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We develop a tool based on bifurcation analysis
for parameter-robustness analysis for a class of
oscillators and in particular, examine a biochemical
oscillator that describes the transition phase between
social behaviors of myxobacteria. Myxobacteria are
a particular group of soil bacteria that have two
dogmatically different types of social behavior: when
food is abundant they live fairly isolated forming
swarms, but when food is scarce, they aggregate into
a multicellular organism. In the transition between
the two types of behaviors, spatial wave patterns
are produced, which is generally believed to be
regulated by a certain biochemical clock that controls
the direction of myxobacteria’s motion. We provide
a detailed analysis of such a clock and show that,
for the proposed model, there exists some interval
in parameter space where the behavior is robust, i.e.,
the system behaves similarly for all parameter values.
In more mathematical terms, we show the existence
and convergence of trajectories to a limit cycle, and
provide estimates of the parameter under which such
a behavior occurs. In addition, we show that the
reported convergence result is robust, in the sense that
any small change in the parameters leads to the same
qualitative behavior of the solution.
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1. Introduction
Oscillators as theoretical models capture various oscillating behaviors in dynamical processes that
have been studied in engineering [1], biology [2], neuroscience [3], medicine [4,5], biochemistry
[6,7], and other scientific fields. In this article, we investigate a biochemical oscillator that
describes the behavior of myxobacteria during their development of a multicellular structure
[8]. Myxobacteria are found in the soil and have multicellular social behavior. They live as
a unicellular organism, which, as long as food is abundant, propel themselves towards the
formation of small swarms by a mechanism called “gliding” [8]. However, whenever food is
scarce, they aggregate and initiate a complex developmental program that transforms the swarms
into a multicellular single body, called “fruiting body” [9]; in the transformation, while the fruiting
body is forming, myxobacteria pass through a developmental stage, called the “ripple phase” [8],
which is characterized by elaborate spatial wave patterns propagating within the whole colony.
It has been observed that different myxobacteria communicate with each other by direct cell
contacts. Thus, the waves are produced by the back and forth motion of the bacteria. More
specifically, these wave patterns are created through motion coordination using the so called “C-
signaling”, which is a contact dependent signal that influences how often the bacteria reverse their
motion directions. It is through the combination of the reversal times that myxobacteria produce
the observed complicated wave patterns. Thus, in [8], a “clock” that controls the reversals has
been suggested in the form of a biochemical oscillator model.

This oscillator is described by a three-dimensional ordinary differential equation, which will
be further described in Section 2. From observations based on numerical simulations, it has been
argued that the model is robust [8]. In particular, it has been argued that the overall behavior of
the oscillator remains the same upon small variation of parameters. Correspondingly, the main
contribution of this paper is to formalize the above claims by means of rigorous mathematical
bifurcation analysis. More precisely, we prove that there exists an open set of parameter values,
under which the model is robust, and more importantly, we provide an estimate of such an
interval. Furthermore, we show that for almost all initial conditions, and a certain range of
parameter values, the trajectories converge to a finite number of periodic solutions, at least one
of which is asymptotically stable. With these results we rule out the existence of chaotic and
homoclinic solutions for the identified parameter interval. We emphasize that the methods and
techniques used in this paper are not confined to the analysis of the particular myxobacteria
model, but rather applicable to a wide range of systems having oscillatory behavior.

The rest of this paper is arranged as follows. In Section 2 we provide a detailed description of
the biochemical oscillator model. Next, in Section 3 we develop local analysis and show that the
dynamics of the system can be studied under a perturbation framework. Afterwards, in Section 4
we give sufficient conditions for the existence of periodic solutions using Hopf bifurcation theory.
In Section 5 global analysis is carried out to study the convergence of trajectories to periodic
solutions. The robustness of the convergence behavior is presented in Section 6. We end this paper
in Section 7 with conclusions and a summary on open problems.

2. System description
We study a mathematical model that describes several important properties of myxobacteria
during development [8]. This model, so-called the Frz system, is based on a negative feedback
loop. The Frz system includes a methyltransferase (FrzF), the cytoplasmic methyl-accepting
protein (FrzCD), and a protein kinase (FrzE). When two cells of myxobacteria collide with each
other directly by end-to-end, a C-signal is produced. After the C-signal transmission, a protein
called FruA is phosphorylated. The signal from phosphorylated FruA (FruA-P) activates the Frz
proteins as follows: (i) FruA-P activates the methyltransferase FrzF (x1); (ii) FrzCD is methylated
in response to x1; (iii) the methylated form of FrzCD (x2) influences the phosphorylation of FrzE;
and (iv) the phosphorylated form of FrzE (x3) inhibits x1. A schematic representation of the Frz
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system is shown in Figure 1. For a more detailed explanation of the model and its biological
background, see [8]. The interaction between x1, x2 and x3 is modeled by Michaelis-Menten
kinetics, which leads to the following dynamical system

x′1 = ka(1− x1)− kdx1x3,

x′2 = km(1− x2)x1 − kdmx2,

x′3 = kp(1− x3)x2 − kdpx3,

(2.1)

where

ka =
kmax

a
Ka + (1− x1)

, kd =
kmax

d
Kd + x1

,

km =
kmax

m
Km + (1− x2)

, kdm =
kmax

dm
Kdm + x2

,

kp =
kmax

p

Kp + (1− x3)
, kdp =

kmax
dp

Kdp + x3
.

(2.2)

The schematic diagram of model (2.1) is presented in Figure 1.

C-signal
FruA-P x1 x2 x3

Figure 1: The schematic diagram of system (2.1). The feed-forward (or activation) and the negative
feedback (or inhibition) are shown respectively by→ and `. The FruA-P signal that activates x1
is constant.

In [8], the choices of the parameter values are as follows. First, the C-signal, denoted by kmax
a ,

is assumed to be constant. Next, the following parameter values are givenKa = 10−2,Kd =Km =

Kdm =Kp =Kdp = 5× 10−3, kmax
d = 1 min−1, kmax

m = kmax
p = 4 min−1, kmax

dm = kmax
dp = 2 min−1,

and kmax
a = 0.08 min−1. It is observed numerically in [8] that under these parameter values, system

(2.1) exhibits oscillatory behavior. Note that the reaction possesses the property of “zero-order
ultrasensitivity” [8], meaning that the Michaelis-Menten constantsKa,Kd,Km,Kdm,Kp andKdp
have to be small [10]. Since Ka,Kd,Km,Kdm,Kp and Kdp are dimensionless Michaelis-Menten
constants, we propose to set Ka = 2Kd = 2Km = 2Kdm = 2Kp = 2Kdp = ε. We remark, however,
that although kmax

a is small as well, its unit is “min−1” which cannot be unified with the Michaelis-
Menten constants. Substituting (2.2) in (2.1), and taking care of the previous considerations, we
obtain the following dynamical system

x′1 =
0.08(1− x1)

ε+ (1− x1)
− 2x1x3
ε+ 2x1

,

x′2 =
8(1− x2)x1
ε+ 2(1− x2)

− 4x2
ε+ 2x2

,

x′3 =
8(1− x3)x2
ε+ 2(1− x3)

− 4x3
ε+ 2x3

.

