
 

 

 University of Groningen

Search for Baryon-Number Violating Xi(0)(b) Oscillations
Dufour, L.; Mulder, M; Onderwater, Cornelis; Pellegrino, Antonio; Tolk, S.; van Veghel, M. ;
LHCb collaboration
Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.119.181807

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
LHCb collaboration (2017). Search for Baryon-Number Violating Xi(0)(b) Oscillations. Physical Review
Letters, 119(18), [181807]. DOI: 10.1103/PhysRevLett.119.181807

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

http://dx.doi.org/10.1103/PhysRevLett.119.181807
https://www.rug.nl/research/portal/en/publications/search-for-baryonnumber-violating-xi0b-oscillations(9bf0c74c-6151-4252-ab38-3ad89c767292).html


Search for Baryon-Number Violating Ξ0
b Oscillations

R. Aaij et al.*
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(Received 22 August 2017; published 3 November 2017)

A search for baryon-number violating Ξ0
b oscillations is performed with a sample of pp collision data

recorded by the LHCb experiment, corresponding to an integrated luminosity of 3 fb−1. The baryon
number at the moment of production is identified by requiring that the Ξ0

b come from the decay of a
resonance Ξ�−

b → Ξ0
bπ

− or Ξ0−
b → Ξ0

bπ
−, and the baryon number at the moment of decay is identified from

the final state using the decays Ξ0
b → Ξþ

c π
−;Ξþ

c → pK−πþ. No evidence of baryon-number violation is
found, and an upper limit at the 95% confidence level is set on the oscillation rate of ω < 0.08 ps−1, where
ω is the associated angular frequency.

DOI: 10.1103/PhysRevLett.119.181807

Three conditions are necessary for the formation of a
matter-dominated universe: C and CP violation, baryon-
number violation (BNV), and the absence of thermal
equilibrium [1]. The existence of C and CP violation
has been established experimentally for decades [2–4],
although the amount ofCP violation present in the standard
model (SM) is known to be insufficient to generate the
matter-antimatter asymmetry observed in the Universe
today [5,6], prompting numerous searches for sources of
CP violation beyond the SM. By contrast, despite baryon-
number conservation being an accidental low-temperature
symmetry of the SM, BNV has never been observed
experimentally, and stringent lower limits have been placed
on the mean lifetimes of protons and of bound neutrons [7].
These limits impose constraints on generic models of
physics beyond the SM. In particular, in supersymmetric
extensions of the SM, a mechanism such as R-parity
conservation is required to naturally suppress baryon-
number violation [8–11]. An alternative is that the new
physics has nongeneric flavor interactions, such that only
certain BNV processes are allowed, and the experimental
constraints are respected. One possibility would be for new
BNV couplings to be entirely flavor diagonal [12,13], such
as a six-fermion operator that couples two fermions from
each generation. This would couple two from each of
fu; d; e; νeg, fc; s; μ; νμg, and ft; b; τ; ντg, with duplication
allowed within a generation, e.g., a usbusb vertex would be
permitted. Such an operator could arise in models with
leptoquarks or R-parity-violating supersymmetric exten-
sions of the SM [13,14]. The six-fermion operator could

allow BNV while being consistent with the experimental
limit on the proton lifetime, since the proton initial state
contains only first-generation fermions and, therefore, its
coupling to the operator would require two flavor-changing
neutral processes and would be heavily suppressed [13].
Most experimental processes involving such an operator

are difficult to observe, since they include multiple third-
generation fermions. For example, the signatures proposed
in Ref. [13] require performing asymmetry measurements
of same-sign dilepton pairs produced in association with a
top-quark jet. However, there is a process that could give
rise to a clean, unambiguous experimental signature:
baryon-antibaryon oscillations of hadrons that contain a
valence quark from each generation. The only such baryon
observed to date that decays weakly is the Ξ0

