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Summary

Tracking of fluorescent protein (FP)-labelled rhizo-

bacteria is a key prerequisite to gain insights into

plant-bacteria interaction mechanisms. However, the

performance of FPs mostly has to be optimized for

the bacterial host and for the environment of

intended application. We report on the construction

of mutational libraries of the superfolder green fluo-

rescent protein sfGFP and the red fluorescent protein

mKate2 in the bacterium B. mycoides, which next to

its potential as plant-biocontrol agent occasionally

enters an endophytic lifestyle. By fluorescence-

activated cell sorting and comparison of signal inten-

sities at the colony and single-cell level, the variants

sfGFP(SPS6) and mKate (KPS12) with significantly

increased brightness were isolated. Their high appli-

cability for plant-bacteria interaction studies was

shown by confocal laser scanning microscopy track-

ing of FP-tagged B. mycoides strains after inocula-

tion to Chinese cabbage plants in a hydroponic

system. During the process of colonization, strain

EC18 rapidly attached to plant roots and formed a

multicellular matrix, especially at the branching

regions of the root hair, which probably constitute

entrance sites to establish an endophytic lifestyle.

The universal applicability of the novels FPs was

proven by expression from a weak promoter, dual-

labelling of B. mycoides, and by excellent expression

and detectability in additional soil- and rhizosphere-

associated Bacillus species.

Introduction

Fluorescent proteins (FPs) are widely used in living pro-

karyotic and eukaryotic cells as genetically encoded

fluorescent labels to study cell motility, changes in gene

activity and protein localization and dynamics (Chudakov

et al., 2010; Kremers et al., 2011). After discovery of the

first FP, the green fluorescent protein (GFP) of Aequoria

victoria (Shimomura et al., 1962), cloning of its structural

gene paved the way for extensive protein engineering

studies (Prasher et al., 1992). These resulted in a pleth-

ora of diverse FPs with emission light wavelengths rang-

ing from blue at 448 nm to yellow at 526 nm. Until now,

the palette of colour variants for multicolour imaging is

constantly expanded (Day and Davidson, 2009). Exten-

sive efforts have also been made to identify and engi-

neer red FPs (RFP) that emit in the yellow-orange to

far-red regions of the visible light spectrum (Piatkevich

et al., 2010; Shemiakina et al., 2012; Rodriguez et al.,

2016). The usage of RFPs is especially advantageous in

mammalian cells or plant tissues because these are

more transparent to red light (Rizzo et al., 2009). This

enables high-contrast imaging due to a low autofluores-

cence background, as RFPs are highly compatible with

existing confocal-microscope lasers and the respective

filter sets.

In environmental microbiology, ecophysiology and par-

ticularly in plant-microorganism interaction studies, the

application of FP markers has recently become a power-

ful approach for exploring microbial functions in situ in

natural ecosystems, e.g., the rhizosphere and plant

endosphere. Applying biosensor strains for analysing the

microbial function in symbiotic or competing communi-

ties has led to significant advances in these areas

(Larrainzar et al., 2005). However, an on-site and wide-

spread application of FPs in plant ecophysiology is still

restricted by the complexity of the rhizosphere and
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endosphere environments and matrices. Unlike the

laboratory-based in vitro systems, rhizosphere samples

are usually associated with complex organic and inor-

ganic materials, which show high background levels of

autofluorescence when studied with visualization tools

like fluorescence microscopy. Moreover, plant roots are

able to actively alter the rhizospheric oxygen content

and pH (Blossfeld et al., 2011), which in turn can affect

the brightness of FPs by impeding chromophore matura-

tion (Heim et al., 1994; Shu et al., 2006), altering the

chromophore protonation state (Das et al., 2003) or

causing misfolding of the FP (Craggs, 2009). Addition-

ally, the functionality of FPs is highly dependent on the

bacterial expression host and often needs to be vali-

dated or even optimized to fulfil the desired experimental

requirements (Hebisch et al., 2013). For in situ studies

using FP-tagged organisms, it is, therefore, of special

importance to consider that extrinsic and intrinsic cellu-

lar factors impact or modulate the performance of FPs

(Shaner et al., 2005).

B. mycoides is a chain-forming bacterium, which is

associated with the Bacillus cereus sensu lato group.

This species has a particular asymmetric ‘hairy’ shape

on agar plates. The bundles of filaments resulting from

extensive chaining and linkage of cells show either a

clockwise or counterclockwise growth pattern (Di Franco

et al., 2002). B. mycoides is ubiquitous and abundant in

soils and the rhizosphere of plants, its natural niches

(Neher et al., 2009; Ambrosini et al., 2016). Although

B. mycoides was occasionally isolated from food cross-

contaminated from soil (Samapundo et al., 2014), it is

widely recognized as a non-pathogenic bacterium

(Nakamura and Jackson, 1995). It has a low thermotol-

erance of 378C with an optimal growth temperature

between 258C and 308C (Guinebretière et al., 2008).

Various B. mycoides strains isolated from the rhizo-

sphere show plant growth-promoting effects on several

crops. It was for instance shown that the B. mycoides

isolate S4 promotes phosphorous solubilisation and iron

release by its siderophore production activity, which

increases the photosynthesis and chlorophyll content of

the runner bean Phaseolus coccineus L. (Stefan et al.,

2013). Moreover, elicitation of an induced systematic

resistance (ISR) by Bacillus strains led to a significant

reduction in the severity or incidence rates of various

diseases on a diversity of plant hosts (Kloepper et al.,

2004). Elicitation of ISR on sugar-beet was found to be

associated with increased peroxidase activity coupled to

an enhanced production of chitinase by the B. mycoides

strain BmJ (Bargabus et al., 2002; Bargabus et al.,

2004). This strain was furthermore able to control

anthracnose of cucurbits through the induction of sys-

temic acquired resistance (SAR) (Neher et al., 2009).

The biocontrol potential of B. mycoides against the plant

pathogens Sclerotinia sclerotiorum or Botrytis cinerea is

based on the bacterial production of antimicrobial prod-

ucts such as bacillomycin D, fengycin, zwittermicin A or

volatiles (Guetsky et al., 2002; Athukorala et al., 2009).

We isolated B. mycoides strains from the endosphere

of healthy potato plants (Yi et al., 2017), which indicates

that the interaction could be commensal or mutualistic.

However, the ecological relationship between different

B. mycoides strains and plants has not been exhaus-

tively studied. The observation of various stages of the

colonization processes is critical to understand the phys-

iological and molecular mechanisms of bacteria-plant

interaction. Although there are many fluorescent tools

available for low-GC Gram-positive spore formers, they

are not optimized for use in endophytic B. mycoides.

The lack of optimized fluorescent proteins to label this

rhizobacterium for tracking and visualizing its develop-

ment in planta or in hydroponic culture systems, and for

labelling of promoters to analyse factors that contribute

to its endophytic lifestyle is currently a bottleneck and

necessitates further tool development.

