1}∗,

x ∈ L↔ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1

42

if x ∈ L and u ∈ {0, 1}p(|x|) satisfy M(x, u) = 1 then we call u a certificate for

x (with respect to language L and machine M) [1]

Remark: We must define some terms from theoretical computer science.

{0, 1}n denotes strings of bits of length n. {0, 1}∗ is the set of all strings.

Finally, {0, 1}p(|x|) is the string of length p(|x|) This is a rigorous way of

stating that if input x is in the language and we have a polynomial size

solution that verifies x then the problem is in the NP class.

Theorem 3.4(a): P ⊆NP ⊆ ∪c≥1DTIME(2nc) [1]

Proof: First we show P ⊆NP . Suppose L ∈ P is decided in polynomial

time by a Turing Machine N . The L ∈NP since we can take N as the

machine M in definition 3.4(d) and p(x) the zero polynomial such that u

would be the empty string.

We now prove NP ⊆ ∪c≥1DTIME(2nc). If L ∈NP and M, p() are as in

definition 3.4(d) then we L in time 2O(p(n)). by enumerating all possible u

and and using M to check whether u is a valid certificate or witness fo rthe

input x. The machine accepts if and only if such a u is ever found. Since

p(n) = O(nc) for some c > 1 then this machine runs in 2O(p(n)) time. [1]

Remark: The above theorem is a fairly trivial result. It does not, for

example, answer the most central question of complexity theory of whether

P = NP . It is a commonly held belief that P 6= NP . Proving this fact is

an extremely inefficient method of making one million dollars. Proving that

P = NP would probably cause the collapse of modern society.

We must now define the concept of a non-deterministic Turing Machine in

order to define the class NP in a way which does not require DTIME.

43

Definition 3.4(e): For every function T : N 7→ N and L ⊆ {0, 1}∗, we say

that L ∈NTIME(T (n)) if there is a constant c > 0 and a cT (n) time Non

Deterministic Turing Machine M such that for every

x ∈ {0, 1}∗, x ∈ L⇔M(x) = 1. [1]

Remark: The key difference between a deterministic Turing Machine and

it’s non-deterministic counterpart is that it has two transition functions

δ1, δ2. The non-deterministic machine also has a special state, defined as

qaccept in [1]. M(x) for every input x in L will reach either qaccept or M(x) = 0

Theorem 3.4(b): NP = ∪c∈NNTIME(nc). [1] [1]

Proof: Suppose p : N 7→ N is a polynomial and L is decided by a

non-deterministic Turing Machine N that runs in time p(n). For every

x ∈ L, there is a sequence of nondeterministic choices that makes N reach

qaccept on input x. We can use this sequence as a certificate, or witness, for x.

Note, this certificate has length p(|x|) and can be verified in polynomial time

by a deterministic machine, which checks that N would have entered qaccept

after using these non-deterministic choices. Thus L ∈NP According to

definition 3.4(a)

In the other direction, if L ∈NP according to definition 3.4(a), then we

describe a polynomial time Non-Deterministic Turing Machine N that

decides L. On input x, it uses the ability to make non-deterministic choices

to write down a string u of length p(|x|). The it runs the deterministic

verifier M of definition 3.4(a) to verify u is a valid witness for x, and if so

enters qaccept. Clearly, N enters qaccept on x if and only if a valid certificate

44

exists for x. Since p(n) = O(nc) for some c > 1 we must conclude that

L ∈NTIME(nc)

Definition 3.4(f): We say that some problem A is reducible to language B

in polynomial time if there is some polynomial time function if every element

x ∈ {0, 1}∗, x is in A if and only if f(x) is in B.

Definition 3.4(g): We say B is NP -hard if A is reducible to B for every

A ∈NP .

Definition 3.4(h): We say that B is NP -complete if B is NP -hard and

B ∈NP

Figure 3.4(a):

[6]

Above we see figure 3.4(a). This is a visual representation of the above

definitions for both P 6= NP , and P = NP . Note that NP -hard problems

45

need not even be decidable at all. Hence we see that much of this class lives

outside of P and NP .

3.5. Applications in cryptography. We have, over the course of this

writing, discussed a wide variety of seemingly disparate topics. In this

section we begin to show how we can use lattices to encrypt and decrypt

information in an efficient manner. Of course, we must first define what we

mean by encryption as well as provide some background information.

