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ABSTRACT: Hemagglutinin (HA) mediates membrane
fusion, a crucial step during influenza virus cell entry. How
many HAs are needed for this process is still subject to debate.
To aid in this discussion, the confinement free energy method
was used to calculate the conformational free energy difference
between the extended intermediate and postfusion state of
HA. Special care was taken to comply with the general
guidelines for free energy calculations, thereby obtaining
convergence and demonstrating reliability of the results. The
energy that one HA trimer contributes to fusion was found to
be 34.2 ± 3.4kBT, similar to the known contributions from
other fusion proteins. Although computationally expensive, the
technique used is a promising tool for the further energetic
characterization of fusion protein mechanisms. Knowledge of the energetic contributions per protein, and of conserved residues
that are crucial for fusion, aids in the development of fusion inhibitors for antiviral drugs.

■ INTRODUCTION

The glycoprotein hemagglutinin (HA) catalyzes membrane
fusion during the invasion of cells by influenza virus particles.1

HA is a homotrimeric class I fusion protein consisting of two
subunits, a mostly globular binding domain (HA1) and a
fusion-active domain (HA2) that is anchored in the viral
membrane at its C-terminal. HA1 is disulfide-bonded to HA2,
whose central α-helical coiled coil forms the core of the trimer.
HA1 facilitates binding to receptors on the target cell
membrane and holds the protein in a metastable configuration.
After endocytosis, acidification of the endosome triggers
dissociation of HA1 and release of fusion peptides at the N-
terminal of HA2.2,3 A large conformational change in HA2
ensues, as is evident from the comparison of the prefusion and
postfusion (PF) conformations of HA.4,5 In fact, a pathway of
HA rearrangements has been deduced, which involves two large
conformational changes.6 First, a loop-to-helix transition
extends the existing coiled coil and projects the fusion peptides
toward the target membrane. In this hypothesized “extended
intermediate” (EI) state, the fusion peptides can insert into the
target membrane, thereby establishing HA2 as a bridge between
the viral and endosomal membrane. Subsequently, the globular
C-terminal domain of HA2 collapses and zippers up along
distinct hydrophobic patches on the extended coiled coil, so as
to bring the two membranes together for fusion.7 Single-
particle fusion kinetics experiments have shown that HA
triggering is the rate-limiting step, followed by fast HA
extension and fusion peptide insertion. The resulting
intermediate state of HA remains alive until a local cluster of

sufficiently many HAs can jointly provide enough energy to
fuse the membranes.6,8 However, the amount of energy that
each HA can contribute to this process has not yet been
determined.
The free energy available per HA is valuable information in

the development of antiviral therapeutics. It is directly related
to the number of HAs needed to surmount the appreciable
membrane fusion energy barrier, estimated at 30−90kBT.

9−12

Both the number of HAs and the free energy per HA influence
the kinetics of fusion, which has to be tightly regulated to
ensure release of the viral RNA close to the target cell nucleus,
while avoiding degradation by the host immune system.13

Therefore, these two quantities influence virus infectivity,
dictate the minimal receptor density on the target membrane,
and define the number of HA-targeting antibodies that will be
needed to neutralize a virus particle.14,15

To our knowledge, HIV-1 gp41 and the SNARE complex are
the only fusion catalysts for which the energy contribution to
membrane fusion is known: 71kBT for gp41 and 65kBT for
SNARE, both determined using optical tweezers.16,17 Depend-
ing on the virus strain, HIV-1 entry requires one to seven gp41
trimers,18 whereas one to three SNARE complexes can mediate
synaptic vesicle fusion.19 For HA-mediated fusion, the required
number of trimers has been estimated to be between three and
six.8,20,21 However, an experimental determination of the
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energy that HA contributes is still lacking. Alternatively,
computational methods may be used to compute this energy,
but they bring a number of challenges for systems as large as
HA. Computational difficulties arise mainly because of the vast
conformational space that needs to be sampled and many local
energy minima in which the system can get stuck.22 For
example, targeted molecular dynamics (MD) is able to give
insight into the pre- to postfusion pathway,23 but an accurate
free energy profile along this path would require further
sampling with more sophisticated (and laborious) methods.24

Some researchers have computed the conformational free
energy gain of the loop-to-helix transition that extends HA2,
thereby reducing the size of the system to only tens of
residues.25,26 However, in view of the described pathway of HA
rearrangements, it is the entire free energy that is released
during the transition from the extended intermediate to the
postfusion state that needs to be calculated. To do so, a method
is needed that makes the computation of conformational free
energy differences for such a large system feasible.
There is no generally accepted method for computing the

free energy difference between the conformational states of a
macromolecule, which is a particularly difficult task when the
two conformations differ significantly from each other.22 As the
two states of interest do not overlap, the path-dependent
approach requires integration over overlapping intermediate
states along some reaction coordinate to calculate the change in
free energy during the transformation from one state into the
other. However, even though the intermediate states do not
need to be physically realistic, the establishment of a suitable
reaction coordinate and a reaction path is challenging, and
some paths converge much slower than others.27 Moreover, the
system can still become trapped in an energy basin, even within
the presence of a biasing potential. Additional reaction
coordinates that bias the phase space perpendicular to the
original reaction coordinate might be necessary, especially for
larger systems, at the cost of even more complexity.28

Instead, we here apply the confinement free energy method,
proposed a few years ago by Karplus and co-workers,29 to
determine the conformational free energy difference between
the extended intermediate and the postfusion state of HA. This
method is path-independent and has been used to estimate the
free energy difference between two conformational states by

approximating the internal motions of a protein as a
superposition of harmonic oscillators.29−31 By applying
enhanced sampling techniques and a number of optimization
strategies, in compliance with general guidelines for free energy
calculations, the result of our calculation shows convergence
and consistency between two different analysis techniques.

