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Assessing Dynamic Balance Performance during
Exergaming based on Speed and Curvature of Body

Movements
Venustiano Soancatl Aguilar, Jasper J. van de Gronde, Claudine J.C. Lamoth, Natasha M.

Maurits, Senior Member, IEEE and Jos B.T.M. Roerdink, Senior Member, IEEE

Abstract—Improving balance performance among the elderly
is of utmost importance because of the increasing number of
injuries and fatalities caused by fall incidences. Digital games
controlled by body movements (exergames) have been proposed
as a way to improve balance among older people. However,
the assessment of balance performance in real-time during
exergaming remains a challenging task. This assessment could be
used to provide instantaneous feedback and automatically adjust
the exergame difficulty. Such features could potentially increase
the motivation of the player, thus augmenting the effectiveness
of exergames. As clear differences in balance performance have
been identified between older and younger people, distinguishing
between older and younger adults can help identifying measures
of balance performance. We used generalized linear models
to investigate whether the assessment of balance performance
based on movement speed can be improved by incorporating
curvature of the movement trajectory into the analysis. Indeed,
our results indicated that curvature improves the performance of
the models. Five-fold cross validation indicated that our method is
promising for the assessment of balance performance in real-time
by showing more than 90% classification accuracy. Finally, this
method could be valuable not only for exergaming but also for
real-time assessment of body movements in sports, rehabilitation
and medicine.

Index Terms—Assessing dynamic balance performance, ex-
ergaming, speed and curvature, generalized linear models,
Markov chain Monte Carlo estimation.

I. INTRODUCTION

THE assessment of the quality of body movements in real-
time is of utmost importance in exergames, that is, digital

games controlled by body movements. Older adults form a
special target group for exergaming [1]. Because the number
of injuries as well as the number of fatalities caused by fall
incidences among older people have increased during the last
decade [2], the ultimate goal of exergames is not only to
provide fun and entertainment but also to improve postural
balance performance. It is known that improving balance can
reduce the incidence of falls among the older population [3].
Assessing balance during exergaming could be used to adapt
the difficulty of the game as a function of the quality of body
movements of the player, as well as to provide appropriate
immediate feedback. This in turn could increase motivation of
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the player and also increase the effectiveness of exergames as
tools to improve balance [4].

Traditional methods to determine the effectiveness of ex-
ergames rely on the assessment of balance before and after
intervention tests [1]. Real-time methods to assess balance
are still scarce and a gold standard for dynamic balance
assessment has not yet been established. Methods for real-
time balance quantification of whole body movements as
recorded by devices such as Microsoft Kinect are yet to be
developed [5].

Common home exergame devices such as Microsoft Kinect
1 reliably capture body movements that could be used to assess
balance performance during exergaming [5]. It is known that
younger adults have better postural performance than older
adults [6]. There is also evidence of significant deterioration
of postural performance, as evaluated from the center of
pressure (CoP), over 60 years of age [7]. Hence, distinguishing
between older and younger adults on the basis of movement
characteristics can help to identify measures of (dynamic)
balance performance. One way to identify older and younger
adults is by means of generalized linear models (GLMs) [8].
Assuming that the actual age of a group of people is unknown
(or temporarily ignored), we use GLMs to predict their age
based on curvature and speed of their body motion. The
results of this model prediction are meaningful values that
can be interpreted as probabilities of the people belonging
to a younger or an older age class. In addition, these GLMs
can be used in real time during exergaming and continuously
provide insight into the behaviour of the player, as they would
indicate whether this behaviour is similar to that of an older
or a younger participant, representing weak or strong balance
performance, respectively.

In this paper, we investigate curvature and speed of body
movement as measures of interest for assessing balance per-
formance in real time. Speed is a reliable measure of bal-
ance performance [9] and can be estimated instantaneously
during exergaming. Although curvature is not commonly
used, it has been identified as a promising measure for
postural performance assessment in real-time [10], as it can
provide additional information regarding the smoothness of
body movements and can also be estimated instantaneously
during exergaming. However, speed and curvature cannot be
considered independent measures as they are related according
to a power law [11]. We therefore also investigate whether
linear regression parameters, derived from the speed-curvature
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Fig. 1. Schematic showing the general steps followed in this study.

relationship on doubly logarithmic scale, can be used as
compound measures of real-time balance performance. Fig. 1
shows our methodological approach in a flow chart.

