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ABSTRACT: Lignin, a major component of lignocellulose, is the largest source of aromatic
building blocks on the planet and harbors great potential to serve as starting material for the
production of biobased products. Despite the initial challenges associated with the robust
and irregular structure of lignin, the valorization of this intriguing aromatic biopolymer has
come a long way: recently, many creative strategies emerged that deliver defined products
via catalytic or biocatalytic depolymerization in good yields. The purpose of this review is to
provide insight into these novel approaches and the potential application of such emerging new structures for the synthesis of
biobased polymers or pharmacologically active molecules. Existing strategies for functionalization or defunctionalization of lignin-
based compounds are also summarized. Following the whole value chain from raw lignocellulose through depolymerization to
application whenever possible, specific lignin-based compounds emerge that could be in the future considered as potential lignin-
derived platform chemicals.

CONTENTS

1. Introduction 615
1.1. General Considerations 615
1.2. Fractionation 616

1.2.1. Considerations Regarding Lignocellu-
lose Pretreatment 616

1.2.2. Methods Resulting in Significant Struc-
tural Modification 617

1.2.3. Methods Resulting in Mild Structural
Modification 617

1.3. Types of Starting Materials 618
2. Catalytic Strategies Aiming at High Yield and

Selective Production of Defined Aromatic Mono-
mers from Lignin and Lignocellulose 620
2.1. Methods Using Lignins Isolated from Ligno-

cellulose Prior to Catalytic Processing 620
2.1.1. Oxidative Depolymerization 620
2.1.2. Reductive Depolymerization 621
2.1.3. Acid-Catalyzed Depolymerization in

Conjunction with Stabilization of Reac-
tive Intermediates 624

2.1.4. Highly Efficient Depolymerization via
Oxidized Lignin 626

2.1.5. Depolymerization of Lignin via an Alter-
native Two-Step Processes 626

2.1.6. Biochemical Transformation of Lignin 626
2.1.7. Summary of Processes Related to Lignin

Extraction and Depolymerization 627
2.2. Catalytic Fractionation of Lignocellulose:

Aromatic Monomers from Native Lignin 627
2.2.1. Structure of Monomers Related to the

Starting Materials 627
2.2.2. Role of the Catalyst Used 629

2.2.3. Influence of Additives 629
2.2.4. Influence of Solvents 634
2.2.5. Use of Hydrogen Donors Instead of

Hydrogen Gas 635
2.2.6. Recycling of Catalysts 636
2.2.7. Utilization of the Solid Residue 637

2.3. One-Pot Catalytic Processes 637
2.4. Summary of Catalytic Processes 639
2.5. Conclusions 639

3. Functionalization and Defunctionalization Strat-
egies 639
3.1. Functionalization Strategies 640

3.1.1. Functionalization of Guaiacyl-Type Sub-
strates 640

3.1.2. Functionalization of the Side Chain 641
3.2. Defunctionalization Strategies 642
3.3. Conclusions 647

4. Lignin-Derived Monomers to Biobased Polymers
or Polymer Building Blocks 647
4.1. From Lignin-Derived Aromatic Monomers to

Polymers 650
4.1.1. Modification through the Phenol Func-

tionality and/or Side Chain 650
4.1.2. Modification through the Aromatic Ring

or Side Chain 650
4.2. Properties of Polymers Obtained from Lig-

nin-Derived Monomers 652
4.2.1. Lignin-Derived Thermosets 652

Special Issue: Sustainable Chemistry

Received: September 22, 2017
Published: January 16, 2018

Review

pubs.acs.org/CRCite This: Chem. Rev. 2018, 118, 614−678

© 2018 American Chemical Society 614 DOI: 10.1021/acs.chemrev.7b00588
Chem. Rev. 2018, 118, 614−678

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

pubs.acs.org/CR
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.chemrev.7b00588
http://dx.doi.org/10.1021/acs.chemrev.7b00588
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html


4.2.2. Lignin-Derived Thermoplastic Polymers 654
4.3. From Lignin-Derived Muconic Acid to Poly-

mers or Polymer Building Blocks 657
4.4. Conclusions 658

5. Compounds with Pharmacological Activity from
Lignin-Derived Monomers 659
5.1. Natural Products Synthesized from Lignin-

Derived Monomers 659
5.1.1. 4-(1-Propenyl)-syringol, 4-(1-Propenyl)-

guaiacol and Isomers 659
5.1.2. Syringaldehyde and Related Com-

pounds 659
5.1.3. C2-Aldehydes and Alcohols 659
5.1.4. Dihydroferulic Acid and Derivatives 659
5.1.5. Ferulic acid and Its Derivatives, Mono-

lignols 661
5.2. Pharmaceutical Products from Lignin-De-

rived Monomers 661
5.3. Drug-Leads from Lignin-Derived Monomers 662

5.3.1. Syringaldehyde and Related Com-
pounds 662

5.3.2. Dihydroferulic and Dihydrosinapic Acid
Derivatives 663

5.3.3. Ferulic and Sinapic Acid Derivatives 663
5.4. Conclusions 663

6. Concluding Remarks 663
Associated Content 664

Supporting Information 664
Author Information 664

Corresponding Author 664
ORCID 664
Author Contributions 664
Notes 664
Biographies 664

Acknowledgments 665
References 665

1. INTRODUCTION

Living with limited resources on the planet represents a
tremendous challenge due to our increasing global population.1

The growing demand for fuels and chemicals and the society’s
dependence on nonrenewable petroleum should be addressed
simultaneously through the development of sustainable tech-
nologies that would enable the efficient utilization of renewable
resources.2−5 Such an attractive, carbon-neutral and nonedible
starting material is lignocellulose, generated in considerable
quantities from forestry and agricultural activity worldwide.5,6

Moreover, food waste has been put forward as an economically
significant, lignocellulose-rich resource.7 In the past decade,
significant advances have been achieved regarding the develop-
ment of biorefineries suitable for the fractionation of
lignocellulose to its main constituents: cellulose, hemicellulose,
and lignin.8−10 However, in order to create economically feasible
biorefineries and overcome the initial energy cost associated with
processing and pretreatment, all three major constituents should
be fully valorized.7−10 Novel chemo- or biocatalytic routes
should enable the conversion of these biobased starting materials
to chemicals and fuels. In this regard, the catalytic conversion of
lignin was found extremely challenging,11 mainly due to the
robustness and complexity of its structure.12−14

Despite these encountered challenges, the catalytic conversion
of lignin has remained a scientifically intriguing research problem

that can bring clear rewards.15 Lignin is the largest renewable
source of aromatic building blocks in nature and has significant
potential to serve as starting material for the production of bulk
or functionalized aromatic compounds to offer suitable
alternatives to the universally used, petroleum-derived BTX
(benzene, toluene, and xylene).11,16

The quest for novel catalytic methods and lignin-derived
platform chemicals17,18 initiated tremendous activity in
fundamental research, especially in the past decade. Creative
approaches in many fields such as homogeneous catalysis,19−22

heterogeneous catalysis,11,23,24 or alternative solvents25 have
emerged and were extensively reviewed. Furthermore, recent
reviews have summarized recent progress regarding thermo-
chemical,26−30 oxidative,31,32 photocatalytic,33 or biochemi-
cal34,35 depolymerization methods that focused on conversion
of lignin to various product classes.
In order to solve one of the greatest challenges, which is to

deliver high product yields in an energy- and material efficient
manner, integrated biorefinery approaches that bridge multiple
disciplines are desired.36,37 It has been shown that the native
structure of lignin should be as regular as possible, which opens
possibilities for modification of lignin biosynthesis pathways.37,38

The selection of suitable processing conditions during
lignocellulose fractionation has proven crucial, since fractiona-
tion methods may significantly alter the native lignin structure,
frequently producing extremely refractory lignin streams.39,40 It
became clear, that the development of efficient catalytic methods
for lignin depolymerization will play a central role in lignin
valorization. Several promising catalytic methods have been
developed, especially in recent years, and in many cases, the new
methods delivered surprising new product structures in
significant amounts.37,40,41 Recent research has been devoted
to the valorization of these structures, as well as other potential
lignin-derived monomers, especially for the production of new
lignin-based polymers.
The core of this review (section 2) summarizes the recent

advances in chemical catalysis regarding the conversion of lignin
to product mixtures that consist of a limited number of low
molecular weight products in high yield, under 250 °C, and the
lignin isolation methodologies used by the various research
groups are compared. Where discussion requires, processes in
the range of 250−300 °C are also included. In section 3, the
possibilities for functionalization and defunctionalization of
frequently encountered lignin-derived scaffolds are summarized.
Section 4 provides an overview of the recently described
applications of lignin-derived compounds for the production of
biobased polymers and the properties of such polymers. In
section 5, structures of known pharmaceutically active
compounds that can be obtained from some of the monomers
provided by the novel lignin depolymerization strategies are
summarized along with existing synthetic routes.
Thus, this review gives an overview of existing value chains

starting from the raw lignocellulose through catalytic lignin
depolymerization to potential final application of lignin-based
monomers and bridges heterogeneous and homogeneous
catalytic or synthetic routes. Several structures may be, in the
future, evaluated with respect to serving as “lignin-derived
platform chemicals”.

1.1. General Considerations

Lignin depolymerization is an intriguing task that is challenged
by the structural complexity and recalcitrance of this aromatic
biopolymer, which is randomly held together by strong C−C and
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C−O bonds.21 Several types of linkages exist in lignin, and their
type and ratio is dependent on the plant source.15 The most
common linkages are shown in Figure 1. Systematic theoretical
studies by Beckham determined the bond dissociation energies
of the most representative lignin linkages.42 The most recurring
type is the β-O-4 linkage that typically makes up about 50% of all
linkages and therefore has been the focus of most depolymeriza-
tion strategies. The cleavage of this linkage takes between 68.2
and 71.8 kcal/mol, depending on substitution pattern. Any
sustainable methodology aiming for lignin depolymerization
should deliver specific (preferably) aromatic compounds in high
enough yield and selectivity to allow separation and subsequent
valorization to well-defined products. Since the β-O-4 linkage is
most abundant, the vast majority of catalytic methods focus on
the scission of the C−O linkage in this moiety in order to affect
depolymerization.

1.2. Fractionation

1.2.1. Considerations Regarding Lignocellulose Pre-
treatment. Several methods are available for the isolation of
lignin from lignocellulosic biomass. The existing strategies can be
divided into two main categories related to the extent of
structural modification induced in lignin by the fractionation
conditions, an important aspect when considering catalytic
valorization of any lignin feed.
One major source of lignin is provided by the pulp and paper

industry that produces roughly 50 million tons of lignin annually,
of which less than 2% is actually recovered for utilization as a
chemical product.43 However, the money equivalent of lignin
used as fuel is estimated to be 0.18 US $/kg while 1.08 US $/kg in
case it is converted to useful chemicals.44 Thus, the importance of
concentrating on the latter approach appears clear.
The second main lignin source is related to the production of

cellulosic ethanol, which was estimated to make up 125 million
liters for the year 2013 in the USA alone, and its volume is
expected to grow. With every liter of produced ethanol 0.5−1.5

kg of lignin is cogenerated; however, it is still generally
considered as waste and burned to produce energy.45

Techno-economic analysis of lignocellulose-based biorefi-
neries was recently described.46−54 In several cases, lignin was
treated as waste or burnt for energy recovery;49,52 however, more
favorable carbon yields were found when lignin was valorized by
hydrotreating, (hydro)pyrolysis, or gasification.46−48

Foust and Aden carried out a detailed techno-economic
analysis of an ethanol biorefinery that operates based on
cornstover (18% lignin content) with a 2000 dry tones/day
capacity.50 From one ton of cornstover, 340 L of ethanol was
produced while the lignin byproduct was converted to 1.64 tons
of steam and 326 kWh electricity of which 40% was used on the
spot and 60% was sold for the grid. Besides sustaining the energy
demand of the plant, 26.7$ worth of steam55 and 13$ worth of
electricity was generated next to the primary product bioethanol.
However, it was concluded that if the energy demand of the
process would be covered from other renewable resources such
as wind or tidal energy, the lignin content could be utilized to
produce chemicals, which hold more added value.
The summary report for biochemical ethanol production in

2013 and biochemical hydrocarbon production report in 2015
completed by the National Renewable Energy Laboratory with
the Harris Group Inc., proposed improvements to already
existing procedures in order to achieve the 2022 DOE target of
3$/gallon gasoline equivalent (GGE).56,57 An important
recommendation was to maximize the overall carbon efficiency
by converting currently underutilized lignocellulose fractions,
such as lignin. Four specific chemicals: 1,3-butadiene, 1,4-
butanediol, cyclohexane, and adipic acid were suggested as
potential valuable lignin-derived products with sufficient market
volumes (greater than 1 MM tons/year world market). On the
basis of a minimum fuel selling price (MFSP) of $5.10/GGE, the
targeted $3/GGE can be achieved if 60−80% of available lignin is
converted to coproducts adipic acid and 1,4-butanediol.

Figure 1. (Left) A representative lignin structure displaying typical lignin subunits and linkages encountered. (Right) General strategies for
depolymerization of lignin and application of lignin-derived platform chemicals.
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From the statements above, it is clear that in order to guarantee
the economic feasibility of biorefinery processes, every
lignocellulose component should be fully valorized,58,59 and
therefore it is of paramount importance to find novel ways of
lignin valorization.5,10,37,43 Before providing a detailed descrip-
tion of such new catalytic methods (section 2), we will give a
short summary of the most important lignin isolation procedures
used on the industrial and laboratory scale. This reviews the
various lignin sources that can be used as starting materials in
subsequent catalytic conversions.
1.2.2. Methods Resulting in Significant Structural

Modification. Pulping methods such as the Kraft,60,61 the
Sulfite,39,62 the Alkaline,63 and the Klason64,65 process (Figure 2)
generally focus on obtaining high quality cellulose from
lignocellulose and result in structurally heavily modified lignins
under relatively harsh processing conditions such as the extensive
use of inorganic salts, base, or acid.66,67 For instance, Kraft lignin
is modified by cleavage of most α-aryl ether and β-aryl ether
bonds61 and in addition to recondensation reactions, the system
is attacked by strongly nucleophilic hydrogen sulfide ions,
leading to a sulfur-enriched structure (1.5−3% sulfur). The
presence of sulfur poses an additional difficulty to catalyst
development since it frequently leads to decreased activity of,
especially, noble metal catalysts. Due to its abundance, there is
increasing interest to develop novel catalytic methods for the
efficient valorization methods of Kraft lignin to valuable
chemicals12,68,69 and fuels.70 In this review, we do not focus on
Kraft lignin depolymerization, since these novel approaches
usually result in more complex product mixtures.29

Similarly to Kraft, sulfite lignin is also characterized by the
incorporation of about 4−8% of sulfur, albeit in the form of
sulfonate groups, providing water-soluble lignin. As a result,
catalytic depolymerization of lignosulfonate to aromatics without
it being negatively affected by sulfur is a challenging task. A
promising solution is the catalytic removal of sulfur from the
reaction system in the form of H2S gas, as proposed by Song and
co-workers with heterogeneous Ni catalysts.71 The Klason
process that employs 72% sulfuric acid causes a significant
damage to the native lignin structure, while the soda pulping

process presents structural modification to a lesser extent
compared to the other technical lignins allowing for catalytic
conversion, as reviewed recently.24

1.2.3. Methods Resulting in Mild Structural Modifica-
tion. Björkman Process. The Björkman process involves
extensive grinding followed by extraction of lignin with an
organic/aqueous solvent (usually dioxane/water 96/4 v/v for 24
h) to produce the so-called milled-wood lignin (MWL). This
lignin has a more similar structure to native lignin due to the pH
neutral andmild conditions used during extraction. However, the
milling process can cause structural modification such as the
presence of additional carbonyl and hydroxyl groups, especially
in hardwood.72 The obtained lignin yields, typically 20−40%,
depend on the raw material used.62

Cellulolytic Enzyme Lignin and Enzymatic Mild Acidolysis
Lignin (EMAL). The procedure to obtain cellulolytic enzyme
lignin (CEL) involves the treatment of the finely ground wood
with cellulolytic enzymes, which cause the partial hydrolysis of
cellulose and hemicellulose. Afterward, the residue is extracted
with a solvent (typically dioxane/water), the solution is
concentrated, and lignin precipitated in water. This procedure
typically requires a few days and leads to protein and
carbohydrates impurities. An improvement is represented by
enzymatic mild acidolysis lignin (EMAL), where the enzymatic
treatment is combined with mild acidolysis of biomass.73 This
procedure is reported to offer gravimetric lignin yields 2−5 times
greater than those of the corresponding MWL and CEL.74

Interestingly, Guerra et al.74 then investigated the differences in
the lignins obtained by MWL, CEL, and EMAL treatment,75

employing several raw materials and showed that EMAL is
characterized by a highest molecular weight (Mn ∼ 30000−
63000 g/mol) followed by CEL (Mn ∼ 17000−30000 g/mol)
and MWL being the lowest value (Mn ∼ 6000−16000 g/mol).

Ionic Liquid Treatment. It has to be mentioned that ionic
liquids (IL) have also been proposed as solvents for
lignocellulose fractionation due to their special and highly
tunable solvent properties.25,76−82 Limitations exist related to the
cost of IL as well as ease of product separation and solvent
recyclability. Interestingly, George et al.80 reported the synthesis

Figure 2. A summary of procedures for isolation of lignin from lignocellulose.
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of several ethylammonium sulfate ILs resulting in efficient
delignification without significant reduction of cellulose
crystallinity. In addition, a production cost close to conventional
organic solvents was shown. Furthermore, ILs can act as reaction
media for lignin dissolution and depolymerization due to the
incorporation of acidic or other catalytic properties.83−87

Organosolv Process. Organosolv lignin originates from
treatment of lignocellulose with organic solvents such as ethanol,
acetic acid, methanol alone, or mixed with water at 140−220
°C.88 This delignification method is known to be more
environmentally friendly compared to Kraft or sulphite lignin,
especially when performed without added acid. The most well-
known example is the Alcell process where a mixture of EtOH/
water (1:1) is employed as the cooking medium at 175−195 °C
for 1 h, enabling the dissolution of lignin and producing furfural
as a byproduct.89 Several variations have been reported, mainly in
order to improve the yield of lignin, involving different solvent
mixtures (including glycerol,90 THF,91−93 MeTHF,94 and
GVL95) and several catalysts (oxalic acid,94 HCl,96 Lewis
acids,97 metal chlorides,98 and ammonia99), indicating varying
efficiencies.39,100 Typically, cleavage of the β-O-4 linkages occurs
to a lesser extent compared to technical lignins, leading to a more
nativelike structure, and the recovered materials are charac-
terized by molecular weights (Mn) typically between 500 and
5000 g/mol101−103 and good solubility in polar organic
solvents.18 However, organosolv processing does lead to partial
degradation of the native structure and some decrease in the
fraction of β-O-4 linkages, the extent of which depends on the
plant source and specific reaction parameters used.104

However, the presence of repolymerization reactions and the
formation of stable C−C linkages during organosolv processing
is still inevitable, especially when a small amount of acid105 is
introduced to the system. The recent review of Rinaldi et al.37

discusses several aspects of the influence of pulping conditions
on the structure of resulting lignins in great detail. For instance,
the gradual structural changes observable by HSQC NMR
spectroscopy in acetolysis lignin upon low-, mild- and high-
severity conditions are described. It was concluded that mild
processing conditions (110 °C, no H2SO4, 15 min) produce
nativelike lignin structure, while more severe conditions (160 °C,

0.6% H2SO4, 45 min) result in completely modified lignin
structure, in which, besides the −OCH3 and general aromatic
signals, no beta-ethers are left. Another excellent way to provide a
more quantitative description of the extent of structural
modifications is to compare lignins originating from the same
lignocellulose source but via a different treatment method by
subjecting them to the same catalytic treatment conditions.37

The yield of aromatic monomers thus obtained would correlate
with the content of cleavable β-O-4 linkages (assuming that the
catalytic methodology targets these linkages). The influence of
processing conditions on the aromatic monomer yields obtained
via acidolysis in conjunction with stabilization of reactive
intermediates with ethylene glycol to produce C2 acetals (see
also section 2) was also studied by Deuss, Barta, and co-
workers.101 It was confirmed that the highest monomer yields
were obtained from lignins that were obtained by mild
organosolv methods.
The addition of formaldehyde during organosolv processing as

was reported recently by Luterbacher and co-workers (see
section 2)105 is an excellent approach to avoid repolymerization.
Thus far, specific methods of general applicability have not

been developed, and the groups working on the development of
novel catalytic methods typically reported on specific organosolv
procedures prior to catalytic treatment (Figure 2). Indeed,
structural modification during pretreatment is one of the greatest
challenges in catalytic lignin valorization since the β-O-4 linkages
are required for efficient depolymerization with the catalytic
methods currently available. Therefore, the formation of more
robust C−C bonds causes low efficiency of depolymerization and
decreases monomer yields.

1.3. Types of Starting Materials

Generally, the catalytic methods targeting lignin depolymeriza-
tion can be divided into three categories as illustrated in Figure 3
according to the nature of the starting material used for catalytic
processing. Most research has focused on the conversion of
lignin streams that were first isolated from the lignocellulose
matrix usually by “organosolv processing”. A large quantity of
similar lignin wastes can also be generated by the wood pulping
process106 or cellulosic ethanol production, however, as
described in section 1.2, where both will result in lignins with

Figure 3. Types of starting materials used for the development of novel catalytic methods targeting high yield production of aromatics from lignin. (a)
Isolation of lignin by lignocellulose fractionation prior to catalytic processing. (b) Reductive catalytic fractionation (RCF) using lignocellulose in the
presence of a catalyst. (c) Complete conversion of all lignocellulose components by one-pot catalytic processing.
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different degree of structural modification depending on the
lignocellulose fractionation conditions.37,101,107 Since the
structure of lignin directly effects the monomer yield
obtained,101,105 novel methods enabling reductive catalytic

fractionation (RCF) have recently emerged as promising
alternative technologies (see section 2.2). These methods
involve the extraction and immediate catalytic conversion of
lignin to monomers in a one-pot process applying lignocellulose

Figure 4. Strategies and yields of main products established for the depolymerization of lignins isolated from lignocellulose prior to catalytic treatment.
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directly in the presence of a catalyst usually under reductive
conditions. The immediate catalytic processing of lignin, largely
in its unmodified, native form, will result in higher yield of
aromatic monomers due to the higher presence of cleavable C−
O linkages and less C−C linkages. The products resulting upon
reductive catalytic fractionation are a solid carbohydrate pulp
plus the catalyst as solids, and a mixture of aromatic monomers,
dimers and oligomers derived from catalytic lignin depolymeri-
zation in solution, as two easily separable fractions. Finally, it is
also possible that lignocellulose itself is directly converted to
(typically) mixtures of products both from the lignin as well as
the cellulose fraction.

