
 

 

 University of Groningen

Stabilization with Guaranteed Safety of Nonlinear Systems
Romdlony, Muhammad Zakiyullah

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Romdlony, M. Z. (2018). Stabilization with Guaranteed Safety of Nonlinear Systems [Groningen]: University
of Groningen

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

https://www.rug.nl/research/portal/en/publications/stabilization-with-guaranteed-safety-of-nonlinear-systems(16985a5a-f715-47c1-8465-32a0207f9258).html


Stabilization with Guaranteed Safety
of Nonlinear Systems

Muhammad Zakiyullah Romdlony



The research described in this dissertation has been carried out at the Engineering
and Technology Institute (ENTEG), Faculty of Science and Engineering, University
of Groningen, The Netherlands.

This dissertation has been completed in partial fulfillment of the requirements of
the Dutch Institute of Systems and Control (DISC) for graduate study.

Printed by Ipskamp Drukkers
Enschede, The Netherlands

ISBN (book): 978-94-034-0417-2
ISBN (e-book): 978-94-034-0418-9



Stabilization with Guaranteed Safety
of Nonlinear Systems

PhD thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magnificus Prof. E. Sterken
and in accordance with

the decision by the College of Deans.

This thesis will be defended in public on

Friday 16 February 2018 at 14.30 hours

by

Muhammad Zakiyullah Romdlony

born on Friday 30 May 1986
in Tasikmalaya, Indonesia



Supervisors
Prof. B. Jayawardhana
Prof. J.M.A. Scherpen

Assessment committee
Prof. A. van der Schaft
Prof. R. Wisniewski
Prof. L. Xie



To the almighty God





Acknowledgments

Alhamdulillah. All praise is for Allah, with his mercy I can complete my PhD journey.
The completion of my PhD is not possible without help and support of many

colleagues.
First of all, I would like to thank my mentor, my supervisor, and my first

promotor Prof. dr. Bayu Jayawardhana for his patience in guiding me during my
four years PhD period. The fruitful discussions with him have triggered my curiosity
to conduct the research professionally. I also appreciate him for accompanying
me to the USA for the IFAC conference and for supporting me to attend other
conferences, workshops and courses. It really improved my knowledge and let me
build my research network around the world.

Secondly, I would like to thank my second promotor, Prof. dr. ir Jacquelien M.A.
Scherpen for her academic guidance, advises, and comments.

Thridly, I want to thank my roommates, Bao, Jesus, and Nelson for the academic
and non-academic discussion. I also point out my gratitude to Rully, Desti, Frederika,
and all members of DTPA and SMS.

Fourthly, I want to thank muslim communities in Groningen, e.g. deGromiest,
PPIG, Selwerd mosque, Eyup mosque, and all muslim communities around the
Netherlands. I also really enjoyed the opportunity to spread the beauty of the Quran
to Indonesian communities in many cities, IMEA Enschede, KEMUNI Nijmegen,
SGB Utrecht, Pengajian Wageningen, KALAMI Ridderkerk and others. I also enjoyed
deGromiest’s tadarus, halaqoh Al Quran and deGromiest’s trip to Turkey for learning
the history of Islam.

Fifthly, I want to thank my table tennis coaches in GSTTV Idefix, Koos Kuiper
and Thomas Groenevelt who improved my table tennis skills significantly such that
I won the Proclamation cup held by Indonesian embassy in The Hague in 2015,
and became three times runner-up of Groenscup in 2013, 2014, and 2016. I will
fulfill your last command to keep playing table tennis in Indonesia.

The last is for my family. I would like to thank my parents for supporting

vii



me. I also thank my wife Sella for supporting me during my PhD period and
for accompanying me travel to many countries. I enjoyed our Ramadan 2015 in
Morocco. For my son Faqih Brilly: ”You should be better than me!”.



Contents

1 Introduction 1
1.1 Safety control systems . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Input-to-state safety notion . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Energy-based control systems with guaranteed safety . . . . . . . . 5
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 9
2.1 Stabilization of (non-)linear systems . . . . . . . . . . . . . . . . . 9

2.1.1 Stabilization problem . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Stabilization via CLF . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Stabilization via IDA-PBC . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Safety analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Incorporation of safety in control . . . . . . . . . . . . . . . . . . . 13

2.4.1 Handling state and output constraint . . . . . . . . . . . . . 16
2.5 Stability robustness analysis via ISS . . . . . . . . . . . . . . . . . . 16

3 Stabilization with guaranteed safety via CLBF 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Stabilization with guaranteed safety . . . . . . . . . . . . . . . . . 21
3.3 Constructive design of a CLBF . . . . . . . . . . . . . . . . . . . . . 25
3.4 Handling multiple sets of unsafe state . . . . . . . . . . . . . . . . 28
3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Nonlinear mechanical system . . . . . . . . . . . . . . . . . 31
3.5.2 Mobile robot . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . 33

ix



4 On the new notion of input-to-state safety 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Review on barrier certificate . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Sufficient condition of input-to-state safety . . . . . . . . . . . . . . 37
4.4 The case of exponential rate input-to-state safety . . . . . . . . . . 44
4.5 Exponential rate input-to-state stability with guaranteed safety . . 49
4.6 Simulation result on mobile robot navigation . . . . . . . . . . . . 50
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Passivity based control with guaranteed safety 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Problem of stabilization with guaranteed safety . . . . . . . . . . . 57
5.3 Stabilization with guaranteed safety via IDA-PBC . . . . . . . . . . 58
5.4 Global stabilization with guaranteed safety . . . . . . . . . . . . . . 63
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Conclusions and Future Work 67

Bibliography 70

Summary 79

Samenvatting 81



Chapter 1
Introduction





Chapter 1

Introduction

With recent surge of research interests in cyber-physical systems and in networked
control systems, safety verification and safety control have become an integral
part of the control design. Moreover, since cyber-physical systems connect control
and computation with physical systems, the control systems must also guarantee
systems’ safety in both cyber and physical domains. For safety-critical systems,
such as autonomous vehicles, chemical plants, manufacturing and robotic systems,
where both human operator and the process itself might be at risk whenever certain
unsafe states are reached, there are extra high-level performance specifications
that should be addressed, i.e. stabilization requirements while guaranteeing safety
specifications. Thus it is imperative to avoid unsafe states while controlling them.
Consequently the design of feedback stabilizing controller must comply with state
constraints, avoid unsafe states and adhere to input constraints. In this thesis, we
will focus mainly on this safety aspect in the design of control systems.

Let us exemplify the safety control problem by considering a simple illustrating
example as shown in Figure 1.1 where it depicts state space of a second order
system containing unsafe state domain (as shown in red). In this example, the
plant system is simply given by two integrators and the goal of control systems is
to avoid the unsafe state (at all cost) while steering the whole state to the origin.
In Figure 1.1, we see the trajectories of the closed-loop system (with our controller
which will be discussed in Chapter 3) from four different initial conditions. All
trajectories are able to avoid the unsafe state and converge to the origin as desired.

When the trajectories do not enter the unsafe state, we call it safe control
systems or control systems with guaranteed safety. Throughout this thesis, we will
often refer to the latter notion.

The notion of guaranteed safety is closely related to the notion of safety verifi-
cation. Loosely speaking, for nonlinear systems given by ẋ = f(x) where x ∈ Rn

with the set of unsafe state is denoted by D ⊂ Rn and the set of initial condition
X0 ⊂ Rn, the safety verification problem asks for a formal analysis that shows
none of the trajectories starting from X0 enters D at any positive time. One of such
methods is given by barrier certificate as proposed in [44].

The first obvious approach is to compute the reachable sets by propagating initial
conditions x(0) ∈ X0 forward in time. However, that solution is expensive and
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Figure 1.1: A simulation result of a second-order system whose main goal is to avoid unsafe
state while at the same time to converge to the origin The unsafe state is depicted in red
area and the trajectories start from four different initial conditions.

computationally exhaustive. It is often not possible to obtain the exact reachable
sets and leads to the approximate solution.

The second approach involves the use of a function so called barrier certificate
as proposed in [44]. The existence of that function implies the safety of the
systems. This method is analogous to the Lyapunov method which can be used to
analyze state trajectories behavior without the need to specifically calculate those
trajectories.

The work presented throughout this thesis is based on the second approach, i.e.
using both barrier certificate and Lyapunov function to analyze and synthesize safe
and stable trajectories, respectively. In particular, we will discuss various control
design strategies that achieve stability and safety property simultaneously. We also
discuss how to measure robustness of safety, since that notion is still lacking in the
literature. In the following, we will provide literature overview on topics that are
related to our various contributions throughout the thesis.

1.1 Safety control systems

The problem of control systems with guaranteed safety can be regarded as control
systems with (state) constraints where in this case the set of unsafe state is defined
in the constraints.

There are several control design methods proposed in literature that deal with
(non-)linear constraints for (non-)linear systems. For example, Model Predictive
Control-based approach has been proposed in [11, 34, 36] and the use of reference
governor has been proposed in [9, 10, 20]. Both approaches lead to a high-level
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Figure 1.2: Standard multi-level control configuration

controller that generates admissible reference signals for the low-level controller,
in order to avoid violating the constraints. Another control design approach for
dealing with constraint is the invariance control principle proposed in [21, 63].

An implicit assumption in these works is that time-scale separation can be
applied to the stabilization (fast-time scale) and to the safety control (slow-time
scale), i.e., safety is not considered as a time-critical issue. They fall to the control
configuration as depicted in Figure 1.2.

Since we are interested also with time-critical systems, in this thesis we consider
a control configuration that put the stabilization and safety control in the same
control level, i.e. both should work on the same time scale as shown in Figure
1.3. Based on this configuration, we propose in Chapter 3 a novel control design
method of Control Lyapunov-Barrier Function (CLBF) which merges a well-known
Control Lyapunov Function (CLF) and recent method of Control Barrier Function
(CBF).

For the past few years, a number of control design methods has been proposed
in literature on the design of feedback controller that can guarantee both the
safety and stability, simultaneously. To name a few, we refer interested readers to
[1], [64], [52] and [53]. In [1] and [64], the authors proposed an optimization
problem, in the form of a quadratic programming, where both control Lyapunov and
control Barrier inequalities are formulated in the constraints. The proposed method
generalizes the well-known pointwise min-norm control method for designing a
control law using Control Lyapunov Functions via an optimization problem [48].
It has been successfully implemented in the cruise control of autonomous vehicle
as reported in [35]. Another direct approach is pursued by us in [49, 53] and
presented in Chapter 3 of this thesis which is based on the direct merging of Control
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Figure 1.3: Proposed control configuration for time-critical systems where the safety and
stabilizing controllers are active on the same time-scale.

Lyapunov Function and Control Barrier Function. The merging process results in a
Control Lyapunov-Barrier Function which can be used to stabilize the system with
guaranteed safety by using Sontag’s universal control law.

1.2 Input-to-state safety notion

Despite the appealing idea in the aforementioned works for guaranteeing stability
and safety, it remains unclear on how to analyze the robustness of the closed-loop
system in the presence of external (disturbance) input signals.

When we deal with stability analysis of a control system, there are many
robustness concepts that can be used to quantify the robustness of control system.
For instance, robust control theory with H∞ and L2-stability notions [24, 55] has
become seminal in 90s. It becomes one of the cornerstones in modern control
theory. In early 2000, the notions of input-to-state stability (ISS) and integral
input-to-state stability (iISS) [56] have played an important role in the robustness
analysis of nonlinear control systems and the interconnection of such systems.
However, the robustness analysis with an emphasis on safety aspect is still lacking
in literature.

In this thesis, we discuss robustness analysis tools for safety certification of
safety-critical cyber-physical systems. In particular, in Chapter 4 we introduce a
notion of input-to-state safety (ISSf) that captures the dynamical effect of external
disturbance/input signals to the safety of the systems. The notion can be used to
describe the robustness of a number of safety control designs which have recently
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been proposed in literature. To name a few, we refer to our approach based
on Control Lyapunov-Barrier Function in [52, 53] and to the min-norm control
approach using quadratic programming as in [1, 35, 64].

1.3 Energy-based control systems with guaranteed
safety

In recent years, energy-based control design methods have become appealing in
the stabilization of nonlinear systems due to its affinity with the physical quantity
of energy and power exchanges between different physical systems. For instance if
we deal with complex systems which consist of several domains such as electrical,
mechanical, thermal, elctromagnetic, etc, we can unify these different physical
model of systems in several energy-based framework, e.g., Euler Lagrange [38] and
port-Hamiltonian [18] structure. The method for controlling the electromechanical
system such as robotics and AC machinery via Passivity-Based Control (PBC) has
been addressed in [38]. There have been several energy-based control methods
proposed in the literature. To name a few, [8, 13, 14, 19, 28, 39, 40, 41, 42].

In particular, the port-Hamiltonian framework has been popular in the last
decade, thanks to its clear physical interpretations. Interconnection between two
or more port-Hamiltonian (which is passive) is realized through ports, and the
resulting systems is port-Hamiltonian (and passive) [18, 55]. This property is
useful, especially in PBC to address the complex systems.

In order to regulate the behavior of the systems, one can assign the desired
port-Hamiltonian structure, by designing the desired interconnection and damping
matrices, and its Hamiltonian function. This method is termed Interconnection
and Damping Assignment Passivity-Based Control (IDA-PBC) [12, 41, 42]. The
recent development of IDA-PBC approach has been addressed in [8]. In this
paper, the notion of simultaneous IDA-PBC was introduced. The splitting of design
process (energy shaping and damping injection) was omitted, i.e., the desired
interconnection and damping matrices were designed simultaneously.

Inspired by the aforementioned passivity-based control methods, we investigate
also in this thesis the extension of IDA-PBC design approach to the problem of
stabilization with guaranteed safety.

In Chapter 5, we study the control design with guaranteed safety via IDA-PBC
approach. We show that the standard IDA-PBC method can be extended to the
safety control problems. We also show how to achieve global stabilization with
guaranteed safety using hybrid control technique.
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1.4 Contributions

The contributions of this thesis are three fold. Our first main contribution is on
the control design of safety control systems by combining the standard control
Lyapunov function (CLF) approach with the control barrier function (CBF) method.
Our second contribution is on the robustness analysis of safety control systems
where we introduce the notion of input-to-state safety. Our third contribution is
on the passivity-based control design method that incorporates guarantee on the
safety.

In our first contribution, as presented in Chapter 3, we study the problem of
stabilization with guaranteed safety where two control problems, namely, stabi-
lization and safety control, are combined. We introduce such problem in Section
3.2. In this chapter, we are looking for ways to combine the well-known CLF-based
control design with the recently introduced CBF-based control design. Both use the
universal control law as proposed by Sontag. The CLF-based method is popular
due to its simplicity and generality. In a similar manner, the CBF-based method
aims to emulate the simplicity of the CLF approach for guaranteeing the safety of
closed-loop systems. The commonality between these two approaches implies that
they can be combined directly. However, as discussed in Chapter 3, the convex
combination of the two functions may have an undesired effect of shifting the
equilibrium point. In Section 3.3, we present our proposed control design method
which is based on a linear combination of CLF and compactly supported CBFs. This
solution preserves the simplicity of the original solution and in particular, we can
still apply the same universal control law to the combined control Lyapunov-Barrier
function. In Section 3.4, we extend this result to the case when the domain of
the unsafe state comprises of a finite number of compact sets. We implement our
proposed methods to two examples in Section 3.5. The first one is related to the
control of a nonlinear mechanical system with guaranteed safety and the second
one is related to control of a mobile robot with guaranteed safety.

In our second contribution, as presented in Chapter 4, we study the robustness
analysis corresponding to the safety control system as discussed in the preceding
chapter, i.e., Chapter 3. This is highly relevant in practice where there are external
disturbances that can jeopardize our safety control systems. Firstly, in Section
4.2, we provide a review on the barrier certificate that has been widely used to
provide certification of safety for autonomous systems. Then in Section 4.3, we
propose our robustness notion of input-to-state safety (ISSf) where we modify the
well-known input-to-state safety inequality into the one that is suitable for safety
control systems. Based on this new notion, we provide sufficient conditions using
an ISSf Lyapunov-barrier function satisfying some conditions that are similar to the
popular ISS Lyapunov function. In Sections 4.4 and 4.5, we study the particular
case of exponential rate ISSf inequality that is pertinent for linear systems, as well
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as, nonlinear systems admitting quadratic Lyapunov-barrier functions.
In our final contribution, as written in Chapter 5, we investigate the safety

control problem from the perspective of the passivity-based control approach. In
this case, we generalize the standard Interconnection and Damping Assignment
Passivity-Based Control (IDA PBC) method to the stabilization with guaranteed
safety case. In particular, in Section 5.3, we present our extension of IDA PBC to
our safety control problem. The resulting conditions resemble those of the original
IDA PBC with the exception that the resulting passivity-based Lyapunov function
may contain many minima which are not present / assumed in the standard IDA
PBC. This gives rise to multiple equilibria and although the safety aspect can always
be guaranteed with such method, the stabilization to the desired position may
not be global. In order to circumvent this, we introduce a hybrid control solution
with a minimum of two states automata. The first automaton is responsible for
guaranteeing safety using the IDA PBC while the second automaton is used to steer
all trajectories from the neighborhood of undesired equilibria to the desired one.

1.5 Publications

Several peer-reviewed journal and conference papers contributing to this thesis are
as follows.

Journal papers

• ”Stabilization with guaranteed safety using Control Lyapunov-Barrier Func-
tion”, Automatica, Volume 66, Pages 39-47. (Chapter 3 of this thesis)

• ”Robustness Analysis of Systems’ Safety through a New Notion of Input-to-
State Safety”, ArXiv: 1702.01794. (Chapter 4 of this thesis)

• ”Passivity-Based Control with Guaranteed Safety”, Submitted. (Chapter 5 of
this thesis)

Conference papers

• ”Uniting control Lyapunov and control barrier functions”, 53rd IEEE Confer-
ence on Decision and Control, December 15-17, 2014, Los Angeles, CA, USA.
(Chapter 3 of this thesis)

• ”Passivity-based control with guaranteed safety via interconnection and damp-
ing assignment” , 5th IFAC Conference on Analysis and Design of Hybrid
Systems, October 14-16, 2015, Atlanta, GA, USA. (Chapter 5 of this thesis)

• ”On the new notion of Input-to-State Safety”, 55th IEEE Conference on
Decision and Control, December 12-14, 2016, Las Vegas, NV, USA. (Chapter
4 of this thesis)
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• ”On the sufficient conditions for input-to-state safety”, 13th IEEE International
Conference on Control and Automation, July 3-6, 2017 Ohrid, Macedonia.
(Chapter 4 of this thesis)

Some materials on this thesis have been also partially presented at (local)
scientific meetings as follows.