(2.3)

For the sake of brevity, we denote system (2.3) by

x′ =G(x, ε), (2.4)

where x=
[
x1, x2, x3

]>
, G(x, ε) =

[
G1(x, ε), G2(x, ε), G3(x, ε)

]>
, and Gi(x, ε) are the

right-hand sides of x′i in (2.3) for i= 1, 2, 3.
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Remark 2.1. From a biochemical point of view, the variables x1, x2, x3 of system (2.3) stand for fractions
of activated protein concentrations. Therefore, their values are restricted to [0, 1]. Thus, from now on, we
confine our analysis to the unit cube (see Figure 2a) defined by

C :=
{
x∈R3 |x∈ [0, 1]× [0, 1]× [0, 1]

}
.

Our numerical simulations (see Figure 2b) show that system (2.3) has the following
characteristics:

• the trajectories are contained in the unit cube C provided that they start within,
• for the particular value ε̄= 0.01 used in [8], and in general, for a sufficiently small

perturbation of ε̄, the solutions are periodic,
• the solutions converge to a periodic limit cycle.

`1

`2

`3

x1

x2

x3

W1

W2

W3

1

1

1

(a) The unit cube C.
(b) Trajectories of system (2.3) for ε= 0.01 with
three different initial conditions.

Figure 2

Due to the fact that these three properties are highly interesting, because of their biological
implications for understanding the developmental stage of maxobacteria, it is of great importance
to provide rigorous mathematical analysis in addition to the simulation results reported so far.
More precisely, since the Michaelis-Menten constants have not been experimentally identified [8],
it is crucial to be able to predict the range of parameters under which the model produces the
anticipated oscillatory behavior for which it has been designed. Towards this goal, we start our
analysis of (2.3) by investigating its local properties in the next section.

3. Local analysis
Some of the arguments that we use in this paper are of a “regular perturbation” nature. Therefore,
before providing any details, we show that the local properties around a unique equilibrium point
of the vector field x′ =G(x, ε) can be regarded as a regular perturbation problem of x′ =G(x, 0)

for “sufficiently small” ε > 0. More specifically, we show that x′ =G(x, 0) is structurally stable
near its equilibrium point, see Definition 3.3 below.
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Definition 3.1 (C1 ε-perturbation [11]). Consider two vector fields F1 and F2 on Rn. We say that F2

is a C1 ε-perturbation of F1 in a closed region U ⊂Rn if

d := sup
x∈U

{
‖F1(x)− F2(x)‖+

∥∥∥∥∂F1(x)

∂x
− ∂F2(x)

∂x

∥∥∥∥}≤ ε, (3.1)

where ‖ · ‖ is an arbitrary norm in Rn.

Note that the distance d is zero if F1(x) = F2(x) for x∈ U .

Definition 3.2 (Topological equivalence [12]). Two vector fields F1, F2 on Rn are said to be
topologically equivalent if there exists a homeomorphism h : Rn −→Rn which takes trajectories of F1 to
trajectories of F2, preserving senses but not necessarily parametrization by time.

Definition 3.3 (Structural stability [12]). A vector field F on Rn is called structurally stable if there is
an ε > 0 such that all C1 ε-perturbations of F are topologically equivalent to F .

Hereafter, the interior and the boundary of a set S ⊂Rn are respectively denoted by S̊ and ∂S.
We denote the boundary of the cube C by ∂C :=

⋃6
i=1Wi where (see Figure 2a)

W1 := {x∈ C |x1 = 1} , W2 := {x∈ C |x2 = 1} , W3 := {x∈ C |x3 = 1} ,

W4 := {x∈ C |x1 = 0} , W5 := {x∈ C |x2 = 0} , W6 := {x∈ C |x3 = 0} .
(3.2)

The following lemma shows that for any ε > 0, the equation G(x, ε) = 0 does not have any
solution on the boundary of C.

Lemma 3.1. For any ε > 0, the boundary of the cube C does not contain any equilibria of system (2.3).

Proof. Let us show only one case on the wall W1 = {x∈ C |x1 = 1}, which exemplifies the
situation for the rest of the walls. Restricted toW1, system x′ =G(x, ε) reads as

x′1 =− 2x3
ε+ 2

(3.3a)

x′2 =
8(1− x2)

ε+ 2(1− x2)
− 4x2
ε+ 2x2

(3.3b)

x′3 =
8(1− x3)x2
ε+ 2(1− x3)

− 4x3
ε+ 2x3

. (3.3c)

If (1, x∗2, x
∗
3) is an equilibrium point of (3.3) then, from (3.3a) we have that necessarily x∗3 = 0. In

turn, the latter implies in (3.3c) that x∗2 = 0. However, (3.3b) does not vanish at (1, 0, 0). Therefore,
(1, 0, 0) is not an equilibrium. The claim is proven by following similar arguments on the rest of
the walls defined in (3.2).

It follows from Lemma 3.1 that if x′ =G(x, ε) has an equilibrium point for ε > 0, then it is
necessarily located in the interior of C. Another property of the cube C is that it is forward
invariant under the flow generated by (2.3). Before proving this statement, we give the definition
of a forward invariant set.

Definition 3.4. Let F be a smooth vector field on Rn, and denote by φ(t, z) : R× Rn→Rn the flow
generated by F . We say that a set S ⊂Rn is forward invariant if s∈ S implies φ(t, s)∈ S for all t≥ t0 ∈
R.

Lemma 3.2. For ε > 0, the cube C is forward invariant under the flow generated by (2.3). Moreover, every
trajectory with the initial condition in the boundary of C evolves towards the interior of C in forward time.
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Proof. To prove that the cube C is forward invariant, we need to check the sign of the vector field
G(x, ε) defined by (2.3) restricted to the wallsWi given in (3.2). It can be readily seen that

x′1|W1
=− 2x3

ε+ 2
≤ 0, x′2|W2

=− 4

ε+ 2
< 0, x′3|W3

=− 4

ε+ 2
< 0,

x′1|W4
=

0.08

ε+ 1
> 0, x′2|W5

=
8x1
ε+ 2

≥ 0, x′3|W6
=

8x2
ε+ 2

≥ 0.

