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Abstract

An understanding of epidemiological dynamics is important for prevention and control of epidemic outbreaks. However,
previous studies tend to focus only on specific areas, indicating that application to another area or intervention strategy
requires a similar time-consuming simulation. Here, we study the epidemic dynamics of the disease-spread over a commute
network, using the Tokyo metropolitan area as an example, in an attempt to elucidate the general properties of epidemic
spread over a commute network that could be used for a prediction in any metropolitan area. The model is formulated on
the basis of a metapopulation network in which local populations are interconnected by actual commuter flows in the
Tokyo metropolitan area and the spread of infection is simulated by an individual-based model. We find that the probability
of a global epidemic as well as the final epidemic sizes in both global and local populations, the timing of the epidemic
peak, and the time at which the epidemic reaches a local population are mainly determined by the joint distribution of the
local population sizes connected by the commuter flows, but are insensitive to geographical or topological structure of the
network. Moreover, there is a strong relation between the population size and the time that the epidemic reaches this local
population and we are able to determine the reason for this relation as well as its dependence on the commute network
structure and epidemic parameters. This study shows that the model based on the connection between the population size
classes is sufficient to predict both global and local epidemic dynamics in metropolitan area. Moreover, the clear relation of
the time taken by the epidemic to reach each local population can be used as a novel measure for intervention; this enables
efficient intervention strategies in each local population prior to the actual arrival.
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Introduction

A theoretical understanding of the epidemic spread of an

infectious disease within a metropolitan area is essential for its

prevention and control. In this study, we analyze the epidemic

dynamics of the spread of an infectious disease, such as influenza,

over the commute network in a metropolitan area. We particularly

focus on such theoretical aspects as how the epidemiological

parameters and statistical properties of the commute network

affect the probability that an infectious disease invades and spreads

out globally throughout the area, the final size of the global

epidemic, and the time until the epidemic attains its peak, as these

aspects would provide valuable insights into the prevention and

control of a disease within a metropolitan area. For this purpose,

we simulated the spread of infection over the commute network in

the Tokyo metropolitan area using an individual-based model

(IBM) in which each individual’s daily commute movements are

simulated on the basis of the actual commute data for the Tokyo

metropolitan area. We then constructed a simple, analytically

tractable mathematical model that could reproduce the behavior

of epidemics on the commute network observed in the IBM.

Previous simulation studies of epidemic dynamics on human

networks have been effective for assessing various intervention

strategies, such as quarantine, vaccination, and antiviral drug

treatments. Strategies for containing the emerging influenza in

Southeast Asia were evaluated by Longini et al. [1] and Ferguson

et al. [2]. Other studies have measured the effects of mitigation

strategies on influenza pandemics within Great Britain [3] and the

United States of America [3,4]. These analyses were based on

spatially explicit disease transmission models in which the details of

the population structure, such as the age structure and locations

within the areas (e.g., households, schools, workplaces, and shops)

were taken into account; moreover, the daily commute movements

and the travels of each individual were considered. There have

also been a few theoretical studies of pandemic influenza in the

Tokyo metropolitan area in which daily commute movements

were considered. Ohkusa and Sugawara [5,6] utilized Person-Trip

data to simulate individual movements and constructed a detailed

simulation model in order to evaluate the effects of a quarantine

policy. Yasuda et al. [7,8] and Saito et al. [9] performed a similar

analysis based on actual demographic data by constructing a

suburban community along a commuter line. These studies aimed

to analyze the outcomes of various intervention strategies in each
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specific scenario and evaluate their efficacies quantitatively to form

a basis for policy-making. However, as these analyses focused only

on specific cases, they did not examine how various aspects of the

commute network affect the epidemic dynamics. In other words,

these analyses were restricted only to particular areas and cities

and could not provide a general understanding of different

locations. Therefore, a more general understanding of the effects

of the geographic and social structures of the population on the

epidemic dynamics is needed.

When the contact between individuals shows geographical and

social localization, a theory of networks can be used to analyze the

spread of infectious diseases. Contact network models, in which

each node represents an individual, have been used to analyze

various aspects of epidemic dynamics and revealed the relation

between the network characteristics and the properties of the

epidemic process (e.g., the epidemic thresholds for various

parameters, final epidemic size, and immunization threshold)

[10][Chapter 9 and references therein]. In contrast, when

populations consist of well-mixed subpopulations (e.g., urban

communities, geographical regions, and social groups), metapop-

ulation network models are more suitable as a theoretical

framework. In such models, individuals inhabit each node (i.e.,

subpopulation), and their movements between the nodes couple

the subpopulations to each other. For the case in which the

mobility patterns represent random movement of individuals,

Colizza and Vespignani [11,12] have shown the existence of a

global epidemic threshold and derived an explicit analytic

expression that is analogous to the basic reproductive ratio. They

also showed that the mobility of the individuals is crucial to the

epidemic dynamics and that heterogeneity promotes global

epidemics. Balcan and Vespignani [13,14] further extended these

studies to the case in which the mobility patterns are recurrent,

such as commuting (i.e., individuals return to their original

locations). They derived a similar formula for the global epidemic

threshold, which showed that the rate of commuting from the

original location and the amount of time spent at the destination

are critical determinants for disease invasion. The importance of

the individual’s recurrent mobility patterns to the epidemic

dynamics was also addressed recently by Keeling et al. [15] and

Belik et al. [16]. The theoretical framework of the metapopulation

network has thus enabled us to analytically deal with the epidemic

process in structured populations and revealed the relation

between the commute network structures and the epidemic

dynamics. However, most studies have adopted a randomly

generated complex network with a given degree distribution,

ignoring, for example, the correlated connections between

subpopulations as well as the recurrent mobility, both of which

are often substantial in actual commute networks (however, refer

Keeling et al. [15], Belik et al. [16] and Eubank et al. [17]).