b (bsu). The
interest of searching for Ξ0

b oscillations was noted in
Refs. [15,16], with an oscillation period potentially as
short as Oð0.1 psÞ suggested. More recently, heavy baryon
oscillations have been proposed as a possible mechanism
for baryogenesis [14,17].
The signature for a BNV process is that a Ξ0

b baryon is
produced and decays weakly as an antibaryon to a final state
such as Ξ̄−

c π
þ (or, vice versa, that an antibaryon is produced

and decays as a baryon). The strong decays (the inclusion of
charge-conjugate processes is implied throughout) Ξ0−

b →
Ξ0
bπ

− and Ξ�−
b → Ξ0

bπ
− (denoted Ξ0;�−

b → Ξ0
bπ

−), where Ξ0−
b

and Ξ�−
b are the narrow resonances Ξ0

bð5935Þ− and
Ξ�
bð5955Þ− recently observed by the LHCb Collaboration

[18], allow the baryon number at the time of production to be
determined from the charge of the pion. Figure 1 shows
quark-level diagrams of example non-BNV [Fig. 1(a)] and
BNV processes [Fig. 1(b)].
For baryon states propagating in free space, the formal-

ism for oscillations is similar to that of neutral mesons
[7,19,20], which has been studied extensively in the context
of K0, D0, B0, and B0

s mixing [21]. However, a difference
arises in the presence of a magnetic field B⃗ due to the
nonzero magnetic moment μ possessed by the baryons,
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resulting in a splitting of the baryon and antibaryon energy
levels of ΔE ¼ 2μ⃗ · B⃗. This splitting leads to a damping of
the oscillations over time. For the case of neutron oscil-
lations, even a modest ambient magnetic field would
greatly suppress the oscillation probability on the time
scale of the neutron lifetime [22]. The criterion for the
effect of the magnetic field to be negligible is jΔEjt=2 ≪ 1,
where t is the time of propagation of the baryon. Taking the
Ξ0
b magnetic moment to be comparable to the nuclear

magneton [7], the energy splitting associated with the
magnetic field in the interaction region of the LHCb
detector, which is ≲10 mT, may be computed. For a
typical time of propagation equal to the known Ξ0

b lifetime
[23] of 1.477� 0.032 ps, jΔEjt=2≲ 10−4. This effect can,
therefore, be neglected and, in the limit of small mixing, the
ratio of the rate of oscillated decays PX→X̄ðtÞ to the rate of
nonoscillated decays PX→XðtÞ varies over time as

RðtÞ≡ PX→X̄ðtÞ
PX→XðtÞ

¼ tan2ðt=τmixÞ≃ t2

τ2mix

≡ ðωtÞ2; ð1Þ

where 2πτmix is the oscillation period, and ω ¼ 1=τmix
gives the corresponding angular frequency and is zero in
the absence of oscillations. This angular frequency is
related to the mass difference ΔM and the width difference
ΔΓ between the eigenstates of the Hamiltonian by
ω2 ¼ ðΔM=2Þ2 þ ðΔΓ=4Þ2, and in the limit that BNV in
the decay itself is negligible, ω ¼ ΔM=2.
This Letter presents a search for baryon-number violating

Ξ0
b oscillations performedwith a sample ofpp collision data

recorded by the LHCb experiment, corresponding to an
integrated luminosity of 3 fb−1 collected at center-of-mass

energies
ffiffiffi
s

p ¼ 7 and 8 TeV. This is the first such search for
oscillations in heavy baryons. The LHCb detector [24,25] is
a single-arm forward spectrometer covering the pseudor-
apidity range 2 < η < 5 designed for the study of particles
containing b or c quarks. The detector elements that are
particularly relevant to this analysis are a silicon-strip vertex
detector surrounding the pp interaction region that allows c
and b hadrons to be identified from their characteristically
long flight distance, a tracking system that provides a
measurement of momentum p of charged particles, and
two ring-imaging Cherenkov detectors that are able to
discriminate between different species of charged hadrons.
Samples of simulated events are used to study the detector
response and its effect on the measurement. In the simu-
lation, pp collisions are generated using PYTHIA [26] with a
specific LHCb configuration [27]. Decays of hadronic
particles are described by EVTGEN [28], in which final-
state radiation is generated using PHOTOS [29]. The inter-
action of the generated particles with the detector and its
response are implemented using the GEANT4 toolkit [30] as
described in Ref. [31].
Two classes of Ξ0;�−