(3.4)

From (3.4) it follows that trajectories of (2.3) cannot leave the cube C, which implies that C is
forward invariant under the flow generated by G(x, ε). Next, to show our second claim, note that
there are three lines (see Figure 2a) where the derivatives in (3.4) may vanish, namely,

`1 := {x∈ C |x= (x1, 0, 0)} , `2 := {x∈ C |x= (1, x2, 0)} , `3 := {x∈ C |x= (0, 0, x3)} . (3.5)

Let φ(t, x) : [t0,∞)× C →C denote the forward-flow generated by (2.3). So far, we have
shown that for all initial conditions φ(t0, x0) = x0 ∈Ω, whereΩ = ∂C\(`1 ∪ `2 ∪ `3), the trajectory
φ(t, x0)∈ C̊ for all t > t0. Then, we need to check the behavior of the trajectories with those initial
conditions on the lines `1, `2, and `3. So, we proceed as follows. The vector field restricted to a
line, say `1, is given by

x′1 =
0.08(1− x1)

ε+ 1− x1

x′2 =
8x1
ε+ 2

x′3 = 0.

(3.6)

From (3.6) we observe that x′3 = 0, and x′2 > 0 for x1 ∈ (0, 1). These two facts imply that (3.6)
is transversal to the line `1|x1∈(0,1). Thus, we conclude that a trajectory with an initial condition
in `1|x1∈(0,1) leaves such a line, and hence reaches Ω. Next, consider a trajectory with an initial
condition in `1|x1=0. In view of (3.6) one has that x′1 > 0 and hence the trajectory is tangent to
`1. This implies that the trajectory reaches the line `1|x1∈(0,1), which we have discussed above.
Similar arguments follow for the lines `2 and `3. This completes the proof.

We now turn to the analysis of the equilibria of (2.3) inside the cube C, i.e., when x∈ C̊. For the
case ε= 0, the following lemma is given, whose proof follows from straightforward and standard
computations.

Lemma 3.3. Consider the vector field x′ =G(x, ε) defined by (2.3) with ε= 0. Then the following
properties hold:

(i) Let x∈ C̊. Then, the linear algebraic equation G(x, 0) = 0 has the unique solution x0 =

(0.5, 0.5, 0.08).
(ii) The equilibrium point x0 is hyperbolic, that is, the Jacobian DxG(x, 0)|x=x0 has eigenvalues

with nonzero real parts. Moreover, such eigenvalues satisfy λ01 < 0 and λ02,3 = α0 ± iβ0, where
α0, β0 > 0.

Now, assume that x(ε) :=
(
xε1, x

ε
2, x

ε
3

)
is an equilibrium point of (2.3) such that x(0) = x0,

where x0 is the equilibrium point of x′ =G(x, 0) when x∈ C̊. Linearizing (2.3) at x(ε) results
in x′ =DxG(x(ε), ε)x where DxG(x(ε), ε), which denotes the Jacobian matrix calculated at x(ε),
is given by

DxG(x(ε), ε) :=

ηε1 0 θε1
θε2 ηε2 0

0 θε3 ηε3

 , (3.7)
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with

ηε1 :=
∂G1

∂x1

∣∣∣
x=x(ε)

=− 2εxε3
(ε+ 2xε1)2

− 0.08ε

(ε+ 1− xε1)2
,

ηε2 :=
∂G2

∂x2

∣∣∣
x=x(ε)

=− 4ε

(ε+ 2xε2)2
− 8εxε1

(ε+ 2(1− xε2))2
,

ηε3 :=
∂G3

∂x3

∣∣∣
x=x(ε)

=− 4ε

(ε+ 2xε3)2
− 8εxε2

(ε+ 2(1− xε3))2
,

(3.8)

θε1 :=
∂G1

∂x3

∣∣∣
x=x(ε)

=
−2xε1
ε+ 2xε1

,

θε2 :=
∂G2

∂x1

∣∣∣
x=x(ε)

=
8(1− xε2)

ε+ 2(1− xε2)
,

θε3 :=
∂G3

∂x2

∣∣∣
x=x(ε)

=
8(1− xε3)

ε+ 2(1− xε3)
.

(3.9)

Remark 3.1. It is not possible to analytically compute the equilibrium point x(ε) of (2.3) for ε > 0. To see
this, note that one needs to solve simultaneously the equations Gi(x, ε) = 0, i= 1, 2, 3, which results in

0.04(1− x1)(ε+ 2x1)− (ε+ 1− x1)x1x3 = 0, (3.10a)

2(1− x2)(ε+ 2x2)x1 − (ε+ 2(1− x2))x2 = 0, (3.10b)

2(1− x3)(ε+ 2x3)x2 − (ε+ 2(1− x3))x3 = 0, (3.10c)

each of which is a polynomial of degree 3. If, for example, we solve x3 from (3.10a) and substitute it in
(3.10c), the obtained equation can then be solved for x2. This solution in turn is substituted in (3.10b)
leading to a 9th-degree polynomial of x1 with ε-dependent coefficients, which from the Abel-Ruffini theorem
[13] is impossible to solve analytically. This explains why we use regular perturbation arguments to study
(2.3).

From Lemma 3.3 we know that the equilibrium point of x′ =G(x, 0), when x∈ C̊, is unique and
hyperbolic. The following lemma shows that all the local properties of x0 persist under sufficiently
small perturbations of ε. That is x′ =G(x, 0) is structurally stable around x0, see [11, Theorem 2.2].

Lemma 3.4. The vector field x′ =G(x, ε) defined by (2.3) has the following properties:

(i) The Jacobian DxG(x, ε) is a smooth function of ε for all x∈ C̊.
(ii) For sufficiently small ε > 0, the equilibrium x0 perturbs to the unique equilibrium x(ε) = x0 +

O(ε), which has the same local stability properties as x0.

Proof. The nonzero entries of the Jacobian DxG(x, ε), defined in (3.7), can be rewritten as an
additive combination of terms of the form

Q(x, ε) :=
A(x, ε)

B(x, ε) + C(x)
, (3.11)

whereA(x, ε), B(x, ε) and C(x) are polynomials satisfying: i)B(x, ε) + C(x)> 0 for all x∈ C and
ε > 0, ii) B(x, 0) = 0, iii) C(x)> 0 for all x∈ C̊, and iv) C(x) = 0 if x∈ ∂C, that is, C(x) vanishes
only in the boundary of C. Thus, to show the first property holds, it suffices to show that (3.11) is a
smooth function of ε in C̊. It is clear that the only point where the k-th derivatives of Q(x, ε) with
respect to ε, i.e. DkεQ(x, ε), k= 0, 1, . . ., are undefined is whenever B(x, ε) + C(x) = 0. From the
above properties B(x, ε) + C(x) may vanish only when ε= 0. Thus, to ensure that DkεQ(x, ε) is
well-defined for ε≥ 0, we just need x∈ C̊. Next, the first part of the second property follows from
Lemma 3.3, and the implicit function theorem. For the stability properties of x(ε), it follows from
the fact that the eigenvalues of a matrix, depending smoothly on a parameter, vary continuously
with respect to such a parameter [11].
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The characteristic polynomial corresponding to the Jacobian matrix DxG(x(ε), ε), defined in
(3.7), is given by

P (λ, ε) = λ3 + kε1λ
2 + kε2λ+ kε3,

where

kε1 :=−(ηε1 + ηε2 + ηε3), kε2 := ηε1η
ε
2 + ηε1η

ε
3 + ηε2η

ε
3, kε3 :=−(ηε1η

ε
2η
ε
3 + θε1θ

ε
2θ
ε
3). (3.12)

Remark 3.2. For any ε > 0, it follows from Lemmas 3.2 and 3.4, and equations (3.8) and (3.9) that ηεi < 0

(i= 1, 2, 3), θε1 < 0, and θε2, θ
ε
3 > 0. Hence, kεi > 0.