In this study, we applied a random mutagenesis

approach to generate mutational libraries of the green

fluorescent protein sfGFP and the red fluorescent pro-

tein mKate2. After in vivo isolation of single mutants by

fluorescence-activated cell sorting (FACS) and screening

of fluorescence intensities during B. mycoides colony

development by stereo fluorescence microscopy, three

brightly expressed candidates for each FP were

obtained. Intriguingly, variants selected under pH shifted

conditions showed the highest improvement in fluores-

cence signal intensity. We further demonstrate that

these FP variants are suitable for B. mycoides-in planta

localization studies with the advantage of showing an

improved background signal-to-noise ratio. The universal

applicability of the novels FPs was further proven by

their detectability even when expressed from a weak

promoter in B. mycoides and by excellent expression

and detectability in additional soil- and rhizosphere-

associated Bacillus species. The successful double-

labelling and dual-colour imaging of B. mycoides indi-

cates that the improved FPs reported here can be fur-

ther applied for advanced molecular genetic studies,

such as gene expression and protein localization in B.

mycoides.

Results and discussion

Construction of GFP and RFP libraries and isolation of
bright variants by B. mycoides cell sorting

FPs are indispensable tools for molecular biology and

microbial ecology. However, FPs are not equally well

expressed in different bacterial species, presumably due

to the codon-usage bias which affects the translation,
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folding and maturation efficiency of the proteins. Previ-

ous studies proved that different GFP variants display

strongly variable fluorescence intensities in low-GC

Gram-positive organisms (Overkamp et al., 2013).

Our preliminary experiments showed that sfGFP(Sp),

a robust, fast-folding and fast-maturing ‘superfolder’

GFP (Pedelacq et al., 2006; Overkamp et al., 2013) was

functionally expressed in B. mycoides. However, the sig-

nal was too weak for studying bacteria-plant interactions

and cell tracking when sfGFP(Sp) expression was driven

by weak promoters (data not shown). To track different

bacterial strains at the same time, or to simultaneously

follow distinct promoter activities within one cell, it would

be desirable that multiple fluorescent markers are well

expressed and detectable in the same target organism.

Since mKate2 has a fluorescence spectrum that sub-

stantially differs from GFP, with an excitation maximum

of 588 nm and an emission maximum of 633 nm

(Shemiakina et al., 2012), it is highly suitable for

co-labelling experiments with GFP. However, initial

benchmarking experiments with the red fluorescent pro-

tein variants mCherry and mKate2 cloned on multicopy

plasmids revealed that the signal intensity of mKate2

was very low and close to the level of autofluorescence

of B. mycoides cells. Moreover, the expression of

mCherry could neither be detected by flow cytometry

(FC) nor by fluorescence microscopy (data not shown).

This is in line with the observation that mKate2 was bet-

ter suited for promoter labelling studies than mCherry in

the closely related species B. cereus (Eijlander and

Kuipers, 2013).

By applying a random mutagenesis approach, we

obtained a sfGFP library that was cloned into the repli-

cative E.coli-Bacillus shuttle plasmid pNW33N, resulting

in a total of 115,000 E.coli TOP10 clones. The plasmids

carrying the mutated sfGFP(Sp) gene were isolated and

transformed into B. mycoides EC18 by electroporation,

resulting in a library size of 44 000 clones with a muta-

tional frequency of one to four nucleotides per

sfGFP(Sp) gene. However, mKate2 showed no fluores-

cence when being expressed under the control of the

same pta promoter as sfGFP (data not shown). As a

result, the mKate2 mutation library was constructed with

the replicative plasmid pAD43-25, which carries the

comparably stronger upp promoter. The plasmid library

was transformed into E.coli TOP10, thereby yielding a

size of 115 200 colonies. The transformation of the

library into B. mycoides EC18 resulted in a 43 820

clone-sized library with a mutation rate of one to three

nucleotides per mKate2 gene.

To isolate the brightest sfGFP(Sp) and mKate2

mutants, the B. mycoides libraries were grown planktoni-

cally until the exponential growth phase was reached.

We considered that the bacteria encounter environments

with different pH during the establishment of the endo-

phytic lifestyle, since cabbage-related plants such as

Arabodopsis thaliana induce a soil acidification in the

rhizosphere region (for a recent publication, see Barbez

et al., 2017). Therefore, the B. mycoides libraries were

grown in three groups with different pH conditions: pH

6.0, pH 7.0 and pH shift condition. For the latter, bright-

est cells were first enriched at pH 6.0, and then subcul-

tured at pH 7.0 followed by a second round of FACS

enrichment. As shown in the Supporting Information Fig.

S1, around 0.3% of the mildly sonicated cell population

was sorted after a first FACS enrichment step from all

pH conditions. After spreading and incubation at 308C

on LB-Cm4 agar, 20 of the brightest colonies were

selected by visual appearance with a Olympus MVX10

macro zoom fluorescence microscope (Supporting Infor-

mation Fig. S1). To obtain pure colonies arising from

single clones, the 20 preselected colonies from each

condition were restreaked twice on LB-Cm4. After quan-

tification of signal intensities and the amplitude of fluo-

rescence signals at the single-cell level from exponential

phase cultures by FC, we selected three of the best per-

forming GFP and RFP variants with high brightness and

small fluorescence signal deviations for further analyses.

Improvement of GFP signal intensities

The mean fluorescence intensity (MFI) of the sfGFP var-

iants selected under pH 6.0, pH 7.0 and pH shift condi-

tions (termed S618, S709 and SPS6) was measured by

FC. As shown in Fig. 1A, the MFI of all selected sfGFP

variants was increased by at least 50% in comparison to

the original sfGFP reporter in B. mycoides. The variant

selected under pH shift conditions, sfGFP(SPS6), exhib-

ited the strongest mean fluorescence signal. Signal

intensities of single cells stemming from a colony grown

on solid medium was examined by fluorescence micros-

copy (Fig. 1B). In general, the differences in the average

fluorescence levels analysed from microscopy images

correlated well with the results obtained by FC. The

highest improvement with regard to the mean bright-

ness level was observed for the optimized sfGFP(SPS6)

protein when compared to the original sfGFP(Sp)

protein.

