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We measure the direct detection effect in a small volumes0.15mm31 mm33.5 nmd quasioptical
NbN phonon cooled hot electron bolometer mixer at 1.6 THz. We find that the small signal
sensitivity of the receiver is underestimated by 35% due to the direct detection effect and that the
optimal operating point is shifted to higher bias voltages when using calibration loads of 300 K and
77 K. Using a 200 GHz bandpass filter at 4.2 K the direct detection effect virtually disappears. This
has important implications for the calibration procedure of these receivers in real telescope
systems. ©2005 American Institute of Physics. fDOI: 10.1063/1.1887812g

NbN phonon cooled hot electron bolometersHEBd mix-
ers are currently the most sensitive heterodyne detectors at
frequencies above 1.2 THz.1,2 They combine a good sensitiv-
ity s8–15 times the quantum limitd, an IF bandwidth of the
order of 4–6 GHz,3–6 and a wide RF bandwidth from
0.7 to 5.2 THz. However, for use in a space based observa-
tory, such as Herschel, it is of vital importance that the local
oscillatorsLOd power requirement of the mixer is compatible
with the low output power of present day THz LO sources.7

This can be achieved by reducing the mixer volume and
critical current density.5 However, the large RF bandwidth
and low LO power requirement of such a mixer result in a
direct detection effect, characterized by a change in the bias
current of the HEB when changing the RF signal from a
black body load at 300 K to one at 77 K.8–11As a result the
measured sensitivity using a 300 K and 77 K calibration
load differs significantly from the small signal sensitivity rel-
evant for astronomical observations. In this article we de-
scribe a set of dedicated experiments to characterize the di-
rect detection effect for a small volume quasioptical NbN
phonon cooled HEB mixer.

The devices are fabricated on a high purity Si wafer that
is covered at MSPU, Moscow with a NbN film withTc
=9.3 K and an expected thickness of 3.5 nm. The fabrication
is mostly identical to the process described in Refs. 3 and 12,
however, in stead of a spiral antenna we use a twin slot
antenna with a center frequency of 1.6 THz and a bandwidth
of 0.9 THz. The bolometer length is 0.15mm, the width
1 mm, the critical currentIc=68 mA at 4.2 K and the normal
state resistance is 170V at 11 K. In the experiment we use a
quasi-optical coupling scheme in which the HEB mixer chip
is glued to the center of an uncoated elliptical Si lens. The
lens is placed in a mixerblock thermally anchored to the
4.2 K plate of a liquid Helium cryostat. We use one Zytex
G104® at 77 K as infrared filter and 0.9 mm HDPE as
vacuum window. The LO power required to reach the opti-

mal pumping level of the mixer, as determined by the iso-
thermal technique,PLO,iso=30 nW. The real LO power need
PLO, determined from the output power of a calibrated LO
source and the known optics losses, has been estimated to be
2.4 times larger for similar mixers,13 hencePLO=70 nW.