Conference abstracts

• ”On the Construction of Control Lyapunov-Barrier Function”, 34th Benelux
Meeting on Systems and Control, March 24-26, 2015, Lommel, Belgium.

• ”Stabilization with guaranteed safety via IDA-PBC” 35th Benelux Meeting on
Systems and Control, March 22-24, 2016, Soesterberg, The Netherlands.

Poster

• ”Stabilization with Guaranteed Safety Using CLBF”, ENTEG PhD Meeting,
October 8, 2016, Groningen, The Netherlands.

1.6 Thesis Outline

This thesis is organized as follows. Chapter 2 starts with preliminaries that pro-
vide necessary theoretical backgrounds for the subsequent chapters. It includes
preliminaries on stabilization via CLBF, robustness analysis of systems’ stability, and
IDA-PBC.

Chapter 3 discusses the concept of stabilization with guaranteed safety for
affine nonlinear systems. Chapter 4 discusses a new notion of input-to-state safety
to quantify the robustness of the systems’ safety in the presence of disturbance
signals. Chapter 5 discusses IDA-PBC design method with guaranteed safety that is
applied to port-Hamiltonian systems. The conclusions and future works are given
in Chapter 6.
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Chapter 2

Preliminaries

In this chapter we will review relevant existing results on stabilization and safety
control of (non-) linear systems, interconnection and damping assignment passivity-
based control (IDA-PBC), and input-to-state stability (ISS) which will be elemental
throughout the rest of the thesis. We will summarize some standard results on
stabilization of non-linear systems based on the use of Control Lyapunov Function
in Section 2.1. The results in this section will be useful to our contribution in
Chapter 3 where we introduce Control Lyapunov-Barrier Function for achieving
simultaneous stabilization and safety control of nonlinear systems. In Section
2.2, we will review well-known results on IDA-PBC control design method. The
results in this section will be recalled in Chapter 5 where we present our IDA-PBC
with guaranteed safety. In Section 2.3 and 2.4, we present preliminaries on safety
verification and safety analysis which are based on the use of barrier certificate.
The preliminaries in these two sections are relevant for all subsequent chapters.
Finally, in Section 2.5, we review a robustness analysis tool for nonlinear systems
which is based on the concept of input-to-state stability (ISS). It will be used later
in Chapter 4 when we discuss our new notion of input-to-state safety.

2.1 Stabilization of (non-)linear systems

2.1.1 Stabilization problem

Consider a nonlinear affine system in the form of

ẋ = f(x) + g(x)u, x(0) = x0, (2.1)

where x(t) ∈ Rn and u(t) ∈ Rp denote the state and the control input of the system,
respectively. We assume also that the functions f(x) and g(x) are smooth, f(0) = 0,
and g(x) ∈ Rn×p is full rank 1 for all x. As usual, we define LfV (x) and LgV (x) by
LfV (x) := ∂V (x)

∂x f(x) and LgV (x) := ∂V (x)
∂x g(x). A function V : Rn → R is called

proper if the set {x|V (x) 6 c} is compact for all constant c ∈ R, or equivalently, V is

1Here, the rank of matrix function g(x) is defined as the number of linearly independent
rows/columns in g(x).
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radially unbounded. The space C1(Rl,Rp) consists of all continuously differentiable
functions F : Rl → Rp.

Stabilization control problem: Given the system (2.1) with a given set of initial
conditions X0, design a feedback law u = α(x) such that the closed loop system is
asymptotically stable, i.e. limt→∞ ‖x(t)‖ = 0. Moreover, when X0 = Rn we call it
the global stabilization problem.

In nonlinear control theory, there have been several existing approaches for
designing (globally) asymptotically stabilizing feedback such as backstepping,
forwarding, feedback linearization, passivation, and others. In the following, we
adopt a stabilizer design procedure of Control Lyapunov Function (CLF) using
universal control formula proposed in [58]

2.1.2 Stabilization via CLF

In the following, let us recall some basic results related to Control Lyapunov
Functions and its universal control laws (see also [58]).

A proper, positive-definite function V ∈ C1(Rn,R+) that satisfies

LfV (x) < 0 ∀x ∈ {z ∈ Rn\{0} | LgV (z) = 0} (2.2)

is called a Control Lyapunov Function (CLF).
Given a CLF V ∈ C1(Rn,R+), the system (2.1) has the Small Control Property

(SCP) with respect to V if for every ε > 0 there exists a δ > 0 such that for every
x ∈ Bδ

∃u ∈ Rp such that ‖u‖ < ε and LfV (x) + LgV (x)u < 0.

We define a function k : R× R× Rp → Rp by

k(γ, a, b) =

{
−a+
√
a2+γ‖b‖4

bT b
b if b 6= 0

0 otherwise
(2.3)

Using the notions of CLF and small-control property, Sontag in [58] has pro-
posed a universal control law as summarized in the following theorem.

Theorem 2.1. Assume that the nonlinear system (2.1) has a CLF V ∈ C1(Rn,R+)

and satisfies the small-control property w.r.t. V . Then the feedback law

u = k(γ, LfV (x), (LgV (x))T ) γ > 0, (2.4)

is continuous at the origin and ensures that the closed-loop system is globally-
asymptotically stable.



2.2. Stabilization via IDA-PBC 11

2.2 Stabilization via IDA-PBC

Consider a non-linear affine system described by

ẋ = f(x) + g(x)u (2.5a)

y = h(x) (2.5b)

where x(t) ∈ Rn denotes the state vector, u(t), y(t) ∈ Rm denote the control input
and the output of the system, respectively. The functions f(x), g(x) and h(x) are
C1, and g(x) and its left annihilator g⊥(x) ∈ R(n−m)×n are full rank for all x ∈ Rn.
For a ∈ Rn, we define Bε(a) := {x ∈ Rn|‖x− a‖ < ε}.

Let us now recall the results on the Interconnection and Damping Assignment-
Passivity based control (IDA-PBC) design method as discussed in [41].

The IDA-PBC method aims at stabilizing the system (2.5) at a desired equi-
librium x∗ by designing a feedback law u = β(x) that transforms (2.5) into a
port-Hamiltonian structure which has a desirable damping component ensuring the
asymptotic stability of x∗ (which is the minimum of the desired energy function).
More precisely, it is stated in the following theorem.

Theorem 2.2. Suppose that we can design an energy function Hd : Rn → R and
interconnection and damping matrices Jd, Rd : Rn → Rn×n such that

g⊥(x)f(x) = g(x)⊥(Jd(x)−Rd(x))∇Hd (2.6a)

∇2Hd(x
∗) > 0 (2.6b)

Jd(x) = −J>d (x) (2.6c)

Rd(x) = R>d (x) > 0 (2.6d)

where x∗ = arg minHd(x) is the desired equilibrium. Then, the stabilizing feedback
law u = β(x) via IDA-PBC is given by

β(x) = (g>(x)g(x))−1g>(x)((Jd(x)−Rd(x))∇Hd(x)− f(x)). (2.7)

Using this control law, the closed-loop system can be represented as a port-Hamiltonian
system in the form of

ẋ = (Jd(x)−Rd(x))∇Hd(x) (2.8)

where x∗ is (locally) stable equilibrium point. Furthermore, x∗ is asymptotically stable
if it is an isolated minimum, and is globally stable if Hd is proper and x∗ is the largest
invariant set of (2.8) in {x ∈ Rn| − ∇>Hd(x)Rd(x)∇Hd(x) = 0}.

We define E := {x | ∇Hd(x) = 0} as a set of equilibria which contains also the
desired equilibrium point x∗. As will be shown later, our construction of Hd using
IDA-PBC for solving the stabilization with guaranteed safety problem (which will
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be defined shortly) may result in E that is not a singleton. Thus, the sole use of
IDA-PBC may only stabilize x∗ locally although the closed-loop system is globally
safe. In Chapter 5, we show how to modify the IDA-PBC approach for solving
the global stabilization case. In this regard, we denote Eu := E\x∗ as the set of
undesired equilibria.

A straightforward generalization of IDA-PBC has recently been proposed in [8]
where, instead of restricting the closed-loop system to a particular structure with
the interconnection and damping matrices Jd(x) and Rd(x), we can lump both
matrices into a single matrix Fd(x) which satisfies

Fd(x) + F>d (x) 6 0. (2.9)

The new partial differential equation (PDE) that has to be solved is

g⊥(x)f(x) = g⊥(x)Fd(x)∇Hd(x) (2.10)

and its corresponding control input is given by

u = β(x) =
(
g>(x)g(x)

)−1
g>(x)

(
Fd(x)∇Hd(x)− f(x)

)
(2.11)

In this case, the resulting port-Hamiltonian closed-loop system is given by

ẋ = Fd(x)∇Hd(x) (2.12)

and this control design is often referred to as the Simultaneous IDA-PBC approach.

2.3 Safety analysis

Let us recall few main results in literature on safety analysis. Let X0 ⊂ Rn be the
set of initial conditions and let an open and bounded set D ⊂ Rn be the set of
unsafe states, where we assume that D ∩ X0 = ∅. For a given set D ⊂ Rn, we
denote the boundary of D by ∂D and the closure of D by D.

In order to verify the safety of system (2.1) with respect to a given unsafe set
D, a Lyapunov-like function which is called barrier certificate has been introduced
in [44] where the safety of the system can be verified through the satisfaction of a
Lyapunov-like inequality without having to explicitly evaluate all possible systems’
trajectories. The barrier certificate theorem is summarized as follows.

Theorem 2.3. Consider the (autonomous) system (2.1) with u = 0, i.e., ẋ = f(x)

where x(t) ∈ X ⊂ Rn, with a given unsafe set D ⊂ X and set of initial conditions
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X0 ⊂ X . Assume that there exists a barrier certificate B : X → R satisfying

B(ξ) > 0 ∀ξ ∈ D (2.13)

B(ξ) < 0 ∀ξ ∈ X0 (2.14)

∂B(ξ)

∂ξ
f(ξ) 6 0 ∀ξ ∈ X such that B(ξ) = 0. (2.15)

Then the system is safe.

The proof of this theorem is based on the fact that the evolution of B starting
from a non-positive value (c.f. (2.14)) will never cross the zero level set due to
(2.15), i.e., the state trajectory will always be safe according to (2.13).

Following safety definition in [53], the (autonomous) system (2.1) with u = 0

is called safe if for all x0 ∈ X0 and for all t ∈ R+, x(t) /∈ D. Additionally, (2.1)
with u = 0 is called (asymptotically) stable with guaranteed safety if it is both
(asymptotically) stable and safe.

2.4 Incorporation of safety in control

In order to incorporate the safety aspect into the control design, we modify the
safety definition as used in [61] as follows.

Definition 1 (Safety). Given an autonomous system

ẋ = f(x), x(0) = x0 ∈ X0, (2.16)

where x(t) ∈ Rn, the system is called safe if for all x0 ∈ X0 and for all t ∈ R+,
x(t) /∈ D.

In the definition of safety as in [61], the safety of any trajectory x(t) is only
evaluated in a finite-time interval [0, T ] where T > 0. If this condition holds for
arbitrary T > 0, it does not immediately imply that the state trajectory x(t) will not
converge to ∂D as t→∞. Therefore we add the asymptotic behavior condition to
the definition of safety above for excluding such case.

Using this safety definition, the control problem that is considered in [61] is
given as follows (see also Problem 5 in [61]).

Safety control problem: Given the system (2.1) with a given initial condition X0

and a given set of unsafe states D ⊂ Rn, design a feedback law u = α(x) s.t. the
closed loop system ẋ = f(x) + g(x)α(x), x(0) = x0 ∈ X0 is safe.

In order to solve the above problem and motivated by universal control law
based on CLF, Wieland and Allgöwer have recently proposed the concept of Control
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Barrier Function in [61]. Let us recall the basic definition of a Control Barrier
Function as in [61].

Given a set of unsafe states D ⊂ Rn, the function B ∈ C1(Rn,R) satisfying

B(x) > 0 ∀x ∈ D (2.17a)

LfB(x) 6 0 ∀x ∈ {z ∈ Rn \ D|LgB(z) = 0} (2.17b)

U := {x ∈ Rn| B(x) 6 0} 6= ∅ (2.17c)

is called a Control Barrier Function (CBF).
In the following theorem, we present the safety control design method which

generalizes the result in [61].

Theorem 2.4. Assume that the nonlinear system (2.1) has a CBF B ∈ C1(Rn,R)

with a given set of unsafe states D ⊂ Rn, then the feedback law

u = k(γ, LfB(x), (LgB(x))T ) γ > 0, (2.18)

solves the safety control problem, i.e. the closed-loop system is safe with admissible
initial condition X0 = U with U be as in (2.17c).
Additionally if

Rn \ (D ∪ U) ∩ D = ∅ (2.19)

holds then the closed-loop system is globally safe with X0 = Rn \ D.

In comparison to Theorem 7 in [61], in Theorem 2.4 we allow the possibility of
having an initial state x0 such that B(x0) > 0 with x0 /∈ D; in particular, in [61] it
is assumed that X0 ⊂ U . For completeness, we provide the proof to Theorem 2.4
below.

Proof : The proof of the first claim follows the same line as in the proof of Theorem
7 in [61]. Note that the closed-loop system is given by

ẋ = f(x) + g(x)k(γ, LfB(x), (LgB(x))T ) =: FB(x) (2.20)

and it follows from (2.17a)-(2.17c) that the time-derivative of B along the solution
of (2.20) satisfies

∂B(x)

∂x
FB(x) 6 0 ∀x ∈ Rn \ D, (2.21)

which implies that B is non-increasing along the trajectory x satisfying (2.20).
For proving the first claim, we consider the case X0 = U such that B(x(0)) 6 0

for all x(0) ∈ X0. By using (2.21), we also have that B satisfies

B(x(t))−B(x(0)) 6 0 ∀t ∈ R+. (2.22)
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Rn \ (D ∪ U)

U D x∗b

Figure 2.1: A counter example where we have B(x) = 0 for all x ∈ ∂D ; (2.19).

Therefore x(t) ∈ U for all t ∈ R+. This proves the first claim since D ∩ U = ∅.

We will now prove the second claim where X0 = Rn \ D. When x(0) ∈ U , it has
been shown before that x(t) ∈ U for all t ∈ R+. It remains now to show that for all
x(0) ∈ Rn \ (D ∪ U), we have x(t) /∈ D for all t ∈ R+. In this case, we note that
B(x(0)) > 0 and, as before, B is non-increasing along the trajectory of x for all t.

Since the set Rn \ (D ∪ U) does not intersect with the set D, it implies that the
trajectory x(t) which starts in Rn \ (D ∪ U) will not enter D before it reaches first
the boundary of Rn \ (D ∪U) (modulo the infinity), in which case, B(x) = 0. Once
the trajectory x(t) is on the boundary of Rn \ (D∪U), the inequality (2.22) implies
that x(t) will remain in U thereafter. �

Remark 2.5. If (2.17a) and (2.17c) hold, then the condition (2.19) implies that
B(x) = 0 for all x ∈ ∂D. Indeed, this can be shown by contradiction. Suppose that
there exists x∗ ∈ ∂D such that B(x∗) 6= 0 and (2.19) holds. It follows from (2.17a)
that B(x∗) > 0. Hence x∗ ∈ (Rn \ D) ∩ (Rn \ U) = Rn \ (D ∪ U) ⊂ Rn \ (D ∪ U).
Since x∗ is also in D, we have a contradiction.

However the converse is not true. Figure 2.1 shows graphical illustration of
a counter-example to this claim (i.e., B(x) = 0 for all x ∈ ∂D ; (2.19)). In this
counter-example, the sets D and Rn \ (D ∪ U) intersect at a single point x∗, which
implies that (2.19) does not hold but we have B(x∗) = 0 according to (2.17c). One
such numerical example of B is given by

B(x) =


dist(x, ∂D) ∀x ∈ D
−dist(x, ∂D ∪ ∂U) ∀x ∈ U
dist(x, ∂U) ∀x ∈ R2 \ {D ∪ U},

where D := B1 ([ 3
0 ]), U := B4 \ B1 ([ 3

0 ]) and dist denotes the usual set distance. In
this numerical example, ∂D and ∂U intersect only at [ 4

0 ].
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2.4.1 Handling state and output constraint

Unsafe state or constraint can usually emerge in state or output due to physical
limitation of the systems, for example, saturation or due to performance specifica-
tion. There are several existing approaches for handling constraints in state and in
output. One of them is based on barrier Lyapunov method as proposed in [60]. Let
us recall the result.

Lemma 2.6. For any a, b ∈ R+, let Xc := {xc ∈ R : −a < xc < b} and X :=

Rl ×Xc ⊂ Rl+1. Consider a nonlinear system

ẋ = f(x), x := [xc, xf ]T ∈ X , f : R+ ×X → Rl+1 (2.23)

where xc is constrained state, xf is free state. Suppose that there exist a barrier
function B : Xc → R+ and a Lyapunov function V : Rl → R+ such that

B(xc)→∞, xc → −a or xc → b (2.24)

α(‖xf‖) 6 V (xf ) 6 β(‖xf‖) (2.25)

where α, β ∈ K∞. Let W (x) := B(xc) + V (xf ), and xc(0) ∈ (−a, b). If

Ẇ = LfW 6 0 (2.26)

then xc(t) ∈ (−a, b), ∀t.