II. METHODS

This study was performed in the context of the project
Exergaming for balance training of older adults at home of the
SPRINT research center [12] of the University Medical Center
Groningen (UMCG). Part of the project was the development
of a custom-made ice-skating exergame for unsupervised
balance training of older adults. The study was executed in
accordance with the ethical standards of the declaration of
Helsinki and approved by the Medical Ethical Committee, and
the Ethical Committee of the Center of Human Movement
Sciences at the UMCG.

A. Participants

The data were collected from forty healthy participants in
a previous study [13]. Twenty participants were older than
65 years (average 71.8, SD 4.0 years, twelve males). Twenty
participants were younger than 61 years (average 36.9, SD
16.6 years, 9 males). Inclusion criteria were BMI < 30 and
the ability to walk without aid (self-reported) for at least 15
minutes. Exclusion criteria were the use of medication affect-
ing postural performance, musculoskeletal, visual, hearing, or
neurological disorders that may affect balance performance,
or an inability to understand the Dutch language.

B. Procedure and instrumentation

Each participant played the exergame ten times by swaying
the center of body mass in lateral directions, resulting in
400 trials in total. On average, the trials lasted 44.3 seconds
(SD 17.8 seconds). During game-play, 15 body parts were
non-uniformly sampled at a frequency of about 30Hz using
Microsoft Kinect version 1. Fig. 2 provides an example of
the 15 point clouds recorded by Kinect during one minute of
exergaming. For further details regarding the body positions
captured by Kinect see [14, pp. 99].

feet

knees

hips

mid-spine

mid-shoulder

head

shoulder

hand

hand

elbow

Fig. 2. Point clouds of 15 body parts tracked by Kinect during one minute
of exergaming of a younger participant.

C. Data preprocessing

Kinect data were re-sampled at a fixed rate of 30Hz using
cubic spline interpolation [15] to deal with possible sampling
frequency deviations. For each trial, the first and last 5 seconds
were removed to exclude motions that were not part of the
swaying exercise. Feet, hands, and forearms were excluded
from the analysis at this stage already, as they have the least
reliably recorded body-part trajectories [5].

D. Curvature and speed estimation

For all the collected trials we estimated instantaneous speed
(s) as the distance between two consecutive points divided by
sample time. Instantaneous curvature (κ) was approximated by
taking the inverse of the radius of a circle fitted to each three
consecutive points [10].

E. Intercepts, slopes and means

Parameters from the power law relation between curvature
and speed can be estimated [11] by fitting straight lines in
doubly logarithmic space using the following linear model:

log(skj(ti)) = γkj + βkj · log(κkj(ti)) (1)

where k = 1 . . . 40 is the index of the participants, j = 1 . . . 9
is a body part identifier, t is time, i = 1 . . . n, n is the
number of samples per body part, γkj are the intercepts of
the straight lines, and βkj are the slopes. These parameters
were estimated using [15]. For each participant and body part,
average curvature κ̄kj and speed s̄kj were also estimated.
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Fig. 3. Overlapping violin plots illustrating differences between older and younger participants. The variables (γ-intercept, β-slope, κ-mean curvature and
s-mean speed) derived from three body parts (K-knee, M -mid shoulder and S-mid spine) are shown on the horizontal axis arranged by the overlapping area
(OVL) between distributions [17], and p is the statistical significance of the difference (Man-Whitney U-tests, Bonferroni corrected.

F. Body part and variable selection

The aim here is to reduce the complexity of the data as
much as possible. For that purpose we estimated intercept
correlations for all pairs of body part variables (γj , γj′), where
j′ > j. Highly correlated body parts (r > 0.95) were excluded.
As a result only mid shoulder, mid spine and right knee body
parts remained for analysis because head, mid shoulder and
shoulders, mid spine and hips, and both knees turned out
to be highly correlated. Using the remaining body parts we
tested whether the variables speed (s̄j), curvature (κ̄j), and
power law parameters (intercept γj and slope βj) showed
significant differences between older and younger participants,
as assessed by Mann-Whitney U-tests [16] with Bonferroni
correction for multiple comparisons. These differences provide
insight into the importance of the variables to differentiate
the two groups. Variables showing no differences between age
groups were excluded from the analysis. As a result γj and
s̄j derived from mid shoulder and mid spine were found to
be the most important variables, κ̄j also showed significant
differences, but βj did not. Therefore, βj was excluded from
the analysis (see Fig. 3).