■ METHODS

Confinement Free Energy Method. The confinement
approach29,33−35 is a path-independent method that can be
used to estimate the conformational free energy difference
ΔGAB between two states, A and B, without the need of a
transition path. Its central idea is illustrated in Figure 1.
Macrostate A is transformed into a set of noninteracting
harmonic oscillators, a, for which the free energy Ga can be
evaluated analytically. The work done to perform this
transformation is the confinement free energy ΔGconf

A . So,
going from a to A in Figure 1, the conformational free energy of
state A is evaluated as

= − ΔG G GA a
conf
A

(1)

A similar operation is performed for state B. Completing the
cycle, the conformational free energy difference between the
states can be computed as

Δ = −G G G( )AB B A (2)

= − − Δ − ΔG G G G( ) ( )b a
conf
B

conf
A

(3)

Focusing on the confinement procedure to calculate ΔGconf
A

first, the transformation A → a is accomplished by a series of
molecular dynamics simulations, in which the system of interest
is confined to state a. To this end, the Hamiltonian is extended
with a harmonic restraint, centered at the positions of a
reference structure X0

A ∈ A. This restraint increases stepwise
with each new simulation, proportionally with the parameter λ
= 0, ..., 1, until the system can be considered purely harmonic at
λ = 1. This corresponds to the Hamiltonian29

Figure 1. Thermodynamic cycle illustrating the confinement free energy method. The free energy of macrostate A is estimated from the free energy
Ga of the set of harmonic oscillators a, oscillating around the reference structure X0

A, and the work ΔGconf
A needed to harmonically confine A to a as

computed by thermodynamic integration. The conformational free energy difference between states A and B is then found by combining the
confinement free energies ΔGconf

B − ΔGconf
A with the analytically obtained harmonic free energies Ga and Gb (eq 2). On the right, the reference

structures are shown in cartoon and licorice representation for the EI (orange, state a) and PF (purple, state b) states. The overlaid cartoon
representations on the left depict representative conformations from the simulation with the lowest restraint strength for each of the states. Rendered
with visual molecular dynamics (VMD).32
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which includes the potential and kinetic energy terms E(X) and
K(P), depending on the system configuration X and the particle
momenta P, respectively. The particle masses mi are input for
the restraint over all N particles, while ∥·∥ denotes the
Euclidean norm and is evaluated after a mass-weighted best-fit
of the instantaneous particle coordinates xi with the reference
coordinates x0

i . This best-fit alignment improves the con-
vergence of the procedure by precluding work done on
restraining rigid body motions. The mass-weighting ensures the
transformation into a set of noninteracting harmonic oscillators
for which the free energy (Ga) is known analytically, thereby
obviating the need for a normal-mode analysis to determine
ΔGab in a previous version of the method.35 The total work
performed over all of the values of the restraint parameter λ is
the confinement free energy ΔGconf, which can be computed
using36

∫ λ

π ν ρ

Δ =

= ⟨ ⟩

G U U X

M X X

d , with ( )

2 ( , )

conf
0

1

conf conf

2 2
m
2

0 (5)

Here, M is the total mass of the system, ⟨ρm(X, X0)⟩ is the
mass-weighted root-mean-square deviation (RMSD) of the
sampled configuration X with respect to the reference structure
X0, and the ensemble average denoted by ⟨·⟩ is obtained from a
simulation using the Hamiltonian Hλ(λ). Calculating ⟨ρm⟩ this
way in postprocessing, Uconf effectively gives the average work
done by the restraint term during the simulation. Equation 5 is
valid for ν chosen sufficiently large, as evaluated by the
convergence criterion29

ν ρ
π β

⟨ ⟩ =X X
N

M
( , )

(2 )
2

m
2

0
DOF

2
(6)

where NDOF is the number of degrees of freedom in the system
and β = 1/kBT. In this limit, the system behaves as a set of
noninteracting harmonic oscillators, of which virtually all of the
energy is due to the restraints. Reaching that point, ΔGconf

A can
be interpreted as the “anharmonic” part of the free energy of
state A. By subtracting this from the “harmonic” free energy of
state a and changing the variable of integration in eq 5 to ζ =
λν2, the total conformational free energy of state A is computed
as

= − ΔG G GA a
conf
A

(7)

∫β
β ν

ν
ζ= + −

ν
E X

N
h

U
( ) log d0

A DOF

0

conf
2

2

(8)

where h is Planck’s constant. E(X0
A) is the potential energy of

the reference structure for state A, which is obtained by taking
the ensemble average of the potential energy at the highest
restraint frequency. The conformational free energy of state B
can be obtained similarly using X0

B as the reference structure.
The second term on the right-hand side of eq 8 is the free
energy of the set of noninteracting harmonic oscillators
representing a state, which is identical for two confined states
with the same number of degrees of freedom. Hence, if one is

only interested in the difference in free energy between two
states, this term vanishes and

Δ = − − Δ − ΔG E X E X G G( ( ) ( )) ( )AB
0
B

0
A

conf
B

conf
A

(9)