If we define cryptography as the art of writing or solving codes then in

modern cryptography we have two different types of encryption. First we see

the symmetric type. This is best described as a system in which two parties

communicate via one shared secret key. There are various algorithms but the

key factor in symmetric encryption is that everyone must have the same key.

In order for the message traffic to be secure the key must be transported in

some secure fashion. Usually this means by courier or that all parties must

meet and share the key prior to sending traffic. Another issue is that if one

wishes to have private conversations with multiple individuals then one must

generate a separate key for each individual. However, symmetric encryption

enjoys a vast advantage in computational efficiency over asymmetric, or

public key, cryptography. This is true for the following reasons.

• Symmetric keys generally require less CPU power to encrypt and

decrypt messages. While each algorithm is different, symmetric

encryption is generally faster than computationally heavy public key

encryption. However, it has not been rigorously proven that all public

key cryptography is more computationally demanding. This of course

46

is related to key length. For example a symmetric 128 bit AES

encryption is at least as secure as a 3072 bit RSA encryption key.

Symmetric key encryption is generally most vulnerable to brute force

attacks because a randomly generated relatively short key creates a

vast key space. This short key length greatly speeds up the

encryption decryption process. Asymmetric encryption uses one way

functions and thus require relatively longer keys to prevent attacks.

• Symmetric keys are by their nature private and shared amongst a

select group. Since public keys are available to the masses the

message traffic on a network using public key encryption could slow

down network performance. A side benefit of symmetric key

cryptography being private is that they are not generally vulnerable

to plain text attacks used against public key cryptography.

• Symmetric keys encrypt messages and break up the plain text

message into blocks fit the key length. For odd length messages

something called padding, adding in random junk, is used to fill the

unused space in the key. However the amount of padding is minimal.

In public key cryptography, RSA specifically, a large amount of

padding is necessary. This is due to the fact that the key in RSA, as

previously stated, is based off a one way function. Careless generation

of factors for the modulus are vulnerable to various methods of

attacks. More importantly, without padding an attacker can use the

public key to repeatedly encrypt messages. Through comparison of

the encrypted messages the attacker can deduce the private key. The

only defense is to pad the message with useless random junk. This

47

reduces available message space and is in contrast to the randomly

generated symmetric key. As a result sending information via public

key is much slower. In fact, most secure communication channels use

a public key only for the transmission of a symmetric key, which is

then used to send message traffic back and forth. This is referred to

as hybrid encryption.

Despite having discussed all this the advantages of public key cryptography

are obvious. The ability to establish a secure channel without couriers or

meetings greatly enhances the availability of secure communication.

However, even if one properly implements RSA, or some other public key

system, the encryption could still be broken by a quantum computer. Integer

factorization, discrete logarithms, and elliptic curves are no longer difficult

problems when attacked by a quantum computer. The development of a such

a computer is predicted within the next 30 years. While integer factorization,

the basis of RSA, is a difficult problem it has not been proven to be in the

NP class.

The usefulness of lattices is that many problems associated with them are

proven to be NP -hard. In fact, SVP is proven to be NP -hard and the CVP

is proven to be at least as hard as SVP. So given that these problems are in

the NP -hard class it is natural to ask the question if they can be used

create public key encryption algorithms.

In 1996 the first semi-practical lattice based crypto-system was developed by

Boldreich, Goldwasser, and Halevi. This system, GGH, was based on the fact

that given the shortest bases for a lattice solving CVP is accomplishable in

polynomial time. This is best demonstrated graphically.

48

Assume, there exists some lattice Λ of rank at most n− 1. with GGH we

must first generate a private key and then generate a public key. We do this

as follows.

• This private key is the basis, B of Λ where B is ”nearly orthogonal”

and short. This is a ”good” basis. If an orthogonal vector does exist

one should not use this vector as algorithms to find such a vector

exist and will complete in polynomial time. A good basis will allow

us to solve instances of CVP where the vector v is very close to but

not in Λ.

• The public key should be some ”bad” basis H in Λ. By bad we mean

long and not close to orthogonal. One possible use the Hermite

Normal.

[16]

We must remember from earlier that assuming B · U = H for where

det(U) = 1 then L(B) = L(H). While CVP is easily solvable in n = 2, we

will present two figures of a lattice in Z2 to demonstrate how a good basis

can allow us to solve CVP. In figure 3.5(a) we see the good and the bad basis

overlaid on the origin.

Figure 3.5(a):

49

[21]

and below this we see in figure 3.5(b) the target vector, or target point of the

in the closest vector problem surrounded by the a translation of P(B) or the

fundamental parallelepiped of the good basis.