G. GLM creation and selection

A GLM can be specified in three steps [8]. First, an
assumption is made about the distribution of the outcome
variable. In our case, we assumed that the response variable
follows a Bernoulli distribution, that is, pk is the probability
that a participant is 61 years or older and 1 − pk is the
probability that a participant is younger than 61 years. Second,
a linear model as a function of the explanatory variables is
specified. Our explanatory variables are speed, curvature, and
parameters derived from the power law relation between speed
and curvature for mid shoulder, mid spine and right knee.

Third, the relationship between the mean value of the outcome
variable and the linear model is specified.

Since in our case the outcome variable is binary (0 -
young age class, 1 - old age class), we use logistic regression
(or logit regression) which was invented by Cox [18], see
also [19]. Logistic regression generates the coefficients of a
formula to predict a logit transformation of the probability of
a binary response based on one or more independent variables.
The logit transformation involves the logit function, which
transforms a probability value constrained between zero and
one into the logarithm of the odds (or log odds),

logit(pk) = log(pk/(1− pk)), (2)

which can take any real value.
In this study, we defined GLMs to predict age category as

follows.

• The age category of the k-th participant, ageCatk, fol-
lows a Bernoulli distribution with probability pk;

• The logit transform of pk is linearly regressed on the
independent variables mean speed, mean curvature, and
power law parameter (intercept) of the measured body
parts, or a subset thereof.

Putting all this into a mathematical formula we get:

ageCatk ∼ Bernoulli(pk), k = 1 . . . 40

logit(pk) = α+

|B|∑
l=1

βl ·Bl,

α ∼ N (0, 10), βl ∼ N (0, 50)

(3)

where ageCatk represents the age category younger (class 0)
or older (class 1) of participant k, pk is the probability that
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participant k belongs to the older category, and B is a subset
of the explanatory variables, i.e.,

B ⊆ {s̄(Mk), s̄(Sk), s̄(Kk), κ̄(Mk), κ̄(Sk), κ̄(Kk),

γ(Mk), γ(Sk), γ(Kk)},

where mean speed s̄, mean curvature κ̄, and intercept γ are the
measures derived for the body parts mid shoulder (Mk), mid
spine (Sk), and right knee (Kk). The regression coefficients
are the intercept α, and the coefficients βl for each variable
in B, where |B| is the number of variables in B.

We selected the prior normal distributions N for α and βl
in equation (3) with zero mean and standard deviation 10 and
50 respectively, based on the highest posterior density interval
(HPDI) band, which is conceptually similar to the confidence
interval band. We tested several priors using different standard
deviation (SD) values, SD values of 10 for γ and 50 for βl
yielded the best fits (narrower bands are preferred). See [19,
pp. 67] for further details regarding the HPDI.

Next, we investigated which combination of the variables
would best predict age category. Evaluating all possible subsets
(29 for a set of 9 variables) of the full model defined by Eq. (3)
can be time consuming. Therefore, some specific models were
considered based on the main aims of the study and the
importance of the variables and body parts. Variables showing
larger differences between older and younger participants were
considered to be more important. In this sense, intercept (γ)
and speed (s̄) derived from mid shoulder (M ) are some of
the most important variables (see Fig. 3). We assumed that
models without mid shoulder variables would perform worse
than models that include these variables. We also wanted
to investigate whether adding curvature to the models could
improve the performance of models that use only speed as
explanatory variable. Thus, in addition to the empty model

logit(pk) = α, (m0)

used only as reference [20], we defined 12 models falling
within 3 classes: including only speed, including only inter-
cepts, and models including speed and curvature as follows.

• Model class I. Only speed

logit(pk) =α+ β1 · s(Mk), (m1)
logit(pk) =α+ β1 · s(Mk) + β2 · s(Sk), (m2)
logit(pk) =α+ β1 · s(Mk) + β2 · s(Kk), (m3)
logit(pk) =α+ β1 · s(Mk) + β2 · s(Sk)+

β3 · s(Kk). (m4)

• Model class II Only intercepts (here, curvature is used
to estimate intercept values):

logit(pk) =α+ β1 · γ(Mk), (m5)
logit(pk) =α+ β1 · γ(Mk) + β2 · γ(Sk), (m6)
logit(pk) =α+ β1 · γ(Mk) + β2 · γ(Kk), (m7)
logit(pk) =α+ β1 · γ(Mk) + β2 · γ(Sk)+

β3 · γ(Kk). (m8)

• Model class III. Curvature and speed:

logit(pk) =α+ β1 · s(Mk) + β2 · κ(Mk) (m9)
logit(pk) =α+ β1 · s(Mk) + β2 · κ(Mk)+