=Δ − ΔΔG Gab
conf
AB

(10)

Thermodynamic Integration (TI) and Bennett Accept-
ance Ratio Estimator (MBAR). The confinement free energy
(eq 5) can be calculated either directly using thermodynamic
integration (TI)37 or via the multistate Bennett acceptance ratio
estimator (MBAR).38 When using TI with numerical
integration, the trapezoid rule with linear interpolation is not
suitable due to the strong nonlinearity of ⟨ρm(X, X0)

2⟩ as a
function of ν.34 Instead, the integration is performed using
linear interpolation in logarithmic space as follows.35 With a
function y(k) that has been evaluated at the discrete points {a =
k0, k1, k2, ..., kM = b}, the area under the curve of this function
between the points i and j = i + 1 is

∫ =
−

−
≡y k

k k k y k y

k y k y
I( )

log( / )( )

log( ) log( )k

k j i j j i i

j j i i
j

i

j

(11)

Hence, the integral of y(k) is calculated numerically using

∫ ∑=
=

y k I( )
a

b

j

M

j
1 (12)

The statistical uncertainty of the confinement free energy
method arises mainly from the sampling error in obtaining
⟨ρm⟩. To compute the error in the conformational free-energy
difference G, the error in ρm is propagated through eq 8. When
numerical integration is used, the error propagates through eqs
11 and 12, as detailed in Section S.1 in the Supporting
Information.
To keep the uncertainty in the estimated free energy low,

consecutive values of λ for neighboring windows should be
spaced sufficiently close.39 The resulting spatial overlap
between the conformations obtained at each window can be
exploited by using MBAR,38 which calculates the free energy by
minimizing the uncertainties in the free energy differences
between all of the states simultaneously. The benefit with
respect to TI is that samples from multiple simulations are
combined to compute the overall free energy difference, which
increases the accuracy of the calculation. To do so, MBAR
needs the difference in potential energy ΔUp,q between all of
the pairs of windows p and q. These can be obtained from the
windows that have been simulated (p = q) using Boltzmann
reweighting. Since only the restraint term differs between the
potential energies of two states, ΔUp,q can be calculated from
ΔUconf for the set of k = 0, ..., K sampled configurations Xk at
restraint frequency νp according to36

π ρ ν
ν

ν

Δ = −

= −
⎡

⎣
⎢⎢
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

U U X U X

M X X

( ) ( )

2 ( , ) 1

p q q k p k

k p
q

p

,

2
m
2

0
2

2

(13)

When using MBAR, an estimate of the statistical uncertainty
that propagates from taking the integral of Uconf into ΔGconf is
provided by MBAR itself. While TI is sensitive to the average
curvature of the observable between the windows, the
uncertainty in the result from MBAR depends on the overlap
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between the windows. Therefore, an added advantage of using
MBAR is that the consistency of the free energy calculation can
be verified by comparing the answers from two different
analysis techniques (TI in logarithmic space and MBAR).
Consistent answers between the two methods ensures sufficient
sampling in each window, as well as sufficient overlap between
the windows.
Guidelines for Free Energy Calculations. In an effort to

bring more standardization in free energy calculations, a
number of best practices have been proposed as general
guidelines for the analysis of free energy calculations:40

(1) Use uncorrelated samples.
(2) Compare results from different analysis techniques.
(3) Ensure overlapping distributions between the sampling

windows.
(4) Confirm sufficient equilibration and sampling in each

window.

Considering that the method used in the present article has
been proposed only recently, and to ensure that the results
presented are as accurate as possible, we will follow these
guidelines in the analysis of our results and refer to them when
relevant in the remainder of this article.
Equilibration and Decorrelation of Time Series. In the

calculation of the confinement free energy and its uncertainty,
⟨ρm⟩ should be derived from uncorrelated data sets (guideline
1), obtained from systems simulated at equilibrium (guideline
4). Hence, to acquire uncorrelated samples, the data were
subsampled with a spacing of at least 2 times the
autocorrelation time for each window.41 Furthermore, the
simulations are started from a configuration that is not
necessarily an equilibrium sample for the Hamiltonian
corresponding to that window. From this configuration, it
will take time for the system to reach equilibrium, especially
when the autocorrelation time is long. Therefore, the data need
to be equilibrated before they are used in the free energy
calculations. To do so, a method was used based on maximizing
the number of uncorrelated samples that remains after
discarding the equilibration period.42 The MBAR implementa-
tion of these decorrelation and equilibration strategies was
used. All of the free energy calculations reported here were
performed using equilibrated and decorrelated time series,
using the autocorrelation of the ρm time series.
Crystal Structures and Simulation Setup. We carried

out confinement simulations of the extended intermediate (EI)
and the postfusion (PF) state of influenza hemagglutinin from
the A/Aichi/68-X31 H3N2 strain. A structural model of the
extended intermediate was obtained by aligning the coiled coils
of the prefusion (protein data bank (PDB) code 1HGF43) and
postfusion (PDB code 1QU144) crystal structures using a root-
mean-square fit of residues 97−101 in VMD.32 Using this short
stretch within the trimeric coiled coil resulted in a fit that
enabled a seamless combination of the two structures. For both
states, all of the residues belonging to HA1 were removed and
only residues 33−175 of the three monomers of HA2 were
used because only these residues are present in the postfusion
crystal structure. The amino acid sequence of the extended
intermediate was matched with that of the postfusion structure
by a C137S mutation. Residues were protonated if their pKa in
the postfusion structure was above 5, as calculated by
PROPKA45,46 using the PDB2PQR web server.47 Because the
EI state occurs at the same pH as the postfusion state, it was
protonated identically. To limit the computational burden of