Figure 3.5(b):

[21]

It is clear with a short and nearly orthogonal basis the solution to CVP is

the vertex of the translated P(B) closest to the target vector. The designers

of the private key, having selected such a basis, B, would be able to quick

find a solution to the closest vector problem.

Finally we see in figure 3.5(c) that an individual trying to use the public key,

basis H, would not be able to solve the closest vector problem in polynomial

50

time. The translated P(B) of the bad basis, H, would contain so many

discrete lattice points that it would not be practical to select the solution to

CVP in polynomial time.

Figure 3.5(c):

[21]

We now understand that GGH is cryptosystem which, with some pre-existing

knowledge of the semi-orhogonal basis B, allows us to come to an

approximate solution to CVP. This would allow someone to determine, with

reasonable certainty what the solution to the closest vector problem was. We

will now show how GGH can be used to encode and decode a message.

(1) We select some message (m1, ...,mn) consisting of integer values

which exists in the same space as the lattice Λ

(2) We then take m = (m1, ...,mn) and encode via the bad basis, H.

v =
∑

miHi

such that our message, since H is a basis for Λ, is now a point in Λ.

51

(3) In order to encrypt the message we now introduce a small error

vector, e, such that the ciphertext is.

c = v + e = m ·H + e

Now that we have the cipher text c we can send the message to the

recipient who must decrypt it.

(4) To decrypt we must use the private key, B, as well as its inverse B−1.

The decryption method is as follows.

c ·B−1 = (m ·H + e)B−1 = m · U ·B ·B−1 + e ·B−1 = m · U + e ·B−1

(5) We are left, after right multiplication by the inverse of B with

m · U + e ·B−1

Note that m ·U is in our lattice. To remove the term e ·B−1 We apply

an algorithm not discussed in this writing called Babai’s algorithm. If

we have a sufficiently short and orthogonal basis B there will remain.

m · U

.

(6) Finally we multiple the above statement m · U by the inverse of U

m = m · U · U−1

and we retrieve the original message.

52

While GGH was the first theoretical lattice based crypto-system which could

function it was not practical from an efficiency standpoint. Since algorithms

such LLL are capable of finding a nearly orthogonal basis for lattices up to

n = 100 then size of the public key would be unmanageably large, say

n = 500. If n = 500 then the size of our public key is now 5002. In order to

solve these problems a new system, N-th Degree Truncated Polynomial Ring,

or NTRU.

3.6. Cyclic lattices and NTRU. NTRU is based off the premise that one

can generate a cyclic lattice which has good properties for use in a public key

encryption scheme. We must start by again defining the cyclic shift operator.

We do this now in the context of a cyclic lattice. This is

Definition 3.6(a): The cyclic shift operator is defined as

rot(x1, x2, · · · , xN−1, XN) = (xN , x1, X2 · · · , xN−1)

for every (x1, x2, · · · , xn−1, Xn) ∈ Rn. The number of cyclic shifts applied, or

iterations, is signified by k such that rotk is k shifts.

Having defined the cyclic shift we can say that a sublattice Γ of Zn is cyclic if

rot(Γ) = Γ.

Cyclic lattices themselves are derived from ideals in the quotient polynomial

ring Z[x]/(xn − 1). If we have some polynomial p(x) ∈ Z[x]/(xn − 1) then

p(x) =
n−1∑
n=0

anx
n

for some a0, · · · , an−1 ∈ Zn.

53

Let us now define the isomorphism

ρ(p(x)) = (a0, · · · , an−1) ∈ Zn

then for any ideal I ⊆ Z[x]/(xn − 1),ΓI is equivalent to ρ(I), and will be a

sub-lattice of Zn. So we see that for every p(x) =
∑n−1

n=0 anx
n ∈ I

xp(x) = an−1 + a0x+ a1x
2 + · · ·+ an−2x

n−1 ∈ I

So that if we again apply our isomorphism ρ again we will see that

ρ(xp(x)) = (an−1, a0, a1, · · · , an−2) = rot(ρ(p(x))) ∈ ΓI

We also see that for integer vector (a0, · · · , an−1) ∈ ΓI ,

rot(a0, · · · , an−1) = ρ

(
x
n−1∑
n=0

anx
n

)
∈ ΓI

since x · p(x) ∈ I. In summation, Γ ⊆ Zn is a cyclic lattice if and only if

Γ = ΓI for some some ideal I ⊆ Z[x]/(xn − 1).