β3 · s(Sk) + β4 · κ(Sk), (m10)
logit(pk) =α+ β1 · s(Mk) + β2 · κ(Mk)+

β3 · s(Kk) + β4 · κ(Kk), (m11)
logit(pk) =α+ β1 · s(Mk) + β2 · κ(Mk)+

β3 · s(Sk) + β4 · κ(Sk)+

β5 · s(Kk) + β6 · κ(Kk). (m12)

Fitting GLMs (m0 . . .m12) we encountered the complete
separation problem, which happens mostly when the number
of samples is small and a linear combination of the predictors
perfectly or almost perfectly predicts the outcome [21], [22]. In
such a case, the maximum likelihood fitting method provides
implausible estimates. To circumvent this problem we used
Markov chain Monte Carlo (MCMC) simulations to fit the
GLMs [23]. We also used the probabilistic programming
language Stan [24] and the rethinking [19] package as interface
to fit the GLMs.

To compare the above models (m0 . . .m12) Watanabe-
Akaike information criterion (WAIC) [25] scores were esti-
mated. WAIC is a measure of the predictive accuracy of the
models on new data [26]. Hence, this criterion provides a way
of model selection. These scores were ordered from the lowest
to highest (smaller values are preferred). For each model the
Akaike weight was also estimated, which is a partition of the
total weight of 1 among the models considered, so that the
sum of the weights is always 1 (see Table I). These weights
provide a more interpretable measure of the relative differences
between the models because they are an estimate of the
probability that a model will perform better on new data given
the models considered. Further details can be found in [19,
pp. 199, 207]. Note that for these comparisons the models
were fitted using all the participants (k = 1 . . . 40). This is
a preparatory step to select the models that will be assessed
dynamically using five-fold cross-validation [27], [28] which
we consider next.

H. Dynamic GLM performance

The main purpose of the defined GLMs m1 . . .m12 is to
perform dynamical predictions on new data, that is, estimate
balance performance continuously during exergaming. We
restrict ourselves to a selection of four models to be tested
dynamically using five-fold cross-validation, as this technique
is computationally expensive. Based on the WAIC scores we
selected GLMs with the three highest scores, that is, m5, m7,
and m11. We also selected the model with the lowest score
m3 because it is based only on speed values derived from
mid shoulder and right knee body parts. This model is used
as a benchmark to show that adding curvature and intercepts
improves model performance.

Fig. 4 illustrates the first iteration of the five-fold cross-
validation procedure. As part of the five-fold cross-validation
procedure, the order of the participants was randomized and



1534-4320 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2017.2769701, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING 5

2 37 31 7 21 26 36 6 24 32 23 18 19 1 16 9 5 4 14 34 25 17 20 38 13 40 30 35 33 12 27 8 3 22 11 15 10 29 28 39

Body part variables s(M) s(K) κ(M) κ(K)

Testing data (20%)

{0.5s, 1s, 1.5s, 2s}

R
u
n
n
in

g
m

ea
n
s

T
im

e

Training data (80%)

{s̄(M), s̄(K), κ̄(M), κ̄(K), γ(M), γ(K)}2−8

(means and intercepts)

m3,m5,m7,m11

Models

E
stim

ate

Tested on

Trained on

Fig. 4. Visualization of the training and testing disjoint subsets used to assess models m3, m5, m7, and m11 (only the first iteration of the five-fold cross
validation procedure is illustrated). The order of the participants was randomized. Dots represent speed (s) and curvature (κ) estimations derived from two
body parts, mid shoulder (M ) and right knee (K), using Kinect recordings.

TABLE I
WAIC MODEL COMPARISON. SYMBOLS REPRESENT: M -MID SHOULDER,
S-MID SPINE, AND K-RIGHT-KNEE, γ-INTERCEPT, κ-MEAN CURVATURE,

AND s-MEAN SPEED. COLUMN ‘Measure’: THE VARIABLES INCLUDED IN A
MODEL; COLUMN ‘Body part’: THE INCLUDED BODY PARTS; COLUMN

‘Weight’ : THE AKAIKE WEIGHT; COLUMN SE: THE STANDARD ERROR OF
THE WAIC ESTIMATE.
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W
ei
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t

