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Abstract

Stellar streams result from the tidal disruption of satellites and star clusters as they orbit a host galaxy, and can be
very sensitive probes of the gravitational potential of the host system. We select and study narrow stellar streams
formed in a Milky-Way-like dark matter halo of the Aquarius suite of cosmological simulations, to determine if
these streams can be used to constrain the present day characteristic parameters of the halo’s gravitational potential.
We find that orbits integrated in both spherical and triaxial static Navarro–Frenk–White potentials reproduce the
locations and kinematics of the various streams reasonably well. To quantify this further, we determine the best-fit
potential parameters by maximizing the amount of clustering of the stream stars in the space of their actions. We
show that using our set of Aquarius streams, we recover a mass profile that is consistent with the spherically
averaged dark matter profile of the host halo, although we ignored both triaxiality and time evolution in the fit. This
gives us confidence that such methods can be applied to the many streams that will be discovered by the Gaia
mission to determine the gravitational potential of our Galaxy.

Key words: dark matter – Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: structure –

methods: numerical

1. Introduction

Stellar streams are the result of the accretion of globular
clusters (GCs) or dwarf galaxies onto a more massive host
galaxy, and are formed as their stars are tidally stripped under
the influence of the potential of the host. The knowledge of a
stream’s trajectory provides a constraint on the potential and
thus on the matter distribution and shape of the dark halo (Eyre
& Binney 2009; Willett et al. 2009; Law & Majewski 2010;
Newberg et al. 2010; Sanders & Binney 2013).

There exist many streams in the Milky Way halo. Among the
most well-studied is the stream associated with the Sagittarius
dwarf galaxy (Ibata et al. 1994; Ivezić et al. 2000; Yanny et al.
2000). This stream is a good example of how assumptions
about the symmetry, shape, and functional form of the Milky
Way’s dark halo, combined with incomplete knowledge of the
phase-space of stars in the tidal stream, can lead to conflicting
conclusions about the mass distribution of the Milky Way
(MW). Based on 3D positions and radial velocities (a total of
four phase-space coordinates) of about 75 carbon stars, Ibata
et al. (2001) argued that the dark halo should be nearly
spherical since the stars’ positions roughly followed a great
circle on the sky. Analysis of parts of the stream discovered
with the Sloan Digital Sky Survey suggested that the mass
distribution could be oblate (Martínez-Delgado et al. 2004),
and a similar conclusion was reached using the precession of
the orbital plane of the stream’s M giants from 2MASS
(Johnston et al. 2005). On the other hand, the radial velocities
of the leading stream’s M giants from 2MASS clearly favored a
prolate shape (Helmi 2004). These works used the 4D phase-
space coordinates of several hundred stars. The conundrum was
solved by Law & Majewski (2010) who showed that a triaxial
halo could reconcile the angular position of the stream with its
radial velocities. In their model, a logarithmic density profile

was assumed with axis ratios and orientation constant with
radius, leading to a best fit where the disk was parallel to the
intermediate axis of the dark halo; a dynamically untenable
situation. More recently, Vera-Ciro & Helmi (2013) argued that
it is not necessary to assume a constant shape with radius, and
that there is enough freedom in the data to allow for a model
that is oblate and aligned with the disk at small radii.
Furthermore, the authors find that if the gravitational contrib-
ution of the Large Magellanic Cloud is included, the resulting
best-fit Milky Way halo resembles those in cosmological
simulations at large radii. The Law & Majewski (2010) model
in the outskirts may be seen as an effective potential, which is
the sum of that of the LMC and of the underlying halo of the
Galaxy. Although Ibata et al. (2013) argue that a spherical halo
with an unusual rising rotation curve out to nearly 50 kpc can
fit the data, the velocities are clearly less well reproduced in this
model. Belokurov et al. (2014) also argue that the azimuthal
precession rate can be used to measure the radial dependence of
the mass distribution. Clearly, thus far not all of the available
data have been used optimally, nor has the modeling been
sufficiently general from assumptions about the mass distribu-
tion: its shape, radial profile, and even the effect of
substructures like the LMC, to reach its full potential.
How then can the mass distribution of the MW’s dark halo

be unambiguously determined? One could for example try to fit
more than one stream, or try to obtain the remaining phase-
space coordinates for the stream being fitted, in the hopes that
this could break the degeneracy. Given that stars in a single
stream all have similar orbits, one would expect that even
perfect and complete data on a single stream would be
insufficient to break all the degeneracies. It is unclear how
many streams, or which ones, would be sufficient to do this.
However, the Gaia mission (Perryman et al. 2001), launched in
2013 December, will at least make it possible to analyze
multiple streams simultaneously, by measuring the positions
and velocities of 1 billion Milky Way stars, including many
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halo stars. Gaia will measure full six-dimensional phase-space
coordinates for roughly 15% of these stars, and five-dimen-
sional coordinates for the remaining 85%. This data set will
likely contain hundreds of streams (Helmi & White 1999) and
its uniformity will enable simultaneous analysis of multiple
streams.

Even in this case, however, the fact would remain that the
MW’s dark halo does not precisely follow a particular
functional form; it is clear from the example of the Sgr stream
that our assumptions do affect the results of the fit. In this work
we explore how Gaia’s upcoming observations can help
resolve some of these problems, and test how simplifying
assumptions about the potential are projected onto both the
ability of orbits to resemble a given stream, and the resulting
best-fit profile.

Since many stream-fitting algorithms (e.g., Varghese et al.
2011; Bonaca et al. 2014; Price-Whelan et al. 2014; Sanders
2014) compare the positions and velocities of stream stars to
models in six-dimensional phase space (or less), our first goal is
to determine whether a center-of-mass orbit integrated in an
spherical instead of triaxial potential lined up equally well (or
badly) for streams on different kinds of orbits. Though streams
do not exactly follow orbits (e.g., Eyre & Binney 2009), the
degree to which an integrated orbit lines up with the stars of a
stream is a simple proxy for whether a given potential will be
able to produce a stream that fits the observations; in fact to
save computing time the best-fit single orbit is often used as a
starting point for the progenitor’s center-of-mass orbit when
searching parameter space with N-body simulations (e.g.,
Fardal et al. 2006; Law & Majewski 2010). We wish to
determine whether this strategy will be effective for the streams
produced self-consistently from satellites in the Aquarius
simulations. Additionally, the degree to which streams lie in
or out of a plane has been used to make a conjecture about the
spherical symmetry (or lack thereof) of the MW halo (e.g.,
Ibata et al. 2001). We wish to determine whether the Aquarius
streams can be successfully used in this way, and if so, which
streams are most sensitive.

Our second goal is to test the robustness of the results of a
new potential-fitting algorithm, based on maximizing the
information content of the action space of stream stars
(Sanderson et al. 2015), if the potential being fit was
substantially less complicated than the real potential. Unlike
many methods, this one does not directly compare positions
and velocities of stream stars with a model, but does analyze
multiple streams simultaneously. We want to test whether the
results from fitting a simple spherical potential will still reflect
the true mass distribution of the halo to the extent permitted by
such an oversimplified model.

