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ARTICLE INFO ABSTRACT

The expected increase in uncertainty regarding energy consumption and production from intermittent dis-
tributed energy resources calls for advanced network control capabilities and (household) customer flexibility in
the distribution network. Depending on the control applications deployed, grid monitoring capabilities that
accurately capture the system operation state are required. In order to establish such monitoring capabilities,
several technical and legal challenges relating to monitoring accuracy, user privacy, and cost efficiency need to
be tackled. As these aspects have complex mutual interdependencies, a universal approach for realising dis-
tribution network monitoring is not straightforward. Therefore, this article highlights these issues and proposes a
method to evaluate monitoring accuracy and the proportionality of personal data processing, and to illustrate the
interdependencies between finding the legal grounds for data processing and the monitoring accuracy the
processed data produces. To illustrate the method, several test cases are presented, in which the accuracy of
network monitoring is assessed for different measurement configurations, followed by an analysis on the legality
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of the configurations.

1. Introduction

The energy landscape is changing. Renewables are being integrated
at an ever-increasing pace into our energy systems, and much of the
current energy demand is electrifying due to e.g. heat pumps and
electric vehicles. Because of the intermittent character of electricity
produced from renewable energy sources (RES), the production of
electricity becomes less predictable and controllable. Both the elec-
trification and the integration of RES increase the peaks that exist on
the electricity networks. As current electricity network capacity is based
on the maximum power peak, an increase in peak power is always
translated into additional investments in the current electricity net-
works’ capacity. These additional investments are expected to be ex-
tremely significant (Verbong et al., 2016).

A more cost-efficient solution for dealing with the increasing un-
certainties on the distribution networks would be to utilize the current
electricity system in a more flexible way. This could be realized by
developing advanced network operation strategies, i.e. active distribu-
tion networks, to keep the network within efficient, stable and safe
operation conditions. Examples of such strategies are power flow con-
trol algorithms for optimising the network states using local controllers
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for reactive power and voltage, or demand side management programs
and market mechanisms for using flexibility from both active power
production and consumption (Blaauwbroek and Nguyen, 2015; Gungor
et al., 2013; Torbaghan et al., 2016). However, in order to realise these
future network operation strategies, advanced monitoring capabilities
for the distribution network to accurately capture its actual system
states are required (Angioni et al., 2016; Pérez-Arriaga, 2013). The
information gained from network monitoring will serve as input for
various network operation strategies to operate the network more ef-
ficiently and within secure boundaries. However, these monitoring
applications will rely on various data sources, such as network mea-
surements, pseudo-measurements, weather forecasts and end user data.
The accuracy requirements for this data depend on the goals and
functionalities the advanced network operation strategies are supposed
to realise. In any case, data collection is costly, as investments have to
be made in monitoring equipment, communication infrastructure, etc.
Therefore, hardly any measurement equipment is installed in the cur-
rent distribution network, preventing Distribution System Operators
(DSOs) from gaining insight in their system states. Usually, the in-
vestments that have to be made for gaining this insight can be related to
the degree of accuracy (quality): the higher the accuracy (e.g. shorter
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timeframe of measurements, more detail, and reliability), the higher the
investments costs (Singh et al., 2009). In addition, currently a high level
of legal ambiguity with regard to data processing in distribution net-
works exists, which is a hurdle for realising network monitoring (EDSO
for Smart Grids, 2015; European Energy Regulators, 2015). Most of this
ambiguity can be ascribed to lack of a clear framework for assessing the
legality of data processing for network monitoring purposes. Also the
lack of clear and measurable goals makes it difficult to assess whether,
how, and which data should be processed. Without a clear and justifi-
able framework for data processing, it is impossible to process personal
data for network monitoring purposes. Therefore, next to making in-
vestments in measuring equipment, the legal conditions regarding the
measuring, processing, and estimation of information in relation to
system operation need to be clarified. These legal conditions mainly
relate to two aspects.

Firstly, European Union (EU) law requires that DSOs provide for
secure, reliable and (cost-)efficient electricity networks. In practice this
means that within their framework of (legal) requirements, DSOs
should strive for optimal efficiency of their electricity networks. In this
context network monitoring is also subject to the requirements of
keeping networks secure and reliable in a (cost-)efficient manner.
Consequently, the costs of monitoring and control applications used for
network operation should be proportionate (cost-efficient) in relation to
the benefits (security, reliability or efficiency) they create.

Secondly, while monitoring their network, DSOs have to respect the
privacy of their (household) customers as much as possible, especially
taking into account that household customers generally become more
vulnerable to (unlawful) privacy breaches if the network is equipped
with advanced monitoring capabilities (Milaj and Mifsud Bonnici,
2016). Although network monitoring might contribute to more secure,
reliable and efficient networks, they might also reduce household cus-
tomer privacy. Therefore, a balance has to be struck between both in-
terests.

Considering both the technical and legal aspects involved in net-
work monitoring as discussed above, it is clear that the complex in-
teractions amongst these aspects complicate the question on how the
monitoring functionality can be realized for a specific case. Therefore,
the aim of this article is to discuss these issues and introduce a method
that is able to strike a balance between the interests of the DSO and
household customers, resulting in a legally feasible outcome with the
lowest monitoring error margin (highest data quality) and reasonable
costs for installing measurement equipment.