SE

m5 M γ 2.4 0.15 1.08
m7 M , K γ 2.4 0.15 0.95
m11 M , K κ, s 2.6 0.14 0.85
m6 M , S γ 2.7 0.13 1.20
m12 M , S, K κ, s 2.8 0.13 0.94
m8 M , S, K γ 3.0 0.11 1.31
m10 M , S κ, s 3.6 0.08 1.37
m9 M κ, s 4.1 0.06 1.61
m2 M , S s 5.9 0.03 2.61
m4 M , S, K s 7.4 0.01 3.13
m1 M s 14.2 0.00 7.74
m3 M , K s 17.2 0.00 9.48
m0 57.5 0.00 0.03

five training-testing disjoint subsets were created using 80%
of the participants for training and 20% for testing. For each
iteration of the cross-validation procedure, m3, m5, m7 and
m11 were fitted again (on means and intercepts) in the training
phase. To test the trained models we estimated running means,
from the 20% testing data (local curvature and instantaneous
speed, see section II-D), using a moving window over the
whole length of the trials in the testing set. To investigate the
effect of the running window size, each model was tested using
0.5, 1, 1.5, 2 second running means.

The models were assessed using traditional metrics such
as the F-measure, precision and recall [29]. Values of these
metrics were estimated using the threshold at the point with
the best sum of sensitivity and specificity, closest to the point
(0,1) of the ROC curve. Sensitivity (also called “recall”)
is the proportion of correctly classified older participants.
Specificity is the proportion of correctly classified younger
participants. Precision is the number of correctly classified
older participants divided by the total number of classified
older participants. The F-measure is the harmonic mean of
precision and recall. The threshold values were estimated using
the pROC [30] R-package.

As a last step, we investigated whether more samples for
training could improve model performance. For this purpose
we redefined m3, m5, m7 and m11, to be trained on running
means and running intercepts, as follows:

logit(pik) =α+ β1 · si(Mk) + β2 · si(Kk), (m′3)
logit(pik) =α+ β1 · γi(Mk), (m′5)
logit(pik) =α+ β1 · γi(Mk) + β2 · γi(Kk), (m′7)
logit(pik) =α+ β1 · si(Mk) + β2 · κi(Mk)+

β3 · si(Kk) + β4 · κi(Kk), (m′11)

where si and κi are the one-second running means of speed
and curvature respectively at time i, and γi is the one-second
running intercept. Note that training these variant models
(indicated by a prime) was computationally expensive because
we used the whole length of the trials (i is the same index
as in equation 1). For each training set, these models were
trained twice using 10% and 100% of the running means. The
window size was selected after looking at the performance of
the models m1 . . .m12. These models performed worse using
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age group. Dots and triangles represent mean values per participant in log− log scale. The red circles in Model 3 indicate participants that are misclassified
or not clearly classified as older or younger participants. In Model 5, the solid line represents the mean point estimates of the posterior distribution. The
light-gray shaded area represents the 89% highest posterior density interval (HPDI) band for the means. The HPDI is the narrowest range containing the
specified probability mass, similar to the common confidence interval.

a 0.5-second window size than using larger window-sizes, but
there were no clear differences from 1 to 2 second window
sizes. Hence we used a window size of one second.

III. RESULTS

Overlapping violin plots of mean speed and curvature, inter-
cepts and slopes (of the speed-curvature relationship) per body
part provide first insight into their potential to differentiate
older and younger groups (Fig 3). Smaller overlapping area
(OVL) values suggest greater differences between groups. This
figure shows that intercept and speed measures derived from
mid shoulder movements, γ(M) and s(M), differentiate better
between older and younger groups than the other measures.
Although curvature measures (κ) from the three body parts
show around 50% OVL, the difference between older and
younger participants is still significant. Slope measures (β)
from mid shoulder, mid spine, and knee show the least
differences between older and younger participants. Indeed,
slopes show both the highest OVL values (> 60%) and non-
significant differences between older and younger groups and
were therefore excluded from GLM fits.

Next, we first consider GLM model selection based on
global means, where the averages are computed over the
whole time interval based on models m1-m12 in Section II-G.
Subsequently, we investigate dynamic GLM performance, us-
ing the variant GLM models m′3,m

′
5,m

′
7,m

′
11, as defined in

Section II-H.

A. GLM selection

Table I shows the model comparison results. It can be
observed that models including either curvature and speed
together or only intercept are among the “best” models. Also

notice that most of these models score similar Akaike weights
(probability of making best predictions on new data, see
Section II-G), suggesting similar model performance. Models
including only speed measures score the lowest weights of the
fitted models. This implies that including either curvature or
intercepts improves model performance on new data.

Fig. 5 shows how models m3, m5, and m7 fit the data.
Model m3 in this figure is based only on speed values

derived from mid shoulder and right-knee body parts. It scores
the lowest WAIC value in Table I. The visualization of the fit
of m3 provides insight into the performance of a model that
does not include curvature as a predictor variable. It shows a
clear, but not perfect, separation between older and younger
participants.