Remark 2.7. The above lemma involves barrier function B and standard Lyapunov
function V . In this approach, there is separation of the state space x ∈ X between
constrained state xc and free state xf . Barrier function B is designed to prevent
the state xc from violating the constraints, (i.e. crossing the limits −a and b) by
pushing the value of B to be infinity or unbounded as xc approach the boundary of
xc. This will restrict the applicability of the approach.

In our approach which will be discussed later in Chapter 3 we do not impose
unbounded condition on the boundary of unsafe state domain, and we also consider
more general problem where the constraint or unsafe state can be any open and
bounded set in state domain (in contrast to this lemma that consider saturation-like
constraint only).

2.5 Stability robustness analysis via ISS

Consider again affine non-linear system described by

ẋ = f(x) + g(x)u, x(0) = x0, (2.27)
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where x(t) ∈ Rn denotes a state vector, u(t) ∈ U ⊆ Rm denotes an (external)
input or disturbance to the system. The functions f(x) and g(x) are C1 where the
space C1(Rl,Rm) consists of all continuously differentiable functions F : Rl → Rm.
Without loss of generality and for simplicity of presentation, we will assume
throughout that the solution to (2.27) is complete (i.e., it exists for all t > 0) for
any bounded signal u. This assumption holds when the system has the input-to-state
stability (ISS) property which we will recall shortly.

For a given signal x : R+ → Rn, its Lp norm is given by ‖x‖Lp := (
∫∞

0
‖x(t)‖pdt)1/p

for p = [1,∞) and its L∞ norm is defined by ‖x‖L∞ := (ess) supt(‖x(t)‖). For
a given bounded set M ⊂ X ⊂ Rn, we define the distance of a point ξ ∈ Rn

with respect toM by |ξ|M := mina∈M ‖ξ − a‖ where ‖ · ‖ is a metric norm. We
define an open ball centered at a point a ∈ Rn with radius r > 0 by Br(a) := {ξ ∈
Rn|‖ξ − a‖ < r} and its closure is denoted by Br(a).

We define the class of continuous strictly increasing functions α : R+ → R+

by P and denote by K all functions α ∈ P which satisfy α(0) = 0. Moreover, K∞
denotes all functions α ∈ K which satisfy α(r)→∞ as r →∞. By KL we denote
all functions β : R+ × R+ → R+ such that β(·, t) ∈ K for a fixed t > 0 and β(s, ·)
is decreasing and converging to zero for a fixed s > 0. Correspondingly, we also
denote by KK all functions µ : R+ × R+ → R+ such that f(0, 0) = 0 and f(s, t) is
srictly increasing in both arguments.

Analyzing the robustness of systems stability in the presence of an (external)
input signal can be done using the input-to-state stability (ISS) framework [57, 58].
Let us briefly recall the ISS concept from [57].

The system (2.27) is called input-to-state stable if there exist a β ∈ KL and
γ ∈ K such that for any u ∈ L∞ and x0 ∈ X0, the following inequality holds for all
t:

‖x(t)‖ 6 β(‖x0‖, t) + γ(‖u‖L∞([0,t))). (2.28)

In this notion, the functions β and γ in (2.28) describe the decaying effect from a
non-zero initial condition x0 and the influence of a bounded input signal u to the
state trajectory x, respectively. The Lyapunov characterization of ISS systems is
provided in the following well-known theorem from [57, 58].

Theorem 2.8. The system (2.27) is ISS if and only if there exists a smooth V : Rn →
R+, functions α1, α2, α3 ∈ K∞ and a function γ ∈ K such that

α1(‖ξ‖) 6 V (ξ) 6 α2(‖ξ‖) (2.29)

and
∂V (ξ)

∂ξ
(f(ξ) + g(ξ)v) 6 −α3(‖ξ‖) + γ(‖v‖) (2.30)

hold for all ξ ∈ Rn and for all v ∈ Rm.
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The notion of ISS and its Lyapunov characterization as above have been seminal
in the study of nonlinear systems robustness with respect to the uncertainties
in the initial conditions and to the external disturbance signals. For instance, a
well-known nonlinear small-gain theorem in [29] is based on the use of β and
γ. The study of convergence input convergence state property as in [25] is based
on the use of ISS Lyapunov function. However, as mentioned in the Introduction,
existing results on robustness have focused on the systems’ stability and there is
not many attention on the robustness analysis on systems’ safety.
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Chapter 3

Stabilization with guaranteed safety via
CLBF

In this chapter, we investigate the case where safety control is time-critical and
propose a nonlinear control design that can simultaneously stabilize the closed-loop
systems and guarantee the safety of the systems.

Firstly, we discuss the problem of stabilization with guaranteed safety and the
concept of Control Lyapunov-Barrier function in Section 3.2. Subsequently we
propose control design methods that merge a CBF and a CLF in Section 3.3. We
discuss the extension of the proposed method to the multiple CBFs case in Section
3.4. Finally, in Section 3.5, we also provide numerical simulations where in one
example we present the design of a stabilizer with guaranteed safety for a nonlinear
system and in the other one, we present an example of merging multiple CBFs
with a single CLF for the navigation of mobile robots. The results presented in this
chapter are based on our published works in [49] and [53].

3.1 Introduction

One of the modern control design tools for the stabilization of affine nonlinear
systems is the so-called Control Lyapunov Function (CLF) method. Artstein in [5]
has given necessary and sufficient conditions for the existence of such CLF, which
has been used to design a universal control law for affine nonlinear systems in [58].
Recently, various Lyapunov-based control designs have been proposed using the
same principle as CLF, such as, Passivity Based Control [38, 42], backstepping [31],
stabilization via forwarding [45], and contraction-based method [3].

Since CLFs can be designed to meet specific performance criteria, such as, opti-
mality, transient behaviour or robustness properties, the question on how to com-
bine several CLFs for mixed performance objectives has been addressed, to name a
few, in [2, 6, 15, 22, 46, 47]. With the exception of combining/merging/uniting
CLF approach proposed in [15] that results in a non-smooth CLF, the synthesis of
the combined (or merged) CLF is generally achieved by a convex combination of
two CLFs where the weights can be state-dependent.

Akin to the CLF method, Wieland and Allgöwer in [61] have proposed the
construction of Control Barrier Functions (CBF), where the Lyapunov function is
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interchanged with the Barrier certificate studied in [43, 44]. Using a CBF as in
[61], one can design a universal feedback law for steering the states from the set of
initial conditions to the set of terminal conditions, without visiting the set of unsafe
states.

In order to combine the stabilization property of CLF with the safety aspect
from the CBF, we study in this chapter a simple control design procedure where we
merge a CLF with a CBF. Some previous relevant works, where a barrier function is
incorporated explicitly in the CLF control design method, have been proposed in
[37] and [60]. In these papers, a stabilization control problem with state saturation
is considered which is solved by incorporating explicitly a “barrier function” in
the design of a CLF. The resulting CLF has a strong property of being unbounded
on the boundary of the state’s domain. While in this chapter, we consider a more
general problem where the unsafe set can be any form of open and bounded set in
the domain of the state. It is solved by combining a CLF and CBF that results in
a Control Lyapunov-Barrier Function (CLBF) control design method which does
not impose unboundedness condition on the boundary of the unsafe set. Hence we
admit a larger class of functions than the former approaches.

As mentioned earlier, there are various results in literature on combining several
CLFs for improving control performances, which include the use of convex combi-
nation as pursued in Andrieu and Prieur [2] or Grammatico et al [22]. Based on
these works, one can intuitively consider to merge or to unite the CLF and CBF for
solving the stabilization with guaranteed safety. However, such an approach may
not solve the problem. Note that the important features of the CLF for stabilizing
the origin are the (local-) convexity and global minimum at the origin. Hence, the
merged CLF (as a result of merging multiple CLFs) has these properties and they are
inherited from the original CLFs. On the other hand, the important characteristic of
the CBF is that it is (locally-)concave with the level-set of zero belongs to the safe
domain. Moreover, CBF may not have a global minimum at all. As a result, CBF and
CLF cannot be merged using the same principle of merging multiple CLFs. It may
shift the desired equilibrium point (away from the origin) and the merged CLF-CBF
may not be proper (i.e., the level-set may not be compact). A recent paper on the
uniting of CLF and CBF has also appeared in [1] that uses a quadratic programming
approach to combine the Lyapunov inequality and Barrier certificate inequality.

Another related control problem in the literature is the obstacle avoidance
control problem [16], where the systems are described by a single integrator and
the proposed control law is based on a gradient of a particular potential function.
Similar works in the context of avoidance control problem for multi-agent systems
are [17, 59]. One important characteristic of the potential function in such method
is that it grows unbounded as it reaches the boundary of the obstacle (or the set of
unsafe state), akin to the works in [37] and [60] which is generally complicated
and difficult to construct.
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Recently, we have developed a control design technique that combine our results
in this chapter with the idea of the Interconnection-and-Damping Assignment
Passivity-Based Control (IDA-PBC) (see, for example, [42]) in [52]. Using existing
numerical tools for implementing the classical IDA-PBC, our results in [52] enable
further development of numerical tools for implementing our control approach.

3.2 Stabilization with guaranteed safety

Let us now consider the incorporation of the safety aspect in standard stabilization
problem as follows.

Stabilization with guaranteed safety control problem: Given the system (2.1)
with a given set of initial conditions X0 and a given set of unsafe states D, design
a feedback law u = α(x) s.t. the closed loop system is safe and asymptotically
stable, i.e. limt→∞ ‖x(t)‖ = 0. Moreover, when X0 = Rn \ D we call it the global
stabilization with guaranteed safety control problem.

As briefly discussed in the Introduction, one can intuitively consider to merge
or to unite the CLF and CBF by a convex combination a’la Andrieu and Prieur [2]
or Grammatico et al [22] for solving the above problem. However, such approach
may not immediately guarantee the solvability of the problem. Firstly, the convex
combination can lead to the shifting of the global minimum of the combined
function which can result in the shifting of the equilibrium point away from the
origin. This does not happen in the uniting/merging CLFs since each CLF has
minimum at the origin. In the extreme case, when the function of B(x) is not
lower-bounded, the combined function may not even admit a global minimum.
Secondly, we need a theoretical framework to combine the stability analysis via
Lyapunov method and the safety analysis via Barrier Certificate. Motivated by the
safety analysis using Barrier Certificate (see, for example [44], [62]), we provide
below a proposition on the stability with safety.

Proposition 3.1. Consider an autonomous system

ẋ = f(x), x(0) = x0, (3.1)

with a set of unsafe state D which is open. Suppose that there exists a proper and
lower-bounded function W ∈ C1(Rn,R) such that

W (x) > 0 ∀x ∈ D (3.2a)

LfW (x) < 0 ∀x ∈ Rn \ (D ∪ {0}) (3.2b)

U := {x ∈ Rn|W (x) 6 0} 6= ∅ (3.2c)

Rn \ (D ∪ U) ∩ D = ∅ (3.2d)
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then the origin of (3.1) is asymptotically stable and the system (3.1) is safe with
X0 = Rn \ D.

Proof : We firstly prove that if x0 ∈ X0, then the state trajectory x never enters D,
i.e., for all t > 0, x(t) /∈ D.

If x0 ∈ U (i.e. W (x(0)) 6 0 by definition) then it follows from (3.2b), that
Ẇ < 0 thus W (x(t)) − W (x(0)) < 0 for all t ∈ R+. Hence, it implies that
W (x(t)) < 0 for all t ∈ R+. In other words, the set U is forward invariant and
x(t) /∈ D for all t ∈ R+ by (3.2a). Moreover, by the properness of W , the set U is
compact. Note that by the compactness of U , it holds that limt→∞ x(t) /∈ D. Now
consider the other case when x0 ∈ Rn \ (D ∪ U). By using the same argument as in
the proof of the second claim of Theorem 2.4, the trajectory x will remain in U and
will never enter D.

We will now prove that if x0 ∈ Rn \ D then x(t)→ 0 as t→∞.
Let x0 ∈ Rn \ D which (according to the previous arguments) implies that the

trajectory x(t) /∈ D for all t > 0. Correspondingly, it follows from (3.2b) that

d

dt
W (x(t)) < 0 ∀x(t) /∈ (D ∪ {0}) (3.3)

⇒W (x(t)) < W (x(0)) <∞ ∀t > 0.

By the properness of W , the last inequality implies that the trajectory x is bounded,
and thus it is pre-compact1, i.e., the closure of {x(t)|t ∈ [0,∞)} is compact.
This implies that the ω-limit set Ω(x0) is non-empty, compact, connected and
lim
t→∞

d(x(t),Ω(x0)) = 0 where d defines the distance2.

Additionally, since the functionW := W ◦x is an absolutely continuous function
of t and bounded from below, (3.3) implies thatW(t) is monotonically decreasing
and it has a limit h as t → ∞. On the other hand, for any point ξ in the ω-limit
set Ω(x0), there is a sequence (tn) in R+ such that tn →∞ and x(tn)→ ξ. By the
continuity of W , W (ξ) = limnW(tn) = h. Therefore, in the invariant set Ω(x0), W
is constant and is given by h. Using (3.2b), and the fact that D 6⊂ Ω(x(0)), we have
that W is constant only at x = 0 and thus Ω(x0) = {0}. Hence,

lim
t→∞

‖x(t)‖ = 0.

�

We will make a few remarks on the assumptions in Proposition 3.1. When we
restrict the state space to D ∪ U , the conditions in (3.2a)-(3.2c) are reminiscent of

1The trajectory x in X is pre-compact if it is bounded for all t ∈ [0,∞) and for any sequences (tn) in
[0,∞), the limit limn→∞ x(tn) exists and is in X [32].

2For the concept of ω-limit set, we refer interested readers to [23, 24, 32].
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the conditions in Barrier Certificate theorem (c.f. [43, Prop. 2.18]).
On the other hand, the properness of W together with (3.2b) resemble the

standard Lyapunov stability theorem (albeit, in this proposition, we do not impose
positive-definiteness of W ). The addition of condition (3.2d) is to ensure that the
first entry point to the set of D ∪ U is the boundary of D ∪ U , and not that of D.

Obviously, one can observe from the condition (3.2b) and (3.2c) that the origin
lies inside the set of U . Indeed, we can prove this by contradiction. Suppose
that 0 /∈ U . Let x0 ∈ U which implies that x(t) ∈ U for all t (following the same
argument as in the proof of Proposition 3.1). By (3.2b), W (x(t)) is decreasing and
converge to a constant. Similar to the last arguments in the proof of Proposition
3.1), the ω-limit set is a singleton {0} which is a contradiction.

Let us now present a control design framework for solving the stabilization with
guaranteed safety control problem. For this, we introduce the notion of Control
Lyapunov-Barrier Function as follows.

Definition 2 (CLBF). Given a set of unsafe state D, a proper and lower-bounded
function W ∈ C1(Rn,R) satisfying

W (x) > 0 ∀x ∈ D (3.4a)

LfW (x) < 0 ∀x ∈ {z ∈ Rn \ (D ∪ {0})|LgW (z) = 0} (3.4b)

U := {x ∈ Rn|W (x) 6 0} 6= ∅ (3.4c)

Rn \ (D ∪ U) ∩ D = ∅ (3.4d)

is called a Control Lyapunov-Barrier Function (CLBF).

Using this notion and Proposition 3.1, we can solve the problem in the following
theorem.

Theorem 3.2. Assume that the system (2.1) admits a CLBF W ∈ C1(Rn,R) with a
given set of unsafe states D and satisfies the small-control property w.r.t. W , then the
feedback law

u = k(γ, LfW (x), (LgW (x))T ) γ > 0, (3.5)

is continuous at the origin and solves the global stabilization with guaranteed safety
control problem.

Proof : We prove the theorem by showing that the conditions (3.2a)-(3.2d) in
Proposition 3.1 hold for the closed-loop autonomous system

ẋ = FW (x)

where FW (x) := f(x) + g(x)k(γ, LfW (x), (LgW (x))T ).
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The conditions (3.2a), (3.2c) and (3.2d) follow trivially from (3.4a), (3.4c) and
(3.4d), respectively. Now, for all x ∈ {z ∈ Rn \ (D ∪ {0}) | LgW (z) 6= 0}, we have
that

LFW (x) = LfW (x) + LgW (x)k(γ, LfW (x), (LgW (x))T )

= −
√
‖LfW (x)‖2 + γ‖LgW (x)‖4

< 0

holds. On the other hand, for all x ∈ {z ∈ Rn \ (D ∪ {0}) | LgW (z) = 0}, the
condition (3.4b) implies that

LFW (x) < 0.

These two inequalities show that (3.2b) also holds.

The continuity of the feedback law at the origin follows the same proof as in
[58]. �

Using the same argument as in the proof of Proposition 3.1, it can be checked
that the condition (3.4b) can be weakened by

LfW (x) 6 0 ∀x ∈M,

where the CLBF function W is still assumed to be C1,

M := {z ∈ Rn \ D|LgW (z) = 0}

and the largest invariant set inM is {0}. This condition will be useful later in the
simulation result. This is formalized in the following proposition.

Proposition 3.3. Let D be a given set of unsafe states. Assume that the system in
(2.1) has a proper and lower-bounded function W ∈ C1(Rn,R) satisfying

W (x) > 0 ∀x ∈ D (3.6a)

LfW (x) 6 0 ∀x ∈M := {z ∈ Rn \ D | LgW (z) = 0} (3.6b)

U := {x ∈ Rn |W (x) 6 0} 6= ∅ (3.6c)

Rn \ (D ∪ U) ∩ D = ∅. (3.6d)

Assume also that the system is zero-state detectable with respect to LgW (x), i.e.,
LgW (x(t)) = 0 ∀t > 0 ⇒ x(t) → 0. Suppose that the system in (2.1) has the
small-control property w.r.t. W . Then the feedback law

u = k
(
γ, LfW (x), (LgW (x))T

)
γ > 0, (3.7)



3.3. Constructive design of a CLBF 25

is continuous at the origin and solves the global stabilization with guaranteed safety
control problem.

Proof : The proof is akin to the proof of Theorem 3.2 and Proposition 3.1. Similar
to the proof of Proposition 3.1, if x0 ∈ Rn \ D then the trajectory x will never enter
D, i.e., x(t) ∈ Rn \ D for all t > 0 and D * Ω(x0).