In the present study, we analyze the epidemic process over the

commute network in the Tokyo metropolitan area. For this

purpose, we developed an individual-based model for the epidemic

process over the actual commute network in the Tokyo

metropolitan area. We formulated the model as a metapopulation

network model in which each commuter train station is associated

with a residential area (home population) and a business area

(work population). As actual commuting data are utilized, this

metapopulation network inherently includes the relevant geo-

graphic and social structures. We used the susceptible, infectious,

recovered/removed model [18] to describe the disease transmis-

sion and actual commute data from the Tokyo metropolitan area

to simulate the individuals’ movements. To determine the

aforementioned theoretical aspects, we calculated the probability

of a global epidemic, the final size of the global epidemic, the time

until the global epidemic attain its peak, and the final size and

arrival time of the epidemic in each local population, all under

various epidemic parameters. We then used these values to assess

the conditions under which a global epidemic would occur and

evaluate the extent and severity of the resulting damage. The

epidemic parameters we considered include the location at which

the disease invasion originated and the local population size

thereof, which have not been emphasized in previous studies. With

this focus, we find that for a fixed set of disease parameters, the

probability of a global epidemic is determined by the local

population size of the original location of the infection, whereas

the geographical location of the site of origin within the commute

network has little effect on the outcome. Furthermore, we

compared the results of a randomly reconnected network model,

which only inherited the connection probability between the

subpopulations’ size classes from the actual network, to examine

the extent to which detailed information regarding network

connections, such as the geographical locations of subpopulations

and the specific connectivity between them, is necessary. We

performed extensive Monte Carlo simulations in an attempt to

derive a general relation that would enable the prediction of

epidemic dynamics. We found, for example, that there is a simple

relation between the size of a local population and the time until

an epidemic reaches it. This knowledge could be used to design a

more effective control strategy against infectious disease in a

metropolitan area. Finally, we validated these findings using a

branching process for the initial spread of infected individuals over

the network and using simple difference equations for the

epidemiological dynamics over subpopulations with a given size

class distribution.

Methods

Commute network data for the Tokyo metropolitan area
The data on commuter flow within the Tokyo metropolitan

area were obtained from the Urban Transportation Census (UTC)

[19], a survey conducted by the Japanese Ministry of Land,

Infrastructure, Transport and Tourism that has been carried out

every 5 years since 1960 at three major metropolitan areas of

Japan, which are Tokyo, Nagoya, and Osaka regions. The UTC is

intended to provide basic data, which is used for preparing public

transportation policies in these metropolitan areas. The data

contains the results of a questionnaire answered by the users of

commuter trains, buses, and streetcars that include the traffic

volumes between stations, traffic volumes between bus terminals,

and the transportation capacities of public transportation. For

information about the commute network in the Tokyo metropol-

itan area, we used the data from the 10th UTC [19], which was

performed in 2005 and is the most recent UTC for which results

are available. The region surveyed has a population of approx-

imately 35.6 million and extends to 8 prefectures, which are

Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, Gunma, Tochigi,

and Yamanashi (Figure 1A). Therefore, the commute data from

the UTC covers the entire Tokyo metropolitan area.

The commuter train is the major intra-regional transportation

in the Tokyo metropolitan area. According to the UTC data,

approximately 40 million people in total use the commuter train

daily [19]. The commuter buses are used mainly to access the train

stations from residences, workplaces, and schools. Accordingly, the

commuter trains are the main determinant of the intra-regional

commuting flow within the Tokyo metropolitan area. From the

UTC questionnaire survey of commuter train users, we obtained

commute data for 139,841 individuals. The data contained

information about the commute movements of each individual

Epidemic Process over Metropolitan Area
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on a specific day of the survey (November 16–17, 2005). In other

words, the train commutes of individuals from their residences to

their workplaces or schools on a certain day could be traced.

Each station is specified by a station code. The original UTC

data for the Tokyo metropolitan area comprises information for a

total of 1,899 stations. The UTC data contains some duplication

of station codes, as a single station was assigned a different code for

each line. As we are interested in the station nearest the

commuter’s residence and workplace/school, we used the Station

Database [http://www.ekidata.jp] to remove this duplication of

station codes, resulting in a total of 1,435 stations specified by

newly designated unique station codes. Each of these station codes

corresponded to 1 or more stations with a common area of

residence and workplace/school. Hereafter, the term ‘‘station’’ is

used as a synonym for this newly designated station code. Using

these station codes, each individual’s commuting pattern can be

described by the station of his or her residence (hereafter called the

‘‘home population’’) and the station of his or her workplace/school

(hereafter called the ‘‘work population’’).

According to the UTC commute data, the traffic volumes of

both the home and work populations varied in a few orders of

magnitude (Figure 1B). When plotted on a double logarithmic

scale, the commuter size distributions of both the home and work

populations had slopes of approximately {2 to {1. The largest of

these commuting populations were present in small but non-

negligible numbers. Such long-tailed distributions of commuter

sizes have been reported previously [20], and the resulting

heterogeneity in the commuting network structure is known to

affect epidemic dynamics, especially by lowering the epidemic

invasion threshold [11–14]. For the home populations, the upper

limit of the number of commuters was below 1,000 (this was the

number among the total of 139,841 questionnaires collected,

which represents only 0:4% of the total number of residents of the

Tokyo metropolitan area; therefore, all figures should be

multiplied by a factor of approximately 100 [as not all people

are commuting on any given day] when considering the actual

population in the Tokyo metropolitan area). On the other hand,

the largest work populations exceeded 5,000 commuters

(5,000|100 in actual numbers), signifying a greater degree of

concentration in business areas. The geographical distributions of

the population sizes (Figures 1C–D) showed that the larger work

populations were concentrated in the inner urban areas, whereas

the home populations were distributed over broader areas.

Individual-based model: Commuting
Using these data, the daily commute movement of each

individual in our individual-based model is implemented in the

following way. Individuals are assumed to travel by commuter

train from their residence (home population) to their workplace/

school (work population), stay at their workplace/school during

the day, and return from their workplace/school to their residence

by the commuter train again and remain at their residence during

the night (Figures 2A–B). Since the commuting data are acquired

from commuter pass, this recurrent pattern only represents the

commuting data of workdays. Weekend travels are generally

irregular without specific patterns and we do not have the relavent

data. However, since we have 2 holidays out of 7 days in a week

and much less traffic flows compare to workdays, we have

neglected this effect of weekends for simplicity.

Let Nij be the number of individuals commuting from station i

of their residence to the station j of their workplace/school. In

other words, Nij is the number of commuters between the home

population i and work population j and is calculated from the

UTC commute data. From Nij , we define NH
i ~

P
j Nij and

NW
j ~

P
j Nij , which respectively gives the number of commuters

(traffic volume) that use station i as the home population, and the

number of commuters that use station j as the work population,

respectively. It should be noted that the same station could be the

home population for one commuter and the work population for

another. Therefore, station k is characterized by 2 sizes of

commuter groups, which are the size NH
k of the home population

that represents the residential population, and the size NW
k of the

work population that represents the working/studying population.

Here, we defined the commuter sizes in terms of those in the UTC

sample (of the total of 139,841) i.e., the sample constituted about

0:4% of the residents of the Tokyo metropolitan area.