The article is structured as follows. To begin with, Section 2 in-
troduces the technical aspects and goals of the distribution system
monitoring and the functions it should serve. Section 3 provides the
legal framework for data capturing in distribution networks (including
a short introduction to the newly adopted EU General Data Protection
Regulation — GDPR). Section 4 introduces the method to evaluate
monitoring accuracy and the proportionality of processing personal
data. Section 5 discusses a number of test-cases, for which the perfor-
mance of monitoring applications is assessed and the legal feasibility of
the test-cases is analysed. Finally, the article concludes in Section 6.

2. Technical aspects in distribution system monitoring

As aforementioned, due to the current lack of monitoring cap-
abilities in distribution networks, newly developed monitoring appli-
cations are required in order to establish adequate control capabilities
in distribution networks. These monitoring applications will give in-
sight in the system states of the network. The system states form a data
set that defines the operation state of the network uniquely. In order to
acquire the system states, they can be measured directly (e.g. voltage
magnitude levels and phases) at each node of the grid with high mea-
surement frequencies. However, the installation of measurement and
communication equipment for the large number of nodes in distribution
networks will be a costly exercise (especially for phasor measurements).

79

Energy Policy 115 (2018) 78-87

Besides, this measurement data might not always be as accurate as
required (e.g. because of failing measurement equipment or commu-
nication delays/losses). Therefore, as commonly applied in transmis-
sion systems, state estimation of distribution systems has been proposed
(Della Giustina et al., 2014) in order to enhance the accuracy and re-
liability of the monitoring in distribution systems. The next paragraphs
further explain the background of state estimation, network ob-
servability and the possible types of measurement equipment and data.

2.1. Power system state estimation

State estimation is a process to obtain the maximum likelihood es-
timate of the system states, based on measurements, pseudo-measure-
ments (e.g. historical data from other sources) and a model of the
network. The model of the network and the system states together
uniquely define the full operation state of the network. Estimation of
the system states is applied because usually not all the system states can
be measured directly, or the measurements values might be inaccurate.
Instead of relying on inaccurate measurements or pseudo-measure-
ments, a more accurate estimate of the true system states can be ob-
tained by using a model of the network and a state estimation algo-
rithm. This way, less measurements are required or a less expensive
metering infrastructure can be used. Algorithms for bad data detection
can identify faulted sensors or data that is arriving late, such that the
data can be excluded from the state estimation process and eventually
be replaced by pseudo-measurements to retain observability of the
network. For a fully observable network, typically the system states are
defined as the set of all nodal voltages and corresponding angles, but
also the set of all branch currents and angles can be used, together with
a reference voltage. The last option is gaining more attention in recent
research, because of its computational performance (Pau et al., 2013;
Wang and Schulz, 2004). Before state estimation can be carried out,
first the observability criteria of the network need to be satisfied.

2.2. Network observability

In order to make the network fully observable, a minimum number
of measurements is required. This minimum number is related to the
number of nodes or branches in the network. A branch is formed by a
line or cable of the network, whereas a node is defined as a point where
multiple branches come together. Suppose the radial network consists
of n nodes and therefore b = n — 1 branches. The number of system
states that now uniquely defines the network is 2n — 1. In case of nodal
voltage state estimation, this number is made up by n voltage ampli-
tudes of all the nodes and n — 1 voltage angles of all the nodes except
the reference node (slack node). In case of branch current state esti-
mation, this number is made up by b current amplitudes of all the
branches, b current angles of all the branches and 1 reference voltage
amplitude of the slack node. Now, for a fully observable network, at
least 2n — 1 measurements are required that can be mapped in-
dependently to the 2n — 1 system states. Therefore, if insufficient
measurement equipment is installed to provide this data, the mea-
surements have to be complemented with pseudo-measurements. In the
test cases presented in Section 5, the data set that is input to the state
estimation at least contains 2n — 1 measurements and pseudo-mea-
surements.

2.3. Network measurements

In practice, the (pseudo) measurements themselves can be obtained
from various sources. These sources can include data from measure-
ment equipment installed in the distribution network, as well as all
kinds of pseudo information in case real measurement data is missing
(because of a lack of measurement equipment, bad data connections
etc.).

Real measurement data can be obtained from measurement
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equipment installed by the DSO, or from measurement equipment at the
customer side. Mostly, measurement equipment installed by the DSO
will be located in the substation and other important junctions of the
network. Measurement equipment at the customer side can include
smart meters or eventually measurement components that are part of
controllers such as inverters for photo voltaics (PV) installations or
batteries of electric vehicles (EV).

Pseudo measurements can be derived from various data sources,
such as historical power consumption data, weather forecasts, house-
hold/customer details (number of inhabitants, available appliances)
etc. The key importance is that this data can be used to reconstruct
power injection profiles (consumption or production) at the customer
connection point, where real measurement data regarding power in-
jection is missing. Although this information is likely to be highly in-
accurate, it still helps to restore network observability. In order to
compensate for the relatively high variance of the pseudo measure-
ments, in the state estimation algorithm the pseudo measurements are
taken into account with a lower weight compared to real measurements
as specified in Section 4.

