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a b s t r a c t

The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including
insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are acti-
vated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an impor-
tant role in development, maintenance, progression, survival and chemotherapeutic response of ovarian
cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing
growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy
of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical
data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting
the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complex-
ity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF
system and downstream signaling. Further, we discuss the implications of this complexity on current tar-
geted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling
pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine
kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic
potential.

� 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Introduction

Ovarian cancer

Ovarian cancer has the highest mortality rate of all gynecologi-
cal tumors, due to the late onset of symptoms. It represents the
fifth leading cause of cancer-related death in American and Euro-
pean women [1]. Most ovarian carcinomas are of epithelial origin
(90%) and can be classified into four major histological subtypes,
which include serous (70%), endometrioid (10–15%), mucinous
(10%) and clear cell (5%). Although these subtypes represent clini-
cally different entities, all patients receive standard treatment con-
sisting of cytoreductive surgery followed by a combination of
platinum- and taxane-based chemotherapy. Despite high initial
response rates towards chemotherapy, approximately 70% of all
patients succumb to recurrent resistant disease within five years
after diagnosis. Since the introduction of platinum-based
chemotherapy, over three decades ago, survival rates have only

marginally improved. For a subgroup of patients vascular endothe-
lial growth factor (VEGF) inhibitors or poly ADP ribose polymerase
(PARP) inhibitors are added to standard platinum- and taxane-
based treatment regiments [2]. Despite these novel treatment
options, platinum-based chemotherapy in combination with
taxane-based chemotherapy remains the main pillar in systemic
ovarian cancer treatment. Therefore, there is a need for the devel-
opment of novel and patient tailored therapeutic strategies [3–6].

The IGF system

The insulin-like growth factor (IGF) system is a complex system
comprising transmembrane growth factor receptors, growth factor
ligands, high affinity IGF binding proteins (IGFBPs), IGFBP
proteases and low affinity IGF binding protein related proteins
(IGFBP-rP) that regulate both physiological and pathophysiological
processes involved in glucose metabolism and cell proliferation
[7–11]. Briefly, the IGF signaling pathway comprises the trans-
membrane receptors, insulin-like growth factor receptor type I
(IGF-1R), insulin receptor (IR) -A and -B, the orphan receptor insu-
lin related receptor (IRR) and insulin-like growth factor receptor
type II (IGF-2R). Growth factor ligands include IGF-I, IGF-II and
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Fig. 1. IGF signaling pathway and targeting strategies. (A) The classical model of IGF signaling involves IGF ligand-receptor interaction followed by downstream signaling
transduction via the canonical phosphatidylinositol 3-kinase (PI3K)-AKT and RAS-extracellular signal-regulated kinase (ERK) pathways [12,13]. (B) Targeting the IGF signaling
pathway is achieved by multiple strategies including anti-IGF-1R monoclonal antibodies targeting IGF-1R homo- and heterodimers, dual IGF-1R/IR tyrosine kinase inhibitors
and IGF-I and -II ligand capturing antibodies abrogating IGF mediated signaling while maintaining insulin signaling.
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insulin. Ligand binding to IGF-1R and IR (but not IRR and IGF-2R)
transduces downstream signaling via the canonical phosphatidyli-
nositol 3-kinase (PI3K)-AKT and RAS-extracellular signal-regulated
kinase (ERK) pathways [7,12,13] (Fig. 1). In addition, cellular IGF-I
and IGF-II availability is regulated by 6 high affinity IGF-binding
proteins (IGFBP-1-6) and 10 low affinity IGFBP-related proteins
(IGFBP-rP 1-10) [8,14].

Hyper activation of the IGF signaling pathway is implicated in
the development, maintenance, progression, survival and
chemotherapeutic response of many types of cancer, including
ovarian cancer [15–18]. This has led to the development of many
therapeutic strategies inhibiting or preventing activation of the
IGF signaling pathway in cancer cells predominantly via IGF-1R
blocking antibodies and tyrosine kinase inhibitors inhibiting both
tyrosine kinase domains of IGF-1R and IR [19,20]. In many pre-
clinical studies these anti-IGF-1R/IR targeted strategies proved
effective in reducing growth of ovarian cancer models. In addition,
these anti-IGF-1R targeted strategies potentiated the efficacy of
platinum based chemotherapy. However, despite the vast amount
of encouraging and promising pre-clinical data, anti-IGF-1R/IR tar-
geted strategies lacked efficacy in the clinic. The question is
whether targeting the IGF-1R/IR signaling pathway still holds ther-
apeutic potential.

In this review we address the complexity of the IGF-1R/IR sig-
naling pathway, including receptor heterodimerization within
and outside the IGF system and downstream signaling. Further,
we discuss the implications of this complexity on current targeted
strategies and indicate therapeutic opportunities for successful tar-
geting of the IGF-1R/IR signaling pathway in ovarian cancer.

Complexity of the IGF signaling pathway

Here we will discuss the complexity of the IGF signaling path-
way focusing on the various IGF receptors, receptor heterodimer-
ization within the IGF system and the consequences for
downstream signaling.