Although the signal intensity of all sfGFP variants was

not evenly distributed within single cells, obvious differ-

ences in the mean brightness levels between the opti-

mized and the original sfGFP were observed, clearly

showing an improved detectability by visualization meth-

ods (Fig. 2A and B). Variation of the signals could be

related to an uneven distribution of FP proteins and/or

differences in the plasmid copy numbers in the daughter

cells, as it was previously discussed for the closely

related bacterium B. cereus (Eijlander and Kuipers,
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2013). However, with a few exceptions, the mechanism

of cell division and separation (Di Franco et al., 2000;

Turchi et al., 2012) and the possibility that the extensive

cell chaining might be connected to multicellular cooper-

ation (Shapiro, 1998), such as the exchange of DNA,

nutrients or signals between the B. mycoides cells, has

not been studied so far. We thus tested the possibility

that the constitutive expression of the FPs poses a

metabolic burden to the cells and that separating

daughter cells might undergo a loss of the replicative

plasmid. Comparison of the growth behaviour between

B. mycoides wild type cells and cells carrying the FP

expression plasmids did not reveal any growth retarda-

tion or growth defects from early logarithmic to the late

stationary phase (Supporting Information Fig. S2A). In

addition, fluorescence imaging of complex B. mycoides

colonies showed that the expression of sfGFP generally

did not affect the development of colonies (Fig. 2B). Due

to the compactness and multilayered rhizoid growth,

however, the difference in brightness between the opti-

mized sfGFP and the original sfGFP(Sp) variants was

not as apparent as compared to the measurements of

cells grown under planktonic conditions (Fig. 2B). Trac-

ing the plasmid presence and inheritance without antibi-

otic pressure by sequential propagation over several

days (approximately 150 generations) showed no indica-

tion of significant plasmid loss (Fig. S2B). This indicates

that the plasmid itself is stably inherited and that the

reason for signal intensity variation between single cells

is more complex and needs to be addressed in greater

detail in a separate study.

Improvement of RFP signal intensities

Determination of the MFI of the in vivo selected RFP

variants revealed that the signal intensities of the

mutants K603 and K713 selected under pH 6.0 and pH

7.0 conditions was increased 7- and 6-fold in compari-

son to the original mKate2 protein (Piatkevich et al.,

2010) respectively, while mKate2(KPS12), which was

selected under pH shift conditions, showed a 10-fold

improvement of fluorescence (Fig. 3A). This was further

corroborated by the quantification of fluorescence sig-

nals emitted from single cells by fluorescence micros-

copy showing that KPS12 was the best performing

mKate2 variant in B. mycoides (Fig. 3B). Cells carrying

the original mKate2 emitted a very weak fluorescence

signal, which was barely above the autofluorescence of

B. mycoides cells at 528–553 nm excitation. In contrast,

K603, K713 and KPS12 showed a significant improve-

ment of fluorescence signal emission (Fig. 4A). Colony

imaging revealed that the signal-to-noise ratio was sig-

nificantly improved for all three variants as compared to

mKate2, resulting in clearly detectable colonies on solid

growth media. Moreover, in the complex B. mycoides

colonies, in which cells are less well aerated than in

shaken planktonic cultures, KPS12 still gave the highest

signals among all examined variants (Fig. 4B).

As observed for the GFP variants, cells showed a var-

iation in the intensity of fluorescence signals when

expressing the RFP proteins, which was not caused by

growth retardation effects or by a loss of the replicative

plasmid encoding the RFP (Supporting Information

Fig. 1. Fluorescence quantification of sfGFP variants in B. mycoides.
A. B. mycoides EC18 carrying pNW33N-Ppta-3TER plasmids with the respective fluorescent protein variants were grown overnight in LB and
subjected to analysis by FC.
B. Single-cell fluorescence was measured with fluorescence microscopy. The fluorescence intensities are normalized for background fluores-
cence and cell area (see Material and Methods). Mean fluorescence was calculated from at least 500 cells. Error bars indicate the standard
errors of the means obtained from three independent biological and technical replicates. Asterisks denote significant differences between the
mean fluorescence intensity of sfGFP and the respective mutant variants (p< 0.05).
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Fig. S2A and B).The mechanism causing these pheno-

typic differences thus needs to be addressed in a sepa-

rate study.

Co-expression of optimized GFP and RFP variants in

B. mycoides

Based on the results obtained from protein optimization,

we next tested the suitability of the best performing var-

iants for dual-labelling and simultaneous visualization in

the B. mycoides background. To additionally address the

question whether the signal variation could be reduced,

we first integrated the sfGFP(SPS6) gene driven by the

constitutive Ppta promoter into the chromosome of

B. mycoides EC18 at the A-amylase gene locus. In a

next step, the pAD-mKate(KPS12) plasmid was trans-

formed into the single-copy reporter strain to obtain the

co-expression strain. The GFP and RFP signals were

simultaneously detectable by FC and by fluorescence

microscopy and were clearly distinguishable from each

other under the given differential excitation and detection

conditions, showing that a cross-talk caused by a spec-

tral overlap between the FPs is negligible (Fig. 5). This

indicates that neither the excitation nor the emission

spectra are significantly changed from the original pro-

tein variants, which have been previously shown to be

compatible in multicolour imaging studies in Streptococ-

cus pneumonia (Kjos et al., 2015). To our knowledge,

this is the first report of a successful dual-FP-labelling

approach in bacilli of the B. cereus sensu lato group.

Fig. 2. A. Visualization of sfGFP variant expression in planktonically grown, exponential-state cells of B. mycoides by fluorescence microscopy.
For comparison of the sfGFP fluorescence intensities, the same imaging conditions were applied (ex: 465–495 nm, em: 515–555 nm; expo-
sure: 0.15 s with 32% excitation xenon light (300 W); 1003 phase-contrast objective). The white bar represents 5 lm.
B. Comparison of fluorescence signal intensities of sfGFP variants in B. mycoides colonies. LB-Cm4 plates were spot-inoculated with equal
amounts of B.mycoides cells and incubated for 18 h at 308C. Images were acquired with a microscope using the same imaging conditions (ex:
460/480 nm, em: 495/540 nm, 50% of excitation light, exposure time: 100 ms). The white scale bar represents 0.5 cm. Representative images
from three independent biological replicates are shown.
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Notably, the GFP signal intensity distribution was more

homogeneous within the cells due to the presence of a

chromosomally integrated single copy of the gfp gene

(Fig. 5D). This in turn strongly indicates that the differ-

ences in plasmids copy numbers among daughter cells

within a colony substantially impact the signal amplitude

per cell.

FP expression from a mannose-inducible promoter

For plant-interaction studies, it would further be desir-

able to confirm the expression of the optimized FP var-

iants when driven by weak or condition-dependent

promoters. This is currently hampered by the lack of

systematically characterized promoter regions in B.

mycoides. We initially recognized that a mannose-

inducible promoter (Pman) from B. subtilis (Altenbuch-

ner, 2016) is ‘leaky’ in B. mycoides, thereby conferring a

basal, low level of FP expression. To compare the per-

formance of the optimized and original FPs under the

control of Pman, fusions were constructed based on the

replicative plasmid pAD (Table 1) and transformed into

B. mycoides EC18. FC measurements revealed that

both optimized variants sfGFP(SPS6) and mKa-

te(KPS12) were significantly better detectable than the

parental FP versions (Supporting Information Fig. S3).

The MFI stemming from the optimized variants

increased with increasing mannose concentrations,

whereas no significant MFI increase could be observed

for the original proteins. This shows that that the

improved variants are better suited for the detection

when fused to weak promoters, because the parental

FPs are only expressed at levels close to the autofluor-

escence of B. mycoides cells under these conditions.