To conduct the two tests, we selected stellar streams
produced from the cosmological, dark-matter-only N-body
simulation Aquarius A (Springel et al. 2008, hereafter S08) via
stellar tagging according to a semianalytic model of star
formation (Cooper et al. 2010) and used them to evaluate
different potential models. In Section 2, we describe the two
models for the dark halo: a triaxial and a spherical Navarro–
Frenk–White (NFW) potential, both fit to the known dark-
matter distribution of the simulated halo. In Section 3, we
selected 15 structures based on their streamy appearance and
low mass (i.e., narrow width) and integrated center-of-mass
orbits for each stream in the two different potential models to
see how well the orbits traced the streams. Then, in Section 4,

we fit a spherical NFW model simultaneously to all 15 streams
using the Sanderson et al. action-clustering method and
compared the best-fit result to the spherically averaged DM
distribution from the N-body simulation. In Section 5, we
discuss our results and implications for future work.

2. Data and Models

The Aquarius project is a suite of N-body simulations of
Milky-way sized halos run in a LCDM cosmology (S08). Six
different halos, labeled A to F, were simulated, each of them at
different resolutions, labeled by the numbers 1 (highest) to 5
(lowest). Stellar populations were associated to subsets of
CDM particles (Cooper et al. 2010) using the semi-analytic
GALFORM model (Cole et al. 2000). In this work we focus on
the halo Aquarius-A-2 (Aq-A-2) at redshift z=0. The mass,
shape, and orientation of the halo change over time (Vera-Ciro
et al.2011), and it contains a population of subhalos resolved
down to about 105 solar masses (S08).
From the set of dark matter particles tagged by Cooper et al.

(2010), we select those associated with infalling luminous
satellites with total stellar mass between ´ M1 103 and

´ M5 105 , and which gave rise to structures that appeared
spatially coherent or “streamy” (i.e., long and thin) in position
space (Helmi et al. 2011). The selected streams are shown in
Figure 1 as a sky projection viewed from the center-of-mass of
the host halo. Different streams are shown in different colors in
this and subsequent plots.

2.1. Potentials and Parameters

We use the NFW profile (Navarro et al. 1996) to describe the
mass profile of a dark halo with scale radius rs and scale density
rs. In order to avoid degeneracies in action space when using
the Kullback–Leibler divergence (KLD) method (see
Section 4), we use the enclosed mass at the scale radius,

( ) ( )prº = -⎜ ⎟⎛
⎝

⎞
⎠M M r r4 ln 2

1

2
, 1s encl s s s

3

as one of the two parameters in the potential rather than rs (the
other parameter is the scale radius rs). In terms of Ms and rs, the
potential is

( ) ( ) ( )F = -
-

+
r G

M r r

rln 2 1 2

ln 1
2s s

where G is Newton’s constant.
For a spherical NFW halo, the radius r is simply defined as
= + +r x y z2 2 2 2. To produce a triaxial NFW halo with the

same overall mass and scale radius, we follow Vogelsberger
et al. (2008) and define the ellipsoidal radius
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where a, b, and c are the relative lengths of the major,
intermediate, and minor axes respectively. In this orientation
the major axis of the ellipsoid is therefore aligned with the x
axis, and so forth. In order to maintain the proper normalization
we require + + =a b c 32 2 2 . We then replace r in the
spherical NFW potential with the quantity
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where ra is the scale over which the potential shape transitions
from ellipsoidal to near spherical. As in Vogelsberger et al.
(2008) we set =r r2a s. This produces a halo that is ellipsoidal
in the center and becomes spherical for r ra.

We use the axis ratios for the potential of Aq-A determined
by Vera-Ciro et al. (2011) using the method for defining
isopotential contours described in Hayashi et al. (2007). The
shape of Aq-A changes as a function of radius; we take the axis
ratios of the potential at the scale radius from Figure A2 of
Vera-Ciro et al. (2011) ( =b a 0.90, =c a 0.85) and scale the
axis lengths to the proper normalization for the ellipsoidal
radius, obtaining a=1.09, b=0.98, and c=0.93. The
rotation matrix that transforms from the coordinate system of
the Aquarius simulations ( )x y z, ,A A A to the one aligned with the
ellipsoidal axes ( )x y z, , was determined by Vera-Ciro et al.
(2011):

( )=
-

-
- -

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

x
y
z

x
y
z

0.24 0.73 0.64
0.12 0.63 0.76
0.96 0.27 0.07

5
A

A

A

We use this matrix to rotate the coordinates of the selected
stream stars.

For the mass and scale radius of the Aq-A-2 halo, we have
several different options. S08 and Navarro et al. (2010,
hereafter N10) both determine slightly different sets of halo
parameters for Aq-A-2 that lead to different values for Ms

assuming a spherical NFW halo; both papers find the same
value for rs under this assumption.

To obtain a value for rs, S08 determine the radius r200 in
which the virial mass M200 is enclosed (the mass enclosed in a
sphere with average density 200 times the critical value). Then,
from the peak value of the circular velocity curve vmax at rmax,
they determine the characteristic density contrast dV ,

( )d º
⎛
⎝⎜

⎞
⎠⎟

V

H r
2 , 6V

max

0 max

2

which can be converted to the standard NFW concentration c
via (Navarro et al. 1996)

( )
( )d d= =

+ -
+

c

c
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3 ln 1
. 7c V c

c

3

1

This results in c=16.19 for Aq-A-2 assuming that the halo is
well fit by an NFW profile. The virial radius is then related to
the NFW scale radius by

( )= =r r c 15.19 kpc. 8s 200

M200 and r200 are related to the scale density rs via
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or, equivalently, to dV via:
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2

Both relations result in a value for Ms (using Equation (1))
of ´ M1.87 1011 .
On the other hand, N10 characterize the same halo by

determining the radius -r 2 where the logarithmic slope of the
profile, ( )g r= -r d d rln ln , equals the isothermal value,
g = 2. The density at -r 2 is denoted as r-2. For a NFW profile,

=-r r2 s and r r=-4 2 s. The value obtained for rs this way is
identical to that obtained by finding r200 and applying
Equation (8), but the value obtained for Ms using this method
is somewhat smaller, ´ M1.34 1011 .
The different results are summarized in Table 1. The

parameters from S08 give the correct M200 by definition, but
the NFW profile with this Ms and rs has a significantly higher
peak circular velocity than is measured directly from the
numerical simulation of the halo. On the other hand, the

Figure 1. Selected streams projected onto the sky. The Sun is located at 8 kpc along the major (x-) axis of the simulation (see Section 2.1 for a discussion of the
coordinate system). Each stream is represented by a different color.
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parameters from N10 give close to the the correct peak of the
circular velocity curve, but significantly underestimate the
enclosed mass at r200. This discrepancy occurs because the Aq-
A halo mass profile is not strictly NFW and these two methods
normalize the mass profile at two different radii. The N10
profile agrees with the spherical mass profile best within
40 kpc, while the S08 profile is too high until near the virial
radius. The streams we will use to fit the halo have orbits that
span a radial range from inside -r 2 out to about half of r200.
Thus, it is likely that our fit will match the empirical mass
profile best over some radial range intermediate to these two,
and in Section 4 we will compare our fit results to both values
of Ms since they bracket the possible masses obtained by fitting
an NFW profile to the halo, depending on which range of radii
is used for the fit. For integrating orbits, we use the values
determined by S08, but the range of masses we explore
includes the N10 profile.