In any case, regardless of whether data is collected directly from the
network or its users, or indirectly from other sources, legal conditions
apply to the processing of such data. These conditions have to be as-
sessed in order to define if system operators are expected or required to
process data in the first place, and if so, which data can be collected
based on these expectations or requirements. As such, the following
section continues with discussing the applicable legal framework for
network monitoring in distribution systems.

3. Legal framework for distribution network monitoring

In the EU, all Member States have to ensure that every system user
(consumer or producer) is entitled to use the electricity at non-dis-
criminatory conditions according to article 32 of the Electricity
Directive (European Union, 2009). Moreover, household consumers
(representing the majority of system users) have a right to enjoy a
universal service, “that is the right to be supplied with electricity of a
specified quality within their territory at reasonable, easily and clearly
comparable, transparent and non-discriminatory prices.”, which also
implies the right to use the electricity system (article 3(3) Electricity
Directive). In order to ensure the right of all household customers to use
the electricity system, DSOs have the general task to ensure secure,
reliable and efficient electricity systems (article 25 Electricity Direc-
tive). Both rights have to be implemented into national legislation.

Although currently DSOs are generally not required (from a legal
point of view) to produce detailed measurements in their distribution
networks, this situation is expected to change. Given the high amount of
uncertainty expected in future distribution networks, a minimum level
of network monitoring seems crucial for ensuring future ‘secure, reli-
able and efficient’ network operation (Diestelmeier and Kuiken, 2017).
Nevertheless, such monitoring requires data to be collected, most likely
data from or about household customers.

In addition, in the EU, everyone has the right for their private and
family life to be respected and its personal data to be protected (Council
of Europe, n.d.; European Union, 2012a, 2012b). In order to ensure this
right, the General Data Protection Regulation (GDPR) (European Union,
2016) lays down specific rules on the protection of data (article 1 and
recital 1 of the GDPR). From 25 May 2018 onwards, the GDPR will be
directly applicable in all EU Member States (articles 99(2) and 94(1)
GDPR), and will replace the current Data Protection Directive. The
GDPR provides the exact same legal framework for all EU Member
States.

In order to analyse how the GDPR works and how it relates to
network monitoring, we first define the roles and definitions applicable
in the GDPR in relation to the electricity sector. Thereafter, we define
what would classify as personal data, followed by an analysis of the
(pre)conditions for data processing.
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3.1. Definitions and roles

In order for the GDPR to apply, personal data must be at stake.
Personal data is data that relates to either an identified or identifiable
person, which can also be a household (article 4(1) GDPR, and (Article
29 Data Protection Working Party, 2007). Such a person (household) is
referred to as the data subject (the subject), whilst the entity processing
the data is referred to as the data processor (the processor). The pro-
cessor ‘processes’ the data, meaning for example the collecting, storing,
organizing, altering, disseminating, or erasing of data (article 4(2)
GDPR). Next to the data subject and the data processor, a data con-
troller (the controller) can be identified. The controller sets the goals
and means used for the processing of data (article 4(7) GDPR). For the
scope of this article, the data processor and controller are further re-
ferred to as the DSO, and to the data subject as household customer.

3.2. Classification of ‘personal data’

As a general rule, personal data should always relate to individuals
or identifiable persons. However, it is not required that personal data is
collected from the household customer itself. Data sets (e.g. profiles)
can also be based on non-personal data, such as pseudo-data. For ex-
ample, (smart) meter data from subject A can be processed, pseudo-
nymised, and translated into a general profile fitting to the personal
conditions of subject A. In making such a profile many information
sources could be used, both public and non-public, such as data from
the network connection register. In principle, the profile of subject A
can also be applied to other individuals that are in a similar or com-
parable position as subject A. Such profiles could perhaps even be
produced within a fairly accurate range of measured data. If such
profiles are attributed (e.g. based on name, EAN code, location data,
etc. Article 4(1) GDPR) to household customers, such profiles can be
considered to be personal data.

3.3. (Pre)conditions for processing personal data

The main purpose of the GDPR is to balance the interests of the data
processor/controller and the data subject. In our particular case, a
balance should be struck between the interests of the DSO and the in-
terests of the household customer. Clearly, the interest of household
customers is to have their privacy protected as much as possible. In
turn, the DSO only process personal data if having a (legal) ground
(legitimate interest) for processing. Consequently, from the DSOs per-
spective the first requirement of the GDPR is to establish a legitimate
ground for processing personal data.

A legitimate ground can either be based on the consent of the
subject (article 7 GDPR), or formed by the requirements for the per-
formance of a contract, a legal obligation, the protection of vital in-
terests of the data subject, a task of public interest or the official au-
thority of the controller, or a legitimate interest of the controller (article
6(1) GDPR). When zooming in on the possible grounds for DSOs to
process personal data for creating network observability, both the tasks
of the DSOs, as well as the right for household customers to be provided
with system services need to be considered. When considering the po-
tential grounds, the first and clearest ground is based on consent by the
household customer. In this particular case an explicit agreement be-
tween the DSO and the household customer exists to process personal
data. However, even without such an explicit ‘agreement’, an implicit
agreement can exist if processing personal data would be necessary for
the DSO to perform its above described tasks, or to perform its legal
obligations based on a contract with a household customer to provide
that user with system services. Arguably, processing could also be based
on either the vital interest of the household customer (to be supplied
with affordable system services), or the public interest (affordability of
the electricity system for all users). Finally, processing could also be
based on a legal ground in national law (e.g. as a result of implementing
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the Electricity Directive), requiring of prescribing the DSO to process
personal data for enhancing network observability. However, it is im-
portant to note that if processing of personal data would be allowed,
DSOs are not provided with a carte blanche; they will always have to
fulfil the conditions by the GDPR for data processing and minimize their
processing activities as much as possible (Article 29 Data Protection
Working Party, 2011).