Receptors

IGF-1R, IR and IRR are structurally and functionally related
receptors existing as homo- and/or heterodimers. Each receptor
dimer is composed of two monomers containing an extracellular
a-subunit and transmembrane b-subunit, which are linked
together by disulfide bonds in a b-a-a-b rearrangement [21]. Both
subunits are synthesized as a single precursor polypeptide and
processed to a functional receptor by proteolytic cleavage of the
a- and the b-subunit in the trans Golgi network before transporta-
tion to the cell surface [22]. High sequence homology between IGF-
1R, IR and IRR allows for the formation of heterodimers comprising
one a-subunit and one b-subunit of the respective receptor [23–
28]. Heterodimer formation occurs by random assembly of the
receptor monomers and reflects the molar ratios of the individual

receptors. Therefore, less abundant receptors are usually expressed
in heterodimer formation [25].

Alternative splicing of exon 11 in IR pre-mRNA, results in the
expression of two IR isoforms, IR-A�Ex11 and IR-B+Ex11 respectively.
IGF-1R does not have an equivalent of IR exon 11 and is therefore
not alternatively spliced [21].

Although IGF-1R, IR (-A and -B) and IRR are functionally and
structurally related receptors, they differ in their ligand binding
affinities (Table 1). From high to low order of binding affinity,
IGF-1R binds IGF-I, IGF-II and insulin whereas IR binds insulin,
IGF-II and IGF-I. The alternatively spliced IR-A has a higher affinity
for both IGF-I and IGF-II compared to IR-B. IGF-II binding affinity of
IR-A resembles that of IGF-1R, making IR-A a high affinity receptor
for IGF-II. Indeed, IR-A transduces IGF-II signals and can compen-
sate for IGF-1R loss [29,30]. Importantly, IR-A is primarily
expressed during embryonic development and in cancerous tis-
sues, whereas IR-B is primarily expressed in insulin responsive tis-
sues e.g. liver, muscle and adipose tissue [31]. These observations
have led to a paradigm in which IR-A is considered to mediate
the mitogenic effects of insulin and IGF-II, whereas IR-B is consid-
ered to primarily mediate the metabolic effects of insulin. The
implications of IGF-1R, IR-A and IR-B expression in cancer cells will
be discussed in more detail in part III.

In contrast to IGF-1R and IR, IRR does not bind IGF-I, IGF-II or
insulin and to date no IRR activating ligand has been identified.
Instead, IRR is proposed to be an external pH sensor as it is acti-
vated at an external cellular pH of 7.9 and higher [32]. Importantly,
IRR does form heterodimer receptors with IGF-1R and IR, possibly
affecting their function.

In contrast to the aforementioned receptors, IGF-2R (or cation-
independent mannose-6-phosphate (M6P)) is a structurally unre-
lated receptor. IGF-2R encompasses a single transmembrane pro-
tein, which lacks intrinsic catalytic activity. IGF-2R has binding
affinities for IGF-II and M6P. IGF-2R acts as an IGF-II scavenger
receptor, providing the IGF system next to IGFBPs an additional
mechanism to regulate cellular IGF-II availability. After binding
of IGF-II to IGF-2R, the complex is internalized and degraded. In
this regard MP6/IGF2R is also considered a tumor suppressor gene.
Interestingly, IGF-2R does bind G-protein coupled receptors
(GPCRs), possibly providing the IGF system an additional mecha-
nism for IGF signal transduction [33].

Receptor heterodimerization within the IGF system

IGF-1R heterodimers
Receptor heterodimerization within the IGF system impacts

ligand binding affinities (Table 1) [26–28]. IGF-1R can form hetero-
dimers with IR-A, IR-B and IRR. Both IGF-1R:IR-A and IGF-1R:IR-B
heterodimers bind IGF-I and IGF-II with a high affinity whereas
they bind insulin with low affinity. Ligand affinities of these het-
erodimers are similar to those of IGF-1R homodimers (Table 1)
[27,28,34]. Heterodimer formation reflects the molar ratios of the
individual receptors. Consequently, in cells with high IGF-1R/IR

Table 1
IC50 (nM) ligand receptor binding affinities.

Receptor type Insulin IGF-II IGF-I Reference

IR-A 0.2 > 0.9 2.2 > 9.8 9.0 > 41.0 [27–29,108]
IR-B 0.5 > 1.6 10.0 < 25.0 30.0 > 390.0 [27–29,108]
IR-A-IR-B 1.0 10.0 >50.0 [28]
IR-A-IGF-1R 70.0 0.7 0.5 [27]
IR-B-IGF-1R 76.0 0.3 0.3 [27]
IGF-1R >30.0 < 1000.0 0.5 < 4.4 0.2 < 0.8 [26,27,109]
IGF-2R – 1.0 > 4.0 – [110]
IRR – – –

92 J.A.L. Liefers-Visser et al. / Cancer Treatment Reviews 60 (2017) 90–99



ratios, IR is primarily expressed as IGF-1R:IR heterodimer, gener-
ally favoring IGF-mediated signaling at the expense of insulin-
mediated signaling [23].

IR heterodimers
In addition to heterodimerizing with IGF-1R, IR-A and IR-B can

be expressed as homo- and heterodimers. Both IR-A and IR-B
homo- and heterodimers are characterized by high insulin binding
affinities whereas IGF-I binding affinity is low compared to IGF-1R
homo- and heterodimers. In contrast to insulin and IGF-I, IGF-II
binding affinities differ between IR-A and IR-B homo- and hetero-
dimers. IR-A homodimers and IR-A:IR-B heterodimers are rela-
tively high IGF-II affinity receptors compared to IR-B
homodimers (Table 1) [28]. These data suggest that cells express-
ing high IR-A/IR-B ratios maintain high sensitivity to insulin but
are more sensitive to IGF-II compared to IGF-I [28].