2. CATALYTIC STRATEGIES AIMING AT HIGH YIELD
AND SELECTIVE PRODUCTION OF DEFINED
AROMATIC MONOMERS FROM LIGNIN AND
LIGNOCELLULOSE

2.1. Methods Using Lignins Isolated from Lignocellulose
Prior to Catalytic Processing

In this section, we provide a detailed discussion of the novel
catalytic methodologies that were developed using lignin isolated
from lignocellulose using the organosolv, enzymatic processing
or were obtained from biorefineries or as byproduct of paper
production (Kraft lignin). An overview of these methods, which
can be related to six main strategies, is shown in Figure 4.
2.1.1. Oxidative Depolymerization. In the past few years,

novel strategies for oxidative depolymerization of lignin model
compounds19,31 or lignin have been developed,32 including

electrochemistry,108 photocatalysis,33 and use of heterogeneous
catalysts32 or ionic liquids.25 Among these, several systems lead
to high yield or selectivity of lignin-derived monomers. Oxidative
strategies for lignin depolymerization, especially employing
oxygen, hydrogen peroxide, or peroxyacids may become
important and economically feasible delignification technologies,
since oxidative methods are already widely employed in the
papermaking industry for pulp bleaching.31 Oxidative methods
have the potential to use generally mild conditions; however, it
requires sufficient selectivity to avoid overoxidation of the
substrate to gaseous products. In addition, especially contrary to
reductive depolymerization methods, oxidation reactions may
lead to addition of functionalities to the already complex lignin-
derived aromatic compounds, thereby increasing the possibility
of formation of isomers that leads to increase of complexity of the
obtained product mixtures. Also, processes involving radicals
during oxidation may lead to decreased product yields due to
lignin repolymerization. Ideally, oxidation methods should
enable efficient depolymerization under mild conditions, directly
converting lignin to specific fine chemicals bearing alcohol,
aldehyde, or carboxylic acid moieties.25,31,32

The oxidative cleavage of lignin to produce vanillin is one of
the oldest processes known in this field,14,29 yet the reaction
mechanism, which has been studied extensively31,109 is still the
subject of much debate. In 1977, Imsgard and co-workers110

proposed several reaction pathways regarding selected lignin
model compounds in alkaline media, involving oxygen or
hydrogen peroxide. Later, Tarabanko and co-workers111

performed mechanistic studies involving lignosulfonate as well

Figure 5. Proposed reaction mechanism for vanillin formation during alkaline oxidation of lignin. Reproduced with permission from ref 111. Copyright
2000, Springer Nature. Reproduced with permission from ref 112. Copyright 2004, Springer Nature.
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as a range of model compounds such as lignosulfonates, eugenol,
isoeugenol, guaiacylethanol, and guaiacylpropanol and postu-
lated a reaction mechanism (Figure 5),112,113 which suggests that
vanillin is formed through a retro-aldol condensation as last step
and the process involves several unsaturated intermediates. It can
be generally concluded that the vanillin yield crucially depends
on pH as well as oxygen concentration.
Considering the high activity and stability of perovskite-type

oxides in the catalytic oxidation of hydrocarbons, Liu, Lin, and
co-workers found that LaMnO3 and LaCoO3 are highly active
and robust non-noble metal catalysts for the catalytic wet aerobic
oxidation (CWAO) of lignin to aromatic aldehydes.114,115 In
these studies, LaMnO3 and LaCoO3, prepared by sol−gel
method, enhanced the selectivity toward vanillin (M1G) (∼5%)
and syringaldehyde (M1S) (∼10%) compared to most other
oxidative methods and noncatalytic oxidation (see supplemen-
tary Table S1 for structures, codes and names of identified lignin
monomers). Changes in lignin conversion or in aromatic
aldehyde yield were not observed even after five successive
catalytic runs. Although the precise role of this catalyst system in
lignin oxidation has yet to be elucidated, XPS and TPR
measurements confirmed the existence of surface bound
Mn4+/Mn3+ (for LaMnO3) and Co3+/Co2+ (for LaCoO3)
redox couples as well as chemisorbed oxygen, which were
proposed to play a crucial role in achieving high activity and
selectivity. Lignin conversions were in the range of 40−60%,
while the yield of identified aromatic products were lower likely
due to competing oxidation pathways that lead to gaseous
products. The authors have also found that addition of 10−20%
Cu dopant to the LaCoO3 catalyst increased the surface
chemisorbed oxygen species in this perovskite type catalyst.116

As a result the maximum yield of p-hydroxybenzaldehyde
(M1P), vanillin (M1G), and syringaldehyde (M1S) increased to
2.8%, 5.3%, and 12.8%, respectively. The use of Cu as dopant in
steam reforming, oxidative steam reforming, CO oxidation, and
NO reduction was also reported.117,118

Gu and co-workers119 have developed a newmethod using La/
SBA-15 as heterogeneous catalyst and hydrogen peroxide as an
environmentally friendly and low-cost oxidant, for the efficient
oxidation of organosolv beech lignin yielding vanillin (M1G,
9.6%) and syringaldehyde (M1S, 15.7%) under microwave
irradiation.
Pinto and co-workers120 have studied the oxidative degrada-

tion of Eucalyptus globulus pulping liquors obtained upon
different stages of industrial Kraft liqueur processing compared
to isolated lignins in the presence of oxygen in an alkaline
medium. Syringaldehyde (M1S) and vanillin (M1G) were found
as main products, alongside with smaller amounts of the
corresponding acids. The best M1S yield (10.3%) was obtained
starting from Kraft lignin.
Wang and co-workers121 described the use of cerium oxide-

supported palladium nanoparticles (Pd/CeO2) in the oxidative
conversion of 2-phenoxy-1-phenylethanol in the presence of O2
to produce phenol, acetophenone, and methyl benzoate as major
products. The Pd nanoparticles played a crucial role in the
selective oxidation of the secondary alcohol moiety to the
corresponding ketone. Subsequent C−O bond cleavage afforded
phenol and acetophenone. Oxidative cleavage of the Cα−Cβ

bond also took place producing benzoic acid, which was, in the
presence of methanol as solvent, further converted to methyl
benzoate. The Pd/CeO2 catalyst could also catalyze the oxidative
conversion of organosolv lignin, albeit obtaining products
different from model studies: under mild conditions (185 °C,

O2 1 bar), vanillin (M1G, 5.2%), guaiacol (M24G, 0.87%), and 4-
hydroxybenzaldehyde (M1P, 2.4%) were obtained.
Ionic liquids (IL) have shown promise in oxidation of lignin

model compounds, promoting the cleavage of strong aromatic
ether bonds.122 Bosmann, Wasserscheid, and co-workers123 have
found that Mn(NO3)2 in 1-ethyl-3-methylimidazolium trifluor-
omethanesulfonate [EMIM][CF3SO3] results in the formation
of a unique and relatively simple product mixture consisting of
aromatic aldehydes, phenols, and unsaturated propyl-aromatics
under mild conditions (100 °C). Interestingly, 2,6-dimethoxy-
1,4-benzoquinone (M2S) was isolated as a pure compound in
11.5 wt % yield by a simple extraction/crystallization procedure.
An interesting catalyst system relying on the use of several

dimethylphosphonium-based ionic liquids and CuSO4 as metal
catalyst was developed by Liu et al.124 Key for obtaining a high
total yield (30%) of aromatic aldehydes was the use of an IL/
methyl isoutyl ketone (MIBK) biphasic system, whereby the
continuous separation of the aromatic products to the extraction
phase (MIBK) from the oxidation phase (IL) avoided their over
oxidation. The experiments were performed in a batch reactor
and the best results, e.g. 100% conversion, and nearly 30% total
yield of aromatic aldehydes (M1S, M1G, M1P) were achieved
with [MMim][Me2PO4] and [mPy][Me2PO4]. In addition, after
easy product separation the IL phase demonstrated good
reusability.
Recently, Miyafuji et al.125 found that using Bu4NOH·30H2O

(tetrabutylammonium hydroxide 30-hydrate) instead of the
commonly used aqueous NaOH solution during aerobic
oxidative degradation of lignin improved the yield of aromatic
monomers. At 120 °C, total monomer yield of 6.5−22.5% was
obtained with vanillin (M1G) and vanillic acid (M20G) as the
main products.

2.1.2. Reductive Depolymerization. Reductive treatment
of lignin dates back to early works on structural elucidation, when
lignin was treated in the presence of CuCr catalysts126−128 under
relatively harsh reaction conditions (250−260 °C, 220−240
bar), to obtain aliphatic compounds (mainly 4-propylcyclohex-
anolM3) which were isolated and characterized mainly based on
boiling or melting points and elemental analyses.
Reductive approaches552 require catalysts capable of selective

scission of C−O bonds leading to depolymerization.129 This
approach is attractive since the stepwise reductive deoxygenation
of the aromatic monomers obtained after depolymerization
generally leads to a decrease of complexity in the product
mixtures, increasing the selectivity to defined aromatic
compounds.130 A factor decreasing selectivity, on the other
hand, is the presence of competing ring hydrogenation reactions,
which is one of the major challenges related to this method. To
this end, novel catalysts that do not lead to over-reduction of the
obtained aromatic monomers have also been developed, for
example a PdFe/C catalyst, which exhibits a high selectivity to
benzene without ring saturation or ring opening.131−133 At this
point it should be mentioned that total and selective hydro-
genation/deoxygenation would provide clean mixtures of
alkanes (mainly C9 cycloalkanes) as demonstrated by the two
step method developed by Kou and co-workers,134 as well as
recent elegant work of Yang135 and Lercher and Zhao.136−142

Excellent recent reviews provide a comprehensive overview of
reductive depolymerization of lignin and model compounds by
both homogeneous and heterogeneous catalysts.11,21,24 Reduc-
tive approaches generally use hydrogen gas or hydrogen-donor
solvents and mainly focus on the production of bio-oils and
fuels.143−147 In this section, we focus on systems that use lignin
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directly for the production of monomeric phenols in high yield
and selectivity, typically below 250 °C.
One of the first reductive systems displaying high isolated yield

for specific aromatic compounds was described by Anastas and
co-workers148 under mild reaction conditions at 140−180 °C. In
this work, organosolv lignin extracted from candlenut shells was
depolymerized to well-defined aromatic monomers over copper-
doped porous metal oxide (CuPMO) in the presence of
hydrogen gas (50 bar). The main product at 140 °C was 4-
propanolcatechol (M4) that was isolated by column chromatog-
raphy in 43.3% yield and the total monomer yield reached 63.7%.
Hartwig and co-workers149 reported that complex β-O-4

model compounds can be selectively cleaved by commercially
available Pd/C catalyst resulting in acetophenone or ethyl-
substituted arenes and phenols. The process occurred through
dehydrogenation of the secondary alcohol in the β-O-4 moieties,
followed by hydrogenolysis of the alkyl C−O bond through the
hydrogen generated in the first step. When applied to organosolv
lignin, the addition of a small amount of hydrogen was necessary
as the presence of olefins in natural lignin samples consumed the
generated hydrogen. Under optimized conditions, acetonesolv
lignins from miscanthus giganteus produced 12−15% combined
yields of seven major products and 9% yield of alkyl-substituted
phenols (4-ethylphenol M6P, 4-ethylguaiacol M6G, and 4-
ethylsyringol M6S) was obtained from pine lignin.
Samec and co-workers developed a robust catalyst system for

cleavage of C−O bond in lignin β-O-4 linkages in model
compounds that used Pd/C and formic acid as a reducing agent
under very mild reaction conditions (80 °C in air).150 Further
degradation experiments with organosolv lignin revealed partial
lignin depolymerization to lower molecular weight species based
on GPC analysis. Interestingly, the group has found that the
addition of catalytic amounts of a hydrogen source (e.g.,

HCOOH, NH4HCO2, 2-propanol, and NaBH4) was sufficient
to promote the redox neutral cleavage of the β-O-4 linkage.151

Similarly to the reactivity of Pd/C, a dehydrogenation/
hydrogenation sequence can be also implemented using Raney
Ni, as was demonstrated by Lin and co-workers152 in the
depolymerization of cellulolytic enzyme lignin from bamboo
without addition of any external hydrogen source. Compared to
the use of Raney Ni alone, the combination of Raney Ni and
zeolites lead to an increased yield of phenolic monomers, which
mainly included 4-propylguaiacol M7G, 4-hydroxy-3,5-dime-
thoxy-benzeneacetic acidM8S, and 4-allyl-2,6-dimethoxyphenol
M9S (12.9% to 27.9%), and more than 60 wt % bio-oil yield was
achieved under optimized conditions (270 °C, 1 atm N2). The
authors concluded that a synergistic effect exists as this catalyst
combination lead to highly efficient depolymerization while
minimizing the formation of undesired high molecular weight
polymers.
Yan and co-workers153 studied the influence of pH in the range

of 1 to 14 on the reductive depolymerization of lignin using
Ni7Au3 catalyst in water and found a positive correlation between
the rate of hydrogenolysis and increasing pH values. In an
experiment using organosolv lignin from birch sawdust and
Ni7Au3 catalyst under 10 bar hydrogen at 160 °C, the total
monomer yield increased from 7.6% to 10.9% after addition of
NaOH. Themain products included 4-propylguaiacol (M7G), 4-
propanolguaiacol (M10G), and 4-propanolsyringol (M10S) and
the addition of base accounted for more selective depolymeriza-
tion. After characterization by TEM, UV−vis, and XPS, the
catalyst itself was found structurally and chemically unchanged
after the addition of NaOH. The authors concluded that the basic
reaction medium leads to an increase of selectivity as the base
hinders the coordination of the bulky aromatic ring to the
catalyst, thereby inhibiting arene hydrogenation. More impor-

Figure 6. First example of transition metal free, room temperature reductive depolymerization of formacell lignin using B(C6F5)3/Et3SiH.
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tantly, the depolymerization of organosolv lignin into aromatic
monomers is enhanced considerably using NaOH as an additive.
On the other hand, Singh and Ekhe154 have investigated the

effect of solid acids on depolymerization. The research group
developed a one-pot process using Cu/Mo loaded ZSM-5
catalyst for the production of alkyl phenols using methanol as a
hydrogen donor, and water was used as cosolvent. At 220 °C,
Kraft lignin was almost fully converted (>95%) after 7 h, and only
a little amount of char (<0.5%) was formed. The products were
then analyzed on a GC-MS/FID, which showed 3-methoxy-
2,5,6-trimethyl phenol (M11) as the predominant product with a
high selectivity (70.3%) in the reaction catalyzed by Cu/Mo-
ZSM-5 with a solvent ratio of 1:1 (methanol/H2O).
Xu and co-workers155 found that treating woody biomass

(170−200 °C) in the combination of tetrahydrofurfuryl alcohol
(THFA) and water in the absence of acid, leads to 92.8% yield of
good-quality cellulose and high yield of lignin (77.4%),
simultaneously. Because no acid was used, high-quality lignin
was obtained with high retention of β-O-4 linkages that was well-
suited for obtaining a high yield of aromatic monomers upon
catalytic treatment. Hydrogenolyis using Ni/C at 220 °C
resulted in a total monomer yield of 14.7% (mainly M10G and
M10S).
Song and co-workers156 reported a low-cost nanostructured

MoOx/CNT catalyst that is comparable to precious-metal-based
catalysts in terms of activity, reusability, and biomass feedstock
compatibility. High aromatic product yield (up to 47%) was
obtained from enzymatic mild acidolysis lignins (EMALs).
Interestingly, unsaturated monomeric phenols (M18G and
M18S) were obtained in high yields.
Cantat and co-workers157 presented the first example of

reductive depolymerization of lignin under metal-free conditions

at room temperature to obtain well-defined aromatic products in
high yield (Figure 6). In place of hydrogen gas, hydrosilanes were
used as reductants and B(C6F5)3 as a Lewis acid catalyst. This
versatile approach could be successfully applied to different lignin
species extracted by a formacell process, which included 15
gymnosperms and angiosperms woods. Several aromatic
products (M12G, M12S, M13G, and M13S) were obtained in
excellent selectivity, depending on wood type, and the isolated
yield ranged from 7−24 wt % based on lignin or 0.5−2.4 wt %
based on lignocellulose. In order to evaluate the efficiency of the
depolymerization step, it is important to estimate the maximum
yield of monoaromatics from lignins. Thus, the authors also
included a more quantitative assessment of the theoretical yield
based on equation 1 in order to determine the efficiency of
depolymerization:

= − + ×N
N

Y
( 2)P 2P

100
2

(1)

where Y represents the theoretical yield of total monomers, N is
the number of monomers occurring in the polymer chain, and P
corresponds to the cleavable linkages (e.g., α-O-4 and β-O-4
linkages). On the basis of this calculation, depolymerization with
the hydrosilane−B(C6F5)3 systems showed an efficiency of 28 to
85% depending on the wood source and the targeted product.
As mentioned in section 1.2, lignocellulose pretreatment

inevitably modifies the native structure of lignin, by formation of
robust C−C linkages.158 To minimize this structural modifica-
tion Luterbacher and co-workers105 devised an elegant strategy
that involved addition of formaldehyde during biomass pretreat-
ment, leading to a soluble lignin fraction that could be
subsequently converted by reductive treatment to a mixture of
guaiacyl and syringyl monomers at near theoretical yield. As

Figure 7. Highly efficient catalytic conversion of lignin through formaldehyde stabilization (top) and product distribution for beech wood and F5H
poplar lignin with or without formaldehyde stabilization (bottom). Reprinted with permission from ref 158. Copyright 2017 Wiley-VCH.
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shown in Figure 7, the role of the formaldehyde was to stabilize
the native lignin structure via the formation of a 1,3-dioxane
moiety. The lignin obtained this way was substantially lighter in
color compared to the lignin obtained in the absence of
formaldehyde, qualitatively confirming the lack of recondensa-
tion processes. After hydrogenolysis with Ru/C at 200 °C for 6 h,
a combined yield of 45% of monomeric species (mainly M7S,
M7G,M10S, and methylated analogues) was achieved from the
isolated beech lignin extracted with formaldehyde, whereas in the
absence of formaldehyde, a much lower 7% monomer yield was
obtained. With “formaldehyde stabilized” poplar lignin a
monomer yield (mainly M6S, M7S, M10S, and methylated
products) as high as 78% was achieved upon hydrogenolysis with
Ru/C at 250 °C.
Very recently, Wang and co-workers159 developed a catalytic

method that enabled the complete removal of oxygen content
and resulted in liquid aromatic hydrocarbons with a yield of 35.5
wt % from lignin. Remarkably, a near-quantitative carbon yield
was observed when using birch lignin, and the selectivity to
arenes (methylbenzene M14, ethylbenzene M15, and propyl-
benzeneM16) was as high as 71 wt %. The arenes were obtained
by direct hydrodeoxygenation of organosolv lignin over a porous
Ru/Nb2O5 catalyst in water at 250 °C. A combined inelastic

neutron scattering (INS) and density functional theory (DFT)
calculation analysis confirmed the existence of an active Nb2O5
species, and the catalytic activity was attributed to the
combination of strong adsorption and selective activation of
the phenols and a synergistic effect between the Ru and NbOx
species.
Besides using hydrogen gas or other reducing reagents, Wang

and co-workers found that the aliphatic alcohol moieties (CαH−
OH) in lignin itself can act as the hydrogen donor.160 Lignin β-O-
4 linkages were initially dehydrogenated on ZnIn2S4 to form a
“hydrogen pool”, and the adjacent Cβ−O bond subsequently
underwent hydrogenolysis by hydrogen derived from the
“hydrogen pool”. With this strategy, 71−91% yield of phenols
in the conversion of lignin β-O-4 models and a 10% yield of p-
hydroxy acetophenone derivatives were obtained from organo-
solv lignin.

2.1.3. Acid-Catalyzed Depolymerization in Conjunc-
tion with Stabilization of Reactive Intermediates. The first
acid-catalyzed lignin hydrolysis reaction was reported in 1924 by
Hag̈glund and Björkman161 when they distilled lignin with 12%
hydrochloric acid and attempted to obtain thiobarbituric acid,
phloroglucinol, and barbituric acid. More recently, different types
of acids including mineral and Lewis acids, zeolites, ionic liquids

Figure 8. Acid catalyzed depolymerization of lignin in conjunction with stabilization of reactive C2-aldehydes. Comparison of the yields of aromatic C2-
acetals obtained by the addition of ethylene glycol obtained from various lignin sources.
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with Bronsted acidic functionalities, as well as organic acids have
been tested for depolymerization of lignin and these were
summarized in recent reviews of Zhang,24 Barta,21 Yokoyama,162

and Weckhuysen.11

Pulping under acidic conditions is one of the most classical
methods used for the fractionation of lignocellulose into its main
components.21 In early days, acidolysis was relevant regarding
the structural determination of lignin.163−165 During these
studies it became apparent that treatment of lignin with acid
resulted in low yield of aromatic chemicals, and recondensation
of the formed fragments were observed under these reaction
conditions. However, the precise reasons for these phenomena
were not fully elucidated. Barta, de Vries, and co-workers have
established that triflic acid, even in catalytic amounts, is very
efficient in cleaving the β-O-4 linkage in lignin model
compounds.166 Labeling studies revealed that the formed C2-
aldehyde products undergo recondensation reactions under
depolymerization conditions and are one of the reasons for the
formation of high molecular weight side products. To prevent
this, a stabilization strategy was developed that entailed the in situ
conversion of the reactive C2 aldehydes to more stable products,
leading to well-defined classes of aromatic chemicals. By
“trapping” the aldehyde by addition of ethylene glycol, the
corresponding (more stable) C2-acetals were obtained. Alter-
natively, catalytic hydrogenation of the C2 aldehyde lead to the
corresponding ethanol-aromatics (EtOB) or ethyl-aromatics
(EtB), and decarbonylation resulted in methyl-aromatics, such as
toluene. Applying these methods on actual dioxasolv lignin
resulted in a decrease of undesired side products and the same

classes of aromatics as found in model compound studies.
Especially the acetal formation method gave a 3-fold increase in
monomer yields relative to the control experiments and acetals
(M17P, M17G, M17S) as main products. Next, Barta and
Westwood developed scalable synthetic routes to next
generation model compounds combining the β-O-4 as well as
the β-5 linkages and have all functionalities to serve as realistic
models of the lignin structure. An in-depth research using such
advanced lignin models confirmed that ethylene glycol also plays
a role in “trapping” the formaldehyde released both from the β-
O-4 as well as the β-5 linkage.167 Importantly, it was possible to
quantify the amount of released formaldehyde in model and
lignin reactions via the corresponding 1,3-dioxolane formed.
Later the reactivity of a broad range of metal triflates was
evaluated,102 and it was found that Bi(OTf)3, Fe(OTf)3, and
Hf(OTf)4 performed the best for the depolymerization of
methanosolv walnut lignin to three major aromatic products
(M17P, M17G, and M17S). The best aromatic monomer yield
of 19.3 wt % was obtained with Fe(OTf)3. Aiming to further
increase the yield of phenolic monomers, lignins obtained from a
range of different biomass sources and pretreatment methods
were investigated.101 After screening a library of 27 lignins
obtained from 13 different pretreatment methods, it was found
that a β-aryl ether rich organosolv lignin gave the best combined
yield of up to 35.5 wt % of acetal products and the best yield of a
single component (M17G, 16.5 wt %) was achieved starting from
walnut lignin obtained by a specially developed, mild organosolv
procedure (Figure 8).

Figure 9. Selective oxidation and cleavage of isolated lignin into monomeric aromatic products.
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In line with the previous strategy, Bruijnincx and co-
workers168 described the tandem acidolysis/decarbonylation
using water-tolerant Lewis acids to promote depolymerization
and a homogeneous Rh complex to enable decarbonylation of
the C2-aldehyde formed in the first step. The method was
established using model compounds and subsequently applied to
dioxasolv lignin, isolated from brewer’s spent grain. Poplar
dioxasolv lignin was successfully depolymerized using Yb(OTf)3
to obtain an overall monomer yield of 12.4% at 175 °C in
dioxane/H2O and the major products were 4-(1-propenyl)-
phenols (M18G and M18S).
2.1.4. Highly Efficient Depolymerization via Oxidized

Lignin. Innovative two-step methodologies lead to efficient
lignin depolymerization relying on cleavage of the most
abundant β-O-4 unit by selective preoxidation of the secondary
alcohol followed by a reductive C−O ether bond rupture. The
rationale behind preoxidation is that it decreases the bond
dissociation energy of the C−O bond and therefore makes the β-
O-4 linkage more labile. An analogous Ru-catalyzed hydrogen
neutral method on simplified lignin β-O-4 model compound
resulted in efficient cleavage of the phenyl ether bond, resulting
in the formation of acetone and guaiacol.169

Following this strategy, Stahl and co-workers170,173 have
achieved very efficient lignin depolymerization. The secondary
alcohol in the β-O-4 linkage was first selectively oxidized to the
corresponding ketone using catalytic amount of 4-acetamido-
TEMPO/HNO3/HCl under aerobic conditions (Figure 9, left).
This oxidization step activated the linkage for the desired C−C
or C−O bond scission in the second step that was accomplished
by an excess of sodium formate in aqueous formic acid (85−90
wt %) at 110 °C. With this method, cellulolytic enzyme lignin
from aspen wood was successfully converted to low-molecular-
mass aromatics (mainlyM1S,M19S,M19G, andM20S) inmore
than 60 wt % yield.
Westwood and co-workers171 presented a new approach using

selective oxidation of the secondary alcohol in a β-O-4 moiety
(Figure 9, middle). This methodology used molecular oxygen as
the oxidant and catalytic amounts of 2,3-dichloro-5,6-dicyano-
1,4-benzoquinone (DDQ) and tert-butyl nitrite (tBuONO).
Upon preoxidation, Zn/NH4Cl was applied in the second step at
80 °C. In this case, birch lignin was converted to phenolic
monomer (M21S) and the major product was also isolated in a 5
wt % yield. This two-step method for lignin depolymerization
could also be conducted in one-pot.
The concept of utilizing solar energy via photocatalysis under

mild conditions is one of the most intriguing strategies for lignin
depolymerization.33 In addition, electrochemical oxidation is an
environmentally benign alternative to chemical oxidations due to
the absence of chemical oxidants in the reaction media.174

Combining these two emerging technologies, Stephenson and
co-workers presented the first electrocatalysis/photoredox
catalysis sequence for the depolymerization of lignin in a two-
step, one-pot process at ambient temperature, which is
conceptually related to the works of Stahl and Westwood
(Figure 9, right).172 The work first explored different hydrogen
transfer mediators for the selective oxidation of the benzylic
position in β-O-4 lignin dimers under electrocatalytic conditions.
Then, a NHPI/2,6-lutidine-catalytic system was found to be
more efficient for the oxidation of 1-(3,4-dimethoxyphenyl)-
ethanol. The scope of this methodology was examined on a
variety of different lignin models and isolated pinewood lignin.
The two-step protocol could also be conducted on a large scale.
For example, when using 0.5 g lignin β-O-4 model compound, a

67% yield of ketone and a 67% yield of guaiacol was obtained.
When lignin isolated from pine wood with dioxane was subjected
to optimized (one-pot) reaction conditions, two monomers with
the yield of 1.30% (M21G) and 1.14 wt % (M23G) were
obtained, respectively.
This two-step methodology is suitable for dissociating

interlinking lignin units; however, researchers following this
strategy mainly focused on the scission of β-O-4 linkages. In
order to improve the efficiency of lignin conversion, the
transformation of other ether linkages should also be taken
into consideration. With this in mind, Wang and co-workers175

recently reported a two-step oxidation−hydrogenation strategy
which was also able to cleave the α-O-4 linkages. In the first step,
an organocatalytic system O2/NaNO2/DDQ/NHPI was used to
oxidize the (CαH−OH) moieties in lignin. In the second step,
the obtained preoxidized β-O-4 as well as the α-O-4 moiety was
further hydrogenated over a NiMo sulfide catalyst, leading to the
cleavage of Cβ−OPh and Cα−OPh bonds to aromatics. This
system worked well for β-O-4 lignin models; however, an
organosolv lignin isolated from birch powder gave lower
monomer yield (<5%). This sharp contrast was attributed to
new connections among isolated lignin molecules caused by
hydrogen bonds. Finally the authors found that a 32% monomer
yield, including mainly M7G/M7S and M18G/M18S, could be
obtained from birch powder.