After the ground for processing has been established, DSOs must
most likely perform an impact assessment before starting the processing
(article 35 GDPR). The assessment must include a description of how
data is going to be processed, the necessity and proportionality of the
processing in relation to the purpose of processing, and the data pro-
tection risks that are associated with the processing (Bieker et al.,
2016). In order to increase legal certainty for the DSOs, they can draft a
code of conduct, to be approved by either the (national) supervisory
authority, or by the European Commission if the code would relate to
data processing in multiple Member States (article 40 GDPR).

Once processing personal data, DSOs have to keep record of their
processing activities in the form of a processing administration (article
30 GDPR, and see (de Hert and Papakonstantinou, 2016). In turn,
household customers have a right to know whether (their) data is being
processed, to view and review such data, and to object to both the
content of processed data and the processing itself (Chapter III GDPR),
in order to being able to protect their own interests.

3.4. Minimization of personal data

As a general requirement, processing personal data should not go
beyond the purpose for which it is collected (article 5 GDPR). As such,
the processing of personal data must be minimized as much as possible.
One way of minimizing the processing of personal data is for example
by decreasing the time intervals in which data is collected; the higher
the frequency, the more difficult it becomes to justify the processing of
such data (McKenna et al., 2012).

Nevertheless, if personal data is collected, DSOs should also con-
sider to ‘pseudonymise’ data. If possible, the DSO should pseudonymise
the data as much and as soon as possible (recital 78 and 156 GDPR).
Pseudonymising data means that the data cannot (directly) be traced
back to the subject without additional information (e.g. by separating
meter measurements and corresponding EAN codes). Pseudonymisation
can be performed by applying technical (e.g. encryption) or organisa-
tional measures to disconnect the data and the subject (article 4(5)
GDPR).

Once personal data is pseudonymised, such data is considered to be
non-personal. As such, the processing of pseudonymised data does not
fall in the scope of the GDPR. However, it should be taken into con-
sideration that pseudonymised data can also be reversed to personal
data. If data can be (re)attributed to a specific data subject, for example
by combining the data with other information, such data is still con-
sidered to be personal data (Council of Europe, 2014).

4. Method

The method applied to evaluate the interdependencies of mon-
itoring accuracy and the legality of processing of personal data, consists
of several steps detailed in this section, consisting of two main steps.
The first main step is analysing the technical performance of a specified
monitoring configuration. The second main step is assessing the legal
feasibility of a specified monitoring configuration. In this, it is argued
that, because the monitoring accuracy depends on the availability of
real measurements — and therefore customer data — the monitoring
accuracy is influenced by the legal conditions regarding processing of
personal data. However, as EU law allows the processing of personal
data only if it is proportional for the goal of processing the data (i.e. for
example reaching a minimum level of monitoring accuracy for specific
control applications), the monitoring applications also influences the
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conditions for processing data. These interactions are discussed in more
detail in the following subsections.

4.1. Step 1: assessment of monitoring accuracy

For the performance evaluation of state estimation algorithms for
different cases, power flow calculations of a test network are used as a
reference of the system state of the network. This way, the true system
states of the network can be obtained, which can serve as a reference to
which the outputs of the state estimation can be compared. From these
true system states, measurements are taken according to different
measurement models divided over different cases. Together with
pseudo-measurements from various sources, they form the input for the
state estimation. The estimated system states resulting from the state
estimation algorithm are compared with the true system states from the
power flow calculations, after which the deviation (error) between the
true and estimated system states is determined.

4.1.1. Network model

The network model used in these simulations is the IEEE European
LV test feeder (IEEE Power and Energy Society, 2015). This is a three-
phase distribution network counting 117 nodes and 116 branches with
specified line parameters and 55 households tapping of the feeders, as
displayed in Fig. 1. The model has been implemented in MATLAB/Si-
mulink, allowing to run a time horizon simulation of the distribution
network. For the time horizon simulations as well as computing the
pseudo measurement variances, many 24-h load profiles are required
from several years for each of the households. As the publication of the
IEEE European LV test feeder is lacking this data, similar data has been
obtained from real measurement data as published by the Pecan Street
project (Pecan Street Inc., 2016). From the data available in the Pecan
Street project, a group of 55 households is selected of which their load
profiles have been measured at the 21st of June in the years from 2012
to 2016. This selection reflects a representable group of households
with various types of loads, including significant amounts of PV and EV.
For each test case discussed in Section 5, the same profiles have been
applied for each household. Differences exist however in the measure-
ment configuration and usage of pseudo-measurements for each of the
test cases.