Expression of novel FPs in other rhizosphere-associated

Bacillus strains

Although this study mainly focused on the development

of optimized FP variants to allow the tracing of root-

associated and endophytic B. mycoides strains, we next

tested the performance of the improved FPs in addi-

tional Bacillus species that mainly thrive in the soil. The

sfGFP variant SPS6 was transformed into B. cereus

ATCC 10987, B. subtilis HS3 and B. amyloliquefaciens

HS9. The strains HS3 and HS9 were isolated from grass

rhizosphere and are potentially PGP-promoting (unpub-

lished data). In comparison to the original sfGFP(Sp)

protein, sfGFP(SPS6) showed a 3- to 5-fold, significantly

improved fluorescence intensity in all three strains,

thereby facilitating their detection by fluorescence

microscopy (Fig. 6A–C). The improvement of brightness

of mKate(KPS12) is shown in Fig. 6D–F. While expres-

sion of the original mKate2 variant was barely measur-

able in B. cereus ATCC 10987, as stated earlier

(Eijlander and Kuipers, 2013), mKate(KSP12) showed a

fivefold improved brightness and was detectable by both

fluorescence microscope and FC (Fig. 6D). A significant

increase in brightness was also observed in the

rhizosphere-derived B. subtilis HS3 and B. amyloliquefa-

ciens HS9 hosts (Fig 6E and F). Altogether, the

improved variants were well expressed in the species

tested and considerably facilitated the detection of Bacil-

lus strains by live-cell imaging methods.

Fig. 3. Fluorescence quantification of mKate2 variants in B. mycoides.
A. B. mycoides EC18 carrying pAD43-25 plasmid derivatives with the respective fluorescent protein variants were grown overnight in LB and
subjected to analysis by FC.
B. Single-cell fluorescence was measured by fluorescence microscopy. Fluorescence intensities are normalized for background fluorescence
and cell area and the mean fluorescence was calculated from at least 500 cells. Error bars indicate the standard errors of the means (n 5 3).
Asterisks denote significant differences between the mean fluorescence intensity of mKate2 and the respective mutant variants (p< 0.05).
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In situ performance of improved FPs to localize
B. mycoides during establishment of an endophytic lifestyle

In the rhizosphere, bacteria-plant interactions play an

important role in maintaining plant health. The possibility

of visualizing these interactions in situ is a key step for

understanding the ecophysiology and basic biology

underlying the beneficial processes (Larrainzar et al.,

2005). Germaine et al. (2004) studied the endophytic

behaviour of three Pseudomonas species by tracing the

GFP-labelled cells during colonization of poplar trees.

Bloemberg et al. (2000) labelled P. fluorescens with the

enhanced cyan FP, enhanced green FP, enhanced yel-

low FP and the DsRed RFP reporter protein. After inoc-

ulation of tomato plant seedlings, mixed microcolonies

as well as single populations could be simultaneously

visualized, which revealed a dynamic behaviour of local-

izing to sites on the roots and in the root/soil interface.

To finally demonstrate the applicability of the in vivo

selected GFP and RFP variants for in planta studies, the

endophytic B. mycoides isolate EC18 expressing the dif-

ferent FP proteins from constitutive promoters was inoc-

ulated on Chinese cabbage (Brassica rapa) roots in a

hydroponic system. At day 2 and day 3 after inoculation,

roots were sampled and analysed concerning fluores-

cence signals and in planta localization of B. mycoides

by confocal microscopy. For GFP, both the original

sfGFP(Sp) (Fig. 7A) and the variant sfGFP(SPS6)

(Fig. 7B and C) provided a well-detectable fluorescence

signal at very low excitation strength, which prevented

the occurrence of an autofluorescence background from

Fig. 4. A. Visualization of mKate2 variant expression in planktonically grown, exponential-state cells of B. mycoides by fluorescence micros-
copy. For comparison of the mKate2 fluorescence intensities, the same imaging conditions were applied (ex: 528/553 nm, em: 590/650 nm;
exposure: 0.45 s with 50% excitation xenon light (300 W); 1003 phase-contrast objective). The white bar represents 5 lm.
B. Comparison of fluorescence signal intensities of mKate2 variants in B. mycoides colonies. LB-Cm4 plates were spot-inoculated with equal
amounts of sporulated B. mycoides cells and incubated for 18 h at 308C. Images were acquired with a microscope using the same imaging
conditions (ex: 545/580 nm, em: 610 nm, 100% of excitation light, exposure time: 3.5 s). The white scale bar represents 0.5 cm. Representa-
tive images from three independent biological replicates are shown.
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the root cells. In contrast to sfGFP(Sp), cells tagged with

the SPS6 mutant were more readily detectable; indicating

that the higher brightness observed in fluorescence micros-

copy and FC experiments is also advantageous for confocal

microscopy applications. At 2 days post inoculation (DPI),

B. mycoides initiated the attachment to the epidermis of the

primary roots (Fig. 7B). After 3 DPI, the bacteria started to

aggregate as microcolonies on the surface, especially at

the emerging site of root hairs. Additionally, a few chaining

cells that translocated into the endosphere were observed

(Fig. 7C). Interestingly, junctions of primary and lateral roots

seem to be a preferred niche for microcolony establishment

of B. amyloliquefaciens FZB42 (Fan et al., 2011), which

might indicate that these are preferred sites for feeding on

nutrients or endophytic entry into the plant.

Similar bacteria-plant interaction patterns were

observed when B. mycoides was labelled with the red

spectrum reporter protein variant mKate2 (Fig. 7D) and

mKate2(KPS12) (Fig. 7E and F). Due to the inherently

low fluorescence intensity of the original mKate2 protein

during expression in B. mycoides, the fluorescent signal

is very weak and can hardly be detected (Fig. 7D).

Enhancement of the excitation power and digit gain

settings also deteriorated the signal-to-noise ratio and

thus induced a high autofluorescence background of the

plant tissue (data not shown). In comparison, the

enhanced fluorescence intensity of the mutant KPS12

allowed the detection of B. mycoides above the autofluor-

escence of the root hairs without extensive adjustment of

the excitation parameters. Two days after inoculation,

B. mycoides cells were attached to root hair cells (Fig.

7E). These interactions were shown to play a key role in

the endophytic colonization of olive plant roots by Pseu-

domonas species (Prieto et al., 2011). Three days after

inoculation, a higher number of cells were aggregated on

the root epidermis and some cells were growing in the

endosphere of the root hair as well as in the main root. A

massive amount of B. mycoides cells colonized the elon-

gation region of the root hair, which might represent an

entrance point for B. mycoides to establish an endophytic

lifestyle (Fig. 7F). Similarly, Ji and colleagues (2008)

observed that the endophytic B. subtilis strain Lu144

enters into mulberry seedlings through the cracks formed

at the lateral root junctions and the zone of differentiation

and elongation. We speculate that the junctions of root

hairs and main roots are the preferred and specific

Fig. 5. Co-expression of optimized FPs in B. mycoides EC18. The strain was double-labelled by chromosomal integration of a single copy of
sfGFP(SPS6) into the amyE locus and electroporation of the replicative plasmid pAD-mKate2(KPS12) into the reporter strain.
A and B. FC measurements of GFP and RFP channels.
C–E. Microscopic observation from phase-contrast, GFP (ex: 465–495 nm, em: 515–555 nm; exposure: 2.62 s with 32% excitation xenon
light), and RFP (ex: 528/553 nm, em: 590/650 nm; exposure: 0.637 s with 50% excitation xenon light) channels.
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colonization sites for endophytic Bacillus strains, since for