The equilibrium x(ε) is stable when all roots of P (λ, ε) have negative real parts, and unstable
if at least one of the roots has a positive real part. Applying the Routh-Hurwitz criterion and
denoting

Γ (ε) := kε1k
ε
2 − kε3, (3.13)

the following proposition is given for the stability of x(ε).

Proposition 3.1. For any ε > 0, the equilibrium point x(ε) is stable if Γ (ε)> 0, and is unstable if Γ (ε)<

0.

Proof. According to the Routh-Hurwitz criterion, the equilibrium point x(ε) is stable if
kε1, k

ε
3, Γ (ε)> 0, and it is unstable if at least one of these conditions is violated. We know from

Remark 3.2 that kε1, k
ε
3 > 0. So, the only quantity that can change the stability of the equilibrium

point is Γ (ε). Thus, based on the Routh-Hurwitz criterion, the equilibrium point is stable if Γ (ε)

is positive, and it is unstable if it is negative.

Remark 3.3. From Remark 3.2 we know that the coefficients of the characteristic polynomial P (λ, ε)

are positive (kεi > 0) when ε > 0. Therefore, due to the fact that det(DxG(x(ε), ε))< 0, one of its roots
is negative and the other two are either real of the same sign or complex-conjugated. However, we know
from Lemma 3.4 that the eigenvalues of DxG(x0, 0) satisfy λ01 < 0 and λ02,3 = α0 ± iβ0, where α0, β0 >

0. Moreover, from the structural stability of x′ =G(x, 0) we know that for sufficiently small ε > 0, the
eigenvalues of DxG(x(ε), ε) satisfy λ1(ε)< 0 and λ2,3(ε) = α(ε)± iβ(ε) with α(ε), β(ε)> 0, where
λi(0) = λ0i , α(0) = α0, and β(0) = β0.

What we have studied so far are the local stability properties of the equilibrium point of (2.3)
and the forward invariance of C. However, since we are investigating a biochemical oscillator
model, one of the most important questions is about the existence of periodic solutions. In
particular, it is necessary to describe the relationship between the parameter ε and the existence
of and the convergence to such solutions. Furthermore, from Remark 3.3 we know that the
equilibrium point x(ε) has a pair of associated complex-conjugated eigenvalues. This motivates
the further analysis via Hopf bifurcation theory, presented in the following section.

4. Hopf bifurcation analysis
In this section we give sufficient conditions for the existence of periodic solutions of (2.3). In
principle, the existence of such solutions depends on the parameter ε. We know from Remark
3.3 that λ1(ε)< 0 and λ2,3(ε) = α(ε)± iβ(ε), with α(ε), β(ε)> 0, for sufficiently small ε > 0.
Therefore, upon variation of ε, the eigenvalues λ2,3(ε) may cross transversally the imaginary
axis. This would allow us to apply the Hopf bifurcation theorem to prove the existence of periodic
solutions. The first step is then to further study the behavior of α(ε).
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Lemma 4.1. For any ε≥ 0, the real part of λ2,3(ε) satisfies the equation

Γ (ε) =−2α(ε)[(kε1 + 2α(ε))2 + kε2], (4.1)

where Γ (ε) is defined in (3.13).

Proof. Since P (λ, ε) is a cubic function with respect to λ, we may assume without loss of
generality that its zeros are λ1(ε)∈R and λ2,3(ε) = α(ε)± iβ(ε). Based on the Vieta’s formulas,
the following relations among such zeros hold:

λε1 + λε2 + λε3 =−kε1, λε1λ
ε
2 + λε1λ

ε
3 + λε2λ

ε
3 = kε2, λε1λ

ε
2λ
ε
3 =−kε3, (4.2)

where kεi are defined in (3.12). Then

Γ (ε) = kε1k
ε
2 − kε3

=−(λε1 + λε2 + λε3)kε2 + λε1λ
ε
2λ
ε
3

=−λε1(kε2 − λε2λε3)− (λε2 + λε3)kε2

=−λε1[2α(ε)λε1]− 2α(ε)kε2

=−2α(ε)[(λε1)2 + kε2]

=−2α(ε)[(kε1 + 2α(ε))2 + kε2].

From Lemma 4.1 and the fact that kε2 > 0 (Remark 3.2) we have sgn(Γ (ε)) =− sgn(α(ε)) for
any ε≥ 0. So, one concludes that if there exists ε0 such that Γ (ε0) = 0, then the real part of
the eigenvalues is zero at ε0, i.e. α(ε0) = 0. Therefore ε0 is the bifurcation point at which the
equilibrium point switches from being instable to stable. This change of stability is an important
factor towards showing the existence of periodic solutions by means of the Hopf bifurcation
theorem [14].

Theorem 4.1 (Hopf bifurcation theorem). Assume that system z′ = F (z, µ), with (z, µ)∈Rn × R,
has an equilibrium point (z(µ0), µ0) where the vector field F is sufficiently smooth on a sufficiently large
open set containing (z(µ0), µ0). Assume that the following properties hold:

(i) The Jacobian DzF
∣∣
(z(µ0),µ0)

has a simple pair of pure imaginary eigenvalues λ(µ0) and λ(µ0),
and the real parts of the other eigenvalues are not zero,

(ii)
d

dµ
(Reλ(µ))

∣∣
µ=µ0 6= 0.

Then the dynamics z′ = F (z, µ) undergo a Hopf bifurcation at (z(µ0), µ0), that is, in a sufficiently small
neighborhood of (z(µ0), µ0), a family of periodic solutions exists.

The following lemma demonstrates the existence of periodic solutions for (2.3) with ε > 0.

Lemma 4.2. For system (2.3) parametrized by ε > 0, there exists ε0 > 0 such that the dynamics x′ =
G(x, ε) undergo a Hopf bifurcation at (x(ε0), ε0).