IRR heterodimers
As aforementioned, IRR can form heterodimers with IGF-1R and

IR [24,23]. From literature it is known that insulin needs two bind-
ing sites for high-affinity receptor binding. In contrast, IGF-II
requires only one high-affinity binding site [35]. Since IRR does
not bind insulin, IGF-I or IGF-II, it is tempting to speculate that
IRR heterodimers (IGF-1R:IRR, IR:IRR) are low-affinity insulin bind-
ing heterodimers, whereas IGF binding affinity remains unaffected
[24].

Downstream signaling

The classical model for downstream signaling upon IGF ligand-
receptor interaction involves the transduction of downstream sig-
naling via the canonical PI3K-AKT and ERK pathways in a ligand
dependent ON/OFF mechanism [12,13]. The PI3K-AKT and ERK
pathways have been extensively reviewed elsewhere [12]. It is
now becoming more clear that the classical model of IGF-1R/IR
activation and downstream signaling is highly simplified, as it
implies that IGF-1R/IR receptor activation initiates a uniform sig-
naling response via the PI3K-AKT and ERK pathways, independent
of the receptor composition and the ligand involved. However, dis-
tinct downstream responses are identified in various cell line mod-
els [36–39].

How this is regulated is not fully understood but multiple fac-
tors affect downstream signaling responses, including: (1) ligand-
receptor binding affinity, (2) differential binding of downstream
protein substrates to the receptor depending on the ligand-
receptor combination involved [40], (3) differential receptor inter-
nalization and recycling kinetics depending on the ligand-receptor
combination involved [41–43], (4) receptor localization in different
membrane domains [44].

IGF signaling pathway in ovarian cancer

IGF-1R, IR-A, IR-B, IRR, IGF-I and IGF-II, as well as their regulat-
ing IGFBPs, are expressed in ovarian cancer cell lines and ovarian
cancer tissues [15,45–48]. Here we will discuss the role of the
IGF system and signaling pathway in ovarian cancer in more detail.

IGF receptors

IGF-1R is the predominant expressed receptor in ovarian cancer
cells. Therefore IR is expected to be mainly present in IGF-1R:IR
heterodimer formation, favoring IGF-mediated signaling over
insulin-mediated signaling in these cells. In addition to IGF-1R
overexpression, IR-A is preferentially and highly expressed in ovar-
ian cancer cells. As a result of enhanced IR-A expression IR-A/IR-B

ratio has changed, which favors IR-A homo- and IR-A:IR-B hetero-
dimer formation [46]. This will augment IGF-II signaling without
affecting insulin signaling [28]. High IGF-1R expression has been
implicated in the chemotherapeutic response of ovarian cancer,
as IGF-1R gene expression correlates with cisplatin resistance
[49,50].

IRR is expressed in multiple human tissues including the ovary
[48,51]. IRR expression was shown to increase from normal ovarian
surface epithelium to malignant ovarian surface epithelium, sug-
gesting a role for IRR in ovarian cancer development [48]. Since
IRR is expressed in cancer cells and can form heterodimers with
both IGF-1R and IR, IRR may have an effect on insulin leaving IGF
signaling unaffected.

In contrast to IGF-1R, IGF-2R gene expression is frequently
decreased in ovarian cancer, which is consistent with its possible
role as a tumor suppressor [47].

IGF ligands

IGF-I and IGF-II have been implicated in the development,
maintenance and chemotherapeutic response of ovarian cancer
[52–55]. Both IGF-I and IGF-II expression levels are significantly
increased in ovarian cancerous tissues compared to their benign
counterparts [54,56]. In addition, ovarian cancer cells excrete
IGF-I and IGF-II indicating the presence of autocrine and/or para-
crine signaling [16,57]. Further, high IGF-I gene expression in ovar-
ian cancer tumors has been implicated in intrinsic resistance to
platinum-based chemotherapy [52,58]. In ovarian cancer cell lines,
IGF-I treatment induced cisplatin resistance via IGF-1R/PI3K path-
way activation. IGF-1R/PI3K inhibition re-sensitized these cells to
cisplatin [49]. In addition, IGF-II mRNA was upregulated in pacli-
taxel resistant ovarian cancer cell lines compared to sensitive cell
lines. IGF-II knockdown rendered these cell lines sensitive to pacli-
taxel indicating a role for IGF-II in mediating paclitaxel resistance
[55].

IGFBPS

To increase IGF stability and half-life in the circulation, 98% of
all IGFs are bound in binary complexes with one of the six IGFBPs
or in ternary complexes with either IGFBP-3 (�75%) or IGFBP-5 and
the 85 kDa glycoprotein acid-labile subunit (ALS). IGFBPs are pri-
marily produced in the liver and regulate IGF-I and IGF-II tissue
distribution and cellular bioavailability. IGFBP binding to extracel-
lular proteases results in the degradation of IGFBPs consequently
releasing IGF-I and IGF-II for cellular IGF-1R/IR activation. Many
human cancers, including ovarian, cancer express IGFBPs. Possibly,
this allows the formation of a locally available pool of IGF-I and
IGF-II for IGF-1R/IR activation. Importantly, IGFBPs can both facili-
tate or attenuate IGF-1R/IR receptor signaling. Enhanced expres-
sion of both tumorigenic (IGFBP-2, IGFBP-4 and IGFBP-5 [59,60])

Table 2
IGF signaling pathway targeted strategies.