4.1.2. Measurement models

Overall, we distinguish three types of measurements. Firstly, mea-
surements obtained from equipment installed by the DSO is concerned.
This measurement equipment is assumed to have high accuracy and

Fig. 1. IEEE European 55-node low voltage distribution feeder.
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reliability with a 1-min measurement interval.

The second category concerns measurements obtained from smart
meters installed in the customer households. These measurements have
various measurement intervals, where the measurement intervals can
be either synchronised or unsynchronised. In the case of synchronised
measurement intervals, the smart meters are assumed to all take mea-
surements at the same moment. For example, in case of a 15-min
measurement interval, measurements could be taken at 0, 15, 30 and
45 min past the whole hour. For the unsynchronised case, the smart
meters take their measurements at a random moment within the time
interval, where the assumption is that the number of smart meters are
equally distributed over the time interval. Independent of either of the
two methods, within the simulation the measurement values are de-
rived during runtime from the true system states as simulated by
MATLAB/Simulink. First, the measurement (e.g. power injection) value
is calculated out of the simulated system states. After this, a zero-mean,
normally distributed random error is added to this measurement value
to model the inaccuracies of the measurement equipment, before in-
putting it to the state estimation algorithm. The errors applied to the
measurements are considered uncorrelated.

The last category of measurements concerns pseudo-measurements.
These are measurements that can be substituted in the absence of real
measurement data. Pseudo-measurements are compiled offline, before
running the simulation. They consist of historical measurement data for
the specific day of the year, averaged over 5 years and all households in
the network for each 1-min time interval.

4.1.3. Weighted least squares state estimation algorithm

The state estimation algorithm used in this paper is a branch current
state estimation algorithm based on the work presented in Wang and
Schulz (2004). It is based on the weighted least squares method (WLS)
that maximizes the conditional probability function of the system
states. As such, WLS state estimation is solved by minimizing

[z—h@)]'R[z — h(x)] @

In this equation, x is the state vector containing the system states
uniquely defining the operation state of the network and h is the
function relating the state vector x with the measurement vector z
according to

z=h(x)+e 2)

Finally, R is the covariance matrix of the normally distributed
measurement error e. In practice, the WLS estimate of (1) is obtained
using the Newton-Raphson method by iteratively solving (1)

xkt = xk — G(xk) g (xh) 3)
where
_0I(x) _ r -1
gx) = . =H"(x)R™'[z — h(x)] )
and the gain matrix G (x) is the Jacobian of g(x*) evaluated around x*:
k
et = BED) - TR (k) ®)

The measurement Jacobian matrix H (x*) is obtained by differ-
entiating the measurement function h(x) at x¥, of which many ex-
amples for different power system models and system states can be
found in literature.

4.1.4. (Pseudo) measurement variances

In order to perform a proper state estimation for the distribution
network, the variances of the input measurements need to be known.
For the measurement equipment as installed by the DSO, the variance
will be a property of the measurement equipment itself. For the mea-
surements used in this paper, the variance is assumed to be 10>, For
pseudo measurements and smart meter measurements however, the
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variance needs to be derived in another way.

For the power injection pseudo measurements, the variance for each
1-min time interval is based on the profiles for the different households
for five different years. As detailed before, the pseudo measurement is
calculated as the minute interval household consumption (negative for
production) ¢}, in minute m averaged over the households he.# and
the years ye 7 , where .# is the set off all households of size |.#| = H
and ¥ is the set of all years of size Y = |#/|. From this, it follows that the
variance for the pseudo measurement v,, for each 1-min time interval m
can be calculated as:

= 2 |y T

hex' ye? hex' ye#

y
Ch,m

(6)

For the variance of the smart meter power injection measurements,
it is important to consider that the state estimation algorithm runs on a
1-min interval base over the 24-h time span. The smart meters however
are configured to have a longer measurement interval, as specified in
the test cases. Obviously, at the moment the measurement is taken, the
variance is given by the accuracy of the measurement equipment.
However, for each moment in time between the previous measurement
and the next measurement, the variance depends on the statistical
change in the measurement value compared to the moment the mea-
surement was taken. Therefore, now we calculate the variance v, for
each minute k within a measurement interval based on the difference
between the power injection value ¢}, at the moment the measurement
is taken and the difference between the power injection value ¢}, at
minute k after the measurement is taken:
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Finally, these variances are averaged over all households in the

network and the five different years for each simulation time interval.
More details on the numerical values can be found in Section 5.

4.1.5. Performance assessment and indicators

In order to finally compare the performance of different cases, a
performance measure is needed to indicate how accurate the state es-
timation algorithm is compared to the true system states. The perfor-
mance measure used in this paper is expressed as the absolute differ-
ence between the estimated nodal voltage phasor end the true nodal
voltage phasor in percentage of the absolute estimated nodal voltage,
averaged over each of the three phases and each of the nodes:
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4.2. Step 2: assessment of legal feasibility
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In order to assess the legality of data processing, a number of re-
quirements have to be assessed. Especially given the requirements of
data protection by design and default (article 25 GDPR) and the re-
quirement to make a data protection impact assessment (article 35
GDPR), it is crucial to assess the legality of data processing before the
processing starts. For the legal feasibility, the following requirements
have to be assessed. Firstly, the nature of the data to be processed is
assessed. Secondly, the ground for data processing is assessed. Thirdly,
the interests of the data subject in relation to the interests of the data
processor are assessed.