Proof. Recall from Remark 3.3 that for sufficiently small ε > 0, we have λ1(ε)< 0, and the other
two eigenvalues are in the form of λ2,3(ε) = α(ε) + iβ(ε). On one hand, it follows from Lemma 3.4
that Γ (ε) is a smooth function of ε. On the other hand, Γ (0)< 0 and Γ (1)> 0 (which is computed
numerically from Remark 3.1). Therefore, there exists 0< ε0 < 1 such that Γ (ε0) = 0, which means
that the eigenvalues λ2,3(ε) cross the imaginary axis. In Figure 3 we observe that Γ ′(ε0)> 0. Due
to the latter fact, there exists a neighborhood N = (ε0 − δ, ε0 + δ), with δ > 0, such that Γ ′(ε)> 0

for all ε∈N . In view of Lemma 4.1, one concludes that α(ε0) = 0. Therefore,DxG(x(ε0), ε0) has a
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pair of pure imaginary eigenvalues ±iβ(ε0), and the other eigenvalue is negative (i.e. λ1(ε0)< 0,
Remark 3.3), satisfying assumption (i) of Theorem 4.1.

In addition, the differentiation of (4.1) with respect to ε gives

Γ ′(ε) =−2

(
α′(ε)

[
(kε1 + 2α(ε))2 + kε2

]
+ α(ε)

d

dε

[
(kε1 + 2α(ε))2 + kε2

])
. (4.3)

Now, due to the fact that α(ε0) = 0, evaluating (4.3) at ε= ε0 results in

Γ ′(ε0) =−2α′(ε0)
[
(kε

0

1 )2 + kε
0

2

]
, (4.4)

and hence

α′(ε0) =
Γ ′(ε0)

−2
[
(kε

0

1 )2 + kε
0

2

] . (4.5)

Note that from Remark 3.2 we know that kε
0

1 , kε
0

2 > 0, and hence (4.5) is well-defined. Recalling
Γ ′(ε0)> 0, one concludes that α′(ε0)< 0, and hence the second assumption of Theorem 4.1 is
satisfied. Therefore, the dynamics x′ =G(x, ε) undergo a Hopf bifurcation at (x(ε0), ε0).

Figure 3: The curve Γ with respect to ε, and the zoom-in of Γ near the bifurcation value ε= ε0.

From Lemma 4.2 we know that system (2.3) undergoes a Hopf bifurcation at (x(ε0), ε0). The
numerical continuation software MATCONT [15] is used to track such a bifurcation. The value
of the bifurcation parameter, computed by MATCONT, is ε0 ' 0.05517665. The equilibrium point
corresponding to ε0 is x(ε0) = (0.48668602, 0.37822906, 0.07633009). The bifurcation diagrams
of x1, x2 and x3 with respect to ε, and their zoom-ins around the Hopf bifurcation point “H”
are presented in Figures (4a), (4b) and (4c), respectively. In Figure 4, the black curves depict the
position of the equilibrium point x(ε); the dashed black curve corresponds to the case when x(ε)

is unstable, while the solid one represents the case when x(ε) is stable. On the other hand, the red
and blue curves correspond to periodic solutions; the solid blue curve indicates that the periodic
solution is stable, while the dashed red one shows that the periodic solution is unstable. For each
fixed ε, these curves provide the maximum and the minimum values of each variable along the
corresponding periodic solution. Moreover, in Figures (4a), (4b) and (4c) in the zoom-ins around
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the Hopf bifurcation point “H”, we observe that for a range of ε started from ε0, both stable and
unstable periodic solutions exist simultaneously.

In this section we have shown the existence of periodic solutions in (2.3) for ε∈ (0, ε0).
However, the presented results do not consider the stability of the periodic solutions.
Furthermore, the number of periodic solutions is still unknown. These issues are treated in the
following section.

5. Global behavior of solutions
The local analysis performed in the previous section does not fully capture the behavior of the
solutions of (2.3). For example, we cannot conclude directly from the previous results whether the
trajectories are oscillatory or they evolve in some unexpected way, e.g. chaotically. In this section,
we show that when the equilibrium point x(ε) of (2.3) is unstable, almost all trajectories converge
to periodic solutions, ruling out chaotic behavior and the existence of homoclinic solutions. To
this end, we study the structure of the ω-limit set of (2.3). We start with the following definition.

Definition 5.1. For a function z : [t0,∞)→Rm, where t0 ∈R, a point z∗ is called an ω-limit point
if there exists a sequence {tn}, tn −−−−→

n→∞
∞, such that z(tn)−−−−→

n→∞
z∗; the set of all ω-limit points is

referred to as the ω-limit set of the function z(·) and denoted by ω(z).

In general, an ω-limit set can be empty. However, if a function is bounded, then its ω-limit set is
nonempty, closed and connected [16]. In the context of system (2.3), the ω-limit set of a trajectory
with an initial condition in C is non-empty due to the forward invariance of C (see Lemma 3.2).

For planar autonomous dynamical systems, the structure of the ω-limit set of solutions is
given by the celebrated Poincaré-Bendixson theorem. This theorem states that the ω-limit set of
a bounded solution is either (i) an equilibrium point, (ii) a closed trajectory, or (iii) the union
of equilibria and the trajectories connecting them [12]. The latter are referred to as heteroclinic
solutions when they connect distinct points, and homoclinic solutions when they connect a point
to itself. Although the Poincaré-Bendixson theorem is not applicable to systems of dimensions
higher than 2, it holds for monotone cyclic feedback systems [17]. For the reader’s convenience,
we formulate the results of [17] on the positively invariant domain Rn+ := [0,∞)n with bounded
solutions as follows.

Consider a system of the form

y′i = fi(yi−1, yi), i= 1, 2, ..., n, (5.1)

where y0 is interpreted as yn, and the nonlinearity f = (f1, f2, ..., fn) is assumed to beC1-smooth
on Rn+. Systems of the form (5.1) are called cyclic. The fundamental assumption on (5.1) is that
the variable yi−1 influences fi monotonically. So, it is assumed that for some δj ∈ {−1, 1}, the
conditions

δi
∂fi(yi−1, yi)

∂yi−1
> 0, i= 1, 2, ..., n, (5.2)

hold, meaning that the functions fi are strictly monotone in yi−1. Moreover, δi describes whether
the role of yi−1 is to reduce (δi =−1) the growth of yi, or to augment (δi = 1) it. The product

∆ :=

n∏
i=1

δi (5.3)

describes whether the entire system has positive feedback (∆= 1) or negative feedback (∆=−1).
A cyclic system (5.1) that satisfies conditions (5.2) is called a monotone cyclic feedback system, and it
is shown in [17] that they have the Poincaré-Bendixson properties. We recall this important result
in Theorem 5.1. Before that, we give the following definitions.
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H
H

(a)

H

H

(b)