b candidates are defined. Baryon-
number conserving decays, in which a strong decay Ξ0;�−

b →
Ξ0
bπ

− is followed by weak decays Ξ0
b → Ξþ

c π
− and

Ξþ
c → pK−πþ, are referred to as opposite-sign (OS) candi-

dates, since the π− emitted in the strong decay and thep have
charges of opposite sign. Conversely, in same-sign (SS)
candidates, the first decayΞ0;�−

b → Ξ0
bπ

− is followed byweak
decays to a final state of different baryon number, Ξ̄0

b →
Ξ̄−
c π

þ and Ξ̄−
c → p̄Kþπ−.

The reconstruction and selection procedures are the same
as those described in Ref. [18], except for one additional
requirement on the track quality of the pion produced in the

(a)

(b)

FIG. 1. (a) A non-BNV quark diagram for a Ξ0;�−
b → Ξ0

bπ
− strong decay followed by a Ξ0

b → Ξþ
c π

− weak decay. (b) The corresponding
BNV diagram with a Ξ0

b to Ξ̄0
b oscillation followed by a decay to the final state Ξ̄−

c π
þ.
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Ξ0;�−
b decay. This requirement rejects a source of peaking

background that can arise when a genuine Ξ0;�−
b → Ξ0

bπ
−

decay occurs but theπ− track ismisreconstructed such that its
charge is incorrect, and the candidate migrates from the OS
to the SS class [32]. In studies of simulated events, the fitted
SS yield of this contribution is found to be smaller than
that of correctly reconstructed OS signal by a factor of
ð1.3� 0.3Þ × 10−3, where the uncertainty is statistical.
Applying the additional track quality requirement reduces
the SS contribution in simulation by an order of magnitude,
such that it becomes smaller than the OS yield by a factor of
ð1.6� 2.0Þ × 10−4, corresponding to an expected SS peak-
ing background yield of less than 0.1, which is negligible.
The track quality requirement also reduces the OS signal
yield in thedata byapproximately10%and the combinatorial
background by approximately 20% compared to Ref. [18].
Figure 2 shows the spectra of the mass difference δm for the
selected OS and SS candidates, defining δm≡mðΞ0

bπÞ−
mðΞ0

bÞ −mπ , where mπ is the known π� mass [7], and
mðΞ0

bπÞ andmðΞ0
bÞ are the reconstructed invariant masses of

the Ξ0
bπ and Ξ0

b candidates. The figure also shows an
unbinned extended maximum likelihood fit to the OS
candidates, performed following the same procedure as
described below and in Ref. [18], as a blue curve.
The data are divided into seven bins of decay time

(illustrated in Fig. 3) that have approximately equal OS
signal yields and cover the range 0 < t < 8 ps, correspond-
ing to approximately 5.4 times the mean Ξ0

b lifetime. The
OS resonance yields in the ith bin are determined from a fit
to the δm distribution of the OS data in that bin, with the
resonance masses and the Ξ�−

b width fixed to values
obtained in a fit to the whole OS data sample. In each
bin of decay time, the shape and normalization of the SS

combinatorial background are obtained from a fit to the δm
sideband regions of the SS data in that bin (the sidebands
being 0–2, 6–15, and 32–45 MeV=c2). For a given value of
the angular frequency ω of the oscillations, the expected
ratio of SS to OS decays in the bin may be computed. In
combination with the OS yield and the shape and nor-
malization of the SS background obtained as described
above, this fully determines the probability density function
for the SS data in bin i, and the corresponding likelihood
LiðωÞ is evaluated. The overall likelihood is obtained by
combining all bins as LðωÞ ¼ Q