dynamic protonation, the protonation state of a residue was
kept fixed throughout the simulation.
The confinement simulations were performed with the

nanoscale molecular dynamics (NAMD) program,47 using the
Amber ff14SB all-atom force field48 and generalized Born
implicit solvent.49,50 These parameters were chosen after a
comparison of the stability of the protein (in terms of RMSD
values) and the simulation speed using different MD packages,
force fields, and water models (see Section S.2 in the
Supporting Information for details). A short-range interaction
cutoff of 1.4 nm was used without a switching function, with a
pair list distance of 1.6 nm. Nonbonded and electrostatic
interactions were calculated at every time step, while pair lists
were updated every 10 time steps.
The temperature was maintained at 300 K using Langevin

dynamics, with friction coefficients of 1, 5, 20, and 100 ps−1 in
the ranges of ν = 0−0.3, 0.3−1.5, 1.5−5, and >5 ps−1,
respectively. Doing so, the autocorrelation time at each of the
oscillator frequencies is optimized, as proposed by Villemot et
al.36 Following the recommendation of the same authors, the
simulation time step was taken to depend on the restraint
strength to sufficiently sample even the highest frequencies. As
such, a time step ranging from 1 to 0.01 fs was used for ν > 1
ps−1, ensuring that each harmonic oscillator period contained at
least 80 time steps. Simulations ran for a minimum of 2.5 × 106

time steps, depending on the convergence of each individual
simulation, resulting in a minimum simulation length of 100 ps
for the high-restraint range. Configurations were saved for
analysis every 1000 time steps, but at most every picosecond.
Even with these specific measures to eliminate errors due to

the size of the integration time step, the mass-weighted RMSD
occasionally showed distinct, short peaks at high restraint
strengths. These occurred when one or more atoms would
deviate so far from their reference positions, presumably due to
the random (Langevin) force, that a couple of time steps were
needed to relax them back to their equilibrium positions. Such
systematic errors have previously been shown to cancel out
when calculating the conformational free energy difference
between two states of a smaller system,35 but led to a number
of rare but obvious shifts in the confinement free energy in our
results. Therefore, data points within a sampling window that
deviated more than four standard deviations from the ensemble
average, thereby clearly identified as out-of-equilibrium outliers,
were discarded before subsampling the data.
A time step of 2 fs was used to speed up the simulations at

low restraint strengths, where the conformational space of the
protein is still relatively large and autocorrelation times are
long. For these simulations, all of the bonds involving hydrogen
atoms were constrained using SHAKE.51 In an alanine-
dipeptide test case, the reduction in degrees of freedom
accompanying these constraints did not influence the confine-
ment free energy difference below ν = 6 ps−1, as shown in
Figure S1 in the Supporting Information. Apparently, for these
values of ν, the influence of constraining the small oscillations
of hydrogens is negligible compared to the relatively large
RMSD values, especially when only the free energy difference
between the two states is considered. Nevertheless, SHAKE
was applied conservatively for ν < 1 ps−1 only.
Replica exchange molecular dynamics (REMD) was used for

ν < 1.76 ps−1. REMD has been shown to decrease the
autocorrelation time below ν ≈ 2 ps−1, but has no effect on the
autocorrelation time at higher restraint strengths.36 Four
replicas were used at the temperatures 300.00, 308.11,
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316.44, and 325.00 K, with exchange attempts every 1 ps. This
resulted in configuration exchanges between replicas every 5 ps
on average.
Window Spacing and Overlap Coefficient. The

windows in TI calculations are usually equispaced in
logarithmic space. However, Villemot et al.36 have shown that
an increasingly narrow spacing is necessary with increasing
harmonic oscillator frequency ν to limit the free energy spacing
between the windows. Doing so, enough overlap between the
windows can be maintained. To get an estimate of the free
energy spacing, we initially used 21 frequencies, equally spaced
in logarithmic space according to the formula νi = 2.045 × 10−2

× 1.9i ps−1, i = 0, 1, 2, ..., 20.29 Because the sampled
conformations still appeared to be too constrained at the lowest
restraint strength, this range was subsequently expanded by
adding the lowest frequency at ν = 0.001 ps−1. To interpolate
between these data points, the most progressive relationship
between the free energy difference and oscillator frequency
proposed by Villemot et al. was used.36 This meant that the
data points were added in such a way that the maximal free
energy difference between each of the neighboring simulations i
and j was determined using36

ν
ν

Δ = +
⎛
⎝⎜

⎞
⎠⎟G a b logi j,

1 (14)

with a = 5 kcal/mol and b = 1.55 kcal/mol. In the low-
frequency range (ν < 2 ps−1), MBAR was used to estimate the
free energy difference between the data points that were not yet
sampled. In the mid-range frequencies (2 < ν < 163 ps−1), the
number of added data points was based on the free energy
difference calculated by TI between the two existing ones, and
were equispaced in logarithmic space. To minimize the number
of data points that were needed for sufficient overlap in the
high-range frequencies (ν > 163 ps−1), data points were added
and calculated iteratively, mid-way in logarithmic space between
the already existing ones. This led to a total of 2178 windows
for each of the states.
The overlap between the sampling windows was charac-

terized using the overlap coefficient, which can be determined
from the overlap matrix.40 The overlap coefficient was
calculated for each row of the overlap matrix, by taking the
minimum value of the sum of the nondiagonal elements in the
same row, either to the right or to the left of the diagonal.