H

H

(c)

Figure 4: In the left-side of Figures (a), (b), and (c), we show the bifurcation diagrams of x1, x2
and x3 with respect to ε, whose zoom-ins around the Hopf bifurcation point, denoted by “H”, are
given on the right-side. The black curve depicts the position of the unique equilibrium point x(ε);
the dashed (resp. solid) section of this curve represents the interval within which x(ε) is unstable
(resp. stable). The solid blue and the dashed red curves describe the amplitude of oscillation for
each of the variables. The solid blue curve corresponds to a stable periodic solution, while the
dashed red curve indicates an unstable one.
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Definition 5.2. [18] Assume that zp(t) is a periodic solution for the dynamical system z′ = F (z)∈Rn.
The solution zp(t) is said to be orbitally stable if for each ε > 0, there exists a corresponding δ > 0 such
that every solution z(t) of z′ = F (z), whose distance from zp(t) is less than δ for t= t0, is defined and
remains at a distance less than ε from zp(t) for all t≥ t0. Moreover, if the distance of z(t) from zp(t) tends
to zero as t−→∞, the periodic solution zp(t) is called orbitally asymptotically stable.

Definition 5.3. The distance between two sets S1,S2 ⊂Rn is denoted and defined by

d(S1,S2) := inf{‖s1 − s2‖ : s1 ∈ S1, s2 ∈ S2}, (5.4)

where ‖ · ‖ is an arbitrary norm in Rn.

Definition 5.4. [19] Let F be a smooth vector field on Rn and denote by φ(t, z) : R× Rn→Rn the flow
generated by F .

• A set K⊂Rn is said to attract a setM⊂Rn, if K 6= ∅ and d(K, φ(t,M))→ 0 as t→∞. We
also say thatM is attracted by K.
• A set K is called an attractor ofM, if K is invariant and attractsM. In this situation, we also

say thatM has the attractor K. The set K is called a compact attractor ofM if, in addition, K
is compact.

Next, for brevity, we recall the relevant results of Theorems 4.1 and 4.3 of [17] as follows.

Theorem 5.1. Let the cyclic system (5.1) satisfy conditions (5.2) in Rn+. Then the following statements
hold.

(i) Assume that Rn+ is forward invariant for (5.1), and that it contains a unique equilibrium point
y∗. Then the structure of the ω-limit set of any bounded solution of the system is either

(a) the equilibrium point y∗,
(b) a nonconstant periodic solution, or
(c) the equilibrium point y∗ together with a collection of solutions homoclinic to y∗. This case

does not occur if

∆det(−Dyf(y∗))< 0, (5.5)

where Dyf(y∗) denotes the Jacobian matrix of system (5.1) at y∗.

(ii) Suppose that (5.1) satisfies ∆=−1, and possesses a compact attractor K⊂ R̊n+. Assume that K
contains a unique equilibrium point y∗, and that Dyf(y∗) satisfies (5.5) and has at least two
eigenvalues with positive real parts. Then (5.1) has at least one, but no more than a finite number
of nontrivial periodic solutions. Moreover, at least one of such solutions is orbitally asymptotically
stable.

Remark 5.1. [17] In Theorem 5.1, Rn+ can be replaced by any other forward invariant closed convex
domain Ω containing a single equilibrium point.

Now, we describe the global behavior of solutions of system (2.3) as follows.

Theorem 5.2. For sufficiently small ε > 0, and for almost all initial conditions x0 ∈ C, the trajectories
φ(t, x0) of (2.3) converge to a finite number of nonconstant periodic solutions. Moreover, at least one of
such solutions is orbitally asymptotically stable.
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Proof. First of all, to show that (2.3) is cyclic, note that it can be written as

x′1 =Gε1(x3, x1),

x′2 =Gε2(x1, x2),

x′3 =Gε3(x2, x3).

Thus, system (2.3) is cyclic for any ε. Next, recalling Remark 3.2, we have that ∂Gε
1

∂x3
< 0,

∂Gε
2

∂x1
> 0, and ∂Gε

3
∂x2

> 0, which implies that, according to (5.2) and (5.3), δ1 =−1, δ2 = δ3 = 1 and
hence ∆=−1. This means that (2.3) is a monotone cyclic negative feedback system. In view
of det (DxG(x(ε), ε))< 0 (Remark 3.3), we conclude that (2.3) satisfies (5.5). Therefore, from
statement (i) of Theorem 5.1, the ω-limit set of any trajectory of (2.3) with the initial condition
x0 ∈ C is either an equilibrium point or a nonconstant periodic solutions. Then, recall from our
local analysis results in Lemma 3.4 that for sufficiently small ε > 0, the equilibrium point x(ε)

is associated with a 1-dimensional stable and a 2-dimensional unstable manifolds. This means
that the only trajectories that converge to the equilibrium point x(ε) are those with the initial
conditions along the stable manifold, while all the other trajectories, due to the above arguments,
converge to some non-constant periodic solution. Note that the set of initial conditions contained
in the stable manifold is negligible1 with respect to all other initial conditions in C.

Next, due to the fact that the cube C is forward invariant for any ε > 0 (Lemma 3.2), system (2.3)
possesses a compact attractor K⊂ C̊ [17]. Moreover, for sufficiently small ε > 0 and from Lemmas
3.3 and 3.4, we know that the equilibrium point x(ε) is unique, the Jacobian matrix DxG(x(ε), ε)

has two eigenvalues with positive real parts, and ∆ det (−DxG(x(ε), ε))< 0. Therefore, system
(2.3) satisfies all the assumptions of the statement (ii) of Theorem 5.1, and hence (2.3) has a finite
number of non-constant periodic solutions, at least one of which is orbitally asymptotically stable.

Remark 5.2. From the bifurcation analysis performed in Section 4, it is clear that by “for sufficiently small
ε > 0” in Theorem 5.2 we mean ε∈ (0, ε0).

6. On the robustness of bifurcation with respect to parameter
changes

This section is devoted to investigate how robust our bifurcation analysis and qualitative results
are under small but not necessarily symmetric changes in the parameters of system (2.3). Note that
our bifurcation analysis is based only on the scalar parameter ε, because, as discussed in Section 2,
we have unified all the Michaelis-Menten constants by ε, i.e., Ka = 2Kd = 2Km = 2Kdm = 2Kp =

2Kdp = ε. Now, we are interested in understanding how the conclusion of the bifurcation analysis
may change if there is a small “asymmetry” in parameter values. In other words, we want to know
how system (2.3) behaves if the perturbation of the parameters is no longer restricted to the scalar
parameter ε, but depends on a 6-dimensional parameter vector according to the Michaelis-Menten
constants.