Model m5 in Fig. 5, is the “best” model according to
WAIC criteria. It is the simplest model as it only uses “one”
variable, the intercept γ from the speed-curvature relation,
derived from mid shoulder movements. This visualization
shows that including curvature in the model improves the
separation between older and younger participants.

Model m7 in Fig. 5 shows perfect separation between
older and younger participants. In addition to intercept values
γ derived from mid shoulder, γ values derived from knee
movements are included. According the figure shows, this
additional information helps to even better differentiate older
and younger participants.

The fit of model m11 cannot be visualized in two dimen-
sions because it involves four explanatory variables (speed and
curvature means derived from mid shoulder and knee). How-
ever, we can use principal component analysis [31] to visualize
a projection of the points in the four-dimensional space onto
the two first principal components (PC). We can also use a
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bi-plot to gain additional understanding of the contribution of
the variables to the first two PCs. Fig. 6 shows the bi-plot
and the projection of the four variables of model m11. This
figure also shows clear separation between older and younger
participants in terms of probabilities, since all the triangles
correspond to high probabilities, and all circles correspond
to low probabilities. Note that in the projection, one older
participant is located among the younger participants. Larger
arrows in the bi-plot indicate stronger contribution of the
variables to the PCs than shorter arrows, orthogonal vectors in-
dicate weak correlation and opposite directions indicate strong
negative correlation between variables [32]. Thus, curvature
has a stronger contribution to the PCs, curvature and speed
are strongly negatively correlated if they are derived from the
same body part, but only weakly correlated if they are derived
from different body parts.

s(M)

s(K)

κ(M)

κ(K)
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Fig. 6. Projection of the four variables of model m11 (κ̄ and s̄ estimated from
mid shoulder and knee) onto the first two PCs, p represents the probability of
belonging to the older age group. The arrows represent the variable vectors
with names at their end-points (M -mid shoulder, K-right knee), see text for
explanation. The first PC accounts for 78.63% of the variance and the second
PC accounts for 16.81%.

In summary, Table I, and Figs. 5 and 6 show that including
curvature in the models improves their predictive performance.

B. Dynamic GLM performance

Fig. 7 shows the performance of the models m3, m5, m7,
and m11 and their variant versions (m′) tested on the trials
using 0.5, 1, 1.5, and 2 second running-means (#H#, # ,
H# , and   ). In contrast to WAIC comparison (Table I)
where two γ-based models get the highest scores (m5 and
m7), this figure shows that these models score the lowest when
tested on 0.5-second running means. Moreover, m5, m7 and
their variants (m′3 and m′7) are among the models scoring the
lowest accuracies, tested on 0.5-second and 1-second running
means. Most of the models based only on speed values (m3

and m′3) scored better than models fitted on γ values. Clearly,
the top 5 models are based on both speed and curvature values
(m11 and m′11). As for the size of the time window, although
most of the models tested on 0.5-second running means have

the lowest scores, there are no clear differences between the
models. Regarding the amount of data used to fit the models,
surprisingly, there are no clear differences in performance
between models fitted on means and intercepts, which include
only 40 samples per variable, and models fitted on 10% or
100% (including about 30k and 300k samples) of the data see
1 , 10 and 100 labels on the left of the figure.