■ RESULTS

We present the results of the confinement simulations and
compliance to each of the guidelines for free energy
calculations, as discussed in the “Guidelines for Free Energy
Calculations” section. The first of these guidelines is already
met by subsampling the data. In this section, the preparation of
the reference structures is described first. Next, completion of
the confinement to a set of noninteracting harmonic oscillators
will be checked. Subsequently, the confinement free energy is
calculated using both the TI and MBAR analysis techniques
(guideline 2). Then, to corroborate these results, the use of a
sufficient number of windows and corresponding overlap
between them is shown (guideline 3). Following the final
guideline, sufficient equilibration and sampling in each window
then demonstrates convergence of the results. Finally, the
conformational free energy difference between the EI and PF
state is calculated from these results.

Energy Minimization. Reference structures for the
confinement simulations were obtained by thorough energy
minimization of the structures for the EI and PF state. The
minimum potential energy during the energy minimization is
shown in Figure 2. Although neither of the states have

converged to an absolute energy minimum, the energy
difference remains more or less constant between the two
states. The potential energy difference ΔGab between the
configurations at the end of these 107 steps of energy
minimization was −222.9 kcal/mol. These final configurations
were used as reference structures X0

A and X0
B for the

confinement free energy simulations of the extended
intermediate and postfusion state, respectively.

Confinement to the Harmonic Regime. The results of
the confinement simulations are shown in Figure 3a as the
direct observable ⟨ρm⟩ at all of the sampled values of ν. The
conformational space of the EI state is larger than that of the PF
state, as seen from the difference in ⟨ρm⟩ at low restraint
strengths. The upper inset in Figure 3a shows the same data in
linear space, from which the large curvature in ⟨ρm⟩ with
respect to ν becomes more apparent. The bottom inset in the
same figure shows the locally linear behavior of the data in
logarithmic space, warranting the numerical integration scheme
of eqs 11 and 12.
Completion of the confinement procedure, by reaching a set

of noninteracting harmonic oscillators in accordance with eq 6,
is shown in Figure 3b. The curve for the EI state is similar to
that of the PF state. At the maximum harmonic oscillator
frequency that was sampled (ν = 1121 ps−1), the equality in eq
6 was reached to within 99.9%.

Confinement Free Energies. The confinement free
energies of individual states with respect to the harmonic
oscillator frequency ν are shown in Figure 4a. The curves
shown here are calculated using MBAR, but are indistinguish-
able from those calculated by TI in this graphical
representation. The difference between the two confinement
free energies (ΔΔGconf, see Figure 4b) is relatively small
compared to the absolute confinement free energies at the
highest restraint strength, emphasizing the importance of
accurate sampling and integration for both states. The
confinement of the EI state takes more energy than that of
the PF state in the range 10−3 < ν < 40 ps−1, causing a drop in

Figure 2. Minimum potential energy during energy minimization of
the EI (orange) and PF (purple) crystal structures. The final
configurations, with a potential energy difference of −222.9 kcal/
mol, were used as reference structures for each respective state in the
confinement simulations.
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Figure 3. Results of the confinement simulations of the EI (orange) and PF (purple) state of HA. The expectation values from the mass-weighted
RMSD distributions are shown in (a), with the standard deviation of the distribution indicated by the error bars. The convergence threshold from
the right-hand side of eq 6 is shown as the dashed line in (b), together with the left-hand side of that equation for each of the states.

Figure 4. Confinement free energies for the EI (orange) and PF (purple) state (a) and the difference between them (b). The results in (b) were
calculated by MBAR (black) and TI (green), with their uncertainties indicated by the bands in gray and light green, respectively. The inset in (b)
zooms in on the tail region of the graph in the main frame.

Figure 5. (a) Resulting confinement free energy using TI over the whole frequency range, with errors σΔGconf
indicated by the error bars. The gray

shaded area represents the uncertainty of the end result to help assess convergence. (b) The amount of overlap that each of the sampling windows
has with its neighboring windows, as calculated by the overlap coefficient.
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ΔΔGconf until −206.2 ± 1.1 kcal/mol, as calculated by MBAR.
At higher restraint strengths, the more compactly folded PF
state takes more energy to confine, and the energy difference
goes back up, until it converges to −202.5 ± 2.0 kcal/mol at ν
= 1120 ps−1. The confinement free energy difference calculated
using TI converges to −202.1 ± 0.4 kcal/mol, which is well
within the uncertainty given by MBAR. The uncertainty
estimated by TI is almost an order of magnitude lower than
that calculated by MBAR because TI does not take into account
the amount of overlap between the windows in this estimate.
Hence, the result is consistent between the two families of
analysis techniques, thereby satisfying guideline 2.
Before calculating the conformational free energy difference

between the states resulting from these confinement free
energies, the validity of the estimate with respect to the
remaining two guidelines for free energy calculations will be
confirmed first. To start with, the number of sampling windows
and the overlap between them will be discussed.
Convergence: Overlapping Distributions. Convergence