2.1.5. Depolymerization of Lignin via an Alternative
Two-Step Processes. Corncob residue is a high volume
process waste typically left behind after the conversion of the
hemicellulose component in corncob to xylose. With this raw
material Hu and co-workers developed the selective conversion
of the lignin component in corncob residue to phenolic
monomers via a two-step process without addition of hydro-
gen.92,176 In the first step, a H2O-THF (3:7, v/v) solvent mixture
was used for the selective degradation of lignin to oligomers at
200 °C for 1 h, the extent of delignification being as high as
89.8%. In the second step, the THF soluble, oligomeric fraction
was depolymerized to phenolic monomers, with the total
monomer yield of 24.3 wt % at 300 °C after 8 h. It was
postulated that in this two-step process H2O was responsible for
the cleavage of numerous intermolecular and intramolecular
hydrogen bonds of cellulose in corncob residue under the
hydrothermal reaction conditions used, while THF dissolved the
fragments derived from lignin. Next, it was found that the
addition of Na2CO3 to this already established solvent system
further improved product yields. Selective dissolution of lignin
was achieved with 94.6% conversion in the first step, and further
treatment at 300 °C lead to a 26.9 wt % yield of phenolic
monomers with 4-ethylphenol (M6P, 10.5 wt %), guaiacol
(M24G, 6.6 wt %), and 4-ethylguaiacol (M6G, 4.0 wt %) as the
predominant product.

2.1.6. Biochemical Transformation of Lignin. In nature,
lignin is depolymerized by means of fungi and bacteria that
generally use powerful oxidative enzymes.177−179 The research
toward finding or engineering an organism that is able to
depolymerize lignin to specific chemicals is a very exciting
prospect. By using the natural aromatic-catabolizing organism
Pseudomonas putida KT2440, Beckham and co-workers180

demonstrated that certain aromatic metabolic pathways (Figure
10) can be used to convert both lignin model compounds and
lignin-enriched streams derived from pilot-scale biomass
pretreatment into medium chain-length polyhydroxyalkanoates
(M25) with high yield (34−39%). They further demonstrated
that mcl-PHAs can be depolymerized to alkenoic acids, which are
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precursors for diverse chemical applications. Subsequently,
alkenoic acids were converted to alkanes by a bimetallic catalyst.
Beckham and his group have then introduced modification of

the mentioned aromatic-catabolizing organism to demonstrate
an integrated scheme for the conversion of lignin via biologically
derivedmuconic acid (M26) to adipic acid that is one of themost
widely produced dicarboxylic acid.181 First, Pseudomonas putida
KT2440 was metabolically engineered to funnel lignin-derived
aromatics through an atom-efficient biochemical transformation
to cis,cis-muconate (Figure 10). Subsequently, cis,cis-muconic
acid was recovered in high purity (>97%) and yield (74%) by
activated carbon treatment and crystallization and hydrogenated
over Pd/C to adipic acid with exceptional conversion (>97%)
and selectivity (>97%).
2.1.7. Summary of Processes Related to Lignin

Extraction andDepolymerization. It is important tomention
that the presented novel methods and corresponding yield values
are difficult to compare since the organosolv or enzymatic lignins
that were used as starting materials have been isolated from
different plant sources through different isolation methods. The
isolation methods in some cases compare well to the organosolv
processing that would take place in a biorefinery for the
production of high purity cellulose; in other cases the
fractionation has been already adjusted to gain high quality
lignin with preferably large fraction of β-O-4 bonds. These
isolation methods have been frequently developed in the
corresponding laboratories, together with the catalytic process-
ing. Therefore, here we also give an overview of the methods as
well as isolation processes and lignin yields (Figure 11).

2.2. Catalytic Fractionation of Lignocellulose: Aromatic
Monomers from Native Lignin

Reductive catalytic fractionation (RCF) of lignocellulose or
“lignin first” processes employ heterogeneous catalysis directly
during lignocellulose fractionation, converting native lignin to
low molecular weight products.37,40,41 The advantage of
converting the lignin released from lignocellulose in situ, is that
generally higher yields and selectivity for aromatic monomers can
be obtained due to the higher fraction of cleavable β-O-4 linkages
in the yet unmodified substrate. The lignin-derived aromatic
monomers are dissolved in the reaction solvent, allowing for easy
separation from the solids that contain cellulose and the
heterogeneous catalyst. In Figure 12 and Table 1, selected
systems are summarized that use this methodology and result in
high product yield and selectivity. Variations exist related to
lignocellulose sources, the type of solvent as well as catalyst used,
and occasionally additives are used to improve the release of
lignin from the lignocellulose matrix.

2.2.1. Structure of Monomers Related to the Starting
Materials.Woody biomass as well as herbaceous plants has been
used for the production of aromatic compounds using the
reductive catalytic fractionation process. The type and structure
of these aromatic monomers is highly dependent on the original
structure of native lignins contained in these resources. As shown
in Figure 13, depolymerization of hardwood lignins generally
results in high aromatic monomer yields because these
feedstocks typically display high syringyl-to-guaiacyl (S/G)
monolignol ratios. The higher portion of syringyl units in
which both the 3 and 5 position of the aromatic ring are
“blocked” from C−C bond formation result in less robust C−C
linkages and higher proportions of easily cleavable β-O-4
linkages.37 In contrast, softwoods or herbaceous plants that
have much lower S/G ratios contain higher proportion of more
robust C−C linkages, leading to more challenging depolymeriza-
tion. However, while hardwoods result in higher monomer
yields, they typically deliver mixtures of guaiacyl/syringyl related
products. On the other hand, softwoods containing exclusively
G-type units may result in fewer, all G-type components.
Sels and co-workers188 (Table 1, entry 8) have compared the

product yield obtained during the reductive catalytic fractiona-
tion of birch (hardwood), miscanthus (grass), and pine/spruce
(softwood) lignocelluloses under identical reaction conditions
(5% Ru/C, 3 h, 30 bar H2, 250 °C) and obtainedmonomer yields
(mainlyM7G andM7S) of 50%, 27%, and 21%, respectively. In
contrast to woody biomass, herbaceous plants contain ferulate
linkages which result in methyl coumarate (M27P) and methyl
ferulate (M27G) monomers when methanol is used as
solvent;195,199 saturated products methyl 3-(4-hydroxyphenyl)-
prop ionate (M28P) and methy l 3-(4-hydroxy-3-
methoxyphenyl)propionate (M28G) will be generated by
following hydrogenation reaction at higher hydrogenation
pressure195 or longer reaction time.199

Among several different hardwoods, birch has been identified
as suitable starting material as it normally affords higher
monomer yields (32%−55%).134,186−191,198,200−203,205 This
could be attributed to its high β-O-4 linkages content as
demonstrated by Samec and co-workers (Table 1, entry 13).193

In their study, the effect of the lignin structure on the yield and
distribution of products was investigated by treating wood chips
of different origin under the same condition (Pd/C, 210 °C, Ar,
ethanol/H2O as solvent). A direct correlation between the β-O-4
content of the native lignin and monomer yield was observed
(Figure 14). This also means that hardwood species that are rich

Figure 10. Biochemical transformation of lignin to polyhydroxyalka-
noates and muconic acid.
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in β-O-4 bonds could result in higher monomer yield and more
efficient delignification in comparison with softwood species.
Song and co-workers186 (Table 1, entry 6) reported the use of

a Ni/C catalyst in the presence of alcohol as the hydrogen donor.
The established method depolymerized birch woodmeal and
resulted in amixture of 4-propylphenols (mainlyM7G andM7S)
in very high selectivity (89%) and total monomer yield of 54% at
200 °C. Abu-Omar191 (Table 1, entry 11) attempted to explore
this catalyst in the treatment of different lignocellulose sources.
Compared to poplar and eucalyptus, birch resulted in the highest

monomer yields (mainly M7G and M7S, 32%) at 200 °C.
However, when birch woodmeal was tested with the same
catalyst by using the reaction conditions reported by Song and
co-workers, only 20% monomer yield (versus 54%) was
obtained. The authors pointed out that the difference may be
attributed to the variation of biomass composition since it is
known that the structure of lignin could be different across
regions, growing periods, and even age of the lignocellulose.206

The advantage of using softwoods is that they normally deliver
higher selectivity of guaiacol type monomers [e.g., 4-

Figure 11. Summary of processes including the isolation and depolymerization of lignin.
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propylguaiacol (M7G) and 4-propanolguaiacol (M10G)],
although in a lower yield compared to hardwood, due to the
lower β-O-4 content as evidenced by Torr and co-workers185

(Table 1, entry 5) who have found that the treatment of Pinus
radiata (a species of pine native to the Central Coast of California
and Mexico) with Pd/C at 195 °C for 24 h in dioxane/water
(1:1) under hydrogen, results in high yield (∼20%) of 4-
propanolguaiacol (M10G). Due to the high product selectivity in
these systems, the further isolation of pure products is much
easier compared to using hardwoods. For example, Abu-Omar
and co-workers could obtain 4-propylguaiacol (M7G) in 100%
selectivity from softwood (WT-lodgepole pine) in the presence
of their Pd/Zn/C catalytic system.189

2.2.2. Role of the Catalyst Used. Catalysts play a central
role in the reductive catalytic fractionation process since the
hydrogenolysis of C−O bonds is metal dependent.11,21,24,32

Thus, a high degree of delignification and product yield can be
accomplished by appropriate choice of the metal catalysts. In
Figure 15, the most typical supported metal catalysts used for
reductive catalytic fractionation processes are shown and these
typically contain Ru, Pd, Rh, and Ni on activated C or
occasionally Al2O3 supports. On the basis of these results it
can be concluded that Ni,196,203 Pd,197,198 and Rh184 based
catalyst normally lead to 4-propanolguaiacol (M10G) and 4-
propanolsyringol as main products. On the other hand, when
using Ru, mainly 4-propylguaiacol (M7G) and 4-propylsyringol
(M7S) can be obtained.188 Interestingly, when Fe202 orW207 was
added to the Ni catalysts, the − OH content in the monomer
mixtures decreased dramatically and shifted the main products to
4-propylguaiacol (M7G) and 4-propylsyringol (M7S).
In order to further address the role of catalyst composition,

Sels and co-workers compared Ru/C and Pd/C catalysts under
identical reaction conditions (250 °C, 30 bar, 3 h inmethanol)190

(Table 1, entry 10). With the use of identical starting material,
the liquid product yields were very similar for both catalysts, as
expected; however, with Ru/C preferentially 4-propylphenolics
(M7G andM7S) were obtained among which 75% accounted for
4-propylguaiacol (M7G) and 4-propylsyringol (M7S), while the
use of Pd/C favored the formation of 4-propanol-derivatives with

a combined 91% selectivity toward 4-propanolguaiacol (M10G)
and 4-propanolsyringol (M7S).
Abu-Omar and co-workers208 designed an easy method to

prepare and fully recyclable Zn/Pd/C catalyst, which was far
more effective than Pd/C alone for the hydrogenolysis of the β-
O-4 lignin model compounds and the subsequent reductive
deoxygenation of the obtained aromatic fragments. Dimer as well
as polymer (all β-O-4 synthetic lignin polymer that has a Mn of
3390 and DPn of 12.1) model compounds209 were used to
confirm the rapid hydrogenolysis of the aromatic ether bonds as
well as selective removal of the hydroxyl groups on the alkyl
chains. The same catalyst was successfully applied in the
conversion of lignocellulose as well189 (Table 1, entry 9).
Three different types of poplar lignocelluloses were depoly-
merized using the Zn/Pd/C catalyst in methanol, which resulted
in 40−54% conversion of the native lignin and 4-propylguaiacol
(M7G) and 4-propylsyringol (M7S) as main products.
Surprisingly, when pine lignocellulose was used as feedstock,
100% selectivity of 4-propylguaiacol (M7G) was achieved. A
detailed mechanistic study to explain the synergistic effect
between Pd/C and ZnII system was conducted, using both lignin
model compounds and lignocellulosic biomass.210 As shown in
Figure 16, reaction of lignin model compound with Pd/C in the
absence of ZnII removes the benzylic OH group at Cα, leaving the
OH group at Cγ intact to selectively produce 4-propylguaiacol
(M7G) and guaiacol (M24G). While using the Zn/Pd/C
catalyst, a six-membered intermediate involving ZnII was formed
(confirmed by NMR spectroscopy), which resulted in the
removal of the primary OH at Cγ of the β-O-4 ether linkage.
After further hydrogenation reaction, 4-propylguaiacol (M7G)
was obtained as the main product.

2.2.3. Influence of Additives. Regarding the use of
reductive catalytic fractionation (RCF) in a biorefinery, the
extent and rate of delignification as well as the activity of the
catalyst toward depolymerization are key factors determining the
yield and chemical structure of the obtained products. Both these
processes can be strongly affected by the choice of an appropriate
catalyst. Without any additives, delignification is relatively
inefficient, generally requiring long reaction times or relatively

Figure 12. Summary of reductive catalytic fractionation processes developed to obtain aromatic monomers at high yield and selectivity. (The ball size
represents the total monomer yield).
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high temperatures and operating pressures (large energy input);
however, a near-complete delignification is desired for achieving
high monomer yields. Lignocellulose fractionation processes
usually require the addition of acid or alkaline additives in order
to enhance lignin and/or hemicellulose removal at lower
temperature and pressure.11 Therefore, such additives were
also applied in the catalytic lignocellulose fractionation (Figure
17). The effect of these additives on the catalyst and the
depolymerization step was studied.
Sels and co-workers studied the influence of H3PO4 and

NaOH additives on the Pd/C catalyzed reductive processing of
poplar lignocellulose in methanol194 (Table 1, entry 14). The

addition of small quantities of H3PO4 resulted in the
modification of the carbohydrate fraction: instead of a
carbohydrate-rich pulp and stable lignin oil, three product
streams were obtained consisting of lignin oil, cellulose pulp, and
hemicellulose alcoholysis products. The addition of H3PO4

strongly promoted delignification and resulted in lignin product
oil with narrow molecular weight distribution and a monomer
yield close to the theoretical maximum. These results are similar
to those reported by Yan and co-workers134 (Table 1, entry 4).
The yield of lignin-derived monomers and dimers both increased
when 1 wt %H3PO4 was added to the Pt/C catalyst. The addition
of NaOH under similar catalytic conditions also enhanced

Table 1. continued

aYield calculated based on lignin content in each wood. bN. R. means not reported. cNi/Al2O3 pellets in basket. dReaction operated in a flow-
through system.
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delignification but led to lower monomer yield. This has been
attributed to base-catalyzed repolymerization under these
reactions, especially when softwood comprising mainly guaiacol
units was used, whereby the free 3 position in the G-type
monomers can participate easier in condensation reactions.
Another disadvantage of using NaOH was the loss of cellulose,
through partial cellulose amorphization and/or swelling, making
the cellulose structure more accessible for catalytic processing.
Pepper and Hibbert also reported the addition of NaOH when
using Raney Ni as catalysts182 (Table 1, entry 1), and a high yield
of phenolic monomers (mainly M6G, M6S and 4-(2-
hydroxyethyl)-2-methoxyphenol M29G, 27.3%) at 175 °C
were obtained; however, the influence of base on delignification
and carbohydrate retention was not discussed.
Hensen and co-workers found that water-tolerant metal

triflates are very active Lewis acid catalysts for the cleavage of

the chemical bonds between lignin and carbohydrates, leading to
very efficient delignification and removal of a significant fraction
of hemicellulose sugars from lignocellulose, leaving behind a
cellulose-rich solid residue. The combination of Lewis and
Brønsted acids with metal-catalyzed lignin depolymerization
resulted in high aromatic monomer yields.200,201,205 In the
presence of Pd/C as the hydrogenation and Al(III) triflate as acid
catalyst, an excellent 46 wt % aromatic monomer yield was
obtained (30 bar H2, 180 °C). In order to understand possible
synergistic effects between the metal triflates and Pd/C, the
reactivity of several dimer model compounds was studied and it
was concluded that both the metal triflate as well as the Pd/C
played a role in the depolymerization step. Compared to Pd/C
alone, the addition of metal triflates facilitated the cleavage of C−
O bonds in (β-O-4) ether linkages. Further it was found that Pd/
C is able to cleave a wide range of ether linkages such as α-O-4, 4-
O-5, and β−β. Lower Pd/Al ratios resulted in 4-n-methox-
ypropylsyringol (M30S)/4-n-methoxypropylguaiacol (M30G)
as dominant reaction products, while higher ratios led to
formation of 4-propanolguaiacol (M10G)/4-propanolsyringol
(M10S) and 4-propylguaiacol (M7G)/4-propylsyringol (M7S)
products (Figure 18). The system was successfully upscaled to
100 g lignocellulose without any change in monomer yield.
However, the authors considered the relatively high price of
metal triflates for future industrial application. Therefore, strong
Brønsted acids (H2SO4 and HCl) were successfully used in
search for a cheaper acid cocatalysts201 (Table 1, entry 22), both
resulting in high yields of lignin monomers (40% and 44%) from
oak sawdust. Weaker acid (H3PO4) was also able to cleave phenyl
glycoside bonds and β-O-4 ether bonds but not the ester type
lignin-carbohydrate linkages so the products contained lower
amount of lignin monomers (26%).

Figure 13. Structures of phenolic monomers derived from native lignin of different resources. On the basis of results of ref 188. Reaction conditions: 2 g
of substrate, 0.3 g of 5% Ru/C, 40 mL of methanol, 250 °C, 3 h, 30 bar H2.

Figure 14.Correlation between the yield of phenolic monomers and the
frequency of the β-O-4moiety in native lignin for different lignocellulose
substrates. Reprinted with permission from ref 193. Copyright 2016
Wiley-VCH.

Figure 15. Structures of main products depending on type of catalyst after reductive catalytic fractionation under H2 pressure.
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Romań-Leshkov199 (Table 1, entry 20) confirmed the
promoting effect of homogeneous and heterogeneous acid
cocatalysts in the reductive catalytic fractionation of corn stover
using carbon-supported Ru and Ni catalysts at 200 and 250 °C in
methanol. In one experiment, the application of acidified carbon
support increased monomer yields to 32%, that is comparable to
other systems in which phosphoric acid (38%) was used in
combination with a Ni/C catalyst at 200 °C.
Watanabe and co-workers192 (Table 1, entry 12) treated two

types of wood species, namely eucalyptus globulus and cedar,
with a catalytic amount (<1%) of sulfuric acid in a mixture of
hydrophobic solvent (e.g., toluene) and alcohol (e.g., methanol)
to result in homovanillyl aldehyde dimethyl acetal (M31G) and
homosyringaldehyde dimethyl acetal (M31S) at 140 °C. Owing
to the presence of methanol, the aromatic C2 enol ether
intermediate obtained upon acid catalysis underwent acetal
formation in situ. This method also generated oligolignols
besides the corresponding dimethyl acetal derivatives.
2.2.4. Influence of Solvents. Solvents also play a crucial role

in delignification as well as depolymerization, influencing the
yield of phenolic monomers and dimers, and the amount of
carbohydrates retained.39,211 In this part, the impact of the
solvent on both cellulose and hemicellulose retention and
delignification efficiency will be addressed.

Sels and co-workers198 (Table 1, entry 19) studied the solvent
effects using bio-derived solvents with varying properties in the
Pd/C catalyzed reductive processing of birch wood. The extent
of delignification was found most favorable in water and
decreased with increasing apolar character of the solvents
(Figure 19). With ethylene glycol as well as methanol, high
delignification was seen. This effect was lower in cyclic ethers,
tetrahydrofuran, and 1,4-dioxane and totally disfavored in
nonpolar solvents such as n-hexane. The phenolic mono-, di-,
and oligomer yields roughly followed a similar trend. The
phenolic monomer distribution was very similar in all solvents,
mainly containing 4-propanolsyringol (M10S) and 4-propanol-
guaiacol (M10G). In contrast, the composition of the dimer
fraction obtained in the various solvents was substantially
different: in water and methanol mainly β-1- and β-5-linked
dimers with a −CH2OH-substituted ethylene bridge were
obtained, while in ethylene glycol unsubstituted analogues
were found in much greater extent.
Several earlier studies for the valorization of protolignin

described the application of ethanol/water,187 isopropanol/
water,212,213 and dioxane/water134,183−185 solvent mixtures.
Similarly, Sels and co-workers197 then studied the effect of
different MeOH/water and EtOH/water mixtures on the
reductive catalytic fractionation of poplar wood (Table 1, entries
17 and 18). It was demonstrated that the addition of water to an

Figure 16. Proposed mechanism of cleavage and hydrodeoxygenation of β-O-4 ether linkage by Pd/C catalyst and Pd/C and ZnII catalysts. Adapted
with permission from ref 210. Copyright 2016 Royal Society of Chemistry.

Figure 17. Reductive catalytic fractionation using Pd/C only or Pd/C in combination with different additives.
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alcohol solvent significantly enhanced the extraction of lignin,
and the results were similar to methanol/water and ethanol/
water solvent systems. By adding low amounts of water (≤50 vol
%), the delignification strongly increased from 52 wt % to 80 wt
%. Addition of more water however decreased the degree of
delignification, down to 65 wt % for pure water. Thus a positive
synergetic effect of mixing methanol and water with respect to
the conversion of lignin was observed. The monomer yields
showed similar trends with increasing water loading and reached
a maximal value of 44 wt % at 30 vol % water content. Similar
experiments were performed with ethanol/water mixtures as
ethanol is less harmful and more readily available from biomass
fermentation. The maximal degree of delignification for ethanol/
water (82 wt %) was almost equal to that of methanol/water (80
wt %). Additionally, the composition and structure of the pulp
was characterized showing that low water concentrations (≤30
vol %) preserved most of the carbohydrates as solid pulp;

however, with water-rich (≥70 vol %) solvents, the majority of
the hemicellulose fraction was removed, while the cellulose
fraction was largely left unaltered.
The positive effect of adding water was also confirmed by

Chen et al.196 They developed the catalytic fractionation of beech
sawdust using a Ni/C catalyst in a methanol−water cosolvent
(Table 1, entry 16). The total monomer yield increased from
39.3 wt % to 51.4 wt % when 40 vol % water was added to pure
methanol.
The ideal reductive catalytic fractionation process would

proceed in pure water; however, redeposition of the dissolved
lignin on the wood fiber surface presents a major problem, a
phenomena only seldom discussed.214 In this regard, the addition
of an organic solvent plays an important role as it retards the
redeposition of lignin onto the other biomass components after
separation.215 This is also likely the reason why higher product
yields are obtained when an organic cosolvent is used.