Individual-based model: Epidemic dynamics
Infection of a disease is assumed to occur as follows: a

susceptible individual making contact with an infectious individual

in the residence area and/or the workplace/school area is infected

according to the infection rate of the disease. Once infection has

occurred, the newly infected individual continues commuting as

an infectious host in an asymptomatic state. As the disease became

symptomatic, the infected individual will stop commuting and rests

within his or her household until recovery. After the recovery, the

recovered individual will acquire immunity against the disease and

Figure 1. Commuter flow data for the Tokyo metropolitan area.
(A) Geographical location of the Tokyo metropolitan area within Kanto
region, Japan. The framed rectangle shows the central part of the Tokyo
metropolitan area. (B) Distribution of the station sizes on a double-
logarithmic plot. Blue line, distribution of home-node stations; red line,
distribution of work-node stations. (C) and (D) Geographical distribu-
tions of the sizes of home- and work-node stations, respectively, within
the central part of the Tokyo metropolitan area. The color indicates the
size of the station: black, 0*10 commuters; blue, 10*100 commuters;
green, 100*1,000 commuters; red, 1,000* commuters. All numbers
are from the 139,841 collected questionnaires of UTC. The red-colored
stations in the middle of (D) correspond to Tokyo’s inner urban area
(along the loop of the Yamanote line); the 2 red stations in the lower
left of (D) are the Kawasaki and Yokohama stations. The longitude and
latitude of each station were acquired from the Station Database
[http://www.ekidata.jp].
doi:10.1371/journal.pone.0098518.g001
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resume commuting again. Therefore, a commuter’s epidemiolog-

ical status could take 1 of 3 states: susceptible (S), infected and

infectious (I), or removed from the commute network for

recuperation or recovered from the infection with immunity (R).

Although the recovered individual resumes commuting, he or she

plays exactly the same role in the epidemic dynamics as those who

are still resting and not commuting. Each individual is assigned to

1 of the 3 states at each moment. Accordingly, the number of

commuters between home population i and work population j at

time t is decomposed to Nij~Sij(t)zIij(t)zRij(t), where Sij(t),

Iij(t), and Rij(t) denote the number of individuals in state S, I, and

R, respectively. As we are interested in the spread of infectious

disease within a single season, the birth and death of individuals

are neglected. Therefore, the total number of commuters

N~
P

i

P
j Nij remained constant throughout the calculation.

Furthermore, assumptions were made, as follows: (i) each

individuals will not change their daily commute path within a

season, i.e., each Nij is also kept constant; (ii) infection only occurs

within each subpopulation (home populations and work popula-

tions), i.e., infection occurring on the commuter train is neglected;

(iii) as the day and night populations of the same location are

completely separate in our model, there is no contact between an

individual who is part of the home population as a resident at night

and another who is part of the work population of the same area

during the day; and (iv) During the recuperation period at their

households, the infection within their household does not occur.

The simulation was individual-based, in which commuter

movements and infection processes of each of the N~139,841
individuals are kept tracked. The actual population in this area is

approximately 100 times larger than this; however, we avoided

extrapolating to the actual population numbers owing to the high

computational cost it would have entailed. Every day, each

individual commute from his or her home population to his or her

work population, work/study during the daytime and return to

their residence area at nighttime. We denote the number of

infectious individuals within home population i and work

population j on day t (t~0,1,2, � � �) by IH
i (t)~

P
j Iij(t) and

IW
j (t)~

P
i Iij(t), respectively. For a susceptible individual com-

muting from home population i to work population j, the mean

number of contacts with an infectious individual on each day is

considered to be cIH
i (t) for the home population and cIW

j (t) for

the work population, where c is the constant contact rate. Then

assuming that the infection will occur according to the Poisson

process with the expected number of newly infections per day

being bIH
i (t) and bIW

j (t) for home and work population,

respectively. Here, b~bc is the rate of disease transmission or

the infection rate from a single infectious host per day (b: rate of

disease transmission per single contact with an infectious

individual). Given this the probability that an individual gets

infected during day t becomes PH
i (t)~1{ exp {bIH

i (t)
� �

for

home population i and PW
j (t)~1{ exp {bIW

j (t)
� �

for work

Figure 2. Schematic representation of the population size class model (PSCM). (A) Geographical distribution of the railway network; each
node corresponds to a station and each line corresponds to a commuter railway of commuter trains. Every station has a home population (those who
reside in the area) and a work population (those who travel to as a workplace/school in the area). There are multiple commuters using the commuter
train between each pair of populations. (B) The commuter network utilized in the individual-based model (IBM) calculations. The nodes correspond to
the home and work populations of each station, forming a bipartite network in which each line denotes a connection via commuter flow between
home and work populations. Local populations with different population sizes are represented by different colors and sizes. (C) The commuter
network utilized in the PSCM calculation. Local populations with similar population sizes are grouped into population size classes, which form the
nodes, while the total commuter flows between pairs of population size classes form the lines. (D) Joint distribution of the home and work
population sizes of commuters in the Tokyo metropolitan area. The number Lnm of commuters that live in a home population of size class n and
commute to a work population of size class m is plotted as a density plot. The data were obtained from the Urban Transportation Census (UTC)
commute data (Ministry of Land, Infrastructure, Transport and Tourism, The 10th Urban Transportation Census Report, 2007; in Japanese).
doi:10.1371/journal.pone.0098518.g002
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population j. The probability that the infectious individual to be

removed from the commute network on each day is Pc~1{e{c,

where c is the rate of transition from the asymptomatic to the

symptomatic state. Accordingly, 1=(1{e{c) is the average

duration of the asymptomatic state. The following transition

diagram schematically represents the overall infection process for

each individual living in the i-th population and commuting to the

j-th population (i,j~1,2, � � � ,1435):

S?I ,with probability PW
j (t),

(daytime infection at work population j)

S?I ,with probability PH
i (t),

(nighttime infection at home population i)

I?R,with probability Pc,

(transition to symptomatic infection)

ð1Þ

In the simulation, each individual’s epidemiological state

changes stochastically according to the transition diagram (1).

This process is repeated until the total number of infectious

individuals becomes zero.

The epidemic process is initiated by introducing a single

infected and infectious host into the commute network. The sizes

of the home and work populations of the initially infected host turn

out to play a critical role. To examine this dependence on the

population size of the initial infected site, we first group all home

and work populations according to their logarithmic size. After

choosing the size classes of the home and work populations of the

initially infected host, we chose the initial infected host’s home and

work populations randomly from each size class. Hereafter, the

home and work populations of this initial infected host are called

the initial home population and the initial work population,

respectively. The size of the largest work population exceeded

5,000 (e.g., Shinjuku station with a working/studying population

of 5,412), but that of the largest home population was below 1,000

(e.g., Oizumi-gakuen station with a residential population of 853).

For each epidemic parameter, nM~100 Monte Carlo simulations

are performed. Throughout the paper, the average duration of the

asymptomatic state is fixed to be around two 2 days [21], so a

transition rate of c~0:5 was used in all calculations.