of the results for ΔGconf in terms of a sufficient number of
sampling windows is shown in Figure 5a. For both the EI and
PF state, the result calculated using TI does not change
anymore between using half or all of the windows (within the
error bars of the result calculated over all of the windows). This,
however, does not yet guarantee sufficient overlap between the
distributions of neighboring sampling windows, which is an
essential requirement for accurate free energy calculations
(guideline 3). Such an overlap cannot only be accomplished by
using enough intermediate states at different values of ν, they
should also have a judiciously chosen spacing.
The overlap coefficient quantifies the amount of overlap

between the sampled distributions. An overlap coefficient of
0.25 would mean that half of the sampled configurations could
also be found in one of the two neighboring windows. Any
value above 0.03 is considered sufficient, whereas a smaller
value would cause incorrect free energy estimates and
underestimation of the uncertainty by MBAR.40 So the
optimum, balancing overlap between and sampling within the
windows lies somewhere in between 0.03 and 0.25.
Figure 5b shows that there is more than sufficient overlap

between the distributions over the whole frequency range. In
fact, the window spacing strategy described in the “Window
Spacing and Overlap Coefficient” section turns out to be rather

conservative for a large part of the frequency range, especially in
the mid-range frequencies (2 < ν < 163 ps−1) with overlap
coefficients above 0.4. Such a nonoptimal overlap requires more
sampling windows than is necessary, but in turn provides the
advantage that per window, fewer decorrelated samples are
required for an accurate free energy estimate. As can be seen in
Figure 6a, about 2500−4000 samples per window are acquired
in this frequency range. In contrast, for frequencies above ν =
163 ps−1, where a more progressive window spacing strategy is
used, the overlap coefficient remains around 0.1 and about 10
000 samples per window were acquired. So, for these high-
range frequencies, a 4-fold increase in sampling is needed to
maintain the same error contribution per window as in the mid-
range frequencies.
In contrast to TI, MBAR is particularly sensitive to the

window spacing and the resulting overlap between the observed
distributions. Without an overlap, MBAR either gives highly
diverging results with huge uncertainties if calculating a small
number of windows, or, if the number of windows is too high, it
does not converge at all. In our case, this applied to both the
low-range (ν < 2 ps−1) and high-range (ν > 163 ps−1)
frequencies as soon as more than half of the sampled windows
was left out of the calculation. The occurrence of overlap
coefficients around 0.25 in these frequency ranges (Figure 5b)
is already an indication for such a behavior. Nonetheless, the
window spacing is sufficiently small in the mid-range
frequencies (2 < ν < 163 ps−1), such that MBAR calculations
converge with reasonable uncertainties while using only
portions of the total number of windows in this range. The
difference in the resulting ΔGconf between using all or a subset
of the windows is shown in Figure 6b. For both states, the
calculated confinement free energy changes at most 0.5 kcal/
mol between using all, or just a 10th, of the total number of
windows in this frequency range. This is a relatively small
deviation compared to the absolute confinement free energies
(Figure 5a), which are 5 orders of magnitude higher. However,
the uncertainty in the result increases considerably with
decreasing number of windows, to 1.5 kcal/mol of added
uncertainty when using a tenth of the original number of
windows. This highlights the importance of using a sufficient
number of judiciously spaced sampling windows for an accurate
free energy estimate with low uncertainty.

Figure 6. (a) Total number of samples obtained at 300 K in each window (black) and the number of samples that remain after equilibration (red)
and subsequent decorrelation (blue). (b) Using MBAR for an increasing number of windows over a selected frequency range, the deviation in ΔGconf

and σΔGconf
is shown with respect to those calculated over all of the windows.
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An adjustment of the window spacing strategy might prevent
the occurrence of excessive overlap that we see here. We
suggest to combine the two strategies suggested by Villemot et
al.,36 which are: sequentially adding intermediate frequencies
over the whole range or determining the maximal frequency
spacing using a precalibrated function. Recognizing that in their
and our results a considerably larger window spacing can be
used for frequencies above 2 ps−1, the idea is to sequentially
add intermediate frequencies in three small frequency ranges
(“calibration” ranges) to determine the maximal frequency
spacing function below and above 2 ps−1 individually. First, we
propose that the whole frequency range is sampled using about
20 equidistant frequencies (ν1, ..., ν20) in logarithmic space. By
making sure that the highest frequency enters the harmonic
regime, these simulations already provide a good indication of
the total range of the confinement free energy, given that they
are well equilibrated and converged. Although the window
spacing would generally be too large for MBAR at this point,
such a convergence can be monitored using TI. Then,
simulations are added at frequencies in between the first two,
center two (around ν = 2 ps−1), and last two windows, until
there is sufficient overlap between at least two of the windows
in each of these three calibration ranges. If the overlap
coefficient is much higher than 0.03, slightly larger spacings
could be tried for further optimization. The maximal free
energy difference between two subsequent windows can then
be found by fitting eq 14 on the free energy differences
obtained in the three calibration ranges [ΔGi,j(νlow),
ΔGi,j(νcenter) and ΔGi,j(νhigh)].
Convergence: Equilibration and Sampling. Regardless

of the number of sampling windows, insufficient equilibration
within each of the sampling windows can skew the ensemble
averages considerably with respect to the ensemble average in
equilibrium. Additionally, the ensemble averages can be skewed
if, in equilibrium, not enough samples have been gathered. Both
types of skewness will be reflected in an inaccuracy in the free
energy that is not taken into account by the estimated
uncertainty. Therefore, in line with guideline 4, proper
equilibration and convergence should always be confirmed.
The conventional way of showing convergence is to calculate
the free energy based on incremental fractions of the available
data in the forward direction of each of the time series. For
converged time series, the ensemble averages should not

change when samples are added, so the resulting plot should
settle rapidly (between using 40−60% of the available data) to
within the uncertainty of the final value. An effective measure to
uncover possible nonequilibrated windows is to include the
time-reversed convergence plot, which should also converge
rapidly.40 As shown in Figure 7a, this is the case for the
confinement free energies of both the EI and PF states.
Consequently, the confinement free energy difference is well
sampled and equilibrated, as evident from the rapidly
converging forward and reverse plots in Figure 7b. With this,
adherence to all of the guidelines for free energy calculations
has been shown, so the final result will be calculated next.