Since Aq-A is not well fit by a single NFW profile at all
radii, we also determined its radial mass profile directly from
the dark matter particle data to compare to our fit results. The
empirical mass profile was obtained by first removing all bound
substructures identified by the structure finder SUBFIND
(Springel et al. 2001, also used to produce the stellar stream
catalog), then binning the remaining particles in spherical
radius. Because the bound substructures are removed, this
empirical profile has a slightly lower virial mass than S08.

3. Orbit Integration

3.1. Methods

We integrated center-of-mass orbits for each selected stream
from Aq-A-2 in the spherical and triaxial NFW potentials
described above, using as initial conditions the position and
velocity of a particle chosen by eye to lie about midway along
each stream. In the case of stream 1051588, we tried using a range
of different particles at different positions along the stream, but
none of the orbits we integrated traced the stream closely at all.

The equations of motion were integrated numerically with
scipy using a fourth-order Runge–Kutta algorithm (Strehmel
1988) with a timestep of 0.01 Gyr for both the spherical and the

triaxial potentials. Each orbit was integrated forward and
backward in time, starting from the initial conditions, for 2 Gyr
in each direction. The center-of-mass orbits in each potential
were compared to the current positions of the stream stars to
determine whether the spherical or triaxial potential produced
an orbit that more closely followed the stream. Inspired by
comparisons used in fitting orbits to streams, we calculated for
each stream the minimum distance between the integrated orbit
of the central particle and each star in the stream. The phase-
space location along the orbit ( )x v,orb orb was tabulated at each
timestep using the orbit integration and compared to the phase-
space location of each star particle by calculating the mean
squared minimum distance, independently for position and
velocity:

[( ) ]
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To eliminate a few outliers, we discard any stars in the streams
whose minimum distance from the orbit is larger than 25 kpc.
For most streams, no stars are thrown out; for a few of the
largest, a handful of stars are discarded. The largest number of
discarded stars is 66, from stream 1025754, which contains
5158 stars in total. Most of these are well outside this distance,
and our results do not change appreciably with the cutoff
distance.
We also explored how changing the parameters Ms and rs

affected the agreement between the integrated orbit and the
stream. Having determined which potential (spherical or
triaxial) produced the best stream-orbit agreement with the
known parameters, we then varied each parameter from 0.25 to
2 times its known value while holding the other fixed.

3.2. Results

We compared the alignment between the stars in each
selected stream and the integrated orbits. We do not expect the
streams to align exactly with the integrated orbits, not only

Table 1
Properties of the Aq-A-2 Halo

Property Unit S08 meas S08 calc N10 meas N10 calc Best-fit

M200 M1012 1.842 L 1.842 1.322 -
+1.5 0.4

0.8

r200 kpc 245.88 L 245.88 L -
+230 20

40

dV 104 2.060 2.130 2.038 1.529 -
+1.2 0.7

1.4

cNFW L L 16.19 L L -
+13 4

5

-r 2 kpc/h L L 11.15 L -
+13 2

3

r-2 h M106 2 -kpc 3 L 10.199 7.332 L -
+6 4

7

rs M106 -kpc 3 L 21.98a L 15.78b -
+13 8

15

rs kpc L 15.19 L 15.19 -
+18 3

5

Ms M1012 L 0.187 L 0.134 -
+0.17 0.02

0.06

rmax kpc 28.14 32.87 28.14 32.87 -
+38 5

10

vmax km -s 1 208.49 248.97 208.49 210.96 -
+220 40

50

Notes. Properties of Aq-A-2 from different sources: measured directly from the Aq-A simulated halo as described in the text, with no assumption of an NFW profile
(columns “S08 meas” and “N10 meas”), calculated from the directly measured quantities assuming the profile is NFW (“S08 calc” and “N10 calc”), and quantities
derived from our best-fit Ms and rs values with confidence intervals corresponding to the two points shown as black triangles in Figure 8. See Section 4.4 for a full
discussion. The scaled Hubble constant is h=0.734.
a Calculated using Equation (9), with M200 and r200 as measured and c related to dV via Equation (7).
b Calculated using r r= -4s 2.
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because the spread of energies in the stream stars produces a
slight misalignment, but also because the true potential in
which the streams have evolved is both lumpy and time-
evolving, as opposed to our smooth and static models.
However, the goal is to see if the assumption of spherical
symmetry makes a significant difference in how closely the
integrated orbits follow the streams.

The values of the average minimum distances d x
2 and dv

2

(Equations (11)) for all the streams in our sample are compared
for the spherical and triaxial potentials in Figure 2. The streams
highlighted as red squares and labeled with their ID numbers in
Figure 2 are shown in a few different projections in Figure 3. In
all projections, the stream stars are shown as black points; the
central particle whose orbit is integrated forward and backward
is marked with a big turquoise circle, and the integrated
spherical and triaxial orbits are shown as blue and green solid
lines, respectively. We also show for comparison the orbit
integrated in the best-fit spherical potential determined with the
KLD fit as a red dashed line, with accompanying red dotted–
dashed lines spanning the range of uncertainty of the fit.

Figure 2 shows that, in general, there is a slight preference
for a triaxial orbit over a spherical one in terms of average
minimum distance between stars and orbit. There are two
streams for which using a spherical instead of triaxial halo
nearly doubles the average minimum distance; both these
streams are on very radial orbits and the spherical orbit fails to
incorporate precession out of the plane, which is especially
apparent in the stars at the edges of the stream. One of these,
stream 1040180, is shown in the second row of Figure 3; the
other stream has similar characteristics. Although (as expected)
even the triaxial orbit does not perfectly line up with the stream
edges, especially in the x–z projection, it does a somewhat
better job than the spherical orbit.