2.2.5. Use of Hydrogen Donors Instead of Hydrogen
Gas. Alcohols and acids that can be derived from renewable
sources can serve as hydrogen source. A seminal method
combining transfer hydrogenation and hydrogenolysis was
developed by Rinaldi and co-workers using a commercial
Raney Ni catalyst. In earlier studies, H-transfer reactions in 2-
propanol for hydrogenolysis of lignin model compounds,
organosolv lignin216 and upgrading of bio-oil217,218 were
investigated in the presence of Raney Ni and solid acids. Then
poplar lignocellulose was treated in the presence of Raney Ni in
2-propanol/water solution, and a lignin-derived oil and a solid
carbohydrate residue was obtained. The lignin bio-oil, originating
from native lignin mainly contained phenolic monomers and was
efficiently hydrodeoxygenated under low-severity conditions.
Interestingly, separation of Raney Ni could be achieved by simple
magnetic forces. The pulp obtained by this method contained
very low amount of lignin, and the authors proposed that it may

Figure 18. Reductive depolymerization of wood lignin into phenolic monomers over a tandem Pd/C and Al(III)-triflate catalyst system, at different Pd/
Al ratios. Adapted with permission from ref 200. Copyright 2017 Royal Society of Chemistry.

Figure 19. Birch delignification vs solvent polarity as described by the
reichardt parameter (ET

N). Reproduced with permission from ref 198.
Copyright 2015 Royal Society of Chemistry.
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be suitable for further upgrading to the production of biofuels,
chemicals, or papers.219

Song and co-workers186 (Table 1, entry 6) developed an
elegant method using Ni/C catalyst in the presence of alcohols as
hydrogen donors. Under optimized conditions (200 °C, 6 h, 1
MPa Ar), the native birch-wood lignin was converted into 4-
propylguaiacol (M7G) and 4-propylsyringol (M7S) with the
best selectivity of 97% for both and the total monomers yields
reached 54%. It was proposed that lignin is first fragmented into
smaller lignin species through alcoholysis reactions, and then
smaller fragments are converted into monomeric phenols over
the Ni/C catalyst.
Formic acid can be easily obtained from hydrogenation of

carbon dioxide220 and is also generated as a byproduct from
biomass degradation processes.221 Recently it has attracted much
interest in the area of green chemistry because of its potential as a
hydrogen carrier and as means of utilizing carbon dioxide. Samec
and co-workers developed the palladium-catalyzed transfer
hydrogenolysis of primary, secondary, and tertiary benzylic
alcohols by formic acid.222 On the basis of this, a tandem
organosolv and Pd-catalyzed transfer hydrogenolysis system was
devised (Table 1, entry 7).187 Surprisingly, 23% yield of 4-(1-
propenyl)guaiacol (M18G) was generated from pine lignocellu-
lose, and 49% yield of 4-(1-propenyl)syringol (M18S) was

obtained from birch wood. The generation of aryl propene from
lignin in wood could be explained by themechanism proposed by
the authors (shown in Figure 20). First, the ketone intermediate
was formed by Pd-catalyzed dehydrogenation of the benzylic
alcohol. The corresponding α,β-unsaturated ketone was then
generated by dehydration reaction. Pd with chemisorbed
hydrogen then catalyzed the following hydrogenation and
reductive cleavage reaction. Finally, the corresponding aryl
propene was generated by first hydrogenation of ketone and then
dehydration of the hydroxyl group.
Besides using hydrogen donors, it is also possible to perform

the reductive catalytic fractionation of lignocellulose under
hydrogen-free conditions as proposed by Samec and co-
workers.193 In this system, part of the lignocellulose (hemi-
cellulose) could be utilized as an internal source of hydrogen for
the reductive lignin transformations. In this efficient RCF
process, the total monomers yield was as high as 40% (M7S, 23%
and M18S, 14%) in only 2 h at 210 °C, using Pd/C.

2.2.6. Recycling of Catalysts. Recuperation of the
heterogeneous catalyst553 after reductive catalytic fractionation
is a very important aspect, considering the overall economics of
the process. It is highly desired to achieve efficient catalyst
recycling and at the same time sufficiently high quality catalyst-
free pulp, that is suitable for further applications. Several studies

Figure 20. Proposed mechanism of aryl propene formation during Pd-catalyzed hydrogenolysis, established by model compound studies. Adapted with
permission from ref 187. Copyright 2014 Wiley VCH.

Figure 21. Solutions developed for the separation of catalysts from solid residue after reductive catalytic fractionation process. (a) Separation of a
magnetic catalyst by application of magnetic field, (b) Using a microporous catalyst cage, and (c) Liquid−liquid extraction.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.7b00588
Chem. Rev. 2018, 118, 614−678

636

http://dx.doi.org/10.1021/acs.chemrev.7b00588


have reported good catalyst reusability by different separation
processes which included using ferromagnetic catalysts (Figure
21a) like Ni/C186 and Raney Ni,212 using a microporous catalyst
cage,195,203 (Figure 21b) or catalyst recovery by liquid−liquid
extraction188,200 (Figure 21c).
Song and co-workers186 (Table 1, entry 6) demonstrated that

nickel-based catalysts are highly active and selective in the
conversion of native lignin, and the best selectivity of 97% toward
monomeric phenols was achieved at 50% conversion from birch
wood lignin. The magnetic Ni/C catalyst could be easily
separated by a magnetic bar and reused. Conversion of lignin
remained as high as 50% for 4 consecutive reactions, indicating
good stability and reusability of the Ni/C catalyst. The Raney Ni
could be separated with the samemethod as well, and the isolated
yield of lignin bio-oil remained at 23 ± 2% throughout eight
recycling experiments.212

A different creative solution was developed in the group of
Abu-Omar195 that relies on the physical separation of the catalyst
from the substrate by means of a microporous catalyst cage
(Figure 21b). After reaction, over a Ni/C catalyst (Table 1, entry
15), nickel-free cellulose residue was obtained and the catalyst
was reused in three consecutive reactions. However, the ability of
the Ni catalyst to function as a hydrogenation catalyst decreased
with each reuse, and this lead to the shift in monomer selectivity.
Sels and co-workers203 developed a related method using a
reactor basket, filled with catalyst pellets (Ni−Al2O3, 1.2 × 3
mm). The commercial Ni−Al2O3 catalyst pellets in the basket
could be easily separated after reaction, resulting in monomer-
enriched lignin oil, a catalyst-free carbohydrate pulp, and the
catalyst could be quantitatively recuperated. Compared with Ni−
Al2O3 powder, the Ni−Al2O3 catalyst in the basket gave slightly
lower monomer yield but similar selectivity. A systematic
decrease in the phenolic monomer yield of ∼2% was osberved,
which showed catalyst deactivation after each recycling step;
however, a H2-treatment after 5 runs almost completely
recovered the performance of the spent catalyst. Tandem
regeneration/recycling experiments, in which the Ni−Al2O3
pellets were treated with H2 before each run, showed excellent
performance without significant changes in both monomer yields
and selectivity.
Liquid−liquid extraction of the catalyst from the solid residue

was first reported by Sels and co-workers188 (Table 1, entry 8). In
their study, the Ru/C catalyst could be recovered from the
decane phase, while the more polar carbohydrate pulp was
located at the bottom of the methanol phase. The recycled
catalyst showed a phenolic monomer yield of 48% which is
similar to the fresh catalyst (50%). Good selectivity toward 4-
propanolsyringol (M10S) and 4-propanolguaiacol (M10G) as
well as a higher C5 sugar retention of 83%was observed using the
recycled catalyst. However, the drawback of the liquid−liquid
extraction was that only a part of the catalysts could be recovered
(about 30% recovery).198

Considering the better solubility of metal triflates in water
compared to common organic solvents, Hensen and co-
workers200 recovered Al(III)-triflate from the liquid products
by using a solvent mixture of ethyl acetate and water (Table 1,
entry 21). However, Al(III)-triflate could not be fully recovered
by this workup procedure, and the total monomer yield in the
next catalytic step decreased to 37 wt % from 52 wt %.
2.2.7. Utilization of the Solid Residue. The advantages of

reductive catalytic fractionation processes are mild reaction
conditions and high selectivity for lignin-derived monomers.
Another advantage is that the carbohydrate solid residue retains

its value for the further upgrading to produce platform chemicals
(Figure 22) as long as separation from the catalyst is sufficient.

Sels and co-workers188 successfully converted the carbohy-
drate solid residue to sugar polyols in water by tungstosilicic acid
with a maximal total yield of 74%. Abu-Omar and co-workers195

targeted the platform chemicals furfural (55%) and levulinic acid
(76%) by using iron-trichloride at 200 °C.
Furthermore, when Ni/Al2O3 pellets were used as catalyst203

in a microporous cage, the carbohydrate solid residue was easily
separated with the catalysts and then subjected to a
saccharification and fermentation experiment resulting in a
total yield of 73% bioethanol, showing great promise for the total
utilization of lignocellulose. Romań-Leshkov199 subjected the
obtained sugars to enzymatic digestion, reaching conversions
above 90% in 96 h. All of the residual solids showed comparable
digestibility, producing glucan and xylan with more than 80%
yield. Samec et al.193 treated the pulp with a commercially
available enzyme mixture at 50 °C for 72 h, thereby the pulp
could be converted to glucose. The shorter treatment time of the
first catalytic fractionation step generally resulted in higher
glucose yields. The authors also found that hardwood pulps
normally resulted in higher glucose yield than softwood pulps.
This was attributed to either the difference in pulp structure
(higher lignin content in softwood pulp) or the absence of
softwood-specific hemicellulose activity in the enzyme cocktail
used.
Recently, this group reported that the pulp generated in a flow

setup consisting of a percolation reactor filled with woody
biomass and a fixed catalytic bed reactor filled with Pd/C was
enzymatically hydrolyzed to glucose in 87 wt % yield without
prior purification.204

2.3. One-Pot Catalytic Processes

One-pot catalytic processes are able to completely covert all
components of lignocellulose to a range of chemicals,
simultaneously. Ford and his research group introduced the
use of copper-doped hydrotalcite-based porous metal oxides
(PMO) for the broader use in catalytic conversion of various
lignocellulose-derived materials.223 First, the selective cleavage of
the aromatic ether bond in a simple lignin model compound
dihydrobenzofuran (DHBF) was achieved in supercritical
methanol.224 The Cu-doped PMO served multiple purposes,
catalyzing substrate hydrogenolysis and hydrogenation as well as
the methanol reforming and water gas shift reaction, allowing for
hydrogen to be in situ derived from the solvent itself. Later, under
similar reaction conditions (300 °C, ∼200 bar) poplar wood
organosolv lignin was also successfully converted to very clean
mixtures of substituted cyclohexanols.130 Importantly, for the
first time, no insoluble char was observed during the reaction.
With this catalytic system, lignocellulose was fully and rapidly
converted to a mixture of cellulose-derived (C2−C6) and lignin-
derived (C9+) aliphatic alcohols without formation of char.225

Figure 22. Possible applications of the solid residue after reductive
catalytic fractionation.
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Zhang and co-workers207 converted woody biomass directly
into two groups of chemicals over a carbon-supported Ni−W2C
catalyst. The carbohydrate fraction was converted to ethylene
glycol and other diols with a total yield of up to 75.6% while
lignin underwent selective catalytic processing into mono-
phenols (4-propanolphenols and 4-propylphenols) with a yield
up to 46.5% (based on lignin) at 235 °C under 60 bar hydrogen.

Catalyzed by layered LiTaMoO6 in the presence of Ru/C in an
aqueous phosphoric acid medium, different biomass resources
(e.g., pine sawdust, corn stalk, corncob, wheat straw, and rice
straw) were converted to gasoline alkanes, monophenols, and
related hydrocarbons.226

A wide variety of raw lignocellulose could be used for the
production of liquid alkanes by a one-pot catalytic process

Figure 23. A summary of lignin-based monomers obtained via the different catalytic processes in section 2.
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reported by Wang and co-workers. With the multifunctional Pt/
NbOPO4 catalyst, excellent mass and carbon yields were
achieved in cyclohexane as solvent.227 The same group also
developed a selective procedure to obtain arenes via direct
hydrodeoxygenation of organosolv lignin over a porous Ru/
Nb2O5 catalyst. Remarkably, this catalytic system enabled the
complete removal of the oxygen content from the lignin-derived
aromatic monomers obtained from lignin.159 The conversion of
birch lignin was nearly quantitative, and the products consisted of
C7−C9 hydrocarbons with a total mass yield of 35.5 wt % and
arenes with an exceptional selectivity of 71 wt %. All these
processes operated under relatively high temperature (>190 °C)
and resulted in complex product mixtures.

2.4. Summary of Catalytic Processes

The catalytic methods targeting selective lignin depolymeriza-
tion resulted in various defined building blocks, mainly aromatic
chemicals, which are summarized on Figure 23 (the structure, full
name, and code for each compound is also listed in Figure S1).
Naturally, the degree of defunctionalization correlates with the
reaction temperature, and the method of catalytic degradation
have great influence on the structure of the obtained monomers.
These monomers are mainly phenolic compounds with sufficient
functionality to be further upgraded to value added chemicals.
It has to be mentioned that techno-economic calculations are

available for a few products shown on Figure 23. For example,
according to Global Market Insights, with the emerging
expansion of the plastic industry, the muconic acid (M26)
market is projected to grow from 36 million $ in 2016 to 60
million $ in 2024.228 Also, adipic acid that can be obtained from
lignin is currently manufactured on a very large scale (2700000
tonnes annually) with relatively low price (1600$/t) from
petroleum.229,54 However, the conventional adipic acid
production involving nitric acid oxidation presents serious
drawbacks related to NOx emissions.229

The selling price of petroleum-derived BTX components and
phenol is currently low and difficult to compete with (benzene,
1.49$/kg; toluene, 1.38$/kg; xylene, 1.36$/kg; phenol, 1.54$/
kg). However, if a cost competitive method would emerge for
their production from lignin, there is huge potential (80000000 t
annually for BTX and 8000000 t for phenol) without the danger
of oversaturating the market.37 4-Alkylphenols may serve as
replacements for petroleum-derived phenols in applications such
as nonionic surfactants, lubricant additives, phenolic resins,
polymer additives, and agrochemicals.143,230 In order to produce
these from structures shown in Figure 23 (e.g., M6G, M6S,
M7G, and M7S), methods for selective demethoxylation are
needed. Phenol could also be produced from 4-alkylphenols
through new C−C bond cleavage reactions.231 Catechol is an
important chemical that can be used directly or as a precursor for
the production of pesticides, or other fine chemicals such as
perfumes and pharmaceuticals; however, the conventional
phenol to catechol pathways232 generally suffer from low
selectivities.233 An emerging pathway from lignin through
guaiacol would provide a much more sustainable alternative.
To this end, selective C−C bond cleavage and demethylation
methods are required. Recent developments with regard to
defunctionalization of lignin-derived aromatics to these simpler
aromatics are discussed in section 3.
Another historically inexpensive petroleum-derived bulk

chemical is styrene (1.9$/kg).51 The demand for styrene
shows a steady increase from 2.0 million metric tons (Mt) in
1970 to 3.2 million Mt in 1980 and 5.8 million Mt in 2004 in the

United States alone.234 A number of aromatic building blocks on
Figure 23 could be potentially selectively defunctionalized to
styrene; however, this will be the subject of future research.
The aromatic monomer 4-propylguaiacol (M7G) is frequently

obtained by the lignin depolymerization strategies described in
section 2. The price of such a typical monomer was recently
found 1900$/t.53

Because lignin depolymerization is an emerging research area,
selling prices for most obtained monomers are not yet available.
In the next section, we will explore the various possibilities for

the further conversion of typical lignin-derived aromatic
monomers to concrete products.

2.5. Conclusions

The large number of recent research papers summarized in
section 2 suggests that lignin depolymerization has moved to the
next level. A number of strategies exist that deliver interesting,
emerging aromatic structures. It was generally recognized that
recondensation phenomena either through lignocellulose
processing or catalytic treatment seriously effect product yields,
and a number of groups have focused on suppressing these side
reactions. For example, near theoretical yields could be achieved
by introducing formaldehyde during lignin isolation from
lignocellulose,105 or the stabilization of reactive intermediates
during acidolysis of organosolv lignin101,166,167 was described.
Catalytic fractionation methods, especially under reductive
conditions have significantly improved the product yields,
notably obtaining only a limited number of defined products
instead of complex mixtures.40

It is very difficult to provide a precise comparison of the novel
catalytic methods developed for the depolymerization of
organosolv lignin since the quality, molecular weight, solubility,
and β-O-4 content of these starting materials differ strongly
depending on the method of processing and isolation used by
each research group. Therefore, standardization regarding
method of isolation and reporting yields will be required to
provide a better comparison of efficiency of the novel catalytic
methods. A severe challenge at the moment is the lack of
standard lignin samples of reproducible quality that would be
suitable to benchmark novel methodologies. In addition,
development of novel analytical methods and standardization
of existing and emerging analytical techniques for understanding
of the structure of lignocellulose and the resulting, frequently
complex, product mixtures is desired.
Thus far, most catalytic methods have focused on tackling the

fundamental challenge of selective bond cleavage in organosolv
lignin or lignocellulose, focusing on the β-O-4 moiety. However,
a significant knowledge gap exists regarding the cleavage of other
types of linkages in lignin. In the future, more effort has to be
devoted to the development of robust and recyclable catalysts
which are tolerant to impurities. Novel catalytic systems should
enable the full valorization of all lignocellulose components.
Upscaling of depolymerization methodologies as well as

efficient methods for isolation and purification of the products,
also in larger scale and efficient catalyst recycling should be
investigated. Techno−economic analysis needs to be performed
for these processes as well as possible products that may be
derived from the emerging building blocks.

3. FUNCTIONALIZATION AND
DEFUNCTIONALIZATION STRATEGIES

The lignin-derived monomers obtained in section 2 are less
complex than lignin itself, however, keep some of the inherent
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structural features of the renewable starting material. These
structures will inspire new research directions in chemical
catalysis that will focus on (a) selective functionalization to
emerging building blocks and fine chemicals (b) selective
defunctionalization to bulk chemicals (Figure 24).
Selective functionalization strategies should target atom

economic and waste-free pathways for the direct conversion of
aliphatic and aromatic alcohols to amines or the formation of new
C−C bonds to obtain value-added products such as various
polymer building blocks or pharmaceutical intermediates in few
reaction steps, which will significantly contribute to achieving
overall sustainability and meet green chemistry goals.235 Novel
and efficient defunctionalization methods hold the promise of
producing simpler drop in molecules (e.g., BTX, phenol,
catechol, and cyclohexane), which have large market potential.
The advantage of producing compounds equivalent to those
obtained from petrochemicals is that these structures are fully
compatible with existing infrastructure.236,237

3.1. Functionalization Strategies

In this section, the possibilities for functionalization of aromatic
monomers are detailed as such reactions have not yet
comprehensively reviewed. Focus is devoted to catalytic methods
able to transformmoieties that constitute−OH as well as−OMe
groups on the one hand and side chain functionalization of
moieties on the other hand (Figure 25) related to compounds
originating from catalytic depolymerization of lignin or
lignocellulose (section 2).

3.1.1. Functionalization of Guaiacyl-Type Substrates.
To detail the types of reactions able to functionalize phenol
moiety in the presence of methoxy functionality, we have focused
on guaiacol as model substrate. The guaiacol unit is the most
abundant moiety in lignin-based monomers. However, com-
pared to functionalization of phenol alone, methods for direct
functionalization of phenol in the guaiacyl moiety are limited.

Direct Functionalization of the Phenol Moiety in Guaiacyl
Type Substrates. Metal-free synthesis of aryl amines has been
reported for the direct amination of phenols using aminating
reagents in the presence of the stoichiometric amount of the base
(Figure 26, route 1).238 Later, cross-coupling of guaiacol with aryl
boronic acids was achieved with nickel-based homogeneous
catalysts. In this reaction, initially, guaiacol was reacted with
2,4,6-trichloro-1,3,5-triazine (TCT) to give the aryl C−O
electrophile for the cross coupling with arylboronic acid (Figure
26, route 2).239 Recently, Li explored the palladium-catalyzed
direct cross-coupling of guaiacol with cyclohexylamine using
sodium formate adding catalytic amount of acid (Figure 26, route
3). A tentative mechanism was proposed for this trans-
formation.240 Efficient O-arylation of the phenol moiety in
guaiacol with aryl bromoarenes was reported using iron/copper-
catalyst in DMF as a solvent at 135 °C (Figure 26, route 4).241

Functionalization of the Phenol Moiety in Guaiacyl Type
Substrates via Derivatization. A strategy by which the free
phenol group could undergo further catalytic transformation in a
guaiacyl unit is through activation of the Ar−OH bond in the
form of pseudohalogenides. Such strategy mitigates possible
difficulties encountered due to the acidic hydroxyl group (pKA =
10) that frequently interferes with organometallic complexes and
reduces the high dissociation energy of the Ar−OH bond in
phenol. Even after derivatization, applying such pseudohaloge-
nides in catalytic transformations may result in decreased
reactivity compared to simple halogenides, due to the increased
steric hindrance and electron density induced by the methoxy
group.
Following this strategy, derivatives such as triflates, carbox-

ylates, carbamate, and tosylates were prepared and subjected to
various catalytic functionalizations, mainly relying on cross-
coupling reactions that involve the formation of C−C and C−N
bonds containing a guaiacol moiety. For instance, Buchwald
reported Pd-catalyzed amination of aryl sulfonates under mild
conditions using CS2CO3 as a base (Figure 27, route 1).

242 Later,
a microwave-assisted, palladium-catalyzed coupling of aryl

Figure 24. Summary of strategies for the conversion of lignin-derived monomers to emerging structures and bulk chemicals.