It remains to show that in the closed-loop system, for every x0 ∈ Rn \D we have
Ω(x0) = {0}. As in the proof of Theorem 3.2, the time-derivative of W satisfies

LFW (x) = −
√
‖LfW (x)‖2 + γ‖LgW (x)‖4

6 −√γ‖LgW (x)‖2 ∀x ∈ Rn \ (D ∪M).

On the other hand, for all x ∈M, the assumption (3.6b) implies that LFW (x) 6 0.
Hence, combining these two inequalities, we have that for all x(t) ∈ Rn \ D,

Ẇ (x(t)) 6 −√γ‖LgW (x(t))‖2.

This inequality implies that W converges to a constant and the trajectory x con-
verges to the largest invariant set N contained inM, i.e., Ω(x0) ⊂ N ⊂M. By the
zero-state detectability assumption with respect to LgW , we have that the largest
invariant set N = {0}. Hence, Ω(x0) = N = {0}, i.e., lim

t→∞
‖x(t)‖ = 0. �

3.3 Constructive design of a CLBF

Equipped with Theorem 3.2 we can now present results on the construction of
CLBF by uniting a CLF and a CBF. This will potentially allow us to separate the
control design for achieving the asymptotic stability and safety by designing the
CLF and CBF, independently, and then combine them together. In the following
proposition, we assume first that B is lower-bounded.

Proposition 3.4. Suppose that for system (2.1), with a given set of unsafe states D
that is open , there exist a CLF V ∈ C1(Rn,R+) and a CBF B ∈ C1(Rn,R) which
satisfy

c1‖x‖2 6 V (x) 6 c2‖x‖2 ∀x ∈ Rn c2 > c1 > 0, (3.8)

and a compact and connected set X s.t.

D ⊂ X , 0 /∈ X and B(x) = −ε, ε > 0 ∀x ∈ Rn \ X . (3.9)

If
LfW (x) < 0 ∀x ∈ {z ∈ Rn \ (D ∪ {0})|LgW (z) = 0} (3.10)
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where
W (x) = V (x) + λB(x) + κ,

with λ > c2c3−c1c4
ε , κ = −c1c4, c3 := maxx∈∂X ‖x‖2, c4 := minx∈∂D ‖x‖2, then the

feedback law (3.5) solves the stabilization with guaranteed safety control problem with
the set of initial states X0 = Rn\Drelaxed whereDrelaxed := {x ∈ X |W (x) > 0} ⊃ D.
Moreover if (2.1) has the small-control property w.r.t. V then it has also the small-
control property w.r.t. W . In which case, the feedback law (3.5) is continuous at the
origin.

Proof : The proof of the proposition will be based on proving that D ⊂ Drelaxed
and (3.4a)-(3.4d) hold with D being replaced by Drelaxed. Note that (3.4a) holds
by the definition of Drelaxed. A routine computation shows that for all x ∈ D,

W (x) = V (x) + λB(x)− c1c4
> c1‖x‖2 − c1c4
> 0, (3.11)

since λ > 0, B(x) > 0 for all x ∈ D and ‖x‖2 > c4 for all x ∈ D.
Also for all x ∈ ∂X ,

W (x) = V (x) + λB(x)− c1c4
= V (x)− λε− c1c4
6 c2‖x‖2 − λε− c1c4
< c2c3 − (c2c3 − c1c4)− c1c4 = 0, (3.12)

where the strict inequality is due to the hypotheses of λ > c2c3−c1c4
ε . Hence we

have that (3.4c) holds. By the continuity of W (x), the inequality (3.11) and (3.12)
implies that the open set Drelaxed is the interior of X and moreover D ⊂ Drelaxed.
Hence ∂X ∩ ∂Drelaxed = ∅ and we have

D ⊂ Drelaxed ⊂ X ⊂ Drelaxed ∪ U . (3.13)

The last relation is due to the decomposition of X = Drelaxed ∪ X− where X− :=

{x ∈ X |W (x) 6 0} ⊂ U . Since D ⊂ Drelaxed, we have that (3.10) =⇒ (3.4b)
(with D being replaced by Drelaxed). Finally, since the boundary of X does not
intersect with the boundary of Drelaxed, (3.13) implies that Rn \ (Drelaxed ∪ U) ∩
Drelaxed = ∅, i.e. (3.4d) holds.

The proof on the claim of SCP follows trivially from the hypothesis in (3.9).
Indeed, since 0 /∈ X and X being compact, we can define a neighborhood Bδ =

{x|‖x‖ < δ} such that Bδ ∩ X = ∅. In Bδ it holds that LfW (x) + LgW (x) =

LfV (x) +LgV (x) since B is constant outside X . Thus if (2.1) has SCP w.r.t V then
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it has also SCP w.r.t. W . �

We note that the condition (3.10) implies that the function W has a global
minimum in Rn \ D at 0. This can be shown by contradiction. Suppose that W
admits another minimum x∗ 6= 0 in Rn \ D such that (3.10) holds. The point x∗

being minimum implies that ∂W (x∗)
∂x = 0 so that LfW (x∗) = 0, which contradicts

(3.10).
In Proposition 3.4, it is assumed that B is lower-bounded. In general, when

the CBF B(x) is not lower-bounded, we can always construct another CBF B̃(x)

satisfying (3.9) based on B(x) which satisfies (2.17a)-(2.17c). Hence Proposition
3.4 can still be applicable using this new CBF B̃(x).

Proposition 3.5. Suppose that the set of unsafe states D is bounded and simply-
connected. Assume that there exist a CBF B ∈ C1(Rn,R) and δ > 0 such that
J := {x|B(x) > −δ} is simply-connected, contains D and B is strictly-concave on J .
Let ρ : R→ [0, 1] be a non-decreasing C1 function such that ρ(z) = 0 for all z 6 −δ
and ρ(z) = 1 for all z > 0. By using any arbitrary point ω ∈ ∂D, define the function
B̃(x) ∈ C1(Rn,R) by

B̃(x) =

 B(ω) +
∮
Γ

ρ(B(σ))∂B(σ)
∂x dσ ∀x ∈ J

−ε otherwise,
(3.14)

where Γ is any path from ω to x ∈ J and the constant ε is defined by ε = −B̃(φ)

where φ is any point on ∂J , i.e.

ε = −B(ω)−
∮

Γω→φ

ρ(B(σ))
∂B(σ)

∂x
dσ,

where Γω→φ is any path from ω to φ. Then B̃ is also a CBF satisfying the conditions
(2.17a)-(2.17c) and also (3.9) with X be given by J .

Proof : We prove the proposition by showing (2.17a)-(2.17c) holds with the same
D. Notice that the integration in (3.14) is proper and B̃ is a potential function.
Indeed, it is trivial to check that the Hessian matrix of (3.14) is symmetric and
hence, it defines a potential function.

Now, for every x ∈ D, there exists a path Γ from ω to x since D is connected
and it follows that

B̃(x) = B(ω) +

∮
Γ

∂B(σ)

∂x
dσ = B(x) > 0

where we have used the fact that ρ(B(σ)) = 1 for all σ ∈ Γ. Hence (2.17a) holds.
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In order to show that (2.17b) holds with the new CBF B̃ , we first note that
for all x ∈ J , we have that ∂B̃

∂x g(x) = 0 ⇔ ∂B
∂x g(x) = 0. Hence, for all x ∈ {z ∈

J \ D|LgB̃(z) = 0} we have

∂B̃

∂x
f(x) = ρ(B(x))

∂B

∂x
f(x) 6 0. (3.15)

On the other hand, for all x ∈ Rn \ J , we have ∂B̃
∂x = 0 which implies that

Lf B̃(x) = 0, ∀x ∈ {z ∈ Rn \ J |LgB̃(z) = 0}. Together with (3.15), we have that
(2.17b) holds.

Equation (2.17c) follows trivially. Now we will prove (3.9), i.e., B̃(x) is a
negative constant in Rn \J . By using the concavity of B(x) on J , and since J ⊃ D,
we have that for any point φ ∈ ∂J , B̃(φ) = −ε < 0, i.e., (3.9) holds with X = J .
�

One can show easily that the constant ε as calculated in Proposition 3.5 is less
than or equal to δ.

As it was shown in the proof of Proposition 3.5, the set X is closely related to
the parameter δ used to define ρ in (3.14). One can immediately check that for
every enlargement of D with a radius of µ > 0, i.e. D + Bµ 3, we can always find
δ > 0 such that the resulting X lies in the interior of D + Bµ. This property will be
useful later when we want to combine multiple CBFs with a single CLF.

Corollary 3.6. For every µ > 0 there exists δ > 0 such that B̃(x) as constructed in
(3.14) satisfies (3.9) with X ⊂ D + Bµ.

Proof : By the continuity of B there exists a neighborhood Ω of D such that
Ω ⊂ D + Bµ and B(∂Ω) = −δ < 0. The proof of the claim follows the same line as
that of Proposition 4. Note that, here J (as used in the proposition) is given by Ω.
�

3.4 Handling multiple sets of unsafe state

In the previous section, we dealt with the problem of combining a CLF with a CBF
for designing a CLBF, i.e., it handles only a set of unsafe states D.

For accommodating a general set of unsafe states D, we present in this section
a constructive method for combining multiple CBFs and a single CLF. The main
assumption in this study is that we can decompose D into a finite number of disjoint
simply-connected sets D1,D2...DN , each of which admits a CBF. Our main result

3Here, we use the Minkowski sum for the set addition.
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in Proposition 3.4 cannot directly be used in this case, even if there exists a CBF
that covers the multiple sets of unsafe state D1,D2...DN . Our proposed approach
is based on combining the CBFs together to make a CBF which can then be merged
with a CLF as before.

Let us assume that the set of unsafe states D = D1 ∪ D2 ∪ ... ∪ DN where
Di ∩ Dj = ∅ for all i 6= j and for every i, Di is bounded and simply-connected.
Suppose that for every i, there exists a CBF Bi for Di such that (2.17a)-(2.17c)
hold. Using these functions Bi, i = 1, ...N , we can construct a family of CBFs B for
D as follows.

By the boundedness of Di and since the set Di, i = 1, ..N are disjoint, there
exist µ > 0 such that the open sets Di + Bµ, i = 1, ..N are also disjoint. Indeed, by
the assumptions, the distance between the sets Di and Dj , i 6= j, is strictly positive.
Hence by choosing µ > 0 such that

µ <
1

4
min
i,j

d(Di,Dj), (3.16)

it follows that the sets Di +Bµ and Dj +Bµ, for all i 6= j, are disjoint. By Corollary
1, for every i, there exist B̃i(x) and δi > 0 (which is constructed using Bi(x) and
µ) such that (3.9) holds with Xi ⊂ Di + Bµ and εi > 0. Finally, a family of CBFs B
for D is given by

B(x) =
∑
i

λiB̃i(x) (3.17)

where λi > 0, i = 1, ...N are design parameter that can be chosen appropriately
when it is merged with a CLF.

In the following proposition, we present a slight modification to Proposition 3.4
where we merge B as in (3.17) with a proper CLF V .

Proposition 3.7. Assume that for system (2.1), there exists a CLF V ∈ C1(Rn,R+)

and CBFs B̃i ∈ C1(Rn,R) which satisfy

c1‖x‖2 6 V (x) 6 c2‖x‖2 ∀x ∈ Rn, c2 > c1 > 0. (3.18)

If
LfW (x) < 0 ∀x ∈ {z ∈ Rn \ (D ∪ {0})|LgW (z) = 0} (3.19)

where
W (x) = V (x) +

∑
i

λiB̃i(x) + κ

with λi and κ be choosen such that∑
j 6=i

λjεj − c1c4i < κ <
∑
i

λiεi − c2c3i ∀i, (3.20)
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c3i := max
x∈∂Xi

‖x‖2, c4i := min
x∈∂Di

‖x‖2, then the feedback law (3.5) solves the stabi-

lization with guaranteed safety control problem with the set of initial states X0 =

Rn \ Drelaxed where Drelaxed := {x ∈ X = X1 ∪ X2 ∪ ... ∪ XN |W (x) > 0}.

Proof : The proof follows similar arguments as those in Proposition 3.4. The main
differences are in the computation of W (x) > 0 for all x ∈ Di and W (x) < 0 for all
x ∈ ∂Xi.

For all x ∈ Di, it can be checked that

W (x) = V (x) + λiB̃i(x)−
∑
j 6=i

λjεj + κ

> c1‖x‖2 −
∑
j 6=i

λjεj + κ

> c1c4i −
∑
j 6=i

λjεj + κ > 0, (3.21)

thus (3.4a) holds. Equation (3.4b) holds by the assumption of (3.19). Now it
remains to verify (3.4c) and (3.4d).

Note that for all x ∈ ∂Xi,

W (x) 6 c2‖x‖2 +
∑
i

λiB̃i(x) + κ

= c2‖x‖2 −
∑
i

λiεi + κ

6 c2c3i −
∑
i

λiεi + κ < 0, (3.22)

and hence (3.4c) holds. Similar to Proposition 3.4, (3.21) and (3.22) =⇒
Drelaxed ⊂ X and ∂Drelaxed ∩ ∂X = ∅, i.e., (3.4d) holds (with X = Drelaxed ∪ U ).
�

Remark 3.8. It can be shown that the set of λi and κ that satisfy (3.20) is non-
empty, i.e., the inequalities in (3.20) are solvable. The following algorithm provide
a systematic way to design such λi and κ.

A1 For every i choose λi > 0 such that λi > c2c3i−c1c4i
εi

.

A2 Choose κ such that κ ∈(∑
i

λiεi −min
i
λiεi − c1 min

i
c4i,

∑
i

λiεi − c2 max
i
c3i

)
.

Indeed, if we choose λi and κ as in (A1) and (A2), the conditions (3.20) hold.
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3.5 Examples

In order to demonstrate the applicability of the developed methods, we will consider
two numerical examples, which are described as follows.

3.5.1 Nonlinear mechanical system

Consider the system described by

ẋ1 = x2

ẋ2 = −s(x2)− x1 + u, (3.23)

where x = [x1 x2]T ∈ R2, and u ∈ R. This example can represent a mechanical
system where x1 describes the displacement, x2 describes the velocity. In this
case, the mass is 1, the damping parameter is described by Stribeck friction model
s(x2) = (0.8+0.2e−100|x2|)tanh(10x2)+x2 and spring constant is 1. For this system,

f(x) =

[
x2

−s(x2)− x1

]
and g(x) =

[
0

1

]
.

It can be checked that the system (3.23) admits V (x) = x2
1 + x1x2 + x2

2 as a
CLF, i.e. (2.2) holds and it has small control property. Also, the function

B(x) =

{
e
−( 1

1−(x1−2)2
+ 1

1−x22
) − e−4 ∀x ∈ X

−e−4 elsewhere,
(3.24)

where X := (1, 3)× (−1, 1), defines a CBF for (3.23) with the set of unsafe states
as D := {x ∈ X | 1

1−(x1−2)2 + 1
1−x2

2
< 4}. Note that for all x ∈ D, B(x) > 0.

Indeed, by direct evaluation, we have that for all x ∈ X

∂B

∂x
g(x) = 0⇒ x2 = 0.

Hence the manifold {x|LgB = 0} is given by {x|x2 = 0}, in which case

∂B

∂x
f(x)

∣∣∣∣
x2=0

= 0,

hence (2.17b) holds.
Let us now construct a CLBF W (x) according to the construction as in Propo-

sition 3.4. It is easy to see that the CLF V (x) satisfies 1
2‖x‖2 6 V (x) 6 3

2‖x‖2,
∀x ∈ R2, i.e., (3.8) holds with c1 = 1

2 and c2 = 3
2 .

On the other hand, it can be checked that c3 = maxx∈∂X ‖x‖2 = 10, c4 =

minx∈∂D ‖x‖2 = 1.4 and ε = e−4. Hence, by taking λ = 1000, the condition
λ > c2c3−c1c4

ε is satisfied. Also, as defined in Proposition 3.4, κ = −c1c4 = −0.7.
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Figure 3.1: The numerical simulation result of the closed-loop system using our proposed
uniting CLBF method. The set of unsafe state D is shown in red and the plot of closed-loop
trajectories are based on eight different initial conditions.
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Figure 3.2: The plot of the resulting Control Lyapunov-Barrier Function W (x) as considered
in the numerical simulation for Example 3.5.1.

Using this constant λ and κ, the CLBF W (x) is given by

W (x) = V (x) + λB(x) + κ,

and the control law for solving the problem of stabilization with guaranteed safety
is given by (3.5).

Figure 3.1 shows the numerical simulation of the closed-loop system with the
gain γ = 2. In this plot, eight trajectories are shown with eight different initial
states (4 0), (2 2), (-4 0), (-2 2), (-2 -2), (3 0), (3 -1), and (1 2). It can be seen
from this figure that all trajectories converges to zero and avoid the unsafe state D.

Figure 3.2 shows the resulting CLBF W (x) where it is shown that for all x ∈ D,
W (x) > 0.
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3.5.2 Mobile robot

In this example, we consider a simple mobile robot navigation that can be described
by the following equations

ẋ1 = u1

ẋ2 = u2 (3.25)

where x1, x2 are the positions in a 2D plane, and u1, u2 are their velocities,
respectively.

This system admits a CLF V (x) = x2
1 + x1x2 + x2

2. We can choose c1 = 0.5 and
c1 = 2 such that (3.8) is satisfied. Assume that we have two disjoint sets of unsafe
states D1 := {x ∈ X1|(x1 − 3)2 + x2

2 < 4} and D2 := {x ∈ X2|x2
1 + (x2 − 5)2 < 1}.

It is easy to verify that the smallest distance between the sets D1 and D2, is 2.83,
thus according to (3.16), we can enlarge each unsafe sets D1 and D2 with the
open ball with radius µ < 0.7. According to definition of D1 and D1, and by
letting X1 = D1 + Bµ, X2 = D2 + Bµ with µ = 0.3, we have c31 = 31.36, c41 = 1,
c32 = 43.56, c42 = 16.