Gram-negative bacteria such as Pseudomonas, coloniza-

tion was more evenly distributed and observed in older

basal root parts or the root hair of barley (Buddrus-Schie-

mann et al., 2010). This might be linked to differences in

chemoattractants and preferred metabolites associated

with the different root regions and cell types, as has been

indicated earlier (Brimecombe et al., 2007). However, the

detailed mechanism of endophytic plant colonization by

B. mycoides as well as a systematic comparison to tackle

differences in the colonization mechanisms between

Gram-negative and Gram-positive bacteria needs further

thorough investigation.

Sequence analysis of in vivo selected FPs optimized

for in planta studies

Early attempts to optimize the heterologous expression

of GFP revealed that the fluorescence properties can

be modulated by mutations within the fluorophore

region, resulting in altered excitation and emission

spectra (Ehrig et al., 1995). The S65T substitution

leads, for instance, to GFP derivatives with a red-

shifted excitation maximum and strongly increased fluo-

rescence (Heim et al., 1995; Chiu et al., 1996). Since

the wild-type GFP is prone to misfolding and aggrega-

tion, which causes reduced chromophore maturation

and low yields, a variety of studies aimed at improving

the folding properties of GFP and other FPs (Hsu

et al., 2009). The FP variant Emerald contains the

S65T and F64L mutations featured in enhanced GFP

(eGFP), and has four additional point mutations that

improve the efficiency of maturation and folding at

378C, and increase the intrinsic brightness (Day and

Davidson, 2009). Another approach to obtain improved

FP variants is the adaptation of FP genes to the typical

codon usage of the host organism, which in some

Fig. 6. Comparison of the performance of the original and optimized FP variants in additional soil and rhizosphere-derived Bacillus species.
The sfGFP imaging conditions were the same for each strain (ex: 465–495 nm, em: 515–555 nm with 32% xenon light excitation), but different
exposure times were applied. Exposure time (A) B. cereus ATCC 10987 is 0.4 s; (B) B. subtilis HS3 is 0.085 s and (C) B. amyloliquefaciens
HS9 is 0.050 s. The imaging conditions for mKate2 variants were the same for each strain (ex: 528/553 nm, em: 590/650 nm with 50% excita-
tion xenon light), but different exposure time were applied. The exposure time for: (A) B. cereus ATCC 10987 is 30 s; (B) B. subtilis HS3 is
0.33 s and (C) B. amyloliquefaciens HS9 is 3.75 s. Representative images are shown. The white bar represents 5 lm.
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cases could improve the translation efficiency, resulting

in higher FP expression and thus fluorescence signals

(Sastalla et al., 2009; Leroch et al., 2011). Such codon

optimized FPs have been developed for the cyan fluo-

rescent protein and a yellow fluorescent protein in B.

anthracis (Sastalla et al., 2009), for GFP and RFP in

Botrytis cinerea (Leroch et al., 2011) and for GFP in

Zymoseptoria tritici (Kilaru et al., 2015).

To analyse the changes associated with the improved

functionality of the FP variants that were in vivo isolated

from B. mycoides, the nucleotide mutations, amino acid

exchanges as well as codon usage frequencies were

compared between the mutated and the originating

genes (Table 2). In comparison to the original

sfGFP(Sp), the variant sfGFP(S618) carries the

exchanges K156E and V176I. These two sites are

solvent-exposed and located at the a-helix region

between two b-strands (Supporting Information Fig.

S4A). Pedelacq and colleagues (2006) reported that

mutations at these flexible linker positions (e.g., Y145F

and Y171V) are likely to eliminate aggregation-prone or

off-pathway folded proteins from the folding trajectory.

The variant sfGFP(S709) contains the three mutations

T59I, P192P and Q204H; with the silent mutation P192P

being distant from the chromophore, while the mutation

T59I was close to the chromophore and buried in the

centre of the ß-barrel (Supporting Information Fig. S4B).

The mutation Q204H resides in the 10th ß-strand

closely located to the chromophore. The ß-strand muta-

tions F99S/M153T/V163A in GFPuv/cycle 3 variant were

shown to change the surface hydrophobicity and, there-

fore, the aggregation propensity of the protein (Fukuda

et al., 2000). The best performing GFP variant in this

study, SPS6, contains the silent mutation A179A and a

N39D exchange. The mutation Y39N was located

between the 2nd and 3rd ß-strand (Supporting Informa-

tion Fig. S4C) and was reported to increase folding rates

and stability in sfGFP (Pedelacq et al., 2006). The sub-

stitution of asparagine to aspartic acid may further

improve these effects.

Fig. 7. In planta observation of life B. mycoides EC18 cells in the rhizosphere of Chinese cabbage. Labelling of B. mycoides with a set of in
vivo-selected GFP and RFP variants allows in situ tracking of cabbage root colonization in a hydroponic system.
A. Epidermal colonization two DPI is visualized with the original sfGFP(Sp) reporter protein.
B. Cells labelled with the improved sfGFP(SPS6) variant aggregate on the root surface two DPI.
C. Cells labelled with the improved sfGFP(SPS6) interact with the root hair forming small microcolonies and establish endophytic colonization
three DPI.
D. Tracking of B. mycoides cells labelled with the original mKate2 reporter is aggravated due to a low mKate2 brightness and high autofluores-
cence background of the plant tissue.
E. Detection of B. mycoides expressing the improved mKate2 (KPS12) reporter protein reveals the interaction of cells with root hairs two DPI
and the entry into the endophytic colonization lifestyle three DPI (F). The scale bar represents 10 lm.
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The three in vivo-selected, optimized mKate2 mutants

contained different nucleotide substitutions, which were

either solely silent mutations [N186N in the case of

mKate(K603)], solely amino acid exchanges [G152D in

mKate(K713)] or a combination of both (K185K, R220R

and D206Y in the brightest variant mKate(KPS12)

obtained from pH shift experiments). The mutation sites

are indicated on the 3D crystallographic structure of

mKate2 in Supporting Information Fig. S4D–F. Since the

RFPs are generally less well characterized than GFPs

with regards to folding/unfolding kinetics and crystalliza-

tion studies, the impact of these mutations on the

improvement of fluorescence signal intensity and bright-

ness or the folding and maturation efficacy is not readily

explained. Although none of the mutations was located

within the ß-barrel and in close proximity to the chromo-

phore, some mutations may increase the performance

by altering the aggregation behaviour or translation and

folding speed by exchanging less preferred to more fre-

quently used codons in B. mycoides. Especially the

mutation K185K in the KPS12 variant increased the

codon usage preference from 1.93% to 5.1% (Table 2).