Targeting strategy Compound

Anti-IGF-1R monoclonal antibodies AMG-479 (Ganitumab)
IMC-A12 (Cixutumumab)
CP-751,871 (Figitumab)

Small molecule inhibitors (TKIs) MK-0646 (Dalotuzumab)
OSI-906 (linsitinib)
BMS-754807

IGF-I/II neutralizing monoclonal antibodies AXL1717 (Picropodophyllin)
MEDI-573
BI 836845

Bi-specific IGF-1R/HER3 antibody MM-141 (Istiratumab)
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and tumor suppressor (IGFBP-3, IGFBP-5 [61–63]) associated
IGFBPs has been observed in ovarian cancer.

Targeting the IGF signaling pathway in ovarian cancer

Pre-clinical data

Targeting IGF-1R using antisense strategies, monoclonal anti-
bodies (mAbs) directed at the alpha domain of IGF-1R or small
molecules inhibiting the kinase domain of IGF-1R have proven to
be effective inhibitors of ovarian cancer cell proliferation in ovarian
cancer models (Table 2). Moreover, IGF-1R inhibition potentiated
the efficacy of platinum- and taxane-based chemotherapy in these
models both in vitro and in vivo [16,50,53,57,64–67].

IGF-1R knockdown using antisense strategies inhibited IGF-I
induced cell proliferation in OVCAR-3 and CaOV-3 ovarian cancer
cell lines [16]. In primary ovarian cancer cell lines antisense IGF-
1R strategies inhibited cell proliferation and sensitized these cells
to cisplatin [67]. IGF-1R inhibition by siRNA interference reduced
tumor growth and angiogenesis, and enhanced apoptosis in an
OVCAR-3 ovarian cancer xenograft model [66].

IGF-1R monoclonal antibody AMG-479 (Ganitumab) potently
inhibited IGF-I, IGF-II and insulin signaling via IGF-1R homo- and
IGF-1R/IR heterodimers in multiple ovarian cancer cell lines
in vitro and in vivo. Furthermore, AMG-479 showed synergistic
and additive drug interactions with carboplatin or paclitaxel in
vitro and increased the efficacy of cisplatin in multiple ovarian can-
cer xenograft models in vivo [50]. IGF-1R monoclonal antibody
19D12 inhibited IGF signaling via IGF-1R homo- and IGF-1R/IR het-
erodimers and inhibited tumor growth in an A2780 ovarian cancer
xenograft model [65].

Due to high homology between tyrosine kinase domains of IGF-
1R and IR, IGF-1R tyrosine kinase inhibitors (TKIs) inhibit both IGF-
1R and IR and thus function as dual IGF-1R/IR inhibitors. IGF-1R/IR
inhibition using TKI NVP-AEW451 in IGF-I and IGF-II producing
OVCAR-3 and OVCAR-4 cells inhibited cell growth, induced apop-
tosis and sensitized these cells to cisplatin [57]. Similarly, IGF-
1R/IR TKI BMS-754807 inhibited growth of multiple ovarian cancer
cell lines in vitro [68]. In agreement with the finding that IGF-I
mRNA was over-expressed in low-grade compared to high-grade
serous ovarian cancer tumors, low grade serous ovarian cancer cell
lines (HOC-7 and MPSC1) were sensitive to IGF-1R/IR inhibition by
the RTK inhibitor OSI-906 (Linsitinib) compared to high grade ser-
ous ovarian cancer cell lines (SKOV-3, OVCA420, HeyA8, and 2774)
[53].

Clinical data

Multiple clinical studies with IGF-1R mAbs and RTK inhibitors
have been performed in ovarian cancer patients (Table 3). Whereas

pre-clinical studies using mAbs and RTK inhibitors were promising,
most clinical trials using mAbs targeting IGF-1R as a single treat-
ment strategy have shown little clinical benefit. A phase 2 study,
using anti-IGF-1R mAb ganitumab (AMG-479) as a second line
therapy in patients with recurrent platinum-sensitive ovarian can-
cer, reported to have modest single agent benefit (NCT00719212)
[69]. Sixty-one EOC patients were included in this study. Patient
characteristics included serous (68.8%), endometrioid (8.3%), clear
cell (6.5%), mucinous (3.3%), mixed (3.3%) and other (9.8%). Gani-
tumab was well tolerated and did not show any unexpected safety
concerns. According to RECIST criteria median progression free sur-
vival (PFS) was 2.1 months (95%CI, 2.0–2.8). 2 partial responses
(3.4%) and 22 stable diseases (38%) were observed.