Other than these two outliers, for many of the streams it is
hard to see by eye whether the triaxial or spherical halo is a
better fit. Stream 1030962, shown in the third row of Figure 3,
is a good example of this situation. The orbits in the two
potentials are nearly identical and the stream is much wider
than the distance between the two orbits, and so it cannot
discriminate. This stream, like most in the sample, shows some
signs of discontinuity that also complicate the choice between
potentials.
Finally, one stream appears to slightly prefer the spherical

potential, which is surprising given that we know the Aquarius
halo is triaxial. This stream, 55000000, is shown in the first row
of Figure 3. Stream 55000000 is another case similar to
1030962, where the stream is much wider than the difference in
orbits, and small differences end up producing a smaller mean
squared distance in the spherical potential rather than triaxial in
this case.
We can estimate the sensitivity of the mean squared

minimum distance as a measure of agreement between stream
and orbit using stream 1051588 (fourth row of Figure 3), for
which neither orbit lines up very well with the stream at all; in
this case one is really just choosing between two equally bad
options. For this stream, the mean squared minimum distance
in position space favors a spherical potential, while the mean
squared minimum distance in velocity space favors a triaxial
potential, but the fractional differences are only about 10%.
This illustrates that differences of this order in the mean
squared minimum distance are not really indicative of a
preference for one potential over the other. On the other hand,
differences on the order of 30% and larger in the mean squared
minimum distance, such as the differences shown by stream
1040180, are produced primarily when comparing the positions
of the ends of the streams and orbits. This is consistent with the
expectation that longer streams do a better job of constraining
the shape of the halo, since precession induced by departures
from spherical symmetry has a more noticeable effect on a
longer stream.
The influence of the halo mass on the orbit can be probed by

varying the parameter Ms, as shown in Figure 4 for two
example streams: one where the triaxial potential is clearly a
better fit (1040180, top row) and one where the two orbits are
nearly indistinguishable from one another (1030962, bottom
row). Increasing the halo mass shifts the orbit’s apo- and
pericenter inwards. The -r vr curve becomes more elongated
for decreasing mass resulting in a larger radial range and a
smaller velocity range covered. Looking at the projections onto
different axes, orbits with -

+Ms 50%
25% all follow most of the stars in

the stream. For reference, we also show the error bounds of the
orbit using the best-fit parameters; these are typically a smaller
range than we can distinguish by eye.
We also probe the influence of the scale radius on the orbits,

shown in Figure 5 for the same two streams as in Figure 4. A
larger scale radius results in a shift of apo- and pericenter
toward larger radii and a more elongated radial velocity curve,
which implies a larger radial range covered, but a smaller range
in radial velocities. Thus there is a partial degeneracy, in terms
of orbital characteristics, between increasing the scale radius
and lowering the scale mass (and vice versa). The orbit is
generally less sensitive to rs than to Ms: even when the scale
radius is increased to 1.75 times its measured value, the orbits
still follow most of the stream. Thus, although the degree to
which an orbit in a trial potential lies along a stream can select a

Figure 2. Relative difference in mean squared minimum distance
(Equations (11)) between the orbit and stream when the orbit is integrated in
a spherical rather than triaxial potential. The x axis shows the difference in
position, while the y axis shows the difference in velocity. The four highlighted
streams shown as red squares are shown in several projections in Figure 3;
streams 1040180 and 1030962 are also shown in Figures 4 and 5.
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rough range of potentials around the correct one, this method of
determining the potential is neither very accurate nor very
precise. We will show in the following section that a method

that represents streams more realistically, as collections of stars
on neighboring orbits, gives a better result in terms of both
accuracy and precision.

Figure 3. Results of integrating the orbit of the central particle (cyan filled circle) in the triaxial NFW potential (green solid line) and the spherical NFW potential (blue
solid line), for four streams highlighted in Figure 2. Both orbits were integrated with the “true” potential parameters derived as in S08. We also show the orbit
integrated in the spherical NFW potential using our best-fit parameters, determined by maximizing the KLD (red long-dashed line), including error bounds for the fit in
Ms (red short-dashed lines) and in rs (red dotted–dashed lines). The stream stars are plotted in black. The row labels (“spherical,” “triaxial,” etc.) indicate the potential
shape with the lowest mean squared minimum distance for the stream pictured in that row.
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4. Potential Fitting Using Action-space Clustering

To fit a spherical NFW potential to the selected Aquarius
streams, we use the method described in Sanderson et al.
(2015), which maximizes the clustering of the selected stars in
the space of their actions, J , by varying the potential
parameters ( )ºa M r,s s used to calculate the actions from the
stars’ positions and velocities. The potential parameters giving
rise to the most clustered distribution of actions are chosen as
the best fit, a0.

4.1. Measuring Clustering with the KLD

The amount of action-space clustering is measured statisti-
cally by calculating the KLD,

( )
( )

( )
( )ò= J

J

J
JD f

f

f
dlog , 12a

a

a
KL
I

shuf
3

between the distribution of stellar actions for a specific set of
potential parameters, ( )Jfa , and the product of its marginal
distributions, ( )Jfa

shuf . The product of marginals is constructed
by computing the actions for a particular a, then shuffling the
different components of each action relative to one another to
break correlations between actions, so we call it the “shuffled”
distribution. The shuffling process creates a distribution that is
equivalent to the product of the marginal distributions in each
action; as discussed in Sanderson et al. (2015), this choice of
comparison distribution automatically adjusts to the correct
range of actions (eliminating spurious results from outlier
points) and is guaranteed to be less clustered than the original
distribution. Comparison with the shuffled distribution lets us

use the KLD to measure the clumpiness of the original
distribution independent of its overall extent or the particular
placement or size of the clumps. Formally speaking, the KLD
between a distribution and the product of its marginals is also
called the “mutual information.” For a multidimensional
Gaussian (a decent representation of one action-space clump),
this quantity depends only on the eigenvalues of the covariance
matrix (the correlation matrix) and is independent of the
determinant of the covariance matrix (the “size” of the clump).
We use a modified Breiman density estimator (Ferdosi

et al. 2011) to infer fa and fa
shuf from the set of stellar actions,

then calculate the KLD using numerical integration over a
regular grid of J , which replaces the integral in Equation (12)
with a sum over grid squares. More details on the numerical
methods are available in Sanderson et al. (2015). The larger the
KLD, the more clustered the action space; the best-fit
parameters are those for which the KLD is maximized.
Using the KLD as a figure of merit when fitting the potential

has two advantages. First, because we measure clustering
statistically there is no need to assign stars to a particular
stream. Second, once the best-fit is found we can then use the
KLD to set error contours on the best-fit parameters, a0, by
comparing the action distribution for the best-fit parameter
values, ( )Jfa0

, to the distribution for other trial values of the
parameters, ( )Jfatrial

:

( )
( )
( )

( )òº J
J

J
JD f

f

f
dlog . 13a

a

a
KL
II

0

0

trial

This KLD is related to the conditional probability of the
potential parameters atrial relative to a0, averaged over the stars

Figure 4. Integrated orbits of the central test particle in the spherical NFW potential for different values of Ms, fixing =r 15.19 kpcs,S08 (see Table 1), for an orbit
where the triaxial potential is clearly better (top) and another that is more ambiguous (bottom). The orbit for = ´M M1.87 10s,S08

11 from S08 is shown in green; the
best-fit orbit according to the KLD is plotted in gray with error bounds in lighter gray. Other colors range from M0.25 s,S08 (dark blue) to M2 s,S08 (dark red) in steps
of M0.25 s,S08.
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in the sample:

( ∣ )
( ∣ )

( )