This might be associated with an increase of the transla-

tion and/or the folding speed, which probably prevents

the accumulation of non-matured and non-functional

protein precursors. Interestingly, the mKate2 variant

FusionRed also had a mutation at this position (Shemia-

kina et al., 2012), which is reported to alter kinetics and

efficiency of protein maturation.

Conclusion

By applying random mutagenesis and fluorescence-

assisted cell sorting on sfGFP and mKate2 mutational

libraries in life B. mycoides cells, we were able to isolate

three brighter and well expressed variants of each FP

protein for this bacterium. The improved performance of

the FPs was confirmed at the population level by moni-

toring colony development on solid growth medium and

at the single-cell level by FC and fluorescence micros-

copy of cells grown in liquid cultures. An extended appli-

cability was proven by double-labelling of B. mycoides

with the best performing variants sfGFP(SPS6) and

mKate(KPS12). This revealed that i) the fluorescence

signals were simultaneously detectable and clearly dis-

tinguishable from each other and ii) that chromosomal

integration of the reporter proteins reduces cell-to-cell

signal variations. To our knowledge, this is the first

report of a successful dual-FP-labelling approach in

bacilli of the B. cereus sensu lato group. Constitutive

expression of the FPs from replicative plasmids did not

affect the growth behaviour of B. mycoides and the plas-

mids were kept even without selection pressure by anti-

biotics over several cell generations. This indicates that

FP expression does not represent a metabolic burden to

the cells and altogether shows that the novel variants

are suitable visualization markers without causing a loss

of plant colonization ability. Finally, the optimized var-

iants proved to be highly suitable for confocal laser

scanning microscopy (CLSM) observations to study

plant-microbe interactions and endophytic processes of

B. mycoides. As a case study, we visualized the early

stages of endophytic colonization in a hydroponic sys-

tem. In line with previous studies, the formation of a mul-

ticellular matrix or microcolonies was revealed to be a

prerequisite for endophytic colonization, in which the

root hair and the elongation region of root hairs consti-

tute potential entry sites to establish an endophytic life-

style. The variants reported can be also used to study

the expression of genes with weak promoters and

Table 2. Overview of mutations of sfGFP(Sp) and mKate2 variants optimized for expression and in planta localization of B. mycoides.

FP
variant

Nucleotide
positiona

Nucleotide
exchange

Codon
mutation

Amino
acid
positiona

Amino
acid
mutation

Codon usage
frequency of
original amino
acidb

Codon usage
frequency of
introduced
amino acidb

S618 466 A!G AAA!GAA 156 K156E 6.14 5.73
526 G!A GTT!ATT 176 V176I 3.12 5.17

S709 176 C!T ACT!ATT 59 T59I 1.24 5.01
576 A!G CCA!CCG 192 P192P 1.64 0.76
612 A!T CAA!CAT 204 Q204H 3.03 1.63

SPS6 115 A!G AAC!GAC 39 N39D 1.08 1.45
537 T!C GCT!GCC 179 A179A 2.98 1.21

K603 558 T!C AAT!AAC 186 N186N 2.04 1.77
K713 455 G!A GGT!GAT 152 G152D 1.12 3.07
KPS12 555 G!A AAG!AAA 185 K185K 1.93 5.1

616 G!T GAT!TAT 206 D206Y 3.07 2.1
660 T!G CGT!CGG 220 R220R 0.69 0.99

a. Relative distance from translation start of FP.

b. According to codon usage frequency table for B. mycoides EC18 (accessible at the Genome 2D webserver http://server.molgenrug.nl/
index.php).
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proved to be well expressed and detectable in additional

soil- and rhizosphere-associated Bacillus species. More-

over, the brightest variant for both GFP and RFP were

selected in the pH-shift group, which renders them espe-

cially suitable to study bacteria-plant interactions.

Experimental procedures

Strains and growth conditions

All strains, plasmids and primers used in this study are

listed in Table 1. B. mycoides EC18 was isolated from

the endosphere of a potato plant (Wijster, the Nether-

lands). B. subtilis HS3 and B. amyloliquefaciens HS9

were isolated from grass rhizosphere (Groningen, the

Netherlands). The Bacillus strains were routinely cul-

tured in Luria-Bertani (LB) medium at 308C with aeration

at 200 rpm. All Escherichia coli strains were cultured in

LB broth at 378C with aeration at 220 rpm. For cloning

and selection purposes, ampicillin was added at a con-

centration of 100 mg/ml for E. coli and chloramphenicol

and spectinomycin at a concentration of 4 lg/ml

(LB-Cm4) and 100 mg/ml (LB-Spc100) for Bacillus

strains respectively.

Random mutagenesis of fluorescent protein genes for

E. coli library construction

E. coli libraries of randomly mutagenized sfGFP(Sp) or

mKate2 proteins (Table 1) were generated with the Gen-

eMorph II Random mutagenesis kit according to manu-

facturer’s instructions (Agilent Technologies) as

described elsewhere (Frenzel et al., 2017). In brief, the

sfgfp(Sp) gene encoded on plasmid pKB01-sfGFP(Sp)

was mutagenized by error-prone PCR using the primer

pair pKBO1derMut_F and pKBO1derMut_R (Table 1).

The XbaI/SphI digested PCR products were ligated into

the equally cut replicative Bacillus/E. coli-shuttle plasmid

pNW-Ppta-3TER (Table 1), which contains a Parageoba-

cillus thermoglucosidans-derived constitutive promoter of

the housekeeping pta gene and a threefold transcrip-

tional terminator. In the same manner, the primer mKa-

te2Mut_F and mKate2Mut_R (Table 1) were used to

amplify and mutagenize mKate2 from 0.1 ng of target

DNA residing on plasmid pAD651 (Table 1). The XbaI/

SphI cut fragments were cloned into the same restriction

sites of the replicative Bacillus-E. coli shuttle vector

pAD43-25 (Table 1), thereby releasing the gfpmut3A

gene and placing mKate2mut expression under the con-

trol of the constitutive upp promoter from B. cereus

UW85.

E. coli Top10 cells were transformed with the method

as described by Sambrook et al. (Sambrook et al.,

1989). From these, 20 randomly chosen colonies were

grown separately in LB-Cm15 medium, and the mutation

frequency of the FPs was estimated after plasmid isola-

tion by double-stranded sequencing using the primer

pairs pAD_for/pAD_rev for mKate2 and pNW33N_for/

pNW33N_rev for sfgfp(Sp) respectively (Table 1).

Whole plasmid libraries were generated as described

previously (Frenzel et al., 2017). In brief, approximately

100 000 E. coli colonies were pooled after 24–30 h of

growth at 378C from plates by resuspension in LB

medium and the vector mixture was extracted with the

JETSTAR Plasmid Purification Kit according to the man-

ufacturer’s instruction (GENOMED, L€ohne, Germany).