Combining anti-IGF-1R mAbs with first line chemotherapy or
PI3K-AKT pathway inhibitors has not shown clinical benefit either.
A phase 2 study adding ganitumab to first line chemotherapy in
170 patients with optimally debulked EOC has been terminated
prematurely (NCT00718523). Patient characteristics included ser-
ous (83%), endometrioid (5%), clear cell (2%), mucinous (0.5%),
mixed (4.5%) and other (5%). No difference in PFS between control
(placebo) and ganitumab arms was observed (NCT00718523). A
Phase I/II study evaluating the combination of ganitumab and
PI3K inhibitor BYL719 has been completed. To our knowledge no
data has been published so far (NCT01708161). A parallel-arm
phase I study, using dalotuzumab (MK-0646) a humanized anti-
IGF-1R monoclonal antibody, in combination with the AKT inhibi-
tor MK-2206 or the mTOR inhibitor ridaforolimus did not show any
objective response according to RECIST criteria. In this study only
12 EOC patients were included. Due to the limited number of
patients no preliminary conclusion on efficacy could be established
[70]. Antibodies targeting IR in cancer have, to our knowledge, not
been developed due to the expected high toxicity.

Largely selective IGF-1R or IR TKIs are not available. One phase
I/II study with the dual IGF-1R/IR RTK inhibitor linsitinib (OSI-906)
evaluating intermittent and continuous OSI-906 dosing and
weekly paclitaxel in patients with recurrent EOC (and other solid
tumors), has been completed (NCT00889382) [71]. A total of 58
patients were included in this study. Limited data has been pub-
lished so far. The combination linsitinib and paclitaxel did not
show any unexpected safety concerns. Partial responses were
observed in 6 patients (10%) including 3 EOC patients and stable
disease in 25 patients (43%) including 10 EOC patients.

Implications of IGF signaling pathway complexity

In retrospect, the complexity of the IGF signaling pathway may
have contributed to the failure of IGF targeting strategies in the
clinic. Here we will discuss novel insights regarding this complex-
ity and discuss opportunities for successful IGF signaling targeting
in the future.

Table 3
Trials with IGF targeted drugs focusing on ovarian cancer.

Compound Phase Trial

AMG 479 (Ganitumab) Study of the combination of BYL719 (PI3K inhibition) plus AMG 479 in adult patients with PIK3CA mutated or
amplified ovarian carcinoma

Phase
Ib/II

NCT01708161
Completed

Study of adding AMG 479 to first line chemotherapy in patients with optimally debulked epithelial ovarian
cancer

Phase
II

NCT00718523
Terminated

Study of AMG 479 as second line therapy in patients with recurrent platinum-sensitive ovarian cancer Phase
II

NCT00719212
Completed

OSI-906 (Linsitinib) Study evaluating intermittent and continuous OSI-906 and weekly paclitaxel in patients with recurrent
epithelial ovarian cancer

Phase
I/II

NCT00889382
Completed

MK-0646
(Dalotuzumab)

A Study of Dalotuzumab + MK-2206, Dalotuzumab + MK-0752, and Dalotuzumab + MK-8669 Combination
Therapies in Participants With Advanced Cancer (MK-0646-027)

Phase
I

NCT01243762
Terminated
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Heterodimer formation and RTK compensatory signaling

In the clinic, single IGF-1R targeting strategies using anti-IGF-1R
mAbs have proven to be insufficient. This may be due to compen-
satory signaling by other RTKs. IR(-A) can compensate for IGF-1R
signaling inhibition, thereby inducing resistance to anti-IGF-1R
targeted therapies [30]. In addition to the aforementioned IGF-1R
heterodimers, IGF-1R has been shown to form direct/heterodimer
interactions with RTKs outside the IGF system. Direct interactions
with the HER (erbB) family of receptors have been described, more
specifically with EGFR (erbB1), HER2 (erbB2) and HER3 (erbB3)
(Fig. 2) [72–77]. Moreover, IGF-1R heterotrimerization with HER2
and HER3 has been demonstrated [78]. IGF-1R heterodimer forma-
tion with RTKs outside the IGF systemmay have contributed to the
lack of efficacy in the clinic. In addition to these direct RTK interac-
tions, indirect interactions between the IGF-1R, HER and c-Met sig-
naling pathways have been reported [79]. Downstream signaling of
all these RTKs converge via the canonical PI3K-AKT and ERK signal-
ing pathways. Therefore, all these RTKs may compensate for loss of
downstream signaling upon IGF-1R inhibition. Although dual tar-
geting strategies using IGF-1R/IR RTK inhibitors overcome IGF-1R
signaling compensation by IR, it can be equally compensated by
other RTKs e.g. EGFR, HER2, HER3 and c-Met. IR is a less promiscu-
ous receptor and primarily interacts with receptors within the IGF
system. However, direct/heterodimer interactions with c-Met,
have been described in hepatocytes [80]. In addition, indirect inter-
actions between IR and EGFR signaling pathways have been
described in hepatocellular and colon cancer cells [81,82]. For
example, IR-A signaling conferred resistance to EGFR RTK inhibitor
gefitinib in colon cancer cells [81]. These direct and indirect IGF-
1R and IR interactions have not been demonstrated in ovarian can-
cer cells or tissues, so far. However, since ovarian cancers fre-

quently overexpress EGFR, HER2, HER3 and c-Met, it may well be
that these interactions play a role in ovarian cancer as well.