In the first experiment we measure the uncorrected
double sideband receiver noise temperatureTN on all pos-
sible bias points of the mixer using a measurement of theY
factor Y=Phot/Pcold. Phot/cold is the output power of the re-
ceiver at a hot/cold load evaluated at a single bias point, i.e.
at one single value ofV and PLO. We use the Callen and
Welton definition to calculateTN from the measuredY
factor.14 Simultaneously we measureIhot/cold, the mixer bias
current at a hot/cold load at each bias point. As a hot load we
use Eccosorb at 300 K glued to a chopper wheel and as a
cold load we use Eccosorb at 77 K. Rotating the chopper
wheel enables a switch from a hot load to a cold load, which
is done at 12 Hz. We takeIhot/cold and Phot/cold at each bias
point prior to proceeding to the next bias point. As a result
we are not sensitive to drifts in the setup with time scales
longer than 0.2 s. As a LO source we use a FIR gas laser at
1.627 THz. The LO power is attenuated by means of a rotat-
able grid. The LO and RF signals are coupled using a
3.5 mm Mylar beamsplitter. The total optics loss in the signal
path is estimated to be 4.3 dB, the noise temperature of the
opticsTN,eff,opt.<200 K. Both the grid rotation angle and the
position of the hot/cold chopper are computer controlled.
The same is true for the bias voltage and the measured mixer
bias current. A bias-T separates the DC bias from the IF
signal at the output of the chip. The IF signal is directed to
the input of a 1–2 GHz isolator and Berkshire HEMT am-
plifier with 43 dB gain and a noise temperature of 5 K. At
room temperature the signal is further amplified and filtered
in a 80 MHz bandwidth at 1.4 GHz before it is detected us-
ing an Agilent power meter also connected to the computer.
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In Fig. 1sad we present the measured values ofTN. We
observe a relatively broad region of optimal response with a
maximum sensitivity ofTN=1400 K. The measured direct
detection currentIDD= Ihot− Icold is shown in Fig. 1sbd. We
observe thatIDD is always negative, in agreement with re-
sults reported insRefs. 8, 9, and 11d. The magnitude of the
direct detection current ranges from virtually 0mA at high
bias voltages, to about −0.6mA at the optimal bias region to
more than −1mA at very low bias voltages. This indicates
that the difference in RF power between the 77 K and 300 K
load changes the bias current of the mixer in the same way as
an increase inPLO. The RF power absorbed by the mixer
from the thermal load within the full RF bandwidth of the
receiver,PRF, can be calculated using

PRF = kB ·BW·Teff,hot/cold s1d

with BW the RF input bandwidth of the receiver,kB Boltz-
mann’s constant, andTeff,hot/cold the effective temperature of
the load in the Callen and Welton limit, given byTeff,cold
=152 K andTeff,hot=230 K. Hence we obtainPRF=1.9 nW
for the cold load andPRF=2.9 nW for the hot load. The
difference is 1.3% of the LO power needed to pump the
mixer.

In Fig. 2 we illustrate the effect of a nonzero direct de-
tection current. The two black squares, marked withPH

A and
PC

B represent the measured values ofPhot, Ihot, andPcold, Icold,
respectively, each obtained at one single operating point, i.e.,
at one single value ofV sV=0.6 mVd and at one single value
of PLO. PLO is equal to the optimal LO power. In the same
figure we also showPhotsId and PcoldsId. The data was ob-
tained by changing the LO power. To obtainTN as shown in
Fig. 1 we have evaluated theY factor Y=Phot/Pcold
; PH

A /PC
B. It is obvious that the bias current at whichPhot is

evaluated is lower than the bias current at whichPcold is

evaluated. Imagine now that we observe, with the receiver
discussed in this paper, an astronomical source which repre-
sents itself as a small input power change on top of a back-
ground with an identical power input as our 77 K load. A
small input power change is in this context defined as a
power change that results in a negligible value ofIDD. To
obtain the receiver noise temperature in this case we need to
evaluate the small signalY factor YS=PH

B /PC
B. This implies

that we have to reducePLO at hot load to make sure that the
bias current remains constant, thus compensating for the bias
current shift caused byPRF at hot load. The noise tempera-
ture in the small signal limit,TN,S obtained in this way, is
shown in Fig. 3. We find a minimum value ofTN,S=900 K,
which is 35% lower than the minimum value ofTN
=1400 K. We also observe that the location of the minimum
in the noise temperature is shifted to lower bias voltages and
that the small region with an apparent high sensitivity atV
<0.2 mV andI <0.24 mA, clearly visible in Fig. 1sad, has
disappeared. EvaluatingYfactor at a background power level
identical to the 300 K load, which can be obtained by evalu-
ating YS8=PH

B /PC
B gives an identical result. The situation at

other background loads can be estimated as follows: Since
IDDsPRFd, IDDsPLOd and IDDsPLOd is measured to be linear
for small changes inPLO we can calculateIDD by linear

FIG. 1. sColord sad TN uncorrected for any optics losses over the entire IV
plane of the mixer, the minimum value isTN=1400 K.sbd The direct detec-
tion currentIDD= Ihot− Icold.