4.2.1. Nature of data

The nature of data can be either personal or non-personal. In order
to define the nature it is questioned whether data can be related to
individuals or identifiable persons. If data cannot be related to
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individuals or identifiable persons, such data is non-personal (see
Section 3.2). Consequently, the requirements for personal data of the
GDPR do not apply (European Commission, 2011).

4.2.2. Ground for processing

For this article, we assume that the (personal) data is processed in
order to make state estimations as a requirement for the DSO to ensure
a (more) secure, reliable and efficient electricity system in order to
safeguard household customers’ rights to be supplied with system ser-
vices (see Section 3.3). In other words, we assume that having state
estimations enables the DSO to improve or maintain the security, re-
liability and/or efficiency of its networks. Whether and to what extent
state estimations allow for increased security, reliability and/or effi-
ciency in practice depends on the exact case and on how the estimations
are utilized.

4.2.3. Balancing of interests

In order to balance the interests of both the data subject and pro-
cessor, the personal character of the data to be processed should not go
beyond the legitimate interests derived from the ground for processing
as described in Sections 3.3 and 3.4. As such, the personal character of
processed data should be minimized, keeping in mind the question:
“given the purpose of processing: how detailed should personal data
be?” Answering this question requires a technical performance analysis
of the processing methods in relation to the goal of processing (ne-
cessity and proportionality). In assessing the methods used in relation
to the goal, also the interests of the DSO (the public interest) and
household customers need to be weighed. In terms of outcome, we
determine the aggregated level of processing (household level, substa-
tion level, etc.) and the frequency of processing (e.g. quarterly, minute,
etc.). Also, we take into account potential alternatives: “are less in-
trusive (at proportionate costs) measures required and available to se-
cure the goal?”

5. Test cases and numerical results

This section deals with the practical and numerical results for es-
tablishing monitoring in distribution systems. To this extend, various
test cases are analysed. Each of the cases makes use of a different set of
measurements, measurement intervals and pseudo measurements. For
all cases (other than the base case), a minimum smart meter coverage of
80% is used. This minimum is based on the EU requirement for Member
States of having 80% smart meter coverage in their electricity systems
(Electricity Directive, Annex 1(2)).

The following subsections for each case describe the measurement
variances obtained from the data sets used, followed by the assessment
of state estimation accuracy according to the method described in
Section 4. From here, each case is analysed on monitoring accuracy and
legal feasibility.

5.1. Evaluation of monitoring accuracy

5.1.1. Base case

The base case aims to mimic the monitoring accuracy for distribu-
tion networks as can be obtained with current practice for network
operation, without additional investments costs for measurement
equipment. The only measurement equipment installed in the network
is located in the transformer substation, as is often the case nowadays. It
is assumed that measurements of the substation nodal voltage, as well
as the outgoing active and reactive power are available on a minute
interval base. In order to establish observability, complementary
pseudo-measurements in the network are taken into account in the
estimation process of each household connection. Fig. 2 displays the
pseudo measurement variance over time. As can be seen, this variance
is quite significant, due to the high stochasticity of the load profiles
applied in the test cases.
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Fig. 3. Base case state estimation errors for different years.

Fig. 3 displays the mean error between the estimated voltage pha-
sors and the true voltage phasors over a 24-h period, averaged over all
nodes and phases for the years 2012-2016. The lowest graph of Fig. 3
presents the mean error, averaged over the years 2012-2016. It can be
seen that the averaged error over time for the years 2012-2016 shows a
strong correlation with the variance as presented in Fig. 2 and remains
lower than 0,6% throughout the day. Although this might seem insig-
nificant, the non-averaged error for individual nodes peaks around
1.8% in certain time intervals. Considering an operational range of
nodal voltage in the network between 0,9 and 1,1 pu (EN 50160), this
would result in an error of 9% of the control range of the network
voltage. Besides, the state estimation algorithm in this work is based on
ideal network models. As this will not be the case in reality, additional
estimation errors might occur (Blaauwbroek et al., 2017). These two
aspects together can result in a very significant error, forming a moti-
vation for deploying a more advanced measurement configuration in
the network. For this, various variants have been analysed in the next
sections.

5.1.2. Variant 1
The measurements in variant 1 consist of voltage- and power
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Fig. 4. 15-Minute smart meter measurement variance over time.

measurements in the substation on a minute interval base. On top of
that, household power injections measured from smart meters are
available on a 15-min interval base. These smart meters have a mea-
surement accuracy with a variance of 10~2 times the measurement
value. The smart meter measurements are complemented with pseudo-
measurements to restore observability of the network. Fig. 4 displays
the measurement variances for the pseudo measurements, as well as the
15-min time interval smart meter measurements. From here, it can be
seen that the variance for the smart meter measurements drops to zero
every 15-min as expected. However, between two smart meter mea-
surements, the variance rapidly increases to levels comparable to those
of the pseudo measurements. This is due to the high stochasticity of the
individual loads in the distribution network. Consequently, we expect
that smart meter measurements with 15-min intervals are inadequate
for improving the monitoring accuracy in the periods between two
measurements.