=
a J

a J
D log . 14

J
KL
II 0

trial

A full discussion of this interpretation is in Sanderson et al.
(2015). Qualitatively, this expression measures how well the
KLD can distinguish between the action distribution produced
by the best fit parameters and the distributions produced by
other parameters. Interpreting this as an uncertainty requires us
to assume that the distribution produced using the best-fit
parameters is correct and compare other distributions to it;
hence the appearance of a conditional probability in
Equation (14). As an example, if for some atrial we get

=D 1KL
II , it means that those parameters are e times less likely

than the best-fit a0 to have produced the distribution of actions
associated with the best-fit parameters (we are using natural
logs everywhere). Because we assume no generative model for
the action-space distribution, the quoted uncertainties cannot be
interpreted in a chi-squared sense. The level where, e.g.,

= -Plog 1 2 is properly construed as the set of potential
parameters that produce a distribution of stellar actions, for
which the probability that they are drawn from the most
clustered distribution is =-e 0.61.1 2 This interpretation takes
into account (1) the unknown number of clumps in action space
and their unknown positions, (2) the limited resolution of the
distribution thanks to the finite number of stars in the sample,
and (3) the way in which the action-space distribution changes
as the potential parameters are changed.

4.2. Computing the Actions

A spherical potential has three independent actions that can
be expressed in several different ways. We use the set
comprised of the radial action Jr, the absolute value of the
total angular momentum L, and the z component of the angular
momentum, which in our coordinate system points along the
minor axis of the dark matter halo (though the potential to be fit
is spherical). Thus our actions are ( )J L L, ,r z , of which only Jr
depends on the potential parameters. The other actions are
included when calculating the KLD, because although they do
not change with the potential, they are still clumpy and
correlated with Jr, so they improve the contrast between better
and worse choices of the potential parameters.
As is the case when integrating the center-of-mass orbits, we

use the potential of Equation (2) to represent the spherical
NFW halo, so our parameters a are the scale radius rs and the
enclosed mass at the scale radius Ms. The angular momenta L
and Lz are calculated from the stars’ positions x and velocities
v:

∣ ∣ · ˆ ( )º ´ º ºL x v L LL L z; ; . 15z

The radial action Jr is calculated by numerical integration of

( ) ( )òp
= - F -J dr E r

L

r

1
2 2 16r

r

r 2

2
min

max

where ∣ ∣º xr and the energy E is

· ( ) ( )= + Fv vE r
1

2
. 17

The potential ( )F r , which depends on the parameters rs andMs,
is given by Equation (2). The integral endpoints rmin and rmax

Figure 5. Integrated orbits of the central test particle in the spherical NFW potential for different values of rs, fixing = ´M M1.87 10s,S08
11 , for the same two

streams as in Figure 4. The plotting scheme is the same as in Figure 4, but the colors now indicate a range of rs from r0.25 s,S08 (dark blue) to r2 s,S08 (dark red) in steps
of r0.25 s,S08.
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are determined by finding (also numerically) the two roots of

( ) ( )- F - =E r
L

r
2 2 0. 18

2

2

The range of Jr varies as a function of the scale mass Ms, so to
avoid undersampling and comparison issues when calculating
the KLD (discussed further in Section 5 of Sanderson et al.) we
scale the radial action such that

( )
( )º

-
J

J

GM ln 2 1 2
, 19r

rscaled

s

which keeps the overall range of Jr roughly constant, and
comparable to the range of L and Lz, for different Ms.

Figure 6 shows the distribution of ( )J L,r z for the stars in the
selected Aquarius streams, calculated using the values for rs
and Ms derived from M200 and r200 via the method outlined in
S08 and Section 2.1. Although we are calculating the actions
using a spherical approximation to the potential instead of the
true triaxial one, we still see that both Jr and Lz are clumpy (as
is L, not shown here) and that the clumps correspond to
different streams (shown here in different colors, though the
fitting method does not use this information). Thus, the central
assumption underlying our fitting method—that streams
correspond to action-space clumps—is still satisfied.

4.3. Finding the Best Fit

In order to find the best fit we compute DKL
I (Equation (12))

for a grid of parameter points, increasing the grid resolution
adaptively in regions where the KLD is changing rapidly. We
used five levels of adaptive refinement to converge the
locations of the few highest KLD values. Figure 7 shows the
contours of DKL

I . We find that the best-fit parameters lie on a
ridge of high DKL

I with the very highest value (green cross)
being between the scale mass derived from the N10 parameters
and that derived from the S08 parameters. This is not surprising

since the S08 values best describe the mass profile close to the
virial radius (246 kpc), while the N10 parameters describe the
mass profile better near the scale radius (15 kpc). Most of
the “stars” in our fitting sample are at distances somewhere in
between these two radii, with an average distance around
40 kpc but reaching to about 120 kpc, so we expect our best-fit
mass to interpolate between these two values. The scale radius
value we obtain is slightly larger than the S08/N10 value; it is
mainly determined by matching the enclosed mass at the
average distance of the fitting sample, which gives rise to the
degeneracy seen in the contours of Figure 7.

4.4. Determination of Uncertainties on the Best-fit Value

To determine uncertainties we use the KLD of Equation (14)
to compare the distribution of actions at the points in the
parameter grid with the one at the best-fit values identified in
the first step in order to determine their error bounds, as
described in Section 4. In order to compensate for the different
ranges in the radial action Jr at different grid points in
parameter space, we scale it with the prefactor of the potential,

( )-GM ln 2 1 2s , before comparing the action distributions
with the KLD. Figure 8 shows the contours of DKL

II relative to
the best fit (green cross).
To validate the use of Equation (14) and the choice of which

value of DKL
II to use for setting uncertainties on the best-fit

values, we performed a jackknife resampling (see Quenouille
1949, 1956) of the set of 15 streams used for the fit. In practice
this would not be possible, since we do not require membership
information of stars in individual streams. For the same reason,
this analysis should underestimate the uncertainty, since it does
not fully account for our lack of assumptions about either
stream membership or the number and locations of the streams
in action space. However, it does give a sense of the
contribution that each stream makes to determining the best-
fit model, which should drive the fit uncertainty.
We created 15 new samples by removing 1 of the 15 streams

for each sample (presuming perfect membership knowledge),
and re-ran step I on each sample to determine the best fit. We
then compared the range of parameter values obtained for the

Figure 6. Distribution in action space of the streams in Figure 1, for the
spherical NFW potential parameters derived from S08. The colors of the
streams correspond to Figure 1.

Figure 7. Contours of DKL
I . The largest value of DKL

I (a0) for the full sample is
marked with a green cross; the small purple points show the best-fit values
from 15 jackknifed samples (see Section 4.4). The dashed vertical line is the
value of Ms derived from S08, the solid vertical line is Ms calculated from N10,
and the solid horizontal line is the measured value of rs (the same in both
papers; see Table 1).
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jackknifed samples to the range predicted for the full sample by
Equation (14) for D 1 2KL

II . The different parameter values
obtained by jackknifing are superposed as purple points on the
full-sample contours of DKL

I in Figure 7 and DKL
II in Figure 8.