Importantly, RTK compensatory signaling is observed to be bidi-
rectional, meaning that not only HER family members can confer
resistance to IGF-1R targeted therapies, but IGF-1R can confer
resistance to HER family targeted therapies as well. Though this
is primarily observed in breast and lung cancer cells
[78,83,74,84], similar observations have been made for ovarian
cancer cells [84,85]. For example, HER2 was highly activated in
ovarian cancer cell lines in response to the dual IGF-1R/IR TKI
BMS-536924 [84]. Dual HER family and IGF-1R/IR inhibition by
BMS-599626 and BMS-536924, respectively, indeed induced syn-
ergistic growth inhibition [84]. Conversely, IGF-1R and HER3 were
significantly upregulated in trastuzumab resistant SKOV-3 ovarian
cancer cells [85].

Underestimation of the downstream complexity

Recently, it has been demonstrated that IR, IGF-1R and IGF-2R
also engage in G-protein coupled receptor (GPCR) signaling
[12,13]. Both IR and IGF-1R have been shown to bind G-proteins
and b-arrestin-1. In addition, IGF-2R binds GPCRs, possibly provid-
ing IGF-2R a method for signal transduction. For IGF-1R, however,
all components of a functional GPCR have been attributed. Conse-
quently, IGF-1R is now proposed to function as an RTK/GPCR
hybrid (reviewed in:[13]). It is important to note that IR and IGF-
1R utilize different G-proteins possibly providing a mechanism
for the observed signaling specificity as different G-proteins regu-
late different downstream effectors [86].

In addition to its role as a RTK/GPCR hybrid, the paradigm of
biased signaling has been added to IGF-1R signaling. The paradigm
of biased signaling originates from the GPCR signaling field. Central
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Fig. 2. IGF signaling pathway inhibition and signaling rewiring routes. (A) Anti-IGF-1R monoclonal antibodies inhibit IGF-1R signaling and induce IGF-1R receptor
internalization and down-regulation effectively inhibiting IGF-1R function. IGF-1R antibodies in addition to blocking IGF-1R receptor function can function as biased agonist
and unintentionally induce receptor internalization activating IGF-1R/b-arrestin-1 mediated ERK signaling. Further IR can compensate for loss of IGF-1R signaling by
mediating IGF-II (and IGF-I) signaling via IR-A thus sustaining proliferative signals via the PI3K and ERK signaling pathways. (B) Dual IGF-1R/IR targeting by tyrosine kinase
inhibitors prevents compensatory IR signaling. However, upon IGF-1R and IR signaling loss multiple other RTKs (including members of the HER family) can compensate as
downstream signaling of all these receptors converge via the canonical phosphatidylinositol 3-kinase (PI3K)-AKT and RAS-extracellular signal-regulated kinase (ERK)
pathways. Further, IGF-1R can form heterodimers with EGFR, HER2 and HER3 providing another method of resistance to IGF-1R inhibition. Therefore, multiple targeted
therapies are warranted.
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to this paradigm is that either the ligand or the receptor is biased
towards a specific signaling pathway [13]. For example, besides
blocking IGF-1R, IGF-1R mAbs can induce receptor internalization,
which unintentionally activates IGF-1R/b-arrestin-1 mediated ERK
signaling thus functioning as an IGF-1R/b-arrestin-1 biased agonist
(Fig. 2). Furthermore, the newly recognized IGF-1R agonist bacte-
rial peptide LL-37 selectively activates the ERK pathway without
affecting the PI3K-AKT pathway, suggesting biased signaling as
well. The classical model for RTK signaling is based on ligand-
receptor interaction followed by tyrosine kinase activation and lin-
ear signal transduction via the PI3K and ERK pathways but does
not take into account signaling independent of tyrosine kinase
activity. This might be an important factor contributing to the fail-
ure of these antibodies in the clinic.

Opportunities for future IGF targeted strategies in (ovarian)
cancer

Targeting IR-A

The role of IGF-1R in cancer development, progression and
chemotherapeutic response is evident. Meanwhile, IR has been lar-
gely ignored as a possible secondary target for years. This is partly
due to the fact that IR was considered non-targetable because of its
major role in glucose homeostasis and the subsequent expectation
of high toxicity. However, clinical trials using dual IGF-1R/IR RTK
inhibitors have shown manageable side effects, making dual IGF-
1R/IR inhibition feasible. Common side effects included fatigue,
nausea and hyperglycemia. Hyperglycemia was reported in only
2% of all patients in a phase 3 study investigating the effects of dual
IGF-1R/IR RTK inhibitor Linsitinib (OSI-906) [87].

It has been demonstrated that the IR-A isoform, predomi-
nantly expressed in cancer cells, mediates the growth promoting
effects of IGF-II in addition to the metabolic effects of insulin
[29,88,89]. The mechanisms involved in preferential IR-A expres-
sion in cancer cells are largely unknown. In contrast, IR-B
expression is frequently reduced in cancer cells [90]. In ovarian
cancer cells, preferential IR-A expression either or not accompa-
nied by elevated IGF-1R levels is expected to have a high impact
on the formation of receptor heterodimers. In Ewing’s sarcoma,
IR-A specifically induced resistance to anti-IGF-1R therapy in
tumors with a low IGF-1R:IR ratio [91]. Thus, targeting IR-A in
addition to IGF-1R would be a preferred strategy. However,
specific targeting of either one of the IR isoforms has not been
achieved so far.

Multiple splicing factors are involved in IR exon 11 splicing and
could be potential targets. These include SRSF1, SRSF3 which are
known to promote exon 11 inclusion and CELF1 (CUG-BP-1),
hnRNPF and nhRNPA1 which inhibit exon 11 inclusion [92]. In
addition, upregulation of hnRNPH, hnRNPA2B1, and SF2/ASF splic-
ing factors resulted in enhanced IR-A formation [82].