Additionally, we can say that an integer sub-lattice Γ is cyclic if Γ(B) ⊆ Zn

such that B = {p(x)mod f(x) : p(x) ∈ I} where f(x) is some monic

polynomial of degree n and the ideal I ⊆ Z[x]/(xn − 1).

Remark: The above construction of cyclic lattices was taken from [8].

Having defined cyclic lattices we can now explain the basics of the NTRU

encryption algorithm. We will approach this in a step by step fashion.

(1) Key Creation: Fix n, p, q with n prime and that p, q and q > p. Then

choose two random polynomials f, g ∈ R such that both polynomials

54

have coefficients in {−1, 0, 1}. Also the degree of f, g is at most n− 1.

Then compute the inverses.

Fq ≡ f−1 (mod q) and Fp ≡ f−1 (mod p)

set h = pFq · g (mod q)

So we have Public Key = h and Private key = f and (Fp)

(2) Encryption: The encryption process is similar to GGH and is based

on creating a closest vector problem, but with a cyclic lattice. We

take our message m and map it to a polynomial with mod p

coefficients. We then randomly generate a very small polynomial r

with coefficient. Our ciphertext is generated by the following formula.

c = e ≡ p · r · h+m (mod q)

such that the ciphertext is an error vector created by adding the

message to random shift from a convolution lattice.

(3) Decryption: To decrypt we utilize the private key f .

a ≡ f · e (mod q)

≡ f · (r · h+m) (mod q)

≡ f · (r · pFq · g +m) (mod q)

≡ pr · g + f ·m (mod q)

55

we must now recover the plaintext message m from a. Of note we

must set the coefficients for a in the interval [−q
2
, q

2
] to avoid potential

problems with recovery of the message. To do this we set

b ≡ a (mod p) = f ·m (mod p)

lastly we use Fp to recover the original message.

Fp · f ·m (mod p) = m

and the decryption process is complete.

To understand NTRU in terms of lattices we must first define the

convolution modular lattice.

Definition 3.6(b): The convolution modular lattice Lh associated to the

vector h and modulus q is the 2n dimensional lattice with basis given by the

rows of the matrix:

Lh = RowSpan



1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

h0 h1 · · · hn−1

hn−1 h0 · · · hn−2

...
...

. . .
...

h1 h2 · · · h0

0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

q 0 · · · 0

0 q · · · 0

...
...

. . .
...

0 0 · · · q


or alternatively we can say that

56

Lh = {(a, b) ∈ Z2n : a ∗ h ≡ b (mod q)}

[21]

In the context of NTRU our lattice has the properties:

f(x) · h(x) ≡ g(x) (mod q)

for f, g with small coefficients. This relation would imply the fact that Lh

contains the vector

[f, g] = [f0, f1, · · · , fn−1, g0, g1, · · · , gn−1]

To show that [f, g] ∈ Lh let

u
(
x
)

=
−f(x) · h(x) + g(x)

q
∈ Z[x]

[21]

Then we have that:

[f0, f1, · · · , fn−1, u0, u1, · · · , un−1]



1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

h0 h1 · · · hn−1

hn−1 h0 · · · hn−2

...
...

. . .
...

h1 h2 · · · h0

0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

q 0 · · · 0

0 q · · · 0

...
...

. . .
...

0 0 · · · q



= [f0, f1, · · · , fn−1, g0, g1, · · · , gn−1]

[21]

57

Let Lh be the 2 dimensional module over the over polynomial ring

R = Z[x]/(xn − 1). Then Lh = {[u, v] ∈ R2 : u · h ≡ v (mod q)}. From this

we can see that the lattice Lh contains the short vectors [f, g] and the long

vectors [1, h], and [0, q]. So that we have two basis of Lh. The span of [f, g] is

the short basis which allows us to solve the CVP problem of NTRU. The

basis formed by [1, h] and [0, q] is the bad long basis.

4. Conclusion

As computer processing speeds increase the mathematical community must

continue to come up with cryptosystems based off hard problems. Of course

if we want to be totally secure then we should never send a message in the

first place. If that is not a viable option then we must encrypt our

information somehow. While understanding of how these systems work is not

easy the relevancy of encryption is plain to see in current events. Of course

non of these encryption schemes work if the channel is too noisy. Over a

noisy channel the cipher is junk to both the eavesdropper and the receiver.