Figure 9 compares the range of mass profiles obtained by the
jackknife (cyan lines) with the range predicted by DKL

II for the
full sample (red lines and shaded region) and with several other
ways of obtaining the mass profile.

As seen in Figure 7, each jackknifed sample selects different
points on a degenerate curve in parameter space, corresponding
roughly to a constant enclosed mass at the mean radius of stars
in the fitting sample, that is also followed by the contours of
DKL

I from the full sample. The primary difference between the
range of parameter values predicted by Equation (14) and the
range of results from the jackknifed samples, as shown in
Figure 8, is that the KLD is insensitive to this enclosed-mass
degeneracy when comparing neighboring action-space distri-
butions. This is a reflection of the fact that in the first step of the
analysis the KLD is used to estimate the degree of clustering at
a given choice of parameters, which is sensitive to the fit
degeneracy seen in Figure 7, while in calculating an uncertainty
we use the KLD to compare action distributions at neighboring
points in parameter space, which is insensitive to the
degeneracy as is clear from the shape of the contours in
Figure 8. It is also expected that the jackknifed points will
cluster more tightly than our fit results since we have implicitly
used stream membership information to generate the different
fitting samples. The range of rs values allowed by D 1 2KL

II

is also slightly larger than the jackknifed range, while the mass
range is slightly narrower. This is an indication that the action-
space distribution is more sensitive to changes in the mass
parameter than the scale radius parameter, which is consistent
with our results from orbit integrations in position and velocity
space (Section 3.2).

Figure 9 illustrates the range of allowed mass profiles resulting
from different approaches to determining the uncertainty. The

thick red line shows our best fit (the maximum value of DKL
I ) for

the full sample, while the thinner cyan lines show the results for
the different jackknifed samples. The red shaded region is the
allowed range in the mass profile at the one-dimensional extrema
of the green contour in Figure 8; that is, the upper limit is the
mass profile with the maximum allowed value of Ms and the
minimum allowed value of rs, while the lower limit is the profile
with the minimum Ms and maximum rs. These points are marked
as black triangles in Figure 8. Because this method of
determining the uncertainty ignores the mass–radius degeneracy
it produces a wider range of allowed profiles than the spread of
the jackknifed results. If one takes the extrema of the jackknifed
best-fit parameters in the same way, in the opposite sense from
the mass–radius degeneracy (shown as thick dashed cyan lines)
the range of allowed profiles is nearly as wide. Conversely, if we
follow the sense of degeneracy outlined by the DKL

I contours in
Figure 7 in choosing points on the D 1 2KL

II contour (marked
with green stars in Figure 8) then we get the range shown by the
thick red dashed lines in Figure 9, which is comparable to the
spread in profiles from the jackknife, although wider at small
radii. The difference in the spread of allowable profiles reflects
the difference in information between the jackknifed results,
which rely on perfect membership assignments for all stars, and

Figure 8. Contours of DKL
II . The green contour shows =D 1 2KL

II relative to
the best fit value a0, shown as a green cross. The small purple points show the
best-fit values from the 15 jackknifed samples (see Section 4.4). The dashed
vertical line is the value of Ms derived from S08, the solid vertical line is Ms

calculated from N10, and the solid horizontal line is the measured value of rs
(the same in both papers; see Table 1). Black triangles indicate the extrema
given by the one-dimensional uncertainties (red shaded region in Figure 9);
green stars indicate extrema taking into account the sense of the degeneracy
between parameters in Step 1 (red dashed lines in Figure 9).

Figure 9. Top: best-fit enclosed mass profile (red solid line) and uncertainties
predicted by the KLD (red) compared to the range of profiles obtained with
jackknifed samples (cyan) as described in Section 4.4. The dashed cyan lines
enclose the range of mass profiles obtained by taking the full range ofMs and rs
for all the fits from jackknifed samples. The red dotted–dashed lines show
profiles for the range of rs at best-fit Ms based on the KLD, and the red dashed
lines likewise show the range of Ms at best-fit rs. The shaded area encloses the
full range of allowed profiles for the KLD-based uncertainties. The blue solid
line shows the profile obtained by N10 (parameters in Table 1) with the blue
dotted lines the expected variation due to triaxiality as discussed in Section 4.5.
The green solid line shows the profile obtained by S08 and the black solid line
shows the spherically binned mass profile calculated directly from the
simulation. Bottom: histogram of galactocentric radii r of the star particles
used for the fit. Gray vertical line denotes the mean radius of the fitting sample.
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the KLD strategy, which does not use membership information at
all. Our choice of D 1 2KL

II as the uncertainty range is also
supported by examining the difference between the best-fit
distribution (top right panel of Figure 10) and the distribution
generated by a point on the = -Plog 1 2 contour (bottom right
panel of Figure 10). The “1-sigma” distribution is visibly less
clustered than the best-fit distribution.

This comparison indicates two possible routes to determin-
ing the range of allowed mass profiles without using member-
ship information. The most conservative option, represented by
the shaded red area in Figure 9, is to report the full range of
allowed parameter values in each dimension and allow all the
combinations of parameters in that range as possible mass
profiles. Slightly less conservative is to include information on
the degeneracy between parameters obtained in the first step by
reporting the range of allowed profiles following the sense of
the degeneracy revealed by the contours of DKL

I . This approach
will become more difficult as the mass model becomes more
sophisticated.

Combining the results of step I and step II the best-fit enclosed
mass is = ´-

+M M1.72 10s 0.20
0.57 11

0 and the best-fit scale radius
is = -

+r 17.46s 2.48
4.60

0 kpc, where the one-dimensional uncertainties
here and in Table 1 are the extrema of the 1-sigma contour
marked as the two black triangles marked on Figure 8. The
second best-fit mass is = ´M M1.81 10s

11
1 enclosed in

=r 17.78 kpcs . Since we find a larger scale radius than either
S08 or N10, our value of the scale mass is closer to S08;
however at their value of the scale radius (15.19 kpc) our best-fit
mass profile has ( ) = = ´-

+M R M15.19 kpc 1.43 100.52
0.90 11 ,

which is in between S08 and N10, and includes both values in its
range of uncertainties.

4.5. Results

Figure 10 shows the actions Lz and Jr at different points in
parameter space. It can be seen that the KLD indeed recovers
the most clustered action distribution: the actions are more
clumped for the best-fit potential (upper right panel) than for
the spherical potential with either set of parameters measured
directly from the simulated halo (upper left and upper center
panels). The lower two panels of the figure show that the
actions get progressively less clustered when moving to
parameter configurations farther from the best fit: the second-
best fit (lower left panel) is visibly less clumpy at higher Jr,
while a point on the s1 -equivalent contour produces a less
clumpy distribution everywhere.
Figure 9 shows the mass profiles for the different spherical

halo models. Our best fit from the KLD method is shown in
red, with shaded error bounds showing the range of mass
(dashed) and scale radius (dotted) within the red contour in
Figure 8. The profiles using the parameters determined by S08
(green solid line) and N10 (blue solid line) bracket the
empirical mass profile obtained by binning the dark matter
particles in the smooth component of the simulated halo (black
line). Our best fit is similar to the N10 fit at small radius where
both agree with the spherically averaged mass profile, but
grows more steeply than N10 beyond about 20 kpc as does the
spherically averaged profile. It never quite reaches the S08
mass profile, which agrees with the empirical mass profile close

Figure 10. Distribution of stream stars in action space for different parameter choices. From top left to bottom right: true potential parameters via S08, true potential
parameters via N10, best-fit parameters, second best-fit parameters, and the two points marked with black triangles in Figure 8. In all panels the colors correspond to
those in Figure 1.
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to the virial radius. We attribute this to the absence of stars in
our fitting sample beyond 120 kpc (about half the virial radius
of the halo).