Figure 25. General strategies for functionalization of aromatic
monomers obtained upon lignin depolymerization.
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nonaflates and anilines were described using soluble and weak
amine base (Figure 27, route 2).243 In both cases, X-phos ligand
showed good activity for the amination of guaiacol derivatives.
Garg showed that aryl carbamates are attractive coupling partners
for amination reactions using inexpensive and earth-abundant
nickel catalyst (Figure 27, route 3, condition c).244 Later, the
same group developed the air-stable nickel precursor and NHC
ligand system for the amination of aryl carbamates and
sulfamates in the presence of Ph-B(Pin) as a reducing agent
(Figure 27, route 3, condition d).245 The Pd-PEPPSI catalyst was
used for the cross-coupling of aryl tosylates with morpholine. In
this work, an imidazol-2-ylidene ligand containing two
dimethylamino groups enhanced both the electronic and steric
properties of the carbine (Figure 27, route 3, condition e).246

Interestingly, Pd-catalyzed cross-coupling reactions of amides
and aryl mesylates yielded N-aryl amides (Figure 27, route 4).247

The iron-catalyzed coupling of aryl sulfamates and carbamates
with alkyl Grignard reagents was also reported, enabling carbon−
carbon bond construction (Figure 27, route 5).248 Extending
possibilities for C−C formation reactions, the Suzuki-Miyaura
coupling reactions of aryl sulfamates and carbamates with
boronic acid was developed and reported independently by Garg
and Snieckus with K3PO4 (Figure 27, route 6).249,250

Interestingly, aromatic compounds comprising the small ring
strained cyclopropyl moiety were constructed by palladium-
catalyzed cross-coupling of mesylated guaiacol derivatives with
potassium cyclopropyltrifluoroborate (Figure 27, route 7).251

Notably, Ackermann et al. developed the palladium-catalyzed
C−H activation coupling of benzoxazole with imidazole-
sulfonates (Figure 27, route 8).252

Furthermore, 2-methoxybenzonitrile could be prepared by
palladium-catalyzed cyanation of hindered aryl triflates and aryl
tosylates in the presence of Zn(CN)2

253 and K4[Fe(CN)6]
254,255

as a cyanating agent, respectively. Nickel-catalyzed cyanation of

phenol derivatives was described by Itami and Yamaguchi using
metal-free and easy-to-handle cyanating agents, aminoacetoni-
triles, for this transformation. Interestingly, dicyclohexyl-
substituted phosphine ligands showed good reactivity to achieve
this conversion effectively.256

3.1.2. Functionalization of the Side Chain. Alcohol 4-
propanolguaiacol (M10G) is omnipresent in many lignin
depolymerization methods. While catalytic methods involving
M10G were not reported to the best of our knowledge, selected
mild stoichiometric methods are known. Oxidative acetoxylation
of M10G was carried out using hypervalent iodine reagents
[phenyliodine(III) diacetoxy (PIDA)] via oxidative activation of
arenol that converted into isolable orthoquinol acetates (Figure
28, route 1).257 Alcohol M10G treated with 4-nitro benzalde-
hyde in the presence of AlCl3 yielding 1,3,4,5-tetrahydrobenzo
[c]oxepines (Figure 28, route 2).258 Silica gel supported BF3
catalyst were used for the selective acetylation of aliphatic alcohol
in the presence of phenolic hydroxyl group by treatment with
EtOAc (Figure 28, route 3)259

Furthermore, vanillin (M1G) can be obtained from lignin
through various oxidative catalytic methods. Rhodium catalyst
were used for the reductive amination of aldehyde with ammonia
to form the corresponding primary amine under mild conditions
(Figure 28, route 4).260 The same amine could be obtained in the
presence of palladium(0)-aminopropyl-mesocellular foam (Pd0-
AmP-MCF) in toluene using HCOONH4 (Figure 28, route
5).261 Oxidation of the aldehyde group to the corresponding
acids proceeds smoothly in the presence of Pd/C catalyst in
aqueous methanol and sodium borohydride and potassium
hydroxide at room temperature under air (Figure 28, route 6).262

Another method to obtain the acid is thorugh Ag2O/CuO-
catalyzed oxidation by molecular oxygen (Figure 28, route 7).263

4-(1-Propenyl)guaiacol (M18G) is another encountered
aromatic monomer from lignin depolymerization. It can be

Figure 26. Direct functionalization of the phenol moiety in guaiacol.
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oxidized to vanillin (M1G) by H2O2 using the catalyst
combination n-Bu4NVO3/pyrazine-2-carboxylic acid (Figure
28, route 8).264 4-(1-Propenyl)guaiacol (M18G) can undergo
oxidative cleavage by use of a special Co−porphyrin catalyst
CoTPyP/TN and molecular oxygen as the oxidant to yield
vanillin (M1G) (Figure 28, route 9).265 4-(1-Propenyl)guaiacol
(M18G) was also shown to undergo an interesting para-hydroxyl
group-directed remote benzylic C(sp3)−H bond oxidation, by
ligand and additive-free Cu(OAc)2-catalyzed method and EG as
solvent (Figure 28, route 10).266 The double bond in this
substrate is a promising moiety for the versatile functionalization
of this aromatic building block by olefin metathesis. For instance,
a cross-metathesis method in order to obtain the corresponding
stilbene product was developed for the 4-(1-propenyl)guaiacol
(M18G) which can be obtained from lignin after depolymeriza-
tion. Notably, the reaction proceeds under solvent-free
conditions and at low catalyst loading (0.01 mol %) within a
couple of minutes (Figure 28, route 11).267 In addition, acrylate
cross-metathesis was developed for the synthesis of α,β-
unsaturated esters (Figure 28, route 12).268 Palladium catalysts
surrounded onmolecular sieves effectively catalyzed the selective
hydrogenation of the alkene in 4-(1-propenyl)guaiacol (M18G)
(Figure 28, route 13).269 An effective continuous-flow approach
was used for the hydrogenation of 4-(1-propenyl)guaiacol

(M18G) utilizing Wilkinson’s catalyst (Figure 28, route 14).270

Furthermore, an efficient method for the selective cleavage of C−
C bond in this substrate was developed. Such reactions are
important for the controlled chain shortening of lignin-derived
monomers that are frequently bearing C3 chains, originating
from the native structure of lignin. Ethenolysis reactions of 4-(1-
propenyl)guaiacol (M18G) to styrene compounds was achieved
with ruthenium NHC complex using 1,7-octadiene as a solvent
under room temperature (Figure 28, route 15).271

3.2. Defunctionalization Strategies

With its intrinsic aromatic structure, lignin is by far the largest
volume andmost suitable renewable resource to substitute petro-
aromatics. Although several lignin-derived products are already
useful starting materials (e.g., vanillin M1G), the large scale
implementation of other lignin-derived phenolic monomers, for
instance as fuels or chemicals, requires further (bio)chemical
upgrading. Microbial transformation with or without combina-
tion with a chemo-catalytic reaction step is one promising route.
In this way, lignin fragments could be converted into adipic
acid,181,272 polyhydroxyalkanoates,206,273 alkenoic acids,206 and
C9−C14 hydrocarbons.273
Catalytic hydrodeoxygenation (HDO) to alkanes and

aromatics for direct use as liquid fuel or as feedstock for
established petrochemical processes received increasing atten-

Figure 27. Functionalization of the phenol moiety in guaiacol through protective groups, applying homogeneous catalysts.
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tion (see Table 2). In Figure 29, the desired defunctionalization
strategies applied on possible lignin-derived aromatics are
summarized. These strategies have been primarily investigated
with guaiacol and phenol as model compounds related to
upgrading of biomass-derived pyrolysis oils, and studies have
been summarized in several excellent reviews.30,274−278 Herein,
we will give a short discussion about the catalytic systems
developed after 2010.
Selective hydrogenation of aromatic rings is one of the most

important chemical processes as the generated aliphatic
derivatives are crucial starting materials in synthesis of polymers,
resins, dyes, and fine chemicals.281 This reaction is normally
operated under hydrogenation conditions with supported metal

catalysts at high temperatures.296 A suitable catalyst for the
selective hydrogenation of the aromatic ring is Pd/C. Schutyser
and co-workers279 have shown that the selectivity for 2-methoxy-
4-propylcyclohexanol could reach 90% when using lignin-
derived 4-propylguaiacol (M7G) as substrate. Compared to
Pd/C, a Ru/C catalyst gave slightly lower selectivity at 250 °C as
the formation of cyclohexanol (19%) and cylcohexane (12%) as
by products.280 It was also found that a ZrO2 supported Rh
catalyst is also selective for the aromatic ring hydrogenation in
guaiacol as model compound.280 Beller and co-workers
developed an intriguing method based on well-dispersed Ru
nanoparticles supported on a nitrogen-doped carbon material.
The method exhibited good-to-excellent activity in the selective

Figure 28. Catalytic strategies for the functionalization of the side chain of lignin-derived monomers.
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Table 2. Hydrogenation and Hydrodeoxygenation of Lignin-Derived Monomers

catalyst reactor T (oC) P (bar) solvent substrate conv. (%) product (sele. %)a ref

Pd/C batch 300 40 hexadecane 4-propylguaiacol ∼99 2-methoxy-4-propylcyclohexanol (90) 279
Rh/ZrO2 batch 250 40 decane guaiacol 100 2-methoxycyclohexanol (89) 280
Ru/C batch 250 40 decane guaiacol 100 2-Methoxycyclohexanol (60) 280
Ru@NDCs batch 60 10 isopropanol 4-propylguaiacol N. R.c 2-methoxy-4-propylcyclohexanol (86)b 281
Ru@NDCs batch 60 10 isopropanol vanillin N. R. 4-hydroxy-3-

methoxycyclohexanecarboxaldehyde
(81)b

281

Pt/C batch 200 20 H2O guaiacol ∼80 cyclohexanol (∼68) 282
Ru/C batch 200 20 H2O guaiacol ∼75 cyclohexanol (∼70) 282
RuZrLa batch 200 40 H2O guaiacol 100 cyclohexanol (91.6) 283
RuZrLa batch 200 40 H2O 4-propylguaiacol 100 propylcyclohexanol (89.5) 283
RuZrLa batch 200 40 H2O 4-propylsyringol 100 propylcyclohexanol (86.9) 283
RuZrLa batch 200 40 H2O syringol 100 propylcyclohexanol (90.8) 283
Ru/C + MgO batch 160 15 H2O guaiacol 98 cyclohexanol (79) 284
Ru-MnOx/C batch 160 15 H2O guaiacol >99 cyclohexanol (72) 285
Ru-MnOx/C batch 160 15 H2O syringol >99 cyclohexanol (70) 285
Co/TiO2 batch 200 10 dodecane eugenol 100 propylcyclohexanol (99.9) 286
Co/TiO2 batch 200 10 dodecane guaiacol 100 cyclohexanol (98) 286
Co/TiO2 batch 200 10 dodecane syringol 100 cyclohexanol (99.9) 286
NiCo/Al2O3 batch 200 50 H2O guaiacol 96.0 cyclohexanol (70.9) 287
Ni/CeO2 batch 300 40 hexadecane guaiacol 100 cyclohexanol (81) 288
Ni/CeO2 batch 300 40 hexadecane 4-propylguaiacol 100 propylcyclohexanol (82) 288
Ni/SiO2−Al2O3 batch 250 10 hexadecane 4-propylguaiacol 100 propylcyclohexanol (85) 279
RANEY@ Ni batch 80 atmd isopropanol guaiacol 100 cyclohexanol (95) 218
RANEY@ Ni batch 80 atm isopropanol syringol 95 cyclohexanol (92) 218
RANEY@ Ni batch 80 atm isopropanol 4-propylguaiacol 100 propylcyclohexanol (80) 218
RANEY@ Ni batch 120 atm isopropanol 4-allylsyringol 100 propylcyclohexanol (78) 218
RANEY@ Ni glass H-

cell
75 atm H2O guaiacol ∼99 cyclohexanol (79) 289

Ru/ACC glass H-
cell

80 atm isopropanol guaiacol ∼53 cyclohexanol (∼72) 290

Ni/SiO2 (64.2%) batch 320 170 no solvent guaiacol 96.7 cyclohexanone (∼55) 291,292
NiCu/CeO2−ZrO2 batch 320 170 no solvent guaiacol 94.2 cyclohexanone (∼60) 291,292
Raney Ni and
nafion/SiO2

batch 300 40 H2O guaiacol 100 cyclohexane (86) 137

Raney Ni and
nafion/SiO2

batch 300 40 H2O syringol 100 cyclohexane (57) 137

Raney Ni and
nafion/SiO2

batch 300 40 H2O 4-propylguaiacol 95 propylcyclohexane (91) 137

Pd/C and H3PO4 batch 250 50 H2O 4-propylguaiacol 99 propylcyclohexane (65) 136,142
Pd/C and H3PO4 batch 250 50 H2O eugenol 100 propylcyclohexane (71) 136,142
Pd/C and H3PO4 batch 250 50 H2O 4-allylsyringol 92 propylcyclohexane (58) 136,142
Pt/C and H3PO4 batch 200 20 H2O guaiacol ∼78 cyclohexanol (∼85) 282
Pd/C and HZSM-5 batch 200 50 H2O guaiacol 100 cyclohexane (85) 139
Pd/C and HZSM-5 batch 200 50 H2O 4-propylguaiacol 97 propylcyclohexane (90) 139
Pd/C and HZSM-5 batch 200 50 H2O eugenol 97 propylcyclohexane (90) 139
Pd/C and HZSM-5 batch 200 50 H2O 4-allylsyringol 95 propylcyclohexane (80) 139
Ru/HZSM-5 batch 200 50 H2O guaiacol 99.9 cyclohexane (93.6) 293
Ru/HZSM-5 batch 200 50 H2O syringol 76.2 cyclohexane (57.2) 293
Ru/HZSM-5 batch 200 50 H2O 4-propylguaiacol 99.6 propylcyclohexane (89.5) 293
Ru/HZSM-5 batch 200 50 H2O 4-allylsyringol 99.9 propylcyclohexane (85.4) 293
Rh/SiO2−Al2O3 batch 250 40 decane guaiacol 100 cyclohexane (57) 280
Ru/SiO2−Al2O3 batch 250 40 decane guaiacol 100 cyclohexane (60) 280
Ni/HZSM-5 batch 250 50 H2O guaiacol 100 cyclohexane (74) 138
Ni/HZSM-5 batch 250 50 H2O 4-propylguaiacol 98 propylcyclohexane (84) 138
Ni/HZSM-5 batch 250 50 H2O eugenol 100 propylcyclohexane (80) 138
Ni/HZSM-5 batch 250 50 H2O 4-allylsyringol 93 propylcyclohexane (78) 138
Ni/SiO2−ZrO2 batch 300 50 dodecane guaiacol 100 cyclohexane (96.8) 294
Ni/SiO2 (55.5%) batch 320 170 no solvent guaiacol 97.5 cyclohexane (∼62) 291,292
NiCu/Al2O3 batch 320 170 no solvent guaiacol 80.2 cyclohexane (∼52) 291,292
NiCu/SiO2 batch 320 170 no solvent guaiacol 87 cyclohexane (∼62) 291,292
NiCuLa/ZrO2−SiO2 batch 320 170 no solvent guaiacol 85.6 cyclohexane (∼63) 291,292
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hydrogenation of arenes without promoting extensive hydro-
deoxygenation.281 This method was also efficient in the
hydrogenation of realistic lignin-derived aromatic compounds
while preserving the phenyl- and benzyl C−O bonds.
Another interesting route for defunctionalization of lignin-

derived monomers is the selective hydrodeoxygenation to
oxygenated products such as cyclohexanols that should involve
a combination of hydrodemethoxylation and aromatic ring
hydrogenation with retention of the hydroxyl group. Cyclo-
hexanol is an important precursor of polymer building blocks like
caprolactam, caprolactone, and adipic acid.297,298 Alkyl-sub-
stituted cyclohexanols could open a new way for synthesizing
alkylated variants of these polymer building blocks since the
presence of alkyl groups allows for tuning the polymer’s physical
properties such as crystallinity, melting point, elasticity, etc.279,288

Both noble and non-noble metal catalysts have been used and
high cyclohexanol selectivity was mainly achieved with Pt,282

Ru,282−285,290 Co,286,287 and Ni218,279,287−289 based catalysts.
Methods using Pt/C and Ru/C give similar selectivity (68% vs
70%) in the hydrogenation/deoxygenation of guaiacol at 200
°C.282 Furthermore, a bifunctional RuZrLa catalyst showed
significant activity and selectivity for the hydrogenation/
deoxygenation of both guaiacol and lignin-derived monomers.283

Over 88% yield of cyclohexanols were obtained from lignin-
derived methoxyphenols after hydrotreatment at 200 °C for 4 h
in water. Nakagawa and co-workers successfully used a Ru
catalyst combined with MgO at significantly decreased reaction
temperature.284 Addition of MgO to the reaction media
suppressed the unselective C−O dissociation, and cyclohexanol
and methanol were obtained in high yield (>80%) at 160 °C.
However, MgO was not stable during the reaction when using
water as solvent and acidic substrates. An optimized catalyst
system, namely Ru-MnOx/C,

285 was found to be an easy-to-
handle alternative to promote selective demethoxylation. This

catalyst gave cyclohexanol from guaiacol in higher yield than Ru/
C combined with MgO.
Several groups focused on using less expensive, Co- or Ni-

based catalysts, which are familiar to industry. Liu et al.286

investigated a series of cobalt-based catalysts on various supports
for the catalytic conversion of lignin-derived phenols to
cyclohexanols. Among these catalysts, Co/TiO2 showed the
best HDO activity and high yield of propylcyclohexanol
(>99.9%) was achieved under 1 MPa H2, 200 °C for 2 h. Zhou
and co-workers287 studied the catalytic activity of γ-Al2O3 and
ZSM-5 (Si/Al = 25, 38) supported non-noble metal (Co and/or
Ni) catalysts for the HDO of guaiacol. The introduction of Co
into Ni/γ-Al2O3 could enhance the acidity, reducibility, and
metal particle dispersion of the catalyst, which resulted in
increase of catalytic activity. The maximum guaiacol conversion
was observed when water was used as solvent with a selectivity of
70.9% of cyclohexanol. Sels et al. developed several supported Ni
catalysts, such as Ni supported on CeO2 for the conversion of
lignin-derived guaiacols into the corresponding cyclohexanols in
yields above 80%.288 Furthermore, using commercial base metal
catalyst Ni/SiO2−Al2O3 a propyl-cyclohexanol yield of 85% was
obtained at 250 °C.279 However, the drawback of using Ni/
SiO2−Al2O3 was shown to be methane formation.
Raney nickel is widely used in current industrial processes

owing to its low cost, easy preparation, and high activity.299Wang
and Rinaldi pioneered the use of isopropanol as H-donor and
solvent in combination with Raney Ni for the defunctionalization
of lignin monomers.218 Under low-severity conditions (80−120
°C), excellent yield (78%−95%) of cyclohexanols was obtained.
Another promising strategy to achieve high yield of cyclo-

hexanols at mild conditions was the use of Raney Ni as electrode
in electrocatalytic hydrogenolysis/hydrogenation.289 Selective
cleavage of aryl ether (C−O) bond followed by reduction of the
aromatic ring at ambient pressure and 75 °C was observed in
aqueous solution. Another example of a hydrogenation/
hydrodeoxygenation strategy was using a Ru/ACC electro-
catalyst.290 Similar electrochemical efficiencies for reducing
guaiacol, phenol, and syringol were seen; however, temperature
was found to influence the electrochemical efficiency. Guaiacol
reduction increased from 8% at 25 °C to 17% at 50 °C but then
dropped back to 10% at 80 °C. Solution pH also affected catalyst
activity and product selectivity, with acidic conditions favoring
guaiacol conversion, electrochemical efficiency, and cyclo-
hexanol selectivity.
Despite their importance as precursor for the polymer

intermediate caprolactone,300 cyclohexanones are rarely re-
ported products in one-pot catalytic conversion of lignin-derived
monomers. Cyclohexanones can be obtained from cyclohexanols
by dehydrogenation reaction using Cu/ZrO2

288 or as an
intermediate in the isomerization of the partial-hydrogenation
product cyclohexenol (ketone/enol tautomerism).292 When
testing the performance of several Ni-based catalysts obtained
by coprecipitation and impregnation techniques in the hydro-

Table 2. continued

catalyst reactor T (oC) P (bar) solvent substrate conv. (%) product (sele. %)a ref

Ru/CNT batch 220 50 dodecane/H2O guaiacol N. R. cyclohexane (92)e 295
Ru/CNT batch 220 50 dodecane/H2O 4-propylguaiacol N. R. propylcyclohexane (94)e 295
Ru/CNT batch 220 50 dodecane/H2O eugenol N. R. propylcyclohexane (94)e 295
Ru/CNT batch 220 50 dodecane/H2O 4-allylsyringol N. R. propylcyclohexane (80)e 295
aNumbers in brackets are selectivity determined by GC. bIsolated yield. cN. R. means not reported. datm means atmospheric pressure at room
temperature. eNumber in brackets means GC yield.

Figure 29. Strategies for defunctionalization of lignin-derived
monomers.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.7b00588
Chem. Rev. 2018, 118, 614−678

645

http://dx.doi.org/10.1021/acs.chemrev.7b00588


deoxygenation of guaiacol, Bykova et al.292 found that large
amount of cyclohexanone can be obtained at 320 °C from 1-
cyclohexen-1-ol through keto−enol tautomerism.
Another defunctionalization strategy is the selective cleavage

of C−O bonds (either demethylation or demethoxylation of full
defunctionalization) without hydrogenation of the aromatic ring
and yielding catechols, phenols, and benzenes, respectively,
which are important aromatic compounds. These processes are
generally operated at high temperatures (>300 °C), frequently in
continuous flow reactors to avoid hydrogenation of aromatic
ring.
Total hydrodeoxygenation of bioderived phenols to hydro-

carbons is the most effective method for upgrading of bio-
oils.30,274,275,277 Many studies were conducted to develop
catalysts with high catalytic activity and stability, low hydrogen
consumption, and high selectivity toward direct removal of
oxygen with the aim to convert oils originating from catalytic
pyrolysis processes.2,301 Most of the studies use guaiacols and
syringols as the model compounds and guide for the potential
upgrading of lignin-derived monomers.
Lercher and co-workers developed a series of catalytic

methods for the one-pot hydrodeoxygenation through multistep
reactions consisting of hydrogenation, dehydration, or hydrolysis
and hydrogenation of functionalized aromatics to alkanes, which
use the combination of a hydrogenation catalyst (Raney Ni, Pd/
C or Pt/C) with a homogeneous/heterogeneous acid (H3PO4,
Nafion, or HZSM-5).136,137,139,142 Excellent cycloalkane yields,
above 80%, were reported from lignin-derived monomers in the
case of Pd/C and HZSM-5. Another strategy is the use of solid
acid support for the development a bifunctional catalyst such as
Ru supported on HZSM-5, which exhibited excellent hydro-
deoxygenation activity toward the conversion of lignin-derived
phenolic monomers.293 It was shown that both the presence of
Brønsted acid site supplied by HZSM-5 for dehydration and the
metal Ru for hydrogenation were crucial to achieve good
selectivity. Several lignin-related C6−C9 phenolic monomers
could be converted to cyclohexanes in high yield at 200 °C. The
high activity of this catalyst was attributed to the strongly acidic

site on the surface of HZSM-5 as other acidic support like SiO2−
Al2O3 gave much lower yield (∼60%) with Ru and Rh at even
higher temperature (250 °C).280 Other than noble metal
catalysts, bifunctional Ni catalyst also showed excellent activity
for hydrodexoygenation of lignin-derived monomers. However,
higher temperature (250−320 °C) and pressure (50−170 bar)
were normally required.291,292,138,294

Most of the systems for HDO of phenols were conducted in a
single solvent such as water or n-decane. Biphasic systems have
notable advantages in protecting the products from further
degradation by extraction/separation into another phase. In
2015, Fu and co-workers295 found that biphasic systems with the
combination of water and dodecane used showed superior
advantages over monophasic systems in HDO reactions. By
means of a Ru/CNT catalyst designed by this group, full
conversion of eugenol and 98% alkane selectivity (94%
propylcyclohexane and 4% propylcyclopentane) was achieved
at 220 °C and 50 bar H2.
Catechol is an important chemical that can be used directly or

as a precursor for the production of pesticides or other fine
chemicals such as perfumes and pharmaceuticals.233 So far, only a
few synthetic procedures exist for transformation of substituted
phenols into catechols; however, these normally suffer from low
selectivity, in particular for meta-substituted phenols.232 Instead
of using phenols, a more sustainable route from lignin via
guaiacol and subsequent demethylation to catechol would be
desired. A method for demethylation of aryl methyl ethers using
iodocyclohexane in DMF under reflux condition was described
by Zuo et al.316 who obtained catechol with 91% isolated yield in
4 h from guaiacol. Waghmode et al. developed a method for
selective cleavage of aryl methyl ethers in the presence of a protic
acid (HBr) and a catalytic amount of phase-transfer catalyst
(Aliquat-336).232 Another method that provided full conversion
of guaiacol and 89% yield of catechol was developed reported by
Yang et al. This system relied on heating guaiacol in hydrochloric
acid solution at 280 °C under 10 bar hydrogen.317 Generally, the
selective demethylation of guaiacols with heterogeneous catalysts
is very challenging due to the more favorable demethoxylation

Table 3. From Lignin-Derived Monomers to Catechol, Phenol, and Benzene by Heterogeneous Catalysts

catalyst reactor T (°C) P (bar) solvent substrate conv. (%) product (sele. %) ref

α-MoC1−x/AC batch 340 atm H2O guaiacol 36 catechol (94) 302
MoO2/AC batch 340 atm H2O guaiacol 33 catechol (93) 302
MoN/SBA15 batch 300 50 decalin guaiacol 44 phenol (26) 303
MoN-A batch 300 50 decalin guaiacol 95 phenol (90) 304
1Mo/C fixed-bed 350 40 no solvent guaiacol 74.1 phenol (78.5) 305
NiMo/Al2O3 packed-bed 450 20.7 no solvent 4-propylguaiacol ∼95 4-propylphenol (∼70) 306
α-MoC1−x/AC batch 340 atm tetralin guaiacol 53 phenol (84) 302
MoWBOx/AC fixed-bed 400 40 methanol vanillic acid + syringic acid 100 p-hydroxybenxoic acid (71.6) 307
MoCx/ C batch 300 5 hexane guaiacol 99 phenol (76) 308
MoCx/ C batch 300 5 hexane syringol 91 phenol (37) 308
NiMo/Al2O3 packed-bed 450 20.7 no solvent 4-propylguaiacol ∼95 4-propylphenol (∼70) 306
Re/ZrO2 batch 300 50 decalin guaiacol ∼50 phenol (∼35) 309
WP/SiO2 packed bed 300 50 no solvent guaiacol 60 phenol (100) 310
Au/TiO2 batch 300 65 toluene guaiacol 100 phenol (49.6) 311
CoMoS fixed bed 300 40 no solvent guaiacol 50 benzene (42) 312
CoMoS/TiO2 fixed bed 300 40 no solvent guaiacol ∼95 benzene (∼60) 313
10Mo/C fixed-bed 400 40 no solvent guaiacol 100 benzene (83.5) 305
Ni2P/SiO2 fixed-bed 300 1.4 no solvent guaiacol 99.5 benzene (71.9) 314
Ni2P/SiO2 packed bed 300 50 no solvent guaiacol 80 benzene (60) 310
Ru/C fixed-bed 400 40 no solvent guaiacol 100 benzene (69.5) 305
Ru/LaCO3OH batch 240 2 H2O guaiacol 95.6 benzene (∼79) 315
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reaction that generally yields phenol as the main product. As
shown in Table 3, the heterogeneous catalyst α-MoC1−x/AC is a
unique choice for obtaining catechol in high selectivity, albeit at
lower conversion values.
4-Alkylphenols are interesting candidates to serve as replace-

ments for petroleum-derived phenols in several applica-
tions143,230 and can also be used as the intermediates for the
production of phenols.231 Several groups have studied the
possibilities to obtain phenols by demethoxylation of guaiacols
(Table 3) including the most widely applied molybdenum-based
catalysts302−308 as well as Re/ZrO2,

309 WP/SiO2,
310 and Au/

TiO2;
311 however, these often suffer either from low activity or

low selectivity.
Benzene could be produced from guaiacol by total C−O bond

cleavage generally through phenol as intermediate. Molybde-
num-based catalysts including CoMoS,312 CoMoS/TiO2

313 and
10Mo/C305 and Ni2P-supported catalysts310,314 were success-
fully applied in this reaction to give high benzene selectivity. This
reaction could also be successfully performed with an increase in
reaction temperature to 400 °C by using Ru/C as catalyst.305

Notably, in combination of Raney Ni with HZSM-5, Rinaldi
and co-workers217 pioneered the selective formation of fully
defunctionalized aromatics from model compounds and
pyrolysis oil components, via a unique transfer hydrogenation/
dehydration/rearomatization sequence under mild conditions.
Recently Zhao and co-workers315 synthesized a hydro-

thermally stable Ru/LaCO3OH catalyst in which Ru nano-
particles were partially encapsulated by LaCO3OH by a strong
metal−support interaction. This conferred high catalyst stability
and activity for the hydrogenolysis of several biomass-derived
model compounds. Under aqueous conditions at 240 °C and 0.2
MPa H2, 75.8% yield of benzene was obtained from guaiacol at
nearly full substrate conversion. Notably, high conversion
(>95%) and >70% benzene selectivity was found even after
eight runs, highlighting the exceptional stability of this catalyst.