We can choose two CBFs B1(x) = −((x1 − 3)2 + x2
2) + 8 and B2(x) = −(x2

1 +

(x2 − 5)2) + 4 for D1 and D2, respectively. It can be checked that −B1 and −B2

are locally-strictly-concave functions. Now, for constructing B̃1(x) and B̃2(x) as in
Proposition 3.5, we can choose a C1 function ρi that satisfies

ρi(z) =


1 ∀z > 0

0 ∀z 6 −δi
1
2 (cos( πδi z) + 1) ∀z ∈ (−δi, 0)

We choose the following parameters δ1 = 1.24, δ2 = 1.44 and λ1 = λ2 = 100

that satisfy λi > c2c3i−c1c4i
εi

, with εi 6 δi, and the feedback gain γ = 3. Thus by

using the control law as in (3.5) with W (x) = V (x) +λ1B̃1(x) +λ2B̃2(x) +κ, with
κ being arbitrarily chosen as in Proposition 3.7.

Figure 3.3 shows the simulation results of the closed-loop system where it can
be seen from this figure that all state trajectories with different initial conditions
avoid the unsafe sets D1 and D2, and all trajectories converge to zero, i.e., the
closed loop system is safe and stable.

3.6 Conclusions and discussions

In this chapter, we have proposed a novel control design method for achieving
stability with guaranteed safety by merging a Control Lyapunov Function and
(multiple) Control Barrier Function(s). Simulation results show the effectiveness



34 3. Stabilization with guaranteed safety via CLBF

x
1

-4 -2 0 2 4 6 8 10

x
2

-4

-2

0

2

4

6

8

Figure 3.3: The numerical simulation result of the closed-loop system using our proposed
uniting CLF and CBFs method for the mobile robot example in subsection 3.5.2. The set of
unsafe state D1 and D2 is shown in red and the plot of closed-loop trajectories are based on
six different initial conditions (1 8), (-2 6), (5 5), (3 6), (10 0), and (6 4).

of the control law based on the resulting Control Lyapunov-Barrier Function for
solving the stabilization with guaranteed safety. Our proposed approach can
simultaneously stabilize the closed-loop systems and guarantee its safety.
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Chapter 4

On the new notion of input-to-state safety

In this chapter, we propose a new notion of input-to-state safety (ISSf) which is an
adaptation of input-to-state stability (ISS) inequality to the systems’ safety case.

We introduce formally the notion of input-to-state safety and the characteriza-
tion using ISSf barrier function in Section 4.1. In Section 4.3, we present sufficient
conditions for a nonlinear system to be input-to-state safe. The sufficient conditions
are based on an adaptation of ISS Lyapunov conditions to the barrier certificate.
In Section 4.4, we restrict ourselves to the exponential case. In Section 4.5, we
combine both concepts of ISS and ISSf in order to provide a robustness analysis tool
for stability with guaranteed safety. We also discuss the special case of exponential
rate and provide a numerical example of the aforementioned results for a simple
mobile robot navigation system in Section 4.6. The works in the chapter is based
on our preliminary work in [50] and our works in [51, 54].

4.1 Introduction

With the advent of complex cyber-physical systems (CPS) and industrial internet-of-
things, the safety of the integrated cyber-physical systems has become an important
design feature that must be incorporated in all software levels [7]. In particular, this
feature must also be present in the low-level control systems where both aspects of
safety and stability are integrated in the control design.

Despite the appealing idea in the works for guaranteeing stability and safety, it
remains unclear on how to analyze the robustness of the closed-loop system in the
presence of external (disturbance) input signals. There are many tools available
for analyzing the robustness of systems’ stability, including, H∞ and L2-stability
theories [24, 55], absolute stability theory [26], input-to-state stability (ISS) theory
[57] and many others. However, analogous tools for systems’ safety are still
minimal in literature which makes it difficult to carry out robustness analysis to the
aforementioned works that deal with the problem of stabilization with guaranteed
safety.

The seminal work in [57, 58] on the characterization of input-to-state stability
has been one of the most important tools in the stability analysis of nonlinear
systems. It has allowed us to study stability of interconnected systems, to quantify
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systems’ robustness with respect to external disturbances and to provide means for
constructing a robustly stabilizing control law. The use of ISS Lyapunov function
is crucial in all of these applications. In the following decade, the concept of ISS
has been used and/or generalized in various direction with a commonality on the
robustness analysis of systems’ stability. Safety and constraint aspects have not been
considered in this framework. By considering the complement of the set of unsafe
state, one might consider to apply recent generalization of ISS to the stability of
invariant sets as in [4]. But it may not give us an insightful detail on the influence
of external disturbance signals to the state of safety of the system. In this case, the
resulting ISS inequality will only provide us information on the effect of external
input to the systems’ trajectory with respect to the complement set of unsafe state,
but not on how far it is from being unsafe.

Instead of the usual ISS inequality where the state trajectory x(t) of the system
can be bounded from above by a term that depends on initial condition and decays
to zero and another term that depends on the L∞-norm of the external input signal
u(t), we look at the following inequality

σ(|x(t)|D) > min{µ (|x(0)|D, t) , δ} − φ (‖u(t)‖) (4.1)

whereD is the set of unsafe state, |x|D denotes the distance of x toD, the function σ
is a strictly increasing function, µ is a strictly increasing function in both arguments,
δ > 0 and φ as the gain function that is dependent on input u, akin to the ISS
case. As will be discussed later in Section 3, the inequality (4.1) will be called
input-to-state safety (ISSf) inequality.

Roughly speaking, this inequality can be interpreted as follows. When there
is no external input signal u, then the state trajectory will never get closer to
D. On the other hand, if there is an external input signal then it may jeopardize
the systems’ safety when the input signal u is taken sufficiently large. The above
interpretation serves very well with what we can expect in real systems where
external disturbance input can potentially bring the system into the unsafe state.

Complementary to the work of Xu et al. in [64], we adapt the ISS framework a’
la Sontag to the systems’ safety case through the use of ISSf barrier function which
implies (4.1).

4.2 Review on barrier certificate

Let consider again Theorem 2.3 in Chapter 2. Although the safety result as in
Theorem 2.3 is formulated only for autonomous systems, an extension to the non-
autonomous case has also been presented in [44]. For the case where an external
input u is considered, e.g., the complete system as in (2.27), the safety condition
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(2.15) becomes

∂B(ξ)

∂ξ
(f(ξ) + g(ξ)v) 6 0 ∀(ξ, v) ∈ X × U (4.2)

where U ⊂ Rm denotes the admissible set of input. However, the condition (4.2)
is a very restrictive assumption since it must hold for all u(t) ∈ U including the
case when the initial condition x(0) is very close to the unsafe set D. It means
that when we start very close to the unsafe state, the system must always remain
safe for whatever type of input signals u as long as it has values in U . In this case,
we can say that such system is very robust with respect to bounded external input
signals. In practice, we should expect a certain degree of fragility in the system,
in the sense that, if we start very close to the unsafe state, a small external input
signal can already jeopardize the systems’ safety; a feature that is not captured in
(4.2).

Instead of considering the inequality (4.2), we will consider a more restrictive
condition on B for our main results later, where the non-increasing assumption of
B as in (2.15) is replaced by a strict inequality as follows

∂B(ξ)

∂ξ
f(ξ) 6 −α(|x|D) (4.3)

where α is a K function, and |x|D is the distance of a point x with respect to the
unsafe state D.

In [53, 61], the use of such barrier function B for control design that guar-
antees safety has been presented. It is shown in these works that the standard
Lyapunov-based control design can directly be extended to solving the safety prob-
lem by replacing the Lyapunov function with the barrier one. Interested readers
are referred to [53] for control design methods that solve the stabilization with
guaranteed safety by merging the Control Lyapunov Function with the Control
Barrier Function.

4.3 Sufficient condition of input-to-state safety

In this section, we will explore a new notion of input-to-state safety as a tool
to analyze the robustness of systems’ safety. In particular, we focus our study
on extending existing results on barrier certificate to the input-to-state safety
framework; akin to the role of Lyapunov stability theory in the input-to-state
stability results.

Definition 3. The system (2.27) is called input-to-state safe (ISSf) locally in X ⊂ Rn

and with respect to the set of unsafe state D ⊂ X if for all x0 ∈ Rn\D, there exist
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σ, φ ∈ K, µ ∈ KK and δ > 0 such that

σ(|x(t)|D) > min{µ(|x0|D, t), δ} − φ (‖u(t)‖) (4.4)

holds for almost all t ∈ [0,∞) and for all admissible1 (x0, u), where the constant
δ > 0 can be dependent on boundary of X .

If a system is ISSf, we can infer from (4.1) that the system (2.27) may be
brought to the unsafe state if the L∞-norm of u is sufficiently large such that the
RHS of (4.1) is negative. Hence one can quantify the robustness of the system’s
safety with respect to an external input signal using this notion. For instance, if
the initial condition x0 is in the neighborhood of the boundary of unsafe state D
then (4.1) shows that a small external input signal u may steer the state trajectory
to enter D; even when the autonomous case is safe. Since the first element on
the RHS of (4.1) is a KK function, it implies that the distance between x(t) and
D is lower-bounded by a strictly increasing function until x(t) leaves X . As this
lower-bound of the distance is non-decreasing with time, (4.1) means that the
system can eventually withstand larger input signal.

We can also take a different view to the ISSf inequality above. If u is considered
to be a disturbance signal with known magnitude, e.g., ‖u‖L∞ 6 k with k > 0,
then (4.1) provides us with information on the admissible x0 such that the RHS
of (4.1) remains positive so that the system under such external disturbance will
remain safe.

Let us now investigate the ISS-Lyapunov like condition for input-to-state safety
of system (2.27) in the following proposition.

Proposition 4.1. Consider system (2.27) with a given unsafe set D ⊂ X ⊂ Rn.
Suppose that there exists an ISSf barrier function B ∈ C1(Rn,R) satisfying

−α1(|ξ|D) 6 B(ξ) 6 −α2(|ξ|D) ∀ξ ∈ Rn\D (4.5)

∂B(ξ)

∂ξ
(f(ξ) + g(ξ)v) 6 −α3(|ξ|D) + α4(‖v‖)

∀ξ ∈ X\D,∀v ∈ U , (4.6)

where αi ∈ K∞, i=1,..4. Assume further that the system is ISS.
Then the system is input-to-state safe locally in X and w.r.t. D. In particular, for

any θ, ε ∈ (0, 1) and for all x0 ∈ Rn\D, the ISSf inequality (4.1) holds for all t > 0

1By admissible (x0, u), we mean that the tuple is such that the RHS of (4.1) is strictly positive for
almost all t > 0.
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and for all admissible (x0, u) where σ(s) = s, δ = min{ε|ξ|D : ∀ξ ∈ ∂X},

µ(s, t) = εα−1
1 (α̃(α2(s), t)) ∀s, t > 0

and

φ(s) = α−1
2 ◦ α1 ◦ α−1

3 ◦
α4(s)

θ
∀s > 0

with α̃ ∈ KK being the solution of the following initial value problem

ẏ = (1− θ)α3 ◦ α−1
1 (y), y(0) = s ∈ R+,

so that α̃(s, t) := y(t) for all s > 0. �

The main idea of the proof is that we evaluate the evolution of the barrier
function B along the trajectory of the state x for a given bounded input signal u.
Following a similar derivation of ISS property from an ISS Lyapunov function, we
can show that when the input is small then the distance is bounded from below by
an increasing function of time and, on the other hand, when the input is large then
the distance can be lower bounded by a positive function that depends on input.
Finally, we can patch the two lower-bound functions together.

Prior to proving this proposition, a few remarks can be made on the relation
between the ISSf barrier function satisfying (4.5)-(4.6) and the barrier certificate
satisfying (2.13)-(2.15). First, it is easy to see that the condition (4.5) implies
(2.14) where X0 in (2.14) is Rn\D̄. Second, when we consider the autonomous
case (i.e., u = 0), then (4.6) implies the strict version of (2.15) (c.f., (4.3)).
Proof : Let us first evaluate the solution x(t) of (2.27) with x0 ∈ X\D. From (4.5)
it follows that |x(t)|D > α−1

1 (−B(x(t))), thus evaluating the time derivative of
B(x(t)) gives us

Ḃ(x(t)) 6 −α3 ◦ α−1
1 (−B(x(t))) + α4(‖u(t)‖)

= −(1− θ)α3 ◦ α−1
1 (−B(x(t)))

− θα3 ◦ α−1
1 (−B(x(t))) + α4(‖u(t)‖), (4.7)

with θ ∈ (0, 1) which holds whenever x(t) ∈ X\D.
Thus for almost all t such that ‖u(t)‖ 6 α−1

4 ◦ θα3 ◦ α−1
1 (−B(x(t))) =: ρ(x(t)),

inequality (4.7) implies that

Ḃ(x(t)) 6 −(1− θ)α3 ◦ α−1
1 (−B(x(t)))

holds whenever x(t) ∈ X\D. By letting B̃(x(t)) = −B(x(t)), the last inequality
becomes

˙̃B(x(t)) > (1− θ)α3 ◦ α−1
1 (B̃(x(t))). (4.8)
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Note that function (1 − θ)α3 ◦ α−1
1 (r) belongs to K function and the function

B̃ is positive definite. Hence, the RHS of (4.8) is always positive. Now by the
comparison lemma,

B̃(x(t)) > α̃(B̃(x0), t) (4.9)

where α̃ ∈ KK is the solution y(t) of

ẏ = (1− θ)α3 ◦ α−1
1 (y), y(0) = s ∈ R+,

i.e., α̃(s, t) := y(t) for any positive initial condition s.

By subtituting (4.9) into the lower bound and upper bound of B(x) in (4.5) it
follows that

α1(|x(t)|D) > α̃(B̃(x0), t) > α̃(α2(|x0|D), t)

=⇒ |x(t)|D > α−1
1 α̃(α2(|x0|D), t) =: µ̃(|x0|D, t) (4.10)

which holds for almost all t s.t. ‖u(t)‖ 6 ρ(x(t)) and whenever x(t) ∈ X\D.

Now, let us consider the other case where ‖u(t)‖ > ρ(x(t)). In this case, it
follows immediately that

−B(x(t)) 6 α1 ◦ α−1
3 ◦

α4(‖u(t)‖)
θ

=⇒ α2(|x(t)|D) 6 α1 ◦ α−1
3 ◦

α4(‖u(t)‖)
θ

=⇒ |x(t)|D 6 α−1
2 ◦ α1 ◦ α−1

3 ◦
α4(‖u(t)‖)

θ
=: φ̃(‖u(t)‖) (4.11)

We will now combine these two cases as follows. Firstly, from (4.10), it follows
that

−εµ̃(|x0|D, t) + |x(t)|D > (1− ε)µ̃(|x0|D, t)− ηφ̃(‖u(t)‖), (4.12)

where ε, η ∈ (0, 1). This inequality is obtained by adding both sides of (4.10) by
−εµ̃(|x0|D, t) and substracting the right-hand side of (4.10) by −ηφ̃(‖u(t)‖) which
is non-positive for all u(t). On the other hand, by multiplying both sides of (4.11)
by −η and then by adding both sides by (1− ε)µ̃(|x0|D, t), we get

(1− ε)µ̃(|x0|D, t)− η|x(t)|D > (1− ε)µ̃(|x0|D, t)− ηφ̃(‖u(t)‖). (4.13)

Thus, (4.12) (which holds for ‖u(t)‖ 6 ρ(x(t))) and (4.13) (which is true for
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‖u(t)‖ > ρ(x(t))) imply that

max {−εµ̃(|x0|D, t) + |x(t)|D, (1− ε)µ̃(|x0|D, t)− η|x(t)|D} (4.14)

> (1− ε)µ̃(|x0|D, t)− ηφ̃(‖u(t)‖)

holds for all t > 0 s.t. x(t) ∈ X\D.

Since the state trajectory starts from the safe region, then for a given initial
condition x0 and bounded input u, there exists sufficiently small η, ε and T1 > 0

such that the right hand side of (4.14) and each term on the left-hand side are
positive for all t ∈ [0, T1). Thus, since max{a, b} 6 a+ b for a, b > 0, (4.14) implies
that

(1− 2ε)µ̃(|x0|D, t) + (1− η)|x(t)|D
> (1− ε)µ̃(|x0|D, t)− ηφ̃(‖u(t)‖)

⇔(1− η)|x(t)|D > εµ̃(|x0|D, t)− ηφ̃(‖u(t)‖)
⇔|x(t)|D >

ε

1− η µ̃(|x0|D, t)−
η

1− η φ̃(‖u(t)‖) (4.15)

holds for almost all t ∈ [0, T1).

We will prove now that we can extend the time interval, where (4.15) is valid, to
[0, T1,max) with finite T1,max <∞ if x leaves the set X at time T1,max, or T1,max =∞
when x stays in X\D at all time. In particular, we show that we can choose η and ε
such that both terms on the LHS of (4.14) are positive for almost all t ∈ [0, T1,max),
so that (4.15) holds accordingly.

Firstly, let us show that for any ε ∈ (0, 1), there exists η ∈ (0, 1) such that

|x(t)|D 6
1− ε
η

µ̃(|x0|D, t) ∀t ∈ [0,∞). (4.16)

Since the system is ISS, there exists β ∈ KL and γ ∈ K∞ such that

|x(t)| 6 β(|x0|, t) + γ(‖u‖L∞)

6 β(|x0|, 0) + γ(‖u‖L∞) =: D1.

By triangular inequality and by denoting D2 = max{|ξ| : ∀ξ ∈ D}, it follows that

|x(t)|D 6 D2 + |x(t)| 6 D1 +D2

6
D1 +D2

µ̃(|x0|D, 0)
µ̃(|x0|D, t), (4.17)

where the last inequality is due to the fact that µ̃(|x0|D, t) > µ̃(|x0|D, 0) for all
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t > 0. Thus, by taking

η = min

{
0.5,

(1− ε)µ̃(|x0|D, 0)

D1 +D2

}
∈ (0, 0.5], (4.18)

the inequality (4.17) implies that (4.16) holds for all t > 0. Hence, the second
term on the LHS of (4.14) is always positive for all t.