We also show in Figure 9 the approximate mass profile along
the three axes of symmetry in the triaxial halo (blue dotted lines
with symbols), to give a sense of the degree to which the halo
departs from spherical. More specifically, we take the average
axis ratios of the density, in the range 10–100 kpc, determined
for Aq-A by Vera-Ciro et al. (2011) in their Figure A2,
obtaining =b a 0.7 and =c a 0.55. Renormalizing the axis
lengths so that + + =a b c 32 2 2 as in the Vogelsberger
prescription for the triaxial NFW potential gives a=1.29,
b=0.91, and c=0.71. We then plot three spherical NFW
mass profiles, using the mass and scale radius from N10, where
the radius variable is rescaled by each of the three axis lengths:

( )M r aNFW (circles), ( )M r bNFW (triangles), and ( )M r cNFW
(squares). These are not precisely the mass within isodensity
contours along each symmetry axis, but do serve to give a
rough sense of the variation of the mass profile between
different directions in the halo.

The S08 mass profile overestimates the mass compared to
the empirical profile, which is (partly) due to the fact that
subhalos are excluded from the empirical profile, but included
when determining r200 and M200, which S08 use to set the
profile parameters. N10 set their normalization at a much
smaller radius, where most of the material is not in subhalos,
and are not as affected by the exclusion of bound substructure.

The best-fit mass profile traces the spherical NFW mass
profile from N10 at small radii and the empirical mass profile at
larger radii. We get the best agreement between our fit and the
empirical mass profile at the radius at which we have the most
stars, around 40 kpc. The mass Ms at the scale radius rs is
marked with a diamond in the figure, corresponding to the
crosshairs in Figures 7 and 8. The KLD method recovers a
larger scale radius rs, and hence a larger enclosed massMs, than
the profiles which were fit to the whole halo. The error bars on
the fit are approximately as wide as the span between the
profiles in S08 and N10, reflecting the inability of a single
NFW profile to fit the Aq-A halo out to the virial radius.
Compared to this difficulty, the effect of triaxiality is relatively
small, as shown by the span of the mass profiles along the three
principal axes in the triaxial potential.

5. Discussion and Conclusion

In this work we investigated how assuming a smooth, time-
independent potential with either spherical or triaxial symmetry
affects the analysis of streams formed in a cosmological dark
matter halo that is lumpy and time-evolving. First, we
integrated the center-of-mass orbits for various streams in both
spherical and triaxial potentials and compared how well the
orbits traced the streams using the average minimum distance
between the orbit and the stream stars (Section 3). We find that
orbits integrated in a smooth, static potential resembling the
present-day Aquarius A halo can trace the stellar streams
extracted from the halo via stellar tagging, when starting from
the position and velocity of a star midway through the stream.
This agreement is striking given that the streams formed in a
dynamic halo whose potential evolved with time and included
many subhalos of various masses. In the majority of cases, the
best agreement between orbit and stream was indeed achieved
using a triaxial potential, which is not surprising since it is
more representative of the true halo shape. However, in many

cases the triaxiality of Aq-A was not sufficient to produce an
appreciable difference (more than 10% in the average distance)
between orbits integrated in spherical and triaxial potentials.
For streams where we obtain good agreement with an orbit, the
mass and scale of the halo can be roughly estimated by visually
comparing the stream with a series of integrated orbits:
the scale mass could be determined to within about 50%, but
the scale radius to within only about a factor of 2. Among the
streams we compared, there are occasional hints of the
additional structure in the potential that was ignored; for
example, in the one case where neither potential could produce
an orbit that traced the stream, there appear to be gaps in the
stream stars that might point to an interaction with a subhalo.
However, in general we find that the streams encode the
present-day potential, and that ignoring substructure will not
interfere catastrophically with the general tendency of streams
to lie near orbits. This is similar to what Peñarrubia et al. (2006)
found using numerical experiments with analytic potentials.
Furthermore, as expected, the degree to which streams can
distinguish between triaxial and spherical potentials via orbit
fitting varies, depending on the progenitor’s orbit and the extent
of the stream. The most diagnostic streams in our sample were
long and on very radial orbits; the extreme ends of these
streams were most diagnostic in choosing a triaxial over a
spherical potential.
Second, we tried fitting a smooth, spherical NFW mass profile

to the entire set of 15 streams using the KLD method (Section 4).
We found that over the range of radii covered by stars in the
fitting sample, the best-fit profile followed the empirical,
spherically averaged profile computed directly from the dark
matter distribution at the present day, roughly interpolating
between the profile found by N10 that fits well at small radii and
the profile found by S08 that fits well near the virial radius. The
results confirm that this type of fit is insensitive to the adiabatic
time-evolution of the host halo. This is expected, since the actions
are adiabatic invariants; reassuringly, our fitting method has
smaller uncertainties in Ms and rs than simply comparing how
well orbits line up with the streams by eye. Furthermore, stream–

subhalo interactions in this model halo are not frequent or intense
enough to destroy the action-space coherence of individual
streams; neither is the poor assumption of a spherical rather than
triaxial potential. In fact, our best-fit model produces a clumpier
action distribution (and better agreement over a wider range of
galactocentric distances) than two common ways of determining
the same parameters directly from simulations: either by finding
M200 and r200 (as in S08) or by determining r-2 and -r 2 (as
in N10). Although these two methods of parameterizing halos are
initially independent of assumptions about the functional form of
the potential, imposing the NFW functional form on either set of
parameters to obtainMs and rs will only produce a good fit over a
limited range of radii. Our best-fit mass profile, which is
effectively normalized around 40 kpc where we have the largest
number of stream stars, agrees with the empirical profile from the
simulation over a wider range of radii than either of the
parameterizations, while also recovering M200 within 10% and
r200 within 4% of the values determined directly from the dark
matter distribution. Our difficulty fitting the Aq-A halo with an
NFW profile is consistent with recent results by Han et al. (2016),
who find that the parameters they obtain using their fitting
method are biased by up to 30% for Aq-A because it differs
significantly from the NFW form.