The spread of infectious disease over the commute network is

evaluated by the number of infected local populations, that is, the

number of local populations in which at least 1 individual became

infected during the infection process. Among nM independent

replicates of a Monte Carlo simulation with fixed epidemic

parameters and initial conditions but different random number

seeds, the number of infected local populations shows a bimodal

distribution in both the home and work populations. For each

home or work population, the distribution of the number of

infected local populations has a peak at 1 (i.e., the population with

the initially infected individual) and another peak at more than

several hundred of the total of 1,435 local populations. As the

widths of both peaks had relatively narrow widths (the order of

several tens), we can unambiguously classify each run of the Monte

Carlo simulation as an initial extinction or global epidemic.

Population size class model
In order to analyze the simulated results from the individual-

based model, we further construct a simplified epidemic model in

which the connectivity between the different population size

classes of home and work populations is set to be consistent with

the UTC data (see below). Here, all characteristics of each local

population (e.g., geographic position and position within the

commute network) and the details of the commuter flow between

the local populations are ignored. Accordingly, in this model, local

populations with different locations but within the same popula-

tion size class are treated equally (Figures 2 B–C). We henceforth

call this model the population size class model (PSCM), and a

detailed description is given in Supporting Information S1.

We use the previously defined size class distributions for the

home and work populations for the PSCM (see section Individual-

based model: Epidemic dynamics). Let Kn be the representative

population size of the n-th population size class. The group of

commuters traveling between the n-th home population size class

and m-th work population size class is referred to as the commuter

population of the (n,m)-th size class, and the number of such

commuters is denoted by Lnm. The actual values of Lnm utilized in

the PSCM are calculated from the UTC sample data and given in

Figure 2D. For the given data for Lnm, the probability of a global

epidemic is calculated from the stochastic PSCM and the epidemic

dynamics is calculated from the deterministic PSCM. The usage of

UTC sample data in PSCM will give the same results as the

calculation based on actual population for a suitable choice of rate

of disease transmission value giving the same basic reproduction

ratio (See supporting information for details).

In the stochastic PSCM, a global epidemic is defined as the case

in which the infection never dies out during the branching process.

We then calculate the probability that an infection starting from

an (n0,m0)-th commuter population size class will eventually be

extinct (i.e., the extinction probability of the infection). The details

of the mathematical formulation of the stochastic PSCM are given

in Section B of Supporting Information S1.

The final size of the global epidemic (the fraction of individuals

among the total population who eventually became infected) and

the time of the epidemic peak (the time at which the total number

of infectious individuals attains its peak) are obtained using the

deterministic PSCM, which is formulated as a system of difference

equations (Equation (7), (8) and (9) in Section C of Supporting

Information S1). Furthermore, the epidemic dynamics within each

local population, such as the final size of the epidemic and time

until the epidemic reaches each local population, are also

investigated using this model. Especially, the explicit form of the

arrival time of the epidemic is given. The details of the

mathematical formulation of the deterministic PSCM are given

in Section C of Supporting Information S1.

Random reconnection model
In addition to the PSCM, an individual-based model simulation

using the commute network data, which is constructed based on

the random reconnection model (RRM) is also studied to

investigate the roles of the geographical and topological positions

of station nodes within the network. The RRM is constructed from

the original commute data for the Tokyo metropolitan area by

randomly reconnecting the commuter flows while retaining the

connectivity between the population size classes. Therefore, the

number of commuters Lnm within the commuter population

(n,m)-th size class in the RRM is identical to that from the original

UTC data (Figure 2D). The commute data for the RRM is

constructed as follows: (i) a pair of individuals is randomly chosen

from the (n,m)-th size class of commuter populations (i.e., from the

set of individuals whose home and work populations belongs

respectively, to the n-th and the m-th size class), and their work

populations are changed; and (ii) this process is repeated until all

(or all but one, if the total number of individuals in the size class is

Epidemic Process over Metropolitan Area
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odd) of the individuals are chosen. This process randomly

reconnects the original commuter flows without changing the

connectivity between the population size classes. The original

geographical structure of the commute network is completely lost

in the RRM, as in the PSCM. The probability of a global

epidemic, final size of the global epidemic, and time of the

epidemic peak are obtained from the IBM simulation using these

data and compared with those from the simulation on the basis of

the original commute data.

Results

Probability of a global epidemic
The probability of a global epidemic PG is defined as the

fraction of the independent runs of the Monte Carlo simulation in

which a global epidemic occurred (i.e., PG~nG=nM , where nG

denotes the number of global epidemics observed within nM runs

of the Monte Carlo simulation; refer to Section Individual-based

model: Epidemic dynamics for a more detailed definition of a

global epidemic). The probability of a global epidemic PG

observed in the IBM simulation for a given infection rate and

sizes of the home and work populations of the initial infected host

is plotted in Figure 3A. When the infection rate is low, initial

extinction of the disease prevails over the global epidemic in an

initially infected population of any size (Figure 3A1). However,

when the infection rate is sufficiently high (Figures 3A2–4), PG

increases with the sizes of either initial home or work population.

The probability of a global epidemic calculated by the stochastic

PSCM is plotted in Figure 3B. A comparison of Figure 3B with

Figure 3A highlights the close resemblance between the results of

the PSCM and those of the IBM. Therefore, despite the greatly

simplified assumptions of the stochastic PSCM, which ignore the

details of the connections between any specific pair of populations,

the resulting model excellently explains how the probability of a

global epidemic calculated from the branching process recurrence

formula (Equation (4) in Section B of Supporting Information S1)

depends on the infection rate and the sizes of the initial home and

work populations. Therefore, unsurprisingly, the results of the

randomly reconnected IBM simulation (RRM) that uses the actual

connectivity between size classes from the original commute

network data are similar to those of the original IBM simulations

(compare Figure 3A with Figure 3C).

The invasion condition can further be simplified by a careful

inspection of the branching process recurrence formula of the

stochastic PSCM. We find that the probability PG of a global

epidemic defined in the branching process for the initial spread of

the infection can be approximated as (Equation 6 in Section B of

Supporting Information S1):

PG~1{ exp {PG

b(Kn0
zKm0

)

c

� �
ð2Þ

which depends only on the sizes Kn0
and Km0

of the home and

work populations, respectively, to which the initially infected host

resides (the black line in Figure 4). As the basic reproduction ratio

of a single homogeneous population with the population size

Kn0
zKm0

is given by

RI
0jPSCM~

b(Kn0
zKm0

)

c
ð3Þ

the probability of a global epidemic PG in equation (2) coincides

with the probability that the infection will occur in a single isolated

population of size Kn0
zKm0

[18,22]. Figure 4 shows the proba-

bility of a global epidemic PG observed in the IBM simulations

(dots) for various infection rates b (different colors) and home and

work population sizes of the initially infectious host NH
i0

and NW
j0

.