iLiðωÞ.
A test statistic Δ is defined based on the likelihood ratio

approach asΔ≡ 2 lnLðω̂Þ − 2 lnLð0Þ, where ω̂ is the best-
fit value of ω and is estimated from a likelihood scan. Only
the physical domain ω ≥ 0 is considered, and, conse-
quently, ω̂ is expected to be zero approximately half of
the time under the null hypothesis. The best-fit value for
the data is found to be ω̂ ¼ 0, and the test statistic is,
therefore, Δ ¼ 0.
Since no evidence of BNVoscillations is found, an upper

limit at the 95% confidence level is placed on ω following
the CLs method [33,34]. Ensembles of parametrized
simulations referred to as pseudoexperiments are generated
for a range of different oscillation angular frequencies ω.
The pseudoexperiments include variation of efficiency with
decay time, decay time and mass resolution, combinatorial
background, and misclassification of OS candidates as SS
via the misreconstruction described earlier. To incorporate
the associated systematic uncertainties, the input parame-
ters used to define the distributions (the masses and yields
of the resonances, the natural width of the Ξ�−

b , the
background yield and shape parameters, and the signal
misclassification rate) are varied randomly within their
uncertainties for each pseudoexperiment. Each pseudoex-
periment is analyzed in the same way as the data, and its
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FIG. 2. Spectra of themass difference δm≡mðΞ0
bπÞ −mðΞ0

bÞ −
mπ in the data after the full selection, for the OS sample (black
pointswith error bars) and SS decays (red, hatched histogram). The
blue curve is a fit to the OS data. The Ξ0−

b and Ξ�−
b peaks are at

δm ≈ 3.7 and 24 MeV=c2, and the δm resolution at these points is
approximately 0.2 and 0.5 MeV=c2, respectively; the Ξ�−

b also has
a non-negligible natural width of Γ ≈ 1.7 MeV [23]. Inset: Detail
of the region 2.0 < δm < 5.5 MeV=c2.
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Because of selection requirements, few candidates are present at
short decay times.

PRL 119, 181807 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 NOVEMBER 2017

181807-3



test statistic Δ computed. Coverage tests with pseudoex-
periments indicate that the procedure overcovers for small
values of ω, with 100% coverage at ω ¼ 0, and that the
coverage converges asymptotically to 95% as the true value
of ω increases.
An upper limit of ω < 0.08 ps−1 at the 95% confidence

level is obtained, which corresponds to τmix > 13 ps. This
result can also be expressed in terms of the time-integrated
mixing rate χ defined as the fraction of particles produced
as Ξ0

b that decay as Ξ̄0
b or vice versa. Under the assumption

of quadratic time dependence for RðtÞ, χ ¼ 2ω2τ2 < 2.7%
at the 95% confidence level, where τ is the known Ξ0

b
lifetime [23]. For the purposes of illustration, the evolution
of the expected SS yield with decay time for ω ¼ 0.08 ps−1

and ω ¼ 0.16 ps−1 is shown in Fig. 4 and compared to the
SS yield in the data as obtained with a simplified statistical
procedure.
In summary, a search is performed for baryon-antibaryon

oscillations in the Ξ0
b system. This is the first such search in

the heavy-flavor sector and is of particular interest since Ξ0
b

baryons may couple directly to flavor-diagonal six-fermion
operators that violate baryon number [13]. No evidence of
baryon-number violating oscillations is found. In the limit
of a small oscillation rate, the ratio of same-sign to
opposite-sign decays is expected to increase quadratically
with decay time. A limit on the oscillation angular
frequency ω < 0.08 ps−1 at the 95% confidence level is
obtained, equivalent to τmix > 13 ps. This rules out oscil-
lations with a period comparable to the Ξ0

b lifetime, as
proposed in Ref. [15].
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