Conformational Free Energy Difference. The conforma-
tional free energy difference between the extended intermediate
and postfusion state can be calculated from the potential energy
difference between the reference structures and the confine-
ment free energy difference at the highest restraint frequency.
Using eq 10

Δ = Δ − ΔΔG G GAB ab
conf
AB

(15)

= − − − ±( 222.9) ( 202.5 2.0) (16)

=− ±20.4 2.0 kcal/mol (17)

=− ± k T34.2 3.4 B (18)

This result shows that the transformation from the extended
intermediate to the postfusion state of hemagglutinin is an
exergonic reaction that is thermodynamically favorable and that
can supply an estimated free energy of −34.2 ± 3.4kBT per
protein to the membrane fusion process.

■ DISCUSSION
The extensive conformational changes in hemagglutinin serve
to overcome the kinetic barriers in membrane fusion. The
amount of free energy that is available to accomplish this task is
unknown. Computation of this quantity is inherently
challenging because of the size of the system and the extent
of the conformational changes. We tackled the latter obstacle
by using the confinement method, thereby avoiding the need to
sample all of the conformational space along the path of the
structural changes and only focusing on sampling the two end
states. Before going into the implications of our findings in the
biological context, we first discuss our experiences with this

Figure 7. Overview of the confinement free energies and uncertainties for the EI and PF state calculated by MBAR (a) and the differences between
them (b), depending on the number of sampled data points. In the analysis, increasing fractions of data are taken from the time series in both the
forward (▶) and reverse (◀) direction, as indicated. The gray shaded area represents the uncertainty of the end result to help assess convergence.
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approach in terms of its efficiency and the possible sources of
errors.
During the confinement free energy calculations, conver-

gence is monitored to ensure sufficient sampling, adhering to
the guidelines for free energy calculations.40 Although such a
careful assessment of convergence and propagation of the
sampling error already provides an estimate of the statistical
uncertainty, the calculations also suffer from systematic errors.
These arise from inaccuracies in the determination of the
ensemble averages, due to, e.g., the integration over too large a
time step, or an inaccurate force field. Others have already
investigated the systematic error due to the size of the
integration time step, which was shown to cancel out when
taking the difference between the confinement free energies of
the two states.35 In our results, however, some rarely occurring,
larger inaccuracies caused more obvious shifts in the confine-
ment free energy that did not cancel out. The RMSD at these
data points clearly deviated from the ensemble distribution and
were discarded as outliers.
The errors introduced by inaccuracies in the parameters of

the force field or water model are more difficult to evaluate. For
example, the confinement free energy method has recently
been extended for use with explicit water, in which the protein
might behave differently.52 However, the current study was
feasible only by the efficient acceleration of the implicit solvent
model on graphical processing units (GPUs), combined with
the advantage of sampling with a relatively low friction
coefficient. Obtaining converged results in the relatively viscous
environment of explicit water currently seems to be out of
reach. In a recent study, however, the combination of
generalized Born implicit solvent with the Amber ff14SB
force field as used here yielded accurate folding to the native
conformation for 14 out of 17 proteins with varying
properties.53 Such a score indicates that the parameters used
are accurate for the determination of free energy minima and
the corresponding protein conformations, as in our calculations.
In addition to systematic errors, insufficient equilibration is a

source of statistical uncertainty that is also hard to quantify.
Despite monitoring both the forward and backward averages,
there could always be unsampled events that reveal a longer
correlation time, requiring extension of the simulation time.54

Inclusion of additional restraints has been proposed to bypass
this problem, speeding up equilibration by lowering the
correlation times.35,36 This might however change the
definition of the macrostate and thereby affect the resulting
free energy by an unknown amount. Related to this, the fact
that the definition of the macrostate may be somewhat arbitrary
is a problem for free energy calculations in general.22 Moreover,
we used a hypothesized model for the reference structure of the
EI state. We therefore chose not to introduce any additional
constraints. Because the results show that only the PF state is
stable (has a constant RMSD) at low restraint strengths,
additional constraints are expected to decrease the confinement
free energy of the EI state (ΔGconf