It remains now to check whether

|x(t)|D > εµ̃(|x0|D, t)

for all t ∈ [0, T1,max). We will show this by contradiction. Suppose that there is a
finite τ < T1,max that defines the time when |x(τ)|D = εµ̃(|x0|D, τ). In this case,
(4.15) still holds and we have that

|x(τ)|D >
ε

1− η µ̃(|x0|D, τ)− η

1− η φ̃(‖u(τ)‖)

= εµ̃(|x0|D, τ)

+
η

1− η
(
εµ̃(|x0|D, τ)− φ̃(‖u(τ)‖)

)
.

Since φ̃(‖u(t)‖) < εµ̃(|x0|D, t) for all t > 0 (by hypothesis of the proposition on the
admissibility of (x0, u) with µ = εµ̃ and φ̃ = φ), it follows from the above inequality
that

|x(τ)|D > εµ̃(|x0|D, τ)

which is a contradiction. Thus, we have that (4.15) holds for almost all t ∈
[0, T1,max).

Finally, we will derive the conservative lower bound of (4.15) such that it will
no longer depend on η (which is currently dependent on x0 and u as in (4.18)). By
the definition of η in (4.18), it is trivial to check that 0 < η < 0.5,

1 <
1

1− η < 2 and 0 >
−η

1− η > −1.

Thus, (4.15) implies that

|x(t)|D > εµ̃(|x0|D, t)− φ̃(‖u(t)‖) (4.19)

for almost all t ∈ [0, T1,max).

On the other hand, by defining κ := min{|ξ|D : ∀ξ ∈ ∂X} > 0, we have that
when x(t) /∈ X (including for the second case when x0 /∈ X ),

|x(t)|D > κ > κ− φ̃(‖u(t)‖). (4.20)



4.3. Sufficient condition of input-to-state safety 43

Once x leaves X and enters again X at a later time interval, then we can use again
the argument as before where the initial condition is taken in the neighborhood
of the boundary of X . Indeed, suppose that x enters again X at time T2 > T1,max.
Then by following the same argument as before, we get

|x(t)|D > εµ̃(|x(T2)|D, t− T2)− φ̃(‖u(t)‖)
> εµ̃(κ, 0)− φ̃(‖u(t)‖), (4.21)

for almost all t ∈ [T2, T2,max) where T2,max is the maximum time where x remains
in X .

Since in all of these cases, |x(t)|D satisfies either (4.19), (4.20) or (4.21) in
different time intervals, we can combine them by taking the minimum of their
lower bounds. Thus by defining δ := εµ̃(κ, 0) with κ as defined before (4.20),

|x(t)|D > min{εµ̃(|x0|D, t) , κ , εµ̃(κ, 0)} − φ̃(‖u(t)‖)
= min{εµ̃(|x0|D, t) , δ} − φ̃(‖u(t)‖)

holds for almost all t ∈ [0,∞).
Hence, we have ISSf with µ = εµ̃ and φ = φ̃ where µ̃ and φ̃ are as in (4.10) and

(4.11), respectively, and δ as defined above. Note that the choice of ε ∈ (0, 1) is, in
this case, independent of admissible tuple (x0, u).

�

The ISS assumption in this proposition can be relaxed by weaker conditions
that can guarantee the boundedness of |x(t)|D. For instance, we can assume that
the system is integral input-to-state stable or it is practically input-to-state stable.

One can see from Proposition 4.1 that the inequalities in (4.5) and (4.6) are
reminiscent of those inequalities used in the study of ISS Lyapunov function. In
this context, the inequality (4.6) resembles the dissipation inequality in the ISS
Lyapunov function and the growth of B as in (4.5) can be likened to the growth of
V as in (2.29), albeit they grow with different sign as well as with different metric
norm.

We can now combine the notion of input-to-state stability and that of input-to-
state safety which allows us to study the robustness of a stable and safe system
with respect to an external input signal u.

Definition 4. System (2.27) is called ISS with guaranteed safety (ISS-GS) with
respect to D if there exists X ⊂ Rn such that the system (2.27) is both input-to-state
stable and input-to-state safe locally in X and w.r.t. D ⊂ X .

It is trivial to show that if there exist both an ISS Lyapunov function V satisfying
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(2.29)–(2.30) and an ISSf barrier function B satisfying (4.5)–(4.6) locally on
X ⊂ Rn with D ⊂ X then the system is input-to-state stable with guaranteed safety.
Instead of considering two separate functions V and B as suggested before, we
can also consider combining the ISS Lyapunov inequality (2.30) and ISSf barrier
inequality (4.6) as shown in the following corollary.

Corollary 4.2. Suppose that there exists W : Rn → R and D ⊂ X ⊂ Rn such that

α1(‖ξ‖) 6W (ξ) 6 α2(‖ξ‖) ∀ξ ∈ Rn (4.22)

−α3(|ξ|D) 6W (ξ)− c 6 −α4(|ξ|D) ∀ξ ∈ X\D (4.23)

∂W (ξ)

∂ξ
(f(ξ) + g(ξ)v) 6 −α5(‖ξ‖)− ΞX (ξ)α6(|ξ|D)

+ α7(‖v‖) (4.24)

where ΞX is an indicator function for X , c > 0, the functions αi ∈ K∞ for i = 1, ..7.
Then it is ISS with guaranteed safety with respect to D.

Proof : It is trivial to check that W (x) qualifies as an ISS Lyapunov function satisfy-
ing (2.29)–(2.30) and as an ISSf barrier function satisfying (4.5)–(4.6) locally in
X . The ISS property follows trivially from (4.22) and (4.24) and Theorem 2.8.

Let B(ξ) = W (ξ) − c for all ξ ∈ X\D. Subsequently, let the function B be
extended smoothly to ξ ∈ Rn\X so that (4.5) holds for all Rn\D. It follows from
(4.24) that

∂B(ξ)

∂ξ
(f(ξ) + g(ξ)v) 6 −α6(|ξ|D) + α7(‖v‖)

holds for all ξ ∈ X\D and for all v ∈ U . By Proposition 4.1, it implies that it is ISSf.
�

4.4 The case of exponential rate input-to-state safety

In this section, we will explore exponential rate input-to-state safety as a tool to
analyze the robustness of systems’ safety. We can boil down definition of ISSf as
before in this special case. Instead of using definition (4.1), we use the following
definition for the case of exponential rate.

Definition 5. The system (2.27) is called practically exponentially input-to-state
safe (pISSf) with respect to the set of unsafe state D if it satisfies

|x(t)|pD > k1e
λ1t|x0|pD − k2e

λ2t‖u‖qL∞ − k3e
λ3t (4.25)
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|x(t)|D

(k1|x0|D − k2‖u‖L∞)eλ1t

k1e
λ1t|x0|D

|x0|D

k1|x0|D − k2‖u‖L∞

k1|x0|D

time

magnitude

Figure 4.1: An illustration of the ISSf-inequality (4.25) for the exponential rate case as
presented in Proposition (4.3) with κ = 0. The dotted-line describes the lower-bound
of distance to unsafe set that is due to the initial conditions (e.g., the first term on RHS
of (4.25)) while the dashed-line shows the influence of the bounded external input in
decreasing this lower-bound. The solid-line shows a possible time evolution of the distance
to the unsafe set following (4.25). If the dashed-line crosses the zero line then the system
may enter the unsafe set.

for all t, where k1, k2, k3, λ1, λ2, λ3 > 0. Furthermore, if k3 = 0 then it is called
input-to-state safe (ISSf). In order to guarantee that the RHS is positive, it is implicitly
assumed that λ1 > max{λ2, λ3}.

Figure 4.1 shows an illustration of the ISSf-inequality with an exponential rate as
in (4.25) and k3 = 0, i.e., the case of input-to-state safe. In this figure, the evolution
of state distance to the unsafe set is always lower-bounded by k1e

λ1t|x0|D −
k2e

λ2t‖u‖L∞ , with λ1 = λ2. When the lower bound crosses the zero line (for
instance, if the input is sufficiently large or the initial distance to the unsafe set is
very small) then safety of the system is no longer guaranteed for such input and
initial state setting.

In the following proposition, we show a barrier function characterization that
gives rise to the input-to-state safety inequality (4.25).

Proposition 4.3. Consider the nonlinear system in (2.27) that is forward complete
and let the set of unsafe state be given by a compact set D ⊂ Rn. Suppose that there
exists an ISSf barrier function B : Rn → R satisfying

−c1|ξ|pD − κ 6 B(ξ) 6 −c2|ξ|pD (4.26)

∂B(ξ)

∂ξ
(f(ξ) + g(ξ)v) 6 −c3|ξ|pD + c4‖v‖q (4.27)
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where ci > 0, i = 1, 2, 3, 4 and κ > 0. Then the system is practically exponentially
input-to-state safe w.r.t. D where α(s, t) = c2

c1
e
c3
c1
tsp, φ(s, t) = c4

c3
e
c3
c1
tsq and γ(t) =

κ
c1
e
c3
c1
t.

Proof : Let x(t) be the solution of (2.27). Evaluating the time derivative of B(x(t))

along the trajectory of x, it follows from (4.26) and (4.27) that

Ḃ(x) 6
c3
c1
B(x) +

κc3
c1

+ c4‖u‖q.

By the standard application of comparison lemma, the above differential inequality
implies immediately that

B(x(t)) 6 e
c3
c1
tB(x(0)) +

∫ t

0

e
c3
c1

(t−τ)

(
κc3
c1

+ c4‖u(τ)‖q
)

dτ.

Following a routine computation on the RHS of this inequality, we get

B(x(t)) 6 e
c3
c1
tB(x(0))

+

(
κc3
c1

+ c4‖u‖qL∞
)∫ t

0

e
c3
c1

(t−τ)dτ

= e
c3
c1
tB(x(0)) +

(
κ+

c4c1
c3
‖u‖qL∞

)(
e
c3
c1
t − 1

)
By using the lower bound of B(x(t)) in (4.26) into the above inequality, it is easy
to see that

−c1|x(t)|pD − κ 6 e
c3
c1
tB(x(0))

+

(
κ+

c4c1
c3
‖u‖qL∞

)(
e
c3
c1
t − 1

)
⇒ −c1|x(t)|pD 6 −c2e

c3
c1
t|x(0)|pD

+
c4c1
c3
‖u‖qL∞

(
e
c3
c1
t − 1

)
+ κe

c3
c1
t

⇒ |x(t)|pD >
c2
c1
e
c3
c1
t|x(0)|pD −

c4
c3
‖u‖qL∞(e

c3
c1
t − 1)

− κ

c1
e
c3
c1
t

>
c2
c1
e
c3
c1
t|x(0)|pD −

c4
c3
‖u‖qL∞e

c3
c1
t − κ

c1
e
c3
c1
t.

�

As shown in Proposition 4.3, a practical exponential input-to-state safety can be
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x

B(x)

D

−c2|x|2D −c2|x|2D−c1|x|2D − κ −c1|x|2D − κ

−κ

0

Figure 4.2: An illustration of a practical ISSf barrier function which takes the form of a
quadratic function, e.g., B(x) = −(x − x∗)TP (x − x∗) + c where P is a positive definite
matrix, x∗ is the centroid of the unsafe set D and c is a constant that is chosen such that
the zero level of B is equal to the boundary of D. The solid red-line is the plot of B and the
dashed-line shows the possible lower and upper bound of B using the set distance function
|x|D and a bias constant κ > 0 as used in Proposition (4.3), c.f., (4.26).

shown if there exists B such that the inequalities (4.26) and (4.27) hold. When
κ = 0 then (4.26) & (4.27) ⇒ the system (2.27) is input-to-state safe. In the
following, we define the function B satisfying (4.26) and (4.27) as pISSf barrier
function. Moreover, if κ = 0 then it is called ISSf barrier function.

The constant κ is introduced in (4.26) to accomodate a polynomial function
B of x as typically considered in the construction of a barrier certificate via sum-
of-squares programming (for the safety analysis of an autonomous system). The
gradient of such function B on the boundary of D may be non-zero. For example,
in Figure 4.2, the red-line depicts a quadratic function B that has values larger
than zero in the unsafe set D and is less than zero otherwise. Since the gradient
of B on ∂D is non-zero, it cannot be lower bounded only by using −c1|x|D whose
gradient on ∂D is equal to zero. In this case, by taking an arbitrary small κ > 0, we
can find a sufficiently large c1 > 0 such that the lower bound in (4.26) holds. Note
that an arbitrary large c1 will give us a conservative estimate in the growth of the
bound in the ISSf inequality.

An example of an ISSf barrier function that satisfies (4.26) with κ = 0 is shown
in Figure (4.3). In this figure, the ISSf barrier function is constructed directly using
the set distance function |x|D.

One can observe that in the standard barrier certificate result as given in
Theorem 2.3, the condition (2.15) is imposed so that the barrier certificate B

is non-increasing along the trajectory of x(t) which is similar to the Lyapunov
stability analysis. However, we cannot use such B as an ISSf barrier function for
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x

B(x)

D
0

Figure 4.3: The plot of an ISSf barrier function B(x) = −c|x|2D with c > 0.

the non-autonomous system (2.27). If we consider a barrier certificate B which
satisfies (4.3) instead, then we may be able to use it as a candidate for an ISSf
barrier function.

Corollary 4.4. Consider a forward complete system (2.27) with bounded g and let
the set of unsafe state be given by a compact set D ⊂ Rn. Suppose that there exists a
barrier certificate B : Rn → R such that

−c1|ξ|pD − κ 6 B(ξ) 6 −c2|ξ|pD (4.28)

∂B(ξ)

∂ξ
f(ξ) 6 −c3|ξ|pD (4.29)∥∥∥∥∂B(ξ)

∂ξ

∥∥∥∥ 6 c4‖ξ‖q (4.30)

where ci > 0, i = 1, 2, 3, 4 and κ > 0. Then the system is practically input-to-state
safe w.r.t. D with an exponential rate.

The proof of this corollary is straightforward and is therefore omitted.
Similar to this corollary, one can also easily show that if the system admits a

Control Barrier Function B with the strict version of the Artstein’s like condition,
e.g.,

∂B(ξ)

∂ξ
f(ξ) 6 −c|ξ|pD ∀ξ s.t.

∂B(ξ)

∂ξ
g(ξ) = 0,

then we may use B to design a control law (for instance, via the Sontag’s universal
control law) such that the closed-loop system is pISSf or ISSf which depends on
(4.26).
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4.5 Exponential rate input-to-state stability with guar-
anteed safety

Equipped with the result on input-to-state safety from the previous section, we can
now combine the notion of input-to-state stability and that of input-to-state safety
that allows us to study the robustness of a stable and safe system with respect to
external input u.

Definition 6. System (2.27) is called ISS with guaranteed safety (ISS-GS) with
respect to D if it is both input-to-state stable and input-to-state safe with respect to D.

Since ISS is a global property, combining both notions of ISS and ISSf can be
counteractive. For instance, consider again the exponential rate case for both ISS
and ISSf. The ISS notion implies that the state trajectories will converge to a ball
close to the origin where the ball size is determined by the input. Since the distance
between the origin and D is finite, it follows then that the evolution of distance to
D will also converge to a finite value which contradicts the ISSf inequality in (4.25).
Thus, one needs to either impose ISSf only locally or to allow the KK functions
α, φ and γ in (4.1) to have a bounded range or saturation.

It is trivial to show that if there exist both a quadratic ISS Lyapunov function
V satisfying (2.29)–(2.30) and an ISSf barrier function B satisfying (4.26)–(4.27)
locally on Ξ ⊂ Rn with κ = 0 and D ⊂ Ξ then the system is input-to-state stable
with guaranteed safety. Instead of considering two separate functions V and B

as suggested before, we can also consider combining the ISS Lyapunov inequality
(2.30) and ISSf barrier inequality (4.27) as given in the following proposition.

Proposition 4.5. Suppose that there exists W : Rn → R and D ⊂ Ξ ⊂ Rn such that

c1‖ξ‖p 6W (ξ) 6 c2‖ξ‖p ∀ξ ∈ Rn (4.31)

−c3|ξ|pD − κ 6W (ξ) 6 −c4|ξ|pD ∀ξ ∈ Ξ (4.32)

∂B(ξ)

∂ξ
(f(ξ) + g(ξ)v) 6 −c5‖ξ‖p − c6χΞ(ξ)|ξ|pD + c7‖v‖q (4.33)

where χΞ is an indicator function for Ξ, the constants ci > 0, i = 1, 2, .. and κ > 0.
Then it is ISS with guaranteed safety with respect to D.

Proof : It is trivial to check that W (x) qualifies as an ISS Lyapunov function
satisfying (2.29)–(2.30) and as an ISSf barrier function satisfying (4.26)–(4.27)
locally in Ξ. Indeed, from (4.33), we have that

Ẇ (x(t)) 6 −c5‖x(t)‖p + c7‖u(t)‖q.
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Using a standard result from ISS and using (4.31), it follows immediately that

‖x(t)‖p 6 c2
c1
e−

c5
c1
t‖x0‖p +

c7
c5
‖u‖qL∞

which shows the robustness of systems’ stability. On the other hand, from (4.33), it
follows that in Ξ

Ẇ (x(t)) 6 −c6‖x(t)‖pD + c7‖u(t)‖q.

Hence, as shown before, together with (4.32) it implies that

|x(t)|pD >
c4
c3
e
c6
c3
t|x(0)|pD −

c7
c6
‖u‖qL∞e

c6
c3
t − κ

c3
e
c6
c3
t

holds for all x(t) ∈ Ξ, i.e., it is safe. �

4.6 Simulation result on mobile robot navigation

In this section, we consider an example of a simple mobile robot navigation
described by the following equations

ẋ1 = v1 + u1

ẋ2 = v2 + u2 (4.34)

where x = [x1, x2]T is the position in a 2D plane, v = [v1, v2]T is its velocity which
is used as a feedback control input, and u = [u1, u2]T ∈ L∞ is external disturbance
signal.

Example 4.1. (Input-to-state safety). Consider system (4.34) with a given unsafe
set D := {x ∈ R2|(x1 − 4)2 + (x2 − 6)2 < 4}. We can construct an ISSf barrier
function B(x) = −(x1 − 4)2 − (x2 − 6)2 + 4. Consider a gradient-based control law
for (4.34) using B(x), i.e., [ v1v2 ] = −∇xB(x) = −∂TB∂x .