Preparation of competent B. mycoides cells,

electroporation and library setup

B. mycoides EC18 aliquots were prepared for electropo-

ration according to a protocol previously established for

B. cereus (Ehling-Schulz et al., 2005). Library vector

DNA was added in an amount of 1–2 mg to the cells,

and electroporation was performed applying settings of

2.0 kV, 25 lF and 200 X in a 2-mm cuvette using a Bio

Rad Gen Pulser II electroporation system (Bio-Rad).

After addition of 1 ml LB medium, cells were grown for

2 h at 308C and 150 rpm for recovery and then plated

on LB-Cm4. After 16–24 h of growth at 308C, colonies

were harvested from the plates and pooled in LB

medium. The libraries were stored at 2808C as 15%

glycerol stocks.

Fluorescence-activated cell sorting of B. mycoides

FP libraries

B. mycoides EC18 sfGFP(Sp)mut or mKate2mut librar-

ies were inoculated in 50 ml of LB-Cm4 and grown at

pH 7.0 or pH 6.0 to an OD600nm of 0.3–0.6, representing

the exponential phase of growth. Since B. mycoides

shows extensive cell-chaining, a mild sonication step of

4 rounds of 3 3 10 pulses of 1s with an amplitude of

30% (Vibra CellTM, model VCX 130, Sonics and Materi-

als, Newtown, CT, USA) was applied to disassemble the

aggregated cells. Cells were sorted on a BD FACS Aria

II (BD Biosciences) at 20 psi using a 70 mM nozzle at a

flow rate of 1.0 with the highest sort precision mode (0–

32-0 sort purity mask). Cellular debris and chained cells

were excluded using a sequential gating strategy with

FCS height versus widths, followed by SCC height ver-

sus width. For separation of the brightest variants, a cut-

off of 3% of the brightest event in the first round of cell

sorting and 0.3% of the brightest events in the second

round of sorting with the light scatter parameters (ex:

488 nm, em: 525/50 nm, 505 LP filter for GFP; and ex:

592 nm, em 620/30 nm, 600 nm LP filter for RFP) was

chosen. See Supporting Information Fig. S1 for a work-

flow scheme.

Optimized fluorescent proteins for B. mycoides 69

VC 2017 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology Reports, 10, 57–74



In total, 20000 cells were isolated by sorting and ali-

quots were plated on LB-Cm4 and grown 16–24 h at

308C, while the remaining cells (ca. 104 CFU) were inoc-

ulated into fresh LB-Cm4 and grown either at the same

pH (6.0 or 7.0) as the first cultures, or the pH was

‘swapped’ to sort bright variants functional at both pH

6.0 and pH 7.0. Cultures were incubated for 16 h at

308C and 200 rpm until the following round of cell

sorting.

Screening of FP variants and flow cytometry

measurements

After FACS sorting, the final fluids containing bright cells

were plated on LB-Cm4 plates and grown overnight at

308C. The colonies were observed by Olympus MVX10

macro zoom fluorescence microscope equipped with a

PreciseExcite light-emitting diode (LED) for fluorescence

illumination. The filter setting for GFP was excitation at

460/480 nm and emission at 495/540 nm with a 485-nm

dichromatic mirror; and for RFP the filter setting was

excitation at 545/580 nm and emission at 610 nm with a

600 nm dichromatic mirror. Pictures were acquired with

an Olympus XM10 monochrome camera (Olympus Cor-

poration, Tokyo, Japan). Twenty of the brightest colonies

in each screening group (pH 6.0, pH 7.0 or pH shift)

were re-streaked and the fluorescence of individual cells

was assessed by FC. The fluorescence of selected GFP

variants was quantitatively determined with a FACS-

Canto flow cytometer (BD Biosciences) equipped with a

15 mW, 488 nm argon ion laser. All samples were grown

in LB-Cm4 liquid medium, re-suspended in PBS and

sonicated as described above to disperse cell-clumps

prior to analysis. GFP emission was detected at 525/

50 nm with an excitation of 488 nm. The RFP signals

were measured in a FACS Aria II with excitation at

592 nm and emission at 620/30 nm. Per sample, 50 000

cells were analysed. Data acquisition and analysis was

performed using the FACSDiva software (BD Biosci-

ences) and the FCSalyzer software (version 0.9.13-

alpha).

Electroporation of B. amyloliquefaciens, B. subtilis and

B. cereus

For B. amyloliquefaciens and B. subtilis, one single col-

ony was inoculated into 50 ml LBSP medium (LB sup-

plemented with 0.5 M sorbitol and 50 mM KH2PO4 and

K2HPO4) and grown to an OD600 of 0.65. Cells were col-

lected by centrifugation at 5000 g, 48C for 10 min. The

supernatant was discarded and the pellet was washed

with cold electroporation buffer (10% glycerol with

0.25 M sorbitol) for four times. Finally, the cells were

suspended in 1 ml electroporation buffer. Aliquots of 100

ll were frozen in liquid nitrogen and stored at 2808C

until the electroporation was performed. For B. cereus,

electro-competent cells were prepared as described

before (Ehling-Schulz et al., 2005). For all Bacillus

strains, the electroporation was performed as described

for B. mycoides.

Strain construction for double-FP-labelling of

B. mycoides

The plasmid PYB was generated by replacing the

pAMß1 replication origin (ori) of PATDS28 (Namy et al.,

1999) with a temperature sensitive ori from the PAW068

plasmid for Gram-positive bacteria (Wilson et al., 2007).

Then a 1 kb-fragment of the A-amylase gene was ampli-

fied from the genome of B. mycoides EC18 with the pri-

mers amyF and amyR. This fragment was further

digested with the KpnI and SacI enzymes and inserted

into the PYB plasmid at the same restriction site to give

rise to the plasmid PYB_amy. The sfgfp(SPS6) gene

together with the Ppta promoter was inserted into PYB_-

amy at the restriction sites EcoRI and HindIII, which

resulted in the plasmid PYB_amyGFP. This plasmid was

then transformed into B. mycoides EC18 and plated on

LB plates with 100 lg/ml spectinomycin. One colony

was picked and grown in BHI liquid medium with100 lg/

ml spectinomycin over night at 308C. The culture was

then diluted 1003 with the same medium and grown at

378C to block the replication of the plasmid. A serial dilu-

tion of the culture was plated on BHI-Spec100 agar and

cultured at 378C overnight. The colonies were checked

by PCR for successful single cross-over recombination.

The EC18 strain carrying the chromosomally integrated

sfGFP(SPS6) reporter was used to make electrocompe-

tent cells and the plasmid pAD-mKate(KPS12) was

transformed into the strain. The double-labelled cells

were selected on LB-Cm4/Spec100 agar grown at 308C.

Presence of the FP reporters was verified by double-

stranded sequencing of the PCR products.