IR-A and IR-B are similarly maturated in the trans-Golgi net-
work by the proprotein convertase furin [22]. However, a recent
study demonstrated that IR-B proteolytic cleavage is not solely
dependent on furin. When furin-dependent maturation was
blocked, both IR-A and IR-B pro-receptors moved to the cell
surface but only IR-B was further proteolytic maturated by
another proprotein convertase PACE4. These data suggest that
furin inhibition may be a method to reduce IR-A maturation
and its mitogenic signaling without affecting the metabolic sig-
naling of IR-B.

In summary, IR specific or IR isoform specific targeting is not
feasible yet. Targeting IR splicing factors or the proprotein conver-
tase furin might be an indirect way of reducing IR-A expression
without effecting IR-B. These results warrant further investigation.

Targeting IGF-I and IGF-II

In addition to their proposed function as an RTK/GPCR hybrid it
was stated that IGF-1R and IR are dependence receptors [93].
Meaning that these receptors transduce positive signals in the
presence of ligands leading to cell survival, whereas in the absence
of ligands receptor-mediated negative signals initiate programmed
cell death [93]. These insights advocate the use of IGF-capturing
antibodies. Currently two IGF ligand-capturing antibodies are eval-
uated in phase I clinical trials, MEDI-573 and BI 836845 respec-
tively [94,95]. Phase I dose-escalation and safety studies show
MEDI-573 to be well tolerated (NCT01340040) [96]. For BI
836845a phase I trial has been completed but no results have been
published so far (NCT01403974). Although IGF-I and IGF-II ligand-
capturing antibodies were initially developed to specifically inhibit
mitogenic IGF-1R signaling, an additional advantage would be the
abrogation of mitogenic IGF-II signaling via IR-A.

Multi-targeted approaches aimed at preventing RTK system rewiring

Both IGF-1R and IR-A are important targets in ovarian cancer.
Though, dual IGF-1R/IR RTK inhibitors tackle the problem of IGF-
1R compensatory signaling by IR-A, dual IGF-1R/IR inhibition is
equally compensated by multiple other RTKs. Therefore, multi-
targeted approaches, either aimed at preventing this RTK system
rewiring or aimed at targeting multiple RTKs in combination with
downstream pathway inhibitors, such as PI3K, AKT and ERK inhibi-
tors, may be more effective. Dual IGF-1R/IR and HER receptor fam-
ily inhibition can be a strategy to overcome potential
compensatory signaling in response to RTK inhibition of either
receptor. This was illustrated by effective dual HER family and
IGF-1R inhibition by RTK inhibitors and a bi-specific antibody
against IGF-1R and HER3 in ovarian cancer cell lines [84,97].

Recent data now advocate the combinatorial use of RTK, PI3K or
ERK inhibitors with BET bromodomain inhibitors. These BET bro-
modomain inhibitors suppress RTK system rewiring by preventing
the up-regulation of several compensatory RTKs, including HER
family receptors, IGF-1R, IR as well as c-Met [98–100]. In OVCAR-
3 ovarian cancer cells PI3K inhibition resulted in compensatory
up-regulation of IR and HER3. Combined PI3K and BET bromod-
omain inhibition reduced cell proliferation in these cells more effi-
ciently than either treatment alone [98]. Ovarian cancer patient
derived xenograft (PDX) models characterized by high MYCN or
c-MYC expression levels exhibited sensitivity towards BET bro-
modomain inhibition by JQ1 [101]. Recently, it was shown in ovar-
ian cancer cell lines that BET bromodomain inhibitors may have
limited success as single treatment as adaptive kinome reprogram-
ming occurs in response to single BET bromodomain inhibition as
well [100]. Therefore, BET bromodomain inhibition also requires
combination therapies targeting both kinases and BET bromod-
omain proteins. Indeed, ovarian cancer cells chronically exposed
to BET bromodomain inhibition by JQ1 became sensitive to combi-
nation therapies targeting RTKs, PI3K or ERK signaling [100].

Other multi-targeted approaches

Finally, combination strategies targeting other signaling path-
ways, e.g. the angiogenesis pathway and intrinsic (mitochondrial)
apoptotic pathway as well as combinations with immunotherapy
should be investigated.

During the last two decades, anti-angiogenic therapy has pro-
ven to be an effective strategy in ovarian cancer. Bevacizumab, a
vascular endothelial growth factor (VEGF) inhibitor, has been
added to standard platinum- and taxane-based chemotherapy reg-
imens for a select subgroup of patients [2]. Moreover, IGF-1R sig-
naling pathway has been implicated in bevacizumab resistance.
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Dual VEGF and IGF-1R inhibition by bevacizumab and cixutu-
mumab enhanced tumor growth inhibition in ovarian cancer cells
and was more effective than either treatment alone [102]. These
results suggest combining VEGF inhibitors with IGF-1R/IR inhibi-
tors is a possible treatment strategy worth to investigate.