The probability of a global epidemic PG for different combinations

of b, NH
i0

, and NW
j0

can be plotted against

RI
0jPSCM~b(Kn0

zKm0
)=c, resulting in a single but indistinct

band.

In summary, the following conclusions can be drawn for the

probability of a global epidemic: (i) the probability of a global

epidemic is mainly determined by the connectivity between

population size groups; information on the connections between

a specific pair of local populations is dispensable for the prediction

of whether or not the disease will spread globally or not; and (ii)

the sizes of the home and work populations of the initially infected

individual contributes greatly to the probability of a global

epidemic. This is because the invasion of the entire commute

network relies mainly on whether the disease can invade the initial

home and work populations.

Extent and speed of disease spread
The overall damage of a global epidemic in the Tokyo

metropolitan area is measured by the final size of the global

epidemic, which is defined as the fraction of infected individuals

within the total population. To investigate how quickly does the

disease will spread out, we also examined the time of the epidemic

peak, which is defined as the time until the total number of

infectious individuals attains its maximal value. We used these

parameters to evaluate the extent and speed of the spread of the

disease.

The final size of the global epidemic as a function of the

infection rate is shown in Figure 5A1; each point corresponds to a

different set of initial home and work populations and represents

the mean value across the ensemble of Monte Carlo simulations in

which a global epidemic occurred. In Figure 5A1, the final sizes of

the global epidemics for a given infection rate are concentrated to

a single point, which implies that once a global epidemic is

underway, its final size is almost independent of the initial home

and work population sizes. This contrasts sharply with our result

for the probability of a global epidemic, which is quite sensitive to

the sizes of the initial home and work populations. For b~10{4,

although a global epidemic did occur, its final size remained very

low and only a small percentage of the population is infected. As

the infection rate increases, the final size of the global epidemic

increases until it approaches 1, meaning that almost all individuals

in the population are infected, at around b~10{2. As the figure

shows, the infection rate had a threshold value bc, approximately

at b~10{4, below which global invasion of the epidemic could

not occur. At this critical value of the infection rate, the local basic

reproductive ratio (i.e., the single population basic reproduction

ratio Nb=c) in the Shinjuku station area (the largest work station) is

1.083, which is only slightly greater than 1. In contrast, the local

basic reproductive ratio for the critical infection rate in the

Oizumu-gakuen station area, the largest home population, is much

lower than 1 (0.17). When we considered the mean rather than the

largest population sizes, the local basic reproductive ratio for the

critical infection rate was just 0.217 in the mean work population

and was even smaller, 0.0546, in the mean home population. This

suggests that a few very large work populations can play a pivotal

role in an epidemic outbreak in the Tokyo metropolitan area.

The time to the epidemic peak as a function of the infection rate

is shown in Figure 5B1; each point corresponds to a different set of

initial home and work populations and represents the mean value
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Figure 3. The probability that a single infected host causes global epidemic. The probability of a global epidemic, PG , as a function of the
home population size (horizontal axis; initial home population) and work population size (vertical axis; initial work population) of the initially infected
host for various infection rate b. (A1–4) The results of the individual-based model (IBM) simulations of the spread of infectious disease over the
commute network of the Tokyo metropolitan area which starts with a single infectious individual commuting from a randomly chosen home
population to a randomly chosen work population. Each panel corresponds to a different infection rate, and the population sizes are plotted on
logarithmic scales. (B1–4) The corresponding results obtained using a branching process formula in the population size class model (PSCM). (C1–4)
The corresponding results of the IBM simulations using the random reconnection model (RRM). In each panel, the contour plot represents
interpolation of the results calculated using the data of 184 combinations of initial home and work population sizes.
doi:10.1371/journal.pone.0098518.g003
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across the ensemble of the Monte Carlo simulations in which a

global epidemic occurred. The time to the epidemic peak is longest

when the infection rate is close to the threshold value bc&10{4 at

which the final size of the global epidemic began to increase from

0; the time to peak then decreased monotonically as the infection

rate increases. In contrast to the final size of global epidemic, the

time to the epidemic peak retains a significant dependence on the

initial home and work population sizes at small infection rates,

reflected in the plot as the wide distribution of the time to the

epidemic peak.

The final size of the global epidemic and the time to the

epidemic peak obtained from the deterministic PSCM are shown

in Figures 5A2 and 5B2, respectively. Here, each point

corresponds to a different set of initial home and work populations,

and is plotted against the infection rate. Both values exhibit

characteristics similar to the results of the IBM simulation, and

comparison between the models show that the PSCM could

approximate both the final size of the global epidemic and the time

to the epidemic peak. Moreover, the final size of the global

epidemic shows little dependence on the sizes of the initial home

and work populations (shown analytically by Equation (14) in

Section C of Supporting Information S1), whereas the time to the

epidemic peak shows substantial dependence on the sizes of the

initial home and work populations. Another IBM simulation with

random reconnection of the local populations using the RRM is

performed and yield a final size of the global epidemic and time to

the epidemic peak almost identical to those obtained from the

IBM using the original commute network data (data not shown

owing to the perfect overlap with the original data).

In conclusion, we find that: (i) the final size of the epidemic and

time to the epidemic peak are mainly determined by the

connectivity between the population size classes, as both the

PSCM and the RRM, which completely ignore the population-to-

population connectivity, can reproduce the results of the original

IBM simulations; (ii) the final size of the global epidemic is

determined almost solely by the infection rate. Under the

threshold infection rate for disease invasion, only a few largest

work population areas have local basic reproductive ratio greater

than 1; (iii) the time to the epidemic peak is quite sensitive to the

sizes of the initial home and work populations of the initially

infected individual.

Epidemic dynamics within each local population
The epidemic dynamics within each local population is

evaluated by the final size of the local epidemic and by the time

until the epidemic reached the local population (the arrival time).