3.3. Conclusions

Several selective functionalization and defunctionalization
strategies were reported that could be potentially applied in
the downstream processing of lignin-derived monomers.
However, a significant knowledge gap exists due to the
predominant use of model compounds that are significantly

simpler in structure than the monomers currently found from
lignin depolymerization methods (Figure 23). This necessitates
the study of the existing methods using more complex substrates
as well as the development of novel methods that would allow for
good functional group tolerance.
Regarding the functionalization of the phenol moiety in

guaiacol derivatives, new catalysts are desired that would allow
one to directly install C−C and C−N bond starting from
aromatic alcohol moieties (especially in the vicinity of a methoxy
substituent) since known transformations generally use protect-
ing groups (Figure 27) which decrease the overall atom economy
of such reactions. In addition, new catalysts are needed for the
direct functionalization of an aromatic methoxy group, which is
highly abundant in lignin-derived monomers. Regarding 4-
propanolguaiacol (M10G) that can be obtained in high yield
from lignin, the functionalization of the aliphatic alcohol in the
presence of a phenol needs to be investigated, since the
availability of such methods is very limited.
Several powerful methods have been identified for the selective

defunctionalization of simpler lignin-derived aromatics that will
be further evaluated and potentially upscaled. Future research
should focus on the development of non-noble metal catalysts
that might operate at milder reaction conditions as well as the
development of one-pot, tandem depolymerization and
defunctionalization strategies to obtain bulk chemicals directly
from lignin.

4. LIGNIN-DERIVED MONOMERS TO BIOBASED
POLYMERS OR POLYMER BUILDING BLOCKS

The world plastics production has markedly increased from 230
Mton/year in 2005 to 322Mton/year in 2015.318,319 Nearly 50−
55% of this quoted polymer production volume is attributed
solely to polyethylene and polypropylene, which currently are
not easily or cost effectively bioderivable,320 although second
generation bioethanol serves as promising future alternative.
Interestingly, biobased polyethylene can be produced via
ethylene by ethanol dehydration (Braskem Company, plant
production capacity of 200000 tons per year started in 2010 in
Brazil),321 even though this currently appears most feasible in
places where the cost of sugars is low, such as Brazil.322 Several
commercial examples of biobased polymers are available but

Figure 30. General strategies for production of polymers from lignin.
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related mostly to different kind of polymers such as starch
plastics,323 poly(lactic acid) (PLA, Natureworks LCC), poly-
hydroxyalkanoate (PHA, Metabolix and Archer Daniels Midland
Company), polyamide 11 (PA11, Arkema), partially biobased
epoxy resins (Solvay Epiceroland DowGTE technologies), or
polyethylenefuranoate (PEF, Avantium, pilot scale).324 In spite
of these existing examples, only a small fraction of the worldwide
manufacture of polymers is bioderived (1.7 Mton/year in

2014).325 Thus, new strategies are needed in order to facilitate
the production of polymers from renewable resources.326

To this end, the search of suitable biobased starting materials
for polymer production and, specifically, the development of
biobased polymers from lignin or lignin-derived monomers has
drawn an enormous interest in recent years.325,327

Lignin can be directly used for the production of
polymers325,327−330 (e.g., polyurethanes, phenol−formaldehyde
resins, polyesters, and phenolic and epoxy resins) typically by

Figure 31. Polymers produced from lignin-derived monomers by functionalization of only the phenol moiety or both the phenol moiety and the side
chain.
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functionalization of the hydroxyl groups in its structure or used as
copolymers, blends, and composites.331,332 The limitations of
these applications are related to the relatively ill-defined
structure/composition of the starting material, where the
properties of the obtained polymers may depend on the origin
of lignin, method of extraction, and fragmentation processes
present during synthesis and functionalization (Figure 30).333

Another limitation is that lignin is often used in minor amounts
for these blends and composites since themain building blocks of
these polymers still originate from petroleum.

Lignin-derived monomers, however, are well-defined small
molecules, frequently aromatic in nature.332 This aromatic
structure provides valuable properties such as rigidity, hydro-
phobicity, as well as resistance against fire, essential for many
applications. They are preferably obtained through a mild lignin
depolymerization methodology, retaining most of the function-
ality present in the natural feedstock, which results in a highly
modular structure and various possibilities for further function-
alization. Indeed, numerous novel structures and polymers have
been produced in the recent years.327,328,330,334 Herein, we will
give a summary of methods that were used to transform lignin-

Figure 32. Polymers produced from lignin-derived monomers by functionalization of the aromatic ring or only the side chain.
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derived monomers to polymers. Further, we specifically describe
the properties of reported polymers that were produced recently
(2016−2017). The properties of polymers published before
2016 are summarized in the excellent review by Cramail and co-
workers333 and others.327,330,335

4.1. From Lignin-Derived Aromatic Monomers to Polymers

Figure 31 and Figure 32 show the various possibilities of
functionalization of lignin-derived aromatic monomers (dis-
cussed in section 2), including modification of the phenol
functionality and aromatic ring functionalization. In addition, the
side chain can participate in several reactions depending on its
nature, which will be influenced by the applied depolymerization
method.
4.1.1. Modification through the Phenol Functionality

and/or Side Chain. Several polymer materials were reported by
modifying the phenol group only (Figure 31). For example by
functionalization with acrylates (route 1), several polyacrylates
(route 1b) were obtained from vanillin (M1G), guaiacol
(M24G), or 4-alkylguaiacols336−338 or vinyl ester resins (route
1a) by using a cross-linker.339−342 Furthermore, the synthesis of
epoxy resins was reported using vanillin (M1G), vanillic acid
(M20G), vanillyl alcohol,343−347 or 4-(1-propenyl)guaiacol
(M18G)348 from direct functionalization of both phenol and
the side chain (route 2 and 3). Abu-omar and co-workers
produced several novel biobased epoxy nanocomposites from 4-
propylguaiacol (M7G) by functionalization of phenol and
−OMe group.349,350 Next, benzoxazines were produced with a
one-pot method from phenolic derivative, primary amine, and
formaldehyde (route 4), which underwent ring-opening
polymerization (route 4a) to polybenzoxazines.351−354 Biobased
poly(ether benzoxazoles) could be obtained through reacting
vanillin (M1G) with 5-fluoro-2-nitrophenol followed by hydro-
genation and thermal treatment (route 5 and 5a).355 Aromatic
dialdehydes prepared by the reaction of lignin derivatives with
1,2-dibromoethane using sodium hydroxide and potassium
iodide in water (route 6) were condensed with pentaerythritol
(route 6a) and ditrimethylolpropane (route 6b) to produce a
new class of cyclic polyacetal ether thermoplastics.356 Poly-
(dihydroferulic acid), which exhibits thermal properties func-
tionally similar to those of polyethylene terephthalate (PET),
could be synthesized from vanillin (M1G) and acetic anhydride
(route 7 and 7a).357 Firdaus et al.358 prepared bis-unsaturated
esters from M1G and fatty acids (route 8). Then all the
monomers were polymerized via the acyclic diene metathesis
(ADMET) or thiol−ene methodologies (route 8c). Polyalkyle-
nehydroxybenzoates and poly(ether urethane)s were produced
by functionalization of only the phenol group (route 9 and 9a)359

or both phenol and carboxyl groups (route 10 and 10a)360 in
vanillic acid. Although ferulic acid (FA) is not included in the
product table from depolymerization strategies, we have also
included related routes. Various polyesters could be produced
from FA.361 For instance, FA could be transformed to a α,ω-
diene derivative in a two-step sequence (route 10), with
subsequent preparation of the respective polyesters via
ADMET reaction (route 11a). Following the same method,
several copolymers were also produced but reacting with fatty
acid monomers (route 11b) or via thiol−ene addition with 1,4-
butanedithiol (route 11c). After reaction with propargyl bromide
by using FA, a bisacetylenic monomer was obtained (route 12),
and it was polymerized by the oxidative coupling polymerization
to obtain a novel polyetherester (route 12a).362 Uhrich and co-
workers reported the synthesis of polyanhydride esters. In this

study, a diacid monomer was first synthesized (route 13) and
then polyanhydride esters were obtained by polycondensation
with triphosgene (route 13a). Meier and co-workers363

synthesized a series of novel copolyesters with different ratios
of aliphatic (obtained from oleic and erucic acid via thiol−ene
addition) and aromatic (hydroxyethylated methyl ester deriva-
tive of ferulic acid) monomers (route 14 and 14a).

4.1.2. Modification through the Aromatic Ring or Side
Chain. Divanillin. Divanillin, which can be easily synthesized by
oxidative dimerization of vanillin by horseradish peroxidase
(route 15),364 is a useful intermediate for synthesis of other
polymer building blocks. For instance, Razzaq and co-workers
reacted divanillin with alkyl diamines (1,2-diaminoethane, 1,3-
diaminopropane, and 1,6-diaminohexane) in ethanol; after reflux
the Schiff base polymers with a degree of polymerization between
25 and 32were obtained (route 15a).365 Divanillin was converted
to α,ω-dienes and then a conjugated polymer was obtained by
ADMET polymerization (route 15b).366 Vanillin is also a useful
chain extender after its dimerization and further modification
with ethanolamine in the synthesis of biobased polyurethanes
(route 15c).367 These vanillin-derived diimines were converted
into conjugated pyrrole-based polymers by a transformation
exploiting a catechyl-substituted phosphonite-mediated multi-
component polymerization with commercial diacid chlorides
and simple alkynes or alkenes (route 15d).368 Importantly, this
study reported, for the first time, a cross-conjugated polymer
composed of both components of lignocellulosic biomass by
using vanillin and furan-based acid chlorides. Polyvanillin, which
is a functionalized polymer using totally renewable resources can
be simply synthesized by electrochemical reductive polymer-
ization of divanillin in aqueous sodium hydroxide (route 15e).369

Sustainable Bisphenols. To generate thermoplastics such as
polycarbonates and thermosetting resins from lignin-derived
monomers, bisphenols are usually required. There are two
strategies to produce bisphenols using lignin-derived monomers
as starting materials. The first is a coupling on the aromatic ring
of two phenolic monomers with formaldehyde,349,370−373 by
enzymatic dimerization366,374 or electrophilic aromatic con-
densation375 (route 16). An alternative strategy is the
functionalization of the side chain, which includes formation of
stilbenes267,376,377 or coupling of two phenolic monomers with a
cross-linker378−382 (route 17). After obtaining the bisphenol
precursor, a series of polymers including polycarbonates,370,376

epoxy resins,378,380,382 polyesters,374,379,383 polycyanu-
rates,370,372,376 poly(carbonate−amide)s,384 and liquid crystal
materials381 could be produced with simple modification of the
bisphenol structure.

Diverse Side Chain Modifications. Polymers with only
functionalization of the side chain are also possible. Miller and
co-workers reported a series of polyvinyl aromatic acetals, which
were obtained from the condensation of commercially available
poly(vinyl alcohol) (PVA) and sustainable aromatic aldehydes
including vanillin (M1G), syringaldehyde (M1S), and other 11
aldehydes (route 18).385 Polymeric nanoparticles based on
poly(vanillin oxalate) (PVO), were developed by Lee and co-
workers (route 19).386 These nanoparticles presented great
potential as novel antioxidant therapeutics and drug delivery
systems. Roger and co-workers synthesized the acrylamide
derivative from vanillin by a three step process, and then the
obtained acrylamide monomer was polymerized by free radical
polymerization (route 20).387 Decarboxylation of ferulic acid
results in 4-vinylguaiacol, which was easily and quantitatively
transformed into novel-biobased styrene monomers by Take-
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shima and co-workers388 (route 21). Herein the phenolic
functions in 4-vinylguaiacol and 4-vinylcatechol were protected
with silyl groups and subjected to controlled radical polymer-

ization to give a series of polymers with controlled molecular
weights.

Table 4. Thermomechanical Properties of Lignin Derivative-Based thermosets

entry resins lignin derivatives Tg (°C) Tdec (°C)
curing

procedure ref

1 epoxy resins 4-(1-propenyl)guaiacol (M18G) 78−120a Tmax = 322−412e 150 °C for
1 h

348

2 epoxy resins mixtures of phenolics 99−113b Tmax = 261−303d (1) 110 °C
for 1 h

343

(2) 150 °C
for 1 h

3 epoxy resins 4-propylguaiacol (M7G) 40−139 (Tα)
c T5% = 193−297d (1) 55 °C

for 2 h
349

(2) 75 °C
for 2 h

(3) 95 °C
for 2 h

4 epoxy resins hydrogenolysis products derived from softwood lignin
(mixture used)

59−135a T5% = 220−325d (1) 40 or 80
°C for 24 h

394

(2) 120 °C
for 24 h

(3) 150 °C
for 24 h

5 epoxy resins vanillyl alcohol and guaiacol (M24G) 100−158 (Tα)
c Tmax = 352−392d (1) 90 °C

for 5 h
375

(2) 160 °C
for 2 h

6 epoxy resins vanillyl alcohol and guaiacol (M24G) 81−103c Tmax = 345−365f (1) 90 °C
for 5 h

395

(2) 160 °C
for 2 h

7 epoxy resins 4-hydroxybenzaldehyde, vanillin (M1G), syringaldehyde
(M1S), 4- methylguaiacol, 4-propylguaiacol (M7G), 4-

methylcatechol

82−167 (Tα)
c T5% = 220−269d (1) r.t. for

8 h
396

(2) 60 °C
for 4 h

(3) 80 °C
for 4 h

8 epoxy network 4-propylguaiacol (M7G) + deprotected lignin 130−141 (Tα)
c T5% = 273−297d (1) 55 °C

for 2 h
397

(2) 75 °C
for 2 h

(3) 95 °C
for 2 h

9 epoxy resins vanillin (M1G) 166−214a T5% = 286−356e (1) 160 °C
for 2 h

382

(2) 200 °C
for 2 h

(3) 230 °C
for 2 h

10g epoxy resins lignin-derived C2-acetals 67−134d N. R. N. R. 378
11 cyanate ester resins 4-propylguaiacol (M7G) 193−231h T5% = 375−389d (1) 150 °C

for 1 h
370

(2) 210 °C
for 24 h

(3) 280 °C
for 4 h

12 vinyl ester resins phenyl methacrylate, 2-methoxyphenyl methacrylate, and 4-
propyl-2-methoxyphenyl methacrylate

125−155 (Tα)
c Tmax = 392−427d (1) 90 °C

for 4 h
341

(2) 180 °C
for 2 h

13 poly-vanillin
methacrylate

vanillin methacrylate 102a 250−480 °Cd,j 65 °C for 6 h 340

14i polymer on the
methacrylate-modified

Fe3O4 NPs

vanillin methacrylate N. R. N. R. N. R. 342

aDSC under nitrogen. bDSC under air. cDMA. dTGA under nitrogen. eTGA under air. fTGA under argon. gCuring made directly during DSC
analysis and occurring around 140 °C. hTMA under nitrogen. iMicroshperes used as adsorbents, thermal properties not reported. jDecomposition
temperature range.
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4.2. Properties of Polymers Obtained from Lignin-Derived
Monomers

4.2.1. Lignin-Derived Thermosets. Epoxy Thermosets. A
thermoset polymer is a material undergoing degradation with
increasing temperature instead of behaving like a fluid.389

Thermosets represent less than 20% of plastic production390

and are usually synthesized from a polymeric chain reacting with
a cross-linker in order to provide a three-dimensional
structure.391 These polymers are extremely interesting due to
the possibility of easily varying their properties, which not only
depend on the nature and molecular weight of the polymer
material but also on the cross-linking density that is adjustable.
Thus, a broad range of different properties can be potentially
reached.391 In fact, themosets have been employed in several
applications such as packaging, electronics, coatings, adhesives,
and composites thanks to their usually high modulus, strength,
and good thermal and chemical resistance.392 Among the various
classes of thermosets, epoxy resins have been broadly
investigated. These materials represent approximately 70% of
the market of thermosets due to their superior chemical and heat
resistance, adhesion, and mechanical properties.390

Several aromatic structures mentioned in section 2 (e.g.,
Vanillin M1G, 4-propylguaiacol M7G, and 4-(1-propenyl)-
guaiacolM18G) can be obtained from lignin and lignocellulose.
Interestingly, they can be employed to produce several polymers.
For instance, Franco̧is et al.348,393 used 4-(1-propenyl)guaiacol
(M18G) to synthesize its diglycidylether (DGE-isoEu) (Figure
31, route 3) which was subsequently cured in the presence of
several anhydride and acid hardeners (e.g., maleic anhydride,
MA) to prepare thermosetting resins (Figure 31, route 3b). After
obtaining DGE-isoEu in 92% yield, epoxy resins were
synthesized by heating mixtures of DGE-isoEu (Table 4, entry
1) with curing agents and 2-ethyl-4-methylimidazole (EMID) as
catalyst. Nanoindentation measurements showed an instanta-
neous and relaxed modulus ranging from 4.15 to 5.54 GPa and a
hardness parameter that varies between 230 and 400MPa, values
of the same order of magnitude as petroleum-based resins. Fache
et al.343 employed model mixtures of depolymerization products
of lignins from both softwood and hardwood directly to prepare
epoxy resins (Figure 33). First, the phenolic functionalities were

subjected to Dakin oxidation followed by glycidylation to
produce a mixture of epoxy monomers. Subsequently, the resins
where prepared using isophorone diamine (IPDA) as hardener,
obtaining a homogeneous glassy material after curing (Table 4,
entry 2). The thermo-mechanical properties determined by
dynamic mechanical analysis (DMA) showed characteristics of
high-performance epoxy thermosets.

Zhao et al.349 used 4-propylguaiacol (M7G) to synthesize
several starting monomers differing in molecular weight
orientation of functional group and number of epoxy groups to
explore systematically the differences in the final material
properties (Figure 31, route 2; Figure 32, route 16). They
demonstrated that the epoxy resins obtained from the new
monomers in the presence of diethylenetriamine (DETA)
improved in thermomechanical properties increasing the cross-
linking density (Table 4, entry 3). In particular, the use of an
oligomer derived from modification of 4-propylguaiacol (M7G)
through phenol−formaldehyde reaction led to the highest cross-
linking density with an α-relaxation temperature (Tα) of 139 °C
and a high degradation temperature (T5% = 297 °C in contrast
with 193−245 °C). Importantly, Tα value is slightly higher than
the 137 °C of traditional DGEBA/DETA epoxy resins
(diglycidyl ether of bisphenol A/epoxy prepolymer cured with
diethylenetriamine), showing the possible effective replacement
in terms of this parameter.
Van de Pas and Torr394 used the oil from mild hydrogenolysis

of pinewood to react with epichlorohydrin to give epoxy
prepolymers (Figure 34). After fractionation in diethyl ether,
they obtained two fractions named hydrogenolysis epoxy
prepolymers (LHEP) and oligomeric lignin hydrogenolysis
epoxy prepolymers (LHOEP). Blending these with bisphenol
A diglycidyl ether (BADGE) or glycerol diglycidyl ether
(GDGE) and curing with DETA or IPDA they obtained epoxy
resins. Interestingly, the use of BADGE or GDGE and different
curing agent leads to a pronounced effect on the final
thermomechanical properties (Table 4, entry 4). In particular,
this study evidenced that blending LHEP and LHOEP with
BADGE and curing with IPDA gave mechanical properties
similar to the industrial BADGE control resin while increased
flexural modulus and strength were observed if cured with
DETA. However, lower Tg (68−104 °C) were detected in this
case, indicating that IPDA enhanced the resin thermal properties
reaching Tg of the order of 100−135 °C. When LHEP and
LHOEP were blended with GDGE, similar mechanical proper-
ties were detected while Tg around 60 °C were obtained,
indicating a restriction in the use of these materials to lower
temperature applications.
Hernandez et al.375 prepared bisguaiacol through condensa-

tion of vanillyl alcohol and guaiacol (M24G) to then obtain
diglycidyl ether of bisguaiacol (Figure 32, route 16).
Furthermore, three single aromatic diglycidyl ethers were
synthesized from vanillyl alcohol, gastrodigenin, and hydro-
quinone. Once cured with a diamine (4,4′-methylenebiscyclo-
hexanamine), they found a positive influence of methoxy and
methylene moieties on the thermomechanical properties of the
final material. The methoxy groups improved the modulus of
cured resins; however, a lowerTg (100−124 vs 131−149 °C) was
found (Table 4, entry 5). Subsequently, the diglycidyl ethers of
gastrodigenin, vanillyl alcohol, bisguaiacol, and hydroquinone
were employed by Mauck et al.395 to be reacted with the
cellulose-derived 5,5-methylenedifurfurylamine as curing agent
and obtain epoxy amine thermosets (Table 4, entry 6). These
new highly bioderived thermosetting epoxy and amine resins
were characterized by good thermogravimetric and thermome-
chanical properties comparable with a commercial BPA-epoxy
resin demonstrating the possibility of its replacement.
Zhao et al.396 prepared a series of triphenylmethane-type

polyphenols (TPs) from guaiacols [4-methylguaiacol and 4-
propylguaiacol (M7G)] and aldehydes [4-hydroxybenzaldehyde
(M1P), vanillin (M1G) and syringaldehyde (M1S)] (Figure 35).

Figure 33. Synthesis of cross-linked thermosets by epoxy/amine
reaction and epoxy polymers from model mixtures of G- and GS-type
monomers. Adapted with permission from ref 348. Copyright 2016
Royal Society of Chemistry.
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Afterward, the polyphenol was epoxidized and cured or reacted
with a modified linoleic acid followed by epoxidation and curing
to obtain the final resin (Table 4, entry 7). Interestingly, the
presence of the long chain of linoleic acid acted as plasticizer
decreasing both Tα and storage modulus from 167 to 82 °C and
from 12.3 to 3.6 GPa, respectively. They also prepared epoxy
resin, employing both lignin-derived phenols (LDPs) and lignin
itself.397 This procedure involved demethylation of lignin
followed by the addition of 4-propylguaiacol (M7G) and
formaldehyde solution to make a deprotected lignin incorpo-
rated novolac polyphenol (DLINP). Consequently, the DLINP
was reacted with epichlorohydrin and cured with diethylenetri-
amine (DLINEN). Interestingly, the obtained polymer (DLI-
NENs) were characterized by thermal and mechanical properties
similar to the neat polymer prepared exclusively with LDPs in
terms of degradation temperature (T5% = 273−287 °C vs 297

°C) and glass-relaxation temperature (Tα = 130−141 °C vs 139
°C) (Table 4, entry 8).
Wang et al.382 reported the synthesis of vanillin-based epoxy

resins characterized by flame retardant properties thanks to
phosphorus introduction using the coupling agent [4,4-
diaminodiphenylmethane (DDM)] or p-phenylenediamine
(PDA) (Figure 32, route 17) to produce materials with similar
or improved mechanical and thermal properties compared with
the commercial DGEBA (Table 4, entry 9).
Kaiho et al.378 studied the synthesis of lignin-based epoxy

resins with controlled glass transition temperature starting from
selectively depolymerized lignin containing a C2-acetal structure.
The C2-acetals were subjected to (1) transacetalization with
tetraol di(trimethylolpropane) (DTMP) to introduce a flexible
structure or (2) generation of a phenylnaphthalene structure via
aldol condensation and intramolecular annulation to introduce a

Figure 34. Approaches to prepare cured epoxy resins from lignin hydrogenolysis products and the cured epoxy resin specimens. Adapted from ref 394.
Copyright 2017 American Chemical Society.