m5m5m5

m7m7m7

m3m3m3

m5m5m5

m′
5m
′
5m
′
5

m′
5m
′
5m
′
5

m7m7m7

m5m5m5

m′
7m
′
7m
′
7

m′
7m
′
7m
′
7

m11m11m11

m5m5m5

m7m7m7

m7m7m7

m3m3m3

m′
3m
′
3m
′
3

m′
3m
′
3m
′
3

m3m3m3

m3m3m3

m11m11m11

m′
11m′
11m′
11

m′
11m′
11m′
11

m11m11m11

m11m11m11

γ M#H# 1

γ MK#H# 1

s MK#H# 1

γ M# 1

γ M# 10

γ M# 100

γ MK# 1

γ MH# 1

γ MK# 100

γ MK# 10

κs MK#H# 1

γ M  1

γ MKH# 1

γ MK  1

s MK# 1

s MK# 10

s MK# 100

s MKH# 1

s MK  1

κs MK# 1

κs MK# 100

κs MK# 10

κs MKH# 1

κs MK  1

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Value of metric

Metrics

Fmeasure

Precision

Recall

Fig. 7. Model performance as assessed by different metrics. The horizontal
axis represents the value of the three metrics, precision, recall, and F-measure.
The vertical axis represents the fitted models ordered by F-measure. The
symbols represent γ-intercept derived from the power law, κ-curvature and
s-speed (one bar indicates means and double bar indicates running means),
M -mid shoulder, S-mid spine, andK-right knee; black filled circles represent
time windows, H#-0.5 seconds and  -1 second; and boxes represent the
amount of data used to fit the models: 1 -means and intercepts, 10 -10%
of the running means, and 100 -100% of the running means. In the plot,
circles represent the average values of the metrics estimated by five-fold cross-
validation, and horizontal bars represent standard errors.

F-measure, precision and recall, in Fig. 7, agree on the top-
five models. Recall, that is the proportion of correctly classified
older samples, shows that the top-five models correctly classify
above 90% of the older samples. These models score between
0.8 and 0.86 on precision. The F-measure is commonly used
as a measure between precision and recall. Among these
measures, recall could be the best measure for our purposes
because a) it shows the biggest gap between the top-five
models and the rest of the models (see the distance between
m3 and m11), b) it shows the highest accuracy in classifying
older participants, which is the target population of exergames
in this study, and d) it shows the smallest standard errors. All
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in all, these results show that including curvature in the models
indeed improve their performance.

Fig. 8 illustrates m11, the top model, with dynamic predic-
tions over time along the 400 trials. Even though the predic-
tions for some participants are not clear cut (see participants,
19, 20, and 39), this figure shows a clear separation of older
and younger participants over time, as on the left most of
the probability values to belong to the older age group are
low (“light gray”) and on the right most of the values are
high (“dark gray”). The values in this figure could be used to
provide appropriate feedback during game-play, as the player
could see his/her instantaneous performance as “older” or
“younger” participant. These values could also be used to
adjust the difficulty of exergames to meet the skills of the
players.

Fig. 8. Model m11 predictions from 400 trials using one-second running
means. The horizontal axis represents 10 exergame trials for each participant.
The vertical axis represents time. Each vertical line represents a trial. Partic-
ipants are ordered by age, the first 20 are younger and the rest are older. For
clarity, white lines are added to separate between trials per participant. Also,
missing Kinect data are indicated by white lines.

In terms of balance performance our results suggest, as
could be expected, that the younger participants performed
better during the trials than the younger participants. This
means that the older participants performed slower during the
trials than the younger participants, illustrated in Figs. 3 and 5.
Faster movements also indicate smoother movements (smaller
curvature values) among the younger than among the older
participants, because of the speed-curvature relationship [11].

IV. DISCUSSION

Our main goal in this study was to investigate whether
balance performance as assessed by speed can be improved
by adding curvature in the assessment, in two ways: a) using
compound measures derived from the relation between curva-
ture and speed, and b) using curvature and speed together. Our
results suggested that including curvature can indeed improve
postural performance assessment in real-time.

First, WAIC scores suggested that GLMs including both
curvature and speed, and GLMs including intercepts would
perform better on new data than GLMs including only speed
(see Table I). Second, common classifier performance metrics

such as F-measure, precision and recall suggested that GLMs
including curvature and speed will probably perform better on
new data than GLMs fitted only on speed or only on intercepts
(see Fig. 7).

Although obtaining high prediction accuracy was not the
main goal of this study, it is a natural way to gain insight
into the future usefulness of the models [33], in our case, the
usefulness for assessing balance performance in real-time. In
addition, the straightforward interpretation of the probability
values estimated from logistic regression are useful to provide
immediate and meaningful feedback and can be interpreted by
common people. These probability values indicate how likely
the quality of body movements is similar to that of an older
person.

In a previous study, curvature and speed derived from
force plate recordings were identified to be suitable measures
of balance performance in real-time, because a) they show
differences between older and younger participants, and b)
they can be estimated instantaneously [10]. The results of the
present study provide additional evidence of this suitability,
but now using Kinect recordings. This relies on the abil-
ity to instantaneously characterize participants as “older” or
“younger” in terms of probabilities. Even though the model
predictions might be incorrect, the probability estimations
could be useful because some older participants could behave
as younger ones and vice-versa. In addition, curvature and
speed provide a natural and intuitive interpretation of the
results. For example, assuming that exergaming players are
healthy it is natural to expect that fast and smooth movements
reflect good postural performance. On the contrary, slow and
non-smooth movements represent worse postural performance.
As these features can be assessed by speed and curvature,
higher speed and lower curvature values should reflect better
postural performance.