For this reason we must utilize linear codes so that an encrypted message

sent will arrive without errors, ready for decryption. While not totally

related the algebraic structures for cyclic lattices and cyclic codes are almost

identical. These two complex yet fascinating subjects can be used in concert

to deliver information and messages in a secure and accurate manner.

The last 60 pages are but a brief foray into the world of coding theory and

cryptography. For a more in depth resource on lattice based cryptography

please refer to An Introduction to the Theory of Lattices and Applications to

58

Cryptography by Dong Pyo Chi. For an in depth introduction to error

correction codes written at a beginner level refer to [12].

59

References

[1] S. Arora and B. Arak Computational Complexity: A Modern Approach (draft)

Princeton University, January 2007

[2] J.C. Bowman Math 422 Coding Theory and Cryptography University of Alberta,

Edmonton, Canada, October 15, 2015

[3] M. Calderbank AN INTRODUCTION TO LINEAR AND CYCLIC CODES

University of Chicago, VIGRE, 2008

[4] J. W. S. Cassels. An Introduction to the Geometry of Numbers. Springer-Verlag, 1959.

[5] D.R. Finston and P.J. Morandi An Introduction to Abstract Algebra via Applications

Department of Mathematical Sciences New Mexico State University, Las Cruces NM

88003-8001, September 25, 2007

[6] B. Esfahbod Illustrations of P-Time, NP-Time, NP-Complete, and NP-Hard

ven-diagrams http://behnam.es/

[7] L. Fukshansky. Discrete geometry lecture notes. CMC Math 149, Fall 2013. 2013.

[8] L. Fukshansky X. Sun On the Geometry of Cyclic Lattices Department of

Mathematics, Claremont McKenna College School of Mathematical Sciences,

Claremont Graduate University

[9] P. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers. North-Holland

Publishing Co., 1987.

[10] V. Guruswami Notes 1: Introduction, linear codes Introduction to Coding Theory,

Carnegie Mellon University, 2010

[11] J.I. Hall Notes on Coding Theory chapter 6,7,8 Michigan State University, 2015

[12] R. Hill A First Course in Coding Theory. Oxford Applied Mathematics and

Computing Science Series, Clarendon Press, 1990.

[13] J. Kelner 18.409 An Algorithmists Toolkit, Lecture 1 Massachusetts Institute of

Technology, 2009

[14] B. Kleinberg Introduction to Algorithms CS 4820, Spring 2013 Notes on Turing

Machines Cornell University

60

[15] R. Lidl and H. Niederreiter Introduction to Finite Fields and Their Applications,

Chapter 2 Cambridge University Press, 1994.

[16] D. Micciancio and O. Regev Lattice-based Cryptography University of Southern

California and Tel Aviv University. 22 July 2008

[17] D. Micciancio. CSE 206A, Lattice Algorithms and Applications Lecture 1. University

of California San Diego. 2010

[18] J. Hoffstein and J. Pipher and J. H. Silverman NTRU: A Ring Based Public Key

Cryptosystem In Algorithmic Number Theory (ANTS III), Portland, OR, June 1998,

J.P. Buhler (ed.), Lecture Notes in Computer Science 1423, Springer-Verlag, Berlin,

1998, 267-288.

[19] O. Regev Lattices in Computer Science, Lecture 1 University of Tel Aviv, 2004

[20] S. Schmittner Images of Closest Vector and Shortest Vector Problem

https://research.schmittner.pw/

[21] J.H. Silverman An Introduction to theTheory of Lattices and Applications to

Cryptography, online lecture files. University of Wyoming Summer School on

Cryptography, 2006

[22] V. Vaikuntanathan 6.876 Advanced Topics in Cryptography: Lattices, lecture 3

Massachusetts Institute of Technology, 2015

	Claremont Colleges
	Scholarship @ Claremont
	2017

	Cyclic Codes and Cyclic Lattices
	Scott Maislin
	Recommended Citation

	Abstract
	Acknowledgments
	1. Introduction
	2. Theory of linear codes
	2.1. Finite fields and polynomial rings
	2.2. Linear codes and Error Correction: definitions and basic properties
	2.3. Construction of cyclic codes
	2.4. Prominent examples of cyclic codes

	3. Lattices and cryptographic applications
	3.1. Definitions and basic properties of lattices
	3.2. Successive minima and Minkowski's theorems
	3.3. Lattice problems
	3.4. Basic computational complexity
	3.5. Applications in cryptography
	3.6. Cyclic lattices and NTRU

	4. Conclusion
	References