In addition to VEGF inhibition, combination strategies with
inhibitors of the intrinsic apoptotic pathway should be further
investigated. IGF-1R and IR signaling protects cells from apoptosis
via the intrinsic (mitochondrial) apoptotic pathway by PI3K-AKT
and ERK pathway activation [103]. Signaling via these two path-
ways inhibits pro-apoptotic Bcl-2 family member BAD by main-
taining its phosphorylation status [103]. Phosphorylation of BAD
prevents its heterodimerization with the anti-apoptotic Bcl-2 fam-
ily members Bcl-xL and Bcl-2. This enables Bcl-xL and Bcl-2 to exert
their anti-apoptotic function by maintaining the mitochondrial
integrity [104]. In addition, signaling via PI3K-AKT or ERK pro-
motes transcription of anti-apoptotic Bcl-2 family member Mcl-1
whereas it inhibits transcription of pro-apoptotic Bcl-2 family
members including Bim [105]. Anti-apoptotic Bcl-2 family mem-
bers Bcl-xL and Mcl-1 and pro-apoptotic Bcl-2 family member
Bim are considered important targets in ovarian cancer [105].
Recently, it was shown that combined PI3K-AKT and ERK pathway
inhibition sensitized ovarian cancer cells to Bcl-xL inhibition [105].
These results indicate that a combination of PI3K-AKT and ERK
pathway inhibition, for instance by targeting IGF-1R/IR, with inhi-
bitors of the intrinsic apoptotic pathway may be a valid novel ther-
apeutic strategy for ovarian cancer.

Currently, immune checkpoint inhibitors are under intense
investigation in the clinic for many types of cancer, including ovar-
ian cancer, and results are promising [106]. It has become clear
that in addition to the intended effect on downstream signaling
pathways, many targeted treatment strategies also directly modu-
late immune responses. For example, PI3K-AKT pathway inhibitors
have been shown to sensitize cells to immunotherapy[107]. There-
fore, combining IGF-1R/IR inhibitors with immunotherapy may be
worth investigating.

Conclusions and perspectives

Ovarian cancer remains the most lethal gynecological cancer,
therefore novel targeted strategies are warranted. The IGF-1R/IR
signaling pathway plays an important role in development, main-
tenance, progression, survival and chemotherapeutic response of
ovarian cancer and there is ample pre-clinical evidence demon-
strating the therapeutic relevance of IGF-1R/IR targeted strategies
in ovarian cancer. Therefore, IGF-1R/IR targeting strategies entered
the clinic with high expectations. However, in the clinic these high
expectations were tempered by lack of efficacy. The question now
remains whether targeting the IGF-1R/IR signaling pathway still
has any therapeutic potential.

In retrospect, single IGF-1R targeting strategies were not suffi-
cient as IGF-1R signaling loss is compensated by IR(-A) as well as
multiple other RTKs e.g. EGFR, HER2, HER3 and c-Met. Dual IGF-
1R/IR RTK inhibitors tackle the problem of compensation by IR
but are equally compensated by other RTKs e.g. HER2 and lack clin-
ical efficacy as well. These RTK compensatory mechanisms are
bidirectional, therefore multi-targeted approaches, either aimed
at preventing this RTK system rewiring e.g. BET bromodomain
inhibitors or multi-targeted approaches aimed at targeting multi-
ple RTKs in combination with downstream pathway inhibitors of
PI3K, AKT and ERK pathways may have more therapeutic potential.

In the clinic dual IGF-1R/IR inhibitors are well tolerated demon-
strating IR targeting is feasible. IR is highly expressed in ovarian
cancer tissues with IR-A being the predominant isoform. The
mechanisms involved in this preferential IR-A expression in cancer

cells are largely unknown and warrant further investigation. Fur-
ther, the importance of IR-B in cancer development and progres-
sion cannot be excluded. As single IGF-1R and dual IGF-1R/IR
targeting strategies failed in the clinic, single IR targeting may be
worth investigating. As such the development of specific IR target-
ing strategies deserves further exploration.

Recently, even more complexity was added to the IGF-1R sig-
naling pathway. IGF-1R and possibly IR are proposed to function
as RTK/GPCR hybrid receptors. In line with this, both IGF-1R and
IR are now considered to be dependence receptors. These observa-
tions advocate the use of IGF-capturing antibodies in the clinic.

Finally, targeting a single node within the PI3K and ERK signal-
ing pathway is limited by compensatory mechanisms within and
between these pathways. Therefore, combination strategies with
immunotherapy or inhibitors of other signaling pathways, e.g.
angiogenesis, intrinsic apoptosis and GPCR signaling, should be
investigated. For successful targeting of the IGF-1R/IR signaling
pathway in the clinic, multiple-targeted approaches should be
explored in pre-selected patient cohorts, which warrant further
research to identify biomarkers of treatment efficacy.

Search strategy

Literature was searched (until August 2017), with the following
search criteria in PubMed: [insulin-like growth factor receptor or
IGF-1R] combined with [insulin-like growth factor or IGF- system],
[insulin receptor or IR], [insulin receptor isoforms or IR isoforms],
[IR-A], [IR-B], [cancer], [IGF-I], [IGF-II], [insulin], [binding affinity]
[ovarian cancer], [receptor heterodimerization], [downstream sig-
naling], [targeting], [receptor hybrids], [receptor crosstalk] and
variations thereof. Only studies published in the English language
were included. Clinicaltrials.gov was used to evaluate completed
and ongoing clinical trials with IGF-1R and IR targeted agents in
ovarian cancer patients.
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