It can be checked that this ISSf barrier function B fulfills all hypotheses in
Proposition 4.3. In this example, the function B(x) can be lower-bounded by
−c1|x|2D − κ, with c1 = 1.2, κ = 0.1 and can be upper-bounded by −c2|x|2D, with
c2 = 0.8. Thus it satisfies (4.26). It remains for us to check whether (4.27) holds.
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A routine computation shows that

Ḃ =
∂B

∂x
(−∂

TB

∂x
+ u) (4.35)

6 −
∥∥∥∥∂B∂x

∥∥∥∥2

+

∥∥∥∥∂B∂x
∥∥∥∥ ‖u‖ (4.36)

6 −c3|x|2D + c4‖u‖2 (4.37)

with c3 = 2, and c4 = 0.5 which satisfies (4.27).
Figure 4.4 shows the time plots of ‖x(t)‖ and |x(t)|2D started from an initial

condition x0 = (2, 2). The infinity norm of disturbance u(t) is given by ‖u‖L∞ =

2.5112. The dashed curve shows c2
c1
e
c3
c1
t|x0|2D − c4

c3
‖u‖2L∞e

c3
c1
t − κ

c1
e
c3
c1
t, which is the

lower-bound of |x(t)|2D such that the safety of (4.34) still preserved in the presence
of disturbance.

Example 4.2. (Input-to-state stability with guaranteed safety)
Let us consider the same system (4.34) and the same unsafe set as in Example

4.1. We consider a disturbance signal u whose norm is given by ‖u‖L∞ = 2.6638. In
addition to ensuring the safety of the system, we also consider now the stabilization
problem of the origin. The system (4.34) admits a ISS Lyapunov function V (x) =

x2
1 + x1x2 + x2

2 that can be lower-bounded and upper-bounded by 0.5‖x‖2 and
2‖x‖2 respectively, so that (4.32) holds. As discussed in Proposition 4.5, we need
to define ISSf barrier function locally in B(0)0.5 neighborhood of unsafe state D,
i.e., X := D + B(0)0.5 = {x ∈ R2|(x1 − 4)2 + (x2 − 6)2 < 9}. Since the ISSf barrier
function B(x) discussed in Example 1 is not lower-bounded so we can not define
it locally, we can construct a lower-bounded one B̃(x) by following construction
procedure in [53] instead. The lower-bounded ISSf barrier function is given as
follows

B̃(x) = B(ω) +

∮
Γ

0.5
(

cos
(π
δ
B(σ)

)
+ 1
) ∂B(σ)

∂x
dσ ∀x ∈ X

where ω ∈ ∂D is any point in the boundary of D, Γ is any path from point ω to any
point φ ∈ X , and δ = −B(∂X ) = 5. For x ∈ R2 \ X , B̃(x) is defined as negative
constant, i.e. −δ = −5.

Following the same procedure discussed in [53] for achieving the stability and
the safety of a system simultaneously, we then merge the ISS Lyapunov function
and the ISSf barrier function into V (x) + k1B̃(x) + k2, with k1 = 100, k2 = −10

such that the equations (4.31)-(4.33) are satisfied.
In this example, we use also the gradient of W (x) as a control law for (4.34),

i.e., v = −∇xW (x) = −∂TW∂x . An explicit form of this gradient-based control law is
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Figure 4.4: The time plots of ‖x(t)‖, |x(t)|2D, and ‖u(t)‖ with initial state x0 = (2, 2). The
dashed curve in the middle plot shows the lower-bound of |x(t)|2D such that the safety of
(4.34) is still preserved in the presence of disturbance u.

given by

v =

{
−∇xV (x)− k1∇xB̃(x) ∀x ∈ X
−∇xV (x) ∀x ∈ R2 \ X . (4.38)

Figure 4.5 shows the evolution of state x1 and x2 starting from four different
initial conditions. Under the influence of bounded disturbance, the state trajectories
converge to origin and avoid the unsafe state. Thus the system is input-to-state
stable with guaranteed safety.

Figure 4.6 shows the time plots of ‖x(t)‖ and |x(t)|D started from x0 = (5, 8).
From the figure we can conclude that the system is robustly stable and safe with
respect to the disturbance u(t).

4.7 Conclusion

In this chapter, we have presented a new notion of input-to-state safety for nonlinear
systems which is complementary to the well-known input-to-state stability notion
and provides safety certification for the system under the influence of external
disturbance signals. We present also sufficient conditions for a nonlinear system
to be ISSf by using a barrier certificate/function satisfying a dissipation inequality
that resembles the ISS Lyapunov function.
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Figure 4.5: State trajectories x(t) discussed in Example 2, starting from four different initial
conditions. The set of unsafe state D is shown in red area, and the boundary of X is shown
by dashed line.
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Chapter 5

Passivity based control with guaranteed
safety

In this chapter, we study a Passivity-Based Control (PBC) design that solves asymp-
totic stability with guaranteed safety problem via Interconnection and Damping
Assignment (IDA) approach. Firstly, we review the problem of stabilization with
guaranteed safety in Section 5.2. Akin to the classical IDA-PBC method, we present
in Section 5.3, our IDA-PBC approach for safety control systems where the original
system is transformed via a state-feedback to a port-Hamiltonian system such that
the corresponding interconnection and damping matrices and the energy function
are shaped according to the given set of unsafe states and to the desired equilibrium
point. By embedding it in a hybrid control framework, we show in Section 5.4 how
the global results can also be obtained. We illustrate the efficacy of our proposed
method on a nonlinear second-order system. The results in this chapter are based
on our work in [52].

5.1 Introduction

Energy-based modeling and control design framework has become an indispensable
tool for analyzing and controlling complex multi-domain physical systems. It
enables one to gain insight and to control such complex systems through the use
of the classical concept of energy and the exchange thereof between different
physical entities. For example, the analysis and control of systems described by
Euler-Lagrange equation have been investigated and discussed thoroughly in [38].
The concept has found many control applications in electro-mechanical systems,
such as, robotics, and power systems (see e.g., [19, 27, 30, 39, 41]).

Another well-known energy-based modeling and control design framework is
the port-Hamiltonian framework which is closely related to the Euler-Lagrange
framework (through the use of Legendre transformation) and has a nice structure
in the state equations. The energy exchange between physical elements and the
dissipated energy is encapsulated in the interconnection and damping matrices in
the vector field. We refer interested readers on the port-Hamiltonian framework to
the textbook of [55] and to the articles in [40, 41, 42]. Control design methods that
are based on port-Hamiltonian framework have recently been proposed, such as,
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the Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC)
which will be the main focus of this paper, and the Energy-Balancing Passivity-Based
Control in [28].

Generally speaking, the IDA-PBC method concerns with the design of a state
feedback control law such that the closed-loop system has a desirable port-Hamiltonian
structure (i.e., it has desired interconnection and damping matrices, as well as,
a desired energy function). By an appropriate design of these interconnection
and damping matrices and of the energy function, the stabilization of a desired
equilibrium can be achieved. A generalization of IDA-PBC method has appeared in
[8] where the interconnection and damping matrices are lumped.

In this chapter, we investigate the generalization of IDA-PBC to solve the prob-
lem of stabilization with guaranteed safety. Here, safety means that all admissible
state trajectories do not violate system constraints or enter a set of unsafe states.
In practical applications, especially in advanced instrumentations, robotics and
complex systems, it is common that the system has state constraints or set of unsafe
states, i.e. the subset of state domain that must be avoided. In this regards, the
notion of safety must be also considered as an integral part in the control design
process in addition to stability and robustness consideration.

The incorporation of safety aspect into the stabilization of the closed-loop
system has been considered before in [1, 37, 49, 53, 60]. In [1, 49, 53], the
well-known Control Lyapunov Function-based control method is combined with the
Control Barrier Function-based control method which is proposed in [61] to solve
the problem. The proposed control method does not impose unboundedness of
energy function on the boundary of the set of unsafe states as imposed in [37, 60].

As an alternative to the aforementioned methods for solving stabilization with
guaranteed safety problem, we propose in this chapter an energy-based method for
solving this problem that offers a nice energy interpretation. The main approach
behind our proposed method (as presented later in Proposition 5.2) is to assign
a desired energy function such that it has a minimum at the desired equilibrium
point and has local maxima in the set of unsafe states. Thus with an appropriate
interconnection and damping matrices, the closed-loop system will converge to
the minima (that includes the desired one) while avoiding the region of concavity
where the unsafe state belongs to.

Although the proposed method can ensure that all admissible trajectories are
safe, the method may not give a global stability result. This is due to the existence
of multiple minima in the desired energy function.

In our second result (as given later in Proposition 5.4), we propose a hybrid
control strategy that combines the global stability result of IDA-PBC with respect to
the set of equilibria and another state-feedback controller that can steer the system
from the set of undesired equilibria to the desired one. Hence, global stability with
guaranteed safety is achieved.
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5.2 Problem of stabilization with guaranteed safety

As we discussed in Chapter 2, the IDA-PBC is mainly focused on the stabilization of
a point without taking into account the safety of the closed-loop system.

Before we discuss the inclusion of the safety aspect into the IDA-PBC design, let
us first recall the problem of stabilization with guaranteed safety which has been
studied recently in [49] and [53].

We denote X0 ⊂ Rn as the set of initial conditions, D ⊂ Rn as the set of unsafe
states where D ∩ X0 = ∅. Moreover, we always assume that x∗ ∈ X0.

Definition 7 (Safety). Consider an autonomous system

ẋ = f(x), x(0) ∈ X0, (5.1)

where x(t) ∈ Rn, the system is called safe if for all x(0) ∈ X0 and for all t ∈ R+,
x(t) /∈ D.

Stabilization with guaranteed safety control problem: Consider the system in
(2.5) with a given set of initial conditions X0 ⊂ Rn and set of unsafe state D ⊂ Rn,
design a feedback law u = β(x) such that the closed loop system is safe and x∗ is
asymptotically stable, i.e. for all x(0) ∈ X0, we have that x(t) /∈ D for all t and
lim
t→∞

‖x(t)‖ = x∗. Moreover, when X0 = Rn \ D we call it the global stabilization

with guaranteed safety control problem.
Note that in the latter definition, there is a slight modification to the one used

in [49, 53]. Instead of stabilizing the origin as considered in these papers, we
consider here the stabilization of arbitrary admissible equilibra x∗. Here, the set of
admissible equilibria is given by E = {x ∈ Rn|g⊥(x)f(x) = 0}.

Let us now recall the result of stabilization of the origin with guaranteed safety
as discussed in [49, Proposition 1].

Proposition 5.1. Consider the autonomous system (5.1) with a given set of unsafe
state D which is assumed to be open. Suppose that there exists a proper and lower-
bounded C1 function W : Rn → R such that

W (x) > 0 ∀x ∈ D (5.2a)

LfW (x) < 0 ∀x ∈ Rn \ (D ∪ {0}) (5.2b)

U := {x ∈ Rn|W (x) 6 0} 6= ∅ (5.2c)

Rn \ (D ∪ U) ∩ D = ∅ (5.2d)

then the system is safe with X0 = Rn \ D and the origin is asymptotically stable.

The function W that satisfies the hypotheses in Proposition 5.1 is called
Lyapunov-Barrier function. In comparison to the related barrier function as used in
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[37] and [60], the Lyapunov-Barrier function is not necessarily unbounded on the
boundary of the unsafe state set.

5.3 Stabilization with guaranteed safety via IDA-PBC

As a first step towards the inclusion of safety aspect into the IDA-PBC design, we
consider the problem of stabilization of a desired equilibrium x∗ with guaranteed
safety by combining the standard IDA-PBC with the result in Proposition 5.1 as
follows.

Proposition 5.2. Given a set of unsafe state D which is open, suppose that there exist
Hd, Jd, Rd such that (2.6) holds and satisfy

Hd(x) > 0 ∀x ∈ D (5.3a)

U := {x ∈ Rn|Hd(x) 6 0} 6= ∅ (5.3b)

Rn \ (D ∪ U) ∩ D = ∅. (5.3c)

Then the control law u = β(x) where β as in (2.7) solves stabilization of x∗ with
guaranteed safety control problem. Moreover, if x∗ is the unique minimum of Hd and
Hd is proper, then the result holds globally (i.e., X0 = Rn \ D).

Proof : By the assumption of (2.6a), the substitution of control law (2.7) into
the system (2.5) results in a closed-loop system that is in the port-Hamiltonian
structure as in (2.8). For the sake of simplicity, we denote the right hand side of
(2.8) by F (x).

It is easy to verify that

Ḣd = ∇>Hd(x(t))(Jd(x(t))−Rd(x(t)))∇Hd(x(t)) 6 0. (5.4)

for all x(t) ∈ Rn \ D.
First, we prove that the closed-loop system is globally safe, i.e., for all x(0) ∈

Rn \ D, the corresponding state trajectory x(t) never enters D.
If x(0) ∈ U (i.e. Hd(x(0)) 6 0 by the definition of U) then it follows from

(5.4), that Hd is non-increasing along the trajectory x(t) satisfying ẋ = F (x), thus
Hd(x(t))−Hd(x(0)) 6 0 for all t ∈ R+. Hence, it implies that Hd(x(t)) 6 0 for all
t ∈ R+. In other words, the set U is forward invariant and lim

t→∞
x(t) ∈ U . Moreover

by (5.3a) and the fact that D ∩ U = ∅, the state trajectory x(t) /∈ D for all t ∈ R+.
It remains now to show that for all x(0) ∈ Rn \ (D ∪ U), we also have the

property that x(t) /∈ D for all t ∈ R+. In this case, we note that Hd(x(0)) > 0 and,
as before, Hd is non-increasing along the trajectory of x for all t.
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Since the set Rn \ (D ∪ U) does not intersect with the set D, it implies that the
trajectory x(t) will not enterD before it first reaches the boundary of Rn\(D∪U), in
which case, Hd(x) = 0. Once the trajectory x(t) is on the boundary of Rn \ (D∪U),
by the fact that Hd(x(t))−Hd(x(0)) 6 0, the state trajectory x(t) will remain in U
for the remaining t. Thus the closed-loop system is globally safe with the admissible
set of initial conditions X0 = Rn \ D.

We will now prove the asymptotic stability of x∗. By the local convexity of Hd

in the neighborhood of x∗ (c.f. the assumption (2.6b)) and by (5.4) we can use Hd

as a Lyapunov function to show the stability of x∗.
In this case, we define X0 as the largest domain of convexity of Hd around

x∗ excluding D. By the convexity of Hd in X0 and by (5.4), it follows that X0 is
forward invariant.

In particular, for all x(0) = X0, x(t) is bounded for all t and by the application of
La-Salle invariance principle, x(t) converges to the largest invariance set contained
in M := {x ∈ X0|∇>Hd(x)Rd(x)∇Hd(x) = 0}. By the strict convexity of Hd in
X0, such an invariant set is given by {x∗}. In combination with the global safety
property as proven above, we achieve the (local) stability of x∗ with guaranteed
safety.

Finally, if x∗ is the unique minimum of Hd and Hd is proper then the global
results holds by the use of La-Salle invariance principle. �

It is easy to observe that instead of finding Jd andRd separately as in Proposition
5.2, we can simultaneously design them as pursued in [8] where we need to find
Fd(x) such that (2.9) and (2.10) hold. Note that this relaxed condition does not
change our previous result on the stability, neither on the safety of the closed-loop
system. It only relaxes the solvability of the PDE in the expense of port-Hamiltonian
structure. More precisely, we state it in the following corollary.

Corollary 5.3. Given a set of unsafe state D which is open, suppose that there exist
Hd and Fd such that (2.6b), (2.9), (2.10) hold and satisfy (5.3). Then the control
law u = β(x) as in (2.11) solves stabilization of x∗ with guaranteed safety control
problem. 4

Example 5.1. In order to illustrate the main result in Proposition 5.2, let us
consider the following system.

ẋ1 = −x3
1 + 2.25x1x

2
2 + 3.5x3

2 − 1500x2 (5.5)

ẋ2 = u.

It can be shown that the origin can be made globally-asymptotically stable (GAS)
using a simple control law u = −kx2 with k > 0. First, we note that the x1-
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subsystem is input-to-state stable (ISS) with respect to x2 (for example, using
V (x1) = 1

2x
2
1 as the ISS Lyapunov function). Hence, if we let u = −kx2, the

x2-subsystem converges exponentially to zero, and this implies that, by the ISS
property of x1-subsystem, x1(t) converges also to zero.

We will now consider the problem of stabilization of (5.5) with guaranteed
safety via IDA-PBC. Assume that the set of unsafe state is defined by D = {x ∈
Rn|(x1 − 2)2 + (x1 − 2)x2 + x2

2 < 10}. For simplicity, we consider the following
Hd : R2 → R

Hd =
(
x2

1 x1x2 x2
2

) 1 0.5 −0.125

0.5 1 0.5

−0.125 0.5 1

 x2
1

x1x2

x2
2


− 1000

(
x1 − 2 x2

)( 1 0.5

0.5 1

)(
x1 − 2

x2

)
+ 10000

which is proper and has minima at the desired equilibrium x∗ = (−18.6467,−17.8454)>

and at other equilibria xu1 = (−26.948, 25.532)>, xu2 = (16.7688, 17.7117)>,
xu3 = (24.3953,−26.0258)>. The contour plot of this Hd is shown in Figure
5.1.