In order to verify this, for the variant with 15 min time interval
smart meter measurements, the accuracy of three different measure-
ment configurations are analysed. These configurations concern re-
spectively: 1) synchronised smart meter measurements with 80% cov-
erage (randomly distributed) as complying with the EU requirement, 2)
synchronised smart meter measurements with 100% coverage, and 3)
unsynchronised smart meter measurements with 100% coverage. The
results of these simulations are depicted in Fig. 5, showing the errors
over time between the estimated and true system states, averaged over
the three phases, all nodes and the years 2012-2016. As a reference,
also the averaged error of the base case (Fig. 3) is displayed in red.
From the results, we can clearly see that for the first measurement
configuration, the estimation error strongly reduces (but does not reach
zero) each 15 min, at the moments the synchronised measurements are
taken. However, in between the measurements, as expected from the
measurement variances, the error is comparable to the error of the base
case. This effect is even more visible for the second measurement
configuration, where the estimation error approaches zero each 15 min
due to the 100% coverage of smart meter measurements. For the third
measurement configuration, the measurement error does not drop each
15 min due to the unsynchronised measurements. Although one might
expect an improved estimation error compared to the base case when
using unsynchronised smart meter measurements, due to the relatively
high average variance of the smart meter readings in each minute time
interval, this turns out to be not the case.

5.1.3. Variant 2

The measurements in variant 2 are similar to those of variant 1, with
the only difference that the smart meter measurements are now taken
with 5-min time intervals. As can be seen in Fig. 6, the variance of the
15 minute measurement intervals is lower than for the 15 minute
measurement intervals and therefore lower than the variance of the
psuedo measurements.

In the averaged errors displayed in Fig. 7, we see similar behaviour
as in variant 1. The error drops each 5 min for the first measurement
configuration with 80% coverage of synchronised smart meter
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Fig. 6. 5-Minute smart meter measurement variance over time.

measurements. Similarly, for the second configuration with 100%
coverage of synchronised smart meter measurements, the error ap-
proaches zero each 5 min time interval. Due to the lower variance be-
tween the measurements compared to the 15-min time interval smart
meter measurements, the overall error between estimated and true
system states is also lower over time. This effect is also visible in the
third measurement configuration with 100% coverage of un-
synchronised smart meter measurements.

5.1.4. Variant 3

In order to improve the monitoring accuracy even further, variant 3
again is similar to the previous variants, but now with a 2-min time
interval for smart meter measurements. This time, the measurement
variance is significantly lower as displayed in Fig. 8.

In variant 3, the trend of variant 2 continues with lower overall
errors due to the lower variances of the smart meter measurements with
2-min time intervals for each of the measurement configurations, as can
be clearly seen in Fig. 9.

5.1.5. Overall comparison of monitoring accuracy
Table 1 shows the full comparison of monitoring accuracy for each
of the variants and all measurement configurations. The table lists
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various measures on the monitoring accuracy. These measures include
the mean error, which is the average error over the three phases, all
nodes, the years 2012-2016, and each minute within the 24-h period.
The mean maximum error is the maximum error that occurred in one of
the nodes (in either of the three phases) during the 24-h period, aver-
aged over the years 2012-2016. The maximum mean error is the
maximum of the averaged error over the three phases, all nodes and the
years 2012-2016 that occurred within the 24-h period. Finally, the last
figure resembles the percentage of time in which the maximum error
occurring in one of the nodes (in either of the three phases) was higher
than 1%.

The table shows that the base case performs worst in terms of mean
error and percentage of time in which the mean error is higher than 1%.
However, for the mean maximum error and the maximum mean error,
variant 1 (with 15-min time interval synchronised smart meter mea-
surements) performs worse compared to the base case. This can be
explained by the fact that, although more measurements are added,
these measurement values will contain more extreme values compared
to the averaged pseudo measurements. Therefore, these values are
causing more extremes in the maximum errors. Obviously, the smaller
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Fig. 9. Variant 3 state estimation errors for different configurations.

the measurement interval, the higher the accuracy for all figures.
Mostly, the synchronised measurements perform better in terms of
mean error. On the contrary, in most occasions the unsynchronised
measurements perform slightly better in terms of mean maximum error,
maximum mean error and percentage of time in which the maximum
error is higher than 1%. In addition, unsynchronised measuring will
also be a more plausible measurement configuration, as there is no
requirement for synchronised measurement intervals.

5.2. Legal feasibility and balance of interests

5.2.1. Nature of data

Comparing the above variants in terms of legal feasibility, all var-
iants apart from the base case make use of data that can be classified as
personal data. This is mainly due to the fact that the used data is col-
lected from smart meters. Smart meters seem most economic efficient in
terms of investment costs. Because at least 80% of the consumers in the
EU have to be equipped with smart meters (Annex I(2) Electricity
Directive), both the measuring equipment and necessary communica-
tion infrastructure should already be in place. Assuming smart meters
can be used for monitoring at comparable economic efficiency rates as
alternative measuring equipment, smart meter measurements can be
produced at little additional costs. Using alternative measurement
methods would most likely require installing additional nodes (mea-
suring equipment) in the distribution system, which would be an ex-
pensive exercise. Moreover, in order to create the same monitoring
accuracy, arguably such nodes would be collecting data on comparable
aggregation levels. Consequently, the collected data would still classify
as personal data, effectively leading to the same situation as would exist
by using smart meter measurements.