The final size of the local epidemic within each local population is

defined as the fraction of commuters out of the local population

who eventually became infected during the infection period (i.e.,

RH
i (?)=NH

i and RW
j (?)=NW

j for the i-th home population and

j-th work population, respectively). The arrival time of the

Figure 4. The probability of global epidemic as a function of
the basic reproductive ratios in the initially infected home and
work populations. The probability of a global epidemic observed in
the individual-based model (IBM) simulations based on the commute
network data for the Tokyo metropolitan area plotted as a function of
RI

0~b(NH
i0

zNW
j0

)=c, where the independent variable is the sum of the

single population basic reproduction ratios of the initial home and work
populations (NH

i0
and NW

j0
: home and work population sizes of the

initially infected individual, respectively). Each point corresponds to a
different set of epidemic parameters, and the color represents the
infection rate b. Black line, the probability of a global epidemic in the
single population model with population size Kn0

zKm0
, i.e., that from

PG~1{ exp {PGRI
0

� 	
(main text for details).

doi:10.1371/journal.pone.0098518.g004

Figure 5. The final size and the peak time of global epidemic.
The final size of the global epidemic (A) and the time until an epidemic
initiated by a single host reaches its peak (B) plotted against the
infection rate b. (A1) and (B1): results observed in the individual-based
model (IBM) simulations; each point gives the Monte Carlo ensemble
average value corresponding to different epidemic parameters, and the
color indicates the sum of the sizes of the initially infected home and
work populations. Here, the cases for initial extinction of disease are
excluded from the ensemble. (A2) and (B2): corresponding results from
the population size class model (PSCM) calculations.
doi:10.1371/journal.pone.0098518.g005
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epidemic is defined as the timing that the infected commuters first

appear in each local population after the initial infection started

(i.e., the arrival times tH
i and tW

j of the epidemic in the i-th home

population and j-th work population, respectively, are given by

IH
i (tH

i )ƒ1 and IW
j (tW

j )ƒ1, i.e., where the time until the number

of infected individuals reaches a predetermined small number,

which is 1 in our IBM simulation and about 100 in the actual

population). For each home or work population, the final size and

the arrival time of the local epidemic are calculated as the mean

across the ensemble of Monte Carlo simulation runs in which a

global epidemic occurred and at least 1 infected individual

appeared in the local population.

The final size of the local epidemic within each population is

shown in Figures 6A1–2; each dot represents the mean value

across the ensemble of the Monte Carlo simulations in which a

global epidemic occurred. In both home and work populations,

larger populations have larger final local epidemic sizes. In

sufficiently large work populations (exceeding 3|103 commuters),

almost all of the commuters within the local home population are

infected, whereas in sufficiently small work populations (less than

2|102 commuters), only approximately 20% of the commuters

within the local work population are infected. The final size of the

local epidemic is larger in home populations than in work

populations of the same size. Moreover, we found that the final

size of the local epidemic in both home and work populations

depends strongly on the infection rate and the size of the local

population but negligibly on the sizes of the initial home and work

populations. The deterministic PSCM exhibited qualitatively

similar dependencies, although the final sizes of the local

epidemics are slightly smaller (Figure 6A3). Therefore, the local

population size alone is sufficient to predict the total damage

caused by an epidemic in a local population.

The arrival time of the epidemic in each local population is

shown in Figure 6B1–2; each point represents the mean value

across the ensemble of Monte Carlo simulations in which a global

epidemic occurred. Similar results obtained by deterministic

PSCM are given in Figure 6B3. For both home and work

populations, a larger population size is associated with faster

arrival time of the epidemic. Moreover, the arrival time of the

epidemic clearly depends on the local population size i.e., it

decreases in a linear manner on a semi-logarithmic plot:

tH
i ~aH{bH ln NH

i and tW
j ~aW {bW ln NW

j for the i-th home

population and j-th work population, respectively. The regression

coefficients are: for home populations, intercept aH~25:99+0:34

(95% confidence interval, CI) and slope bH~2:01+0:08 (95% CI)

(coefficient of determination: R2~0:714); and for work popula-

tions, intercept aW ~29:67+0:27 (95% CI) and slope

bW ~2:27+0:08 (95% CI) (coefficient of determination:

R2~0:856). Roughly speaking, increasing the local population

size 3-fold causes the epidemic to arrive 2 days earlier, and

infection of a work population lags that of a similar-sized home

population by approximately 4 days. These results show a strong

statistical relation between the arrival time of an epidemic in a

local population and the size of that population. Figures 7A1–2

and 7A3–4 show how the intercepts (aH and aW ) and the slopes

(bH and bW ) of the regression depend on the infection rate and the

size of the initially infected population. In both home and work

populations, the intercept decreases as the infection rate increases

(Figure 7A1–2). The slope also decreases with the infection rate

(Figure 7A3–4), indicating that the dependence on the local

population size is weaker when the infection rate is sufficiently

large. The intercepts (Figure 7A1–2) but not the slopes

(Figure 7A3–4) depend on the sizes of the initial home and work

populations. The intercept depends especially on the sum of the

population sizes of initial home and work populations; as this sum

increases, the intercept decreases, signifying an earlier overall

arrival time of the epidemic (Figure 7A1–2).

This logarithmic dependence of the arrival time of the epidemic

on the local population size can be explained by the deterministic

PSCM (Figure 6B3). When we linearize the system of difference

equations of the deterministic PSCM (Equation 7, 8, and 9 in

Section C of Supporting Information S1) around a disease-free

state and assume that the largest eigenvalue component dominates

in the initial exponential phase of the system, we see that the

arrival time of the epidemic in the n-th home (m-th work)

population size class tH
n (tW

m ) is given approximately by

tH
n ~

1

ln r
ln LH

n vH
n { ln un0m0

{ ln Kn

� �

tW
m ~

1

ln r
ln LW

m vW
m { ln un0m0

{ ln Km

� �
ð4Þ

(Section C of Supporting Information S1 for the derivation). We

define the arrival time of the epidemic in the deterministic PSCM

as the time at which the number of infected hosts reaches a

predetermined small number (Equation 16 in Section C of

Supporting Information S1). Here, the largest real eigenvalue of

the system of linearized difference equations is denoted as r and

the (n,m)-th elements of the corresponding right and left

eigenvectors as vnm and unm, respectively. vH
n ~

P
m vnm

(vW
m ~

P
n vnm) gives the relative fraction of the n-th home (m-th

work) population size class in an exponentially growing infected

population, and un0m0
gives the ‘‘reproductive value’’ [23] of the

initially infected commute population size class. We compared the

results of the numerical calculation of the system of difference

equations of the deterministic PSCM (Equations 7, 8, and 9 in

Section C of Supporting Information S1) with formula 4 and

found that they largely agree. The resulting arrival time of the

epidemic is shown in Figure 6B3. This model also shows a

logarithmic dependence, although the arrival time of the epidemic

is systematically earlier compare to that of the stochastic IBM

simulation. The discrepancy may be ascribed to failure of

stochastic colonization of local populations in the early stage of

the epidemic. In spite of this discrepancy, the deterministic PSCM

explains the logarithmic dependence on the local population size

and its epidemic parameter dependence quite well, as shown

below.

In addition to the logarithmic population size dependence

discussed above, we extracted another dependency from the

explicit formula Equation 4 for the arrival time of the epidemic.