Now, in order to design the controller as in Corollary 5.3, we need to solve
the PDE (2.10) where in this case, g⊥(x) = (g1(x) 0), with g1 : R2 → R and

Fd(x) =
(
a(x) b(x)
c(x) d(x)

)
that must be designed and also satisfy (2.9). It follows directly

from (2.10) that we need to satisfy

−x3
1 + 2.25x1x

2
2 + 3.5x3

2 − 1500x2 = a(x)∇x1Hd(x) + b(x)∇x2Hd(x). (5.6)

A possible solution to this equation is to let a(x) = −0.5 and b(x) = 1. In order
to fulfill (2.9), we can take c(x) = −1 and d(x) = c1 with c1 6 0. Using these
numerical values, the simulation results of the closed-loop system with several
different initial conditions are shown in Figure 5.2. It can be seen from this figure
that we achieve the (local) stabilization with guaranteed safety at the desired
equilibrium point x∗. One can also notice from the simulation that there exists
other attractive equilibrium points xu1, xu2, xu3. Moreover, we achieve global
stabilization with guaranteed safety with respect to E = {x∗, xu1, xu2, xu3}. 4

As shown in Example 5.1, the region-of-attraction of the desired equilibrium
point can rather be restrictive. For this example, we plot in Figure 5.3 the
numerically-estimated region-of-attraction (RoA) for every equilibria in E . In
this plot, the RoA for x∗ is shown in yellow, while that for the other equilibria
xu1, xu2 and xu3 are shown in red, blue, and green, respectively.

In fact, the region-of-attraction is influenced by the choice of Fd, particularly,
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Figure 5.1: The contour of the desired energy function Hd as used in Example 5.1. The
function Hd has four minima, one maximum, and four saddle-points.
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Figure 5.2: The numerical simulation result of the closed-loop system using IDA-PBC
method in Example 5.1 from eight different initial conditions. The desired equilibrium is
shown in triangle while the other equilibria are shown in circle. The set of unsafe states D is
shown in the red elliptic-parabolic. All trajectories converge to the equilibria and avoid D

the damping part. In Figure 5.4 we show the different region-of-attraction for
different damping element by varying the value of c1. In this figure, the RoA of x∗

has gained additional area on the upper side, as well as on the lower-right side.
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Figure 5.3: The numerical estimation of region-of-attraction (RoA) of the closed-loop system
in Example 5.1 for every equilibria with c1 = −1. The RoA of the desired equilibrium point
x∗ is shown in yellow, while that for the other equilibria xu1, xu2 and xu3 are shown in red,
blue, and green, respectively. The boundary of D is shown in red line.
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Figure 5.4: The numerical estimation of the region-of-attraction (RoA) of the closed-loop
system in Example 5.1 for every equilibria with c1 = 0. The rest of the information is the
same as that in Fig.5.3.

However, the RoA near the set of unsafe state is reduced.
In the following section we will discuss a hybrid strategy for achieving global
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stabilization with guaranteed safety.

5.4 Global stabilization with guaranteed safety

As has been shown before, the IDA-PBC approach has allowed us to achieve local
stabilization of a desired equilibrium with guaranteed safety. At the same time, it
may also introduce undesired equilibrium points that prevent us from achieving a
global stabilization with guaranteed safety. Despite this, if one is interested only in
the safety aspect, the aforementioned proposed control can, in fact, guarantee the
global safety, i.e., for all admissible initial condition Rn\D, the state trajectory will
never enter the set of unsafe state D. Indeed, in our previous example, we have
shown that the state trajectory from any initial condition converges to the set of
equilibrium points E without entering D.

In this section, we propose a simple hybrid control strategy where we combine
the IDA-PBC based state feedback that achieves set asymptotic stabilization with
guaranteed global safety and other feedback controllers that can steer the system
trajectories from the neighborhood of Eu to the desired equilibrium point x∗. As
will be shown later, this hybrid strategy provides a simple solution to the global
stabilization with guaranteed safety.

Prior to describing our proposed hybrid controller, let us recall the following
definitions on hybrid automaton as discussed in [33].

Let a hybrid automaton be described by the tuple (Q,X,F,Q0×X0, Dom,E,G,R)

where Q ⊂ Z+ is a finite set of discrete variables, X ∈ Rn is the set of continuous
variables, F : Q × X → X defines the vector field of the continuous variables,
Q0 ×X0 is the set of initial conditions, Dom : Q→ X defines the domain of each
discrete variable q ∈ Q, E ⊂ Q×Q denotes the set of edges that describe different
transitions/jumps between different discrete state. The set G : E → X defines
the guard conditions that can initiate the transition or jump to another discrete
state. The maps R : E ×X → X defines the resetting of the continuous variables
following a transition/jump.

Using the above notion of hybrid automaton, we consider hybrid automaton
as shown in Figure 5.5 as our proposed hybrid strategy. In this setting, Q = {1, 2},
X = Rn, the set of initial condition is given by Q0 ×X0 = {1} × Rn\D. For q = 1,
F (1, x) is a vector field of the closed-loop system using the IDA-PBC method, i.e.,
F (1, x) = (Jd(x)−Rd(x))∇Hd(x). On the other hand, F (2, x) is a vector field of
the closed-loop system using another state-feedback control law u = k(x) that can
steer the system trajectories from the neighborhood of Eu to the desired one x∗

without entering D. If the latter state-feedback controller exists then the global
stabilization with guaranteed safety problem is solvable by combining it with the
IDA-PBC control via hybrid automaton as in Figure 5.5. In this case, the guards
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ẋ = f(x) + g(x)β(x)
q = 1
X0 = Rn \ D

q = 2
X0 ⊂ Eu + Bε(0)

ẋ = f(x) + g(x)k(x)

IDA-PBC Other controller

x ∈ G(1, 2) = Eu + Bε(0)

x ∈ G(2, 1)

Figure 5.5: Hybrid automaton used in Proposition 4 for solving global stabilization with
guaranteed safety by using IDA-PBC and another local stabilizing feedback controller.
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Figure 5.6: The plot of positively invariant set Ω(x(0)) for the system in Example 5.1 using
a state feedback u = −K(x− x∗), with K = [1339.0 4673.4]. The plot of Ω(Eu +B5(0)) is
shown in green while the plot of Ω(Eu + B0.1(0)) is shown in blue.

G(1, 2) and G(2, 1) are defined by the neighborhood of Eu and the boundary of
the positive invariant set due to the application of u = k(x) that contains the
neighborhood of Eu, respectively. The jump map R is simply given by an identity.

We note that the existence of the second state-feedback control law u = k(x) is
a mild assumption. For this controller to exist, we need only to assume that x∗ is
reachable from any point in the neighborhood of Eu without entering D.

Proposition 5.4. Assume the system as in Proposition 5.2 with the given control law
u = β(x) and a proper Hd. Suppose that there exist a constant δ > 0 and a control
law u = k(x) such that for all x0 ∈ Eu + Bδ(0) the corresponding state trajectory
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converges to x∗ and is safe, i.e., the positive invariant set Ω
(
Eu + Bδ(0)

)
=: Φ does

not intersect D. Then the global stabilization with guaranteed safety problem is
solvable using hybrid control as in Figure 5.5 with G(1, 2) = Eu + Bε(0), 0 < ε < δ,
G(2, 1) = ∂Φ and R = Id.

Proof : As assumed in the proposition, the hybrid automaton is initialized with the
first mode q = 1.

Following the same proof as in Proposition 5.2, the properness of Hd along with
inequality (5.4) implies that the state trajectories x asymptotically converges to
E . It has also been proven in Proposition 5.2 that the control law u = β(x) with a
proper Hd guarantees global safety property of the closed-loop system. It remains
to show that x(t)→ x∗ for the hybrid system.

By the global attractivity of E , x converges to x∗ or to Eu. If for some x(0), x
converges to x∗ then the transition to q = 2 will never happen and we obtain our
result. Otherwise, there exists T > 0 such that x(T ) ∈ ∂(Eu + Bε(0)) which will
initiate the jump to q = 2. During the jump, we have x+(T ) = x(T ) =: xT by our
assumption and the closed-loop system will be described by

ẋ = f(x) + g(x)k(x), x(T ) = xT ∈ Eu + Bε(0).

By our assumption on k(x), the state trajectory x will remain in the positively
invariant set Ω(Eu + Bε(0)) and in particular, will never jump to q = 1. Thus x
converges to x∗ as desired. This proves our claim. �

The proposed approach provides a practical solution to the global stabilization

with guaranteed safety. In this case, in addition to the IDA-PBC conditions, we need
to find stabilizing controllers for only a finite and arbitrary small set of initial con-
ditions. Hence, we may not need to design a large number of switched controllers
defined on different polytope/manifold which can be numerically intractable for
higher-order systems.

Let us now consider again the same system as in Example 5.1 where the IDA-
PBC based controller is designed with c1 = −1. One can evaluate directly that
by applying u = −K(x− x∗) where K = [1339.0 4673.4], it can steer the system
trajectories from any initial condition in Eu + B5(0). Indeed, Figure 5.6 shows the
positively invariant set of the closed-loop system for initial condition in Eu + B5(0)

(shown in green) and in Eu + B0.1(0) (shown in blue). Equipped with this simple
controller, we implement the hybrid control strategy as described in Proposition 5.4
and the simulation results are shown in Figure 5.7 where we use the same initial
conditions as those used in Figure 5.2. In comparison to the results in Figure 5.2,
we have now the global convergence of x to x∗ using the hybrid control.
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Figure 5.7: The numerical simulation result of the closed-loop system in Example 5.1 using
hybrid control method as in Proposition 5.4. The closed-loop trajectories are based on the
same initial conditions as those used in Fig. 5.2 and all trajectories converge to x∗ without
entering D (shown in red).

5.5 Conclusions

The use of energy-based control design has been shown to be applicable for solving
the problem of stabilization with guaranteed safety. The avoidance of unsafe state
is achieved by an appropriate design of the energy function which may result
into the existence of attractive undesired equilibria. By adopting a hybrid control
framework, we can obtain the global result with less restrictive conditions on the
other mode.
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Conclusions
In this thesis, we have presented a body of works that are relevant to the design

of control systems with guaranteed safety. Firstly, we propose several control design
techniques that can stabilize the plant while providing a guarantee or certificate
on the safety of the closed-loop system. Secondly, we propose a novel robustness
analysis tool that can be used to quantify the margin of safety (or the fragility) of
the closed-loop system.

We have presented in Chapter 3 a novel method to achieve our control goal
by merging a classical Control Lyapunov Function with (multiple) Control Bar-
rier Function(s) where the merged function becomes a Control Lyapunov-Barrier
Function. We show in Proposition 3.4 that the merging is simply based on a
suitable linear combination of CLF and a compactly supported CBF. By suitable
linear combination, we mean that there is a gain in the linear combination which
is lower bounded by a term that depends on the bound of CLF and the boundary
of the unsafe state. When the CBF is not compactly supported, then we provide
the method to merge both CLF and CBF as discussed in Proposition 3.5. In this
proposition, we propose a method to modify the original CBF into a compactly sup-
ported CBF and then combine it with CLF as in Proposition 3.4. Further extension
of Proposition 3.4 is given in Proposition 3.7 where we can combine directly a CLF
with multiple CBFs. The combination is again based on a linear combination of
these functions. As before, there are lower bounds on the gains in this combination.
Consequently, the application of Sontag’s universal control law using the resulting
Control Lyapunov-Barrier Function gives us the desired control law. On the other
hand, in Chapter 5, we explore another design method where we solve the problem
of stabilization with guaranteed safety using control laws that are motivated by the
popular IDA-PBC approach. In Proposition 5.2, we have shown that under similar
IDA-PBC equations with additional constraints on the desired Hamiltonian (but
not on the interconnection and damping matrices) we can apply the same control
law as in IDA-PBC for solving the stabilization with guaranteed safety problem.
However, as shown in the simple Example 5.1, if we are interested only in the
stabilization of a desired point, the proposed IDA-PBC method may give rise to
undesirable attractive multiple equilbria. In this case, we may only achieve local
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stabilization. In order to circumvent this problem, we may use a hybrid control
strategy with, at least, two automata. In Proposition 5.4, we present sufficient
conditions for global stabilization using only two automata.

We have introduced a novel concept of input-to-state safety in Chapter 4. It
complements the popular notion of input-to-state stability and is very relevant for
quantifying the margin of safety of a closed-loop safety control system. In Propo-
sition 4.1, we present sufficient conditions for a system to be input-to-state safe
using an ISSf barrier function, akin to the ISS Lyapunov function for characterizing
input-to-state stability of nonlinear systems. We further study the exponential
case of input-to-state safety in Proposition 4.3. Here, we show that if we have
quadratic ISSf barrier function then the system is ISSf with an exponential rate. We
discuss as well the combination of standard ISS property with our proposed ISSf in
nonlinear systems. In particular, we present in Proposition 4.5 the merged ISS-ISSf
Lyapunov-barrier function that can guarantee the ISS and ISSf properties of the
system.

Future Work
In Chapter 3, we have discussed ways to combine a Control Lyapunov Function

with multiple Control Barrier Functions. This enables us to incorporate a number
of sets of unsafe state in the final control design by defining a different CBF for
each set. However, if, in addition to the stabilization and safety guarantee, there
are other control requirements such as multiple LQR functions for different domain
in state space then we need to find ways to combine multiple CLFs and multiple
CBFs at the same time. This remains currently an open problem.

It is also interesting to combine the results in Chapter 3 and Chapter 4 for
designing control laws that work in event-triggered fashion. For a stabilizing
controller, it is known in literature that an event-triggered stabilizing control law
can be designed by a simple algebraic manipulation of the ISS Lyapunov inequality.
In particular, if there is a simple stabilizing control law such that the closed-loop
system is ISS with respect to the measurement error then there is an event-triggered
control law. In a similar fashion, we can ask ourselves whether it is possible to
design an event-triggered control law for stabilizing a plant with guaranteed safety
when there is a continuous-time control law that achieves input-to-state safety with
respect to the measurement error.

When we focus on our contribution in Chapter 3, we have presented sufficient
conditions for stability with guaranteed safety, namely, through the existence of
a Lyapunov-Barrier function. The converse to this result is still an open problem.
However, recent work in [62] on the converse result for barrier certificate may
shed light on this problem.

Similar to the above mentioned problem, the converse result for input-to-state
safety is also an interesting topic to be addressed in the future.
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Finally, we have not addressed yet in this thesis the analysis of interconnected
safety control systems. For ISS systems, one can already employ small-gain con-
ditions to analyze the stability of interconnected ISS systems. It is interesting
to investigate further whether we can define a ’small-gain’ condition that can
guarantee that the interconnection of ISSf systems will remain ISSf.
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Summary

This thesis discusses the incorporation of safety into control design. In this control
problem, safety refers to a behaviour of the closed-loop system where its state
trajectories starting from an admissible set of initial states avoid a set of unsafe
states. Such problem of achieving stability and safety simultaneously for the closed-
loop system is termed as the ”stabilization with guaranteed safety” problem. This
thesis also discusses how to measure the robustness of safety of the closed-loop
system in the presence of external disturbances.

We propose various control design strategies that solve the stabilization with
guaranteed safety problem for nonlinear systems. Firstly, a novel method of merging
the classical Control Lyapunov Function (CLF) with the Control Barrier Function
(CLBF) is introduced. The merged function is termed Control Lyapunov Barrier
Function (CLBF). We also handle the case where there are multiple unsafe sets in
the state by involving several CBFs with a single CLF.

Secondly, energy-based control design via interconnection and damping assign-
ment passivity-based control (IDA-PBC) is shown to be applicable for solving the
problem of stabilization with guaranteed safety. We can achieve local stabilization
with guaranteed safety by using IDA-PBC, while for a global result, we combine
IDA-PBC with another feedback control using an hybrid control method.

We also propose a novel robustness analysis tool that can be used to quantify
the margin of safety (or the fragility) of the closed-loop system. As a complement to
the well-known input-to-state stability (ISS) notion for analyzing systems’ stability
robustness, we introduce an input-to-state safety (ISSf) notion which can be used
for the robustness analysis of systems’ safety in the presence of external disturbance
signals.





Samenvatting

In dit proefschrift wordt het aspect van veiligheid opgenomen in het ontwerp
van besturingsmechanismen. Veiligheid refereert hierbij naar het gedrag van het
gesloten lus systeem waarbij het tijdspad van de toestandsvariabelen, welke gestart
zijn in een toegestane verzameling van initiële waarden, de verzameling van
onveilige toestanden vermijdt. Het probleem van het tegelijkertijd garanderen
van stabiliteit en veiligheid van het gesloten lus systeem wordt “stabilisatie met
gegarandeerde veiligheid” genoemd. Verder behandelt dit proefschrift ook hoe
men de robuustheid van veiligheid van het gesloten systeem kan meten in de
aanwezigheid van externe storingssignalen.

We dragen verschillende regelstrategieën voor welke een oplossing bieden voor
het “stabilisatie met gegarandeerde veiligheid” probleem in niet-lineaire systemen.
Ten eerste, een nieuwe manier wordt gëıntroduceerd voor het samenvoegen van de
klassieke ‘Control Lyapunov Functie’ (CLF) met de ‘Control Barrier Functie’ (CBF).
De samengevoegde functie wordt aangeduid als ‘Control Lyapunov Barrier Functie’
(CLBF). Het scenario van verschillende verzamelingen van onveilige toestanden is
ook bekeken. Hierbij worden verschillende CBF functies samengevoegd met een
enkele CLF.

Ten tweede, het is aangetoond dat de koppeling en demping toekenning passi-
viteits besturingsmethode (IDA-PBC), welke een op energie gebaseerde besturings-
mechanisme is, gebruikt kan worden voor het oplossen van het “stabilisatie met
gegarandeerde veiligheid” probleem. We zijn geslaagd in het bereiken van lokale
stabilisatie met gegarandeerde veiligheid door toepassing van de IDA-PBC methode.
Voor het bereiken van globale stabilisatie wordt de IDA-PBC methode gecombineerd
met een ander terugkoppelingsregeling middels een hybride besturingsmethode.

We stellen ook een nieuwe robuustheidsanalyse methode voor welke gebruikt
kan worden voor het kwantificeren van de veiligheidsspeling (of veiligheids fragili-
teit) van het gesloten lus systeem. Als aanvulling op de welbekende input-to-state
stabiliteitsinterpretatie (ISS) voor de robuustheidsanalyse van de stabiliteit van een
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systeem introduceren we de input-to-state veiligheidsinterpretatie (ISSf), welke ge-
bruikt kan worden voor de robuustheidsanalyse van de veiligheid van een systeem
wanneer er externe storingssignalen aanwezig zijn.
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