5.2.2. Ground for processing
The ground for processing data can be found in the general tasks of
the DSO (see Sections 3.3 and 4.2). In the setting of this article,
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Table 1
Overall comparison of accuracy for different variants.
15 min interval 5 min interval 2 min interval
Base
80% 100% | 100%a | 80% 100% | 100%a | 80% 100% | 100%a | case
mea[‘f,/:’]rror 0,1698 0,1638 0,1699 0,1153  0,0852 0,0990 0,0842 | 00320 0,0416  0,1793
“‘e‘;i"lz;‘*]“ 1,8833  1,8029 1,8129  1,5005  1,4884  1,3543  1,2588 | 0,9681  0,8687  1,7727
(1]
“Z“;;I[’;/e?“ 0,3598 0,3495 0,3151 0,2578  0,2549 02226 0,734  0,1425  0,1279  0,3181
0
“I“JZ‘[":/EF 10,4583 10,5417  7,5972  2,2917  1,0417  0,7639  0,6667 = 0,0278 0,000 12,8611

monitoring accuracy is linked to monitoring local voltage levels. Taking
into account the growing amount of decentral RES, strong local voltage
variations might occur. In order to deal with these variations in an ef-
ficient manner, the DSO should first of all be able to detect the varia-
tions. This urges the DSO to monitor at least networks in which many
decentral RES are located. As such, the DSO has a ground for processing
personal data, up to a minimum to meet the required accuracy for
detecting local voltage variations. Arguably, the processed data could
also be used for other applications that can increase the security, re-
liability and efficiency of the DSOs networks. However, each of these
applications should be connected to either the general tasks of the DSO
or a specific task (see Section 3.3).

5.2.3. Balancing of monitoring accuracy and legal feasibility

When turning to the balancing of interests and minimizing the
‘personal character’ of the data, the following conclusions can be made.
Only the 5- and 2-min interval variants, especially with a 100% syn-
chronized coverage, provide a significant improved accuracy compared
to the base case, whereas the 15-min time interval variant hardly im-
proves accuracy. Therefore, variant 1 hardly provides additional value
in terms of monitoring accuracy compared to the base case and there-
fore unnecessarily harms household customers’ privacy and is not vi-
able in terms of costs versus benefits. Similarly, variant 3 does provide
limited additional value in terms of monitoring accuracy compared to
variant 2 and therefore the smaller time intervals of 2 min might be
unnecessary, depending on what application the monitoring is used for.
As such, it is important to note that other applications might require
higher monitoring accuracy and might also justify variant 3. In case the
accuracy obtained by variant 2 is sufficient, collecting in shorter
timeframes (i.e. 2-min interval) would not be proportionate in terms of
customer privacy and an unnecessary burden on communication
bandwidth, increasing operational costs. Consequently, if additional
accuracy in system monitoring is required (depending on the applica-
tion it serves), it should be evaluated to what extend the additional
benefit of improved accuracy justifies the additional personal data to be
collected and additional implementation costs to be made.

For all variants, the processed personal data can be minimized de-
pending on the application it serves. Considering that the state esti-
mation results are used by the DSO for making control actions, short
term planning and input for demand side management, the data does
not have to be stored for long periods of time, as the related time spans
are usually no longer than a day. Afterwards, the data would not be
necessary anymore. If the data should be used for other purposes, e.g.
network planning analysis, or research purposes, the data can be
pseudonymised.

In sum, comparing the cases presented in this work and their ground
for data processing, using smart meter data in a 5-min interval with a
smart meter coverage of at least 80%, seems to form a reasonable
balance in this case study.
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6. Conclusion and policy implications

In order to come up with an integrated method to establish dis-
tribution system monitoring, this article provides an overview off the
different aspects related to establishing distribution network mon-
itoring from both a technical as well as legal perspective. From a
technical perspective, it is clear that different variants with different
measurement configurations provide highly different monitoring ac-
curacies compared to a base case using only pseudo information as an
input. From the overall comparison on the monitoring performance and
legal feasibility for the different variants of measurement configura-
tions presented in Section 5, conclusions can be drawn on which variant
provides the best balance between technical and legal aspects. For this
particular network configuration, households and load profiles for
which the simulations have been performed, variant 2 seems to strike a
reasonable balance between the monitoring accuracy over time (with a
significant improvement compared to the base case) and the impact of
corresponding data usage with respect to data protection requirements
and the proportionality of the implementation costs in relation to the
monitoring accuracy, as discussed in Section 5.

Overall, this article gives insight in what considerations can be
made regarding technical and legal issues in establishing distribution
network monitoring. For sure several improvements can be made to the
various cases presented in this paper. For example, instead of fixed time
interval measurements, more dynamic measurements, triggered on
certain change rates of the measurement value, can be taken. Further
improvements to this work can include a more detailed cost benefit
analysis taking into account the benefit of the applications to which the
monitoring serves as an input. Nevertheless, it is clear that in order to
find a proper balance between accurate network monitoring and
privacy of household customers, technicians and lawyers should closely
cooperate in assessing the best available options for system monitoring.
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