FIG. 2. The effect of a nonzero direct detection current atV=0.6 mV,
I <0.21 mA, whereTN=1400 K. The top line gives the receiver output
power at hot load as a function of bias current, the bottom line at cold load.
The data is obtained bychanging the LO power at constant bias voltage. The
stars give the small signal noise temperatureTN,S around three background
loads. For an explanation of the symbols we refer to the text.

FIG. 3. sColord The double sideband receiver noise temperature in the small
signal limit, TN,S, around a background corresponding to the 77 K load. The
minimum value isTN,S=900 K. A background corresponding to the 300 K
load gives an identical result.
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extrapolation from the two measured values at 300 K and
77 K for any load. We show as an example in Fig. 2 the
value of IDD in the limit of zero background and zero optics
losses. In this case the effective input power is given by half
a noise quantum, corresponding to 35 K at an LO frequency
of 1.6 THz.14 We find thatTN,S<980 K for all three back-
ground loads. This is indicated by the stars in Fig. 2.

The physical process responsible for the direct detection
effect can be explained as follows. For any receiver we know
that noise temperature is a combination of the conversion
gainh and the output noise of the mixerTout. However, both
quantities are, for a HEB, a strong function of the mixer bias
current, i.e.,h=hsId andTout=ToutsId. So the expression for
the Y factor can be written as

Y =
Phot

Pcold
;

2hsIhotdThot + ToutsIhotd
2hsIcolddTcold + ToutsIcoldd

, s2d

with hsId the single sideband receiver gain andThot/cold the
temperature of the hot/cold load. In the small signal limit,
whereIDD=0 we use the same equation withIhot= Icold= I. To
illustrate the usefulness of this approach we calculateh and
the current dependence ofToutsId at the same bias point as
discussed in Fig. 2sV=0.6 mV, I <0.21 mVd using the uni-
form electron heating model.1,15 The implementation of this
procedure gives a uncorrected noise temperatureTN
=1400 K where the small signal noise temperatureTN,S
=980 K is used as input parameter to calculate the magni-
tude ofTout. This agrees well the experimental results.

To confirm these results we have repeated the experi-
ment with a metal mesh RF bandpass filter mounted in front
of the mixer at the 4.2 K stage of the cryostat.16 The effec-
tive bandwidth of the filter we use is 200 GHz, centered
around 1.6 THz. Hence the filter reduces the effective input
bandwidth of the receiver by a factor of 4.5. As a conse-
quencePRF is reduced compared with the previous experi-
ment to PRF=0.42 nW andPRF=0.62 nW for cold and hot
load, respectively. The difference between the two is 0.2 nW,
only 0.3% ofPLO. A similar effect could have been achieved
by using a reduced temperature difference between the hot
and cold load. We find a minimum noise temperature ofTN
=1050 K, 25% lower than theTN without the use of the filter,
but still higher thanTN,S ssee Fig. 1d. This difference is
caused by a small remaining direct detection effect together
with the limited in-band transmission of the filter.

We conclude that the direct detection effect significantly
changes the response of small volume, quasioptical HEB
mixers when measured using the standardY factor method
with a 77 K cold load and a 300 K hot load. Using a com-
bined measurement of the receiver output power and bias
current at hot load and cold load we can predict the small
signal response of the mixer, relevant for astronomical ob-
servations. We have discussed a device with 0.1531 mm
surface area, an input bandwidth of about 0.9 THz and a LO

power requirement of 70 nW. The effective input power dif-
ference between hot and cold load is 1 nW for this receiver.
We observe that the minimum noise temperature obtained
using theY factor at one single bias point, i.e., at one value
of the bias voltage and LO power, is 35% higher than the
small signal noise temperature around a background signal
with a radiated power corresponding to either the 77 K or
300 K load. These results have been verified experimentally
using a cold rf bandpass filter in the signal path of the re-
ceiver. By this we reduce the effective bandwidth and thus
the effective input power difference between hot and cold
load with a factor of 4.5–0.2 nW. As a result the direct de-
tection effect virtually disappears, as well as the difference
between the conventional noise temperature and small signal
noise temperature.
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