Figure 35. Synthesis route of fully renewable triphenylmethane-type polyphenols and corresponding polymers from lignin-derived aldehydes and para-
substituted guaiacols. Adapted from ref 396. Copyright 2017 American Chemical Society.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.7b00588
Chem. Rev. 2018, 118, 614−678

653

http://dx.doi.org/10.1021/acs.chemrev.7b00588


rigid structure (Figure 36). Afterward, the phenolic hydroxyl
group underwent glycidylation providing the corresponding
reactive epoxide. Subsequently, phenol novolac and triphenyl-
phosphine (TPP) were mixed with the monomer producing the
final epoxy resins (Table 4, entry 10). Notably, the resin
containing DTMP showed lower flexural strength and impact
strength compared to the phenylnaphthalene.
Other Lignin-Derived Thermosets. Koelewijn et al.370

proposed the synthesis of cyanate ester thermosets starting
from 4-propylguaiacol (M7G) (Figure 32, route 16). Specifically,
they prepared m,m′-bisguaiacols from methyl-, ethyl-, and
propylguaiacols studying the effect of the alkyl chain systemati-
cally (Table 4, entry 11). Importantly, the highest decomposition
and glass transition temperature were detected with 4-
propylguaiacol (M7G). Bassett et al.341 studied the effect of
impurities in reactive diluents prepared from lignin model
compounds on the properties of commercial vinyl ester resins
(VER) (Figure 31, route 1a). VER are in fact usually blended
with diluents like styrene to reduce resin viscosity for liquid
molding processing and increase polymer performance.398 Thus,
the lignin-derived diluents (phenyl methacrylate, 2-methox-
yphenyl methacrylate, and 4-propyl-2-methoxyphenyl metha-
crylate) were tested as possible styrene replacement (Table 4,
entry 12). The use of pure compounds led to a material with
properties comparable to the industrial one while the impure
VER markedly deteriorated the material.
Zhang et al.340 employed vanillin methacrylate as monomer to

produce polymeric microspheres containing reactive aldehyde
groups. Interestingly, they demonstrated the effective function-
alization with glycine obtaining Schiff-base chelating micro-
spheres which were proven to be efficient as adsorbent of Cu2+

used as a representative of heavy metal ions (over 130 mg/g)
(Table 4, entry 13). Subsequently, the same group prepared the
same microspheres introducing methacrylated-Fe3O4 NPs as
magnetic moiety enabling an easy separation from liquid
medium.342 Interestingly, the microspheres were proven to be
effective adsorbents for paraanisidine (representative for amines)
and proposed as suitable materials for immobilizing enzymes
(Table 4, entry 14).
4.2.2. Lignin-Derived Thermoplastic Polymers. A

thermoplastic polymer is a material which behaves as a fluid
above a specific temperature.335 Thermoplastic materials are
employed in several applications depending on their chemical
nature and thus final properties. Important industrial examples
are polyamides (PA, nylon), polypropylene (PP), polyethylene
(PE), poly(vinyl chloride) (PVC), polystyrene (PS), poly-
(methyl methacrylate) (PMMA, Plexiglas), and poly(ethylene
terephthalate) (PET) which are polymers frequently used for
fibers, containers, automotive parts, insulators, furniture, foams,
packaging, medical equipment, and so on. However, their
synthesis is usually based on fossil fuel-derived monomers which

results in the strong necessity of finding alternative routes.327 As
mentioned in section 2, vanillin (M1G), guaiacol, and syringyl-
derivatives and ferulic acid can be derived from lignin or
lignocellulose in high yields. Remarkably, they have been also
broadly investigated in order to produce materials characterized
by thermo-mechanical properties comparable to those of
traditional petroleum-based polymers.
Zhou et al.338 prepared high glass-transition temperature

methacrylate polymers from vanillin (M1G) and syringaldehyde
(M1S) via four methacrylate monomers [syringaldehyde
methacrylate (SMA), syringaldehyde acrylate (SA), vanillin
methacrylate (VMA), and vanillin acrylate (VA)] that underwent
free radical polymerization providing the corresponding
polymers (PSMA, PSA, PVMA, and PVA) (Figure 31, route
1b). Remarkably, the final materials presented improved or
similar thermal properties compared to biobased polylactic acid
(PLA), petroleum-based polystyrene (PS), and polymethylme-
tacrylate (PMMA). In particular, glass transition temperature
was found to be much higher in the new syringaldehyde-derived
polymers compared to the traditional PLA, PS, and PMMA (95−
180 °C vs 48−110 °C) (Table 5, entry 1). Furthermore, all the
prepared materials presented an increased initial degradation
temperature (Tonset) compared to PLA and PMMA (300−320 vs
296 and 280 °C, respectively).
Holmberg et al.399 employed guaiacyl methacrylate (GM),

creosyl methacrylate (CM), 4-ethylguaiacyl methacrylate (EM),
and vanillin methacrylate (VM) from guaiacol (M24G), creosol,
4-ethylguaiacol (M6G), and vanillin (M1G), respectively
(Figure 31, route 1) to obtain the equivalent polymers (PGM,
PCM, PEM, and PVM) via reversible addition−fragmentation
chain transfer (RAFT) polymerization (Figure 31, route 1b).
Interestingly, they also reported the synthesis of two
heteropolymers with different amounts of the four monomers
mining a biomass-derived oil. Remarkably, the authors reported
measurably differences in glass transition (Tg = 111−139 °C),
thermal degradation (Tmax = 281−327 °C), and viscoelastic
properties (zero-shear viscosity, ηo = 730−25000 kPa s),
depending on the starting monomer or on the relative
composition in the heteropolymers (Table 5, entry 2). Following
this research, the same group337 then used syringyl methacrylate
and related monomers to prepare homo- and heteropolymers
(Figure 31, route 1b) with controllable glass transition
temperature ranging from 114 to 205 °C and zero-shear
viscosities ranging from ∼0.2 kPa·s to ∼17000 kPa·s at 220 °C,
highlighting the wide applicability of these systems (Table 5,
entry 3).
Takeshima et al.388 utilized 4-vinylguaiacol derived from

ferulic acid to synthesize polyvinylguaiacol and polyvinylcatechol
via controlled radical polymerization using various protecting
groups (Figure 32, route 21). The solubility of polymers before
and after deprotection in several solvents as well as the glass

Figure 36. Synthesis of lignin-based epoxy resins by using lignin-derived monomer (M31G) and acetal-modified lignin.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.7b00588
Chem. Rev. 2018, 118, 614−678

654

http://dx.doi.org/10.1021/acs.chemrev.7b00588


T
ab
le
5.
T
he
rm

om
ec
ha
ni
ca
lP

ro
pe
rt
ie
s
of

Li
gn
in

D
er
iv
at
iv
e-
B
as
ed

T
he
rm

op
la
st
ic
s

en
tr
y

lig
ni
n-
de
riv
ed

m
on
om

er
s

po
ly
m
er
iz
at
io
n
m
et
ho
d

fi
na
lp
ol
ym

er
s

M
n
(g
/m

ol
)

Đ
T
g
(°
C
)

T
m
(°
C
)

T
d
(°
C
)

re
f

1
sy
rin

ga
ld
eh
yd
e
(M

1S
)
an
d
va
ni
lli
n

(M
1G

)
fr
ee

ra
di
ca
lp
ol
ym

er
iz
a-

tio
n

lig
ni
n-
ba
se
d
(m

et
h)
ac
ry
la
te
po
ly
m
er
s

76
00
−
14
60
0

1.
89
−
4.
07

95
−
18
0a

N
.R

.
T
m
ax
=
34
0−

36
0c

33
8

2
gu
ai
ac
ol
(M

24
G
),
cr
eo
so
l,
4-
et
hy
l-

gu
ai
ac
ol
(M

6G
),
va
ni
lli
n
(M

1G
)

R
A
FT

po
ly
m
er
iz
at
io
n

(m
et
h)
ac
ry
la
te
po
ly
m
er
s

15
00
0−

41
00
0

1.
12
−
1.
39

11
1−

13
9

N
.R

.
T
m
ax
=
28
1−

32
7

39
9

3
sy
rin

gy
lm

et
ha
cr
yl
at
e

R
A
FT

po
ly
m
er
iz
at
io
n

po
ly
(s
yr
in
gy
lm

et
ha
cr
yl
at
e)
;S

M
-c
on
-

ta
in
in
g
he
te
ro
po
ly
m
er
s

11
00
0−

38
00
0

1.
32
−
1.
74

11
4−

20
5b

N
.R

.
T
on
se
t(
in
iti
al
de
gr
ad
at
io
n)
=
25
6−

30
3d

33
7

4
fe
ru
lic

ac
id
(F
A
)

R
A
FT

+
liv
in
g
ra
di
ca
l

po
ly
m
er
iz
at
io
n

po
ly
(v
in
yl
ca
te
ch
ol
)
an
d
po
ly
(v
in
yl
-

gu
ai
ac
ol
)

22
00
−
41
50
0

1.
06
−
1.
59

21
−
19
0e

N
.R

.
N
.R

.
38
8

5
sy
rin

gi
c
ac
id
(M

20
S)
,v
an
ill
ic
ac
id

(M
20
G
),
fe
ru
lic

ac
id
(F
A
),
an
d
p-

co
um

ar
ic
ac
id

rin
g-
op
en
in
g
po
ly
m
er
-

iz
at
io
n
(R
O
P)
/p
ol
y-

co
nd
en
sa
tio

n

N
.R

.
15
00
−
60
70
0

1.
6−

6.
3

(−
48
)−

11
3e

36
−
35
4

T
5%

=
20
9−

34
3c

40
0

6
va
ni
lli
n
(M

1G
)

N
.R

.
di
va
ni
lli
n-
et
ha
no
la
m
in
e
co
nj
ug
at
e-

ba
se
d
po
ly
ur
et
ha
ne

N
.R

.
N
.R

.
(−

68
.0
8)
−
(−

67
.2
)a

N
.R

.
T
5%

=
32
9.
59
−
34
1.
54
c

36
7

7
va
ni
lli
c
ac
id
(M

20
G
)
an
d
sy
rin

gi
c

ac
id
(M

20
S)

N
.R

.
po
ly
(e
th
er

ur
et
ha
ne
)s

32
10
0−

36
10
0

1.
6−

1.
9

49
−
74
a

N
.R

.
T
10
%
=
30
4−

30
8c

36
0

8
12

ar
om

at
ic
al
de
hy
de
s
in
cl
ud
in
g

va
ni
lli
n
an
d
sy
rin

ga
ld
eh
yd
e

N
.R

.
po
ly
vi
ny
la
ce
ta
ls

22
30
0−

46
00
0

N
.R

.
11
4−

15
7e

N
.R

.
T
95
%
=
18
5−

30
8c

38
5

9
4-
pr
op
yl
gu
ai
ac
ol
(M

7G
)

N
.R

.
po
ly
ca
rb
on
at
es

25
03
−
51
82

N
.R

.
99
−
12
5a

20
5−

30
5a

T
5%

=
34
6−

37
6c

37
0

10
va
ni
lli
n
(M

1G
)

N
.R

.
po
ly
(e
th
er
-o
-h
yd
ro
xy
am

id
e)

an
d
fo
l-

lo
w
in
g
cy
cl
od
eh
yd
ra
tio

n
to

po
ly
(-

et
he
r
be
nz
ox
az
ol
e)

N
.R

.
N
.R

.
N
.R

.
N
.R

.
>4

00
c

35
5

11
va
ni
lli
n-
ba
se
d
m
on
om

er
s

ph
os
ph
on
ite
-m

ed
ia
te
d

m
ul
tic
om

po
ne
nt

po
ly
-

m
er
iz
at
io
n

va
ni
lli
n-
de
riv
ed

fl
uo
re
sc
en
t
po
ly
m
er
s

30
00
−
12
70
0

1.
8−

2.
3

N
.R

.
N
.R

.
N
.R

.
36
8

a
D
SC

un
de
r
ni
tr
og
en
.b
D
SC

un
de
r
ai
r.
c T
G
A
un
de
r
ni
tr
og
en
.d
T
G
A
un
de
r
ai
r.
e A
tm

os
ph
er
e
no
t
sp
ec
ifi
ed
.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.7b00588
Chem. Rev. 2018, 118, 614−678

655

http://dx.doi.org/10.1021/acs.chemrev.7b00588


transition temperature were reported, the latter varied in a wide
range [from 21 to 190 °C being the lowest for poly(bis-
(triethylsilyl)-protected vinylcatechol) (poly(TES2VC))] show-
ing that trialkylsilyl groups tend to decrease the Tg of the
polymers by enhancing the mobility of the polymer chain (Table
5, entry 4).
Miller and co-workers400 prepared several polymers via

copolymerization of lactones (L-lactide or ε-caprolactone) and
bioaromatics (hydroxy-acid derived from syringic acid (M20S),
vanillic acid (M20G), ferulic acid (FA), and p-coumaric acid)
through concurrent ring-opening polymerization/polyconden-
sation strategies to obtain new materials with promising
properties. In fact, the introduction of bioaromatics in poly(lactic
acid)(PLA) was reported to increase the Tg from 50 to 62−107
°C and to improve the thermal stability [T95% from 207 °C
(PLA) up to 323 °C]. An analogous effect was verified
introducing bioaromatics in polycaprolactone (PCL) [Tg from
−60 °C (PCL) to−48−105 °C and T95% from 255 °C (PCL) up
to 325 °C] (Table 5, entry 5).
Gang et al.367 used a dimerized and modified vanillin (M1G)

[divanillin-ethanol amine conjugate (DVEA)] to partially replace
the traditional 1,4-butanediol as chain extender to produce
polyurethanes (PU) with increased percentage of biocontent
(Figure 32, route 15c). Notably, the final materials containing
DVEA presented similar strength and thermal stability but
improved Young’s modulus (8.02−9.67 MPa vs 7.53 MPa of
control PU) and strain (644.82−770.86% vs 522.57% of control
PU) (Table 5, entry 6).
Kuhire et al.360 synthesized biobased-aromatic diisocyanates

[bis(4-isocyanato-2-methoxyphenoxy)alkane and bis(4-isocya-
nato-2,6-dimethoxyphenoxy)alkane] from vanillic acid (M20G)
and syringic acid (M20S) to prepare polyether urethanes by

reaction with aliphatic diols (1,10-decanediol and 1,12-
dodecanediol) (Figure 31, route 10) and found that thermal
stability was mainly determined by the stability of urethane
linkages. The highest Tg and degradation temperature (T10%)
values corresponded to the use of vanillic acid instead of syringic
acid which involved a higher number of methoxy groups that
increased the conformational barrier to chain rotation (Table 5,
entry 7).
Rostagno et al.385 studied the synthesis of polyvinyl aromatic

acetals from the condesation of commercially available poly(vinyl
alcohol) (PVA) and sustainable aromatic aldehydes [12 aromatic
aldehydes including vanillin (M1G) and syringaldehyde (M1S)]
(Figure 32, route 18). Importantly, the Tg values in the obtained
polymers reached 114−157 °C compared to 75 °C of PVA.
Remarkably, the possible degradation of two of the polymers
prepared (namely 63.3% and 54% acetalization) was tested in
aqueous acidic medium (pH = 1, 2, 3,and 5) verifying that even
though they were not degraded at pH = 5, they were efficiently
hydrolyzed at pH = 1, 2, and 3 (conditions in the stomach of
mammals, fish, and birds) with regeneration of biodegradable
PVA and benign aromatic small molecules (Table 5, entry 8).
Koelewijn et al.370 synthesized a bisphenolic polymer

precursor [m,m′-methylenebis(4-n-propylguaiacol) (m,m′-
BGF-4P)] from 4-propylguaiacol (M7G) which displayed a
markedly reduced potency to activate human estrogen receptor
in comparison with commercial bisphenols (Figure 32, route 16).
Notably, this molecule was employed as precursor to obtain a
thermoplastic polycarbonate (PC3) which was compared with
the corresponding polycarbonates fromm,m′-bis(4-methylguaia-
col) (named PC1) and m,m′-bis(4-ethylguaiacol) (named PC2)
and with the commercial PC-BPA. Importantly, PC3 is reported
to have the slowest tendency to crystallize and improved

Figure 37. Strategies for transformation of muconic acid to biobased polymers or polymer building blocks.
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solubility in common solvents even though its glass transition
temperature resulted to be lower than PC-BPA, PC1, and PC2
(99 °C vs 145−150, 125, and 116 °C, respectively) (Table 5,
entry 9).
Sun et al.355 investigated the synthesis of polyether

benzoxazole (PEBO) from modified vanillin (Figure 31, route
5a). In particular, this polymer was obtained from a precursor
poly(ether o-hydroxy amide) (PEHA) by cyclodehydration with
following analysis of thermo-mechanical properties. Interest-
ingly, no evident glass transition was observed possibly due to the
rigid benzoxazole structure in PEBO. Moreover, an improved
Young’s modulus and tensile strength was reported compared to
commercial equivalent polymers (Table 5, entry 10).
Kayser and co-workers368 studied the synthesis of cross-

conjugated fluorescent polymers from vanillin-based monomers
with tunable properties (Figure 32, route 15d and Table 5, entry
11). In particular, optical properties such as UV/vis absorbance
and fluorescence were investigated showing that these lignin-
based polymers were blue-emitting compounds and structural
modifications modulated this emission. These materials were

stated to be of potential relevance in polymer-based LED
production.

4.3. From Lignin-Derived Muconic Acid to Polymers or
Polymer Building Blocks

As mentioned in section 2.1, muconic acid (M26) is considered
an important biomass-derived chemical. As shown in Figure 37,
M26 can be converted to a wide range of commodity chemicals
currently produced from fossil resources such as adipic acid,
caprolactame, and terephthalic acid.401

Adipic acid is a bulk chemical of which approximately the 85%
is converted together with hexamethylenediamine (HMDA) to
obtain nylon-6,6 where the remainder was used for polyur-
ethanes and adipic esters.402,403 Thus, the result of catalytic
conversion of M26 to these two chemicals is particularly
appealing. In this context, M26 plays an important role since its
possible conversion to both adipic acid and HDMA was
demonstrated. Niu et al.404 reported an efficient cis,cis- M26
hydrogenation to adipic acid by using Pt/C as catalyst. An
excellent 97% yield of adipic acid was obtained at room
temperature after 2.5 h. Vardon et al.272 investigated the

Figure 38. Polymer materials obtained in feasible starting from lignin.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.7b00588
Chem. Rev. 2018, 118, 614−678

657

http://dx.doi.org/10.1021/acs.chemrev.7b00588


separation and purification ofM26 after biological synthesis and
achieving a purity of 99.8% which is pure enough for further
polymer synthesis. Catalysts screening in batch reactor for
hydrogenation ofM26 to adipic acid by using different supported
metal catalysts (Pt, Ru, Rh, and Pd on activated carbon or SiO2)
found that Rh/C showed the best activity and stability. A
complete conversion and 99.8% purity could be achieved as well
even in a trickle bed reactor. Interestingly, they were able to
polymerize the synthesized adipic acid with HMDA and obtained
a polymer which has similar properties to nylon derived from
petrochemical adipic acid. Instead of using hydrogen gas,
Matthiesen et al.551 investigated the electrocatalytic hydro-
genation of cis,cis-M26 by hydrogen generated in situ from
water. They demonstrated that trans,trans-M26, trans-3-
hexenedioic acid, and adipic acid can be produced depending
on metal and conditions chosen. However, high selectivity could
be obtained mostly for trans-3-hexenedioic acid (up to 95% by
using Pb at a conversion of ∼75%). Adipic acid was only
observed when using Ni with less than 10% selectivity.
Caprolactam which is usually used to produce nylon-6 fibers

and resins405 is another relevant chemical which can be derived
from of M26. Frost et al.406 provided a valid synthesis from the
three isomers of M26 (cis,cis-, cis,trans-, and trans,trans-) using
Pd/Al2O3 in dioxane at 250 °C. After 2 h, the highest yield (55%)
was reached from cis,cis-M26 at a conversion of 79%.
Terephthalic acid (TA), another bulk chemical mainly used to
produce polyethylene terephthalate (PET),407 can be obtained
from M26 as reported by Burk et al.408 In particular, the
trans,trans-M26 or cis,trans-M26 can be converted to terephtalic
acid in a two-step process via Diels−Alder reaction with
acetylene at 200 °C followed by oxidation in air or oxygen.
The Diels−Alder reaction between muconate and acetylene
proceeds via cyclohexa-2,5-diene-1,4-dicarboxylate as intermedi-
ate, which is subsequently exposed to air or oxygen to rapidly
convert to TA. In 2016, Lu et al.409 proposed a synthetic route
from trans,trans-M26 to diethyl terephthalate (DET) through a
cascade reaction combining esterification, Diels−Alder cyclo-
addition, and dehydrogenation by using ethanol and ethylene as
reactant. Basically, the esterification step improves the solubility
of reaction products in ethanol and modifies the electronic
properties of trans,trans-M26 promoting the Diels−Alder
reaction with ethylene. Various metals were tested for the
hydrogenation step, achieving the highest yield in DET (80,6%)
with Pd/C at 200 °C.
Apart from its use as a precursor, M26 can be exploited as a

monomer itself. For instance, Rorrer et al.410 studied its
application as unsaturated polyester resins (UPEs) which are

considered interesting materials suitable for coatings, drug
delivery systems, tissue engineering, and insulating materials.411

In particular, they incorporated cis,cis-M26 into four succinate-
based polyesters showing how thermal properties such as the
glass transition temperature of the polymer can be tuned
depending onM26 loading. Furthermore, they demonstrated the
applicability of these polymers fabricating a material charac-
terized by a shear modulus typical of fiberglass composites.
Subsequently, the same authors synthesized a family of
copolymers incorporating maleic anhydride, fumaric acid,
cis,cis-muconate ester, and trans,trans-muconate ester into
poly(butylene succinate) at various loadings. Then, the obtained
copolymers were cross-linked with styrene, methacrylic acid, and
a blend of methacrylic and cinnamic acid in the presence of
woven fiberglass mats to produce a series of fiberglass-reinforced
polymers (FRPs).412 When UPEs and methacrylic acid were
used for the preparation of the composites, a greater UPE resin/
fiberglass compatibility was observed compared to when styrene
was employed even though the final FRP was characterized by
lower shear and storage moduli. To overcome this problem, a
certain amount of cinnamic acid (20% mol) was incorporated,
resulting in a significant improvement of these properties and
enabling a fully renewable system.

4.4. Conclusions

The possibility of producing polymers from lignin-derived
aromatics has generated significant advances in polymer
chemistry. Most groups have utilized pure and well-defined
starting materials obtained from commercial sources for the
synthesis of novel polymers, especially thermosets and thermo-
plastics that have shown comparable or even better properties
than those conventional materials. Several researchers were
engaged in the development of both lignin depolymerization
methods as well as the synthesis of lignin-derived polymers.
Related examples summarized in Figure 38 show that a number
of interesting polymer materials can be obtained in feasible
quantities starting from lignin.
However, a discrepancy still exists regarding the monomers

used for the synthesis of polymers (Figure 39). Novel
methodologies are needed that would deliver higher yields of
aromatic compounds, which have been widely studied as starting
materials for polymer synthesis. In turn, the actual monomers
that can be obtained in high yield offer new possibilities for the
synthesis of emerging materials and polymers.
Furthermore, catalytic methods typically deliver mixtures of

aromatic compounds, which can be directly used for polymer
synthesis, thereby eliminating tedious purification steps;
however, reproducibility regarding the starting material and the

Figure 39.Monomers frequently originating from lignin depolymerization methods (left) and monomers very frequently used for polymer production
(right).
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composition of these product mixtures should be clarified. And
last, the biobased polymers are not automatically biodegradable,
therefore more insight into the biodegradability, toxicity, and
properties of the novel polymers is desired.