The arrival time of the epidemic becomes earlier as the

logarithmic odds ratios ln (LH
n =vH

n ) and ln (LW
m =vW

m ), the actual

number of commuters in each population size class to the number

expected in an exponentially growing infected population,

increases. The reproductive value of the initially infected

population size class also helps to shorten the arrival time. We

were able to obtain these values easily from the population size

class model of the commuting population of the metropolitan area

and the epidemic parameters (i.e., the infection and removal rates).

Figures 7B1-2 and 7B3–4 summarize how the intercept and the

slope of the arrival time of epidemic depend on the population

Epidemic Process over Metropolitan Area
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size; the results can be compared with Figures 7A1–2 and 7A3–4

for the IBM calculation. The analytical predictions plotted in

Figures 7B1–2 and 7B3–4 were given by ( ln (LH
n =vH

n ){ ln un0m0
),

( ln (LW
m =vW

m ){ ln un0m0
) (intercept) and 1= ln r(slope) for the

home and work populations, respectively. Here, we approximated

by attributing the population size class dependence only to the

third factor in Equation 4, the logarithmic population size factor

(i.e., ln Kn and ln Km; Section C of Supporting Information S1 for

the justification of this approximation). The parameter depen-

dence of the intercepts and slopes was quite similar to that

observed in the IBM simulations (Figure 7A1–4) and Equation 4

(Figure 7B1–4). The effect of the initial population size on the

intercepts is apparent in their dependence on the sum of the initial

population sizes (different-colored lines in Figures 7A1–2 and

7B1–2). The slope, in contrast, exhibited no initial population

dependence; the reason for this absence is obvious from the

explicit form of Equation 4, as the eigenvalue and eigenvectors

derived from the population size class model and do not depend

on the initial condition. In summary, the overall results of the

deterministic PSCM are consistent with the results of the IBM

calculation except that the former yielded a consistently earlier

arrival time of the epidemic.

Discussion

In this study, we analyzed the epidemic process over the

commute network in the Tokyo metropolitan area. We first used

actual commute data to simulate the spread of infectious disease in

an individual-based model and then constructed a simple

mathematical model (the stochastic and deterministic PSCM) to

gain further understanding of the epidemic dynamics. In

particular, we examined which aspects of the commute network

structure affect the global epidemic dynamics by calculating the

probability of a global epidemic, the final size of the global

epidemic, and the time to the epidemic peak. We also investigated

the properties of the epidemic within each local population by

examining the final size and arrival time of the epidemic. Finally,

we compared the results of the IBM with those of the PSCM,

which reveal that both the stochastic and deterministic PSCM

capture the essence of the epidemic process except that the

Figure 6. The final size of epidemic and the arrival time of epidemic at local populations. The final size of the local epidemic (A) and the
time until the infected individuals first appear in the local population (B) (i.e., the arrival time of epidemic) plotted against the local population size.
The population size is on a logarithmic scale. (A1–2) and (B1–2): results of the individual-based model (IBM) simulations; each point (dots) gives the
mean value of the Monte Carlo ensemble averaged over 100 Monte Carlo runs for each local population, and the blue and red dots correspond to the
results for the home and work populations, respectively. The black lines in (A1–2) give the mean value of the final size of the local epidemic for each
population size class. The black lines in (B1–2) represent the regression line of the arrival time of the epidemic in the local population versus the
logarithm of the population size. The regression line for the arrival time tH

i in the i-th home population with population size NH
i , tH

i ~aH{bH ln NH
i ,

was highly significant, with a P-value of v10{3 F test (F~2706 with the degrees of freedom (1, 1084)), R2~0:741. The estimated intercept
aH and slope bH and their 95% confidence intervals (CIs) are aH~25:99+0:34 (95% CI) and bH~2:01+0:08 (95% CI). The same was true for the
arrival times in the work population; the regression tW

j ~aW {bW ln NW
j was highly significant (Pv10{3 , F~2704 with df ~(1,1833)), with

estimated intercept and slope aW ~29:67+0:27 (95% CI) and bW ~2:27+0:06 (95% CI), respectively. (A3) and (B3): corresponding results obtained
from the population size class model (PSCM); the blue line shows the result for the home population and the red line the result for the work
population (refer main text for details). The infection rate was b~4:6|10{4 . A person commuting from ‘‘Gyotoku’’ station to ‘‘Aoyama-itchome’’
station was designated the initially infectious individual.
doi:10.1371/journal.pone.0098518.g006
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epidemic reached each local population earlier in the PSCM than

in the IBM.

Inspection of the results obtained using the IBM along with the

PSCM-based analysis led us to the following 3 major conclusions:

(i) when an initially infectious individual appears in the area, the

probability that a global epidemic will occur is determined mainly

by the infection rate and the population sizes of the individual’s

home and work populations, indicating that the geographical

location within the commute network have only a minor effect; (ii)

the final size of the global epidemic and time to the epidemic peak

depend greatly on the connectivity between the population size

classes but, again, are insensitive to the connection geometry of the

individual populations; and (iii) the arrival time of the epidemic in

a local population shows a simple dependency, decreasing linearly

with the logarithmic size of the population.

The first and second conclusions, concerning the insensitivity of

the epidemiological process to the specific geometry (detailed

information on the number of individuals commuting between a

specific pair of local populations), can be ascribed to the existence

of very large work populations (Figure 1). Although the

commuting population in the Tokyo metropolitan area forms a

complex network structure, the presence of these large hubs

enables most of the individuals to contact each other either directly

or indirectly (i.e., through another individual contacting both of

them) within their shared large work populations. This character-

istic makes the epidemiological process along the commuter

network almost independent of the network’s spatial configuration.

In other words, any spatial pattern of the epidemiological process

is easily lost once the disease reaches one of the hub populations.

To the best of our knowledge, the third conclusion, that there is

a very clear logarithmic relation between the local arrival time of

the epidemic and the local population size, has not previously been

reported. We should however note that Gautreau et al.[24]’s

theoretically analyses on the arrival time of epidemic to each sub-

population might be related to our finding, though both the

derived formula and the ways they are derived are quite different

between ours and theirs. They derived an approximate relation-

ship between specific network characteristics to the arrival time of

epidemic, where the average arrival time is given as the minimum,

along all possible paths connecting the primarily infected sub-

population and the focal sub-population, of weighted sum of

logarithmic sub-population sizes along the path. In our formula

only the sub-population size at the end-point of the paths

influences the arrival time, and this can well explain the

logarithmic population size dependence of arrival time in our

Monte Carlo simulation. It is left for a future study to examine

whether or not this insensitive dependence of intermediate sub-

populations along paths on the arrive time is specific to our case of

Tokyo metropolitan commute network, where we have very large

‘hub’ work populations along the JR Yamanote line.