Claim 6.1. The bifurcation analysis result for G(x, ε) = 0, given by (2.4), is robust in the sense that any
(smooth, sufficiently small, and not necessarily symmetric) change in the parameters will lead to the same
qualitative behavior of the solutions as that already described in this paper.

To provide a formal proof of Claim 6.1 (see Proposition 6.1 below) we follow [20]. To avoid
making this section inconveniently long, we adopt the same terminology and notation as in [20]
and recall just the essential definitions and results. For more details on the concepts being used
below, and a brief introduction to algebraic geometry and singularity theory, the interested reader
is referred to [20] and [21] respectively.
1A subset of Euclidean space is called negligible if its Lebesgue measure is zero.
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Let G be a (germ of a) function in n+ 1 variables near 0, that is G : (Rn × R, 0)→ (Rm, 0).

Definition 6.1. [20, Definition 2.1a] An `-parameter unfolding of G is a C∞ map F : (Rn × R×
R`, 0)→ (Rm, 0) such that F (x, λ, 0) =G(x, λ) for all (x, λ)∈Rn × R.

Definition 6.2. [20, Definition 2.1c] F is a universal unfolding of G if every unfolding of G factors
through F .

In some sense, a bifurcation problem defined by F = 0 contains all the qualitative behavior
present in G= 0. Moreover, any other unfolding of G does not contain new information or
behavior already given by F . Thus, the goal is, given a bifurcation problem G= 0, to know if
a universal unfolding F exists, and if it does, to compute it.

In order to address the aforementioned issue, let us first introduce some notations: we denote
an `-parameter unfolding of G by Fα with some fixed α∈R`. We denote by En+1 the ring of
germs of (smooth) functions in n-variables and 1-parameter (x, λ)∈Rn × R, and regard Emn+1,
the space ofm-tuples, as a module over En+1 with component-wise multiplication. Moreover, we

denote by En+1

{
∂G
∂x

}
the submodule of Emn+1 generated by ∂G/∂x1, ∂G/∂x2, ..., ∂G/∂xn over

the ring En+1, the ideal 〈G〉= 〈G1, G2, ..., Gm〉 in En+1 generated by them components ofG, and

Eλ
{
∂G
∂λ

}
:=
{
φ(λ)∂G∂λ |φ∈ Eλ

}
, where φ∈ Eλ stands for φ∈ En+1 when φ is just a function of λ

and does not depend on x.

Remark 6.1. Recall from Lemma 4.2 that the bifurcation point of (2.4) is (x(ε0), ε0). Therefore, for the
particular bifurcation problem given by (2.4), the ring of germs En+1 is defined around x(ε0) and λ=

ε− ε0 with n= 3, m= 3.

Definition 6.3. [20, Definition 2.3]

(i) Let T̃G= 〈G〉m + En+1

{
∂G
∂x

}
and let TG= T̃G+ Eλ

{
∂G
∂λ

}
.

(ii) G has finite codimension if dim
(
Emn+1/T̃G

)
<∞.

(iii) The codimension of G equals dim
(
Emn+1/TG

)
and is denoted by codim G.

Now, we are ready to present the main result of [20].

Theorem 6.1. [20, Theorem 2.4] Suppose G has finite codimension, and let Fα be an `-
parameter unfolding of G. Fα is a universal unfolding of G if and only if TG plus the `-vectors
∂F/∂α1|α=0, · · · , ∂F/∂α`|α=0 together span Emn+1 (over the reals). The minimum number of unfolding
parameters in any universal unfolding is the codimension of G.

In words, Theorem 6.1 states that given a bifurcation problem G of a certain codimension, say
p, we need to add p parameters to the idealized problem G= 0 to obtain a robust bifurcation
problem Fα = 0. Then, any smooth perturbation whatsoever of the idealized problem G= 0 will
give a qualitative behavior already presented for Fα = 0.

Now we turn to check whether the bifurcation problem G given in (2.4) is robust.

Proposition 6.1. The bifurcation problem G in (2.4) has codimension zero, i.e. codimG= 0.

Proof. First of all, note that up to relabeling of the variables (x1, x2, x3), the equationsGi(x, ε) = 0,
i= 1, 2, 3, are all equivalent, where Gi(x, ε) are the right-hand sides of (2.3). Thus, without
loss of generality, we can study, for instance, a bifurcation problem defined by F = 0, where
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F (x1, x2, x3, ε) : R3 × R→R is given by

F (x1, x2, x3, ε) = κ1ε+ κ2x1 + κ3εx1 + κ4x
2
1 + κ5x1x3ε+ κ6x1x3 + κ7x

2
1x3, (6.1)

which is the numerator of G1(x, ε) where κj (j = 1, 2, ..., 7) are non-zero real constants, and we
set m= 1.

Due to the dimension order 0≤ dim (En+1/TF )≤ dim
(
En+1/T̃F

)
, it suffices to show that

dim
(
En+1/T̃F

)
= 0. The quotient space dim

(
En+1/T̃F

)
, its base, and its dimension are

computable by hand. However, to simplify such tasks we have used the software “SINGULAR"
[22] with which we can automate the necessary computations. By doing so we obtain

dim
(
En+1/T̃F

)
= 0. (6.2)

Due to the dimension order 0≤ dim (En+1/TF )≤ dim
(
En+1/T̃F

)
, we conclude that

dim (En+1/TG1) = dim (En+1/TF ) = 0. As mentioned above, the same claim holds for G2 and
G3, that is dim (En+1/TG2) = dim (En+1/TG3) = 0. Thus, from the definition of Emn+1 it follows

that dim
(
E3n+1/TG

)
= 0. Therefore codimG= 0.

Remark 6.2. The proof of claim 6.1 follows from Theorem 6.1 and Proposition 6.1. As a consequence, the
convergence result presented in Theorem 5.2 is robust, in the sense that any small change in the parameters
leads to the same qualitative behavior of the solutions.

7. Conclusions and discussions
In this paper we have studied a biochemical oscillator model that describes the developmental
process of myxobacteria. Such an oscillator is proposed in [8] as the control mechanism of motion
reversals. With the results of this paper we have formalized and refined the claims made in [8].
Particularly, we have given an estimate of the parameter values ε for which almost all trajectories
of the biochemical oscillator indeed converge to a periodic solution.