5. COMPOUNDSWITH PHARMACOLOGICALACTIVITY
FROM LIGNIN-DERIVED MONOMERS

Phenols, lignans, and neolignans are a large group of natural
products derived from the pool of compounds originating from
the Shikimate pathway.413 They possess a wide range of
biological activities and have been used for a long time both in
ethnic414,415 as well as lead compounds for the development of
new drugs.416 Furthermore, such structural moieties can be
found in already existing pharmaceuticals as well as compounds
with pharmacological activity. From a synthetic point of view,
these molecules can be synthesized from lignin-derived
monomers, since these already contain the required functional
groups on the aromatic ring and side chain.

5.1. Natural Products Synthesized from Lignin-Derived
Monomers

5.1.1. 4-(1-Propenyl)-syringol, 4-(1-Propenyl)-guaiacol
and Isomers. Lignin-derived trans-4-(1-propenyl)-syringol E-
M18S that could be directly obtained through Pd-catalyzed
transfer hydrogenolysis of birch lignocellulose in ethanol in high
yield (49%)187 serves as suitable starting material for the
synthesis of polysphorin (PN1) in 2 steps.417 PN1 was isolated
from Piper polysphorum C in China and from the leaves and stems
of Rhaphidopora decursiva in Vietnam418 and shows in vitro
antimalarial activity.419 The E-M18S can be converted in one
step to neolignan Eusiderin K (PN2) that can be methylated to
Eusiderin J (PN2-Me).420 Primarily due to the 1,4-benzodioxane
moiety, PN2 and PN2-Me show cytotoxic and hepatoprotective
activity421 and have been isolated from Virola elongata or Licaria
chrysophylla.422,423

M18G is a starting material for the synthesis of variety of
natural products. For instance, the sodium salt of E-M18G can be
converted to (−)-virolin (PN3) that was isolated from the leaves
of viola surinamensis424 and shows activity against parasites in
mice.425

Licarin A (PN4), present in various tropical or subtropical
plants or nutmeg,426−428 exhibits a wide range of beneficial
pharmacological effects,429−431 including free-radical scaveng-
ing432 and cytotoxicity against tumor cells.433 PN4 can be easily
synthesized in one-step through an enzymatic oxidative coupling
of E-M18G with outstanding 98% yield.434 Licarin A can be
further converted to (±)-acuminatin (PN4-Me),435 a natural
product isolated from various Piper plant species436,437 displays a
variety of biological activities.436,438,439

5.1.2. Syringaldehyde and Related Compounds.
Syringaldehyde (M1S) is a lignin-derived lignin monomer,
which can be nearly quantitatively methylated to the
corresponding derivative with 96% yield.440,441 (−)-Rhaphide-
cursinol B (PN5), first isolated from Rhaphidophora decursiva
Schott (Araceae),419,442 can be obtained from methylated
syringaldehyde (M1S) in only three steps.443 PN5 was found
active against Plasmodium falciparum, the parasite responsible for
the most severe form of malaria.444,445 Another antimalarial
agent prepared fromM1S and the TBS ether of sinapyl alcohol is
Nitidanin (PN6)446 that was isolated from the tropical plant
Grewia Bilamellata Gagnep (Tiliaceae).447

Daphneticin (PN7) was isolated as a racemic compound from
the roots and stems of Daphne tangutica.448 The plant is used

extensively in Chinese traditional medicine as a remedy for the
treatment of rheumatism and toothache and also shows
cytotoxicity against Walker-256-Carcinoma Ascites cells.449

PN7 can be obtained in 9 steps from M1S.450

The high yield (82%) cobalt/Schiff base-catalyzed oxidation of
M1S was presented by Bozell and co-workers to 2,6-dimethoxy-
1,4-benzoquinone (M2S), which can be isolated from direct
lignin oxidation as well.451,452 This compound is starting material
for the 6 step synthesis453 of Ladanein (PN8), an antiviral flavone
identified from Lamiaceae extracts.454 Interestingly, PN8 has
shown potential against enveloped viruses such as the hepatitis C
(HCV), as a safe flavonoid-based alternative.455,456

5.1.3. C2-Aldehydes and Alcohols. The acetal of C2
aldehyde C2AldG was obtained in high yield by acidolysis in
conjunction with ethylene glycol treatment of lignin.166

Interestingly, C2AldG was found as a key ingredient in the
synthesis of quebecol [2,3,3-tri-(3-methoxy-4-hyroxyphenyl)-1-
propanol] (PN9), which was isolated in 2011 from maple syrup
and named after the world largest maple syrup producer region,
Quebec.457 Maple syrup is obtained by thermal evaporation of
the sap458 collected from the sugar maple (A. saccharum) tree,
and maple syrup extracts have antioxidant, antimutagenic, and
anticancer properties.459,460 Quebecol, a compound derived
from natural resources and consumed for decades without
showing any toxicity shows activity against various cancer cell
lines including the human breast adenocarcinoma (MCF-7).461

Thus far, a sufficient quantity of pure quebecol could not be
isolated to conduct detailed biological evaluation, but a patent
exists that shows its synthesis from lignin-derived building blocks
involving C2AldG as well as vanillin (M1G).462

Alcohol C2AlcS should be easily obtained by reduction of the
syringyl derivative of C2AldG, and it has been reported as
product from lignin depolymerization. Raphanuside (PN10) can
be found inDescurainia sophia463 and was used for anticough and
antiasthmatic purposes and moreover show anticancer activity,
and it can be synthesized from C2AlcS in eight steps.464,465

5.1.4. Dihydroferulic Acid and Derivatives. 4-Propanol-
guaiacol (M10G) is a building block that can now be obtained in
high yield in one step from lignocellulose, owing to the novel
catalytic lignocellulose fractionation strategies.185,194 These
methods have also reported the corresponding dihydroferulic
acid methyl ester (M28G) is tangible quantities.195M28G can be
converted to dihydroferulic acid (C3AcidG) through hydrol-
ysis.466 These compounds are versatile starting materials for the
synthesis of a variety of natural products as summarized below.
(−)-Arctigenin (PN11) is a phenylpropanoid isolated from a

variety of plants which shows phagocytic activity on leukemia
cells467−469 and synergistic effects in combination with cisplatin
against several cancer cell lines.470,471 Furthermore, the
cytotoxicity of doxorubicin in combination with (−)-arctigenin
against several multidrug-resistant cells showed improved
results.472 Other effects are also known.469 The synthesis of
PN11 was reported from 3,4-dimethoxycinnamic acid in a
convergent nine-step synthesis resulting in 19% overall product
yield.473 This synthesis route proceeded through the methy-
lated474,475 analogue of alcoholM10G, andM10G-Me could be
directly used as the starting material.
(+)-Imperanene (PN12) is a novel phenolic compound that

has been isolated from Imperata cylindrical and used extensively
in traditional Chinese medicine as diuretic and anti-inflammatory
agents.476 From the reported synthesis, it is recognized that
M28G can directly be used, giving an overall yield of 17%.477
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Ginger is a widely used spice and a food supplement
throughout the world, and widely applied in traditional Chinese
and Japanese medicine.478 Its major ingredient, (+)-(S)-[6]-
gingerol (PN13), has been found to exhibit diverse pharmaco-
logical activities such as antioxidant, anti-inflammatory, anti-
tumor, and antibacterial effects.479 (S)-[6]-Gingerol can be
synthesized from ferulic acid (FA) in 15 steps and fromM28G in
13 steps, with overall 27% yield.480 (6)-Paradol (PN14) shows
anti-inflammatory effect and can be synthesized from PN13 in a
two-step procedure.481

Rhoiptelol C (PN15) was first isolated from the fruits of
Rhoiptelea chiliantha.482 The molecule shows strong phenol
oxidase inhibitor effect and has potential for future use in the
development of environmentally friendly pesticides.483 PN15
was synthesized in eight steps from vanillin and can be obtained
from M28G in 6 steps.484

Verbenachalcone (PN16) was isolated from Verbena littoralis
(Verbenaceae) and displays a biological effect as enhancer of
nerve growth factor (NGF) in specific cells485 and can be

Figure 40. Summary of structures of natural products obtained from lignin-derived monomers. (a) Number of steps required to synthesize the natural
products versus overall yield of the process. (b)Monomers used as starting material. (c) Chemical structures of natural products separated by dotted line
based on different starting material.
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synthesized from C3AcidG in 6 steps with 32% yield or from
M28G in 33% overall yield in five steps.486

Streptomyces strains are producing a wide variety of
compounds that serve as antibiotics, including the recently
reported JBIR-94 (PN17).487 This phenolic compound can be
synthesized from ferulic acid in four steps and from
dihydroferulic acid C3AcidG in only one step with 15% yield
without any protecting group.488

5.1.5. Ferulic acid and Its Derivatives, Monolignols.
Ferulic acid (FA) is usually obtained by extraction489,490 but was
also seen as product in lignin depolymerization mixtures.491

Although a direct, high yield production of FA from lignin is not
known at the moment, we will include a few examples of natural
products that can be obtained from ferulic acid.
Tanegool (PN18) can be found in various plants including

Magnolia fargesii, Taxus yunnanensis, or Patrinina villosa
originating mainly in East Asia and North America.492,493 It
shows diverse pharmacological activity, including a great
potential in the prevention of Alzheimer’s disease.494 PN18
can be synthesized from FA in four steps in 53% overall yield
based on recovered starting material.495

Ferulic acid (FA) can be quantitatively esterified.167 Salvinal
(PN19), first isolated from Salvia mitorrhiza, can also be
obtained from the methyl ester of FA through a six-step synthesis
route.496 In traditional Chinese medicine, water extracts have
been used to treat acute myocardiac infarction and angina
pectoris.497

Herpetol (PN20) featuring a benzofuran skeleton was isolated
from Herpetospermum caudigerum and possesses anti-inflamma-
tory and free radical scavenging properties.498 It can be
synthesized in four steps from the methyl ester of FA with
18% overall yield.496

Similarly to ferulic acid, monolignols are also not direct
products from common lignin depolymerization routes.
However, the structural variants of the natural products shown
below, synthesized from monolignol CoA, have been observed
on lignin acidolysis studies as part of mixtures.166

The substance (+)-pinoresinol (PN21) is a compound present
in the lignan fraction of several plants, such as the seeds of the
species Forsythia or sesame (Sesamum indicum).499,500 In a
traditional human diet, extra virgin olive oil is an excellent source
of pinoresinol up to a concentration of 100 mg/kg.501

Pinoresinol has cytotoxic activity against human colon cancer
cell lines (SW480 and HCT116).502 It had been synthesized in
one step from coniferyl alcohol CoA in 12% yield503 or in an
eight-step synthesis in 37% yield from CoA.495

(7S,8S)-Kadsurenin M (PN22) is a Chinese traditional drug
used as a remedy for inflammation and rheumatic conditions.504

It was synthesized from vanillin (M1G) in five steps. In the
procedure, methylated derivative of CoA was an intermediate
which was converted in three steps to PN22; the procedure does
not report on the yields of each steps.505 Guaiacol type
phenylalkylalcohol-phenols can be chemoselectively quantita-
tively methylated;474,475 and the methylatedCoA compound can
be chlorinated with 95% yield,506 based on CoA the synthesis
would take four steps with 21% overall yield.
Structures and overall yields of natural products obtained from

lignin-derived monomers described in this section are
summarized in Figure 40.

5.2. Pharmaceutical Products from Lignin-Derived
Monomers

Actual pharmaceutical products (PD) can also be obtained from
lignin-derived monomers (E-M18G, M1S, C3AcidG) and
ferulic acid (FA). Tofisopam (marketed under brand names
Emandaxin and Grandaxin) (PP1) is an anxiolytic agent without
addiction potential and without the sedative-hypnotic side effects
generally associated with the use of 1,4-benzodiazepines.507,508

According to the 2017 report of the European Medicines Agency
(EMA), the lead producer of PP1 in the EU is Hungary.509

Methylated E-M18G can be dimerized to 4-(1-propenyl)-
guaiacol (M18G) by an acid-catalyzed cycloaddition reaction.510

It can be further converted by oxidation to the corresponding
diketone with 88% yield.511 The diketone is then transformed to
Tofisopam by hydrazine hydrate in a single step.512 The
calculated yield for the four steps starting from E-M18G is
40%. The original patent used the same synthesis strategy.513,514

Trimethoprim (PP2) is a classical antibacterial agent that
serves as selective inhibitor of bacterial dihydrofolate reduc-
tase.515 It is used alone or in combination with sulfamethoxazole
to treat a wide range of bacterial infections in humans and
poultry. According to the 2017 report of the EuropeanMedicines
Agency (EMA), the lead producer of PP2 in the EU is Estonia.509

PP2 was sold in more than 140 tons as a veterinary antimicrobial
agent in the countries of EU, Iceland, and Switzerland in 2014.509

More than 80 tons of PP2 were sold in 2010 for human
treatment in the U.S. alone,516 and in the same year in China,
more than 3000 tons517 of PP2 were produced for the global
market, which shows a huge demand due to antimicrobial and
antimalarial applications. PP2 can be synthesized from the
methylated derivative of syringaldehyde (M1S-Me) with overall
85% yield in three steps.517 M1S can be nearly quantitatively
(96%)440,441 transformed to the methylated derivative, and based
on this, the overall yield of PP2 from M1S is 82% in four steps.
Donepezil (PP3) is a drug used in the treatment of

Alzheimer’s disease. Since its first approval by the FDA in
1996, this blockbuster drug generated more than 2 billion USD
sales in 2010, just in the U.S. After the original patent expired in
2010, generic competitors made PP3 less expensive and more
accessible for patients in 5 and 10 mg doses.518 According to the
2017 report of the European Medicines Agency (EMA), the lead
producer of PP3 in the EU is the United Kingdom.509 Several
synthetic procedures exist for the synthesis of PP3.519,520 In a
short synthetic route, dihydroferulic acid C3AcidG can undergo
ring closure, and upon methylation it can be turned into 5,6-
dimethoxy-2,3-dihydro-1H-inden-1-one (DMI) with 63% yield
from FA in three steps.521 PP3 can be obtained upon a one-step
catalytic alkylation of DMI, according to the procedure
developed by Glorius et al. with 40% yield which means 25%
overall yield in this four step synthesis from FA.522

PP4 (lead EU producer, Hungary509) is used in combination
with other APIs such as carbidopa, constituting the least
expensive (less than 319$ annual treatment cost) Parkinson’s
disease medication.523 Parkinson’s disease is affecting more than
2 million people in our world, and it is projected to grow to 2.89
million cases worldwide by 2022.521 Several synthesis routes have
been established to synthesize PP4.524 The most well-known
example is the Monsanto process which utilizes asymmetric
hydrogenation.525,526 Another interesting approach to get PP4 is
based on the demethylation of FA to caffeic acid with 62%
yield.527 Caffeic acid can aminate in the presence of NH3 with a
plant-derived phenylalanine ammonia-lyase enzyme to yield L-
DOPA (PP4) close to 100% yield and excellent enantioselec-
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tivity, which means 62% overall yield for the two-step
procedure.528

Structures and overall yield of all these pharmaceutical
products are summarized in Figure 41.
5.3. Drug-Leads from Lignin-Derived Monomers

Drug-leads are chemical compounds that possess favorable
pharmacological and biological effects (Figure 42). Their
properties can usually be tuned by chemical modifications to
yield drug candidates before those enter into clinical trials.529

However, the probability for a drug candidate to succeed as an
active pharmaceutical ingredient is typically low, which
significantly contributes to the development cost.530

5.3.1. Syringaldehyde and Related Compounds. Drug
lead candidate PC1 exhibited significant cytotoxicity to several
human tumor cell lines in the micromolar range and showed 20
times more potency than the control cisplatin. PC1 was
synthesized from M1S in 6 steps with 10% yield.531

Curcumin, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-hepta-
dien-3,5-dione, is the primary bioactive compound isolated
from turmeric, the dietary spice made from curcuma longa.
Curcumin is a potent anti-inflammatory and antiproliferative
agent.532 Moreover no cancer cell type has yet been found where
curcumin lacks antiproliferative effects, and this effect is selective
toward tumor cells showing minimum effect on normal cells.533

Figure 41. Summary of structures of pharmaceutical products obtained from lignin-derived monomers.

Figure 42. Summary of structures of drug lead compounds obtained from lignin-derived monomers. (a) Number of steps required to synthesize the
drug lead compounds versus overall yield of the process. (b) Monomers used as starting material. (c) Chemical structures of drug lead compounds
separated by dotted line based on starting material.
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Next to the natural analogues (e.g., demethoxycurcumin and
bisdemethoxycurcumin), numerous derivatives have been
synthesized in an attempt to find “super curcumin”.534 It was
found that PC2 showed higher antiproliferative affect than
curcumine.535 PC2 can be synthesized from M1S in two steps
with 30% yield.
Combretastatin derivatives also show antitumor activity, and

the Z isomer of PC3 was the most potent derivative in the paper
presented by Riant et al.536 It was synthesized from methylated
M1S in four steps with 33% yield. M1S can be quantitatively
(96%) methylated440,441 which means five steps to PC3 from
M1S.
The Z isomer of platinum containing combretastatin

derivative PC4 also show antitumor activity with higher
cytotoxicity but with lower toxicity and lower resistance than
cisplatin in HepG-2 cancer cells.537 It can be synthesized in eight
steps from the methylatedM1S with 11% overall yield.M1S can
be quantitatively (96%) methylated,440,441 which means nine
steps from M1S with overall yield around 11%.
5.3.2. Dihydroferulic and Dihydrosinapic Acid Deriva-

tives. The propylester of dihydroferulic acid (PC5) is able to
totally inhibit the growths of Aspergillus fumigatus and Aspergillus
flavus in the concetration as low as 6.4 mM. It was synthesized in
one step from C3AcidG with 92% yield.538

The inhibitory activity of PC6 on acetylcholinesterase enzyme
was 14-fold of that of donepezil (PP3).539 It can be synthesized
from C3AcidG in four steps with 18% yield.
AV170 (PC7), derivative of dihydrosinapic acid C3AcidS,

exhibited the most pronounced reduction in peptide hydrolysis
activity and was four times more effective for certain applications
compared to the previously reported beta-lactone inhibitors
(gold standard); this might open possibilities to obtain new
antimicrobial agents.540 The compound was purchased, but the
yield from C3AcidS is inaccessible.
5.3.3. Ferulic and Sinapic Acid Derivatives. Ferulic acid

(FA) can serve as the starting material for the synthesis of several
lead compounds. For example, PC8 exhibited potent in vitro and
in vivo antitumor activity, which was synthesized from FA with
13% yield in four steps.541 Derivatives PC9 and PC10 have been
shown to be nearly as potent as the positive control drug Zolinza
in in vitro histone deacetylase (HDACs) activity assays.
Inhibition of HDACs is considered as a potent strategy for
cancer therapy. PC9 and PC10 can be synthesized from FA in
seven steps or from M28G in five steps with unpublished
yields.542 Furthermore, the amide (PC11) that is selectively
cytotoxic to white blood cancer cells has been synthesized from
FA in one step with 83% yield.543

Ferulic acid FA can be demethylated to caffeic acid,527 which
can undergo condensation with phenyethylamine to yield a
promising drug candidate, the insulin sensitizer544 and
antioxidant545 KS370G (PC12) with 88% yield.546

FA can be demethylated to caffeic acid with 62% yield.527

Some simplified analogues of the natural product (−)-tarcho-
nanthuslactone showed anticancer activity in different cell lines,
including the highly drug-resistant human pancreatic carcinoma
cell line.547 Caffeic acid derivative PC13 was the most active
compound from the tested analogues.
(−)-Oleocanthal is a bioactive compound isolated from virgin

olive oil. Tyrosol sinapate (PC14) is a semisynthetic analogue of
(−)-oleocanthal. Tyrosol sinapate (PC14) which shows several
biological effects including anticancer activity.548 It can be
synthesized from SA in one step with 85% yield.

5.4. Conclusions

Compared to polymers, pharmaceuticals are produced on much
lower scales, therefore the possibility to source them from
renewables is considered much less important. Nonetheless,
lignin-derived, highly functionalized aromatics appear to be
possible entry points into the synthesis of pharmaceuticals;
however, this approach must show clear advantages over existing
methods. Such a goal is for example the possibility to significantly
reduce waste (improve atom economy and E factor)235,237 by
minimizing the number of reaction steps in total syntheses.
Due to their inherent structure and natural origin, several

aromatics are very common starting materials for the synthesis of
natural products (e.g., FA, monolignols). These however are not
directly obtained by lignin depolymerization methods. Several
monomers, on the other hand, especially those obtained by
reductive depolymerization methods (e.g., alkyl-guaiacols or
phenols), are not generally encountered starting materials for the
synthesis of natural products, pharma intermediates, or drug
candidates.
Some of the transformations described in section 5 proceed in

biorenewable and/or environmentally benign solvents. For
example, PN4 was synthesized in the mixture of water and
methanol, PP2 in methanol, PC2 was synthesized in ethyl
acetate while PC5 in propanol. For the synthesis of Tanegool
(PN18), 2,2,2-trifluorethanol, acetone, and hexanes were used;
the latter could be replaced with heptane. The THF used in
several syntheses such as PC14 could be substituted with 2-Me-
THF549 or CPME.550 However, most of the synthesis routes in
the examples detailed above utilize traditional solvents such as
dichloromethane (DCM) or dimethylformamide (DMF). Effort
should be devoted to search for biobased solvent alternatives
possibly also from lignin, as this would have significant
environmental benefits.

6. CONCLUDING REMARKS

In this review, a comprehensive overview of catalytic processes
that are capable of delivering products in high yield and good
selectivity from preisolated lignin or lignocellulose as starting
material was provided. This gives insight into the creative
solutions that were found to tackle the great challenges related to
the robust and refractory structure of this intriguing aromatic
biopolymer, especially in the past 5 years. Most of the new
catalytic methods have focused on the selective cleavage of C−O
bonds in the most abundant β-O-4 moieties. Considering this
strategy, and the natural abundance of β-O-4 linkages, high
theoretical efficiencies were already reached. In order to further
improve product yields, new research should focus on the
development of selective catalysts for cleaving moieties that are
mutually connected by two bonds and via stronger C−C
linkages. Several of the new methods have recognized the
importance of suppressing recondensation reactions, which
typically lead to decreased product yields especially when acid or
base and elevated temperatures are used. Also in these cases, high
theoretical efficiencies were reached, and further challenges will
involve addressing engineering solutions for possible upscaling
and in depth mechanistic understanding. Several research groups
have identified the significance of the processing parameters
(temperature, additives) for lignin fractionation, as a major factor
influencing product yield and selectivity. Future challenges will
relate to the implementation of these novel lignin isolation
methods in existing biorefinery schemes. The elegant, catalytic
lignocellulose fractionation methods pioneered by several groups
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have overcome the undesired modification of the native lignin
structure and found well-defined products in improved yields.
Future research in this area will focus on solving challenges
related to catalyst separation from the cellulose and hemi-
cellulose and their valorization.
A summary of well-defined products (Figure 23), including

interesting, unexpected structures (M7-M10, M17, M18, M20,
and M21), originating from the novel catalytic methods
developed recently, will provide a starting point for designing
new lignin-based products, revisiting the idea of lignin-derived
platform chemicals. While phenol or BTX are still highly
interesting targets, future research should also focus on defining
new strategies for the valorization of these emerging, more
functionalized structures, for the production of tangible
products. Given the large scale and importance of the field of
biobased polymers, it would be highly desired to find novel
applications that take advantage of the inherent complexity of
lignin-based aromatics, especially to add extra functions or
improve existing properties.
About a decade ago, “cracking” the recalcitrant lignin structure

appeared to be a daunting task, which was met with considerable
skepticism on the one hand and enthusiasm on the other. Today,
owing to the remarkable achievements in catalysis research, it
became possible to derive well-defined compounds from lignin in
acceptable quantities, among which several structures will
emerge as future lignin-derived platform chemicals, and there
is a much clearer understanding of the challenges that still need
to be tackled in order to enable the full implementation of lignin
as sustainable starting material for the production of drop-in
chemicals, polymers, or emerging functional materials. This will
require close collaboration across multiple disciplines and a
dialogue between academia and industry. Without any doubt, the
new, exciting developments achieved thus far project a bright
future for lignin valorization for years to come.
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