Figure 7. The intercept and slope of the linear relationship between the arriving time of epidemic and logarithmic local population
size. The intercept (A1–2) and slope (A3–4) of linear regression line for the arrival time of epidemic, and the corresponding results calculated from
the exponential growth approximation of the linearized population size class model (B1–2) and (B3–4), respectively (see main text for details of
approximation) are shown. The results are plotted as the functions of infection rate and the color of each line indicates the sum of the population
sizes of the initially infected home and work populations. (A1–4): regression coefficient statistically estimated from the results of the individual-based
model (IBM) simulations. (A1) and (A2): estimated intercepts aH and aW , respectively. (A3) and (A4): estimated (sign reversed) slopes bH and bW ,
respectively. All regressions were statistically significant according to the P-value of the regression coefficient (Pv0:001).
doi:10.1371/journal.pone.0098518.g007
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This logarithmic population size dependence of the arrival time

of epidemic, suggests that when monitoring a metropolitan area

for disease invasion, it would be most effective to focus on large-

sized local populations in which the disease is likely to arrive

earlier than in smaller populations. We can then predict the time

at which the disease will appear in each local population after its

initial detection in a large population by determining the ratio of

the sizes of the initially infected and naive local populations. The

explicit form of the arrival time of the epidemic in Equation 4

warrants further discussion of the arrival time of the epidemic. The

reason why we observed the logarithmic local population size

dependence in the arrival time of epidemic can be ascribed to our

definition of the arrival time of the epidemic as the time until the

number of infected hosts reaches a predetermined value (Equation

16 in Section C of Supporting Information S1). However, if we

defined the arrival time of the epidemic as the time until a certain

fraction of the local population becomes infected, the dependence

on the logarithm of the population size would disappear.

Furthermore, if the transmission dynamics obey the density-

dependent transmission, as adopted in this paper and in many

models of contagious diseases except for vector-borne diseases,

which are usually modeled as frequency-dependent transmis-

sion)[25], the time at which the number of infected cases reaches a

preset value determines the later pace of the epidemic dynamics in

the population. If this holds true in practical applications, we

would expect the arrival time in a local population to depend on

the logarithm of the population size.

Our results show that once a global epidemic does occur, its

final size becomes independent of the location at which the

infection initiated. However, because the probability of a global

epidemic increases with the home and work population sizes of the

initially infected hosts, prophylactic vaccination would be most

effective if applied to individuals who live in large home

populations and commute to large work populations. The clear

relation between the arrival time of the epidemic and the local

population size suggests an effective strategy for local intervention.

If early cases of infection were detected in large local populations,

our formula would enable us to predict the expected arrival times

of the epidemic in smaller local populations. If the infection rate is

low but sufficient to sustain a global epidemic, a population

approximately one-third the size should experience disease arrival

approximately 2 days later, on average (Figure 6B). This

knowledge would thus enable rapid intervention against the

disease invasion prior to its arrival. However, the time available for

such preparations decreases as both the infection rate and the

population size of the local home and work populations of the

initially infected individual increases.

Several factors are not included in our models. One of these is

the spread of infection within the commuter trains during the

commute. The importance of transmission within commuting

subway has been addressed by Cooley et al.[26]. However, as we

are interested in how the network structure of the commuting

population would affect the epidemic dynamics, the inclusion of

intra-train infection would have drastically increased the number

of combination of patterns of contact between the commuters and

making the theoretical analysis intractable. However, as the

commuter trains in the Tokyo metropolitan area are overcrowded

during peak commuting hours, consideration of this effect are a

necessary challenge for future work. Another factor that we do not

include is the effect of the non-commuting portion of the home

population; this limitation arises from the fact that the UTC was

intended as a transportation survey and did not include

information about the non-commuting population. Although this

omission might quantitatively affect the results of our simulations,

we believe that our model partially accounts for this effect by

including the night spread of infection within the home

populations.

Supporting Information

Supporting Information S1 Description of population
size class model (PSCM). Formulation of PSCM from the

commute network data of Tokyo metropolitan area is given in

Section A. The stochastic version of PSCM to analyze the

probability of a global epidemic is given in Section B. The

deterministic version of PSCM to analyze the final size of the

global epidemic, the time until the global epidemic attains its peak,

the final size of the local epidemic, and the arrival time of the

epidemic in each local population is given in Section C.
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10. Barrat A, Barthélemy M, Vespignani A (2008) Dynamical processes on complex

networks. Cambridge: Cambridge University Press.

11. Colizza V, Vespignani A (2007) Invasion Threshold in Heterogeneous

Metapopulation Networks. Physical Review Letters 99: 148701.

12. Colizza V, Vespignani A (2008) Epidemic modeling in metapopulation systems

with heterogeneous coupling pattern: theory and simulations. Journal of

theoretical biology 251: 450–67.

13. Balcan D, Vespignani A (2011) Phase transitions in contagion processes

mediated by recurrent mobility patterns. Nature physics 7: 581–586.

14. Balcan D, Vespignani A (2012) Invasion threshold in structured populations with

recurrent mobility patterns. Journal of Theoretical Biology 293: 87–100.

15. Keeling MJ, Danon L, Vernon MC, House Ta (2010) Individual identity and

movement networks for disease metapopulations. Proceedings of the National

Academy of Sciences of the United States of America 107: 8866–70.

16. Belik V, Geisel T, Brockmann D (2011) Natural Human Mobility Patterns and

Spatial Spread of Infectious Diseases. Physical Review X 1: 011001.

Epidemic Process over Metropolitan Area

PLOS ONE | www.plosone.org 12 June 2014 | Volume 9 | Issue 6 | e98518



17. Eubank S, Guclu H, Kumar V (2004) Modelling disease outbreaks in realistic

urban social networks. Nature 429: 180–184.
18. Anderson RM, May RM (1992) Infectious Diseases of Humans: Dynamics and

Control (Oxford Science Publications). Oxford: Oxford university press.

19. (2007) The 10th Urban Transportation Census Report (in Japanese). Technical
report, Ministry of Land Infrastructure Transport Tourism.

20. Chowell G, Hyman J, Eubank S, Castillo-Chavez C (2003) Scaling laws for the
movement of people between locations in a large city. Physical Review E 68:

066102.

21. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, et al. (2008)
Time lines of infection and disease in human influenza: a review of volunteer

challenge studies. American journal of epidemiology 167: 775–85.

22. Murray JD (2002) Mathematical Biology: I. An Introduction (Interdisciplinary

Applied Mathematics). Springer.
23. Ellner SP, Guckenheimer J (2011) Dynamic Models in Biology. Princeton

University Press.
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