Strain construction for FP expression from

mannose-inducible promoter

A fragment of the promoter PmanP that is positively regu-

lated by mannose (Wenzel et al., 2011) was cloned from

the plasmid pJOE8999 (Altenbuchner, 2016) using the

primers PmanF and PmanR. The plasmid pAD-mKa-

te(KPS12) was cleaved with EcoRI and XbaI, and the

vector backbone was ligated with the PmanP fragment

cleaved by the same enzymes to give rise to pAD-

KPS12-Pman. To construct the mannose controlled GFP

vector, the gfp (SPS6) gene was cut with XbaI and SphI

from pNW-sfGFP(SPS6) and then inserted into pAD-

KPS12-Pman at the same restriction site to give the

new plasmid pAD-SPS6-Pman. The mannose-inducible

FP strain was obtained by transforming the final plasmid
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into the B. mycoides EC18 strain. The overnight culture

of each strain was diluted 50 times with LB-CM4 with

different concentrations of mannose. After around 6

hours of growth, fluorescence signals of the strains were

measured by FC and images were captures with fluores-

cence microscopy.

Fluorescence microscopy

Single cell observation was performed with an Olympus

IX71 microscope (Personal DV, Applied Precision;

assembled by Imsol, Preston, UK) equipped with a

Nomarski DIC and a 100 W mercury vapor lamp for FP

excitation. A 103 eyepiece and a 1003 phase-contrast

objective were used to examine the cells. GFP variants

were detected with excitation at 465–495 nm, 505 nm

dichroic mirror and emission at 515–555 nm. RFP var-

iants were detected with an excitation at 528–553 nm,

565 nm dichroic mirror and emission at 590–650 nm.

Images were captured with a CoolSNAP HQ2 camera

(Princeton Instruments, Trenton, NJ, USA). The intensity

of single cell was calculated with the ImageJ software

(https://imagej.nih.gov/ij/). The region of cells in which

the fluorescence signal was quantified was selected

manually. The total cell fluorescence was calculated by

the following formula: corrected total cell fluorescence

(CTCF) 5 Integrated Density – (Area of selected cell 3

Mean fluorescence of background readings) (Pozniak

et al., 2016). At least 500 cells from three independent

biological replicates were analysed.

Growth curves of FP-labelled B. mycoides strains and

plasmid stability assay

B. mycoides strains transformed with the different FP

variants were tested for their growth pattern and plasmid

stability. The growth curve was determined by plotting

the optical density values (OD600nm) in LB liquid medium

versus time. For the plasmid stability assay, each strain

was grown to stationary phase in LB medium at 258C

(the same as plant culturing temperature) with 200 rpm

aeration and then diluted by 503 in LB. The diluted cul-

ture was continued growing to stationary with the same

conditions. Two more cycles of subsequent dilution were

performed in the next two days. At day 3, the culture

was serially diluted and plated on LB agar plates with or

without chloramphenicol and the CFU/ml was

calculated.

In situ observation of FP labelled strains by confocal

laser scanning microscopy

Chinese cabbage seeds were surface sterilized in 70%

ethanol for 2 min, followed by a bath in 3% sodium

hypochlorite for 2 min. After the sterilization treatment,

seeds were washed four times in sterile deionized water.

The excessive water on the seeds surface was removed

with autoclaved filter paper. The seeds were inoculated

into Petri dishes containing 25% Hoagland solution

(Hoagland and Arnon, 1950) solidified with 1% agar and

incubated for germination and growth in a culture room

at (25 6 28C) with a 12-h photoperiod for six days. The

seedlings were then transferred to 3-L hydroponic trays

containing 25% Hoagland’s solution and continued to

grow for 2 days. Hoagland solution was aerated using

air stones connected to an aquarium air pump. The B.

mycoides strains transformed with the different FP var-

iants were grown to the exponential growth phase, and

then 10 ml culture was collected and re-suspended in

25% Hoagland’s solution. The hydroponic system was

inoculated with a final concentration of 2 3 104 CFU/ml

B. mycoides cells.

After 2–3 days of inoculation, the colonization of B.

mycoides on the roots of the cabbage seedlings was

assessed using a ZEISS LSM 800 CLSM (Carl Zeiss,

Germany) equipped with diode lasers and GaAsP detec-

tor. Images for fluorescent light channels were taken

simultaneously with images of the bright field channel.

To achieve the maximum brightness of each FP and low

background auto-fluorescence of the plant tissue, the

settings of the confocal microscope were adjusted as

follows: For GFP observation, 0.2% power of the

488 nm laser line was used for excitation and 509–

546 nm was set as emission wavelength. For RFP

detection, 1% power of the 561 nm laser line was used

as excitation wavelength and 600–680 nm was set as

emission wavelength. The pinhole size for GFP was 25

mm and for RFP was 30 mm, pixel scanning time was

2.06 ms and line scanning time was 2.47 ms with a line

averaging of 2.
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Additional Supporting Information may be found in the
online version of this article at the publisher’s web-site:

Fig. S1. Workflow for in vivo isolation of optimized GFP
[sfGFP(Sp)] and RFP (mKate2) variants from B. mycoides.
GFP and RFP mutant libraries were constructed by random
mutagenesis and cloned into the E. coli-Bacillus shuttle

plasmids pNW-Ppta-3TER and pAD43-25 respectively. After
transformation of B. mycoides, cells were grown in different
pH conditions and two rounds of fluorescence-activated cell
sorting were performed with a subsequent enrichment of �
3% and � 0.3% of the brightest single cells from the total
population. After plating, colonies displaying the highest
fluorescence signals were selected by use of a fluores-
cence stereo microscope.

Fig. S2. Analysis of metabolic burden of FP expression and

plasmid stability in B. mycoides EC18. (A) OD 600 meas-

urements in LB medium comparing the growth behaviour of

wild-type EC 18 and its derivative strains carrying the

reporter proteins on replicative plasmids. (B) Cultivation of

subsequent culture dilutions and final plating assay to deter-

mine the plasmid presence with and without antibiotic pres-

sure in B. mycoides. For details, see Experimental

Procedures.

Fig. S3. Comparison of the performance of original and

optimized FP variants fused to a weak, mannose-inducible

promoter. (A) Detection of the expression of sfGFP(Sp) and

the optimized sfGFP(SPS6) protein in exponential phase

cells of B. mycoides EC18 by FC (B): Detection of the

expression of mKate2 and optimized mKate(KPS12) in

exponential phase cells of B. mycoides EC18 by FC.

Fig. S4. Three-dimensional structure of sfGFP(Sp) (PDB

ID: 2B3P) and mKate2 (PDB ID: 3BXB) variants. The muta-

tion sites of the improved FP variants are indicated in yel-

low. The chromophore was highlighted in green for sfGFP

(A–C) and red for mKate2 (D–F). A: S618; B: S709; C:

SPS6; D: K603; E: K713; F: KPS12. The structure was

visualized with the Cn3D software.
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