Our studies start from the local behavior of the biochemical oscillator and conclude with a
global description. First of all, we have identified the parameters of the model using a single
ε. Then we have developed local analysis through which we have found a unique hyperbolic
equilibrium point associated with the oscillator. Since such a point is hyperbolic, it turns out that
the system is structurally stable in a small neighborhood of it, motivating us to further investigate
the robustness of the system. However, up to this stage, oscillatory behavior cannot yet be
explained. So we have used Hopf bifurcation theory to give sufficient conditions for the existence
of periodic solutions. From bifurcation analysis we have been able to provide numerical estimates
of the range of parameter under which periodic solutions exist. However, the results from the
Hopf bifurcation analysis do not provide information on the cardinality of and convergence to
periodic solutions. In this regards, we have performed global analysis to show that the number
of possible limiting periodic solutions is finite and that trajectories converge to at least one of
such solutions. At the end, we have shown that the bifurcation results reported in this paper are
robust in the sense that any smooth, sufficiently small, and not necessarily symmetric change in
the parameters will lead to the same qualitative behavior of the solutions as the one that has been
already described. All these results lead us to conclude that the biochemical oscillator proposed
in [8] is indeed robust under sufficiently small C1-perturbations of the parameter. We emphasize
that the presented approach is not confined to the specific oscillator that is studied in this paper,
and that the ideas provided here may be applied to other oscillatory systems such as [23].

For future research, we are interested in a couple of open problems. First, Theorem 5.2 shows
the convergence of almost all trajectories to a finite number of periodic solutions. However, from
simulations it appears that almost all trajectories actually converge to a unique limit cycle. The
first open problem is to prove this rigorously. Second, from numerical simulations, it is clear
that there are several timescales along the limit cycle, which are related to the small parameter
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ε. A thorough analysis of such timescales and their influences on the dynamics may provide a
better understanding of their role in the biochemical clock. Thus, the second open problem is to
investigate the model studied in this paper from a multi-timescales perspective.

Data Accessibility. This paper contains no experimental data. All computational results are reproducible.

Authors’ Contributions. H.T., H.J.K., and M.C. designed research, performed research, and wrote the
paper.

Competing Interests. The authors declare no competing interests.

Acknowledgements. The authors would like to express their gratitude to Prof. Peter Szmolyan for reading
and commenting on the manuscript. They also thank the anonymous reviewers for their comments and
suggestions that helped to improve the manuscript, especially by motivating Section 6. H.J.K. thanks E.
Ruiz-Duarte for fruitful discussions on algebraic geometry and its applications to dynamical systems.

Funding. H.T. and M.C. were supported in part by the European Research Council (ERC-StG-307207). H.J.K
was supported by the ERC Advanced Grant (ABCvolume, project number 670578) awarded to Bert Poolman.

References
1. van der Pol B, van der Mark J. 1928 LXXII. The heartbeat considered as a relaxation oscillation,

and an electrical model of the heart. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science. 6, 763–775. (doi:10.1080/14786441108564652)

2. Winfree AT. 1967 Biological rhythms and the behavior of populations of coupled oscillators.
Journal of Theoretical Biology. 16, 15–42. (doi:10.1016/0022-5193(67)90051-3)

3. Hodgkin AL, Huxley AF. 1952 A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology, 117(4):500-544.

4. Goodwin BC. 1965 Oscillatory behavior in enzymatic control processes. Advances in enzyme
regulation. 3, 425-437. (doi:10.1016/0065-2571(65)90067-1)

5. Taghvafard H, Proskurnikov AV, Cao M. 2018 Local and global analysis of endocrine regulation
as a non-cyclic feedback system. Automatica, in press.

6. Goldbeter A, Berridge MJ. 1996 Biochemical Oscillations And Cellular Rhythms. Cambridge, UK:
Cambridge University Press. (doi:10.1017/cbo9780511608193)

7. Goldbeter A. 1991 A minimal cascade model for the mitotic oscillator involving
cyclin and cdc2 kinase. Proceedings of the National Academy of Sciences. 88, 9107–9111.
(doi:10.1073/pnas.88.20.9107)

8. Igoshin OA, Goldbeter A, Kaiser D, Oster G. 2004 A biochemical oscillator explains several
aspects of Myxococcus xanthus behavior during development. Proceedings of the National
Academy of Sciences. 101, 15760–15765. (doi:10.1073/pnas.0407111101)

9. Kaiser D. 2003 Coupling cell movement to multicellular development in myxobacteria. Nature
Reviews Microbiology. 1, 45–54. (doi:10.1038/nrmicro733)

10. Goldbeter A, Koshland DE. 1984 Ultrasensitivity in biochemical systems controlled by
covalent modification. interplay between zero-order and multistep effects. Journal of Biological
Chemistry. 259(23):14441-14447.

11. Kuznetsov YA. 2004 Elements of Applied Bifurcation Theory. Springer New York.
(doi:10.1007/978-1-4757-3978-7)

12. Guckenheimer J, Holmes P. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields. Springer New York. (doi:10.1007/978-1-4612-1140-2)

13. Khovanskii A. 2014 Topological Galois Theory: Solvability and Unsolvability of Equations in Finite
Terms. Springer Monographs in Mathematics, Springer-Verlag. (doi:10.1007/978-3-642-38871-2)

14. Poore A. 1976 On the theory and application of the Hopf-Friedrichs bifurcation theory. Archive
for Rational Mechanics and Analysis. 60(4), 371–393. (doi: 10.1007/BF00248886)

15. Dhooge A, Govaerts W, Kuznetsov YA. 2003 MATCONT: a matlab package for numerical
bifurcation analysis of odes. ACM Transactions on Mathematical Software. 29, 141–164.
(doi:10.1145/779359.779362)

16. Wiggins S. 1988 Global Bifurcations and Chaos. Springer New York. (doi:10.1007/978-1-4612-
1042-9)

17. Mallet-Paret J, Smith HL. 1990 The Poincare-Bendixson theorem for monotone cyclic feedback
systems. Journal of Dynamics and Differential Equations. 2, 367–421. (doi:10.1007/bf01054041)



18

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

18. Coppel WA. 1965 Stability and asymptotic behavior of differential equations. Heath.
19. Smith HL, Thieme HR. 2011 Dynamical systems and population persistence, volume 118.

American Mathematical Society Providence, RI.
20. Golubitsky M, Schaeffer D. 1979 A theory for imperfect bifurcation via singularity theory.

Communications on Pure and Applied Mathematics. 32(1), pp.21-98. (doi:10.1002/cpa.3160320103)
21. Golubitsky, M and Guillemin, V. 2012 Stable mappings and their singularities. Springer Science

& Business Media. (doi:10.1007/978-1-4615-7904-5)
22. Decker W, Greuel GM, Pfister G, Schönemann H. SINGULAR 4-1-0 — A computer algebra

system for polynomial computations. http://www.singular.uni-kl.de (2016).
23. Kosiuk I, Szmolyan P. 2016 Geometric analysis of the Goldbeter minimal model for the

embryonic cell cycle. Journal of mathematical biology. 72(5), 1337- 1368. (doi: 10.1007/s0028)


	1 Introduction
	2 System description
	3 Local analysis
	4 Hopf bifurcation analysis
	5 Global behavior of solutions
	6 On the robustness of bifurcation with respect to parameter changes
	7 Conclusions and discussions
	References