In another study [13], balance performance was assessed
using the same Kinect recordings. The authors used medial
lateral movements (values of x and y coordinates, but not z)
of nine body parts of the players to identify patterns using
Self Organizing Maps. Then, they trained a kNN classifier
using the identified patterns to discriminate older and younger
participants. The accuracy of the classifier was 65.8%. Here,
using two features derived from only two body parts we
achieved more than 90% recall accuracy (see Fig. 7). These
results suggest that features derived from body movement
trajectories provide more information to differentiate older and
younger participants than the coordinates of the trajectories.

In this study, all of the models showed a “clear” separation
between older and younger participants. This may be because
the number of participants is small. Thus, including more
participants could be expected to give more overlap between
older and younger participants. Still, the separation we found
is consistent with the evident physical decline of people after
60 years of age. For example, older and younger participants
were clearly differentiated using mean velocity during static
tasks in [9]. Evident physical decline was also reported in
walking speed and aerobic endurance for people in their 60s
and 70s [34]. As exergaming is a physical activity, it may not
be a surprise that we here observed similar differences between
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older and younger participants.
One of the limitations of this study is that the lengths

of the trials are short and the number of participants is
small; to mitigate this, we applied 5-fold cross validation
as an accepted method to gain insight into the performance
of classifiers on new data. Further research is needed to
investigate the usefulness of the presented method on long
intervention studies. Another limitation is that the selection of
body parts (mid shoulder, mid spine and right knee) is partly
imposed by the limited accuracy of Kinect. More accurate
devices may lead to a different selection of body parts for
better classification performance.

The method presented here based on GLMs could be used
to assess balance performance in different kinds of exergames
using different kinds of tracking technology. That is because
our method depends on features derived from the trajectory of
body movements and not on the tracking device. Also, in ad-
dition to curvature and speed, other instantaneously estimated
variables/features can also be included in the models such as
torsion and their derivatives [35]. Once a GLM is fitted, the
estimated parameters could be used to make predictions as
shown in Fig. 8.

Studies such as [36] and [37] have suggested some de-
sirable features for the development of adaptive exergames.
Some of these features are: embracing age-related physical
impairments, adapting individual differences in player range
of motion, preventing overexertion by providing appropriate
game pacing, and including automatic adjustment of difficulty.
In this sense, the methods shown here form a firm step towards
the development of adaptive exergames based on measures of
balance performance in real time.

V. CONCLUSION

We have presented a promising method to assess dynamic
balance performance during exergaming. Curvature derived
from the trajectories of body movements can provide addi-
tional information to assess performance in real-time. GLMs
provide a way to derive a single measure, as a function of
curvature and speed, that represents the behaviour of partici-
pants as belonging to a younger or older age group. Given
reliably captured body movement trajectories, this method
could potentially be used to assess the quality of movements
in real-time not only in exergaming but in other fields such
as sports, rehabilitation, and medicine, offering instantaneous
and appropriate feedback that could foster motivation and
movement performance. Finally, in future work we plan to
study the validity and sensitivity of our method to detect
changes in balance performance, using trials recorded during
an unsupervised six week exergaming training at home.

APPENDIX A
COMPUTATIONAL COST

Fig. 9 shows the amount of time used to fit models m′3,
m′5, m′7, and m′11 on 10% and 100% of the data, respectively.
To fit these models we used a computer with two Intel
Xeon E5-2630 processors of 2.3 GHz, each processor with
12 cores, and 64GB of main memory. For each model we ran
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Fig. 9. Amount of time used to fit variant (m′) models on 10% and 100% of
the data, respectively. Note that as we used 5-fold cross validation, the bars
represent the time to fit a particular model 5 times on different datasets.

24 simultaneous simulations, as there are 24 cores available,
with 1000 warm-up samples and 3000 iterations, resulting in
24 × (3000 − 1000) = 48000 real samples in total. These
models were fitted using only 1-second running means as
these fits were computationally intensive. The figure clearly
shows that the time increases exponentially as the number of
variables and the number of samples increase, see for example
model m′11 that was fitted on 4 variables with about 300k
samples. This figure, together with the results shown in Fig. 7
suggest that models fitted on means and intercepts could be
good enough to make reliable predictions on new data. In
addition, the most “complex” model m11 tested using 5-fold
cross validation based on means and intercepts required only
about 2.5 minutes for fitting five different datasets.
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Óptica y Electrónica, Tonantzintla, Puebla, México in 2003. From 2006 to
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