12

The Astrophysical Journal, 836:234 (14pp), 2017 February 20 Sanderson, Hartke, & Helmi



We see indications that our model is not fully representative
of the halo in the fact that there seem to be two sets of preferred
parameters, according to DKL

I (Figure 7), that occupy a ridge in
parameter space. The Ms values of the two fits are nearly the
same (and are within each others’ approximate s1 confidence
contours) but the two preferred rs values differ substantially.
Additionally, the uncertainty in M200 for our best-fit model is
comparable to the difference between normalizing the enclosed
mass directly at r200 and normalizing r-2 at -r 2, and also to the
variation of the mass profile along the different axes of
symmetry thanks to its triaxiality, which was ignored in the fit.

Bonaca et al. (2014, hereafter B14) explored the effect of
assuming a smooth halo on the ability to determine the Milky
Way’s mass from fits to individual extremely narrow streams
like those from GCs, evolved in the cosmological potential of
the Via Lactea II simulation which, like Aquarius A, is both
lumpy and time-evolving. They found that mass estimates from
fits to single streams obtained using the streakline method
(Küpper et al. 2012) could indeed be highly biased, and (as we
do) that this bias was worse for streams closer to the Galactic
center. They further found that assuming a smooth analytic
potential limited the fundamental accuracy of mass estimates
even when fitting many streams. Our work differs from this,
and extends their results, in a few respects.

First, the streams we study in this work more closely
resemble those from small satellite galaxies than GCs: though
their total stellar mass in some cases is similar, they tend to be
much less concentrated in phase space initially than a GC
would be. Second, the orbital distribution of streams within the
Aquarius stellar halo is in our case determined by the
cosmological simulation, whereas B14 inserted their GCs by
hand at systematic locations. Cooper et al. (2010) show that the
density profiles of the stellar halos derived from the Aquarius
suite, and the luminosity–radius relation of the satellites that
built up these halos, are consistent with observations of the
stellar halo and satellites of the Milky Way, so we expect that
the distribution and width of the Aquarius streams we study in
this paper should reflect what is expected for the Milky Way.
B14 find that mass estimates from streams beyond 70 kpc are
significantly less biased, but the bulk of the stellar halo, and
especially the part that will be observed by Gaia, is likely
located at smaller galactocentric distances than this (Robin
et al. 2000; Bullock & Johnston 2005; Bell et al. 2008; Cooper
et al. 2010), so it is important to account properly for the radial
distribution of stream stars when considering how well we will
be able to determine the Galactic potential.

Second, we fit a limited sample of thin streams simultaneously
rather than combining individual results, and use a method that
does not require assigning stars to particular streams. We expect
the action-clustering method to be more robust to scattering by
lumpiness in the potential than methods, like the one used
by B14, that compare distributions in 6D phase space. The effect
of unaccounted-for lumps in the potential on the action-space
distribution is mainly to dilute or subdivide the existing clumps
of stars in a way uncorrelated between different streams. This
dilution will slightly lower the maximum information attained by
the fit and thereby increase the size of the error contour, but
because all streams are fitted simultaneously it should not
introduce a bias in the final outcome. Motivated by this
reasoning, as well as the number of narrow streams predicted
by the Aquarius stellar halo model, we work with a much smaller

number of streams than B14: 15 in our sample versus 256 in
their case.
Our results demonstrate that fitting the potential using

action-space clustering rather than comparisons in position-
and velocity-space avoids some of the pitfalls illustrated by
B14 in their paper. First, simultaneous fitting allows us to use
relatively few cold streams and still recover M200 within 10%.
Second, analyzing the adiabatically invariant action-space
distribution for goodness of fit, rather than making comparisons
in position and velocity space, means we can use streams that
are closer to the Galactic center: most of our stars are within
50 kpc and all are within 120 kpc, while B14 found that single
streams closer than 70 kpc tended to have larger biases in the
recovered mass. Finally, although we also find (like B14) that
our assumptions lead to a slight under-estimate of the total
mass, the true value lies well within our uncertainties, which
reflect the degree to which our assumptions fail to match the
true shape of the smooth potential rather than bias among
individual streams.
Most stream-fitting methods that have been tested to date, like

the streakline method employed by B14 and its many recent
variations (Bovy 2014; Sanders 2014; Amorisco 2015; Fardal
et al. 2015), require membership information for each stream to
be fit and can therefore also preserve and use information about
the angular phases of the stars in each stream, which is discarded
by the KLD fit. Most of these tests have looked at the results of
fitting individual streams and have found that single streams can
produce either an excellent estimate of the potential or an
extremely biased one, depending on the details of both the
method used and the particular stream being fit. For example,
Lux et al. (2013) found that fitting orbits to mock streams created
in a smooth static halo produced estimates of the shape
parameters and depth of a potential that were biased to about
20%, and that streams on different orbits placed different
constraints on the potential parameters. Their results pointed
toward using multiple streams fit simultaneously as we do here.
Like our method, Sanders & Binney (2013) take an action-space
approach, but leverage the distinctive shape of the angle-
frequency distribution of streams rather than their clumpiness
in action space, by requiring that the slopes in angle and
frequency be the same for a given stream in the correct potential.
Their tests, using a single GC-like stream in a smooth static
potential, show that without errors the circular velocity and shape
parameter are recovered almost perfectly with this method. (Their
tests used a scale-free isothermal potential, so were not subject to
the mass-scale degeneracy we observe in our method.) However,
they also find that the likelihood landscape is complex, with
many local minima, and that introducing observational errors can
create biases much larger than the formal uncertainties on the
parameter estimates, though this can be improved by binning
along the stream. They additionally find that the stream’s length
and overall orbital phase affect fit performance, with longer
streams giving better constraints and streams at apocenter
performing better than those near pericenter. These authors thus
also argue for combining multiple streams to get a better fix on
the potential. A more extended comparison of these different
methods, and a treatment of the impact of using multiple streams,
will be the subject of a forthcoming paper developed at the Gaia
Challenge workshop series4 (R.E. Sanderson et al. 2017, in
preparation).

4 http://tinyurl.com/gaiachallenge
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Our results come with a few caveats. Although we do not
need stream membership information to perform our fit, we did
use it to select which streams to include in the sample,
deliberately preferring thinner streams with a relatively narrow
range of masses. This sort of sample is ideal for getting the best
possible performance from our fitting algorithm since the
action space has many tight clusters (and therefore high
information) of similar size (so that smaller clusters are not
overwhelmed). In this regard our sample is similar in nature to
that used by B14, where the streams are all from a GC model
with the same mass and particle number. Furthermore, we have
not attempted to reproduce the proper number of stellar tracers
or the expected observational errors, which will undoubtedly
result in larger uncertainties and could also conceivably bias
the fit results.

However, our results do show that oversimplifying the
model to be fit does not fundamentally produce a bias in the
recovered mass profile; conversely, improving the model (for
example, moving from a spherical to triaxial model) should
reduce this contribution to the overall uncertainty. Our fitting
method provides guidance on whether one model is a better
representation than another: better models should be capable of
producing a more clustered action distribution and hence a
higher peak value of DKL

I . We intend to test these two
predictions in future work.
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