A ) the most, decreasing the
difference between the two (ΔΔGconf

AB ). This would in turn
enhance ΔGAB, which means that the current calculation is a
lower bound for the absolute conformational free energy
difference between the two states.
To reach convergence and limit the uncertainty, we followed

the recommendations to balance accuracy and efficiency in the
confinement free energy method by Villemot et al.36 However,
simulation of 19.4 × 109 time steps altogether (including all
replicas) still is a huge computational effort, despite

acceleration of the simulations on GPUs,a following recom-
mendations in terms of window spacing, monitoring correlation
times, and the use of REMD. Presumably, convergence to the
same accuracy could have been accomplished more efficiently
by an improved window spacing strategy that avoids excessive
overlap. Especially in the low-frequency range (ν < 2 ps−1),
where equilibration takes most of the simulation time and the
use of REMD quadruples the amount of required resources, the
window spacing should be optimal from the start. To improve
the window spacing in future applications, we propose to find
the optimal intermediate frequencies by combining two
approaches that have been suggested by Villemot et al.36 By
calibrating the desired free energy difference between windows
by sequentially adding intermediate frequencies (first ap-
proach) in three small frequency calibration ranges (low,
intermediate, and high), the maximal free energy difference
function (second approach) can be fitted between these
calibration ranges. Doing so should prevent the excessive
overlap between windows in the intermediate frequency range
that was seen in our results. However, to verify this would
require more simulations, so this can better be done on a
smaller system first. Although a number of simulations have to
be carried out consecutively in the proposed strategy, we expect
that a more efficient spacing of the subsequent parallel
simulations will supersede this disadvantage.
There is a final subtle aspect in the confinement free energy

method that is easily overlooked. Because rigid-body motions
have been removed by the best-fit alignment, the translational
(Gtrans) and rotational (Grot) degrees of freedom should be
taken into account separately. Of these, the translational
components of the free energy are the same for both states and
cancel out. For a protein anchored in the membrane, the only
rotational degree of freedom (around the longest axis) is
negligible and ΔGAB remains unchanged. When a protein is free
in solution, the rotational components are generally not the
same for both states. Although the EI state is significantly more
extended than the PF state, we find the difference ΔGrot

AB to be
only 0.5 kcal/mol. This results in a conformational free energy
difference of ΔGAB = −33.4 ± 3.4kBT for the protein free in
solution.
The conformational free energy of the postfusion state of HA

was found to be 34.2 ± 3.4kBT lower than that of the extended
intermediate. This amount can be interpreted as the
contribution of one membrane-embedded HA to membrane
fusion in the biological context of influenza viruses entering a
cell. Although a direct experimental validation for this result is
not yet available, circumstantial evidence suggests that it is close
to what one would expect. For example, it does not exceed the
membrane-binding affinity of the three HA fusion peptides
together (about 43kBT; 3 times the binding free energy of the
P20H7 fusion peptide reported by Li et al.55), for otherwise, the
fusion peptides would be pulled out of the target membrane
upon HA collapse.6 Moreover, the estimated energy is close to
the energy from partial or full SNARE complex formation,
respectively 35 or 65kBT, with one to three SNARE complexes
mediating fusion.19 Our result indicates that influenza fusion is
catalyzed by one to three fusion proteins as well, considering
that the hydration barrier for hemifusion has been estimated at
30−90kBT.9−12 Combining this with the three to six HAs
involved in fusion that others have suggested,8,20,21 three
neighboring (X31) HAs currently seem the best estimate.8,56

For further comparison, the free energy that is available from an
extended state of a single trimeric HIV-1 gp41 fusion protein to
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the postfusion state is about 70kBT.
16 Although much higher

than our estimate for HA, it is consistent with a picture of
fusion mediation by only one gp41 for HIV-1,57 which takes
considerably more time than for influenza,58 presumably
because of the remaining ∼20kBT barrier.6

Application of the confinement method on the known or
modeled conformations of other fusion proteins, specifically
gp4159−61 and the SNARE complex,62 would enable a direct
comparison with free energies obtained in the experiments.
However, the prefusion state of the SNARE complex
constitutes a separate monomer and dimer, which are both
mainly disordered. This makes the definition of this state for
the confinement free energy method rather arbitrary, and the
result would therefore be unreliable. For the gp41 fusion
protein, a structural model of the extended intermediate was
found to be highly dynamic in our simulations, which would
mean high RMSD values and unfeasibly long computation
times. Hence, a direct comparison with experiments can only
proceed once these problems have been alleviated.
As a possible step in the future, the trajectories of the current

results could be analyzed to find the per-residue contribution to
the free energy difference.30 From this refinement, the amino
acids that contribute most could be compared with the
documented effects of certain mutations on hemifusion.7,63

Alternatively, the effects of certain mutations on the conforma-
tional free energy of the postfusion state could further be
investigated using a new series of confinement simulations.31 It
would also be interesting to investigate HA from an H1N1
strain, which we expect to release less energy because it shows a
marked difference in fusion efficiency with H3 HA.14 If so,
comparing the per-residue contributions between the two
strains would give valuable information about the conservation
of highly contributing amino acids.

■ CONCLUSIONS
The confinement free energy method was used to calculate the
energy that hemagglutinin has available for membrane fusion.
This energy is assumed to be equivalent to the conformational
free energy difference between a model of the extended
intermediate and the postfusion crystal structure. Convergence
of the results was achieved by following the specific
recommendations for the confinement method given in the
literature, and at the same time complying to the general
guidelines for free energy calculations. One membrane-
anchored HA trimer was found to contribute a free energy of
34.2 ± 3.4kBT to the membrane fusion process, consistent with
current estimates of the number of HAs and the free energy
barriers in membrane fusion, as well as with the free energy
contributions that have been obtained for other fusion proteins.
Although computationally expensive, the used method has
potential in the search for residues that contribute most to the
energy for fusion. Knowledge of specific conserved residues
that are key to the fusion mechanism may lead to the design of
a physics-based drug that targets these residues.
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